1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::QPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SMIN
, VT
, Legal
);
254 setOperationAction(ISD::SMAX
, VT
, Legal
);
255 setOperationAction(ISD::UMIN
, VT
, Legal
);
256 setOperationAction(ISD::UMAX
, VT
, Legal
);
258 // No native support for these.
259 setOperationAction(ISD::UDIV
, VT
, Expand
);
260 setOperationAction(ISD::SDIV
, VT
, Expand
);
261 setOperationAction(ISD::UREM
, VT
, Expand
);
262 setOperationAction(ISD::SREM
, VT
, Expand
);
265 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
266 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
267 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
268 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
272 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
273 for (auto VT
: FloatTypes
) {
274 addRegisterClass(VT
, &ARM::QPRRegClass
);
278 // These are legal or custom whether we have MVE.fp or not
279 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
280 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
281 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
282 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
283 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
284 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
285 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
288 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
289 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
290 setOperationAction(ISD::FROUND
, VT
, Legal
);
292 // No native support for these.
293 setOperationAction(ISD::FDIV
, VT
, Expand
);
294 setOperationAction(ISD::FREM
, VT
, Expand
);
295 setOperationAction(ISD::FSQRT
, VT
, Expand
);
296 setOperationAction(ISD::FSIN
, VT
, Expand
);
297 setOperationAction(ISD::FCOS
, VT
, Expand
);
298 setOperationAction(ISD::FPOW
, VT
, Expand
);
299 setOperationAction(ISD::FLOG
, VT
, Expand
);
300 setOperationAction(ISD::FLOG2
, VT
, Expand
);
301 setOperationAction(ISD::FLOG10
, VT
, Expand
);
302 setOperationAction(ISD::FEXP
, VT
, Expand
);
303 setOperationAction(ISD::FEXP2
, VT
, Expand
);
304 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
308 // We 'support' these types up to bitcast/load/store level, regardless of
309 // MVE integer-only / float support. Only doing FP data processing on the FP
310 // vector types is inhibited at integer-only level.
311 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
312 for (auto VT
: LongTypes
) {
313 addRegisterClass(VT
, &ARM::QPRRegClass
);
315 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
316 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
317 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
320 // It is legal to extload from v4i8 to v4i16 or v4i32.
321 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
322 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
323 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
325 // Some truncating stores are legal too.
326 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
327 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
328 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
331 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
332 const ARMSubtarget
&STI
)
333 : TargetLowering(TM
), Subtarget(&STI
) {
334 RegInfo
= Subtarget
->getRegisterInfo();
335 Itins
= Subtarget
->getInstrItineraryData();
337 setBooleanContents(ZeroOrOneBooleanContent
);
338 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
340 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
341 !Subtarget
->isTargetWatchOS()) {
342 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
343 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
344 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
345 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
346 : CallingConv::ARM_AAPCS
);
349 if (Subtarget
->isTargetMachO()) {
350 // Uses VFP for Thumb libfuncs if available.
351 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
352 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
353 static const struct {
354 const RTLIB::Libcall Op
;
355 const char * const Name
;
356 const ISD::CondCode Cond
;
358 // Single-precision floating-point arithmetic.
359 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
360 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
361 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
362 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
364 // Double-precision floating-point arithmetic.
365 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
366 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
367 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
368 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
370 // Single-precision comparisons.
371 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
372 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
373 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
374 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
375 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
376 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
377 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
378 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
380 // Double-precision comparisons.
381 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
382 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
383 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
384 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
385 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
386 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
387 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
388 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
390 // Floating-point to integer conversions.
391 // i64 conversions are done via library routines even when generating VFP
392 // instructions, so use the same ones.
393 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
394 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
395 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
396 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
398 // Conversions between floating types.
399 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
400 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
402 // Integer to floating-point conversions.
403 // i64 conversions are done via library routines even when generating VFP
404 // instructions, so use the same ones.
405 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
406 // e.g., __floatunsidf vs. __floatunssidfvfp.
407 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
408 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
409 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
410 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
413 for (const auto &LC
: LibraryCalls
) {
414 setLibcallName(LC
.Op
, LC
.Name
);
415 if (LC
.Cond
!= ISD::SETCC_INVALID
)
416 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
421 // These libcalls are not available in 32-bit.
422 setLibcallName(RTLIB::SHL_I128
, nullptr);
423 setLibcallName(RTLIB::SRL_I128
, nullptr);
424 setLibcallName(RTLIB::SRA_I128
, nullptr);
427 if (Subtarget
->isAAPCS_ABI() &&
428 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
429 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
430 static const struct {
431 const RTLIB::Libcall Op
;
432 const char * const Name
;
433 const CallingConv::ID CC
;
434 const ISD::CondCode Cond
;
436 // Double-precision floating-point arithmetic helper functions
437 // RTABI chapter 4.1.2, Table 2
438 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
439 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
440 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
441 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
443 // Double-precision floating-point comparison helper functions
444 // RTABI chapter 4.1.2, Table 3
445 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
446 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
447 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
448 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
449 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
450 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
451 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
452 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
454 // Single-precision floating-point arithmetic helper functions
455 // RTABI chapter 4.1.2, Table 4
456 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
457 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
458 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
459 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
461 // Single-precision floating-point comparison helper functions
462 // RTABI chapter 4.1.2, Table 5
463 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
464 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
465 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
466 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
467 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
468 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
469 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
470 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
472 // Floating-point to integer conversions.
473 // RTABI chapter 4.1.2, Table 6
474 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
475 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
476 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
477 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
478 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
479 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
480 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
481 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
483 // Conversions between floating types.
484 // RTABI chapter 4.1.2, Table 7
485 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
486 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
487 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
489 // Integer to floating-point conversions.
490 // RTABI chapter 4.1.2, Table 8
491 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
492 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
493 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
494 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
495 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
496 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
497 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
498 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
500 // Long long helper functions
501 // RTABI chapter 4.2, Table 9
502 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
503 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
504 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
505 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
507 // Integer division functions
508 // RTABI chapter 4.3.1
509 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
513 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
514 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
515 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
516 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
519 for (const auto &LC
: LibraryCalls
) {
520 setLibcallName(LC
.Op
, LC
.Name
);
521 setLibcallCallingConv(LC
.Op
, LC
.CC
);
522 if (LC
.Cond
!= ISD::SETCC_INVALID
)
523 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
526 // EABI dependent RTLIB
527 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
528 TM
.Options
.EABIVersion
== EABI::EABI5
) {
529 static const struct {
530 const RTLIB::Libcall Op
;
531 const char *const Name
;
532 const CallingConv::ID CC
;
533 const ISD::CondCode Cond
;
534 } MemOpsLibraryCalls
[] = {
536 // RTABI chapter 4.3.4
537 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
538 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
542 for (const auto &LC
: MemOpsLibraryCalls
) {
543 setLibcallName(LC
.Op
, LC
.Name
);
544 setLibcallCallingConv(LC
.Op
, LC
.CC
);
545 if (LC
.Cond
!= ISD::SETCC_INVALID
)
546 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
551 if (Subtarget
->isTargetWindows()) {
552 static const struct {
553 const RTLIB::Libcall Op
;
554 const char * const Name
;
555 const CallingConv::ID CC
;
557 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
558 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
559 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
560 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
561 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
562 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
563 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
564 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
567 for (const auto &LC
: LibraryCalls
) {
568 setLibcallName(LC
.Op
, LC
.Name
);
569 setLibcallCallingConv(LC
.Op
, LC
.CC
);
573 // Use divmod compiler-rt calls for iOS 5.0 and later.
574 if (Subtarget
->isTargetMachO() &&
575 !(Subtarget
->isTargetIOS() &&
576 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
577 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
578 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
581 // The half <-> float conversion functions are always soft-float on
582 // non-watchos platforms, but are needed for some targets which use a
583 // hard-float calling convention by default.
584 if (!Subtarget
->isTargetWatchABI()) {
585 if (Subtarget
->isAAPCS_ABI()) {
586 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
587 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
588 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
590 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
591 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
592 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
596 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
597 // a __gnu_ prefix (which is the default).
598 if (Subtarget
->isTargetAEABI()) {
599 static const struct {
600 const RTLIB::Libcall Op
;
601 const char * const Name
;
602 const CallingConv::ID CC
;
604 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
605 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
606 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
609 for (const auto &LC
: LibraryCalls
) {
610 setLibcallName(LC
.Op
, LC
.Name
);
611 setLibcallCallingConv(LC
.Op
, LC
.CC
);
615 if (Subtarget
->isThumb1Only())
616 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
618 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
620 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
621 Subtarget
->hasFPRegs()) {
622 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
623 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
624 if (!Subtarget
->hasVFP2Base())
625 setAllExpand(MVT::f32
);
626 if (!Subtarget
->hasFP64())
627 setAllExpand(MVT::f64
);
630 if (Subtarget
->hasFullFP16()) {
631 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
632 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
633 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
634 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
636 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
637 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
640 for (MVT VT
: MVT::vector_valuetypes()) {
641 for (MVT InnerVT
: MVT::vector_valuetypes()) {
642 setTruncStoreAction(VT
, InnerVT
, Expand
);
643 addAllExtLoads(VT
, InnerVT
, Expand
);
646 setOperationAction(ISD::MULHS
, VT
, Expand
);
647 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
648 setOperationAction(ISD::MULHU
, VT
, Expand
);
649 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
651 setOperationAction(ISD::BSWAP
, VT
, Expand
);
654 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
655 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
657 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
658 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
660 if (Subtarget
->hasMVEIntegerOps())
661 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
663 // Combine low-overhead loop intrinsics so that we can lower i1 types.
664 if (Subtarget
->hasLOB())
665 setTargetDAGCombine(ISD::BRCOND
);
667 if (Subtarget
->hasNEON()) {
668 addDRTypeForNEON(MVT::v2f32
);
669 addDRTypeForNEON(MVT::v8i8
);
670 addDRTypeForNEON(MVT::v4i16
);
671 addDRTypeForNEON(MVT::v2i32
);
672 addDRTypeForNEON(MVT::v1i64
);
674 addQRTypeForNEON(MVT::v4f32
);
675 addQRTypeForNEON(MVT::v2f64
);
676 addQRTypeForNEON(MVT::v16i8
);
677 addQRTypeForNEON(MVT::v8i16
);
678 addQRTypeForNEON(MVT::v4i32
);
679 addQRTypeForNEON(MVT::v2i64
);
681 if (Subtarget
->hasFullFP16()) {
682 addQRTypeForNEON(MVT::v8f16
);
683 addDRTypeForNEON(MVT::v4f16
);
687 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
688 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
689 // none of Neon, MVE or VFP supports any arithmetic operations on it.
690 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
691 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
692 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
693 // FIXME: Code duplication: FDIV and FREM are expanded always, see
694 // ARMTargetLowering::addTypeForNEON method for details.
695 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
696 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
697 // FIXME: Create unittest.
698 // In another words, find a way when "copysign" appears in DAG with vector
700 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
701 // FIXME: Code duplication: SETCC has custom operation action, see
702 // ARMTargetLowering::addTypeForNEON method for details.
703 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
704 // FIXME: Create unittest for FNEG and for FABS.
705 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
706 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
707 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
708 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
709 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
710 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
711 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
712 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
713 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
714 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
715 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
716 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
717 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
718 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
719 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
720 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
721 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
722 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
725 if (Subtarget
->hasNEON()) {
726 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
727 // supported for v4f32.
728 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
729 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
730 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
731 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
732 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
733 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
734 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
735 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
736 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
737 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
738 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
739 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
740 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
741 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
743 // Mark v2f32 intrinsics.
744 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
745 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
746 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
747 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
748 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
749 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
750 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
751 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
752 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
753 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
754 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
755 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
756 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
757 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
759 // Neon does not support some operations on v1i64 and v2i64 types.
760 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
761 // Custom handling for some quad-vector types to detect VMULL.
762 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
763 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
764 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
765 // Custom handling for some vector types to avoid expensive expansions
766 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
767 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
768 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
769 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
770 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
771 // a destination type that is wider than the source, and nor does
772 // it have a FP_TO_[SU]INT instruction with a narrower destination than
774 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
775 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
776 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
777 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
778 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
779 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
780 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
781 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
783 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
784 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
786 // NEON does not have single instruction CTPOP for vectors with element
787 // types wider than 8-bits. However, custom lowering can leverage the
788 // v8i8/v16i8 vcnt instruction.
789 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
790 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
791 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
792 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
793 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
794 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
796 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
797 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
799 // NEON does not have single instruction CTTZ for vectors.
800 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
801 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
802 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
803 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
805 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
806 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
807 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
808 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
810 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
811 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
812 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
813 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
815 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
816 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
817 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
818 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
820 // NEON only has FMA instructions as of VFP4.
821 if (!Subtarget
->hasVFP4Base()) {
822 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
823 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
826 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
827 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
828 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
829 setTargetDAGCombine(ISD::SHL
);
830 setTargetDAGCombine(ISD::SRL
);
831 setTargetDAGCombine(ISD::SRA
);
832 setTargetDAGCombine(ISD::SIGN_EXTEND
);
833 setTargetDAGCombine(ISD::ZERO_EXTEND
);
834 setTargetDAGCombine(ISD::ANY_EXTEND
);
835 setTargetDAGCombine(ISD::STORE
);
836 setTargetDAGCombine(ISD::FP_TO_SINT
);
837 setTargetDAGCombine(ISD::FP_TO_UINT
);
838 setTargetDAGCombine(ISD::FDIV
);
839 setTargetDAGCombine(ISD::LOAD
);
841 // It is legal to extload from v4i8 to v4i16 or v4i32.
842 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
844 for (MVT VT
: MVT::integer_vector_valuetypes()) {
845 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
846 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
847 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
852 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
853 setTargetDAGCombine(ISD::BUILD_VECTOR
);
854 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
855 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
858 if (!Subtarget
->hasFP64()) {
859 // When targeting a floating-point unit with only single-precision
860 // operations, f64 is legal for the few double-precision instructions which
861 // are present However, no double-precision operations other than moves,
862 // loads and stores are provided by the hardware.
863 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
864 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
865 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
866 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
867 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
868 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
869 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
870 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
871 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
872 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
873 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
874 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
875 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
876 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
877 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
878 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
879 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
880 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
881 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
882 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
883 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
884 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
885 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
886 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
887 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
888 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
889 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
890 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
891 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
892 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
893 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
896 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()){
897 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
898 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
901 if (!Subtarget
->hasFP16())
902 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
904 if (!Subtarget
->hasFP64())
905 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
907 computeRegisterProperties(Subtarget
->getRegisterInfo());
909 // ARM does not have floating-point extending loads.
910 for (MVT VT
: MVT::fp_valuetypes()) {
911 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
912 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
915 // ... or truncating stores
916 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
917 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
918 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
920 // ARM does not have i1 sign extending load.
921 for (MVT VT
: MVT::integer_valuetypes())
922 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
924 // ARM supports all 4 flavors of integer indexed load / store.
925 if (!Subtarget
->isThumb1Only()) {
926 for (unsigned im
= (unsigned)ISD::PRE_INC
;
927 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
928 setIndexedLoadAction(im
, MVT::i1
, Legal
);
929 setIndexedLoadAction(im
, MVT::i8
, Legal
);
930 setIndexedLoadAction(im
, MVT::i16
, Legal
);
931 setIndexedLoadAction(im
, MVT::i32
, Legal
);
932 setIndexedStoreAction(im
, MVT::i1
, Legal
);
933 setIndexedStoreAction(im
, MVT::i8
, Legal
);
934 setIndexedStoreAction(im
, MVT::i16
, Legal
);
935 setIndexedStoreAction(im
, MVT::i32
, Legal
);
938 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
939 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
940 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
943 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
944 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
945 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
946 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
948 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
949 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
951 // i64 operation support.
952 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
953 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
954 if (Subtarget
->isThumb1Only()) {
955 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
956 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
958 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
959 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
960 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
962 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
963 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
964 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
965 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
966 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
967 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
969 // MVE lowers 64 bit shifts to lsll and lsrl
970 // assuming that ISD::SRL and SRA of i64 are already marked custom
971 if (Subtarget
->hasMVEIntegerOps())
972 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
974 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
975 if (Subtarget
->isThumb1Only()) {
976 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
977 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
978 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
981 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
982 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
984 // ARM does not have ROTL.
985 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
986 for (MVT VT
: MVT::vector_valuetypes()) {
987 setOperationAction(ISD::ROTL
, VT
, Expand
);
988 setOperationAction(ISD::ROTR
, VT
, Expand
);
990 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
991 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
992 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
993 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
994 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
997 // @llvm.readcyclecounter requires the Performance Monitors extension.
998 // Default to the 0 expansion on unsupported platforms.
999 // FIXME: Technically there are older ARM CPUs that have
1000 // implementation-specific ways of obtaining this information.
1001 if (Subtarget
->hasPerfMon())
1002 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1004 // Only ARMv6 has BSWAP.
1005 if (!Subtarget
->hasV6Ops())
1006 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1008 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1009 : Subtarget
->hasDivideInARMMode();
1011 // These are expanded into libcalls if the cpu doesn't have HW divider.
1012 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1013 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1016 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1017 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1018 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1020 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1021 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1024 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1025 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1027 // Register based DivRem for AEABI (RTABI 4.2)
1028 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1029 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1030 Subtarget
->isTargetWindows()) {
1031 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1032 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1033 HasStandaloneRem
= false;
1035 if (Subtarget
->isTargetWindows()) {
1037 const RTLIB::Libcall Op
;
1038 const char * const Name
;
1039 const CallingConv::ID CC
;
1040 } LibraryCalls
[] = {
1041 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1042 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1043 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1044 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1046 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1047 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1048 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1049 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1052 for (const auto &LC
: LibraryCalls
) {
1053 setLibcallName(LC
.Op
, LC
.Name
);
1054 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1058 const RTLIB::Libcall Op
;
1059 const char * const Name
;
1060 const CallingConv::ID CC
;
1061 } LibraryCalls
[] = {
1062 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1063 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1064 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1065 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1067 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1068 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1069 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1070 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1073 for (const auto &LC
: LibraryCalls
) {
1074 setLibcallName(LC
.Op
, LC
.Name
);
1075 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1079 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1080 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1081 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1082 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1084 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1085 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1088 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1089 for (auto &VT
: {MVT::f32
, MVT::f64
})
1090 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1092 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1093 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1094 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1095 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1097 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1098 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1100 // Use the default implementation.
1101 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1102 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1103 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1104 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1105 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1106 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1108 if (Subtarget
->isTargetWindows())
1109 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1111 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1113 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1114 // the default expansion.
1115 InsertFencesForAtomic
= false;
1116 if (Subtarget
->hasAnyDataBarrier() &&
1117 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1118 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1119 // to ldrex/strex loops already.
1120 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1121 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1122 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1124 // On v8, we have particularly efficient implementations of atomic fences
1125 // if they can be combined with nearby atomic loads and stores.
1126 if (!Subtarget
->hasAcquireRelease() ||
1127 getTargetMachine().getOptLevel() == 0) {
1128 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1129 InsertFencesForAtomic
= true;
1132 // If there's anything we can use as a barrier, go through custom lowering
1133 // for ATOMIC_FENCE.
1134 // If target has DMB in thumb, Fences can be inserted.
1135 if (Subtarget
->hasDataBarrier())
1136 InsertFencesForAtomic
= true;
1138 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1139 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1141 // Set them all for expansion, which will force libcalls.
1142 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1143 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1144 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1145 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1146 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1147 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1148 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1149 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1150 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1151 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1152 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1153 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1154 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1155 // Unordered/Monotonic case.
1156 if (!InsertFencesForAtomic
) {
1157 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1158 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1162 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1164 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1165 if (!Subtarget
->hasV6Ops()) {
1166 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1167 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1169 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1171 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1172 !Subtarget
->isThumb1Only()) {
1173 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1174 // iff target supports vfp2.
1175 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1176 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1179 // We want to custom lower some of our intrinsics.
1180 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1181 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1182 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1183 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1184 if (Subtarget
->useSjLjEH())
1185 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1187 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1188 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1189 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1190 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1191 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1192 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1193 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1194 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1195 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1196 if (Subtarget
->hasFullFP16()) {
1197 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1198 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1199 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1202 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1204 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1205 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1206 if (Subtarget
->hasFullFP16())
1207 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1208 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1209 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1210 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1212 // We don't support sin/cos/fmod/copysign/pow
1213 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1214 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1215 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1216 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1217 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1218 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1219 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1220 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1221 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1222 !Subtarget
->isThumb1Only()) {
1223 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1224 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1226 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1227 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1229 if (!Subtarget
->hasVFP4Base()) {
1230 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1231 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1234 // Various VFP goodness
1235 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1236 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1237 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1238 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1239 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1242 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1243 if (!Subtarget
->hasFP16()) {
1244 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1245 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1249 // Use __sincos_stret if available.
1250 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1251 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1252 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1253 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1256 // FP-ARMv8 implements a lot of rounding-like FP operations.
1257 if (Subtarget
->hasFPARMv8Base()) {
1258 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1259 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1260 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1261 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1262 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1263 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1264 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1265 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1266 if (Subtarget
->hasNEON()) {
1267 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1268 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1269 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1270 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1273 if (Subtarget
->hasFP64()) {
1274 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1275 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1276 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1277 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1278 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1279 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1280 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1281 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1285 // FP16 often need to be promoted to call lib functions
1286 if (Subtarget
->hasFullFP16()) {
1287 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1288 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1289 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1290 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1291 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1292 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1293 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1294 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1295 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1296 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1297 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1298 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1300 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1303 if (Subtarget
->hasNEON()) {
1304 // vmin and vmax aren't available in a scalar form, so we use
1305 // a NEON instruction with an undef lane instead.
1306 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1307 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1308 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1309 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1310 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1311 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1312 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1313 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1315 if (Subtarget
->hasFullFP16()) {
1316 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1317 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1318 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1319 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1321 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1322 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1323 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1324 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1328 // We have target-specific dag combine patterns for the following nodes:
1329 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1330 setTargetDAGCombine(ISD::ADD
);
1331 setTargetDAGCombine(ISD::SUB
);
1332 setTargetDAGCombine(ISD::MUL
);
1333 setTargetDAGCombine(ISD::AND
);
1334 setTargetDAGCombine(ISD::OR
);
1335 setTargetDAGCombine(ISD::XOR
);
1337 if (Subtarget
->hasV6Ops())
1338 setTargetDAGCombine(ISD::SRL
);
1339 if (Subtarget
->isThumb1Only())
1340 setTargetDAGCombine(ISD::SHL
);
1342 setStackPointerRegisterToSaveRestore(ARM::SP
);
1344 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1345 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1346 setSchedulingPreference(Sched::RegPressure
);
1348 setSchedulingPreference(Sched::Hybrid
);
1350 //// temporary - rewrite interface to use type
1351 MaxStoresPerMemset
= 8;
1352 MaxStoresPerMemsetOptSize
= 4;
1353 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1354 MaxStoresPerMemcpyOptSize
= 2;
1355 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1356 MaxStoresPerMemmoveOptSize
= 2;
1358 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1359 // are at least 4 bytes aligned.
1360 setMinStackArgumentAlignment(4);
1362 // Prefer likely predicted branches to selects on out-of-order cores.
1363 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1365 setPrefLoopAlignment(Subtarget
->getPrefLoopAlignment());
1367 setMinFunctionAlignment(Subtarget
->isThumb() ? 1 : 2);
1369 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1370 setTargetDAGCombine(ISD::ABS
);
1373 bool ARMTargetLowering::useSoftFloat() const {
1374 return Subtarget
->useSoftFloat();
1377 // FIXME: It might make sense to define the representative register class as the
1378 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1379 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1380 // SPR's representative would be DPR_VFP2. This should work well if register
1381 // pressure tracking were modified such that a register use would increment the
1382 // pressure of the register class's representative and all of it's super
1383 // classes' representatives transitively. We have not implemented this because
1384 // of the difficulty prior to coalescing of modeling operand register classes
1385 // due to the common occurrence of cross class copies and subregister insertions
1387 std::pair
<const TargetRegisterClass
*, uint8_t>
1388 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1390 const TargetRegisterClass
*RRC
= nullptr;
1392 switch (VT
.SimpleTy
) {
1394 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1395 // Use DPR as representative register class for all floating point
1396 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1397 // the cost is 1 for both f32 and f64.
1398 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1399 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1400 RRC
= &ARM::DPRRegClass
;
1401 // When NEON is used for SP, only half of the register file is available
1402 // because operations that define both SP and DP results will be constrained
1403 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1404 // coalescing by double-counting the SP regs. See the FIXME above.
1405 if (Subtarget
->useNEONForSinglePrecisionFP())
1408 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1409 case MVT::v4f32
: case MVT::v2f64
:
1410 RRC
= &ARM::DPRRegClass
;
1414 RRC
= &ARM::DPRRegClass
;
1418 RRC
= &ARM::DPRRegClass
;
1422 return std::make_pair(RRC
, Cost
);
1425 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1426 switch ((ARMISD::NodeType
)Opcode
) {
1427 case ARMISD::FIRST_NUMBER
: break;
1428 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1429 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1430 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1431 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1432 case ARMISD::CALL
: return "ARMISD::CALL";
1433 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1434 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1435 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1436 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1437 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1438 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1439 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1440 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1441 case ARMISD::CMP
: return "ARMISD::CMP";
1442 case ARMISD::CMN
: return "ARMISD::CMN";
1443 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1444 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1445 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1446 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1447 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1449 case ARMISD::CMOV
: return "ARMISD::CMOV";
1450 case ARMISD::SUBS
: return "ARMISD::SUBS";
1452 case ARMISD::SSAT
: return "ARMISD::SSAT";
1453 case ARMISD::USAT
: return "ARMISD::USAT";
1455 case ARMISD::ASRL
: return "ARMISD::ASRL";
1456 case ARMISD::LSRL
: return "ARMISD::LSRL";
1457 case ARMISD::LSLL
: return "ARMISD::LSLL";
1459 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1460 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1461 case ARMISD::RRX
: return "ARMISD::RRX";
1463 case ARMISD::ADDC
: return "ARMISD::ADDC";
1464 case ARMISD::ADDE
: return "ARMISD::ADDE";
1465 case ARMISD::SUBC
: return "ARMISD::SUBC";
1466 case ARMISD::SUBE
: return "ARMISD::SUBE";
1468 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1469 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1470 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1471 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1472 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1474 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1475 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1476 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1478 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1480 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1482 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1484 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1486 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1488 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1489 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1491 case ARMISD::VCEQ
: return "ARMISD::VCEQ";
1492 case ARMISD::VCEQZ
: return "ARMISD::VCEQZ";
1493 case ARMISD::VCGE
: return "ARMISD::VCGE";
1494 case ARMISD::VCGEZ
: return "ARMISD::VCGEZ";
1495 case ARMISD::VCLEZ
: return "ARMISD::VCLEZ";
1496 case ARMISD::VCGEU
: return "ARMISD::VCGEU";
1497 case ARMISD::VCGT
: return "ARMISD::VCGT";
1498 case ARMISD::VCGTZ
: return "ARMISD::VCGTZ";
1499 case ARMISD::VCLTZ
: return "ARMISD::VCLTZ";
1500 case ARMISD::VCGTU
: return "ARMISD::VCGTU";
1501 case ARMISD::VTST
: return "ARMISD::VTST";
1503 case ARMISD::VSHL
: return "ARMISD::VSHL";
1504 case ARMISD::VSHRs
: return "ARMISD::VSHRs";
1505 case ARMISD::VSHRu
: return "ARMISD::VSHRu";
1506 case ARMISD::VRSHRs
: return "ARMISD::VRSHRs";
1507 case ARMISD::VRSHRu
: return "ARMISD::VRSHRu";
1508 case ARMISD::VRSHRN
: return "ARMISD::VRSHRN";
1509 case ARMISD::VQSHLs
: return "ARMISD::VQSHLs";
1510 case ARMISD::VQSHLu
: return "ARMISD::VQSHLu";
1511 case ARMISD::VQSHLsu
: return "ARMISD::VQSHLsu";
1512 case ARMISD::VQSHRNs
: return "ARMISD::VQSHRNs";
1513 case ARMISD::VQSHRNu
: return "ARMISD::VQSHRNu";
1514 case ARMISD::VQSHRNsu
: return "ARMISD::VQSHRNsu";
1515 case ARMISD::VQRSHRNs
: return "ARMISD::VQRSHRNs";
1516 case ARMISD::VQRSHRNu
: return "ARMISD::VQRSHRNu";
1517 case ARMISD::VQRSHRNsu
: return "ARMISD::VQRSHRNsu";
1518 case ARMISD::VSLI
: return "ARMISD::VSLI";
1519 case ARMISD::VSRI
: return "ARMISD::VSRI";
1520 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1521 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1522 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1523 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1524 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1525 case ARMISD::VDUP
: return "ARMISD::VDUP";
1526 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1527 case ARMISD::VEXT
: return "ARMISD::VEXT";
1528 case ARMISD::VREV64
: return "ARMISD::VREV64";
1529 case ARMISD::VREV32
: return "ARMISD::VREV32";
1530 case ARMISD::VREV16
: return "ARMISD::VREV16";
1531 case ARMISD::VZIP
: return "ARMISD::VZIP";
1532 case ARMISD::VUZP
: return "ARMISD::VUZP";
1533 case ARMISD::VTRN
: return "ARMISD::VTRN";
1534 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1535 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1536 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1537 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1538 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1539 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1540 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1541 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1542 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1543 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1544 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1545 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1546 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1547 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1548 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1549 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1550 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1551 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1552 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1553 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1554 case ARMISD::BFI
: return "ARMISD::BFI";
1555 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1556 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1557 case ARMISD::VBSL
: return "ARMISD::VBSL";
1558 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1559 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1560 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1561 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1562 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1563 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1564 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1565 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1566 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1567 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1568 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1569 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1570 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1571 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1572 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1573 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1574 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1575 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1576 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1577 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1578 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1579 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1580 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1581 case ARMISD::WLS
: return "ARMISD::WLS";
1586 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1589 return getPointerTy(DL
);
1590 return VT
.changeVectorElementTypeToInteger();
1593 /// getRegClassFor - Return the register class that should be used for the
1594 /// specified value type.
1595 const TargetRegisterClass
*
1596 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1598 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1599 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1600 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1602 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1603 if (VT
== MVT::v4i64
)
1604 return &ARM::QQPRRegClass
;
1605 if (VT
== MVT::v8i64
)
1606 return &ARM::QQQQPRRegClass
;
1608 return TargetLowering::getRegClassFor(VT
);
1611 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1612 // source/dest is aligned and the copy size is large enough. We therefore want
1613 // to align such objects passed to memory intrinsics.
1614 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1615 unsigned &PrefAlign
) const {
1616 if (!isa
<MemIntrinsic
>(CI
))
1619 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1620 // cycle faster than 4-byte aligned LDM.
1621 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1625 // Create a fast isel object.
1627 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1628 const TargetLibraryInfo
*libInfo
) const {
1629 return ARM::createFastISel(funcInfo
, libInfo
);
1632 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1633 unsigned NumVals
= N
->getNumValues();
1635 return Sched::RegPressure
;
1637 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1638 EVT VT
= N
->getValueType(i
);
1639 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1641 if (VT
.isFloatingPoint() || VT
.isVector())
1645 if (!N
->isMachineOpcode())
1646 return Sched::RegPressure
;
1648 // Load are scheduled for latency even if there instruction itinerary
1649 // is not available.
1650 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1651 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1653 if (MCID
.getNumDefs() == 0)
1654 return Sched::RegPressure
;
1655 if (!Itins
->isEmpty() &&
1656 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1659 return Sched::RegPressure
;
1662 //===----------------------------------------------------------------------===//
1664 //===----------------------------------------------------------------------===//
1666 static bool isSRL16(const SDValue
&Op
) {
1667 if (Op
.getOpcode() != ISD::SRL
)
1669 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1670 return Const
->getZExtValue() == 16;
1674 static bool isSRA16(const SDValue
&Op
) {
1675 if (Op
.getOpcode() != ISD::SRA
)
1677 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1678 return Const
->getZExtValue() == 16;
1682 static bool isSHL16(const SDValue
&Op
) {
1683 if (Op
.getOpcode() != ISD::SHL
)
1685 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1686 return Const
->getZExtValue() == 16;
1690 // Check for a signed 16-bit value. We special case SRA because it makes it
1691 // more simple when also looking for SRAs that aren't sign extending a
1692 // smaller value. Without the check, we'd need to take extra care with
1693 // checking order for some operations.
1694 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1696 return isSHL16(Op
.getOperand(0));
1697 return DAG
.ComputeNumSignBits(Op
) == 17;
1700 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1701 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1703 default: llvm_unreachable("Unknown condition code!");
1704 case ISD::SETNE
: return ARMCC::NE
;
1705 case ISD::SETEQ
: return ARMCC::EQ
;
1706 case ISD::SETGT
: return ARMCC::GT
;
1707 case ISD::SETGE
: return ARMCC::GE
;
1708 case ISD::SETLT
: return ARMCC::LT
;
1709 case ISD::SETLE
: return ARMCC::LE
;
1710 case ISD::SETUGT
: return ARMCC::HI
;
1711 case ISD::SETUGE
: return ARMCC::HS
;
1712 case ISD::SETULT
: return ARMCC::LO
;
1713 case ISD::SETULE
: return ARMCC::LS
;
1717 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1718 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1719 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1720 CondCode2
= ARMCC::AL
;
1721 InvalidOnQNaN
= true;
1723 default: llvm_unreachable("Unknown FP condition!");
1726 CondCode
= ARMCC::EQ
;
1727 InvalidOnQNaN
= false;
1730 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1732 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1733 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1734 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1736 CondCode
= ARMCC::MI
;
1737 CondCode2
= ARMCC::GT
;
1738 InvalidOnQNaN
= false;
1740 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1741 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1743 CondCode
= ARMCC::EQ
;
1744 CondCode2
= ARMCC::VS
;
1745 InvalidOnQNaN
= false;
1747 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1748 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1750 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1752 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1755 CondCode
= ARMCC::NE
;
1756 InvalidOnQNaN
= false;
1761 //===----------------------------------------------------------------------===//
1762 // Calling Convention Implementation
1763 //===----------------------------------------------------------------------===//
1765 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1766 /// account presence of floating point hardware and calling convention
1767 /// limitations, such as support for variadic functions.
1769 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1770 bool isVarArg
) const {
1773 report_fatal_error("Unsupported calling convention");
1774 case CallingConv::ARM_AAPCS
:
1775 case CallingConv::ARM_APCS
:
1776 case CallingConv::GHC
:
1778 case CallingConv::PreserveMost
:
1779 return CallingConv::PreserveMost
;
1780 case CallingConv::ARM_AAPCS_VFP
:
1781 case CallingConv::Swift
:
1782 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1783 case CallingConv::C
:
1784 if (!Subtarget
->isAAPCS_ABI())
1785 return CallingConv::ARM_APCS
;
1786 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1787 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1789 return CallingConv::ARM_AAPCS_VFP
;
1791 return CallingConv::ARM_AAPCS
;
1792 case CallingConv::Fast
:
1793 case CallingConv::CXX_FAST_TLS
:
1794 if (!Subtarget
->isAAPCS_ABI()) {
1795 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1796 return CallingConv::Fast
;
1797 return CallingConv::ARM_APCS
;
1798 } else if (Subtarget
->hasVFP2Base() &&
1799 !Subtarget
->isThumb1Only() && !isVarArg
)
1800 return CallingConv::ARM_AAPCS_VFP
;
1802 return CallingConv::ARM_AAPCS
;
1806 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1807 bool isVarArg
) const {
1808 return CCAssignFnForNode(CC
, false, isVarArg
);
1811 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1812 bool isVarArg
) const {
1813 return CCAssignFnForNode(CC
, true, isVarArg
);
1816 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1817 /// CallingConvention.
1818 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1820 bool isVarArg
) const {
1821 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1823 report_fatal_error("Unsupported calling convention");
1824 case CallingConv::ARM_APCS
:
1825 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1826 case CallingConv::ARM_AAPCS
:
1827 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1828 case CallingConv::ARM_AAPCS_VFP
:
1829 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1830 case CallingConv::Fast
:
1831 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1832 case CallingConv::GHC
:
1833 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1834 case CallingConv::PreserveMost
:
1835 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1839 /// LowerCallResult - Lower the result values of a call into the
1840 /// appropriate copies out of appropriate physical registers.
1841 SDValue
ARMTargetLowering::LowerCallResult(
1842 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1843 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1844 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1845 SDValue ThisVal
) const {
1846 // Assign locations to each value returned by this call.
1847 SmallVector
<CCValAssign
, 16> RVLocs
;
1848 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1850 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1852 // Copy all of the result registers out of their specified physreg.
1853 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1854 CCValAssign VA
= RVLocs
[i
];
1856 // Pass 'this' value directly from the argument to return value, to avoid
1857 // reg unit interference
1858 if (i
== 0 && isThisReturn
) {
1859 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1860 "unexpected return calling convention register assignment");
1861 InVals
.push_back(ThisVal
);
1866 if (VA
.needsCustom()) {
1867 // Handle f64 or half of a v2f64.
1868 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1870 Chain
= Lo
.getValue(1);
1871 InFlag
= Lo
.getValue(2);
1872 VA
= RVLocs
[++i
]; // skip ahead to next loc
1873 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1875 Chain
= Hi
.getValue(1);
1876 InFlag
= Hi
.getValue(2);
1877 if (!Subtarget
->isLittle())
1879 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1881 if (VA
.getLocVT() == MVT::v2f64
) {
1882 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1883 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1884 DAG
.getConstant(0, dl
, MVT::i32
));
1886 VA
= RVLocs
[++i
]; // skip ahead to next loc
1887 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1888 Chain
= Lo
.getValue(1);
1889 InFlag
= Lo
.getValue(2);
1890 VA
= RVLocs
[++i
]; // skip ahead to next loc
1891 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1892 Chain
= Hi
.getValue(1);
1893 InFlag
= Hi
.getValue(2);
1894 if (!Subtarget
->isLittle())
1896 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1897 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1898 DAG
.getConstant(1, dl
, MVT::i32
));
1901 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1903 Chain
= Val
.getValue(1);
1904 InFlag
= Val
.getValue(2);
1907 switch (VA
.getLocInfo()) {
1908 default: llvm_unreachable("Unknown loc info!");
1909 case CCValAssign::Full
: break;
1910 case CCValAssign::BCvt
:
1911 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1915 InVals
.push_back(Val
);
1921 /// LowerMemOpCallTo - Store the argument to the stack.
1922 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1923 SDValue Arg
, const SDLoc
&dl
,
1925 const CCValAssign
&VA
,
1926 ISD::ArgFlagsTy Flags
) const {
1927 unsigned LocMemOffset
= VA
.getLocMemOffset();
1928 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1929 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1931 return DAG
.getStore(
1932 Chain
, dl
, Arg
, PtrOff
,
1933 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
1936 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
1937 SDValue Chain
, SDValue
&Arg
,
1938 RegsToPassVector
&RegsToPass
,
1939 CCValAssign
&VA
, CCValAssign
&NextVA
,
1941 SmallVectorImpl
<SDValue
> &MemOpChains
,
1942 ISD::ArgFlagsTy Flags
) const {
1943 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
1944 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
1945 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
1946 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
1948 if (NextVA
.isRegLoc())
1949 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
1951 assert(NextVA
.isMemLoc());
1952 if (!StackPtr
.getNode())
1953 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
1954 getPointerTy(DAG
.getDataLayout()));
1956 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
1962 /// LowerCall - Lowering a call into a callseq_start <-
1963 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1966 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1967 SmallVectorImpl
<SDValue
> &InVals
) const {
1968 SelectionDAG
&DAG
= CLI
.DAG
;
1970 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
1971 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
1972 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
1973 SDValue Chain
= CLI
.Chain
;
1974 SDValue Callee
= CLI
.Callee
;
1975 bool &isTailCall
= CLI
.IsTailCall
;
1976 CallingConv::ID CallConv
= CLI
.CallConv
;
1977 bool doesNotRet
= CLI
.DoesNotReturn
;
1978 bool isVarArg
= CLI
.IsVarArg
;
1980 MachineFunction
&MF
= DAG
.getMachineFunction();
1981 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
1982 bool isThisReturn
= false;
1983 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
1984 bool PreferIndirect
= false;
1986 // Disable tail calls if they're not supported.
1987 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
1990 if (isa
<GlobalAddressSDNode
>(Callee
)) {
1991 // If we're optimizing for minimum size and the function is called three or
1992 // more times in this block, we can improve codesize by calling indirectly
1993 // as BLXr has a 16-bit encoding.
1994 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
1996 auto *BB
= CLI
.CS
.getParent();
1997 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
1998 count_if(GV
->users(), [&BB
](const User
*U
) {
1999 return isa
<Instruction
>(U
) &&
2000 cast
<Instruction
>(U
)->getParent() == BB
;
2005 // Check if it's really possible to do a tail call.
2006 isTailCall
= IsEligibleForTailCallOptimization(
2007 Callee
, CallConv
, isVarArg
, isStructRet
,
2008 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2010 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2011 report_fatal_error("failed to perform tail call elimination on a call "
2012 "site marked musttail");
2013 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2014 // detected sibcalls.
2019 // Analyze operands of the call, assigning locations to each operand.
2020 SmallVector
<CCValAssign
, 16> ArgLocs
;
2021 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2023 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2025 // Get a count of how many bytes are to be pushed on the stack.
2026 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2029 // For tail calls, memory operands are available in our caller's stack.
2032 // Adjust the stack pointer for the new arguments...
2033 // These operations are automatically eliminated by the prolog/epilog pass
2034 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2038 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2040 RegsToPassVector RegsToPass
;
2041 SmallVector
<SDValue
, 8> MemOpChains
;
2043 // Walk the register/memloc assignments, inserting copies/loads. In the case
2044 // of tail call optimization, arguments are handled later.
2045 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2047 ++i
, ++realArgIdx
) {
2048 CCValAssign
&VA
= ArgLocs
[i
];
2049 SDValue Arg
= OutVals
[realArgIdx
];
2050 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2051 bool isByVal
= Flags
.isByVal();
2053 // Promote the value if needed.
2054 switch (VA
.getLocInfo()) {
2055 default: llvm_unreachable("Unknown loc info!");
2056 case CCValAssign::Full
: break;
2057 case CCValAssign::SExt
:
2058 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2060 case CCValAssign::ZExt
:
2061 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2063 case CCValAssign::AExt
:
2064 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2066 case CCValAssign::BCvt
:
2067 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2071 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2072 if (VA
.needsCustom()) {
2073 if (VA
.getLocVT() == MVT::v2f64
) {
2074 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2075 DAG
.getConstant(0, dl
, MVT::i32
));
2076 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2077 DAG
.getConstant(1, dl
, MVT::i32
));
2079 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2080 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2082 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2083 if (VA
.isRegLoc()) {
2084 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2085 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2087 assert(VA
.isMemLoc());
2089 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2090 dl
, DAG
, VA
, Flags
));
2093 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2094 StackPtr
, MemOpChains
, Flags
);
2096 } else if (VA
.isRegLoc()) {
2097 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2098 Outs
[0].VT
== MVT::i32
) {
2099 assert(VA
.getLocVT() == MVT::i32
&&
2100 "unexpected calling convention register assignment");
2101 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2102 "unexpected use of 'returned'");
2103 isThisReturn
= true;
2105 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2106 } else if (isByVal
) {
2107 assert(VA
.isMemLoc());
2108 unsigned offset
= 0;
2110 // True if this byval aggregate will be split between registers
2112 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2113 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2115 if (CurByValIdx
< ByValArgsCount
) {
2117 unsigned RegBegin
, RegEnd
;
2118 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2121 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2123 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2124 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2125 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2126 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2127 MachinePointerInfo(),
2128 DAG
.InferPtrAlignment(AddArg
));
2129 MemOpChains
.push_back(Load
.getValue(1));
2130 RegsToPass
.push_back(std::make_pair(j
, Load
));
2133 // If parameter size outsides register area, "offset" value
2134 // helps us to calculate stack slot for remained part properly.
2135 offset
= RegEnd
- RegBegin
;
2137 CCInfo
.nextInRegsParam();
2140 if (Flags
.getByValSize() > 4*offset
) {
2141 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2142 unsigned LocMemOffset
= VA
.getLocMemOffset();
2143 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2144 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2145 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2146 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2147 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2149 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2152 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2153 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2154 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2157 } else if (!isTailCall
) {
2158 assert(VA
.isMemLoc());
2160 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2161 dl
, DAG
, VA
, Flags
));
2165 if (!MemOpChains
.empty())
2166 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2168 // Build a sequence of copy-to-reg nodes chained together with token chain
2169 // and flag operands which copy the outgoing args into the appropriate regs.
2171 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2172 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2173 RegsToPass
[i
].second
, InFlag
);
2174 InFlag
= Chain
.getValue(1);
2177 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2178 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2179 // node so that legalize doesn't hack it.
2180 bool isDirect
= false;
2182 const TargetMachine
&TM
= getTargetMachine();
2183 const Module
*Mod
= MF
.getFunction().getParent();
2184 const GlobalValue
*GV
= nullptr;
2185 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2186 GV
= G
->getGlobal();
2188 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2190 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2191 bool isLocalARMFunc
= false;
2192 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2193 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2195 if (Subtarget
->genLongCalls()) {
2196 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2197 "long-calls codegen is not position independent!");
2198 // Handle a global address or an external symbol. If it's not one of
2199 // those, the target's already in a register, so we don't need to do
2201 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2202 // Create a constant pool entry for the callee address
2203 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2204 ARMConstantPoolValue
*CPV
=
2205 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2207 // Get the address of the callee into a register
2208 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2209 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2210 Callee
= DAG
.getLoad(
2211 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2212 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2213 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2214 const char *Sym
= S
->getSymbol();
2216 // Create a constant pool entry for the callee address
2217 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2218 ARMConstantPoolValue
*CPV
=
2219 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2220 ARMPCLabelIndex
, 0);
2221 // Get the address of the callee into a register
2222 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2223 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2224 Callee
= DAG
.getLoad(
2225 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2226 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2228 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2229 if (!PreferIndirect
) {
2231 bool isDef
= GV
->isStrongDefinitionForLinker();
2233 // ARM call to a local ARM function is predicable.
2234 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2235 // tBX takes a register source operand.
2236 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2237 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2238 Callee
= DAG
.getNode(
2239 ARMISD::WrapperPIC
, dl
, PtrVt
,
2240 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2241 Callee
= DAG
.getLoad(
2242 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2243 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2244 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2245 MachineMemOperand::MOInvariant
);
2246 } else if (Subtarget
->isTargetCOFF()) {
2247 assert(Subtarget
->isTargetWindows() &&
2248 "Windows is the only supported COFF target");
2249 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2250 ? ARMII::MO_DLLIMPORT
2251 : ARMII::MO_NO_FLAG
;
2252 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*Offset=*/0,
2254 if (GV
->hasDLLImportStorageClass())
2256 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2257 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2258 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2260 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2263 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2265 // tBX takes a register source operand.
2266 const char *Sym
= S
->getSymbol();
2267 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2268 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2269 ARMConstantPoolValue
*CPV
=
2270 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2271 ARMPCLabelIndex
, 4);
2272 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2273 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2274 Callee
= DAG
.getLoad(
2275 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2276 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2277 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2278 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2280 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2284 // FIXME: handle tail calls differently.
2286 if (Subtarget
->isThumb()) {
2287 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2288 CallOpc
= ARMISD::CALL_NOLINK
;
2290 CallOpc
= ARMISD::CALL
;
2292 if (!isDirect
&& !Subtarget
->hasV5TOps())
2293 CallOpc
= ARMISD::CALL_NOLINK
;
2294 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2295 // Emit regular call when code size is the priority
2296 !Subtarget
->hasMinSize())
2297 // "mov lr, pc; b _foo" to avoid confusing the RSP
2298 CallOpc
= ARMISD::CALL_NOLINK
;
2300 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2303 std::vector
<SDValue
> Ops
;
2304 Ops
.push_back(Chain
);
2305 Ops
.push_back(Callee
);
2307 // Add argument registers to the end of the list so that they are known live
2309 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2310 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2311 RegsToPass
[i
].second
.getValueType()));
2313 // Add a register mask operand representing the call-preserved registers.
2315 const uint32_t *Mask
;
2316 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2318 // For 'this' returns, use the R0-preserving mask if applicable
2319 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2321 // Set isThisReturn to false if the calling convention is not one that
2322 // allows 'returned' to be modeled in this way, so LowerCallResult does
2323 // not try to pass 'this' straight through
2324 isThisReturn
= false;
2325 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2328 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2330 assert(Mask
&& "Missing call preserved mask for calling convention");
2331 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2334 if (InFlag
.getNode())
2335 Ops
.push_back(InFlag
);
2337 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2339 MF
.getFrameInfo().setHasTailCall();
2340 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2343 // Returns a chain and a flag for retval copy to use.
2344 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2345 InFlag
= Chain
.getValue(1);
2347 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2348 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2350 InFlag
= Chain
.getValue(1);
2352 // Handle result values, copying them out of physregs into vregs that we
2354 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2355 InVals
, isThisReturn
,
2356 isThisReturn
? OutVals
[0] : SDValue());
2359 /// HandleByVal - Every parameter *after* a byval parameter is passed
2360 /// on the stack. Remember the next parameter register to allocate,
2361 /// and then confiscate the rest of the parameter registers to insure
2363 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2364 unsigned Align
) const {
2365 // Byval (as with any stack) slots are always at least 4 byte aligned.
2366 Align
= std::max(Align
, 4U);
2368 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2372 unsigned AlignInRegs
= Align
/ 4;
2373 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2374 for (unsigned i
= 0; i
< Waste
; ++i
)
2375 Reg
= State
->AllocateReg(GPRArgRegs
);
2380 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2382 // Special case when NSAA != SP and parameter size greater than size of
2383 // all remained GPR regs. In that case we can't split parameter, we must
2384 // send it to stack. We also must set NCRN to R4, so waste all
2385 // remained registers.
2386 const unsigned NSAAOffset
= State
->getNextStackOffset();
2387 if (NSAAOffset
!= 0 && Size
> Excess
) {
2388 while (State
->AllocateReg(GPRArgRegs
))
2393 // First register for byval parameter is the first register that wasn't
2394 // allocated before this method call, so it would be "reg".
2395 // If parameter is small enough to be saved in range [reg, r4), then
2396 // the end (first after last) register would be reg + param-size-in-regs,
2397 // else parameter would be splitted between registers and stack,
2398 // end register would be r4 in this case.
2399 unsigned ByValRegBegin
= Reg
;
2400 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2401 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2402 // Note, first register is allocated in the beginning of function already,
2403 // allocate remained amount of registers we need.
2404 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2405 State
->AllocateReg(GPRArgRegs
);
2406 // A byval parameter that is split between registers and memory needs its
2407 // size truncated here.
2408 // In the case where the entire structure fits in registers, we set the
2409 // size in memory to zero.
2410 Size
= std::max
<int>(Size
- Excess
, 0);
2413 /// MatchingStackOffset - Return true if the given stack call argument is
2414 /// already available in the same position (relatively) of the caller's
2415 /// incoming argument stack.
2417 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2418 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2419 const TargetInstrInfo
*TII
) {
2420 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2421 int FI
= std::numeric_limits
<int>::max();
2422 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2423 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2424 if (!TargetRegisterInfo::isVirtualRegister(VR
))
2426 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2429 if (!Flags
.isByVal()) {
2430 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2435 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2436 if (Flags
.isByVal())
2437 // ByVal argument is passed in as a pointer but it's now being
2438 // dereferenced. e.g.
2439 // define @foo(%struct.X* %A) {
2440 // tail call @bar(%struct.X* byval %A)
2443 SDValue Ptr
= Ld
->getBasePtr();
2444 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2447 FI
= FINode
->getIndex();
2451 assert(FI
!= std::numeric_limits
<int>::max());
2452 if (!MFI
.isFixedObjectIndex(FI
))
2454 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2457 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2458 /// for tail call optimization. Targets which want to do tail call
2459 /// optimization should implement this function.
2460 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2461 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2462 bool isCalleeStructRet
, bool isCallerStructRet
,
2463 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2464 const SmallVectorImpl
<SDValue
> &OutVals
,
2465 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2466 const bool isIndirect
) const {
2467 MachineFunction
&MF
= DAG
.getMachineFunction();
2468 const Function
&CallerF
= MF
.getFunction();
2469 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2471 assert(Subtarget
->supportsTailCall());
2473 // Indirect tail calls cannot be optimized for Thumb1 if the args
2474 // to the call take up r0-r3. The reason is that there are no legal registers
2475 // left to hold the pointer to the function to be called.
2476 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2477 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2480 // Look for obvious safe cases to perform tail call optimization that do not
2481 // require ABI changes. This is what gcc calls sibcall.
2483 // Exception-handling functions need a special set of instructions to indicate
2484 // a return to the hardware. Tail-calling another function would probably
2486 if (CallerF
.hasFnAttribute("interrupt"))
2489 // Also avoid sibcall optimization if either caller or callee uses struct
2490 // return semantics.
2491 if (isCalleeStructRet
|| isCallerStructRet
)
2494 // Externally-defined functions with weak linkage should not be
2495 // tail-called on ARM when the OS does not support dynamic
2496 // pre-emption of symbols, as the AAELF spec requires normal calls
2497 // to undefined weak functions to be replaced with a NOP or jump to the
2498 // next instruction. The behaviour of branch instructions in this
2499 // situation (as used for tail calls) is implementation-defined, so we
2500 // cannot rely on the linker replacing the tail call with a return.
2501 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2502 const GlobalValue
*GV
= G
->getGlobal();
2503 const Triple
&TT
= getTargetMachine().getTargetTriple();
2504 if (GV
->hasExternalWeakLinkage() &&
2505 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2509 // Check that the call results are passed in the same way.
2510 LLVMContext
&C
= *DAG
.getContext();
2511 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2512 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2513 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2515 // The callee has to preserve all registers the caller needs to preserve.
2516 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2517 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2518 if (CalleeCC
!= CallerCC
) {
2519 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2520 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2524 // If Caller's vararg or byval argument has been split between registers and
2525 // stack, do not perform tail call, since part of the argument is in caller's
2527 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2528 if (AFI_Caller
->getArgRegsSaveSize())
2531 // If the callee takes no arguments then go on to check the results of the
2533 if (!Outs
.empty()) {
2534 // Check if stack adjustment is needed. For now, do not do this if any
2535 // argument is passed on the stack.
2536 SmallVector
<CCValAssign
, 16> ArgLocs
;
2537 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2538 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2539 if (CCInfo
.getNextStackOffset()) {
2540 // Check if the arguments are already laid out in the right way as
2541 // the caller's fixed stack objects.
2542 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2543 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2544 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2545 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2547 ++i
, ++realArgIdx
) {
2548 CCValAssign
&VA
= ArgLocs
[i
];
2549 EVT RegVT
= VA
.getLocVT();
2550 SDValue Arg
= OutVals
[realArgIdx
];
2551 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2552 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2554 if (VA
.needsCustom()) {
2555 // f64 and vector types are split into multiple registers or
2556 // register/stack-slot combinations. The types will not match
2557 // the registers; give up on memory f64 refs until we figure
2558 // out what to do about this.
2561 if (!ArgLocs
[++i
].isRegLoc())
2563 if (RegVT
== MVT::v2f64
) {
2564 if (!ArgLocs
[++i
].isRegLoc())
2566 if (!ArgLocs
[++i
].isRegLoc())
2569 } else if (!VA
.isRegLoc()) {
2570 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2577 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2578 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2586 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2587 MachineFunction
&MF
, bool isVarArg
,
2588 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2589 LLVMContext
&Context
) const {
2590 SmallVector
<CCValAssign
, 16> RVLocs
;
2591 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2592 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2595 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2596 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2597 const MachineFunction
&MF
= DAG
.getMachineFunction();
2598 const Function
&F
= MF
.getFunction();
2600 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2602 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2603 // version of the "preferred return address". These offsets affect the return
2604 // instruction if this is a return from PL1 without hypervisor extensions.
2605 // IRQ/FIQ: +4 "subs pc, lr, #4"
2606 // SWI: 0 "subs pc, lr, #0"
2607 // ABORT: +4 "subs pc, lr, #4"
2608 // UNDEF: +4/+2 "subs pc, lr, #0"
2609 // UNDEF varies depending on where the exception came from ARM or Thumb
2610 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2613 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2616 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2619 report_fatal_error("Unsupported interrupt attribute. If present, value "
2620 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2622 RetOps
.insert(RetOps
.begin() + 1,
2623 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2625 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2629 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2631 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2632 const SmallVectorImpl
<SDValue
> &OutVals
,
2633 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2634 // CCValAssign - represent the assignment of the return value to a location.
2635 SmallVector
<CCValAssign
, 16> RVLocs
;
2637 // CCState - Info about the registers and stack slots.
2638 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2641 // Analyze outgoing return values.
2642 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2645 SmallVector
<SDValue
, 4> RetOps
;
2646 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2647 bool isLittleEndian
= Subtarget
->isLittle();
2649 MachineFunction
&MF
= DAG
.getMachineFunction();
2650 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2651 AFI
->setReturnRegsCount(RVLocs
.size());
2653 // Copy the result values into the output registers.
2654 for (unsigned i
= 0, realRVLocIdx
= 0;
2656 ++i
, ++realRVLocIdx
) {
2657 CCValAssign
&VA
= RVLocs
[i
];
2658 assert(VA
.isRegLoc() && "Can only return in registers!");
2660 SDValue Arg
= OutVals
[realRVLocIdx
];
2661 bool ReturnF16
= false;
2663 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2664 // Half-precision return values can be returned like this:
2666 // t11 f16 = fadd ...
2667 // t12: i16 = bitcast t11
2668 // t13: i32 = zero_extend t12
2669 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2671 // to avoid code generation for bitcasts, we simply set Arg to the node
2672 // that produces the f16 value, t11 in this case.
2674 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2675 SDValue ZE
= Arg
.getOperand(0);
2676 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2677 SDValue BC
= ZE
.getOperand(0);
2678 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2679 Arg
= BC
.getOperand(0);
2686 switch (VA
.getLocInfo()) {
2687 default: llvm_unreachable("Unknown loc info!");
2688 case CCValAssign::Full
: break;
2689 case CCValAssign::BCvt
:
2691 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2695 if (VA
.needsCustom()) {
2696 if (VA
.getLocVT() == MVT::v2f64
) {
2697 // Extract the first half and return it in two registers.
2698 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2699 DAG
.getConstant(0, dl
, MVT::i32
));
2700 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2701 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2703 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2704 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2706 Flag
= Chain
.getValue(1);
2707 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2708 VA
= RVLocs
[++i
]; // skip ahead to next loc
2709 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2710 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2712 Flag
= Chain
.getValue(1);
2713 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2714 VA
= RVLocs
[++i
]; // skip ahead to next loc
2716 // Extract the 2nd half and fall through to handle it as an f64 value.
2717 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2718 DAG
.getConstant(1, dl
, MVT::i32
));
2720 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2722 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2723 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2724 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2725 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2727 Flag
= Chain
.getValue(1);
2728 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2729 VA
= RVLocs
[++i
]; // skip ahead to next loc
2730 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2731 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2734 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2736 // Guarantee that all emitted copies are
2737 // stuck together, avoiding something bad.
2738 Flag
= Chain
.getValue(1);
2739 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2740 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2742 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2743 const MCPhysReg
*I
=
2744 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2747 if (ARM::GPRRegClass
.contains(*I
))
2748 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2749 else if (ARM::DPRRegClass
.contains(*I
))
2750 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2752 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2756 // Update chain and glue.
2759 RetOps
.push_back(Flag
);
2761 // CPUs which aren't M-class use a special sequence to return from
2762 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2763 // though we use "subs pc, lr, #N").
2765 // M-class CPUs actually use a normal return sequence with a special
2766 // (hardware-provided) value in LR, so the normal code path works.
2767 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2768 !Subtarget
->isMClass()) {
2769 if (Subtarget
->isThumb1Only())
2770 report_fatal_error("interrupt attribute is not supported in Thumb1");
2771 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2774 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2777 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2778 if (N
->getNumValues() != 1)
2780 if (!N
->hasNUsesOfValue(1, 0))
2783 SDValue TCChain
= Chain
;
2784 SDNode
*Copy
= *N
->use_begin();
2785 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2786 // If the copy has a glue operand, we conservatively assume it isn't safe to
2787 // perform a tail call.
2788 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2790 TCChain
= Copy
->getOperand(0);
2791 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2792 SDNode
*VMov
= Copy
;
2793 // f64 returned in a pair of GPRs.
2794 SmallPtrSet
<SDNode
*, 2> Copies
;
2795 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2797 if (UI
->getOpcode() != ISD::CopyToReg
)
2801 if (Copies
.size() > 2)
2804 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2806 SDValue UseChain
= UI
->getOperand(0);
2807 if (Copies
.count(UseChain
.getNode()))
2811 // We are at the top of this chain.
2812 // If the copy has a glue operand, we conservatively assume it
2813 // isn't safe to perform a tail call.
2814 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2820 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2821 // f32 returned in a single GPR.
2822 if (!Copy
->hasOneUse())
2824 Copy
= *Copy
->use_begin();
2825 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2827 // If the copy has a glue operand, we conservatively assume it isn't safe to
2828 // perform a tail call.
2829 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2831 TCChain
= Copy
->getOperand(0);
2836 bool HasRet
= false;
2837 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2839 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2840 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2852 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2853 if (!Subtarget
->supportsTailCall())
2857 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2858 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2864 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2865 // and pass the lower and high parts through.
2866 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2868 SDValue WriteValue
= Op
->getOperand(2);
2870 // This function is only supposed to be called for i64 type argument.
2871 assert(WriteValue
.getValueType() == MVT::i64
2872 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2874 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2875 DAG
.getConstant(0, DL
, MVT::i32
));
2876 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2877 DAG
.getConstant(1, DL
, MVT::i32
));
2878 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2879 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2882 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2883 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2884 // one of the above mentioned nodes. It has to be wrapped because otherwise
2885 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2886 // be used to form addressing mode. These wrapped nodes will be selected
2888 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2889 SelectionDAG
&DAG
) const {
2890 EVT PtrVT
= Op
.getValueType();
2891 // FIXME there is no actual debug info here
2893 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2896 // When generating execute-only code Constant Pools must be promoted to the
2897 // global data section. It's a bit ugly that we can't share them across basic
2898 // blocks, but this way we guarantee that execute-only behaves correct with
2899 // position-independent addressing modes.
2900 if (Subtarget
->genExecuteOnly()) {
2901 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2902 auto T
= const_cast<Type
*>(CP
->getType());
2903 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2904 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2905 getFunction().getParent());
2906 auto GV
= new GlobalVariable(
2907 *M
, T
, /*isConst=*/true, GlobalVariable::InternalLinkage
, C
,
2908 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2909 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2910 Twine(AFI
->createPICLabelUId())
2912 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2914 return LowerGlobalAddress(GA
, DAG
);
2917 if (CP
->isMachineConstantPoolEntry())
2918 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2919 CP
->getAlignment());
2921 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2922 CP
->getAlignment());
2923 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2926 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2927 return MachineJumpTableInfo::EK_Inline
;
2930 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2931 SelectionDAG
&DAG
) const {
2932 MachineFunction
&MF
= DAG
.getMachineFunction();
2933 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2934 unsigned ARMPCLabelIndex
= 0;
2936 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2937 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
2939 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
2940 if (!IsPositionIndependent
) {
2941 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
2943 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
2944 ARMPCLabelIndex
= AFI
->createPICLabelUId();
2945 ARMConstantPoolValue
*CPV
=
2946 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
2947 ARMCP::CPBlockAddress
, PCAdj
);
2948 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
2950 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
2951 SDValue Result
= DAG
.getLoad(
2952 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
2953 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2954 if (!IsPositionIndependent
)
2956 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
2957 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
2960 /// Convert a TLS address reference into the correct sequence of loads
2961 /// and calls to compute the variable's address for Darwin, and return an
2962 /// SDValue containing the final node.
2964 /// Darwin only has one TLS scheme which must be capable of dealing with the
2965 /// fully general situation, in the worst case. This means:
2966 /// + "extern __thread" declaration.
2967 /// + Defined in a possibly unknown dynamic library.
2969 /// The general system is that each __thread variable has a [3 x i32] descriptor
2970 /// which contains information used by the runtime to calculate the address. The
2971 /// only part of this the compiler needs to know about is the first word, which
2972 /// contains a function pointer that must be called with the address of the
2973 /// entire descriptor in "r0".
2975 /// Since this descriptor may be in a different unit, in general access must
2976 /// proceed along the usual ARM rules. A common sequence to produce is:
2978 /// movw rT1, :lower16:_var$non_lazy_ptr
2979 /// movt rT1, :upper16:_var$non_lazy_ptr
2983 /// [...address now in r0...]
2985 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
2986 SelectionDAG
&DAG
) const {
2987 assert(Subtarget
->isTargetDarwin() &&
2988 "This function expects a Darwin target");
2991 // First step is to get the address of the actua global symbol. This is where
2992 // the TLS descriptor lives.
2993 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
2995 // The first entry in the descriptor is a function pointer that we must call
2996 // to obtain the address of the variable.
2997 SDValue Chain
= DAG
.getEntryNode();
2998 SDValue FuncTLVGet
= DAG
.getLoad(
2999 MVT::i32
, DL
, Chain
, DescAddr
,
3000 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3001 /* Alignment = */ 4,
3002 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3003 MachineMemOperand::MOInvariant
);
3004 Chain
= FuncTLVGet
.getValue(1);
3006 MachineFunction
&F
= DAG
.getMachineFunction();
3007 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3008 MFI
.setAdjustsStack(true);
3010 // TLS calls preserve all registers except those that absolutely must be
3011 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3014 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3015 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3016 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3018 // Finally, we can make the call. This is just a degenerate version of a
3019 // normal AArch64 call node: r0 takes the address of the descriptor, and
3020 // returns the address of the variable in this thread.
3021 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3023 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3024 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3025 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3026 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3030 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3031 SelectionDAG
&DAG
) const {
3032 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3034 SDValue Chain
= DAG
.getEntryNode();
3035 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3038 // Load the current TEB (thread environment block)
3039 SDValue Ops
[] = {Chain
,
3040 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3041 DAG
.getConstant(15, DL
, MVT::i32
),
3042 DAG
.getConstant(0, DL
, MVT::i32
),
3043 DAG
.getConstant(13, DL
, MVT::i32
),
3044 DAG
.getConstant(0, DL
, MVT::i32
),
3045 DAG
.getConstant(2, DL
, MVT::i32
)};
3046 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3047 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3049 SDValue TEB
= CurrentTEB
.getValue(0);
3050 Chain
= CurrentTEB
.getValue(1);
3052 // Load the ThreadLocalStoragePointer from the TEB
3053 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3055 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3056 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3058 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3059 // offset into the TLSArray.
3061 // Load the TLS index from the C runtime
3063 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3064 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3065 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3067 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3068 DAG
.getConstant(2, DL
, MVT::i32
));
3069 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3070 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3071 MachinePointerInfo());
3073 // Get the offset of the start of the .tls section (section base)
3074 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3075 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3076 SDValue Offset
= DAG
.getLoad(
3077 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3078 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3079 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3081 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3084 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3086 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3087 SelectionDAG
&DAG
) const {
3089 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3090 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3091 MachineFunction
&MF
= DAG
.getMachineFunction();
3092 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3093 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3094 ARMConstantPoolValue
*CPV
=
3095 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3096 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3097 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3098 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3099 Argument
= DAG
.getLoad(
3100 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3101 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3102 SDValue Chain
= Argument
.getValue(1);
3104 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3105 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3107 // call __tls_get_addr.
3110 Entry
.Node
= Argument
;
3111 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3112 Args
.push_back(Entry
);
3114 // FIXME: is there useful debug info available here?
3115 TargetLowering::CallLoweringInfo
CLI(DAG
);
3116 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3117 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3118 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3120 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3121 return CallResult
.first
;
3124 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3125 // "local exec" model.
3127 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3129 TLSModel::Model model
) const {
3130 const GlobalValue
*GV
= GA
->getGlobal();
3133 SDValue Chain
= DAG
.getEntryNode();
3134 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3135 // Get the Thread Pointer
3136 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3138 if (model
== TLSModel::InitialExec
) {
3139 MachineFunction
&MF
= DAG
.getMachineFunction();
3140 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3141 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3142 // Initial exec model.
3143 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3144 ARMConstantPoolValue
*CPV
=
3145 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3146 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3148 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3149 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3150 Offset
= DAG
.getLoad(
3151 PtrVT
, dl
, Chain
, Offset
,
3152 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3153 Chain
= Offset
.getValue(1);
3155 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3156 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3158 Offset
= DAG
.getLoad(
3159 PtrVT
, dl
, Chain
, Offset
,
3160 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3163 assert(model
== TLSModel::LocalExec
);
3164 ARMConstantPoolValue
*CPV
=
3165 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3166 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3167 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3168 Offset
= DAG
.getLoad(
3169 PtrVT
, dl
, Chain
, Offset
,
3170 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3173 // The address of the thread local variable is the add of the thread
3174 // pointer with the offset of the variable.
3175 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3179 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3180 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3181 if (DAG
.getTarget().useEmulatedTLS())
3182 return LowerToTLSEmulatedModel(GA
, DAG
);
3184 if (Subtarget
->isTargetDarwin())
3185 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3187 if (Subtarget
->isTargetWindows())
3188 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3190 // TODO: implement the "local dynamic" model
3191 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3192 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3195 case TLSModel::GeneralDynamic
:
3196 case TLSModel::LocalDynamic
:
3197 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3198 case TLSModel::InitialExec
:
3199 case TLSModel::LocalExec
:
3200 return LowerToTLSExecModels(GA
, DAG
, model
);
3202 llvm_unreachable("bogus TLS model");
3205 /// Return true if all users of V are within function F, looking through
3207 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3208 SmallVector
<const User
*,4> Worklist
;
3209 for (auto *U
: V
->users())
3210 Worklist
.push_back(U
);
3211 while (!Worklist
.empty()) {
3212 auto *U
= Worklist
.pop_back_val();
3213 if (isa
<ConstantExpr
>(U
)) {
3214 for (auto *UU
: U
->users())
3215 Worklist
.push_back(UU
);
3219 auto *I
= dyn_cast
<Instruction
>(U
);
3220 if (!I
|| I
->getParent()->getParent() != F
)
3226 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3227 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3228 EVT PtrVT
, const SDLoc
&dl
) {
3229 // If we're creating a pool entry for a constant global with unnamed address,
3230 // and the global is small enough, we can emit it inline into the constant pool
3231 // to save ourselves an indirection.
3233 // This is a win if the constant is only used in one function (so it doesn't
3234 // need to be duplicated) or duplicating the constant wouldn't increase code
3235 // size (implying the constant is no larger than 4 bytes).
3236 const Function
&F
= DAG
.getMachineFunction().getFunction();
3238 // We rely on this decision to inline being idemopotent and unrelated to the
3239 // use-site. We know that if we inline a variable at one use site, we'll
3240 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3241 // doesn't know about this optimization, so bail out if it's enabled else
3242 // we could decide to inline here (and thus never emit the GV) but require
3243 // the GV from fast-isel generated code.
3244 if (!EnableConstpoolPromotion
||
3245 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3248 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3249 if (!GVar
|| !GVar
->hasInitializer() ||
3250 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3251 !GVar
->hasLocalLinkage())
3254 // If we inline a value that contains relocations, we move the relocations
3255 // from .data to .text. This is not allowed in position-independent code.
3256 auto *Init
= GVar
->getInitializer();
3257 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3258 Init
->needsRelocation())
3261 // The constant islands pass can only really deal with alignment requests
3262 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3263 // any type wanting greater alignment requirements than 4 bytes. We also
3264 // can only promote constants that are multiples of 4 bytes in size or
3265 // are paddable to a multiple of 4. Currently we only try and pad constants
3266 // that are strings for simplicity.
3267 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3268 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3269 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3270 unsigned RequiredPadding
= 4 - (Size
% 4);
3271 bool PaddingPossible
=
3272 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3273 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3277 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3278 MachineFunction
&MF
= DAG
.getMachineFunction();
3279 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3281 // We can't bloat the constant pool too much, else the ConstantIslands pass
3282 // may fail to converge. If we haven't promoted this global yet (it may have
3283 // multiple uses), and promoting it would increase the constant pool size (Sz
3284 // > 4), ensure we have space to do so up to MaxTotal.
3285 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3286 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3287 ConstpoolPromotionMaxTotal
)
3290 // This is only valid if all users are in a single function; we can't clone
3291 // the constant in general. The LLVM IR unnamed_addr allows merging
3292 // constants, but not cloning them.
3294 // We could potentially allow cloning if we could prove all uses of the
3295 // constant in the current function don't care about the address, like
3296 // printf format strings. But that isn't implemented for now.
3297 if (!allUsersAreInFunction(GVar
, &F
))
3300 // We're going to inline this global. Pad it out if needed.
3301 if (RequiredPadding
!= 4) {
3302 StringRef S
= CDAInit
->getAsString();
3304 SmallVector
<uint8_t,16> V(S
.size());
3305 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3306 while (RequiredPadding
--)
3308 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3311 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3313 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3314 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3315 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3316 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3319 ++NumConstpoolPromoted
;
3320 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3323 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3324 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3325 if (!(GV
= GA
->getBaseObject()))
3327 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3328 return V
->isConstant();
3329 return isa
<Function
>(GV
);
3332 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3333 SelectionDAG
&DAG
) const {
3334 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3335 default: llvm_unreachable("unknown object format");
3337 return LowerGlobalAddressWindows(Op
, DAG
);
3339 return LowerGlobalAddressELF(Op
, DAG
);
3341 return LowerGlobalAddressDarwin(Op
, DAG
);
3345 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3346 SelectionDAG
&DAG
) const {
3347 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3349 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3350 const TargetMachine
&TM
= getTargetMachine();
3351 bool IsRO
= isReadOnly(GV
);
3353 // promoteToConstantPool only if not generating XO text section
3354 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3355 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3358 if (isPositionIndependent()) {
3359 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3360 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3361 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3362 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3365 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3366 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3368 } else if (Subtarget
->isROPI() && IsRO
) {
3370 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3371 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3373 } else if (Subtarget
->isRWPI() && !IsRO
) {
3376 if (Subtarget
->useMovt()) {
3378 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3379 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3380 } else { // use literal pool for address constant
3381 ARMConstantPoolValue
*CPV
=
3382 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3383 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3384 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3385 RelAddr
= DAG
.getLoad(
3386 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3387 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3389 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3390 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3394 // If we have T2 ops, we can materialize the address directly via movt/movw
3395 // pair. This is always cheaper.
3396 if (Subtarget
->useMovt()) {
3398 // FIXME: Once remat is capable of dealing with instructions with register
3399 // operands, expand this into two nodes.
3400 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3401 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3403 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3404 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3406 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3407 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3411 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3412 SelectionDAG
&DAG
) const {
3413 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3414 "ROPI/RWPI not currently supported for Darwin");
3415 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3417 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3419 if (Subtarget
->useMovt())
3422 // FIXME: Once remat is capable of dealing with instructions with register
3423 // operands, expand this into multiple nodes
3425 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3427 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3428 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3430 if (Subtarget
->isGVIndirectSymbol(GV
))
3431 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3432 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3436 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3437 SelectionDAG
&DAG
) const {
3438 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3439 assert(Subtarget
->useMovt() &&
3440 "Windows on ARM expects to use movw/movt");
3441 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3442 "ROPI/RWPI not currently supported for Windows");
3444 const TargetMachine
&TM
= getTargetMachine();
3445 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3446 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3447 if (GV
->hasDLLImportStorageClass())
3448 TargetFlags
= ARMII::MO_DLLIMPORT
;
3449 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3450 TargetFlags
= ARMII::MO_COFFSTUB
;
3451 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3457 // FIXME: Once remat is capable of dealing with instructions with register
3458 // operands, expand this into two nodes.
3459 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3460 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*Offset=*/0,
3462 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3463 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3464 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3469 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3471 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3472 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3473 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3474 Op
.getOperand(1), Val
);
3478 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3480 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3481 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3484 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3485 SelectionDAG
&DAG
) const {
3487 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3492 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3493 const ARMSubtarget
*Subtarget
) const {
3494 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3497 default: return SDValue(); // Don't custom lower most intrinsics.
3498 case Intrinsic::thread_pointer
: {
3499 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3500 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3502 case Intrinsic::eh_sjlj_lsda
: {
3503 MachineFunction
&MF
= DAG
.getMachineFunction();
3504 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3505 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3506 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3508 bool IsPositionIndependent
= isPositionIndependent();
3509 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3510 ARMConstantPoolValue
*CPV
=
3511 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3512 ARMCP::CPLSDA
, PCAdj
);
3513 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3514 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3515 SDValue Result
= DAG
.getLoad(
3516 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3517 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3519 if (IsPositionIndependent
) {
3520 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3521 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3525 case Intrinsic::arm_neon_vabs
:
3526 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3528 case Intrinsic::arm_neon_vmulls
:
3529 case Intrinsic::arm_neon_vmullu
: {
3530 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3531 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3532 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3533 Op
.getOperand(1), Op
.getOperand(2));
3535 case Intrinsic::arm_neon_vminnm
:
3536 case Intrinsic::arm_neon_vmaxnm
: {
3537 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3538 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3539 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3540 Op
.getOperand(1), Op
.getOperand(2));
3542 case Intrinsic::arm_neon_vminu
:
3543 case Intrinsic::arm_neon_vmaxu
: {
3544 if (Op
.getValueType().isFloatingPoint())
3546 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3547 ? ISD::UMIN
: ISD::UMAX
;
3548 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3549 Op
.getOperand(1), Op
.getOperand(2));
3551 case Intrinsic::arm_neon_vmins
:
3552 case Intrinsic::arm_neon_vmaxs
: {
3553 // v{min,max}s is overloaded between signed integers and floats.
3554 if (!Op
.getValueType().isFloatingPoint()) {
3555 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3556 ? ISD::SMIN
: ISD::SMAX
;
3557 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3558 Op
.getOperand(1), Op
.getOperand(2));
3560 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3561 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3562 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3563 Op
.getOperand(1), Op
.getOperand(2));
3565 case Intrinsic::arm_neon_vtbl1
:
3566 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3567 Op
.getOperand(1), Op
.getOperand(2));
3568 case Intrinsic::arm_neon_vtbl2
:
3569 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3570 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3574 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3575 const ARMSubtarget
*Subtarget
) {
3577 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3578 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3579 if (SSID
== SyncScope::SingleThread
)
3582 if (!Subtarget
->hasDataBarrier()) {
3583 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3584 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3586 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3587 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3588 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3589 DAG
.getConstant(0, dl
, MVT::i32
));
3592 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3593 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3594 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3595 if (Subtarget
->isMClass()) {
3596 // Only a full system barrier exists in the M-class architectures.
3597 Domain
= ARM_MB::SY
;
3598 } else if (Subtarget
->preferISHSTBarriers() &&
3599 Ord
== AtomicOrdering::Release
) {
3600 // Swift happens to implement ISHST barriers in a way that's compatible with
3601 // Release semantics but weaker than ISH so we'd be fools not to use
3602 // it. Beware: other processors probably don't!
3603 Domain
= ARM_MB::ISHST
;
3606 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3607 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3608 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3611 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3612 const ARMSubtarget
*Subtarget
) {
3613 // ARM pre v5TE and Thumb1 does not have preload instructions.
3614 if (!(Subtarget
->isThumb2() ||
3615 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3616 // Just preserve the chain.
3617 return Op
.getOperand(0);
3620 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3622 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3623 // ARMv7 with MP extension has PLDW.
3624 return Op
.getOperand(0);
3626 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3627 if (Subtarget
->isThumb()) {
3629 isRead
= ~isRead
& 1;
3630 isData
= ~isData
& 1;
3633 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3634 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3635 DAG
.getConstant(isData
, dl
, MVT::i32
));
3638 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3639 MachineFunction
&MF
= DAG
.getMachineFunction();
3640 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3642 // vastart just stores the address of the VarArgsFrameIndex slot into the
3643 // memory location argument.
3645 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3646 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3647 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3648 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3649 MachinePointerInfo(SV
));
3652 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3653 CCValAssign
&NextVA
,
3656 const SDLoc
&dl
) const {
3657 MachineFunction
&MF
= DAG
.getMachineFunction();
3658 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3660 const TargetRegisterClass
*RC
;
3661 if (AFI
->isThumb1OnlyFunction())
3662 RC
= &ARM::tGPRRegClass
;
3664 RC
= &ARM::GPRRegClass
;
3666 // Transform the arguments stored in physical registers into virtual ones.
3667 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3668 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3671 if (NextVA
.isMemLoc()) {
3672 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3673 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3675 // Create load node to retrieve arguments from the stack.
3676 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3677 ArgValue2
= DAG
.getLoad(
3678 MVT::i32
, dl
, Root
, FIN
,
3679 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3681 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3682 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3684 if (!Subtarget
->isLittle())
3685 std::swap (ArgValue
, ArgValue2
);
3686 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3689 // The remaining GPRs hold either the beginning of variable-argument
3690 // data, or the beginning of an aggregate passed by value (usually
3691 // byval). Either way, we allocate stack slots adjacent to the data
3692 // provided by our caller, and store the unallocated registers there.
3693 // If this is a variadic function, the va_list pointer will begin with
3694 // these values; otherwise, this reassembles a (byval) structure that
3695 // was split between registers and memory.
3696 // Return: The frame index registers were stored into.
3697 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3698 const SDLoc
&dl
, SDValue
&Chain
,
3699 const Value
*OrigArg
,
3700 unsigned InRegsParamRecordIdx
,
3701 int ArgOffset
, unsigned ArgSize
) const {
3702 // Currently, two use-cases possible:
3703 // Case #1. Non-var-args function, and we meet first byval parameter.
3704 // Setup first unallocated register as first byval register;
3705 // eat all remained registers
3706 // (these two actions are performed by HandleByVal method).
3707 // Then, here, we initialize stack frame with
3708 // "store-reg" instructions.
3709 // Case #2. Var-args function, that doesn't contain byval parameters.
3710 // The same: eat all remained unallocated registers,
3711 // initialize stack frame.
3713 MachineFunction
&MF
= DAG
.getMachineFunction();
3714 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3715 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3716 unsigned RBegin
, REnd
;
3717 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3718 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3720 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3721 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3726 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3728 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3729 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3730 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3732 SmallVector
<SDValue
, 4> MemOps
;
3733 const TargetRegisterClass
*RC
=
3734 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3736 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3737 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3738 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3739 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3740 MachinePointerInfo(OrigArg
, 4 * i
));
3741 MemOps
.push_back(Store
);
3742 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3745 if (!MemOps
.empty())
3746 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3750 // Setup stack frame, the va_list pointer will start from.
3751 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3752 const SDLoc
&dl
, SDValue
&Chain
,
3754 unsigned TotalArgRegsSaveSize
,
3755 bool ForceMutable
) const {
3756 MachineFunction
&MF
= DAG
.getMachineFunction();
3757 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3759 // Try to store any remaining integer argument regs
3760 // to their spots on the stack so that they may be loaded by dereferencing
3761 // the result of va_next.
3762 // If there is no regs to be stored, just point address after last
3763 // argument passed via stack.
3764 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3765 CCInfo
.getInRegsParamsCount(),
3766 CCInfo
.getNextStackOffset(),
3767 std::max(4U, TotalArgRegsSaveSize
));
3768 AFI
->setVarArgsFrameIndex(FrameIndex
);
3771 SDValue
ARMTargetLowering::LowerFormalArguments(
3772 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3773 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3774 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3775 MachineFunction
&MF
= DAG
.getMachineFunction();
3776 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3778 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3780 // Assign locations to all of the incoming arguments.
3781 SmallVector
<CCValAssign
, 16> ArgLocs
;
3782 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3784 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3786 SmallVector
<SDValue
, 16> ArgValues
;
3788 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3789 unsigned CurArgIdx
= 0;
3791 // Initially ArgRegsSaveSize is zero.
3792 // Then we increase this value each time we meet byval parameter.
3793 // We also increase this value in case of varargs function.
3794 AFI
->setArgRegsSaveSize(0);
3796 // Calculate the amount of stack space that we need to allocate to store
3797 // byval and variadic arguments that are passed in registers.
3798 // We need to know this before we allocate the first byval or variadic
3799 // argument, as they will be allocated a stack slot below the CFA (Canonical
3800 // Frame Address, the stack pointer at entry to the function).
3801 unsigned ArgRegBegin
= ARM::R4
;
3802 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3803 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3806 CCValAssign
&VA
= ArgLocs
[i
];
3807 unsigned Index
= VA
.getValNo();
3808 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3809 if (!Flags
.isByVal())
3812 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3813 unsigned RBegin
, REnd
;
3814 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3815 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3817 CCInfo
.nextInRegsParam();
3819 CCInfo
.rewindByValRegsInfo();
3821 int lastInsIndex
= -1;
3822 if (isVarArg
&& MFI
.hasVAStart()) {
3823 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3824 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3825 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3828 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3829 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3830 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3832 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3833 CCValAssign
&VA
= ArgLocs
[i
];
3834 if (Ins
[VA
.getValNo()].isOrigArg()) {
3835 std::advance(CurOrigArg
,
3836 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3837 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3839 // Arguments stored in registers.
3840 if (VA
.isRegLoc()) {
3841 EVT RegVT
= VA
.getLocVT();
3843 if (VA
.needsCustom()) {
3844 // f64 and vector types are split up into multiple registers or
3845 // combinations of registers and stack slots.
3846 if (VA
.getLocVT() == MVT::v2f64
) {
3847 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3849 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3851 if (VA
.isMemLoc()) {
3852 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3853 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3854 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3855 MachinePointerInfo::getFixedStack(
3856 DAG
.getMachineFunction(), FI
));
3858 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3861 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3862 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3863 ArgValue
, ArgValue1
,
3864 DAG
.getIntPtrConstant(0, dl
));
3865 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3866 ArgValue
, ArgValue2
,
3867 DAG
.getIntPtrConstant(1, dl
));
3869 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3871 const TargetRegisterClass
*RC
;
3874 if (RegVT
== MVT::f16
)
3875 RC
= &ARM::HPRRegClass
;
3876 else if (RegVT
== MVT::f32
)
3877 RC
= &ARM::SPRRegClass
;
3878 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3879 RC
= &ARM::DPRRegClass
;
3880 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3881 RC
= &ARM::QPRRegClass
;
3882 else if (RegVT
== MVT::i32
)
3883 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3884 : &ARM::GPRRegClass
;
3886 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3888 // Transform the arguments in physical registers into virtual ones.
3889 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3890 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3893 // If this is an 8 or 16-bit value, it is really passed promoted
3894 // to 32 bits. Insert an assert[sz]ext to capture this, then
3895 // truncate to the right size.
3896 switch (VA
.getLocInfo()) {
3897 default: llvm_unreachable("Unknown loc info!");
3898 case CCValAssign::Full
: break;
3899 case CCValAssign::BCvt
:
3900 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
3902 case CCValAssign::SExt
:
3903 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
3904 DAG
.getValueType(VA
.getValVT()));
3905 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3907 case CCValAssign::ZExt
:
3908 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
3909 DAG
.getValueType(VA
.getValVT()));
3910 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3914 InVals
.push_back(ArgValue
);
3915 } else { // VA.isRegLoc()
3917 assert(VA
.isMemLoc());
3918 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
3920 int index
= VA
.getValNo();
3922 // Some Ins[] entries become multiple ArgLoc[] entries.
3923 // Process them only once.
3924 if (index
!= lastInsIndex
)
3926 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
3927 // FIXME: For now, all byval parameter objects are marked mutable.
3928 // This can be changed with more analysis.
3929 // In case of tail call optimization mark all arguments mutable.
3930 // Since they could be overwritten by lowering of arguments in case of
3932 if (Flags
.isByVal()) {
3933 assert(Ins
[index
].isOrigArg() &&
3934 "Byval arguments cannot be implicit");
3935 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
3937 int FrameIndex
= StoreByValRegs(
3938 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
3939 VA
.getLocMemOffset(), Flags
.getByValSize());
3940 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
3941 CCInfo
.nextInRegsParam();
3943 unsigned FIOffset
= VA
.getLocMemOffset();
3944 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
3947 // Create load nodes to retrieve arguments from the stack.
3948 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3949 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
3950 MachinePointerInfo::getFixedStack(
3951 DAG
.getMachineFunction(), FI
)));
3953 lastInsIndex
= index
;
3959 if (isVarArg
&& MFI
.hasVAStart())
3960 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
3961 CCInfo
.getNextStackOffset(),
3962 TotalArgRegsSaveSize
);
3964 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
3969 /// isFloatingPointZero - Return true if this is +0.0.
3970 static bool isFloatingPointZero(SDValue Op
) {
3971 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
3972 return CFP
->getValueAPF().isPosZero();
3973 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
3974 // Maybe this has already been legalized into the constant pool?
3975 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
3976 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
3977 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
3978 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
3979 return CFP
->getValueAPF().isPosZero();
3981 } else if (Op
->getOpcode() == ISD::BITCAST
&&
3982 Op
->getValueType(0) == MVT::f64
) {
3983 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3984 // created by LowerConstantFP().
3985 SDValue BitcastOp
= Op
->getOperand(0);
3986 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
3987 isNullConstant(BitcastOp
->getOperand(0)))
3993 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3994 /// the given operands.
3995 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
3996 SDValue
&ARMcc
, SelectionDAG
&DAG
,
3997 const SDLoc
&dl
) const {
3998 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
3999 unsigned C
= RHSC
->getZExtValue();
4000 if (!isLegalICmpImmediate((int32_t)C
)) {
4001 // Constant does not fit, try adjusting it by one.
4006 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4007 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4008 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4013 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4014 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4015 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4020 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4021 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4022 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4027 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4028 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4029 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4034 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4035 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4036 // In ARM and Thumb-2, the compare instructions can shift their second
4038 CC
= ISD::getSetCCSwappedOperands(CC
);
4039 std::swap(LHS
, RHS
);
4042 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4044 // If the RHS is a constant zero then the V (overflow) flag will never be
4045 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4046 // simpler for other passes (like the peephole optimiser) to deal with.
4047 if (isNullConstant(RHS
)) {
4051 CondCode
= ARMCC::PL
;
4054 CondCode
= ARMCC::MI
;
4059 ARMISD::NodeType CompareType
;
4062 CompareType
= ARMISD::CMP
;
4067 CompareType
= ARMISD::CMPZ
;
4070 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4071 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4074 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4075 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4076 SelectionDAG
&DAG
, const SDLoc
&dl
,
4077 bool InvalidOnQNaN
) const {
4078 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4080 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4081 if (!isFloatingPointZero(RHS
))
4082 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4084 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4085 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4088 /// duplicateCmp - Glue values can have only one use, so this function
4089 /// duplicates a comparison node.
4091 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4092 unsigned Opc
= Cmp
.getOpcode();
4094 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4095 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4097 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4098 Cmp
= Cmp
.getOperand(0);
4099 Opc
= Cmp
.getOpcode();
4100 if (Opc
== ARMISD::CMPFP
)
4101 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4102 Cmp
.getOperand(1), Cmp
.getOperand(2));
4104 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4105 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4108 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4111 // This function returns three things: the arithmetic computation itself
4112 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4113 // comparison and the condition code define the case in which the arithmetic
4114 // computation *does not* overflow.
4115 std::pair
<SDValue
, SDValue
>
4116 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4117 SDValue
&ARMcc
) const {
4118 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4120 SDValue Value
, OverflowCmp
;
4121 SDValue LHS
= Op
.getOperand(0);
4122 SDValue RHS
= Op
.getOperand(1);
4125 // FIXME: We are currently always generating CMPs because we don't support
4126 // generating CMN through the backend. This is not as good as the natural
4127 // CMP case because it causes a register dependency and cannot be folded
4130 switch (Op
.getOpcode()) {
4132 llvm_unreachable("Unknown overflow instruction!");
4134 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4135 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4136 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4139 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4140 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4141 // We do not use it in the USUBO case as Value may not be used.
4142 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4143 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4145 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4148 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4149 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4150 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4153 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4154 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4155 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4158 // We generate a UMUL_LOHI and then check if the high word is 0.
4159 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4160 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4161 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4163 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4164 DAG
.getConstant(0, dl
, MVT::i32
));
4165 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4168 // We generate a SMUL_LOHI and then check if all the bits of the high word
4169 // are the same as the sign bit of the low word.
4170 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4171 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4172 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4174 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4175 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4177 DAG
.getConstant(31, dl
, MVT::i32
)));
4178 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4182 return std::make_pair(Value
, OverflowCmp
);
4186 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4187 // Let legalize expand this if it isn't a legal type yet.
4188 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4191 SDValue Value
, OverflowCmp
;
4193 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4194 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4196 // We use 0 and 1 as false and true values.
4197 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4198 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4199 EVT VT
= Op
.getValueType();
4201 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4202 ARMcc
, CCR
, OverflowCmp
);
4204 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4205 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4208 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4209 SelectionDAG
&DAG
) {
4210 SDLoc
DL(BoolCarry
);
4211 EVT CarryVT
= BoolCarry
.getValueType();
4213 // This converts the boolean value carry into the carry flag by doing
4214 // ARMISD::SUBC Carry, 1
4215 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4216 DAG
.getVTList(CarryVT
, MVT::i32
),
4217 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4218 return Carry
.getValue(1);
4221 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4222 SelectionDAG
&DAG
) {
4225 // Now convert the carry flag into a boolean carry. We do this
4226 // using ARMISD:ADDE 0, 0, Carry
4227 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4228 DAG
.getConstant(0, DL
, MVT::i32
),
4229 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4232 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4233 SelectionDAG
&DAG
) const {
4234 // Let legalize expand this if it isn't a legal type yet.
4235 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4238 SDValue LHS
= Op
.getOperand(0);
4239 SDValue RHS
= Op
.getOperand(1);
4242 EVT VT
= Op
.getValueType();
4243 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4246 switch (Op
.getOpcode()) {
4248 llvm_unreachable("Unknown overflow instruction!");
4250 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4251 // Convert the carry flag into a boolean value.
4252 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4255 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4256 // Convert the carry flag into a boolean value.
4257 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4258 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4259 // value. So compute 1 - C.
4260 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4261 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4266 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4269 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4270 SDValue Cond
= Op
.getOperand(0);
4271 SDValue SelectTrue
= Op
.getOperand(1);
4272 SDValue SelectFalse
= Op
.getOperand(2);
4274 unsigned Opc
= Cond
.getOpcode();
4276 if (Cond
.getResNo() == 1 &&
4277 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4278 Opc
== ISD::USUBO
)) {
4279 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4282 SDValue Value
, OverflowCmp
;
4284 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4285 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4286 EVT VT
= Op
.getValueType();
4288 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4294 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4295 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4297 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4298 const ConstantSDNode
*CMOVTrue
=
4299 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4300 const ConstantSDNode
*CMOVFalse
=
4301 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4303 if (CMOVTrue
&& CMOVFalse
) {
4304 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4305 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4309 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4311 False
= SelectFalse
;
4312 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4317 if (True
.getNode() && False
.getNode()) {
4318 EVT VT
= Op
.getValueType();
4319 SDValue ARMcc
= Cond
.getOperand(2);
4320 SDValue CCR
= Cond
.getOperand(3);
4321 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4322 assert(True
.getValueType() == VT
);
4323 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4328 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4329 // undefined bits before doing a full-word comparison with zero.
4330 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4331 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4333 return DAG
.getSelectCC(dl
, Cond
,
4334 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4335 SelectTrue
, SelectFalse
, ISD::SETNE
);
4338 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4339 bool &swpCmpOps
, bool &swpVselOps
) {
4340 // Start by selecting the GE condition code for opcodes that return true for
4342 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4343 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4344 CondCode
= ARMCC::GE
;
4346 // and GT for opcodes that return false for 'equality'.
4347 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4348 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4349 CondCode
= ARMCC::GT
;
4351 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4352 // to swap the compare operands.
4353 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4354 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4357 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4358 // If we have an unordered opcode, we need to swap the operands to the VSEL
4359 // instruction (effectively negating the condition).
4361 // This also has the effect of swapping which one of 'less' or 'greater'
4362 // returns true, so we also swap the compare operands. It also switches
4363 // whether we return true for 'equality', so we compensate by picking the
4364 // opposite condition code to our original choice.
4365 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4366 CC
== ISD::SETUGT
) {
4367 swpCmpOps
= !swpCmpOps
;
4368 swpVselOps
= !swpVselOps
;
4369 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4372 // 'ordered' is 'anything but unordered', so use the VS condition code and
4373 // swap the VSEL operands.
4374 if (CC
== ISD::SETO
) {
4375 CondCode
= ARMCC::VS
;
4379 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4380 // code and swap the VSEL operands. Also do this if we don't care about the
4382 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4383 CondCode
= ARMCC::EQ
;
4388 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4389 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4390 SDValue Cmp
, SelectionDAG
&DAG
) const {
4391 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4392 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4393 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4394 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4395 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4397 SDValue TrueLow
= TrueVal
.getValue(0);
4398 SDValue TrueHigh
= TrueVal
.getValue(1);
4399 SDValue FalseLow
= FalseVal
.getValue(0);
4400 SDValue FalseHigh
= FalseVal
.getValue(1);
4402 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4404 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4405 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4407 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4409 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4414 static bool isGTorGE(ISD::CondCode CC
) {
4415 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4418 static bool isLTorLE(ISD::CondCode CC
) {
4419 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4422 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4423 // All of these conditions (and their <= and >= counterparts) will do:
4428 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4429 const SDValue TrueVal
, const SDValue FalseVal
,
4430 const ISD::CondCode CC
, const SDValue K
) {
4431 return (isGTorGE(CC
) &&
4432 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4434 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4437 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4438 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4439 const SDValue TrueVal
, const SDValue FalseVal
,
4440 const ISD::CondCode CC
, const SDValue K
) {
4441 return (isGTorGE(CC
) &&
4442 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4444 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4447 // Check if two chained conditionals could be converted into SSAT or USAT.
4449 // SSAT can replace a set of two conditional selectors that bound a number to an
4450 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4452 // x < -k ? -k : (x > k ? k : x)
4453 // x < -k ? -k : (x < k ? x : k)
4454 // x > -k ? (x > k ? k : x) : -k
4455 // x < k ? (x < -k ? -k : x) : k
4458 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4461 // It returns true if the conversion can be done, false otherwise.
4462 // Additionally, the variable is returned in parameter V, the constant in K and
4463 // usat is set to true if the conditional represents an unsigned saturation
4464 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4465 uint64_t &K
, bool &usat
) {
4466 SDValue LHS1
= Op
.getOperand(0);
4467 SDValue RHS1
= Op
.getOperand(1);
4468 SDValue TrueVal1
= Op
.getOperand(2);
4469 SDValue FalseVal1
= Op
.getOperand(3);
4470 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4472 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4473 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4476 SDValue LHS2
= Op2
.getOperand(0);
4477 SDValue RHS2
= Op2
.getOperand(1);
4478 SDValue TrueVal2
= Op2
.getOperand(2);
4479 SDValue FalseVal2
= Op2
.getOperand(3);
4480 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4482 // Find out which are the constants and which are the variables
4483 // in each conditional
4484 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4487 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4490 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4491 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4492 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4493 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4495 // We must detect cases where the original operations worked with 16- or
4496 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4497 // must work with sign-extended values but the select operations return
4498 // the original non-extended value.
4499 SDValue V2TmpReg
= V2Tmp
;
4500 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4501 V2TmpReg
= V2Tmp
->getOperand(0);
4503 // Check that the registers and the constants have the correct values
4504 // in both conditionals
4505 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4509 // Figure out which conditional is saturating the lower/upper bound.
4510 const SDValue
*LowerCheckOp
=
4511 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4513 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4516 const SDValue
*UpperCheckOp
=
4517 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4519 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4523 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4526 // Check that the constant in the lower-bound check is
4527 // the opposite of the constant in the upper-bound check
4528 // in 1's complement.
4529 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4530 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4531 int64_t PosVal
= std::max(Val1
, Val2
);
4532 int64_t NegVal
= std::min(Val1
, Val2
);
4534 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4535 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4536 isPowerOf2_64(PosVal
+ 1)) {
4538 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4541 else if (NegVal
== 0)
4547 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4555 // Check if a condition of the type x < k ? k : x can be converted into a
4556 // bit operation instead of conditional moves.
4557 // Currently this is allowed given:
4558 // - The conditions and values match up
4559 // - k is 0 or -1 (all ones)
4560 // This function will not check the last condition, thats up to the caller
4561 // It returns true if the transformation can be made, and in such case
4562 // returns x in V, and k in SatK.
4563 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4566 SDValue LHS
= Op
.getOperand(0);
4567 SDValue RHS
= Op
.getOperand(1);
4568 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4569 SDValue TrueVal
= Op
.getOperand(2);
4570 SDValue FalseVal
= Op
.getOperand(3);
4572 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4576 // No constant operation in comparison, early out
4580 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4581 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4582 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4584 // If the constant on left and right side, or variable on left and right,
4585 // does not match, early out
4586 if (*K
!= KTmp
|| V
!= VTmp
)
4589 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4597 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4599 return !Subtarget
->hasVFP2Base();
4601 return !Subtarget
->hasFP64();
4603 return !Subtarget
->hasFullFP16();
4607 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4608 EVT VT
= Op
.getValueType();
4611 // Try to convert two saturating conditional selects into a single SSAT
4613 uint64_t SatConstant
;
4615 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4616 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4618 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4619 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4621 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4622 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4625 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4626 // into more efficient bit operations, which is possible when k is 0 or -1
4627 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4628 // single instructions. On Thumb the shift and the bit operation will be two
4630 // Only allow this transformation on full-width (32-bit) operations
4631 SDValue LowerSatConstant
;
4632 if (VT
== MVT::i32
&&
4633 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4634 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4635 DAG
.getConstant(31, dl
, VT
));
4636 if (isNullConstant(LowerSatConstant
)) {
4637 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4638 DAG
.getAllOnesConstant(dl
, VT
));
4639 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4640 } else if (isAllOnesConstant(LowerSatConstant
))
4641 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4644 SDValue LHS
= Op
.getOperand(0);
4645 SDValue RHS
= Op
.getOperand(1);
4646 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4647 SDValue TrueVal
= Op
.getOperand(2);
4648 SDValue FalseVal
= Op
.getOperand(3);
4650 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4651 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4652 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4654 // If softenSetCCOperands only returned one value, we should compare it to
4656 if (!RHS
.getNode()) {
4657 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4662 if (LHS
.getValueType() == MVT::i32
) {
4663 // Try to generate VSEL on ARMv8.
4664 // The VSEL instruction can't use all the usual ARM condition
4665 // codes: it only has two bits to select the condition code, so it's
4666 // constrained to use only GE, GT, VS and EQ.
4668 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4669 // swap the operands of the previous compare instruction (effectively
4670 // inverting the compare condition, swapping 'less' and 'greater') and
4671 // sometimes need to swap the operands to the VSEL (which inverts the
4672 // condition in the sense of firing whenever the previous condition didn't)
4673 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4674 TrueVal
.getValueType() == MVT::f32
||
4675 TrueVal
.getValueType() == MVT::f64
)) {
4676 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4677 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4678 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4679 CC
= ISD::getSetCCInverse(CC
, true);
4680 std::swap(TrueVal
, FalseVal
);
4685 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4686 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4687 // Choose GE over PL, which vsel does now support
4688 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4689 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4690 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4693 ARMCC::CondCodes CondCode
, CondCode2
;
4695 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4697 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4698 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4699 // must use VSEL (limited condition codes), due to not having conditional f16
4701 if (Subtarget
->hasFPARMv8Base() &&
4702 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4703 (TrueVal
.getValueType() == MVT::f16
||
4704 TrueVal
.getValueType() == MVT::f32
||
4705 TrueVal
.getValueType() == MVT::f64
)) {
4706 bool swpCmpOps
= false;
4707 bool swpVselOps
= false;
4708 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4710 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4711 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4713 std::swap(LHS
, RHS
);
4715 std::swap(TrueVal
, FalseVal
);
4719 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4720 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4721 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4722 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4723 if (CondCode2
!= ARMCC::AL
) {
4724 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4725 // FIXME: Needs another CMP because flag can have but one use.
4726 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4727 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4732 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4733 /// to morph to an integer compare sequence.
4734 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4735 const ARMSubtarget
*Subtarget
) {
4736 SDNode
*N
= Op
.getNode();
4737 if (!N
->hasOneUse())
4738 // Otherwise it requires moving the value from fp to integer registers.
4740 if (!N
->getNumValues())
4742 EVT VT
= Op
.getValueType();
4743 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4744 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4745 // vmrs are very slow, e.g. cortex-a8.
4748 if (isFloatingPointZero(Op
)) {
4752 return ISD::isNormalLoad(N
);
4755 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4756 if (isFloatingPointZero(Op
))
4757 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4759 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4760 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4761 Ld
->getPointerInfo(), Ld
->getAlignment(),
4762 Ld
->getMemOperand()->getFlags());
4764 llvm_unreachable("Unknown VFP cmp argument!");
4767 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4768 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4771 if (isFloatingPointZero(Op
)) {
4772 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4773 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
4777 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
4778 SDValue Ptr
= Ld
->getBasePtr();
4780 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
4781 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
4783 EVT PtrType
= Ptr
.getValueType();
4784 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
4785 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
4786 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
4787 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
4788 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
4789 Ld
->getMemOperand()->getFlags());
4793 llvm_unreachable("Unknown VFP cmp argument!");
4796 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4797 /// f32 and even f64 comparisons to integer ones.
4799 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
4800 SDValue Chain
= Op
.getOperand(0);
4801 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4802 SDValue LHS
= Op
.getOperand(2);
4803 SDValue RHS
= Op
.getOperand(3);
4804 SDValue Dest
= Op
.getOperand(4);
4807 bool LHSSeenZero
= false;
4808 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
4809 bool RHSSeenZero
= false;
4810 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
4811 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
4812 // If unsafe fp math optimization is enabled and there are no other uses of
4813 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4814 // to an integer comparison.
4815 if (CC
== ISD::SETOEQ
)
4817 else if (CC
== ISD::SETUNE
)
4820 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
4822 if (LHS
.getValueType() == MVT::f32
) {
4823 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4824 bitcastf32Toi32(LHS
, DAG
), Mask
);
4825 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4826 bitcastf32Toi32(RHS
, DAG
), Mask
);
4827 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4828 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4829 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4830 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4835 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
4836 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
4837 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
4838 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
4839 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4840 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4841 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4842 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
4843 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
4849 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
4850 SDValue Chain
= Op
.getOperand(0);
4851 SDValue Cond
= Op
.getOperand(1);
4852 SDValue Dest
= Op
.getOperand(2);
4855 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4857 unsigned Opc
= Cond
.getOpcode();
4858 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4859 !Subtarget
->isThumb1Only();
4860 if (Cond
.getResNo() == 1 &&
4861 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4862 Opc
== ISD::USUBO
|| OptimizeMul
)) {
4863 // Only lower legal XALUO ops.
4864 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4867 // The actual operation with overflow check.
4868 SDValue Value
, OverflowCmp
;
4870 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4872 // Reverse the condition code.
4873 ARMCC::CondCodes CondCode
=
4874 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4875 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4876 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
4877 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4879 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
4886 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4887 SDValue Chain
= Op
.getOperand(0);
4888 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4889 SDValue LHS
= Op
.getOperand(2);
4890 SDValue RHS
= Op
.getOperand(3);
4891 SDValue Dest
= Op
.getOperand(4);
4894 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4895 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4896 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4898 // If softenSetCCOperands only returned one value, we should compare it to
4900 if (!RHS
.getNode()) {
4901 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4906 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4908 unsigned Opc
= LHS
.getOpcode();
4909 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4910 !Subtarget
->isThumb1Only();
4911 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
4912 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4913 Opc
== ISD::USUBO
|| OptimizeMul
) &&
4914 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
4915 // Only lower legal XALUO ops.
4916 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
4919 // The actual operation with overflow check.
4920 SDValue Value
, OverflowCmp
;
4922 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
4924 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
4925 // Reverse the condition code.
4926 ARMCC::CondCodes CondCode
=
4927 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4928 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4929 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
4931 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4933 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
4937 if (LHS
.getValueType() == MVT::i32
) {
4939 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4940 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4941 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4942 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4945 if (getTargetMachine().Options
.UnsafeFPMath
&&
4946 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
4947 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
4948 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
4952 ARMCC::CondCodes CondCode
, CondCode2
;
4954 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4956 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4957 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4958 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4959 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4960 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
4961 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
4962 if (CondCode2
!= ARMCC::AL
) {
4963 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4964 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
4965 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
4970 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
4971 SDValue Chain
= Op
.getOperand(0);
4972 SDValue Table
= Op
.getOperand(1);
4973 SDValue Index
= Op
.getOperand(2);
4976 EVT PTy
= getPointerTy(DAG
.getDataLayout());
4977 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
4978 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
4979 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
4980 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
4981 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
4982 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
4983 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4984 // which does another jump to the destination. This also makes it easier
4985 // to translate it to TBB / TBH later (Thumb2 only).
4986 // FIXME: This might not work if the function is extremely large.
4987 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
4988 Addr
, Op
.getOperand(2), JTI
);
4990 if (isPositionIndependent() || Subtarget
->isROPI()) {
4992 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
4993 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
4994 Chain
= Addr
.getValue(1);
4995 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
4996 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
4999 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5000 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5001 Chain
= Addr
.getValue(1);
5002 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5006 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5007 EVT VT
= Op
.getValueType();
5010 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5011 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5013 return DAG
.UnrollVectorOp(Op
.getNode());
5016 const bool HasFullFP16
=
5017 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5020 const EVT OpTy
= Op
.getOperand(0).getValueType();
5021 if (OpTy
== MVT::v4f32
)
5023 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5025 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5028 llvm_unreachable("Invalid type for custom lowering!");
5030 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5031 return DAG
.UnrollVectorOp(Op
.getNode());
5033 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5034 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5037 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5038 EVT VT
= Op
.getValueType();
5040 return LowerVectorFP_TO_INT(Op
, DAG
);
5041 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5043 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5044 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5047 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5049 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5050 /*isSigned*/ false, SDLoc(Op
)).first
;
5056 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5057 EVT VT
= Op
.getValueType();
5060 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5061 if (VT
.getVectorElementType() == MVT::f32
)
5063 return DAG
.UnrollVectorOp(Op
.getNode());
5066 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5067 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5068 "Invalid type for custom lowering!");
5070 const bool HasFullFP16
=
5071 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5074 if (VT
== MVT::v4f32
)
5075 DestVecType
= MVT::v4i32
;
5076 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5077 DestVecType
= MVT::v4i16
;
5078 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5079 DestVecType
= MVT::v8i16
;
5081 return DAG
.UnrollVectorOp(Op
.getNode());
5085 switch (Op
.getOpcode()) {
5086 default: llvm_unreachable("Invalid opcode!");
5087 case ISD::SINT_TO_FP
:
5088 CastOpc
= ISD::SIGN_EXTEND
;
5089 Opc
= ISD::SINT_TO_FP
;
5091 case ISD::UINT_TO_FP
:
5092 CastOpc
= ISD::ZERO_EXTEND
;
5093 Opc
= ISD::UINT_TO_FP
;
5097 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5098 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5101 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5102 EVT VT
= Op
.getValueType();
5104 return LowerVectorINT_TO_FP(Op
, DAG
);
5105 if (isUnsupportedFloatingType(VT
)) {
5107 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5108 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5111 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5113 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5114 /*isSigned*/ false, SDLoc(Op
)).first
;
5120 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5121 // Implement fcopysign with a fabs and a conditional fneg.
5122 SDValue Tmp0
= Op
.getOperand(0);
5123 SDValue Tmp1
= Op
.getOperand(1);
5125 EVT VT
= Op
.getValueType();
5126 EVT SrcVT
= Tmp1
.getValueType();
5127 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5128 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5129 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5132 // Use VBSL to copy the sign bit.
5133 unsigned EncodedVal
= ARM_AM::createNEONModImm(0x6, 0x80);
5134 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5135 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5136 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5138 Mask
= DAG
.getNode(ARMISD::VSHL
, dl
, OpVT
,
5139 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5140 DAG
.getConstant(32, dl
, MVT::i32
));
5141 else /*if (VT == MVT::f32)*/
5142 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5143 if (SrcVT
== MVT::f32
) {
5144 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5146 Tmp1
= DAG
.getNode(ARMISD::VSHL
, dl
, OpVT
,
5147 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5148 DAG
.getConstant(32, dl
, MVT::i32
));
5149 } else if (VT
== MVT::f32
)
5150 Tmp1
= DAG
.getNode(ARMISD::VSHRu
, dl
, MVT::v1i64
,
5151 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5152 DAG
.getConstant(32, dl
, MVT::i32
));
5153 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5154 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5156 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
5158 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5159 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5160 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5162 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5163 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5164 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5165 if (VT
== MVT::f32
) {
5166 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5167 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5168 DAG
.getConstant(0, dl
, MVT::i32
));
5170 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5176 // Bitcast operand 1 to i32.
5177 if (SrcVT
== MVT::f64
)
5178 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5180 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5182 // Or in the signbit with integer operations.
5183 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5184 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5185 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5186 if (VT
== MVT::f32
) {
5187 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5188 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5189 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5190 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5193 // f64: Or the high part with signbit and then combine two parts.
5194 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5196 SDValue Lo
= Tmp0
.getValue(0);
5197 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5198 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5199 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5202 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5203 MachineFunction
&MF
= DAG
.getMachineFunction();
5204 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5205 MFI
.setReturnAddressIsTaken(true);
5207 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5210 EVT VT
= Op
.getValueType();
5212 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5214 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5215 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5216 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5217 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5218 MachinePointerInfo());
5221 // Return LR, which contains the return address. Mark it an implicit live-in.
5222 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5223 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5226 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5227 const ARMBaseRegisterInfo
&ARI
=
5228 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5229 MachineFunction
&MF
= DAG
.getMachineFunction();
5230 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5231 MFI
.setFrameAddressIsTaken(true);
5233 EVT VT
= Op
.getValueType();
5234 SDLoc
dl(Op
); // FIXME probably not meaningful
5235 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5236 unsigned FrameReg
= ARI
.getFrameRegister(MF
);
5237 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5239 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5240 MachinePointerInfo());
5244 // FIXME? Maybe this could be a TableGen attribute on some registers and
5245 // this table could be generated automatically from RegInfo.
5246 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5247 SelectionDAG
&DAG
) const {
5248 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5249 .Case("sp", ARM::SP
)
5253 report_fatal_error(Twine("Invalid register name \""
5254 + StringRef(RegName
) + "\"."));
5257 // Result is 64 bit value so split into two 32 bit values and return as a
5259 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5260 SelectionDAG
&DAG
) {
5263 // This function is only supposed to be called for i64 type destination.
5264 assert(N
->getValueType(0) == MVT::i64
5265 && "ExpandREAD_REGISTER called for non-i64 type result.");
5267 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5268 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5272 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5274 Results
.push_back(Read
.getOperand(0));
5277 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5278 /// When \p DstVT, the destination type of \p BC, is on the vector
5279 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5280 /// it might be possible to combine them, such that everything stays on the
5281 /// vector register bank.
5282 /// \p return The node that would replace \p BT, if the combine
5284 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5285 SelectionDAG
&DAG
) {
5286 SDValue Op
= BC
->getOperand(0);
5287 EVT DstVT
= BC
->getValueType(0);
5289 // The only vector instruction that can produce a scalar (remember,
5290 // since the bitcast was about to be turned into VMOVDRR, the source
5291 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5292 // Moreover, we can do this combine only if there is one use.
5293 // Finally, if the destination type is not a vector, there is not
5294 // much point on forcing everything on the vector bank.
5295 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5299 // If the index is not constant, we will introduce an additional
5300 // multiply that will stick.
5301 // Give up in that case.
5302 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5305 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5307 // Compute the new index.
5308 const APInt
&APIntIndex
= Index
->getAPIntValue();
5309 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5310 NewIndex
*= APIntIndex
;
5311 // Check if the new constant index fits into i32.
5312 if (NewIndex
.getBitWidth() > 32)
5315 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5316 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5318 SDValue ExtractSrc
= Op
.getOperand(0);
5319 EVT VecVT
= EVT::getVectorVT(
5320 *DAG
.getContext(), DstVT
.getScalarType(),
5321 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5322 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5323 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5324 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5327 /// ExpandBITCAST - If the target supports VFP, this function is called to
5328 /// expand a bit convert where either the source or destination type is i64 to
5329 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5330 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5331 /// vectors), since the legalizer won't know what to do with that.
5332 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5333 const ARMSubtarget
*Subtarget
) {
5334 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5336 SDValue Op
= N
->getOperand(0);
5338 // This function is only supposed to be called for i64 types, either as the
5339 // source or destination of the bit convert.
5340 EVT SrcVT
= Op
.getValueType();
5341 EVT DstVT
= N
->getValueType(0);
5342 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5344 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5345 // FullFP16: half values are passed in S-registers, and we don't
5346 // need any of the bitcast and moves:
5348 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5349 // t5: i32 = bitcast t2
5350 // t18: f16 = ARMISD::VMOVhr t5
5351 if (Op
.getOpcode() != ISD::CopyFromReg
||
5352 Op
.getValueType() != MVT::f32
)
5355 auto Move
= N
->use_begin();
5356 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5359 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5360 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5361 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5365 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5368 // SoftFP: read half-precision arguments:
5371 // t7: i16 = truncate t2 <~~~~ Op
5372 // t8: f16 = bitcast t7 <~~~~ N
5374 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5375 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5376 MVT::f16
, Op
.getOperand(0));
5381 // Half-precision return values
5382 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5386 // t11: f16 = fadd t8, t10
5387 // t12: i16 = bitcast t11 <~~~ SDNode N
5388 // t13: i32 = zero_extend t12
5389 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5390 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5392 // transform this into:
5394 // t20: i32 = ARMISD::VMOVrh t11
5395 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5397 auto ZeroExtend
= N
->use_begin();
5398 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5399 ZeroExtend
->getValueType(0) != MVT::i32
)
5402 auto Copy
= ZeroExtend
->use_begin();
5403 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5404 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5405 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5406 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5412 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5415 // Turn i64->f64 into VMOVDRR.
5416 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5417 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5418 // if we can combine the bitcast with its source.
5419 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5422 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5423 DAG
.getConstant(0, dl
, MVT::i32
));
5424 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5425 DAG
.getConstant(1, dl
, MVT::i32
));
5426 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5427 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5430 // Turn f64->i64 into VMOVRRD.
5431 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5433 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5434 SrcVT
.getVectorNumElements() > 1)
5435 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5436 DAG
.getVTList(MVT::i32
, MVT::i32
),
5437 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5439 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5440 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5441 // Merge the pieces into a single i64 value.
5442 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5448 /// getZeroVector - Returns a vector of specified type with all zero elements.
5449 /// Zero vectors are used to represent vector negation and in those cases
5450 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5451 /// not support i64 elements, so sometimes the zero vectors will need to be
5452 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5454 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5455 assert(VT
.isVector() && "Expected a vector type");
5456 // The canonical modified immediate encoding of a zero vector is....0!
5457 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5458 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5459 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5460 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5463 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5464 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5465 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5466 SelectionDAG
&DAG
) const {
5467 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5468 EVT VT
= Op
.getValueType();
5469 unsigned VTBits
= VT
.getSizeInBits();
5471 SDValue ShOpLo
= Op
.getOperand(0);
5472 SDValue ShOpHi
= Op
.getOperand(1);
5473 SDValue ShAmt
= Op
.getOperand(2);
5475 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5476 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5478 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5480 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5481 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5482 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5483 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5484 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5485 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5486 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5487 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5488 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5489 ISD::SETGE
, ARMcc
, DAG
, dl
);
5490 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5493 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5494 SDValue HiBigShift
= Opc
== ISD::SRA
5495 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5496 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5497 : DAG
.getConstant(0, dl
, VT
);
5498 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5499 ISD::SETGE
, ARMcc
, DAG
, dl
);
5500 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5503 SDValue Ops
[2] = { Lo
, Hi
};
5504 return DAG
.getMergeValues(Ops
, dl
);
5507 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5508 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5509 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5510 SelectionDAG
&DAG
) const {
5511 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5512 EVT VT
= Op
.getValueType();
5513 unsigned VTBits
= VT
.getSizeInBits();
5515 SDValue ShOpLo
= Op
.getOperand(0);
5516 SDValue ShOpHi
= Op
.getOperand(1);
5517 SDValue ShAmt
= Op
.getOperand(2);
5519 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5521 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5522 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5523 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5524 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5525 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5526 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5528 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5529 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5530 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5531 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5532 ISD::SETGE
, ARMcc
, DAG
, dl
);
5533 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5536 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5537 ISD::SETGE
, ARMcc
, DAG
, dl
);
5538 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5539 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5540 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5542 SDValue Ops
[2] = { Lo
, Hi
};
5543 return DAG
.getMergeValues(Ops
, dl
);
5546 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5547 SelectionDAG
&DAG
) const {
5548 // The rounding mode is in bits 23:22 of the FPSCR.
5549 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5550 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5551 // so that the shift + and get folded into a bitfield extract.
5553 SDValue Ops
[] = { DAG
.getEntryNode(),
5554 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5556 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5557 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5558 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5559 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5560 DAG
.getConstant(22, dl
, MVT::i32
));
5561 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5562 DAG
.getConstant(3, dl
, MVT::i32
));
5565 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5566 const ARMSubtarget
*ST
) {
5568 EVT VT
= N
->getValueType(0);
5569 if (VT
.isVector()) {
5570 assert(ST
->hasNEON());
5572 // Compute the least significant set bit: LSB = X & -X
5573 SDValue X
= N
->getOperand(0);
5574 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5575 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5577 EVT ElemTy
= VT
.getVectorElementType();
5579 if (ElemTy
== MVT::i8
) {
5580 // Compute with: cttz(x) = ctpop(lsb - 1)
5581 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5582 DAG
.getTargetConstant(1, dl
, ElemTy
));
5583 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5584 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5587 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5588 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5589 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5590 unsigned NumBits
= ElemTy
.getSizeInBits();
5591 SDValue WidthMinus1
=
5592 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5593 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5594 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5595 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5598 // Compute with: cttz(x) = ctpop(lsb - 1)
5602 if (ElemTy
== MVT::i64
) {
5603 // Load constant 0xffff'ffff'ffff'ffff to register.
5604 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5605 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5606 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5608 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5609 DAG
.getTargetConstant(1, dl
, ElemTy
));
5610 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5612 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5615 if (!ST
->hasV6T2Ops())
5618 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5619 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5622 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5623 const ARMSubtarget
*ST
) {
5624 EVT VT
= N
->getValueType(0);
5627 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5628 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5629 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5630 "Unexpected type for custom ctpop lowering");
5632 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5633 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5634 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5635 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5637 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5638 unsigned EltSize
= 8;
5639 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5640 while (EltSize
!= VT
.getScalarSizeInBits()) {
5641 SmallVector
<SDValue
, 8> Ops
;
5642 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5643 TLI
.getPointerTy(DAG
.getDataLayout())));
5648 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5649 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5655 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5656 const ARMSubtarget
*ST
) {
5657 EVT VT
= N
->getValueType(0);
5663 // Lower vector shifts on NEON to use VSHL.
5664 assert(ST
->hasNEON() && "unexpected vector shift");
5666 // Left shifts translate directly to the vshiftu intrinsic.
5667 if (N
->getOpcode() == ISD::SHL
)
5668 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
5669 DAG
.getConstant(Intrinsic::arm_neon_vshiftu
, dl
,
5671 N
->getOperand(0), N
->getOperand(1));
5673 assert((N
->getOpcode() == ISD::SRA
||
5674 N
->getOpcode() == ISD::SRL
) && "unexpected vector shift opcode");
5676 // NEON uses the same intrinsics for both left and right shifts. For
5677 // right shifts, the shift amounts are negative, so negate the vector of
5679 EVT ShiftVT
= N
->getOperand(1).getValueType();
5680 SDValue NegatedCount
= DAG
.getNode(ISD::SUB
, dl
, ShiftVT
,
5681 getZeroVector(ShiftVT
, DAG
, dl
),
5683 Intrinsic::ID vshiftInt
= (N
->getOpcode() == ISD::SRA
?
5684 Intrinsic::arm_neon_vshifts
:
5685 Intrinsic::arm_neon_vshiftu
);
5686 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
5687 DAG
.getConstant(vshiftInt
, dl
, MVT::i32
),
5688 N
->getOperand(0), NegatedCount
);
5691 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5692 const ARMSubtarget
*ST
) {
5693 EVT VT
= N
->getValueType(0);
5696 // We can get here for a node like i32 = ISD::SHL i32, i64
5700 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5701 N
->getOpcode() == ISD::SHL
) &&
5702 "Unknown shift to lower!");
5704 unsigned ShOpc
= N
->getOpcode();
5705 if (ST
->hasMVEIntegerOps()) {
5706 SDValue ShAmt
= N
->getOperand(1);
5707 unsigned ShPartsOpc
= ARMISD::LSLL
;
5708 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5710 // If the shift amount is greater than 32 then do the default optimisation
5711 if (Con
&& Con
->getZExtValue() > 32)
5714 // Extract the lower 32 bits of the shift amount if it's an i64
5715 if (ShAmt
->getValueType(0) == MVT::i64
)
5716 ShAmt
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, ShAmt
,
5717 DAG
.getConstant(0, dl
, MVT::i32
));
5719 if (ShOpc
== ISD::SRL
) {
5721 // There is no t2LSRLr instruction so negate and perform an lsll if the
5722 // shift amount is in a register, emulating a right shift.
5723 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5724 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
5726 // Else generate an lsrl on the immediate shift amount
5727 ShPartsOpc
= ARMISD::LSRL
;
5728 } else if (ShOpc
== ISD::SRA
)
5729 ShPartsOpc
= ARMISD::ASRL
;
5731 // Lower 32 bits of the destination/source
5732 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5733 DAG
.getConstant(0, dl
, MVT::i32
));
5734 // Upper 32 bits of the destination/source
5735 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5736 DAG
.getConstant(1, dl
, MVT::i32
));
5738 // Generate the shift operation as computed above
5739 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
5741 // The upper 32 bits come from the second return value of lsll
5742 Hi
= SDValue(Lo
.getNode(), 1);
5743 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5746 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5747 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
5750 // If we are in thumb mode, we don't have RRX.
5751 if (ST
->isThumb1Only())
5754 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5755 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5756 DAG
.getConstant(0, dl
, MVT::i32
));
5757 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5758 DAG
.getConstant(1, dl
, MVT::i32
));
5760 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5761 // captures the result into a carry flag.
5762 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
5763 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
5765 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5766 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
5768 // Merge the pieces into a single i64 value.
5769 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5772 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5773 SDValue TmpOp0
, TmpOp1
;
5774 bool Invert
= false;
5778 SDValue Op0
= Op
.getOperand(0);
5779 SDValue Op1
= Op
.getOperand(1);
5780 SDValue CC
= Op
.getOperand(2);
5781 EVT CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
5782 EVT VT
= Op
.getValueType();
5783 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5786 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
5787 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
5788 // Special-case integer 64-bit equality comparisons. They aren't legal,
5789 // but they can be lowered with a few vector instructions.
5790 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
5791 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
5792 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
5793 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
5794 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
5795 DAG
.getCondCode(ISD::SETEQ
));
5796 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
5797 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
5798 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
5799 if (SetCCOpcode
== ISD::SETNE
)
5800 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
5801 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
5805 if (CmpVT
.getVectorElementType() == MVT::i64
)
5806 // 64-bit comparisons are not legal in general.
5809 if (Op1
.getValueType().isFloatingPoint()) {
5810 switch (SetCCOpcode
) {
5811 default: llvm_unreachable("Illegal FP comparison");
5813 case ISD::SETNE
: Invert
= true; LLVM_FALLTHROUGH
;
5815 case ISD::SETEQ
: Opc
= ARMISD::VCEQ
; break;
5817 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
5819 case ISD::SETGT
: Opc
= ARMISD::VCGT
; break;
5821 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
5823 case ISD::SETGE
: Opc
= ARMISD::VCGE
; break;
5824 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
5825 case ISD::SETULE
: Invert
= true; Opc
= ARMISD::VCGT
; break;
5826 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
5827 case ISD::SETULT
: Invert
= true; Opc
= ARMISD::VCGE
; break;
5828 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
5830 // Expand this to (OLT | OGT).
5834 Op0
= DAG
.getNode(ARMISD::VCGT
, dl
, CmpVT
, TmpOp1
, TmpOp0
);
5835 Op1
= DAG
.getNode(ARMISD::VCGT
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
5841 // Expand this to (OLT | OGE).
5845 Op0
= DAG
.getNode(ARMISD::VCGT
, dl
, CmpVT
, TmpOp1
, TmpOp0
);
5846 Op1
= DAG
.getNode(ARMISD::VCGE
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
5850 // Integer comparisons.
5851 switch (SetCCOpcode
) {
5852 default: llvm_unreachable("Illegal integer comparison");
5853 case ISD::SETNE
: Invert
= true; LLVM_FALLTHROUGH
;
5854 case ISD::SETEQ
: Opc
= ARMISD::VCEQ
; break;
5855 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
5856 case ISD::SETGT
: Opc
= ARMISD::VCGT
; break;
5857 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
5858 case ISD::SETGE
: Opc
= ARMISD::VCGE
; break;
5859 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
5860 case ISD::SETUGT
: Opc
= ARMISD::VCGTU
; break;
5861 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
5862 case ISD::SETUGE
: Opc
= ARMISD::VCGEU
; break;
5865 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5866 if (Opc
== ARMISD::VCEQ
) {
5868 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
5870 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
5873 // Ignore bitconvert.
5874 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
5875 AndOp
= AndOp
.getOperand(0);
5877 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
5879 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
5880 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
5887 std::swap(Op0
, Op1
);
5889 // If one of the operands is a constant vector zero, attempt to fold the
5890 // comparison to a specialized compare-against-zero form.
5892 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
5894 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
5895 if (Opc
== ARMISD::VCGE
)
5896 Opc
= ARMISD::VCLEZ
;
5897 else if (Opc
== ARMISD::VCGT
)
5898 Opc
= ARMISD::VCLTZ
;
5903 if (SingleOp
.getNode()) {
5906 Result
= DAG
.getNode(ARMISD::VCEQZ
, dl
, CmpVT
, SingleOp
); break;
5908 Result
= DAG
.getNode(ARMISD::VCGEZ
, dl
, CmpVT
, SingleOp
); break;
5910 Result
= DAG
.getNode(ARMISD::VCLEZ
, dl
, CmpVT
, SingleOp
); break;
5912 Result
= DAG
.getNode(ARMISD::VCGTZ
, dl
, CmpVT
, SingleOp
); break;
5914 Result
= DAG
.getNode(ARMISD::VCLTZ
, dl
, CmpVT
, SingleOp
); break;
5916 Result
= DAG
.getNode(Opc
, dl
, CmpVT
, Op0
, Op1
);
5919 Result
= DAG
.getNode(Opc
, dl
, CmpVT
, Op0
, Op1
);
5922 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
5925 Result
= DAG
.getNOT(dl
, Result
, VT
);
5930 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
5931 SDValue LHS
= Op
.getOperand(0);
5932 SDValue RHS
= Op
.getOperand(1);
5933 SDValue Carry
= Op
.getOperand(2);
5934 SDValue Cond
= Op
.getOperand(3);
5937 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
5939 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
5940 // have to invert the carry first.
5941 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
5942 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
5943 // This converts the boolean value carry into the carry flag.
5944 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
5946 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
5947 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
5949 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
5950 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
5951 SDValue ARMcc
= DAG
.getConstant(
5952 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
5953 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5954 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
5955 Cmp
.getValue(1), SDValue());
5956 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
5957 CCR
, Chain
.getValue(1));
5960 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5961 /// valid vector constant for a NEON or MVE instruction with a "modified immediate"
5962 /// operand (e.g., VMOV). If so, return the encoded value.
5963 static SDValue
isNEONModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
5964 unsigned SplatBitSize
, SelectionDAG
&DAG
,
5965 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
5966 NEONModImmType type
) {
5967 unsigned OpCmode
, Imm
;
5969 // SplatBitSize is set to the smallest size that splats the vector, so a
5970 // zero vector will always have SplatBitSize == 8. However, NEON modified
5971 // immediate instructions others than VMOV do not support the 8-bit encoding
5972 // of a zero vector, and the default encoding of zero is supposed to be the
5977 switch (SplatBitSize
) {
5979 if (type
!= VMOVModImm
)
5981 // Any 1-byte value is OK. Op=0, Cmode=1110.
5982 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
5985 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
5989 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5990 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
5991 if ((SplatBits
& ~0xff) == 0) {
5992 // Value = 0x00nn: Op=x, Cmode=100x.
5997 if ((SplatBits
& ~0xff00) == 0) {
5998 // Value = 0xnn00: Op=x, Cmode=101x.
6000 Imm
= SplatBits
>> 8;
6006 // NEON's 32-bit VMOV supports splat values where:
6007 // * only one byte is nonzero, or
6008 // * the least significant byte is 0xff and the second byte is nonzero, or
6009 // * the least significant 2 bytes are 0xff and the third is nonzero.
6010 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6011 if ((SplatBits
& ~0xff) == 0) {
6012 // Value = 0x000000nn: Op=x, Cmode=000x.
6017 if ((SplatBits
& ~0xff00) == 0) {
6018 // Value = 0x0000nn00: Op=x, Cmode=001x.
6020 Imm
= SplatBits
>> 8;
6023 if ((SplatBits
& ~0xff0000) == 0) {
6024 // Value = 0x00nn0000: Op=x, Cmode=010x.
6026 Imm
= SplatBits
>> 16;
6029 if ((SplatBits
& ~0xff000000) == 0) {
6030 // Value = 0xnn000000: Op=x, Cmode=011x.
6032 Imm
= SplatBits
>> 24;
6036 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6037 if (type
== OtherModImm
) return SDValue();
6039 if ((SplatBits
& ~0xffff) == 0 &&
6040 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6041 // Value = 0x0000nnff: Op=x, Cmode=1100.
6043 Imm
= SplatBits
>> 8;
6047 // cmode == 0b1101 is not supported for MVE VMVN
6048 if (type
== MVEVMVNModImm
)
6051 if ((SplatBits
& ~0xffffff) == 0 &&
6052 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6053 // Value = 0x00nnffff: Op=x, Cmode=1101.
6055 Imm
= SplatBits
>> 16;
6059 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6060 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6061 // VMOV.I32. A (very) minor optimization would be to replicate the value
6062 // and fall through here to test for a valid 64-bit splat. But, then the
6063 // caller would also need to check and handle the change in size.
6067 if (type
!= VMOVModImm
)
6069 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6070 uint64_t BitMask
= 0xff;
6072 unsigned ImmMask
= 1;
6074 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6075 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6078 } else if ((SplatBits
& BitMask
) != 0) {
6085 if (DAG
.getDataLayout().isBigEndian())
6086 // swap higher and lower 32 bit word
6087 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6089 // Op=1, Cmode=1110.
6091 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6096 llvm_unreachable("unexpected size for isNEONModifiedImm");
6099 unsigned EncodedVal
= ARM_AM::createNEONModImm(OpCmode
, Imm
);
6100 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6103 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6104 const ARMSubtarget
*ST
) const {
6105 EVT VT
= Op
.getValueType();
6106 bool IsDouble
= (VT
== MVT::f64
);
6107 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6108 const APFloat
&FPVal
= CFP
->getValueAPF();
6110 // Prevent floating-point constants from using literal loads
6111 // when execute-only is enabled.
6112 if (ST
->genExecuteOnly()) {
6113 // If we can represent the constant as an immediate, don't lower it
6114 if (isFPImmLegal(FPVal
, VT
))
6116 // Otherwise, construct as integer, and move to float register
6117 APInt INTVal
= FPVal
.bitcastToAPInt();
6119 switch (VT
.getSimpleVT().SimpleTy
) {
6121 llvm_unreachable("Unknown floating point type!");
6124 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6125 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6126 if (!ST
->isLittle())
6128 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6131 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6132 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6136 if (!ST
->hasVFP3Base())
6139 // Use the default (constant pool) lowering for double constants when we have
6141 if (IsDouble
&& !Subtarget
->hasFP64())
6144 // Try splatting with a VMOV.f32...
6145 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6148 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6149 // We have code in place to select a valid ConstantFP already, no need to
6154 // It's a float and we are trying to use NEON operations where
6155 // possible. Lower it to a splat followed by an extract.
6157 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6158 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6160 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6161 DAG
.getConstant(0, DL
, MVT::i32
));
6164 // The rest of our options are NEON only, make sure that's allowed before
6166 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6170 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6172 // It wouldn't really be worth bothering for doubles except for one very
6173 // important value, which does happen to match: 0.0. So make sure we don't do
6175 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6178 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6179 SDValue NewVal
= isNEONModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6180 VMovVT
, false, VMOVModImm
);
6181 if (NewVal
!= SDValue()) {
6183 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6186 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6188 // It's a float: cast and extract a vector element.
6189 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6191 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6192 DAG
.getConstant(0, DL
, MVT::i32
));
6195 // Finally, try a VMVN.i32
6196 NewVal
= isNEONModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6198 if (NewVal
!= SDValue()) {
6200 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6203 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6205 // It's a float: cast and extract a vector element.
6206 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6208 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6209 DAG
.getConstant(0, DL
, MVT::i32
));
6215 // check if an VEXT instruction can handle the shuffle mask when the
6216 // vector sources of the shuffle are the same.
6217 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6218 unsigned NumElts
= VT
.getVectorNumElements();
6220 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6226 // If this is a VEXT shuffle, the immediate value is the index of the first
6227 // element. The other shuffle indices must be the successive elements after
6229 unsigned ExpectedElt
= Imm
;
6230 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6231 // Increment the expected index. If it wraps around, just follow it
6232 // back to index zero and keep going.
6234 if (ExpectedElt
== NumElts
)
6237 if (M
[i
] < 0) continue; // ignore UNDEF indices
6238 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6245 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6246 bool &ReverseVEXT
, unsigned &Imm
) {
6247 unsigned NumElts
= VT
.getVectorNumElements();
6248 ReverseVEXT
= false;
6250 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6256 // If this is a VEXT shuffle, the immediate value is the index of the first
6257 // element. The other shuffle indices must be the successive elements after
6259 unsigned ExpectedElt
= Imm
;
6260 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6261 // Increment the expected index. If it wraps around, it may still be
6262 // a VEXT but the source vectors must be swapped.
6264 if (ExpectedElt
== NumElts
* 2) {
6269 if (M
[i
] < 0) continue; // ignore UNDEF indices
6270 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6274 // Adjust the index value if the source operands will be swapped.
6281 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6282 /// instruction with the specified blocksize. (The order of the elements
6283 /// within each block of the vector is reversed.)
6284 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6285 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6286 "Only possible block sizes for VREV are: 16, 32, 64");
6288 unsigned EltSz
= VT
.getScalarSizeInBits();
6292 unsigned NumElts
= VT
.getVectorNumElements();
6293 unsigned BlockElts
= M
[0] + 1;
6294 // If the first shuffle index is UNDEF, be optimistic.
6296 BlockElts
= BlockSize
/ EltSz
;
6298 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6301 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6302 if (M
[i
] < 0) continue; // ignore UNDEF indices
6303 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6310 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6311 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6312 // range, then 0 is placed into the resulting vector. So pretty much any mask
6313 // of 8 elements can work here.
6314 return VT
== MVT::v8i8
&& M
.size() == 8;
6317 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6319 if (Mask
.size() == Elements
* 2)
6320 return Index
/ Elements
;
6321 return Mask
[Index
] == 0 ? 0 : 1;
6324 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6325 // checking that pairs of elements in the shuffle mask represent the same index
6326 // in each vector, incrementing the expected index by 2 at each step.
6327 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6328 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6330 // WhichResult gives the offset for each element in the mask based on which
6331 // of the two results it belongs to.
6333 // The transpose can be represented either as:
6334 // result1 = shufflevector v1, v2, result1_shuffle_mask
6335 // result2 = shufflevector v1, v2, result2_shuffle_mask
6336 // where v1/v2 and the shuffle masks have the same number of elements
6337 // (here WhichResult (see below) indicates which result is being checked)
6340 // results = shufflevector v1, v2, shuffle_mask
6341 // where both results are returned in one vector and the shuffle mask has twice
6342 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6343 // want to check the low half and high half of the shuffle mask as if it were
6345 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6346 unsigned EltSz
= VT
.getScalarSizeInBits();
6350 unsigned NumElts
= VT
.getVectorNumElements();
6351 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6354 // If the mask is twice as long as the input vector then we need to check the
6355 // upper and lower parts of the mask with a matching value for WhichResult
6356 // FIXME: A mask with only even values will be rejected in case the first
6357 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6358 // M[0] is used to determine WhichResult
6359 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6360 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6361 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6362 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6363 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6368 if (M
.size() == NumElts
*2)
6374 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6375 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6376 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6377 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6378 unsigned EltSz
= VT
.getScalarSizeInBits();
6382 unsigned NumElts
= VT
.getVectorNumElements();
6383 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6386 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6387 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6388 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6389 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6390 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6395 if (M
.size() == NumElts
*2)
6401 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6402 // that the mask elements are either all even and in steps of size 2 or all odd
6403 // and in steps of size 2.
6404 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6405 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6407 // Requires similar checks to that of isVTRNMask with
6408 // respect the how results are returned.
6409 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6410 unsigned EltSz
= VT
.getScalarSizeInBits();
6414 unsigned NumElts
= VT
.getVectorNumElements();
6415 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6418 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6419 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6420 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6421 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6426 if (M
.size() == NumElts
*2)
6429 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6430 if (VT
.is64BitVector() && EltSz
== 32)
6436 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6437 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6438 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6439 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6440 unsigned EltSz
= VT
.getScalarSizeInBits();
6444 unsigned NumElts
= VT
.getVectorNumElements();
6445 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6448 unsigned Half
= NumElts
/ 2;
6449 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6450 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6451 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6452 unsigned Idx
= WhichResult
;
6453 for (unsigned k
= 0; k
< Half
; ++k
) {
6454 int MIdx
= M
[i
+ j
+ k
];
6455 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6462 if (M
.size() == NumElts
*2)
6465 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6466 if (VT
.is64BitVector() && EltSz
== 32)
6472 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6473 // that pairs of elements of the shufflemask represent the same index in each
6474 // vector incrementing sequentially through the vectors.
6475 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6476 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6478 // Requires similar checks to that of isVTRNMask with respect the how results
6480 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6481 unsigned EltSz
= VT
.getScalarSizeInBits();
6485 unsigned NumElts
= VT
.getVectorNumElements();
6486 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6489 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6490 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6491 unsigned Idx
= WhichResult
* NumElts
/ 2;
6492 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6493 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6494 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6500 if (M
.size() == NumElts
*2)
6503 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6504 if (VT
.is64BitVector() && EltSz
== 32)
6510 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6511 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6512 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6513 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6514 unsigned EltSz
= VT
.getScalarSizeInBits();
6518 unsigned NumElts
= VT
.getVectorNumElements();
6519 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6522 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6523 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6524 unsigned Idx
= WhichResult
* NumElts
/ 2;
6525 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6526 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6527 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6533 if (M
.size() == NumElts
*2)
6536 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6537 if (VT
.is64BitVector() && EltSz
== 32)
6543 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6544 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6545 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6546 unsigned &WhichResult
,
6549 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6550 return ARMISD::VTRN
;
6551 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6552 return ARMISD::VUZP
;
6553 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6554 return ARMISD::VZIP
;
6557 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6558 return ARMISD::VTRN
;
6559 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6560 return ARMISD::VUZP
;
6561 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6562 return ARMISD::VZIP
;
6567 /// \return true if this is a reverse operation on an vector.
6568 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6569 unsigned NumElts
= VT
.getVectorNumElements();
6570 // Make sure the mask has the right size.
6571 if (NumElts
!= M
.size())
6574 // Look for <15, ..., 3, -1, 1, 0>.
6575 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6576 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6582 // If N is an integer constant that can be moved into a register in one
6583 // instruction, return an SDValue of such a constant (will become a MOV
6584 // instruction). Otherwise return null.
6585 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6586 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6588 if (!isa
<ConstantSDNode
>(N
))
6590 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6592 if (ST
->isThumb1Only()) {
6593 if (Val
<= 255 || ~Val
<= 255)
6594 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6596 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6597 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6602 // If this is a case we can't handle, return null and let the default
6603 // expansion code take care of it.
6604 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6605 const ARMSubtarget
*ST
) const {
6606 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6608 EVT VT
= Op
.getValueType();
6610 APInt SplatBits
, SplatUndef
;
6611 unsigned SplatBitSize
;
6613 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6614 if (SplatUndef
.isAllOnesValue())
6615 return DAG
.getUNDEF(VT
);
6617 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6618 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6619 // Check if an immediate VMOV works.
6621 SDValue Val
= isNEONModifiedImm(SplatBits
.getZExtValue(),
6622 SplatUndef
.getZExtValue(), SplatBitSize
,
6623 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6626 if (Val
.getNode()) {
6627 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6628 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6631 // Try an immediate VMVN.
6632 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6633 Val
= isNEONModifiedImm(
6634 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6635 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6636 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6637 if (Val
.getNode()) {
6638 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
6639 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6642 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6643 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
6644 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
6646 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
6647 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
6653 // Scan through the operands to see if only one value is used.
6655 // As an optimisation, even if more than one value is used it may be more
6656 // profitable to splat with one value then change some lanes.
6658 // Heuristically we decide to do this if the vector has a "dominant" value,
6659 // defined as splatted to more than half of the lanes.
6660 unsigned NumElts
= VT
.getVectorNumElements();
6661 bool isOnlyLowElement
= true;
6662 bool usesOnlyOneValue
= true;
6663 bool hasDominantValue
= false;
6664 bool isConstant
= true;
6666 // Map of the number of times a particular SDValue appears in the
6668 DenseMap
<SDValue
, unsigned> ValueCounts
;
6670 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6671 SDValue V
= Op
.getOperand(i
);
6675 isOnlyLowElement
= false;
6676 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
6679 ValueCounts
.insert(std::make_pair(V
, 0));
6680 unsigned &Count
= ValueCounts
[V
];
6682 // Is this value dominant? (takes up more than half of the lanes)
6683 if (++Count
> (NumElts
/ 2)) {
6684 hasDominantValue
= true;
6688 if (ValueCounts
.size() != 1)
6689 usesOnlyOneValue
= false;
6690 if (!Value
.getNode() && !ValueCounts
.empty())
6691 Value
= ValueCounts
.begin()->first
;
6693 if (ValueCounts
.empty())
6694 return DAG
.getUNDEF(VT
);
6696 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6697 // Keep going if we are hitting this case.
6698 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
6699 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
6701 unsigned EltSize
= VT
.getScalarSizeInBits();
6703 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6704 // i32 and try again.
6705 if (hasDominantValue
&& EltSize
<= 32) {
6709 // If we are VDUPing a value that comes directly from a vector, that will
6710 // cause an unnecessary move to and from a GPR, where instead we could
6711 // just use VDUPLANE. We can only do this if the lane being extracted
6712 // is at a constant index, as the VDUP from lane instructions only have
6713 // constant-index forms.
6714 ConstantSDNode
*constIndex
;
6715 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
6716 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
6717 // We need to create a new undef vector to use for the VDUPLANE if the
6718 // size of the vector from which we get the value is different than the
6719 // size of the vector that we need to create. We will insert the element
6720 // such that the register coalescer will remove unnecessary copies.
6721 if (VT
!= Value
->getOperand(0).getValueType()) {
6722 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
6723 VT
.getVectorNumElements();
6724 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6725 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
6726 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
6727 DAG
.getConstant(index
, dl
, MVT::i32
));
6729 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6730 Value
->getOperand(0), Value
->getOperand(1));
6732 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
6734 if (!usesOnlyOneValue
) {
6735 // The dominant value was splatted as 'N', but we now have to insert
6736 // all differing elements.
6737 for (unsigned I
= 0; I
< NumElts
; ++I
) {
6738 if (Op
.getOperand(I
) == Value
)
6740 SmallVector
<SDValue
, 3> Ops
;
6742 Ops
.push_back(Op
.getOperand(I
));
6743 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
6744 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
6749 if (VT
.getVectorElementType().isFloatingPoint()) {
6750 SmallVector
<SDValue
, 8> Ops
;
6751 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
6752 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
6753 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
6754 for (unsigned i
= 0; i
< NumElts
; ++i
)
6755 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
6757 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
6758 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
6759 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
6761 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
6763 if (usesOnlyOneValue
) {
6764 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
6765 if (isConstant
&& Val
.getNode())
6766 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
6770 // If all elements are constants and the case above didn't get hit, fall back
6771 // to the default expansion, which will generate a load from the constant
6776 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6778 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
6779 if (shuffle
!= SDValue())
6783 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
6784 // If we haven't found an efficient lowering, try splitting a 128-bit vector
6785 // into two 64-bit vectors; we might discover a better way to lower it.
6786 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
6787 EVT ExtVT
= VT
.getVectorElementType();
6788 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
6790 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
6791 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
6792 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
6793 SDValue Upper
= DAG
.getBuildVector(
6794 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
6795 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
6796 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
6798 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
6801 // Vectors with 32- or 64-bit elements can be built by directly assigning
6802 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
6803 // will be legalized.
6804 if (EltSize
>= 32) {
6805 // Do the expansion with floating-point types, since that is what the VFP
6806 // registers are defined to use, and since i64 is not legal.
6807 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
6808 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
6809 SmallVector
<SDValue
, 8> Ops
;
6810 for (unsigned i
= 0; i
< NumElts
; ++i
)
6811 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
6812 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
6813 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
6816 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6817 // know the default expansion would otherwise fall back on something even
6818 // worse. For a vector with one or two non-undef values, that's
6819 // scalar_to_vector for the elements followed by a shuffle (provided the
6820 // shuffle is valid for the target) and materialization element by element
6821 // on the stack followed by a load for everything else.
6822 if (!isConstant
&& !usesOnlyOneValue
) {
6823 SDValue Vec
= DAG
.getUNDEF(VT
);
6824 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
6825 SDValue V
= Op
.getOperand(i
);
6828 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
6829 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
6837 // Gather data to see if the operation can be modelled as a
6838 // shuffle in combination with VEXTs.
6839 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
6840 SelectionDAG
&DAG
) const {
6841 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
6843 EVT VT
= Op
.getValueType();
6844 unsigned NumElts
= VT
.getVectorNumElements();
6846 struct ShuffleSourceInfo
{
6848 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
6849 unsigned MaxElt
= 0;
6851 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6852 // be compatible with the shuffle we intend to construct. As a result
6853 // ShuffleVec will be some sliding window into the original Vec.
6856 // Code should guarantee that element i in Vec starts at element "WindowBase
6857 // + i * WindowScale in ShuffleVec".
6859 int WindowScale
= 1;
6861 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
6863 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
6866 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6868 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
6869 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6870 SDValue V
= Op
.getOperand(i
);
6873 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
6874 // A shuffle can only come from building a vector from various
6875 // elements of other vectors.
6877 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
6878 // Furthermore, shuffles require a constant mask, whereas extractelts
6879 // accept variable indices.
6883 // Add this element source to the list if it's not already there.
6884 SDValue SourceVec
= V
.getOperand(0);
6885 auto Source
= llvm::find(Sources
, SourceVec
);
6886 if (Source
== Sources
.end())
6887 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
6889 // Update the minimum and maximum lane number seen.
6890 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
6891 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
6892 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
6895 // Currently only do something sane when at most two source vectors
6897 if (Sources
.size() > 2)
6900 // Find out the smallest element size among result and two sources, and use
6901 // it as element size to build the shuffle_vector.
6902 EVT SmallestEltTy
= VT
.getVectorElementType();
6903 for (auto &Source
: Sources
) {
6904 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
6905 if (SrcEltTy
.bitsLT(SmallestEltTy
))
6906 SmallestEltTy
= SrcEltTy
;
6908 unsigned ResMultiplier
=
6909 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
6910 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6911 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
6913 // If the source vector is too wide or too narrow, we may nevertheless be able
6914 // to construct a compatible shuffle either by concatenating it with UNDEF or
6915 // extracting a suitable range of elements.
6916 for (auto &Src
: Sources
) {
6917 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
6919 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
6922 // This stage of the search produces a source with the same element type as
6923 // the original, but with a total width matching the BUILD_VECTOR output.
6924 EVT EltVT
= SrcVT
.getVectorElementType();
6925 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
6926 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
6928 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
6929 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
6931 // We can pad out the smaller vector for free, so if it's part of a
6934 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
6935 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
6939 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
6942 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
6943 // Span too large for a VEXT to cope
6947 if (Src
.MinElt
>= NumSrcElts
) {
6948 // The extraction can just take the second half
6950 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6951 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
6952 Src
.WindowBase
= -NumSrcElts
;
6953 } else if (Src
.MaxElt
< NumSrcElts
) {
6954 // The extraction can just take the first half
6956 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6957 DAG
.getConstant(0, dl
, MVT::i32
));
6959 // An actual VEXT is needed
6961 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6962 DAG
.getConstant(0, dl
, MVT::i32
));
6964 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6965 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
6967 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
6969 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
6970 Src
.WindowBase
= -Src
.MinElt
;
6974 // Another possible incompatibility occurs from the vector element types. We
6975 // can fix this by bitcasting the source vectors to the same type we intend
6977 for (auto &Src
: Sources
) {
6978 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
6979 if (SrcEltTy
== SmallestEltTy
)
6981 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
6982 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
6983 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6984 Src
.WindowBase
*= Src
.WindowScale
;
6987 // Final sanity check before we try to actually produce a shuffle.
6988 LLVM_DEBUG(for (auto Src
6990 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
6992 // The stars all align, our next step is to produce the mask for the shuffle.
6993 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
6994 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
6995 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
6996 SDValue Entry
= Op
.getOperand(i
);
6997 if (Entry
.isUndef())
7000 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7001 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7003 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7004 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7006 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7007 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7008 VT
.getScalarSizeInBits());
7009 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7011 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7012 // starting at the appropriate offset.
7013 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7015 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7016 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7017 for (int j
= 0; j
< LanesDefined
; ++j
)
7018 LaneMask
[j
] = ExtractBase
+ j
;
7021 // Final check before we try to produce nonsense...
7022 if (!isShuffleMaskLegal(Mask
, ShuffleVT
))
7025 // We can't handle more than two sources. This should have already
7026 // been checked before this point.
7027 assert(Sources
.size() <= 2 && "Too many sources!");
7029 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7030 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7031 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7033 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7034 ShuffleOps
[1], Mask
);
7035 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7038 enum ShuffleOpCodes
{
7039 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7048 OP_VUZPL
, // VUZP, left result
7049 OP_VUZPR
, // VUZP, right result
7050 OP_VZIPL
, // VZIP, left result
7051 OP_VZIPR
, // VZIP, right result
7052 OP_VTRNL
, // VTRN, left result
7053 OP_VTRNR
// VTRN, right result
7056 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7057 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7070 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7071 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7072 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7073 /// are assumed to be legal.
7074 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7075 if (VT
.getVectorNumElements() == 4 &&
7076 (VT
.is128BitVector() || VT
.is64BitVector())) {
7077 unsigned PFIndexes
[4];
7078 for (unsigned i
= 0; i
!= 4; ++i
) {
7082 PFIndexes
[i
] = M
[i
];
7085 // Compute the index in the perfect shuffle table.
7086 unsigned PFTableIndex
=
7087 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7088 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7089 unsigned Cost
= (PFEntry
>> 30);
7091 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7095 bool ReverseVEXT
, isV_UNDEF
;
7096 unsigned Imm
, WhichResult
;
7098 unsigned EltSize
= VT
.getScalarSizeInBits();
7099 if (EltSize
>= 32 ||
7100 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7101 isVREVMask(M
, VT
, 64) ||
7102 isVREVMask(M
, VT
, 32) ||
7103 isVREVMask(M
, VT
, 16))
7105 else if (Subtarget
->hasNEON() &&
7106 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7107 isVTBLMask(M
, VT
) ||
7108 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7110 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7111 isReverseMask(M
, VT
))
7117 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7118 /// the specified operations to build the shuffle.
7119 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7120 SDValue RHS
, SelectionDAG
&DAG
,
7122 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7123 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7124 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7126 if (OpNum
== OP_COPY
) {
7127 if (LHSID
== (1*9+2)*9+3) return LHS
;
7128 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7132 SDValue OpLHS
, OpRHS
;
7133 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7134 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7135 EVT VT
= OpLHS
.getValueType();
7138 default: llvm_unreachable("Unknown shuffle opcode!");
7140 // VREV divides the vector in half and swaps within the half.
7141 if (VT
.getVectorElementType() == MVT::i32
||
7142 VT
.getVectorElementType() == MVT::f32
)
7143 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7144 // vrev <4 x i16> -> VREV32
7145 if (VT
.getVectorElementType() == MVT::i16
)
7146 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7147 // vrev <4 x i8> -> VREV16
7148 assert(VT
.getVectorElementType() == MVT::i8
);
7149 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7154 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7155 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7159 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7161 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7164 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7165 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7168 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7169 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7172 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7173 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7177 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7178 ArrayRef
<int> ShuffleMask
,
7179 SelectionDAG
&DAG
) {
7180 // Check to see if we can use the VTBL instruction.
7181 SDValue V1
= Op
.getOperand(0);
7182 SDValue V2
= Op
.getOperand(1);
7185 SmallVector
<SDValue
, 8> VTBLMask
;
7186 for (ArrayRef
<int>::iterator
7187 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7188 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7190 if (V2
.getNode()->isUndef())
7191 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7192 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7194 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7195 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7198 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7199 SelectionDAG
&DAG
) {
7201 SDValue OpLHS
= Op
.getOperand(0);
7202 EVT VT
= OpLHS
.getValueType();
7204 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7205 "Expect an v8i16/v16i8 type");
7206 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7207 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7208 // extract the first 8 bytes into the top double word and the last 8 bytes
7209 // into the bottom double word. The v8i16 case is similar.
7210 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7211 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7212 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7215 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7216 const ARMSubtarget
*ST
) {
7217 SDValue V1
= Op
.getOperand(0);
7218 SDValue V2
= Op
.getOperand(1);
7220 EVT VT
= Op
.getValueType();
7221 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7223 // Convert shuffles that are directly supported on NEON to target-specific
7224 // DAG nodes, instead of keeping them as shuffles and matching them again
7225 // during code selection. This is more efficient and avoids the possibility
7226 // of inconsistencies between legalization and selection.
7227 // FIXME: floating-point vectors should be canonicalized to integer vectors
7228 // of the same time so that they get CSEd properly.
7229 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7231 unsigned EltSize
= VT
.getScalarSizeInBits();
7232 if (EltSize
<= 32) {
7233 if (SVN
->isSplat()) {
7234 int Lane
= SVN
->getSplatIndex();
7235 // If this is undef splat, generate it via "just" vdup, if possible.
7236 if (Lane
== -1) Lane
= 0;
7238 // Test if V1 is a SCALAR_TO_VECTOR.
7239 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7240 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7242 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7243 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7245 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7246 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7247 bool IsScalarToVector
= true;
7248 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7249 if (!V1
.getOperand(i
).isUndef()) {
7250 IsScalarToVector
= false;
7253 if (IsScalarToVector
)
7254 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7256 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7257 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7260 bool ReverseVEXT
= false;
7262 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7265 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7266 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7269 if (isVREVMask(ShuffleMask
, VT
, 64))
7270 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7271 if (isVREVMask(ShuffleMask
, VT
, 32))
7272 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7273 if (isVREVMask(ShuffleMask
, VT
, 16))
7274 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7276 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7277 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7278 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7281 // Check for Neon shuffles that modify both input vectors in place.
7282 // If both results are used, i.e., if there are two shuffles with the same
7283 // source operands and with masks corresponding to both results of one of
7284 // these operations, DAG memoization will ensure that a single node is
7285 // used for both shuffles.
7286 unsigned WhichResult
= 0;
7287 bool isV_UNDEF
= false;
7288 if (ST
->hasNEON()) {
7289 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7290 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7293 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7294 .getValue(WhichResult
);
7298 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7299 // shuffles that produce a result larger than their operands with:
7300 // shuffle(concat(v1, undef), concat(v2, undef))
7302 // shuffle(concat(v1, v2), undef)
7303 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7305 // This is useful in the general case, but there are special cases where
7306 // native shuffles produce larger results: the two-result ops.
7308 // Look through the concat when lowering them:
7309 // shuffle(concat(v1, v2), undef)
7311 // concat(VZIP(v1, v2):0, :1)
7313 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7314 SDValue SubV1
= V1
->getOperand(0);
7315 SDValue SubV2
= V1
->getOperand(1);
7316 EVT SubVT
= SubV1
.getValueType();
7318 // We expect these to have been canonicalized to -1.
7319 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7320 return i
< (int)VT
.getVectorNumElements();
7321 }) && "Unexpected shuffle index into UNDEF operand!");
7323 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7324 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7327 assert((WhichResult
== 0) &&
7328 "In-place shuffle of concat can only have one result!");
7329 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7331 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7337 // If the shuffle is not directly supported and it has 4 elements, use
7338 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7339 unsigned NumElts
= VT
.getVectorNumElements();
7341 unsigned PFIndexes
[4];
7342 for (unsigned i
= 0; i
!= 4; ++i
) {
7343 if (ShuffleMask
[i
] < 0)
7346 PFIndexes
[i
] = ShuffleMask
[i
];
7349 // Compute the index in the perfect shuffle table.
7350 unsigned PFTableIndex
=
7351 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7352 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7353 unsigned Cost
= (PFEntry
>> 30);
7357 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7358 else if (isLegalMVEShuffleOp(PFEntry
)) {
7359 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7360 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7361 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7362 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7363 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7364 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7369 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7370 if (EltSize
>= 32) {
7371 // Do the expansion with floating-point types, since that is what the VFP
7372 // registers are defined to use, and since i64 is not legal.
7373 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7374 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7375 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7376 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7377 SmallVector
<SDValue
, 8> Ops
;
7378 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7379 if (ShuffleMask
[i
] < 0)
7380 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7382 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7383 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7384 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7387 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7388 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7391 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7392 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7394 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7395 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7401 SDValue
ARMTargetLowering::
7402 LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const {
7403 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7404 SDValue Lane
= Op
.getOperand(2);
7405 if (!isa
<ConstantSDNode
>(Lane
))
7408 SDValue Elt
= Op
.getOperand(1);
7409 EVT EltVT
= Elt
.getValueType();
7410 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7411 TargetLowering::TypePromoteFloat
) {
7412 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7413 // but the type system will try to do that if we don't intervene.
7414 // Reinterpret any such vector-element insertion as one with the
7415 // corresponding integer types.
7419 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7420 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7421 TargetLowering::TypePromoteFloat
);
7423 SDValue VecIn
= Op
.getOperand(0);
7424 EVT VecVT
= VecIn
.getValueType();
7425 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7426 VecVT
.getVectorNumElements());
7428 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7429 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7430 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7431 IVecIn
, IElt
, Lane
);
7432 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7438 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
7439 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7440 SDValue Lane
= Op
.getOperand(1);
7441 if (!isa
<ConstantSDNode
>(Lane
))
7444 SDValue Vec
= Op
.getOperand(0);
7445 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7447 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7453 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
) {
7454 // The only time a CONCAT_VECTORS operation can have legal types is when
7455 // two 64-bit vectors are concatenated to a 128-bit vector.
7456 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
7457 "unexpected CONCAT_VECTORS");
7459 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
7460 SDValue Op0
= Op
.getOperand(0);
7461 SDValue Op1
= Op
.getOperand(1);
7463 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7464 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
7465 DAG
.getIntPtrConstant(0, dl
));
7467 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7468 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
7469 DAG
.getIntPtrConstant(1, dl
));
7470 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
7473 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7474 /// element has been zero/sign-extended, depending on the isSigned parameter,
7475 /// from an integer type half its size.
7476 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
7478 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7479 EVT VT
= N
->getValueType(0);
7480 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
7481 SDNode
*BVN
= N
->getOperand(0).getNode();
7482 if (BVN
->getValueType(0) != MVT::v4i32
||
7483 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
7485 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
7486 unsigned HiElt
= 1 - LoElt
;
7487 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
7488 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
7489 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
7490 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
7491 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
7494 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
7495 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
7498 if (Hi0
->isNullValue() && Hi1
->isNullValue())
7504 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
7507 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
7508 SDNode
*Elt
= N
->getOperand(i
).getNode();
7509 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
7510 unsigned EltSize
= VT
.getScalarSizeInBits();
7511 unsigned HalfSize
= EltSize
/ 2;
7513 if (!isIntN(HalfSize
, C
->getSExtValue()))
7516 if (!isUIntN(HalfSize
, C
->getZExtValue()))
7527 /// isSignExtended - Check if a node is a vector value that is sign-extended
7528 /// or a constant BUILD_VECTOR with sign-extended elements.
7529 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
7530 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
7532 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
7537 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7538 /// or a constant BUILD_VECTOR with zero-extended elements.
7539 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
7540 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
7542 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
7547 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
7548 if (OrigVT
.getSizeInBits() >= 64)
7551 assert(OrigVT
.isSimple() && "Expecting a simple value type");
7553 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
7554 switch (OrigSimpleTy
) {
7555 default: llvm_unreachable("Unexpected Vector Type");
7564 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7565 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7566 /// We insert the required extension here to get the vector to fill a D register.
7567 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
7570 unsigned ExtOpcode
) {
7571 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7572 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7573 // 64-bits we need to insert a new extension so that it will be 64-bits.
7574 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
7575 if (OrigTy
.getSizeInBits() >= 64)
7578 // Must extend size to at least 64 bits to be used as an operand for VMULL.
7579 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
7581 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
7584 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7585 /// does not do any sign/zero extension. If the original vector is less
7586 /// than 64 bits, an appropriate extension will be added after the load to
7587 /// reach a total size of 64 bits. We have to add the extension separately
7588 /// because ARM does not have a sign/zero extending load for vectors.
7589 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
7590 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
7592 // The load already has the right type.
7593 if (ExtendedTy
== LD
->getMemoryVT())
7594 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
7595 LD
->getBasePtr(), LD
->getPointerInfo(),
7596 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
7598 // We need to create a zextload/sextload. We cannot just create a load
7599 // followed by a zext/zext node because LowerMUL is also run during normal
7600 // operation legalization where we can't create illegal types.
7601 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
7602 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
7603 LD
->getMemoryVT(), LD
->getAlignment(),
7604 LD
->getMemOperand()->getFlags());
7607 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7608 /// extending load, or BUILD_VECTOR with extended elements, return the
7609 /// unextended value. The unextended vector should be 64 bits so that it can
7610 /// be used as an operand to a VMULL instruction. If the original vector size
7611 /// before extension is less than 64 bits we add a an extension to resize
7612 /// the vector to 64 bits.
7613 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
7614 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
7615 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
7616 N
->getOperand(0)->getValueType(0),
7620 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
7621 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
7622 "Expected extending load");
7624 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
7625 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
7626 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
7628 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
7629 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
7634 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
7635 // have been legalized as a BITCAST from v4i32.
7636 if (N
->getOpcode() == ISD::BITCAST
) {
7637 SDNode
*BVN
= N
->getOperand(0).getNode();
7638 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
7639 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
7640 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
7641 return DAG
.getBuildVector(
7642 MVT::v2i32
, SDLoc(N
),
7643 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
7645 // Construct a new BUILD_VECTOR with elements truncated to half the size.
7646 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
7647 EVT VT
= N
->getValueType(0);
7648 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
7649 unsigned NumElts
= VT
.getVectorNumElements();
7650 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
7651 SmallVector
<SDValue
, 8> Ops
;
7653 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
7654 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
7655 const APInt
&CInt
= C
->getAPIntValue();
7656 // Element types smaller than 32 bits are not legal, so use i32 elements.
7657 // The values are implicitly truncated so sext vs. zext doesn't matter.
7658 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
7660 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
7663 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
7664 unsigned Opcode
= N
->getOpcode();
7665 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
7666 SDNode
*N0
= N
->getOperand(0).getNode();
7667 SDNode
*N1
= N
->getOperand(1).getNode();
7668 return N0
->hasOneUse() && N1
->hasOneUse() &&
7669 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
7674 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
7675 unsigned Opcode
= N
->getOpcode();
7676 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
7677 SDNode
*N0
= N
->getOperand(0).getNode();
7678 SDNode
*N1
= N
->getOperand(1).getNode();
7679 return N0
->hasOneUse() && N1
->hasOneUse() &&
7680 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
7685 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
7686 // Multiplications are only custom-lowered for 128-bit vectors so that
7687 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
7688 EVT VT
= Op
.getValueType();
7689 assert(VT
.is128BitVector() && VT
.isInteger() &&
7690 "unexpected type for custom-lowering ISD::MUL");
7691 SDNode
*N0
= Op
.getOperand(0).getNode();
7692 SDNode
*N1
= Op
.getOperand(1).getNode();
7693 unsigned NewOpc
= 0;
7695 bool isN0SExt
= isSignExtended(N0
, DAG
);
7696 bool isN1SExt
= isSignExtended(N1
, DAG
);
7697 if (isN0SExt
&& isN1SExt
)
7698 NewOpc
= ARMISD::VMULLs
;
7700 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
7701 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
7702 if (isN0ZExt
&& isN1ZExt
)
7703 NewOpc
= ARMISD::VMULLu
;
7704 else if (isN1SExt
|| isN1ZExt
) {
7705 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7706 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7707 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
7708 NewOpc
= ARMISD::VMULLs
;
7710 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
7711 NewOpc
= ARMISD::VMULLu
;
7713 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
7715 NewOpc
= ARMISD::VMULLu
;
7721 if (VT
== MVT::v2i64
)
7722 // Fall through to expand this. It is not legal.
7725 // Other vector multiplications are legal.
7730 // Legalize to a VMULL instruction.
7733 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
7735 Op0
= SkipExtensionForVMULL(N0
, DAG
);
7736 assert(Op0
.getValueType().is64BitVector() &&
7737 Op1
.getValueType().is64BitVector() &&
7738 "unexpected types for extended operands to VMULL");
7739 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
7742 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7743 // isel lowering to take advantage of no-stall back to back vmul + vmla.
7750 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
7751 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
7752 EVT Op1VT
= Op1
.getValueType();
7753 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
7754 DAG
.getNode(NewOpc
, DL
, VT
,
7755 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
7756 DAG
.getNode(NewOpc
, DL
, VT
,
7757 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
7760 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
7761 SelectionDAG
&DAG
) {
7762 // TODO: Should this propagate fast-math-flags?
7765 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7766 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7767 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
7768 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
7769 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
7770 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
7771 // Get reciprocal estimate.
7772 // float4 recip = vrecpeq_f32(yf);
7773 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
7774 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
7776 // Because char has a smaller range than uchar, we can actually get away
7777 // without any newton steps. This requires that we use a weird bias
7778 // of 0xb000, however (again, this has been exhaustively tested).
7779 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7780 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
7781 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
7782 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
7783 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
7784 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
7785 // Convert back to short.
7786 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
7787 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
7791 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
7792 SelectionDAG
&DAG
) {
7793 // TODO: Should this propagate fast-math-flags?
7796 // Convert to float.
7797 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7798 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7799 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
7800 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
7801 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
7802 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
7804 // Use reciprocal estimate and one refinement step.
7805 // float4 recip = vrecpeq_f32(yf);
7806 // recip *= vrecpsq_f32(yf, recip);
7807 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
7808 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
7810 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
7811 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
7813 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
7814 // Because short has a smaller range than ushort, we can actually get away
7815 // with only a single newton step. This requires that we use a weird bias
7816 // of 89, however (again, this has been exhaustively tested).
7817 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7818 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
7819 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
7820 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
7821 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
7822 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
7823 // Convert back to integer and return.
7824 // return vmovn_s32(vcvt_s32_f32(result));
7825 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
7826 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
7830 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
) {
7831 EVT VT
= Op
.getValueType();
7832 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
7833 "unexpected type for custom-lowering ISD::SDIV");
7836 SDValue N0
= Op
.getOperand(0);
7837 SDValue N1
= Op
.getOperand(1);
7840 if (VT
== MVT::v8i8
) {
7841 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
7842 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
7844 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
7845 DAG
.getIntPtrConstant(4, dl
));
7846 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
7847 DAG
.getIntPtrConstant(4, dl
));
7848 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
7849 DAG
.getIntPtrConstant(0, dl
));
7850 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
7851 DAG
.getIntPtrConstant(0, dl
));
7853 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
7854 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
7856 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
7857 N0
= LowerCONCAT_VECTORS(N0
, DAG
);
7859 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
7862 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
7865 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
) {
7866 // TODO: Should this propagate fast-math-flags?
7867 EVT VT
= Op
.getValueType();
7868 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
7869 "unexpected type for custom-lowering ISD::UDIV");
7872 SDValue N0
= Op
.getOperand(0);
7873 SDValue N1
= Op
.getOperand(1);
7876 if (VT
== MVT::v8i8
) {
7877 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
7878 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
7880 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
7881 DAG
.getIntPtrConstant(4, dl
));
7882 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
7883 DAG
.getIntPtrConstant(4, dl
));
7884 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
7885 DAG
.getIntPtrConstant(0, dl
));
7886 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
7887 DAG
.getIntPtrConstant(0, dl
));
7889 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
7890 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
7892 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
7893 N0
= LowerCONCAT_VECTORS(N0
, DAG
);
7895 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
7896 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
7902 // v4i16 sdiv ... Convert to float.
7903 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7904 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7905 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
7906 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
7907 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
7908 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
7910 // Use reciprocal estimate and two refinement steps.
7911 // float4 recip = vrecpeq_f32(yf);
7912 // recip *= vrecpsq_f32(yf, recip);
7913 // recip *= vrecpsq_f32(yf, recip);
7914 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
7915 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
7917 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
7918 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
7920 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
7921 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
7922 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
7924 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
7925 // Simply multiplying by the reciprocal estimate can leave us a few ulps
7926 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7927 // and that it will never cause us to return an answer too large).
7928 // float4 result = as_float4(as_int4(xf*recip) + 2);
7929 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
7930 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
7931 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
7932 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
7933 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
7934 // Convert back to integer and return.
7935 // return vmovn_u32(vcvt_s32_f32(result));
7936 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
7937 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
7941 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
7942 SDNode
*N
= Op
.getNode();
7943 EVT VT
= N
->getValueType(0);
7944 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
7946 SDValue Carry
= Op
.getOperand(2);
7951 if (Op
.getOpcode() == ISD::ADDCARRY
) {
7952 // This converts the boolean value carry into the carry flag.
7953 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
7955 // Do the addition proper using the carry flag we wanted.
7956 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
7957 Op
.getOperand(1), Carry
);
7959 // Now convert the carry flag into a boolean value.
7960 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
7962 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7963 // have to invert the carry first.
7964 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
7965 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
7966 // This converts the boolean value carry into the carry flag.
7967 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
7969 // Do the subtraction proper using the carry flag we wanted.
7970 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
7971 Op
.getOperand(1), Carry
);
7973 // Now convert the carry flag into a boolean value.
7974 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
7975 // But the carry returned by ARMISD::SUBE is not a borrow as expected
7976 // by ISD::SUBCARRY, so compute 1 - C.
7977 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
7978 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
7981 // Return both values.
7982 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
7985 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
7986 assert(Subtarget
->isTargetDarwin());
7988 // For iOS, we want to call an alternative entry point: __sincos_stret,
7989 // return values are passed via sret.
7991 SDValue Arg
= Op
.getOperand(0);
7992 EVT ArgVT
= Arg
.getValueType();
7993 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
7994 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
7996 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
7997 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7999 // Pair of floats / doubles used to pass the result.
8000 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8001 auto &DL
= DAG
.getDataLayout();
8004 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8006 if (ShouldUseSRet
) {
8007 // Create stack object for sret.
8008 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8009 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8010 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8011 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8015 Entry
.Ty
= RetTy
->getPointerTo();
8016 Entry
.IsSExt
= false;
8017 Entry
.IsZExt
= false;
8018 Entry
.IsSRet
= true;
8019 Args
.push_back(Entry
);
8020 RetTy
= Type::getVoidTy(*DAG
.getContext());
8026 Entry
.IsSExt
= false;
8027 Entry
.IsZExt
= false;
8028 Args
.push_back(Entry
);
8031 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8032 const char *LibcallName
= getLibcallName(LC
);
8033 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8034 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8036 TargetLowering::CallLoweringInfo
CLI(DAG
);
8038 .setChain(DAG
.getEntryNode())
8039 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8040 .setDiscardResult(ShouldUseSRet
);
8041 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8044 return CallResult
.first
;
8047 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8049 // Address of cos field.
8050 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8051 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8053 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8055 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8056 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8057 LoadSin
.getValue(0), LoadCos
.getValue(0));
8060 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8062 SDValue
&Chain
) const {
8063 EVT VT
= Op
.getValueType();
8064 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8065 "unexpected type for custom lowering DIV");
8068 const auto &DL
= DAG
.getDataLayout();
8069 const auto &TLI
= DAG
.getTargetLoweringInfo();
8071 const char *Name
= nullptr;
8073 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8075 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8077 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8079 ARMTargetLowering::ArgListTy Args
;
8081 for (auto AI
: {1, 0}) {
8083 Arg
.Node
= Op
.getOperand(AI
);
8084 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8085 Args
.push_back(Arg
);
8088 CallLoweringInfo
CLI(DAG
);
8091 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8092 ES
, std::move(Args
));
8094 return LowerCallTo(CLI
).first
;
8097 // This is a code size optimisation: return the original SDIV node to
8098 // DAGCombiner when we don't want to expand SDIV into a sequence of
8099 // instructions, and an empty node otherwise which will cause the
8100 // SDIV to be expanded in DAGCombine.
8102 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8104 SmallVectorImpl
<SDNode
*> &Created
) const {
8105 // TODO: Support SREM
8106 if (N
->getOpcode() != ISD::SDIV
)
8109 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8110 const bool MinSize
= ST
.hasMinSize();
8111 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8112 : ST
.hasDivideInARMMode();
8114 // Don't touch vector types; rewriting this may lead to scalarizing
8116 if (N
->getOperand(0).getValueType().isVector())
8119 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8120 // hwdiv support for this to be really profitable.
8121 if (!(MinSize
&& HasDivide
))
8124 // ARM mode is a bit simpler than Thumb: we can handle large power
8125 // of 2 immediates with 1 mov instruction; no further checks required,
8126 // just return the sdiv node.
8128 return SDValue(N
, 0);
8130 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8131 // and thus lose the code size benefits of a MOVS that requires only 2.
8132 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8133 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8134 if (Divisor
.sgt(128))
8137 return SDValue(N
, 0);
8140 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8141 bool Signed
) const {
8142 assert(Op
.getValueType() == MVT::i32
&&
8143 "unexpected type for custom lowering DIV");
8146 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8147 DAG
.getEntryNode(), Op
.getOperand(1));
8149 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8152 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8154 SDValue Op
= N
->getOperand(1);
8155 if (N
->getValueType(0) == MVT::i32
)
8156 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8157 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8158 DAG
.getConstant(0, DL
, MVT::i32
));
8159 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8160 DAG
.getConstant(1, DL
, MVT::i32
));
8161 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8162 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8165 void ARMTargetLowering::ExpandDIV_Windows(
8166 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8167 SmallVectorImpl
<SDValue
> &Results
) const {
8168 const auto &DL
= DAG
.getDataLayout();
8169 const auto &TLI
= DAG
.getTargetLoweringInfo();
8171 assert(Op
.getValueType() == MVT::i64
&&
8172 "unexpected type for custom lowering DIV");
8175 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8177 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8179 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8180 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8181 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8182 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8184 Results
.push_back(Lower
);
8185 Results
.push_back(Upper
);
8188 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8189 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8190 // Acquire/Release load/store is not legal for targets without a dmb or
8191 // equivalent available.
8194 // Monotonic load/store is legal for all targets.
8198 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8199 SmallVectorImpl
<SDValue
> &Results
,
8201 const ARMSubtarget
*Subtarget
) {
8203 // Under Power Management extensions, the cycle-count is:
8204 // mrc p15, #0, <Rt>, c9, c13, #0
8205 SDValue Ops
[] = { N
->getOperand(0), // Chain
8206 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8207 DAG
.getConstant(15, DL
, MVT::i32
),
8208 DAG
.getConstant(0, DL
, MVT::i32
),
8209 DAG
.getConstant(9, DL
, MVT::i32
),
8210 DAG
.getConstant(13, DL
, MVT::i32
),
8211 DAG
.getConstant(0, DL
, MVT::i32
)
8214 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8215 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8216 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8217 DAG
.getConstant(0, DL
, MVT::i32
)));
8218 Results
.push_back(Cycles32
.getValue(1));
8221 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8222 SDLoc
dl(V
.getNode());
8223 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8224 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8225 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8227 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8229 std::swap (VLo
, VHi
);
8231 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8232 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8233 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8234 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8236 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8239 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8240 SmallVectorImpl
<SDValue
> & Results
,
8241 SelectionDAG
&DAG
) {
8242 assert(N
->getValueType(0) == MVT::i64
&&
8243 "AtomicCmpSwap on types less than 64 should be legal");
8244 SDValue Ops
[] = {N
->getOperand(1),
8245 createGPRPairNode(DAG
, N
->getOperand(2)),
8246 createGPRPairNode(DAG
, N
->getOperand(3)),
8248 SDNode
*CmpSwap
= DAG
.getMachineNode(
8249 ARM::CMP_SWAP_64
, SDLoc(N
),
8250 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8252 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8253 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8255 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8258 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8259 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8261 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8262 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8263 Results
.push_back(SDValue(CmpSwap
, 2));
8266 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8267 SelectionDAG
&DAG
) {
8268 const auto &TLI
= DAG
.getTargetLoweringInfo();
8270 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8271 "Custom lowering is MSVCRT specific!");
8274 SDValue Val
= Op
.getOperand(0);
8275 MVT Ty
= Val
->getSimpleValueType(0);
8276 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8277 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8278 TLI
.getPointerTy(DAG
.getDataLayout()));
8280 TargetLowering::ArgListTy Args
;
8281 TargetLowering::ArgListEntry Entry
;
8284 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8285 Entry
.IsZExt
= true;
8286 Args
.push_back(Entry
);
8288 Entry
.Node
= Exponent
;
8289 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8290 Entry
.IsZExt
= true;
8291 Args
.push_back(Entry
);
8293 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8295 // In the in-chain to the call is the entry node If we are emitting a
8296 // tailcall, the chain will be mutated if the node has a non-entry input
8298 SDValue InChain
= DAG
.getEntryNode();
8299 SDValue TCChain
= InChain
;
8301 const Function
&F
= DAG
.getMachineFunction().getFunction();
8302 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8303 F
.getReturnType() == LCRTy
;
8307 TargetLowering::CallLoweringInfo
CLI(DAG
);
8310 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8312 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8314 // Return the chain (the DAG root) if it is a tail call
8315 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8318 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8319 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8320 switch (Op
.getOpcode()) {
8321 default: llvm_unreachable("Don't know how to custom lower this!");
8322 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8323 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8324 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8325 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8326 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8327 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8328 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8329 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8330 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8331 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8332 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8333 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8334 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8335 case ISD::SINT_TO_FP
:
8336 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8337 case ISD::FP_TO_SINT
:
8338 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8339 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8340 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8341 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8342 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8343 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8344 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8345 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8347 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8350 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8351 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8352 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8353 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8354 case ISD::SRL_PARTS
:
8355 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8357 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8358 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8359 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
);
8360 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8361 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8362 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8363 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8364 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8365 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
8366 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
8367 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8368 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8370 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8371 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8372 return LowerSDIV(Op
, DAG
);
8374 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8375 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8376 return LowerUDIV(Op
, DAG
);
8378 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8381 return LowerSignedALUO(Op
, DAG
);
8384 return LowerUnsignedALUO(Op
, DAG
);
8385 case ISD::ATOMIC_LOAD
:
8386 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8387 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8389 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8390 case ISD::DYNAMIC_STACKALLOC
:
8391 if (Subtarget
->isTargetWindows())
8392 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8393 llvm_unreachable("Don't know how to custom lower this!");
8394 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8395 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8396 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8397 case ARMISD::WIN__DBZCHK
: return SDValue();
8401 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
8402 SelectionDAG
&DAG
) {
8403 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
8405 if (IntNo
== Intrinsic::arm_smlald
)
8406 Opc
= ARMISD::SMLALD
;
8407 else if (IntNo
== Intrinsic::arm_smlaldx
)
8408 Opc
= ARMISD::SMLALDX
;
8409 else if (IntNo
== Intrinsic::arm_smlsld
)
8410 Opc
= ARMISD::SMLSLD
;
8411 else if (IntNo
== Intrinsic::arm_smlsldx
)
8412 Opc
= ARMISD::SMLSLDX
;
8417 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8419 DAG
.getConstant(0, dl
, MVT::i32
));
8420 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8422 DAG
.getConstant(1, dl
, MVT::i32
));
8424 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
8425 DAG
.getVTList(MVT::i32
, MVT::i32
),
8426 N
->getOperand(1), N
->getOperand(2),
8428 Results
.push_back(LongMul
.getValue(0));
8429 Results
.push_back(LongMul
.getValue(1));
8432 /// ReplaceNodeResults - Replace the results of node with an illegal result
8433 /// type with new values built out of custom code.
8434 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
8435 SmallVectorImpl
<SDValue
> &Results
,
8436 SelectionDAG
&DAG
) const {
8438 switch (N
->getOpcode()) {
8440 llvm_unreachable("Don't know how to custom expand this!");
8441 case ISD::READ_REGISTER
:
8442 ExpandREAD_REGISTER(N
, Results
, DAG
);
8445 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
8450 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
8454 Res
= LowerREM(N
, DAG
);
8458 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
8459 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
8460 Results
.push_back(Res
.getValue(0));
8461 Results
.push_back(Res
.getValue(1));
8463 case ISD::READCYCLECOUNTER
:
8464 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
8468 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
8469 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
8471 case ISD::ATOMIC_CMP_SWAP
:
8472 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
8474 case ISD::INTRINSIC_WO_CHAIN
:
8475 return ReplaceLongIntrinsic(N
, Results
, DAG
);
8477 lowerABS(N
, Results
, DAG
);
8482 Results
.push_back(Res
);
8485 //===----------------------------------------------------------------------===//
8486 // ARM Scheduler Hooks
8487 //===----------------------------------------------------------------------===//
8489 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8490 /// registers the function context.
8491 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
8492 MachineBasicBlock
*MBB
,
8493 MachineBasicBlock
*DispatchBB
,
8495 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
8496 "ROPI/RWPI not currently supported with SjLj");
8497 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
8498 DebugLoc dl
= MI
.getDebugLoc();
8499 MachineFunction
*MF
= MBB
->getParent();
8500 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
8501 MachineConstantPool
*MCP
= MF
->getConstantPool();
8502 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
8503 const Function
&F
= MF
->getFunction();
8505 bool isThumb
= Subtarget
->isThumb();
8506 bool isThumb2
= Subtarget
->isThumb2();
8508 unsigned PCLabelId
= AFI
->createPICLabelUId();
8509 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
8510 ARMConstantPoolValue
*CPV
=
8511 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
8512 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
8514 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
8515 : &ARM::GPRRegClass
;
8517 // Grab constant pool and fixed stack memory operands.
8518 MachineMemOperand
*CPMMO
=
8519 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
8520 MachineMemOperand::MOLoad
, 4, 4);
8522 MachineMemOperand
*FIMMOSt
=
8523 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
8524 MachineMemOperand::MOStore
, 4, 4);
8526 // Load the address of the dispatch MBB into the jump buffer.
8528 // Incoming value: jbuf
8529 // ldr.n r5, LCPI1_1
8532 // str r5, [$jbuf, #+4] ; &jbuf[1]
8533 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8534 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
8535 .addConstantPoolIndex(CPI
)
8536 .addMemOperand(CPMMO
)
8537 .add(predOps(ARMCC::AL
));
8538 // Set the low bit because of thumb mode.
8539 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8540 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
8541 .addReg(NewVReg1
, RegState::Kill
)
8543 .add(predOps(ARMCC::AL
))
8545 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8546 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
8547 .addReg(NewVReg2
, RegState::Kill
)
8549 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
8550 .addReg(NewVReg3
, RegState::Kill
)
8552 .addImm(36) // &jbuf[1] :: pc
8553 .addMemOperand(FIMMOSt
)
8554 .add(predOps(ARMCC::AL
));
8555 } else if (isThumb
) {
8556 // Incoming value: jbuf
8557 // ldr.n r1, LCPI1_4
8561 // add r2, $jbuf, #+4 ; &jbuf[1]
8563 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8564 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
8565 .addConstantPoolIndex(CPI
)
8566 .addMemOperand(CPMMO
)
8567 .add(predOps(ARMCC::AL
));
8568 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8569 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
8570 .addReg(NewVReg1
, RegState::Kill
)
8572 // Set the low bit because of thumb mode.
8573 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8574 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
8575 .addReg(ARM::CPSR
, RegState::Define
)
8577 .add(predOps(ARMCC::AL
));
8578 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
8579 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
8580 .addReg(ARM::CPSR
, RegState::Define
)
8581 .addReg(NewVReg2
, RegState::Kill
)
8582 .addReg(NewVReg3
, RegState::Kill
)
8583 .add(predOps(ARMCC::AL
));
8584 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
8585 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
8587 .addImm(36); // &jbuf[1] :: pc
8588 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
8589 .addReg(NewVReg4
, RegState::Kill
)
8590 .addReg(NewVReg5
, RegState::Kill
)
8592 .addMemOperand(FIMMOSt
)
8593 .add(predOps(ARMCC::AL
));
8595 // Incoming value: jbuf
8598 // str r1, [$jbuf, #+4] ; &jbuf[1]
8599 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8600 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
8601 .addConstantPoolIndex(CPI
)
8603 .addMemOperand(CPMMO
)
8604 .add(predOps(ARMCC::AL
));
8605 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8606 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
8607 .addReg(NewVReg1
, RegState::Kill
)
8609 .add(predOps(ARMCC::AL
));
8610 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
8611 .addReg(NewVReg2
, RegState::Kill
)
8613 .addImm(36) // &jbuf[1] :: pc
8614 .addMemOperand(FIMMOSt
)
8615 .add(predOps(ARMCC::AL
));
8619 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
8620 MachineBasicBlock
*MBB
) const {
8621 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
8622 DebugLoc dl
= MI
.getDebugLoc();
8623 MachineFunction
*MF
= MBB
->getParent();
8624 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
8625 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
8626 int FI
= MFI
.getFunctionContextIndex();
8628 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
8629 : &ARM::GPRnopcRegClass
;
8631 // Get a mapping of the call site numbers to all of the landing pads they're
8633 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
8634 unsigned MaxCSNum
= 0;
8635 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
8637 if (!BB
->isEHPad()) continue;
8639 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8641 for (MachineBasicBlock::iterator
8642 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
8643 if (!II
->isEHLabel()) continue;
8645 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
8646 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
8648 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
8649 for (SmallVectorImpl
<unsigned>::iterator
8650 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
8651 CSI
!= CSE
; ++CSI
) {
8652 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
8653 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
8659 // Get an ordered list of the machine basic blocks for the jump table.
8660 std::vector
<MachineBasicBlock
*> LPadList
;
8661 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
8662 LPadList
.reserve(CallSiteNumToLPad
.size());
8663 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
8664 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
8665 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
8666 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
8667 LPadList
.push_back(*II
);
8668 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
8672 assert(!LPadList
.empty() &&
8673 "No landing pad destinations for the dispatch jump table!");
8675 // Create the jump table and associated information.
8676 MachineJumpTableInfo
*JTI
=
8677 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
8678 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
8680 // Create the MBBs for the dispatch code.
8682 // Shove the dispatch's address into the return slot in the function context.
8683 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
8684 DispatchBB
->setIsEHPad();
8686 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
8687 unsigned trap_opcode
;
8688 if (Subtarget
->isThumb())
8689 trap_opcode
= ARM::tTRAP
;
8691 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
8693 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
8694 DispatchBB
->addSuccessor(TrapBB
);
8696 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
8697 DispatchBB
->addSuccessor(DispContBB
);
8700 MF
->insert(MF
->end(), DispatchBB
);
8701 MF
->insert(MF
->end(), DispContBB
);
8702 MF
->insert(MF
->end(), TrapBB
);
8704 // Insert code into the entry block that creates and registers the function
8706 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
8708 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
8709 MachinePointerInfo::getFixedStack(*MF
, FI
),
8710 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
8712 MachineInstrBuilder MIB
;
8713 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
8715 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
8716 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
8718 // Add a register mask with no preserved registers. This results in all
8719 // registers being marked as clobbered. This can't work if the dispatch block
8720 // is in a Thumb1 function and is linked with ARM code which uses the FP
8721 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8722 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
8724 bool IsPositionIndependent
= isPositionIndependent();
8725 unsigned NumLPads
= LPadList
.size();
8726 if (Subtarget
->isThumb2()) {
8727 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8728 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
8731 .addMemOperand(FIMMOLd
)
8732 .add(predOps(ARMCC::AL
));
8734 if (NumLPads
< 256) {
8735 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
8737 .addImm(LPadList
.size())
8738 .add(predOps(ARMCC::AL
));
8740 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
8741 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
8742 .addImm(NumLPads
& 0xFFFF)
8743 .add(predOps(ARMCC::AL
));
8745 unsigned VReg2
= VReg1
;
8746 if ((NumLPads
& 0xFFFF0000) != 0) {
8747 VReg2
= MRI
->createVirtualRegister(TRC
);
8748 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
8750 .addImm(NumLPads
>> 16)
8751 .add(predOps(ARMCC::AL
));
8754 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
8757 .add(predOps(ARMCC::AL
));
8760 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
8765 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8766 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
8767 .addJumpTableIndex(MJTI
)
8768 .add(predOps(ARMCC::AL
));
8770 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
8771 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
8772 .addReg(NewVReg3
, RegState::Kill
)
8774 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
8775 .add(predOps(ARMCC::AL
))
8778 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
8779 .addReg(NewVReg4
, RegState::Kill
)
8781 .addJumpTableIndex(MJTI
);
8782 } else if (Subtarget
->isThumb()) {
8783 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8784 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
8787 .addMemOperand(FIMMOLd
)
8788 .add(predOps(ARMCC::AL
));
8790 if (NumLPads
< 256) {
8791 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
8794 .add(predOps(ARMCC::AL
));
8796 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
8797 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
8798 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
8800 // MachineConstantPool wants an explicit alignment.
8801 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
8803 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
8804 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
8806 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
8807 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
8808 .addReg(VReg1
, RegState::Define
)
8809 .addConstantPoolIndex(Idx
)
8810 .add(predOps(ARMCC::AL
));
8811 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
8814 .add(predOps(ARMCC::AL
));
8817 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
8822 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8823 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
8824 .addReg(ARM::CPSR
, RegState::Define
)
8827 .add(predOps(ARMCC::AL
));
8829 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8830 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
8831 .addJumpTableIndex(MJTI
)
8832 .add(predOps(ARMCC::AL
));
8834 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
8835 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
8836 .addReg(ARM::CPSR
, RegState::Define
)
8837 .addReg(NewVReg2
, RegState::Kill
)
8839 .add(predOps(ARMCC::AL
));
8841 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
8842 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
8844 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
8845 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
8846 .addReg(NewVReg4
, RegState::Kill
)
8848 .addMemOperand(JTMMOLd
)
8849 .add(predOps(ARMCC::AL
));
8851 unsigned NewVReg6
= NewVReg5
;
8852 if (IsPositionIndependent
) {
8853 NewVReg6
= MRI
->createVirtualRegister(TRC
);
8854 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
8855 .addReg(ARM::CPSR
, RegState::Define
)
8856 .addReg(NewVReg5
, RegState::Kill
)
8858 .add(predOps(ARMCC::AL
));
8861 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
8862 .addReg(NewVReg6
, RegState::Kill
)
8863 .addJumpTableIndex(MJTI
);
8865 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8866 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
8869 .addMemOperand(FIMMOLd
)
8870 .add(predOps(ARMCC::AL
));
8872 if (NumLPads
< 256) {
8873 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
8876 .add(predOps(ARMCC::AL
));
8877 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
8878 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
8879 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
8880 .addImm(NumLPads
& 0xFFFF)
8881 .add(predOps(ARMCC::AL
));
8883 unsigned VReg2
= VReg1
;
8884 if ((NumLPads
& 0xFFFF0000) != 0) {
8885 VReg2
= MRI
->createVirtualRegister(TRC
);
8886 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
8888 .addImm(NumLPads
>> 16)
8889 .add(predOps(ARMCC::AL
));
8892 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
8895 .add(predOps(ARMCC::AL
));
8897 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
8898 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
8899 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
8901 // MachineConstantPool wants an explicit alignment.
8902 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
8904 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
8905 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
8907 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
8908 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
8909 .addReg(VReg1
, RegState::Define
)
8910 .addConstantPoolIndex(Idx
)
8912 .add(predOps(ARMCC::AL
));
8913 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
8915 .addReg(VReg1
, RegState::Kill
)
8916 .add(predOps(ARMCC::AL
));
8919 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
8924 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8925 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
8927 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
8928 .add(predOps(ARMCC::AL
))
8930 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
8931 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
8932 .addJumpTableIndex(MJTI
)
8933 .add(predOps(ARMCC::AL
));
8935 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
8936 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
8937 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
8938 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
8939 .addReg(NewVReg3
, RegState::Kill
)
8942 .addMemOperand(JTMMOLd
)
8943 .add(predOps(ARMCC::AL
));
8945 if (IsPositionIndependent
) {
8946 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
8947 .addReg(NewVReg5
, RegState::Kill
)
8949 .addJumpTableIndex(MJTI
);
8951 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
8952 .addReg(NewVReg5
, RegState::Kill
)
8953 .addJumpTableIndex(MJTI
);
8957 // Add the jump table entries as successors to the MBB.
8958 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
8959 for (std::vector
<MachineBasicBlock
*>::iterator
8960 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
8961 MachineBasicBlock
*CurMBB
= *I
;
8962 if (SeenMBBs
.insert(CurMBB
).second
)
8963 DispContBB
->addSuccessor(CurMBB
);
8966 // N.B. the order the invoke BBs are processed in doesn't matter here.
8967 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
8968 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
8969 for (MachineBasicBlock
*BB
: InvokeBBs
) {
8971 // Remove the landing pad successor from the invoke block and replace it
8972 // with the new dispatch block.
8973 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
8975 while (!Successors
.empty()) {
8976 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
8977 if (SMBB
->isEHPad()) {
8978 BB
->removeSuccessor(SMBB
);
8979 MBBLPads
.push_back(SMBB
);
8983 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
8984 BB
->normalizeSuccProbs();
8986 // Find the invoke call and mark all of the callee-saved registers as
8987 // 'implicit defined' so that they're spilled. This prevents code from
8988 // moving instructions to before the EH block, where they will never be
8990 for (MachineBasicBlock::reverse_iterator
8991 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
8992 if (!II
->isCall()) continue;
8994 DenseMap
<unsigned, bool> DefRegs
;
8995 for (MachineInstr::mop_iterator
8996 OI
= II
->operands_begin(), OE
= II
->operands_end();
8998 if (!OI
->isReg()) continue;
8999 DefRegs
[OI
->getReg()] = true;
9002 MachineInstrBuilder
MIB(*MF
, &*II
);
9004 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9005 unsigned Reg
= SavedRegs
[i
];
9006 if (Subtarget
->isThumb2() &&
9007 !ARM::tGPRRegClass
.contains(Reg
) &&
9008 !ARM::hGPRRegClass
.contains(Reg
))
9010 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9012 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9015 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9022 // Mark all former landing pads as non-landing pads. The dispatch is the only
9024 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9025 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9026 (*I
)->setIsEHPad(false);
9028 // The instruction is gone now.
9029 MI
.eraseFromParent();
9033 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9034 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9035 E
= MBB
->succ_end(); I
!= E
; ++I
)
9038 llvm_unreachable("Expecting a BB with two successors!");
9041 /// Return the load opcode for a given load size. If load size >= 8,
9042 /// neon opcode will be returned.
9043 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9045 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9046 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9048 return LdSize
== 4 ? ARM::tLDRi
9049 : LdSize
== 2 ? ARM::tLDRHi
9050 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9052 return LdSize
== 4 ? ARM::t2LDR_POST
9053 : LdSize
== 2 ? ARM::t2LDRH_POST
9054 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9055 return LdSize
== 4 ? ARM::LDR_POST_IMM
9056 : LdSize
== 2 ? ARM::LDRH_POST
9057 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9060 /// Return the store opcode for a given store size. If store size >= 8,
9061 /// neon opcode will be returned.
9062 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9064 return StSize
== 16 ? ARM::VST1q32wb_fixed
9065 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9067 return StSize
== 4 ? ARM::tSTRi
9068 : StSize
== 2 ? ARM::tSTRHi
9069 : StSize
== 1 ? ARM::tSTRBi
: 0;
9071 return StSize
== 4 ? ARM::t2STR_POST
9072 : StSize
== 2 ? ARM::t2STRH_POST
9073 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9074 return StSize
== 4 ? ARM::STR_POST_IMM
9075 : StSize
== 2 ? ARM::STRH_POST
9076 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9079 /// Emit a post-increment load operation with given size. The instructions
9080 /// will be added to BB at Pos.
9081 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9082 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9083 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9084 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9085 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9086 assert(LdOpc
!= 0 && "Should have a load opcode");
9088 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9089 .addReg(AddrOut
, RegState::Define
)
9092 .add(predOps(ARMCC::AL
));
9093 } else if (IsThumb1
) {
9094 // load + update AddrIn
9095 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9098 .add(predOps(ARMCC::AL
));
9099 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9100 .add(t1CondCodeOp())
9103 .add(predOps(ARMCC::AL
));
9104 } else if (IsThumb2
) {
9105 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9106 .addReg(AddrOut
, RegState::Define
)
9109 .add(predOps(ARMCC::AL
));
9111 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9112 .addReg(AddrOut
, RegState::Define
)
9116 .add(predOps(ARMCC::AL
));
9120 /// Emit a post-increment store operation with given size. The instructions
9121 /// will be added to BB at Pos.
9122 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9123 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9124 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9125 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9126 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9127 assert(StOpc
!= 0 && "Should have a store opcode");
9129 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9133 .add(predOps(ARMCC::AL
));
9134 } else if (IsThumb1
) {
9135 // store + update AddrIn
9136 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9140 .add(predOps(ARMCC::AL
));
9141 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9142 .add(t1CondCodeOp())
9145 .add(predOps(ARMCC::AL
));
9146 } else if (IsThumb2
) {
9147 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9151 .add(predOps(ARMCC::AL
));
9153 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9158 .add(predOps(ARMCC::AL
));
9163 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9164 MachineBasicBlock
*BB
) const {
9165 // This pseudo instruction has 3 operands: dst, src, size
9166 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9167 // Otherwise, we will generate unrolled scalar copies.
9168 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9169 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9170 MachineFunction::iterator It
= ++BB
->getIterator();
9172 unsigned dest
= MI
.getOperand(0).getReg();
9173 unsigned src
= MI
.getOperand(1).getReg();
9174 unsigned SizeVal
= MI
.getOperand(2).getImm();
9175 unsigned Align
= MI
.getOperand(3).getImm();
9176 DebugLoc dl
= MI
.getDebugLoc();
9178 MachineFunction
*MF
= BB
->getParent();
9179 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9180 unsigned UnitSize
= 0;
9181 const TargetRegisterClass
*TRC
= nullptr;
9182 const TargetRegisterClass
*VecTRC
= nullptr;
9184 bool IsThumb1
= Subtarget
->isThumb1Only();
9185 bool IsThumb2
= Subtarget
->isThumb2();
9186 bool IsThumb
= Subtarget
->isThumb();
9190 } else if (Align
& 2) {
9193 // Check whether we can use NEON instructions.
9194 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9195 Subtarget
->hasNEON()) {
9196 if ((Align
% 16 == 0) && SizeVal
>= 16)
9198 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9201 // Can't use NEON instructions.
9206 // Select the correct opcode and register class for unit size load/store
9207 bool IsNeon
= UnitSize
>= 8;
9208 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9210 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9211 : UnitSize
== 8 ? &ARM::DPRRegClass
9214 unsigned BytesLeft
= SizeVal
% UnitSize
;
9215 unsigned LoopSize
= SizeVal
- BytesLeft
;
9217 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9218 // Use LDR and STR to copy.
9219 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9220 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9221 unsigned srcIn
= src
;
9222 unsigned destIn
= dest
;
9223 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9224 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9225 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9226 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9227 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9228 IsThumb1
, IsThumb2
);
9229 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9230 IsThumb1
, IsThumb2
);
9235 // Handle the leftover bytes with LDRB and STRB.
9236 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9237 // [destOut] = STRB_POST(scratch, destIn, 1)
9238 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9239 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9240 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9241 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9242 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9243 IsThumb1
, IsThumb2
);
9244 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9245 IsThumb1
, IsThumb2
);
9249 MI
.eraseFromParent(); // The instruction is gone now.
9253 // Expand the pseudo op to a loop.
9256 // movw varEnd, # --> with thumb2
9258 // ldrcp varEnd, idx --> without thumb2
9259 // fallthrough --> loopMBB
9261 // PHI varPhi, varEnd, varLoop
9262 // PHI srcPhi, src, srcLoop
9263 // PHI destPhi, dst, destLoop
9264 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9265 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9266 // subs varLoop, varPhi, #UnitSize
9268 // fallthrough --> exitMBB
9270 // epilogue to handle left-over bytes
9271 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9272 // [destOut] = STRB_POST(scratch, destLoop, 1)
9273 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9274 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9275 MF
->insert(It
, loopMBB
);
9276 MF
->insert(It
, exitMBB
);
9278 // Transfer the remainder of BB and its successor edges to exitMBB.
9279 exitMBB
->splice(exitMBB
->begin(), BB
,
9280 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9281 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9283 // Load an immediate to varEnd.
9284 unsigned varEnd
= MRI
.createVirtualRegister(TRC
);
9285 if (Subtarget
->useMovt()) {
9286 unsigned Vtmp
= varEnd
;
9287 if ((LoopSize
& 0xFFFF0000) != 0)
9288 Vtmp
= MRI
.createVirtualRegister(TRC
);
9289 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9290 .addImm(LoopSize
& 0xFFFF)
9291 .add(predOps(ARMCC::AL
));
9293 if ((LoopSize
& 0xFFFF0000) != 0)
9294 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9296 .addImm(LoopSize
>> 16)
9297 .add(predOps(ARMCC::AL
));
9299 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9300 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9301 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9303 // MachineConstantPool wants an explicit alignment.
9304 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9306 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9307 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9308 MachineMemOperand
*CPMMO
=
9309 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9310 MachineMemOperand::MOLoad
, 4, 4);
9313 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9314 .addReg(varEnd
, RegState::Define
)
9315 .addConstantPoolIndex(Idx
)
9316 .add(predOps(ARMCC::AL
))
9317 .addMemOperand(CPMMO
);
9319 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9320 .addReg(varEnd
, RegState::Define
)
9321 .addConstantPoolIndex(Idx
)
9323 .add(predOps(ARMCC::AL
))
9324 .addMemOperand(CPMMO
);
9326 BB
->addSuccessor(loopMBB
);
9328 // Generate the loop body:
9329 // varPhi = PHI(varLoop, varEnd)
9330 // srcPhi = PHI(srcLoop, src)
9331 // destPhi = PHI(destLoop, dst)
9332 MachineBasicBlock
*entryBB
= BB
;
9334 unsigned varLoop
= MRI
.createVirtualRegister(TRC
);
9335 unsigned varPhi
= MRI
.createVirtualRegister(TRC
);
9336 unsigned srcLoop
= MRI
.createVirtualRegister(TRC
);
9337 unsigned srcPhi
= MRI
.createVirtualRegister(TRC
);
9338 unsigned destLoop
= MRI
.createVirtualRegister(TRC
);
9339 unsigned destPhi
= MRI
.createVirtualRegister(TRC
);
9341 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9342 .addReg(varLoop
).addMBB(loopMBB
)
9343 .addReg(varEnd
).addMBB(entryBB
);
9344 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9345 .addReg(srcLoop
).addMBB(loopMBB
)
9346 .addReg(src
).addMBB(entryBB
);
9347 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9348 .addReg(destLoop
).addMBB(loopMBB
)
9349 .addReg(dest
).addMBB(entryBB
);
9351 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9352 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9353 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9354 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9355 IsThumb1
, IsThumb2
);
9356 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9357 IsThumb1
, IsThumb2
);
9359 // Decrement loop variable by UnitSize.
9361 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9362 .add(t1CondCodeOp())
9365 .add(predOps(ARMCC::AL
));
9367 MachineInstrBuilder MIB
=
9368 BuildMI(*BB
, BB
->end(), dl
,
9369 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9372 .add(predOps(ARMCC::AL
))
9374 MIB
->getOperand(5).setReg(ARM::CPSR
);
9375 MIB
->getOperand(5).setIsDef(true);
9377 BuildMI(*BB
, BB
->end(), dl
,
9378 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9379 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9381 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9382 BB
->addSuccessor(loopMBB
);
9383 BB
->addSuccessor(exitMBB
);
9385 // Add epilogue to handle BytesLeft.
9387 auto StartOfExit
= exitMBB
->begin();
9389 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9390 // [destOut] = STRB_POST(scratch, destLoop, 1)
9391 unsigned srcIn
= srcLoop
;
9392 unsigned destIn
= destLoop
;
9393 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9394 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9395 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9396 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9397 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9398 IsThumb1
, IsThumb2
);
9399 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9400 IsThumb1
, IsThumb2
);
9405 MI
.eraseFromParent(); // The instruction is gone now.
9410 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
9411 MachineBasicBlock
*MBB
) const {
9412 const TargetMachine
&TM
= getTargetMachine();
9413 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
9414 DebugLoc DL
= MI
.getDebugLoc();
9416 assert(Subtarget
->isTargetWindows() &&
9417 "__chkstk is only supported on Windows");
9418 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9420 // __chkstk takes the number of words to allocate on the stack in R4, and
9421 // returns the stack adjustment in number of bytes in R4. This will not
9422 // clober any other registers (other than the obvious lr).
9424 // Although, technically, IP should be considered a register which may be
9425 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9426 // thumb-2 environment, so there is no interworking required. As a result, we
9427 // do not expect a veneer to be emitted by the linker, clobbering IP.
9429 // Each module receives its own copy of __chkstk, so no import thunk is
9430 // required, again, ensuring that IP is not clobbered.
9432 // Finally, although some linkers may theoretically provide a trampoline for
9433 // out of range calls (which is quite common due to a 32M range limitation of
9434 // branches for Thumb), we can generate the long-call version via
9435 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9438 switch (TM
.getCodeModel()) {
9439 case CodeModel::Tiny
:
9440 llvm_unreachable("Tiny code model not available on ARM.");
9441 case CodeModel::Small
:
9442 case CodeModel::Medium
:
9443 case CodeModel::Kernel
:
9444 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
9445 .add(predOps(ARMCC::AL
))
9446 .addExternalSymbol("__chkstk")
9447 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9448 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9450 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9452 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9454 case CodeModel::Large
: {
9455 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
9456 unsigned Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
9458 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
9459 .addExternalSymbol("__chkstk");
9460 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
9461 .add(predOps(ARMCC::AL
))
9462 .addReg(Reg
, RegState::Kill
)
9463 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9464 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9466 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9468 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9473 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
9474 .addReg(ARM::SP
, RegState::Kill
)
9475 .addReg(ARM::R4
, RegState::Kill
)
9476 .setMIFlags(MachineInstr::FrameSetup
)
9477 .add(predOps(ARMCC::AL
))
9480 MI
.eraseFromParent();
9485 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
9486 MachineBasicBlock
*MBB
) const {
9487 DebugLoc DL
= MI
.getDebugLoc();
9488 MachineFunction
*MF
= MBB
->getParent();
9489 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9491 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
9492 MF
->insert(++MBB
->getIterator(), ContBB
);
9493 ContBB
->splice(ContBB
->begin(), MBB
,
9494 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
9495 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
9496 MBB
->addSuccessor(ContBB
);
9498 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9499 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
9500 MF
->push_back(TrapBB
);
9501 MBB
->addSuccessor(TrapBB
);
9503 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
9504 .addReg(MI
.getOperand(0).getReg())
9506 .add(predOps(ARMCC::AL
));
9507 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
9512 MI
.eraseFromParent();
9516 // The CPSR operand of SelectItr might be missing a kill marker
9517 // because there were multiple uses of CPSR, and ISel didn't know
9518 // which to mark. Figure out whether SelectItr should have had a
9519 // kill marker, and set it if it should. Returns the correct kill
9521 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
9522 MachineBasicBlock
* BB
,
9523 const TargetRegisterInfo
* TRI
) {
9524 // Scan forward through BB for a use/def of CPSR.
9525 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
9526 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
9527 const MachineInstr
& mi
= *miI
;
9528 if (mi
.readsRegister(ARM::CPSR
))
9530 if (mi
.definesRegister(ARM::CPSR
))
9531 break; // Should have kill-flag - update below.
9534 // If we hit the end of the block, check whether CPSR is live into a
9536 if (miI
== BB
->end()) {
9537 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
9538 sEnd
= BB
->succ_end();
9539 sItr
!= sEnd
; ++sItr
) {
9540 MachineBasicBlock
* succ
= *sItr
;
9541 if (succ
->isLiveIn(ARM::CPSR
))
9546 // We found a def, or hit the end of the basic block and CPSR wasn't live
9547 // out. SelectMI should have a kill flag on CPSR.
9548 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
9553 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
9554 MachineBasicBlock
*BB
) const {
9555 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9556 DebugLoc dl
= MI
.getDebugLoc();
9557 bool isThumb2
= Subtarget
->isThumb2();
9558 switch (MI
.getOpcode()) {
9561 llvm_unreachable("Unexpected instr type to insert");
9564 // Thumb1 post-indexed loads are really just single-register LDMs.
9565 case ARM::tLDR_postidx
: {
9566 MachineOperand
Def(MI
.getOperand(1));
9567 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
9569 .add(MI
.getOperand(2)) // Rn
9570 .add(MI
.getOperand(3)) // PredImm
9571 .add(MI
.getOperand(4)) // PredReg
9572 .add(MI
.getOperand(0)) // Rt
9574 MI
.eraseFromParent();
9578 // The Thumb2 pre-indexed stores have the same MI operands, they just
9579 // define them differently in the .td files from the isel patterns, so
9580 // they need pseudos.
9581 case ARM::t2STR_preidx
:
9582 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
9584 case ARM::t2STRB_preidx
:
9585 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
9587 case ARM::t2STRH_preidx
:
9588 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
9591 case ARM::STRi_preidx
:
9592 case ARM::STRBi_preidx
: {
9593 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
9594 : ARM::STRB_PRE_IMM
;
9595 // Decode the offset.
9596 unsigned Offset
= MI
.getOperand(4).getImm();
9597 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
9598 Offset
= ARM_AM::getAM2Offset(Offset
);
9602 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
9603 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
9604 .add(MI
.getOperand(0)) // Rn_wb
9605 .add(MI
.getOperand(1)) // Rt
9606 .add(MI
.getOperand(2)) // Rn
9607 .addImm(Offset
) // offset (skip GPR==zero_reg)
9608 .add(MI
.getOperand(5)) // pred
9609 .add(MI
.getOperand(6))
9610 .addMemOperand(MMO
);
9611 MI
.eraseFromParent();
9614 case ARM::STRr_preidx
:
9615 case ARM::STRBr_preidx
:
9616 case ARM::STRH_preidx
: {
9618 switch (MI
.getOpcode()) {
9619 default: llvm_unreachable("unexpected opcode!");
9620 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
9621 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
9622 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
9624 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
9625 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
9626 MIB
.add(MI
.getOperand(i
));
9627 MI
.eraseFromParent();
9631 case ARM::tMOVCCr_pseudo
: {
9632 // To "insert" a SELECT_CC instruction, we actually have to insert the
9633 // diamond control-flow pattern. The incoming instruction knows the
9634 // destination vreg to set, the condition code register to branch on, the
9635 // true/false values to select between, and a branch opcode to use.
9636 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9637 MachineFunction::iterator It
= ++BB
->getIterator();
9642 // cmpTY ccX, r1, r2
9644 // fallthrough --> copy0MBB
9645 MachineBasicBlock
*thisMBB
= BB
;
9646 MachineFunction
*F
= BB
->getParent();
9647 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9648 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
9649 F
->insert(It
, copy0MBB
);
9650 F
->insert(It
, sinkMBB
);
9652 // Check whether CPSR is live past the tMOVCCr_pseudo.
9653 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
9654 if (!MI
.killsRegister(ARM::CPSR
) &&
9655 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
9656 copy0MBB
->addLiveIn(ARM::CPSR
);
9657 sinkMBB
->addLiveIn(ARM::CPSR
);
9660 // Transfer the remainder of BB and its successor edges to sinkMBB.
9661 sinkMBB
->splice(sinkMBB
->begin(), BB
,
9662 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9663 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9665 BB
->addSuccessor(copy0MBB
);
9666 BB
->addSuccessor(sinkMBB
);
9668 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
9670 .addImm(MI
.getOperand(3).getImm())
9671 .addReg(MI
.getOperand(4).getReg());
9674 // %FalseValue = ...
9675 // # fallthrough to sinkMBB
9678 // Update machine-CFG edges
9679 BB
->addSuccessor(sinkMBB
);
9682 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9685 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
9686 .addReg(MI
.getOperand(1).getReg())
9688 .addReg(MI
.getOperand(2).getReg())
9691 MI
.eraseFromParent(); // The pseudo instruction is gone now.
9696 case ARM::BCCZi64
: {
9697 // If there is an unconditional branch to the other successor, remove it.
9698 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9700 // Compare both parts that make up the double comparison separately for
9702 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
9704 unsigned LHS1
= MI
.getOperand(1).getReg();
9705 unsigned LHS2
= MI
.getOperand(2).getReg();
9707 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
9710 .add(predOps(ARMCC::AL
));
9711 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
9712 .addReg(LHS2
).addImm(0)
9713 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
9715 unsigned RHS1
= MI
.getOperand(3).getReg();
9716 unsigned RHS2
= MI
.getOperand(4).getReg();
9717 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
9720 .add(predOps(ARMCC::AL
));
9721 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
9722 .addReg(LHS2
).addReg(RHS2
)
9723 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
9726 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
9727 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
9728 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
9729 std::swap(destMBB
, exitMBB
);
9731 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9732 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
9734 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
9736 .add(predOps(ARMCC::AL
));
9738 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
9740 MI
.eraseFromParent(); // The pseudo instruction is gone now.
9744 case ARM::Int_eh_sjlj_setjmp
:
9745 case ARM::Int_eh_sjlj_setjmp_nofp
:
9746 case ARM::tInt_eh_sjlj_setjmp
:
9747 case ARM::t2Int_eh_sjlj_setjmp
:
9748 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
9751 case ARM::Int_eh_sjlj_setup_dispatch
:
9752 EmitSjLjDispatchBlock(MI
, BB
);
9757 // To insert an ABS instruction, we have to insert the
9758 // diamond control-flow pattern. The incoming instruction knows the
9759 // source vreg to test against 0, the destination vreg to set,
9760 // the condition code register to branch on, the
9761 // true/false values to select between, and a branch opcode to use.
9766 // BCC (branch to SinkBB if V0 >= 0)
9767 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
9768 // SinkBB: V1 = PHI(V2, V3)
9769 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9770 MachineFunction::iterator BBI
= ++BB
->getIterator();
9771 MachineFunction
*Fn
= BB
->getParent();
9772 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
9773 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
9774 Fn
->insert(BBI
, RSBBB
);
9775 Fn
->insert(BBI
, SinkBB
);
9777 unsigned int ABSSrcReg
= MI
.getOperand(1).getReg();
9778 unsigned int ABSDstReg
= MI
.getOperand(0).getReg();
9779 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
9780 bool isThumb2
= Subtarget
->isThumb2();
9781 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
9782 // In Thumb mode S must not be specified if source register is the SP or
9783 // PC and if destination register is the SP, so restrict register class
9784 unsigned NewRsbDstReg
=
9785 MRI
.createVirtualRegister(isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
9787 // Transfer the remainder of BB and its successor edges to sinkMBB.
9788 SinkBB
->splice(SinkBB
->begin(), BB
,
9789 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9790 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
9792 BB
->addSuccessor(RSBBB
);
9793 BB
->addSuccessor(SinkBB
);
9795 // fall through to SinkMBB
9796 RSBBB
->addSuccessor(SinkBB
);
9798 // insert a cmp at the end of BB
9799 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
9802 .add(predOps(ARMCC::AL
));
9804 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9806 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
9807 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
9809 // insert rsbri in RSBBB
9810 // Note: BCC and rsbri will be converted into predicated rsbmi
9811 // by if-conversion pass
9812 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
9813 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
9814 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
9816 .add(predOps(ARMCC::AL
))
9819 // insert PHI in SinkBB,
9820 // reuse ABSDstReg to not change uses of ABS instruction
9821 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
9822 TII
->get(ARM::PHI
), ABSDstReg
)
9823 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
9824 .addReg(ABSSrcReg
).addMBB(BB
);
9826 // remove ABS instruction
9827 MI
.eraseFromParent();
9829 // return last added BB
9832 case ARM::COPY_STRUCT_BYVAL_I32
:
9834 return EmitStructByval(MI
, BB
);
9835 case ARM::WIN__CHKSTK
:
9836 return EmitLowered__chkstk(MI
, BB
);
9837 case ARM::WIN__DBZCHK
:
9838 return EmitLowered__dbzchk(MI
, BB
);
9842 /// Attaches vregs to MEMCPY that it will use as scratch registers
9843 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9844 /// instead of as a custom inserter because we need the use list from the SDNode.
9845 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
9846 MachineInstr
&MI
, const SDNode
*Node
) {
9847 bool isThumb1
= Subtarget
->isThumb1Only();
9849 DebugLoc DL
= MI
.getDebugLoc();
9850 MachineFunction
*MF
= MI
.getParent()->getParent();
9851 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9852 MachineInstrBuilder
MIB(*MF
, MI
);
9854 // If the new dst/src is unused mark it as dead.
9855 if (!Node
->hasAnyUseOfValue(0)) {
9856 MI
.getOperand(0).setIsDead(true);
9858 if (!Node
->hasAnyUseOfValue(1)) {
9859 MI
.getOperand(1).setIsDead(true);
9862 // The MEMCPY both defines and kills the scratch registers.
9863 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
9864 unsigned TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
9865 : &ARM::GPRRegClass
);
9866 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
9870 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
9871 SDNode
*Node
) const {
9872 if (MI
.getOpcode() == ARM::MEMCPY
) {
9873 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
9877 const MCInstrDesc
*MCID
= &MI
.getDesc();
9878 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9879 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9880 // operand is still set to noreg. If needed, set the optional operand's
9881 // register to CPSR, and remove the redundant implicit def.
9883 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9885 // Rename pseudo opcodes.
9886 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
9889 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
9890 MCID
= &TII
->get(NewOpc
);
9892 assert(MCID
->getNumOperands() ==
9893 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
9894 && "converted opcode should be the same except for cc_out"
9895 " (and, on Thumb1, pred)");
9899 // Add the optional cc_out operand
9900 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9902 // On Thumb1, move all input operands to the end, then add the predicate
9903 if (Subtarget
->isThumb1Only()) {
9904 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
9905 MI
.addOperand(MI
.getOperand(1));
9906 MI
.RemoveOperand(1);
9910 for (unsigned i
= MI
.getNumOperands(); i
--;) {
9911 const MachineOperand
& op
= MI
.getOperand(i
);
9912 if (op
.isReg() && op
.isUse()) {
9913 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
9915 MI
.tieOperands(DefIdx
, i
);
9919 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
9920 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9923 ccOutIdx
= MCID
->getNumOperands() - 1;
9925 ccOutIdx
= MCID
->getNumOperands() - 1;
9927 // Any ARM instruction that sets the 's' bit should specify an optional
9928 // "cc_out" operand in the last operand position.
9929 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
9930 assert(!NewOpc
&& "Optional cc_out operand required");
9933 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9934 // since we already have an optional CPSR def.
9935 bool definesCPSR
= false;
9936 bool deadCPSR
= false;
9937 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
9939 const MachineOperand
&MO
= MI
.getOperand(i
);
9940 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
9944 MI
.RemoveOperand(i
);
9949 assert(!NewOpc
&& "Optional cc_out operand required");
9952 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
9954 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
9955 "expect uninitialized optional cc_out operand");
9956 // Thumb1 instructions must have the S bit even if the CPSR is dead.
9957 if (!Subtarget
->isThumb1Only())
9961 // If this instruction was defined with an optional CPSR def and its dag node
9962 // had a live implicit CPSR def, then activate the optional CPSR def.
9963 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
9964 MO
.setReg(ARM::CPSR
);
9968 //===----------------------------------------------------------------------===//
9969 // ARM Optimization Hooks
9970 //===----------------------------------------------------------------------===//
9972 // Helper function that checks if N is a null or all ones constant.
9973 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
9974 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
9977 // Return true if N is conditionally 0 or all ones.
9978 // Detects these expressions where cc is an i1 value:
9980 // (select cc 0, y) [AllOnes=0]
9981 // (select cc y, 0) [AllOnes=0]
9982 // (zext cc) [AllOnes=0]
9983 // (sext cc) [AllOnes=0/1]
9984 // (select cc -1, y) [AllOnes=1]
9985 // (select cc y, -1) [AllOnes=1]
9987 // Invert is set when N is the null/all ones constant when CC is false.
9988 // OtherOp is set to the alternative value of N.
9989 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
9990 SDValue
&CC
, bool &Invert
,
9992 SelectionDAG
&DAG
) {
9993 switch (N
->getOpcode()) {
9994 default: return false;
9996 CC
= N
->getOperand(0);
9997 SDValue N1
= N
->getOperand(1);
9998 SDValue N2
= N
->getOperand(2);
9999 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10004 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10011 case ISD::ZERO_EXTEND
:
10012 // (zext cc) can never be the all ones value.
10016 case ISD::SIGN_EXTEND
: {
10018 EVT VT
= N
->getValueType(0);
10019 CC
= N
->getOperand(0);
10020 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10024 // When looking for an AllOnes constant, N is an sext, and the 'other'
10026 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10027 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10028 // When looking for a 0 constant, N can be zext or sext.
10029 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10031 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10038 // Combine a constant select operand into its use:
10040 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10041 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10042 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10043 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10044 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10046 // The transform is rejected if the select doesn't have a constant operand that
10047 // is null, or all ones when AllOnes is set.
10049 // Also recognize sext/zext from i1:
10051 // (add (zext cc), x) -> (select cc (add x, 1), x)
10052 // (add (sext cc), x) -> (select cc (add x, -1), x)
10054 // These transformations eventually create predicated instructions.
10056 // @param N The node to transform.
10057 // @param Slct The N operand that is a select.
10058 // @param OtherOp The other N operand (x above).
10059 // @param DCI Context.
10060 // @param AllOnes Require the select constant to be all ones instead of null.
10061 // @returns The new node, or SDValue() on failure.
10063 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10064 TargetLowering::DAGCombinerInfo
&DCI
,
10065 bool AllOnes
= false) {
10066 SelectionDAG
&DAG
= DCI
.DAG
;
10067 EVT VT
= N
->getValueType(0);
10068 SDValue NonConstantVal
;
10070 bool SwapSelectOps
;
10071 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10072 NonConstantVal
, DAG
))
10075 // Slct is now know to be the desired identity constant when CC is true.
10076 SDValue TrueVal
= OtherOp
;
10077 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10078 OtherOp
, NonConstantVal
);
10079 // Unless SwapSelectOps says CC should be false.
10081 std::swap(TrueVal
, FalseVal
);
10083 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10084 CCOp
, TrueVal
, FalseVal
);
10087 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10089 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10090 TargetLowering::DAGCombinerInfo
&DCI
) {
10091 SDValue N0
= N
->getOperand(0);
10092 SDValue N1
= N
->getOperand(1);
10093 if (N0
.getNode()->hasOneUse())
10094 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10096 if (N1
.getNode()->hasOneUse())
10097 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10102 static bool IsVUZPShuffleNode(SDNode
*N
) {
10103 // VUZP shuffle node.
10104 if (N
->getOpcode() == ARMISD::VUZP
)
10107 // "VUZP" on i32 is an alias for VTRN.
10108 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10114 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10115 TargetLowering::DAGCombinerInfo
&DCI
,
10116 const ARMSubtarget
*Subtarget
) {
10117 // Look for ADD(VUZP.0, VUZP.1).
10118 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10122 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10123 if (!N
->getValueType(0).is64BitVector())
10127 SelectionDAG
&DAG
= DCI
.DAG
;
10128 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10130 SDNode
*Unzip
= N0
.getNode();
10131 EVT VT
= N
->getValueType(0);
10133 SmallVector
<SDValue
, 8> Ops
;
10134 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10135 TLI
.getPointerTy(DAG
.getDataLayout())));
10136 Ops
.push_back(Unzip
->getOperand(0));
10137 Ops
.push_back(Unzip
->getOperand(1));
10139 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10142 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10143 TargetLowering::DAGCombinerInfo
&DCI
,
10144 const ARMSubtarget
*Subtarget
) {
10145 // Check for two extended operands.
10146 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10147 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10148 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10149 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10152 SDValue N00
= N0
.getOperand(0);
10153 SDValue N10
= N1
.getOperand(0);
10155 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10156 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10160 // We only recognize Q register paddl here; this can't be reached until
10161 // after type legalization.
10162 if (!N00
.getValueType().is64BitVector() ||
10163 !N0
.getValueType().is128BitVector())
10166 // Generate vpaddl.
10167 SelectionDAG
&DAG
= DCI
.DAG
;
10168 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10170 EVT VT
= N
->getValueType(0);
10172 SmallVector
<SDValue
, 8> Ops
;
10173 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10175 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10176 Opcode
= Intrinsic::arm_neon_vpaddls
;
10178 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10179 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10180 TLI
.getPointerTy(DAG
.getDataLayout())));
10181 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10182 unsigned NumElts
= VT
.getVectorNumElements();
10183 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10184 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10185 N00
.getOperand(0), N00
.getOperand(1));
10186 Ops
.push_back(Concat
);
10188 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10191 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10192 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10193 // much easier to match.
10195 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10196 TargetLowering::DAGCombinerInfo
&DCI
,
10197 const ARMSubtarget
*Subtarget
) {
10198 // Only perform optimization if after legalize, and if NEON is available. We
10199 // also expected both operands to be BUILD_VECTORs.
10200 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10201 || N0
.getOpcode() != ISD::BUILD_VECTOR
10202 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10205 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10206 EVT VT
= N
->getValueType(0);
10207 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10210 // Check that the vector operands are of the right form.
10211 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10212 // operands, where N is the size of the formed vector.
10213 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10214 // index such that we have a pair wise add pattern.
10216 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10217 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10219 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10220 SDNode
*V
= Vec
.getNode();
10221 unsigned nextIndex
= 0;
10223 // For each operands to the ADD which are BUILD_VECTORs,
10224 // check to see if each of their operands are an EXTRACT_VECTOR with
10225 // the same vector and appropriate index.
10226 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10227 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10228 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10230 SDValue ExtVec0
= N0
->getOperand(i
);
10231 SDValue ExtVec1
= N1
->getOperand(i
);
10233 // First operand is the vector, verify its the same.
10234 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10235 V
!= ExtVec1
->getOperand(0).getNode())
10238 // Second is the constant, verify its correct.
10239 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10240 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10242 // For the constant, we want to see all the even or all the odd.
10243 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10244 || C1
->getZExtValue() != nextIndex
+1)
10247 // Increment index.
10253 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10254 // we're using the entire input vector, otherwise there's a size/legality
10255 // mismatch somewhere.
10256 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10257 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10260 // Create VPADDL node.
10261 SelectionDAG
&DAG
= DCI
.DAG
;
10262 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10266 // Build operand list.
10267 SmallVector
<SDValue
, 8> Ops
;
10268 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10269 TLI
.getPointerTy(DAG
.getDataLayout())));
10271 // Input is the vector.
10272 Ops
.push_back(Vec
);
10274 // Get widened type and narrowed type.
10276 unsigned numElem
= VT
.getVectorNumElements();
10278 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10279 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10280 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10281 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10282 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10284 llvm_unreachable("Invalid vector element type for padd optimization.");
10287 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10288 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10289 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10292 static SDValue
findMUL_LOHI(SDValue V
) {
10293 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10294 V
->getOpcode() == ISD::SMUL_LOHI
)
10299 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10300 TargetLowering::DAGCombinerInfo
&DCI
,
10301 const ARMSubtarget
*Subtarget
) {
10302 if (Subtarget
->isThumb()) {
10303 if (!Subtarget
->hasDSP())
10305 } else if (!Subtarget
->hasV5TEOps())
10308 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10309 // accumulates the product into a 64-bit value. The 16-bit values will
10310 // be sign extended somehow or SRA'd into 32-bit values
10311 // (addc (adde (mul 16bit, 16bit), lo), hi)
10312 SDValue Mul
= AddcNode
->getOperand(0);
10313 SDValue Lo
= AddcNode
->getOperand(1);
10314 if (Mul
.getOpcode() != ISD::MUL
) {
10315 Lo
= AddcNode
->getOperand(0);
10316 Mul
= AddcNode
->getOperand(1);
10317 if (Mul
.getOpcode() != ISD::MUL
)
10321 SDValue SRA
= AddeNode
->getOperand(0);
10322 SDValue Hi
= AddeNode
->getOperand(1);
10323 if (SRA
.getOpcode() != ISD::SRA
) {
10324 SRA
= AddeNode
->getOperand(1);
10325 Hi
= AddeNode
->getOperand(0);
10326 if (SRA
.getOpcode() != ISD::SRA
)
10329 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10330 if (Const
->getZExtValue() != 31)
10335 if (SRA
.getOperand(0) != Mul
)
10338 SelectionDAG
&DAG
= DCI
.DAG
;
10339 SDLoc
dl(AddcNode
);
10340 unsigned Opcode
= 0;
10344 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10345 Opcode
= ARMISD::SMLALBB
;
10346 Op0
= Mul
.getOperand(0);
10347 Op1
= Mul
.getOperand(1);
10348 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10349 Opcode
= ARMISD::SMLALBT
;
10350 Op0
= Mul
.getOperand(0);
10351 Op1
= Mul
.getOperand(1).getOperand(0);
10352 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10353 Opcode
= ARMISD::SMLALTB
;
10354 Op0
= Mul
.getOperand(0).getOperand(0);
10355 Op1
= Mul
.getOperand(1);
10356 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10357 Opcode
= ARMISD::SMLALTT
;
10358 Op0
= Mul
->getOperand(0).getOperand(0);
10359 Op1
= Mul
->getOperand(1).getOperand(0);
10365 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10367 // Replace the ADDs' nodes uses by the MLA node's values.
10368 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10369 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10371 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10372 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10374 // Return original node to notify the driver to stop replacing.
10375 SDValue
resNode(AddcNode
, 0);
10379 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10380 TargetLowering::DAGCombinerInfo
&DCI
,
10381 const ARMSubtarget
*Subtarget
) {
10382 // Look for multiply add opportunities.
10383 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10384 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10385 // a glue link from the first add to the second add.
10386 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10387 // a S/UMLAL instruction.
10390 // V \ [no multiline comment]
10396 // In the special case where only the higher part of a signed result is used
10397 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10398 // a constant with the exact value of 0x80000000, we recognize we are dealing
10399 // with a "rounded multiply and add" (or subtract) and transform it into
10400 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10402 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
10403 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
10404 "Expect an ADDE or SUBE");
10406 assert(AddeSubeNode
->getNumOperands() == 3 &&
10407 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
10408 "ADDE node has the wrong inputs");
10410 // Check that we are chained to the right ADDC or SUBC node.
10411 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
10412 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10413 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
10414 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
10415 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
10418 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
10419 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
10421 // Check if the two operands are from the same mul_lohi node.
10422 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
10425 assert(AddcSubcNode
->getNumValues() == 2 &&
10426 AddcSubcNode
->getValueType(0) == MVT::i32
&&
10427 "Expect ADDC with two result values. First: i32");
10429 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10430 // maybe a SMLAL which multiplies two 16-bit values.
10431 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10432 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
10433 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
10434 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
10435 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
10436 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
10438 // Check for the triangle shape.
10439 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
10440 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
10442 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10443 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
10446 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10447 bool IsLeftOperandMUL
= false;
10448 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
10449 if (MULOp
== SDValue())
10450 MULOp
= findMUL_LOHI(AddeSubeOp1
);
10452 IsLeftOperandMUL
= true;
10453 if (MULOp
== SDValue())
10456 // Figure out the right opcode.
10457 unsigned Opc
= MULOp
->getOpcode();
10458 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
10460 // Figure out the high and low input values to the MLAL node.
10461 SDValue
*HiAddSub
= nullptr;
10462 SDValue
*LoMul
= nullptr;
10463 SDValue
*LowAddSub
= nullptr;
10465 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10466 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
10469 if (IsLeftOperandMUL
)
10470 HiAddSub
= &AddeSubeOp1
;
10472 HiAddSub
= &AddeSubeOp0
;
10474 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10475 // whose low result is fed to the ADDC/SUBC we are checking.
10477 if (AddcSubcOp0
== MULOp
.getValue(0)) {
10478 LoMul
= &AddcSubcOp0
;
10479 LowAddSub
= &AddcSubcOp1
;
10481 if (AddcSubcOp1
== MULOp
.getValue(0)) {
10482 LoMul
= &AddcSubcOp1
;
10483 LowAddSub
= &AddcSubcOp0
;
10489 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10490 // the replacement below will create a cycle.
10491 if (AddcSubcNode
== HiAddSub
->getNode() ||
10492 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
10495 // Create the merged node.
10496 SelectionDAG
&DAG
= DCI
.DAG
;
10498 // Start building operand list.
10499 SmallVector
<SDValue
, 8> Ops
;
10500 Ops
.push_back(LoMul
->getOperand(0));
10501 Ops
.push_back(LoMul
->getOperand(1));
10503 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10504 // the case, we must be doing signed multiplication and only use the higher
10505 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10506 // addition or subtraction with the value of 0x800000.
10507 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
10508 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
10509 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
10510 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
10512 Ops
.push_back(*HiAddSub
);
10513 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
10514 FinalOpc
= ARMISD::SMMLSR
;
10516 FinalOpc
= ARMISD::SMMLAR
;
10518 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
10519 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
10521 return SDValue(AddeSubeNode
, 0);
10522 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
10523 // SMMLS is generated during instruction selection and the rest of this
10524 // function can not handle the case where AddcSubcNode is a SUBC.
10527 // Finish building the operand list for {U/S}MLAL
10528 Ops
.push_back(*LowAddSub
);
10529 Ops
.push_back(*HiAddSub
);
10531 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
10532 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
10534 // Replace the ADDs' nodes uses by the MLA node's values.
10535 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
10536 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
10538 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
10539 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
10541 // Return original node to notify the driver to stop replacing.
10542 return SDValue(AddeSubeNode
, 0);
10545 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
10546 TargetLowering::DAGCombinerInfo
&DCI
,
10547 const ARMSubtarget
*Subtarget
) {
10548 // UMAAL is similar to UMLAL except that it adds two unsigned values.
10549 // While trying to combine for the other MLAL nodes, first search for the
10550 // chance to use UMAAL. Check if Addc uses a node which has already
10551 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10552 // as the addend, and it's handled in PerformUMLALCombine.
10554 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
10555 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
10557 // Check that we have a glued ADDC node.
10558 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
10559 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
10562 // Find the converted UMAAL or quit if it doesn't exist.
10563 SDNode
*UmlalNode
= nullptr;
10565 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
10566 UmlalNode
= AddcNode
->getOperand(0).getNode();
10567 AddHi
= AddcNode
->getOperand(1);
10568 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
10569 UmlalNode
= AddcNode
->getOperand(1).getNode();
10570 AddHi
= AddcNode
->getOperand(0);
10572 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
10575 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10576 // the ADDC as well as Zero.
10577 if (!isNullConstant(UmlalNode
->getOperand(3)))
10580 if ((isNullConstant(AddeNode
->getOperand(0)) &&
10581 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
10582 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
10583 isNullConstant(AddeNode
->getOperand(1)))) {
10584 SelectionDAG
&DAG
= DCI
.DAG
;
10585 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
10586 UmlalNode
->getOperand(2), AddHi
};
10587 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
10588 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
10590 // Replace the ADDs' nodes uses by the UMAAL node's values.
10591 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
10592 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
10594 // Return original node to notify the driver to stop replacing.
10595 return SDValue(AddeNode
, 0);
10600 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
10601 const ARMSubtarget
*Subtarget
) {
10602 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
10605 // Check that we have a pair of ADDC and ADDE as operands.
10606 // Both addends of the ADDE must be zero.
10607 SDNode
* AddcNode
= N
->getOperand(2).getNode();
10608 SDNode
* AddeNode
= N
->getOperand(3).getNode();
10609 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
10610 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
10611 isNullConstant(AddeNode
->getOperand(0)) &&
10612 isNullConstant(AddeNode
->getOperand(1)) &&
10613 (AddeNode
->getOperand(2).getNode() == AddcNode
))
10614 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
10615 DAG
.getVTList(MVT::i32
, MVT::i32
),
10616 {N
->getOperand(0), N
->getOperand(1),
10617 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
10622 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
10623 TargetLowering::DAGCombinerInfo
&DCI
,
10624 const ARMSubtarget
*Subtarget
) {
10625 SelectionDAG
&DAG(DCI
.DAG
);
10627 if (N
->getOpcode() == ARMISD::SUBC
) {
10628 // (SUBC (ADDE 0, 0, C), 1) -> C
10629 SDValue LHS
= N
->getOperand(0);
10630 SDValue RHS
= N
->getOperand(1);
10631 if (LHS
->getOpcode() == ARMISD::ADDE
&&
10632 isNullConstant(LHS
->getOperand(0)) &&
10633 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
10634 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
10638 if (Subtarget
->isThumb1Only()) {
10639 SDValue RHS
= N
->getOperand(1);
10640 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
10641 int32_t imm
= C
->getSExtValue();
10642 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
10644 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
10645 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
10647 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
10655 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
10656 TargetLowering::DAGCombinerInfo
&DCI
,
10657 const ARMSubtarget
*Subtarget
) {
10658 if (Subtarget
->isThumb1Only()) {
10659 SelectionDAG
&DAG
= DCI
.DAG
;
10660 SDValue RHS
= N
->getOperand(1);
10661 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
10662 int64_t imm
= C
->getSExtValue();
10666 // The with-carry-in form matches bitwise not instead of the negation.
10667 // Effectively, the inverse interpretation of the carry flag already
10668 // accounts for part of the negation.
10669 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
10671 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
10673 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
10674 N
->getOperand(0), RHS
, N
->getOperand(2));
10677 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
10678 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
10683 static SDValue
PerformABSCombine(SDNode
*N
,
10684 TargetLowering::DAGCombinerInfo
&DCI
,
10685 const ARMSubtarget
*Subtarget
) {
10687 SelectionDAG
&DAG
= DCI
.DAG
;
10688 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10690 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
10693 if (!TLI
.expandABS(N
, res
, DAG
))
10699 /// PerformADDECombine - Target-specific dag combine transform from
10700 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10701 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
10702 static SDValue
PerformADDECombine(SDNode
*N
,
10703 TargetLowering::DAGCombinerInfo
&DCI
,
10704 const ARMSubtarget
*Subtarget
) {
10705 // Only ARM and Thumb2 support UMLAL/SMLAL.
10706 if (Subtarget
->isThumb1Only())
10707 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
10709 // Only perform the checks after legalize when the pattern is available.
10710 if (DCI
.isBeforeLegalize()) return SDValue();
10712 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
10715 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10716 /// operands N0 and N1. This is a helper for PerformADDCombine that is
10717 /// called with the default operands, and if that fails, with commuted
10719 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
10720 TargetLowering::DAGCombinerInfo
&DCI
,
10721 const ARMSubtarget
*Subtarget
){
10722 // Attempt to create vpadd for this add.
10723 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
10726 // Attempt to create vpaddl for this add.
10727 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
10729 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
10733 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10734 if (N0
.getNode()->hasOneUse())
10735 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
10741 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
10742 CombineLevel Level
) const {
10743 if (Level
== BeforeLegalizeTypes
)
10746 if (N
->getOpcode() != ISD::SHL
)
10749 if (Subtarget
->isThumb1Only()) {
10750 // Avoid making expensive immediates by commuting shifts. (This logic
10751 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
10753 if (N
->getOpcode() != ISD::SHL
)
10755 SDValue N1
= N
->getOperand(0);
10756 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
10757 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
10759 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
10760 if (Const
->getAPIntValue().ult(256))
10762 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
10763 Const
->getAPIntValue().sgt(-256))
10769 // Turn off commute-with-shift transform after legalization, so it doesn't
10770 // conflict with PerformSHLSimplify. (We could try to detect when
10771 // PerformSHLSimplify would trigger more precisely, but it isn't
10772 // really necessary.)
10776 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
10777 const SDNode
*N
, CombineLevel Level
) const {
10778 if (!Subtarget
->isThumb1Only())
10781 if (Level
== BeforeLegalizeTypes
)
10787 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
10788 if (!Subtarget
->hasNEON()) {
10789 if (Subtarget
->isThumb1Only())
10790 return VT
.getScalarSizeInBits() <= 32;
10793 return VT
.isScalarInteger();
10796 static SDValue
PerformSHLSimplify(SDNode
*N
,
10797 TargetLowering::DAGCombinerInfo
&DCI
,
10798 const ARMSubtarget
*ST
) {
10799 // Allow the generic combiner to identify potential bswaps.
10800 if (DCI
.isBeforeLegalize())
10803 // DAG combiner will fold:
10804 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10805 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10806 // Other code patterns that can be also be modified have the following form:
10807 // b + ((a << 1) | 510)
10808 // b + ((a << 1) & 510)
10809 // b + ((a << 1) ^ 510)
10810 // b + ((a << 1) + 510)
10812 // Many instructions can perform the shift for free, but it requires both
10813 // the operands to be registers. If c1 << c2 is too large, a mov immediate
10814 // instruction will needed. So, unfold back to the original pattern if:
10815 // - if c1 and c2 are small enough that they don't require mov imms.
10816 // - the user(s) of the node can perform an shl
10818 // No shifted operands for 16-bit instructions.
10819 if (ST
->isThumb() && ST
->isThumb1Only())
10822 // Check that all the users could perform the shl themselves.
10823 for (auto U
: N
->uses()) {
10824 switch(U
->getOpcode()) {
10834 // Check that the user isn't already using a constant because there
10835 // aren't any instructions that support an immediate operand and a
10836 // shifted operand.
10837 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
10838 isa
<ConstantSDNode
>(U
->getOperand(1)))
10841 // Check that it's not already using a shift.
10842 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
10843 U
->getOperand(1).getOpcode() == ISD::SHL
)
10849 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
10850 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
10853 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
10856 SDValue SHL
= N
->getOperand(0);
10858 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
10859 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
10860 if (!C1ShlC2
|| !C2
)
10863 APInt C2Int
= C2
->getAPIntValue();
10864 APInt C1Int
= C1ShlC2
->getAPIntValue();
10866 // Check that performing a lshr will not lose any information.
10867 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
10868 C2Int
.getBitWidth() - C2
->getZExtValue());
10869 if ((C1Int
& Mask
) != C1Int
)
10872 // Shift the first constant.
10873 C1Int
.lshrInPlace(C2Int
);
10875 // The immediates are encoded as an 8-bit value that can be rotated.
10876 auto LargeImm
= [](const APInt
&Imm
) {
10877 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
10878 return Imm
.getBitWidth() - Zeros
> 8;
10881 if (LargeImm(C1Int
) || LargeImm(C2Int
))
10884 SelectionDAG
&DAG
= DCI
.DAG
;
10886 SDValue X
= SHL
.getOperand(0);
10887 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
10888 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
10889 // Shift left to compensate for the lshr of C1Int.
10890 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
10892 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
10893 SHL
.dump(); N
->dump());
10894 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
10899 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10901 static SDValue
PerformADDCombine(SDNode
*N
,
10902 TargetLowering::DAGCombinerInfo
&DCI
,
10903 const ARMSubtarget
*Subtarget
) {
10904 SDValue N0
= N
->getOperand(0);
10905 SDValue N1
= N
->getOperand(1);
10907 // Only works one way, because it needs an immediate operand.
10908 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
10911 // First try with the default operand order.
10912 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
10915 // If that didn't work, try again with the operands commuted.
10916 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
10919 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10921 static SDValue
PerformSUBCombine(SDNode
*N
,
10922 TargetLowering::DAGCombinerInfo
&DCI
) {
10923 SDValue N0
= N
->getOperand(0);
10924 SDValue N1
= N
->getOperand(1);
10926 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10927 if (N1
.getNode()->hasOneUse())
10928 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
10934 /// PerformVMULCombine
10935 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10936 /// special multiplier accumulator forwarding.
10937 /// vmul d3, d0, d2
10938 /// vmla d3, d1, d2
10940 /// vadd d3, d0, d1
10941 /// vmul d3, d3, d2
10942 // However, for (A + B) * (A + B),
10949 static SDValue
PerformVMULCombine(SDNode
*N
,
10950 TargetLowering::DAGCombinerInfo
&DCI
,
10951 const ARMSubtarget
*Subtarget
) {
10952 if (!Subtarget
->hasVMLxForwarding())
10955 SelectionDAG
&DAG
= DCI
.DAG
;
10956 SDValue N0
= N
->getOperand(0);
10957 SDValue N1
= N
->getOperand(1);
10958 unsigned Opcode
= N0
.getOpcode();
10959 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
10960 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
10961 Opcode
= N1
.getOpcode();
10962 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
10963 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
10971 EVT VT
= N
->getValueType(0);
10973 SDValue N00
= N0
->getOperand(0);
10974 SDValue N01
= N0
->getOperand(1);
10975 return DAG
.getNode(Opcode
, DL
, VT
,
10976 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
10977 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
10980 static SDValue
PerformMULCombine(SDNode
*N
,
10981 TargetLowering::DAGCombinerInfo
&DCI
,
10982 const ARMSubtarget
*Subtarget
) {
10983 SelectionDAG
&DAG
= DCI
.DAG
;
10985 if (Subtarget
->isThumb1Only())
10988 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
10991 EVT VT
= N
->getValueType(0);
10992 if (VT
.is64BitVector() || VT
.is128BitVector())
10993 return PerformVMULCombine(N
, DCI
, Subtarget
);
10994 if (VT
!= MVT::i32
)
10997 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11001 int64_t MulAmt
= C
->getSExtValue();
11002 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11004 ShiftAmt
= ShiftAmt
& (32 - 1);
11005 SDValue V
= N
->getOperand(0);
11009 MulAmt
>>= ShiftAmt
;
11012 if (isPowerOf2_32(MulAmt
- 1)) {
11013 // (mul x, 2^N + 1) => (add (shl x, N), x)
11014 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11016 DAG
.getNode(ISD::SHL
, DL
, VT
,
11018 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11020 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11021 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11022 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11023 DAG
.getNode(ISD::SHL
, DL
, VT
,
11025 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11031 uint64_t MulAmtAbs
= -MulAmt
;
11032 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11033 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11034 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11036 DAG
.getNode(ISD::SHL
, DL
, VT
,
11038 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11040 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11041 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11042 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11044 DAG
.getNode(ISD::SHL
, DL
, VT
,
11046 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11048 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11049 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11055 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11056 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11058 // Do not add new nodes to DAG combiner worklist.
11059 DCI
.CombineTo(N
, Res
, false);
11063 static SDValue
CombineANDShift(SDNode
*N
,
11064 TargetLowering::DAGCombinerInfo
&DCI
,
11065 const ARMSubtarget
*Subtarget
) {
11066 // Allow DAGCombine to pattern-match before we touch the canonical form.
11067 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11070 if (N
->getValueType(0) != MVT::i32
)
11073 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11077 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11078 // Don't transform uxtb/uxth.
11079 if (C1
== 255 || C1
== 65535)
11082 SDNode
*N0
= N
->getOperand(0).getNode();
11083 if (!N0
->hasOneUse())
11086 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11089 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11091 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11095 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11096 if (!C2
|| C2
>= 32)
11099 // Clear irrelevant bits in the mask.
11105 SelectionDAG
&DAG
= DCI
.DAG
;
11108 // We have a pattern of the form "(and (shl x, c2) c1)" or
11109 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11110 // transform to a pair of shifts, to save materializing c1.
11112 // First pattern: right shift, then mask off leading bits.
11113 // FIXME: Use demanded bits?
11114 if (!LeftShift
&& isMask_32(C1
)) {
11115 uint32_t C3
= countLeadingZeros(C1
);
11117 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11118 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11119 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11120 DAG
.getConstant(C3
, DL
, MVT::i32
));
11124 // First pattern, reversed: left shift, then mask off trailing bits.
11125 if (LeftShift
&& isMask_32(~C1
)) {
11126 uint32_t C3
= countTrailingZeros(C1
);
11128 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11129 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11130 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11131 DAG
.getConstant(C3
, DL
, MVT::i32
));
11135 // Second pattern: left shift, then mask off leading bits.
11136 // FIXME: Use demanded bits?
11137 if (LeftShift
&& isShiftedMask_32(C1
)) {
11138 uint32_t Trailing
= countTrailingZeros(C1
);
11139 uint32_t C3
= countLeadingZeros(C1
);
11140 if (Trailing
== C2
&& C2
+ C3
< 32) {
11141 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11142 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11143 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11144 DAG
.getConstant(C3
, DL
, MVT::i32
));
11148 // Second pattern, reversed: right shift, then mask off trailing bits.
11149 // FIXME: Handle other patterns of known/demanded bits.
11150 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11151 uint32_t Leading
= countLeadingZeros(C1
);
11152 uint32_t C3
= countTrailingZeros(C1
);
11153 if (Leading
== C2
&& C2
+ C3
< 32) {
11154 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11155 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11156 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11157 DAG
.getConstant(C3
, DL
, MVT::i32
));
11161 // FIXME: Transform "(and (shl x, c2) c1)" ->
11162 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11167 static SDValue
PerformANDCombine(SDNode
*N
,
11168 TargetLowering::DAGCombinerInfo
&DCI
,
11169 const ARMSubtarget
*Subtarget
) {
11170 // Attempt to use immediate-form VBIC
11171 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11173 EVT VT
= N
->getValueType(0);
11174 SelectionDAG
&DAG
= DCI
.DAG
;
11176 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11179 APInt SplatBits
, SplatUndef
;
11180 unsigned SplatBitSize
;
11183 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11184 if (SplatBitSize
<= 64) {
11186 SDValue Val
= isNEONModifiedImm((~SplatBits
).getZExtValue(),
11187 SplatUndef
.getZExtValue(), SplatBitSize
,
11188 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11190 if (Val
.getNode()) {
11192 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11193 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11194 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11199 if (!Subtarget
->isThumb1Only()) {
11200 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11201 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11204 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11208 if (Subtarget
->isThumb1Only())
11209 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11215 // Try combining OR nodes to SMULWB, SMULWT.
11216 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11217 TargetLowering::DAGCombinerInfo
&DCI
,
11218 const ARMSubtarget
*Subtarget
) {
11219 if (!Subtarget
->hasV6Ops() ||
11220 (Subtarget
->isThumb() &&
11221 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11224 SDValue SRL
= OR
->getOperand(0);
11225 SDValue SHL
= OR
->getOperand(1);
11227 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11228 SRL
= OR
->getOperand(1);
11229 SHL
= OR
->getOperand(0);
11231 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11234 // The first operands to the shifts need to be the two results from the
11235 // same smul_lohi node.
11236 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11237 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11240 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11241 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11242 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11246 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11247 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11248 // For SMUWB the 16-bit value will signed extended somehow.
11249 // For SMULWT only the SRA is required.
11250 // Check both sides of SMUL_LOHI
11251 SDValue OpS16
= SMULLOHI
->getOperand(0);
11252 SDValue OpS32
= SMULLOHI
->getOperand(1);
11254 SelectionDAG
&DAG
= DCI
.DAG
;
11255 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11257 OpS32
= SMULLOHI
->getOperand(0);
11261 unsigned Opcode
= 0;
11262 if (isS16(OpS16
, DAG
))
11263 Opcode
= ARMISD::SMULWB
;
11264 else if (isSRA16(OpS16
)) {
11265 Opcode
= ARMISD::SMULWT
;
11266 OpS16
= OpS16
->getOperand(0);
11271 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11272 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11273 return SDValue(OR
, 0);
11276 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11277 TargetLowering::DAGCombinerInfo
&DCI
,
11278 const ARMSubtarget
*Subtarget
) {
11279 // BFI is only available on V6T2+
11280 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11283 EVT VT
= N
->getValueType(0);
11284 SDValue N0
= N
->getOperand(0);
11285 SDValue N1
= N
->getOperand(1);
11286 SelectionDAG
&DAG
= DCI
.DAG
;
11288 // 1) or (and A, mask), val => ARMbfi A, val, mask
11289 // iff (val & mask) == val
11291 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11292 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11293 // && mask == ~mask2
11294 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11295 // && ~mask == mask2
11296 // (i.e., copy a bitfield value into another bitfield of the same width)
11298 if (VT
!= MVT::i32
)
11301 SDValue N00
= N0
.getOperand(0);
11303 // The value and the mask need to be constants so we can verify this is
11304 // actually a bitfield set. If the mask is 0xffff, we can do better
11305 // via a movt instruction, so don't use BFI in that case.
11306 SDValue MaskOp
= N0
.getOperand(1);
11307 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11310 unsigned Mask
= MaskC
->getZExtValue();
11311 if (Mask
== 0xffff)
11314 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11315 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11317 unsigned Val
= N1C
->getZExtValue();
11318 if ((Val
& ~Mask
) != Val
)
11321 if (ARM::isBitFieldInvertedMask(Mask
)) {
11322 Val
>>= countTrailingZeros(~Mask
);
11324 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11325 DAG
.getConstant(Val
, DL
, MVT::i32
),
11326 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11328 DCI
.CombineTo(N
, Res
, false);
11329 // Return value from the original node to inform the combiner than N is
11331 return SDValue(N
, 0);
11333 } else if (N1
.getOpcode() == ISD::AND
) {
11334 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11335 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11338 unsigned Mask2
= N11C
->getZExtValue();
11340 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11342 if (ARM::isBitFieldInvertedMask(Mask
) &&
11343 (Mask
== ~Mask2
)) {
11344 // The pack halfword instruction works better for masks that fit it,
11345 // so use that when it's available.
11346 if (Subtarget
->hasDSP() &&
11347 (Mask
== 0xffff || Mask
== 0xffff0000))
11350 unsigned amt
= countTrailingZeros(Mask2
);
11351 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11352 DAG
.getConstant(amt
, DL
, MVT::i32
));
11353 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11354 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11355 DCI
.CombineTo(N
, Res
, false);
11356 // Return value from the original node to inform the combiner than N is
11358 return SDValue(N
, 0);
11359 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11360 (~Mask
== Mask2
)) {
11361 // The pack halfword instruction works better for masks that fit it,
11362 // so use that when it's available.
11363 if (Subtarget
->hasDSP() &&
11364 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11367 unsigned lsb
= countTrailingZeros(Mask
);
11368 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11369 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11370 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11371 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11372 DCI
.CombineTo(N
, Res
, false);
11373 // Return value from the original node to inform the combiner than N is
11375 return SDValue(N
, 0);
11379 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11380 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11381 ARM::isBitFieldInvertedMask(~Mask
)) {
11382 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11383 // where lsb(mask) == #shamt and masked bits of B are known zero.
11384 SDValue ShAmt
= N00
.getOperand(1);
11385 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11386 unsigned LSB
= countTrailingZeros(Mask
);
11390 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11391 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11393 DCI
.CombineTo(N
, Res
, false);
11394 // Return value from the original node to inform the combiner than N is
11396 return SDValue(N
, 0);
11402 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11403 static SDValue
PerformORCombine(SDNode
*N
,
11404 TargetLowering::DAGCombinerInfo
&DCI
,
11405 const ARMSubtarget
*Subtarget
) {
11406 // Attempt to use immediate-form VORR
11407 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11409 EVT VT
= N
->getValueType(0);
11410 SelectionDAG
&DAG
= DCI
.DAG
;
11412 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11415 APInt SplatBits
, SplatUndef
;
11416 unsigned SplatBitSize
;
11418 if (BVN
&& Subtarget
->hasNEON() &&
11419 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11420 if (SplatBitSize
<= 64) {
11422 SDValue Val
= isNEONModifiedImm(SplatBits
.getZExtValue(),
11423 SplatUndef
.getZExtValue(), SplatBitSize
,
11424 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
11426 if (Val
.getNode()) {
11428 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
11429 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
11430 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
11435 if (!Subtarget
->isThumb1Only()) {
11436 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11437 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
11439 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
11443 SDValue N0
= N
->getOperand(0);
11444 SDValue N1
= N
->getOperand(1);
11446 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11447 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
11448 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
11450 // The code below optimizes (or (and X, Y), Z).
11451 // The AND operand needs to have a single user to make these optimizations
11453 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
11457 unsigned SplatBitSize
;
11460 APInt SplatBits0
, SplatBits1
;
11461 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
11462 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
11463 // Ensure that the second operand of both ands are constants
11464 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
11465 HasAnyUndefs
) && !HasAnyUndefs
) {
11466 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
11467 HasAnyUndefs
) && !HasAnyUndefs
) {
11468 // Ensure that the bit width of the constants are the same and that
11469 // the splat arguments are logical inverses as per the pattern we
11470 // are trying to simplify.
11471 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
11472 SplatBits0
== ~SplatBits1
) {
11473 // Canonicalize the vector type to make instruction selection
11475 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
11476 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
11479 N1
->getOperand(0));
11480 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
11486 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11488 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
11489 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
11493 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11499 static SDValue
PerformXORCombine(SDNode
*N
,
11500 TargetLowering::DAGCombinerInfo
&DCI
,
11501 const ARMSubtarget
*Subtarget
) {
11502 EVT VT
= N
->getValueType(0);
11503 SelectionDAG
&DAG
= DCI
.DAG
;
11505 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11508 if (!Subtarget
->isThumb1Only()) {
11509 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11510 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
11513 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11520 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11521 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11522 // their position in "to" (Rd).
11523 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
11524 assert(N
->getOpcode() == ARMISD::BFI
);
11526 SDValue From
= N
->getOperand(1);
11527 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
11528 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
11530 // If the Base came from a SHR #C, we can deduce that it is really testing bit
11531 // #C in the base of the SHR.
11532 if (From
->getOpcode() == ISD::SRL
&&
11533 isa
<ConstantSDNode
>(From
->getOperand(1))) {
11534 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
11535 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
11536 FromMask
<<= Shift
.getLimitedValue(31);
11537 From
= From
->getOperand(0);
11543 // If A and B contain one contiguous set of bits, does A | B == A . B?
11545 // Neither A nor B must be zero.
11546 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
11547 unsigned LastActiveBitInA
= A
.countTrailingZeros();
11548 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
11549 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
11552 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
11553 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11555 APInt ToMask
, FromMask
;
11556 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
11557 SDValue To
= N
->getOperand(0);
11559 // Now check for a compatible BFI to merge with. We can pass through BFIs that
11560 // aren't compatible, but not if they set the same bit in their destination as
11561 // we do (or that of any BFI we're going to combine with).
11563 APInt CombinedToMask
= ToMask
;
11564 while (V
.getOpcode() == ARMISD::BFI
) {
11565 APInt NewToMask
, NewFromMask
;
11566 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
11567 if (NewFrom
!= From
) {
11568 // This BFI has a different base. Keep going.
11569 CombinedToMask
|= NewToMask
;
11570 V
= V
.getOperand(0);
11574 // Do the written bits conflict with any we've seen so far?
11575 if ((NewToMask
& CombinedToMask
).getBoolValue())
11576 // Conflicting bits - bail out because going further is unsafe.
11579 // Are the new bits contiguous when combined with the old bits?
11580 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
11581 BitsProperlyConcatenate(FromMask
, NewFromMask
))
11583 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
11584 BitsProperlyConcatenate(NewFromMask
, FromMask
))
11587 // We've seen a write to some bits, so track it.
11588 CombinedToMask
|= NewToMask
;
11590 V
= V
.getOperand(0);
11596 static SDValue
PerformBFICombine(SDNode
*N
,
11597 TargetLowering::DAGCombinerInfo
&DCI
) {
11598 SDValue N1
= N
->getOperand(1);
11599 if (N1
.getOpcode() == ISD::AND
) {
11600 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11601 // the bits being cleared by the AND are not demanded by the BFI.
11602 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11605 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
11606 unsigned LSB
= countTrailingZeros(~InvMask
);
11607 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
11609 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
11610 "undefined behavior");
11611 unsigned Mask
= (1u << Width
) - 1;
11612 unsigned Mask2
= N11C
->getZExtValue();
11613 if ((Mask
& (~Mask2
)) == 0)
11614 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
11615 N
->getOperand(0), N1
.getOperand(0),
11617 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
11618 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11619 // Keep track of any consecutive bits set that all come from the same base
11620 // value. We can combine these together into a single BFI.
11621 SDValue CombineBFI
= FindBFIToCombineWith(N
);
11622 if (CombineBFI
== SDValue())
11625 // We've found a BFI.
11626 APInt ToMask1
, FromMask1
;
11627 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
11629 APInt ToMask2
, FromMask2
;
11630 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
11631 assert(From1
== From2
);
11634 // First, unlink CombineBFI.
11635 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
11636 // Then create a new BFI, combining the two together.
11637 APInt NewFromMask
= FromMask1
| FromMask2
;
11638 APInt NewToMask
= ToMask1
| ToMask2
;
11640 EVT VT
= N
->getValueType(0);
11643 if (NewFromMask
[0] == 0)
11644 From1
= DCI
.DAG
.getNode(
11645 ISD::SRL
, dl
, VT
, From1
,
11646 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
11647 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
11648 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
11653 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11654 /// ARMISD::VMOVRRD.
11655 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
11656 TargetLowering::DAGCombinerInfo
&DCI
,
11657 const ARMSubtarget
*Subtarget
) {
11658 // vmovrrd(vmovdrr x, y) -> x,y
11659 SDValue InDouble
= N
->getOperand(0);
11660 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
11661 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
11663 // vmovrrd(load f64) -> (load i32), (load i32)
11664 SDNode
*InNode
= InDouble
.getNode();
11665 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
11666 InNode
->getValueType(0) == MVT::f64
&&
11667 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
11668 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
11669 // TODO: Should this be done for non-FrameIndex operands?
11670 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
11672 SelectionDAG
&DAG
= DCI
.DAG
;
11674 SDValue BasePtr
= LD
->getBasePtr();
11676 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
11677 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
11679 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
11680 DAG
.getConstant(4, DL
, MVT::i32
));
11681 SDValue NewLD2
= DAG
.getLoad(
11682 MVT::i32
, DL
, NewLD1
.getValue(1), OffsetPtr
, LD
->getPointerInfo(),
11683 std::min(4U, LD
->getAlignment() / 2), LD
->getMemOperand()->getFlags());
11685 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
11686 if (DCI
.DAG
.getDataLayout().isBigEndian())
11687 std::swap (NewLD1
, NewLD2
);
11688 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
11695 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11696 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
11697 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
11698 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11699 SDValue Op0
= N
->getOperand(0);
11700 SDValue Op1
= N
->getOperand(1);
11701 if (Op0
.getOpcode() == ISD::BITCAST
)
11702 Op0
= Op0
.getOperand(0);
11703 if (Op1
.getOpcode() == ISD::BITCAST
)
11704 Op1
= Op1
.getOperand(0);
11705 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
11706 Op0
.getNode() == Op1
.getNode() &&
11707 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
11708 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
11709 N
->getValueType(0), Op0
.getOperand(0));
11713 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11714 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
11715 /// i64 vector to have f64 elements, since the value can then be loaded
11716 /// directly into a VFP register.
11717 static bool hasNormalLoadOperand(SDNode
*N
) {
11718 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
11719 for (unsigned i
= 0; i
< NumElts
; ++i
) {
11720 SDNode
*Elt
= N
->getOperand(i
).getNode();
11721 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
11727 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11728 /// ISD::BUILD_VECTOR.
11729 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
11730 TargetLowering::DAGCombinerInfo
&DCI
,
11731 const ARMSubtarget
*Subtarget
) {
11732 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11733 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
11734 // into a pair of GPRs, which is fine when the value is used as a scalar,
11735 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11736 SelectionDAG
&DAG
= DCI
.DAG
;
11737 if (N
->getNumOperands() == 2)
11738 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
11741 // Load i64 elements as f64 values so that type legalization does not split
11742 // them up into i32 values.
11743 EVT VT
= N
->getValueType(0);
11744 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
11747 SmallVector
<SDValue
, 8> Ops
;
11748 unsigned NumElts
= VT
.getVectorNumElements();
11749 for (unsigned i
= 0; i
< NumElts
; ++i
) {
11750 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
11752 // Make the DAGCombiner fold the bitcast.
11753 DCI
.AddToWorklist(V
.getNode());
11755 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
11756 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
11757 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
11760 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11762 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
11763 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11764 // At that time, we may have inserted bitcasts from integer to float.
11765 // If these bitcasts have survived DAGCombine, change the lowering of this
11766 // BUILD_VECTOR in something more vector friendly, i.e., that does not
11767 // force to use floating point types.
11769 // Make sure we can change the type of the vector.
11770 // This is possible iff:
11771 // 1. The vector is only used in a bitcast to a integer type. I.e.,
11772 // 1.1. Vector is used only once.
11773 // 1.2. Use is a bit convert to an integer type.
11774 // 2. The size of its operands are 32-bits (64-bits are not legal).
11775 EVT VT
= N
->getValueType(0);
11776 EVT EltVT
= VT
.getVectorElementType();
11778 // Check 1.1. and 2.
11779 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
11782 // By construction, the input type must be float.
11783 assert(EltVT
== MVT::f32
&& "Unexpected type!");
11786 SDNode
*Use
= *N
->use_begin();
11787 if (Use
->getOpcode() != ISD::BITCAST
||
11788 Use
->getValueType(0).isFloatingPoint())
11791 // Check profitability.
11792 // Model is, if more than half of the relevant operands are bitcast from
11793 // i32, turn the build_vector into a sequence of insert_vector_elt.
11794 // Relevant operands are everything that is not statically
11795 // (i.e., at compile time) bitcasted.
11796 unsigned NumOfBitCastedElts
= 0;
11797 unsigned NumElts
= VT
.getVectorNumElements();
11798 unsigned NumOfRelevantElts
= NumElts
;
11799 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
11800 SDValue Elt
= N
->getOperand(Idx
);
11801 if (Elt
->getOpcode() == ISD::BITCAST
) {
11802 // Assume only bit cast to i32 will go away.
11803 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
11804 ++NumOfBitCastedElts
;
11805 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
11806 // Constants are statically casted, thus do not count them as
11807 // relevant operands.
11808 --NumOfRelevantElts
;
11811 // Check if more than half of the elements require a non-free bitcast.
11812 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
11815 SelectionDAG
&DAG
= DCI
.DAG
;
11816 // Create the new vector type.
11817 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
11818 // Check if the type is legal.
11819 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11820 if (!TLI
.isTypeLegal(VecVT
))
11824 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11825 // => BITCAST INSERT_VECTOR_ELT
11826 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11827 // (BITCAST EN), N.
11828 SDValue Vec
= DAG
.getUNDEF(VecVT
);
11830 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
11831 SDValue V
= N
->getOperand(Idx
);
11834 if (V
.getOpcode() == ISD::BITCAST
&&
11835 V
->getOperand(0).getValueType() == MVT::i32
)
11836 // Fold obvious case.
11837 V
= V
.getOperand(0);
11839 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
11840 // Make the DAGCombiner fold the bitcasts.
11841 DCI
.AddToWorklist(V
.getNode());
11843 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
11844 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
11846 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
11847 // Make the DAGCombiner fold the bitcasts.
11848 DCI
.AddToWorklist(Vec
.getNode());
11852 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11853 /// ISD::INSERT_VECTOR_ELT.
11854 static SDValue
PerformInsertEltCombine(SDNode
*N
,
11855 TargetLowering::DAGCombinerInfo
&DCI
) {
11856 // Bitcast an i64 load inserted into a vector to f64.
11857 // Otherwise, the i64 value will be legalized to a pair of i32 values.
11858 EVT VT
= N
->getValueType(0);
11859 SDNode
*Elt
= N
->getOperand(1).getNode();
11860 if (VT
.getVectorElementType() != MVT::i64
||
11861 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
11864 SelectionDAG
&DAG
= DCI
.DAG
;
11866 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
11867 VT
.getVectorNumElements());
11868 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
11869 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
11870 // Make the DAGCombiner fold the bitcasts.
11871 DCI
.AddToWorklist(Vec
.getNode());
11872 DCI
.AddToWorklist(V
.getNode());
11873 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
11874 Vec
, V
, N
->getOperand(2));
11875 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
11878 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11879 /// ISD::VECTOR_SHUFFLE.
11880 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
11881 // The LLVM shufflevector instruction does not require the shuffle mask
11882 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11883 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
11884 // operands do not match the mask length, they are extended by concatenating
11885 // them with undef vectors. That is probably the right thing for other
11886 // targets, but for NEON it is better to concatenate two double-register
11887 // size vector operands into a single quad-register size vector. Do that
11888 // transformation here:
11889 // shuffle(concat(v1, undef), concat(v2, undef)) ->
11890 // shuffle(concat(v1, v2), undef)
11891 SDValue Op0
= N
->getOperand(0);
11892 SDValue Op1
= N
->getOperand(1);
11893 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
11894 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
11895 Op0
.getNumOperands() != 2 ||
11896 Op1
.getNumOperands() != 2)
11898 SDValue Concat0Op1
= Op0
.getOperand(1);
11899 SDValue Concat1Op1
= Op1
.getOperand(1);
11900 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
11902 // Skip the transformation if any of the types are illegal.
11903 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11904 EVT VT
= N
->getValueType(0);
11905 if (!TLI
.isTypeLegal(VT
) ||
11906 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
11907 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
11910 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
11911 Op0
.getOperand(0), Op1
.getOperand(0));
11912 // Translate the shuffle mask.
11913 SmallVector
<int, 16> NewMask
;
11914 unsigned NumElts
= VT
.getVectorNumElements();
11915 unsigned HalfElts
= NumElts
/2;
11916 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
11917 for (unsigned n
= 0; n
< NumElts
; ++n
) {
11918 int MaskElt
= SVN
->getMaskElt(n
);
11920 if (MaskElt
< (int)HalfElts
)
11922 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
11923 NewElt
= HalfElts
+ MaskElt
- NumElts
;
11924 NewMask
.push_back(NewElt
);
11926 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
11927 DAG
.getUNDEF(VT
), NewMask
);
11930 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11931 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11932 /// base address updates.
11933 /// For generic load/stores, the memory type is assumed to be a vector.
11934 /// The caller is assumed to have checked legality.
11935 static SDValue
CombineBaseUpdate(SDNode
*N
,
11936 TargetLowering::DAGCombinerInfo
&DCI
) {
11937 SelectionDAG
&DAG
= DCI
.DAG
;
11938 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
11939 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
11940 const bool isStore
= N
->getOpcode() == ISD::STORE
;
11941 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
11942 SDValue Addr
= N
->getOperand(AddrOpIdx
);
11943 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
11946 // Search for a use of the address operand that is an increment.
11947 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
11948 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
11949 SDNode
*User
= *UI
;
11950 if (User
->getOpcode() != ISD::ADD
||
11951 UI
.getUse().getResNo() != Addr
.getResNo())
11954 // Check that the add is independent of the load/store. Otherwise, folding
11955 // it would create a cycle. We can avoid searching through Addr as it's a
11956 // predecessor to both.
11957 SmallPtrSet
<const SDNode
*, 32> Visited
;
11958 SmallVector
<const SDNode
*, 16> Worklist
;
11959 Visited
.insert(Addr
.getNode());
11960 Worklist
.push_back(N
);
11961 Worklist
.push_back(User
);
11962 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
11963 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
11966 // Find the new opcode for the updating load/store.
11967 bool isLoadOp
= true;
11968 bool isLaneOp
= false;
11969 unsigned NewOpc
= 0;
11970 unsigned NumVecs
= 0;
11972 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
11974 default: llvm_unreachable("unexpected intrinsic for Neon base update");
11975 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
11976 NumVecs
= 1; break;
11977 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
11978 NumVecs
= 2; break;
11979 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
11980 NumVecs
= 3; break;
11981 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
11982 NumVecs
= 4; break;
11983 case Intrinsic::arm_neon_vld2dup
:
11984 case Intrinsic::arm_neon_vld3dup
:
11985 case Intrinsic::arm_neon_vld4dup
:
11986 // TODO: Support updating VLDxDUP nodes. For now, we just skip
11987 // combining base updates for such intrinsics.
11989 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
11990 NumVecs
= 2; isLaneOp
= true; break;
11991 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
11992 NumVecs
= 3; isLaneOp
= true; break;
11993 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
11994 NumVecs
= 4; isLaneOp
= true; break;
11995 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
11996 NumVecs
= 1; isLoadOp
= false; break;
11997 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
11998 NumVecs
= 2; isLoadOp
= false; break;
11999 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12000 NumVecs
= 3; isLoadOp
= false; break;
12001 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12002 NumVecs
= 4; isLoadOp
= false; break;
12003 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12004 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12005 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12006 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12007 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12008 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12012 switch (N
->getOpcode()) {
12013 default: llvm_unreachable("unexpected opcode for Neon base update");
12014 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12015 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12016 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12017 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12018 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12019 NumVecs
= 1; isLaneOp
= false; break;
12020 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12021 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12025 // Find the size of memory referenced by the load/store.
12028 VecTy
= N
->getValueType(0);
12029 } else if (isIntrinsic
) {
12030 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12032 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12033 VecTy
= N
->getOperand(1).getValueType();
12036 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12038 NumBytes
/= VecTy
.getVectorNumElements();
12040 // If the increment is a constant, it must match the memory ref size.
12041 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12042 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12043 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12044 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12045 // separate instructions that make it harder to use a non-constant update.
12049 // OK, we found an ADD we can fold into the base update.
12050 // Now, create a _UPD node, taking care of not breaking alignment.
12052 EVT AlignedVecTy
= VecTy
;
12053 unsigned Alignment
= MemN
->getAlignment();
12055 // If this is a less-than-standard-aligned load/store, change the type to
12056 // match the standard alignment.
12057 // The alignment is overlooked when selecting _UPD variants; and it's
12058 // easier to introduce bitcasts here than fix that.
12059 // There are 3 ways to get to this base-update combine:
12060 // - intrinsics: they are assumed to be properly aligned (to the standard
12061 // alignment of the memory type), so we don't need to do anything.
12062 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12063 // intrinsics, so, likewise, there's nothing to do.
12064 // - generic load/store instructions: the alignment is specified as an
12065 // explicit operand, rather than implicitly as the standard alignment
12066 // of the memory type (like the intrisics). We need to change the
12067 // memory type to match the explicit alignment. That way, we don't
12068 // generate non-standard-aligned ARMISD::VLDx nodes.
12069 if (isa
<LSBaseSDNode
>(N
)) {
12070 if (Alignment
== 0)
12072 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12073 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12074 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12075 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12076 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12077 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12079 // Don't set an explicit alignment on regular load/stores that we want
12080 // to transform to VLD/VST 1_UPD nodes.
12081 // This matches the behavior of regular load/stores, which only get an
12082 // explicit alignment if the MMO alignment is larger than the standard
12083 // alignment of the memory type.
12084 // Intrinsics, however, always get an explicit alignment, set to the
12085 // alignment of the MMO.
12089 // Create the new updating load/store node.
12090 // First, create an SDVTList for the new updating node's results.
12092 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12094 for (n
= 0; n
< NumResultVecs
; ++n
)
12095 Tys
[n
] = AlignedVecTy
;
12096 Tys
[n
++] = MVT::i32
;
12097 Tys
[n
] = MVT::Other
;
12098 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12100 // Then, gather the new node's operands.
12101 SmallVector
<SDValue
, 8> Ops
;
12102 Ops
.push_back(N
->getOperand(0)); // incoming chain
12103 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12104 Ops
.push_back(Inc
);
12106 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12107 // Try to match the intrinsic's signature
12108 Ops
.push_back(StN
->getValue());
12110 // Loads (and of course intrinsics) match the intrinsics' signature,
12111 // so just add all but the alignment operand.
12112 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12113 Ops
.push_back(N
->getOperand(i
));
12116 // For all node types, the alignment operand is always the last one.
12117 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12119 // If this is a non-standard-aligned STORE, the penultimate operand is the
12120 // stored value. Bitcast it to the aligned type.
12121 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12122 SDValue
&StVal
= Ops
[Ops
.size()-2];
12123 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12126 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12127 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12128 MemN
->getMemOperand());
12130 // Update the uses.
12131 SmallVector
<SDValue
, 5> NewResults
;
12132 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12133 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12135 // If this is an non-standard-aligned LOAD, the first result is the loaded
12136 // value. Bitcast it to the expected result type.
12137 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12138 SDValue
&LdVal
= NewResults
[0];
12139 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12142 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12143 DCI
.CombineTo(N
, NewResults
);
12144 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12151 static SDValue
PerformVLDCombine(SDNode
*N
,
12152 TargetLowering::DAGCombinerInfo
&DCI
) {
12153 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12156 return CombineBaseUpdate(N
, DCI
);
12159 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12160 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12161 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12163 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12164 SelectionDAG
&DAG
= DCI
.DAG
;
12165 EVT VT
= N
->getValueType(0);
12166 // vldN-dup instructions only support 64-bit vectors for N > 1.
12167 if (!VT
.is64BitVector())
12170 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12171 SDNode
*VLD
= N
->getOperand(0).getNode();
12172 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12174 unsigned NumVecs
= 0;
12175 unsigned NewOpc
= 0;
12176 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12177 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12179 NewOpc
= ARMISD::VLD2DUP
;
12180 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12182 NewOpc
= ARMISD::VLD3DUP
;
12183 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12185 NewOpc
= ARMISD::VLD4DUP
;
12190 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12191 // numbers match the load.
12192 unsigned VLDLaneNo
=
12193 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12194 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12196 // Ignore uses of the chain result.
12197 if (UI
.getUse().getResNo() == NumVecs
)
12199 SDNode
*User
= *UI
;
12200 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12201 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12205 // Create the vldN-dup node.
12208 for (n
= 0; n
< NumVecs
; ++n
)
12210 Tys
[n
] = MVT::Other
;
12211 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12212 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12213 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12214 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12215 Ops
, VLDMemInt
->getMemoryVT(),
12216 VLDMemInt
->getMemOperand());
12218 // Update the uses.
12219 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12221 unsigned ResNo
= UI
.getUse().getResNo();
12222 // Ignore uses of the chain result.
12223 if (ResNo
== NumVecs
)
12225 SDNode
*User
= *UI
;
12226 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12229 // Now the vldN-lane intrinsic is dead except for its chain result.
12230 // Update uses of the chain.
12231 std::vector
<SDValue
> VLDDupResults
;
12232 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12233 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12234 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12235 DCI
.CombineTo(VLD
, VLDDupResults
);
12240 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12241 /// ARMISD::VDUPLANE.
12242 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12243 TargetLowering::DAGCombinerInfo
&DCI
) {
12244 SDValue Op
= N
->getOperand(0);
12246 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12247 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12248 if (CombineVLDDUP(N
, DCI
))
12249 return SDValue(N
, 0);
12251 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12252 // redundant. Ignore bit_converts for now; element sizes are checked below.
12253 while (Op
.getOpcode() == ISD::BITCAST
)
12254 Op
= Op
.getOperand(0);
12255 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12258 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12259 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12260 // The canonical VMOV for a zero vector uses a 32-bit element size.
12261 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12263 if (ARM_AM::decodeNEONModImm(Imm
, EltBits
) == 0)
12265 EVT VT
= N
->getValueType(0);
12266 if (EltSize
> VT
.getScalarSizeInBits())
12269 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12272 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12273 static SDValue
PerformVDUPCombine(SDNode
*N
,
12274 TargetLowering::DAGCombinerInfo
&DCI
,
12275 const ARMSubtarget
*Subtarget
) {
12276 SelectionDAG
&DAG
= DCI
.DAG
;
12277 SDValue Op
= N
->getOperand(0);
12279 if (!Subtarget
->hasNEON())
12282 // Match VDUP(LOAD) -> VLD1DUP.
12283 // We match this pattern here rather than waiting for isel because the
12284 // transform is only legal for unindexed loads.
12285 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12286 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12287 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12288 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12289 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12290 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12291 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12292 Ops
, LD
->getMemoryVT(),
12293 LD
->getMemOperand());
12294 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12301 static SDValue
PerformLOADCombine(SDNode
*N
,
12302 TargetLowering::DAGCombinerInfo
&DCI
) {
12303 EVT VT
= N
->getValueType(0);
12305 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12306 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12307 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12308 return CombineBaseUpdate(N
, DCI
);
12313 /// PerformSTORECombine - Target-specific dag combine xforms for
12315 static SDValue
PerformSTORECombine(SDNode
*N
,
12316 TargetLowering::DAGCombinerInfo
&DCI
) {
12317 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12318 if (St
->isVolatile())
12321 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12322 // pack all of the elements in one place. Next, store to memory in fewer
12324 SDValue StVal
= St
->getValue();
12325 EVT VT
= StVal
.getValueType();
12326 if (St
->isTruncatingStore() && VT
.isVector()) {
12327 SelectionDAG
&DAG
= DCI
.DAG
;
12328 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12329 EVT StVT
= St
->getMemoryVT();
12330 unsigned NumElems
= VT
.getVectorNumElements();
12331 assert(StVT
!= VT
&& "Cannot truncate to the same type");
12332 unsigned FromEltSz
= VT
.getScalarSizeInBits();
12333 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
12335 // From, To sizes and ElemCount must be pow of two
12336 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
12338 // We are going to use the original vector elt for storing.
12339 // Accumulated smaller vector elements must be a multiple of the store size.
12340 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
12342 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
12343 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
12345 // Create a type on which we perform the shuffle.
12346 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
12347 NumElems
*SizeRatio
);
12348 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
12351 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
12352 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
12353 for (unsigned i
= 0; i
< NumElems
; ++i
)
12354 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
12355 ? (i
+ 1) * SizeRatio
- 1
12358 // Can't shuffle using an illegal type.
12359 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
12361 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
12362 DAG
.getUNDEF(WideVec
.getValueType()),
12364 // At this point all of the data is stored at the bottom of the
12365 // register. We now need to save it to mem.
12367 // Find the largest store unit
12368 MVT StoreType
= MVT::i8
;
12369 for (MVT Tp
: MVT::integer_valuetypes()) {
12370 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
12373 // Didn't find a legal store type.
12374 if (!TLI
.isTypeLegal(StoreType
))
12377 // Bitcast the original vector into a vector of store-size units
12378 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
12379 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
12380 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
12381 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
12382 SmallVector
<SDValue
, 8> Chains
;
12383 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
12384 TLI
.getPointerTy(DAG
.getDataLayout()));
12385 SDValue BasePtr
= St
->getBasePtr();
12387 // Perform one or more big stores into memory.
12388 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
12389 for (unsigned I
= 0; I
< E
; I
++) {
12390 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
12391 StoreType
, ShuffWide
,
12392 DAG
.getIntPtrConstant(I
, DL
));
12393 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
12394 St
->getPointerInfo(), St
->getAlignment(),
12395 St
->getMemOperand()->getFlags());
12396 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
12398 Chains
.push_back(Ch
);
12400 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
12403 if (!ISD::isNormalStore(St
))
12406 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12407 // ARM stores of arguments in the same cache line.
12408 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
12409 StVal
.getNode()->hasOneUse()) {
12410 SelectionDAG
&DAG
= DCI
.DAG
;
12411 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
12413 SDValue BasePtr
= St
->getBasePtr();
12414 SDValue NewST1
= DAG
.getStore(
12415 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
12416 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
12417 St
->getMemOperand()->getFlags());
12419 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12420 DAG
.getConstant(4, DL
, MVT::i32
));
12421 return DAG
.getStore(NewST1
.getValue(0), DL
,
12422 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
12423 OffsetPtr
, St
->getPointerInfo(),
12424 std::min(4U, St
->getAlignment() / 2),
12425 St
->getMemOperand()->getFlags());
12428 if (StVal
.getValueType() == MVT::i64
&&
12429 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
12431 // Bitcast an i64 store extracted from a vector to f64.
12432 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12433 SelectionDAG
&DAG
= DCI
.DAG
;
12435 SDValue IntVec
= StVal
.getOperand(0);
12436 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12437 IntVec
.getValueType().getVectorNumElements());
12438 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
12439 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
12440 Vec
, StVal
.getOperand(1));
12442 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
12443 // Make the DAGCombiner fold the bitcasts.
12444 DCI
.AddToWorklist(Vec
.getNode());
12445 DCI
.AddToWorklist(ExtElt
.getNode());
12446 DCI
.AddToWorklist(V
.getNode());
12447 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
12448 St
->getPointerInfo(), St
->getAlignment(),
12449 St
->getMemOperand()->getFlags(), St
->getAAInfo());
12452 // If this is a legal vector store, try to combine it into a VST1_UPD.
12453 if (ISD::isNormalStore(N
) && VT
.isVector() &&
12454 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12455 return CombineBaseUpdate(N
, DCI
);
12460 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12461 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12462 /// when the VMUL has a constant operand that is a power of 2.
12464 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12465 /// vmul.f32 d16, d17, d16
12466 /// vcvt.s32.f32 d16, d16
12468 /// vcvt.s32.f32 d16, d16, #3
12469 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
12470 const ARMSubtarget
*Subtarget
) {
12471 if (!Subtarget
->hasNEON())
12474 SDValue Op
= N
->getOperand(0);
12475 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
12476 Op
.getOpcode() != ISD::FMUL
)
12479 SDValue ConstVec
= Op
->getOperand(1);
12480 if (!isa
<BuildVectorSDNode
>(ConstVec
))
12483 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
12484 uint32_t FloatBits
= FloatTy
.getSizeInBits();
12485 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
12486 uint32_t IntBits
= IntTy
.getSizeInBits();
12487 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
12488 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
12489 // These instructions only exist converting from f32 to i32. We can handle
12490 // smaller integers by generating an extra truncate, but larger ones would
12491 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12492 // these intructions only support v2i32/v4i32 types.
12496 BitVector UndefElements
;
12497 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
12498 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
12499 if (C
== -1 || C
== 0 || C
> 32)
12503 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
12504 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
12505 Intrinsic::arm_neon_vcvtfp2fxu
;
12506 SDValue FixConv
= DAG
.getNode(
12507 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
12508 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
12509 DAG
.getConstant(C
, dl
, MVT::i32
));
12511 if (IntBits
< FloatBits
)
12512 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
12517 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12518 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12519 /// when the VDIV has a constant operand that is a power of 2.
12521 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12522 /// vcvt.f32.s32 d16, d16
12523 /// vdiv.f32 d16, d17, d16
12525 /// vcvt.f32.s32 d16, d16, #3
12526 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
12527 const ARMSubtarget
*Subtarget
) {
12528 if (!Subtarget
->hasNEON())
12531 SDValue Op
= N
->getOperand(0);
12532 unsigned OpOpcode
= Op
.getNode()->getOpcode();
12533 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
12534 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
12537 SDValue ConstVec
= N
->getOperand(1);
12538 if (!isa
<BuildVectorSDNode
>(ConstVec
))
12541 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
12542 uint32_t FloatBits
= FloatTy
.getSizeInBits();
12543 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
12544 uint32_t IntBits
= IntTy
.getSizeInBits();
12545 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
12546 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
12547 // These instructions only exist converting from i32 to f32. We can handle
12548 // smaller integers by generating an extra extend, but larger ones would
12549 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12550 // these intructions only support v2i32/v4i32 types.
12554 BitVector UndefElements
;
12555 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
12556 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
12557 if (C
== -1 || C
== 0 || C
> 32)
12561 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
12562 SDValue ConvInput
= Op
.getOperand(0);
12563 if (IntBits
< FloatBits
)
12564 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
12565 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
12568 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
12569 Intrinsic::arm_neon_vcvtfxu2fp
;
12570 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
12572 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
12573 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
12576 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12577 /// operand of a vector shift operation, where all the elements of the
12578 /// build_vector must have the same constant integer value.
12579 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
12580 // Ignore bit_converts.
12581 while (Op
.getOpcode() == ISD::BITCAST
)
12582 Op
= Op
.getOperand(0);
12583 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
12584 APInt SplatBits
, SplatUndef
;
12585 unsigned SplatBitSize
;
12587 if (! BVN
|| ! BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
,
12588 HasAnyUndefs
, ElementBits
) ||
12589 SplatBitSize
> ElementBits
)
12591 Cnt
= SplatBits
.getSExtValue();
12595 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12596 /// operand of a vector shift left operation. That value must be in the range:
12597 /// 0 <= Value < ElementBits for a left shift; or
12598 /// 0 <= Value <= ElementBits for a long left shift.
12599 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
12600 assert(VT
.isVector() && "vector shift count is not a vector type");
12601 int64_t ElementBits
= VT
.getScalarSizeInBits();
12602 if (! getVShiftImm(Op
, ElementBits
, Cnt
))
12604 return (Cnt
>= 0 && (isLong
? Cnt
-1 : Cnt
) < ElementBits
);
12607 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12608 /// operand of a vector shift right operation. For a shift opcode, the value
12609 /// is positive, but for an intrinsic the value count must be negative. The
12610 /// absolute value must be in the range:
12611 /// 1 <= |Value| <= ElementBits for a right shift; or
12612 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
12613 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
12615 assert(VT
.isVector() && "vector shift count is not a vector type");
12616 int64_t ElementBits
= VT
.getScalarSizeInBits();
12617 if (! getVShiftImm(Op
, ElementBits
, Cnt
))
12620 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/2 : ElementBits
));
12621 if (Cnt
>= -(isNarrow
? ElementBits
/2 : ElementBits
) && Cnt
<= -1) {
12628 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
12629 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12630 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
12633 // Don't do anything for most intrinsics.
12636 // Vector shifts: check for immediate versions and lower them.
12637 // Note: This is done during DAG combining instead of DAG legalizing because
12638 // the build_vectors for 64-bit vector element shift counts are generally
12639 // not legal, and it is hard to see their values after they get legalized to
12640 // loads from a constant pool.
12641 case Intrinsic::arm_neon_vshifts
:
12642 case Intrinsic::arm_neon_vshiftu
:
12643 case Intrinsic::arm_neon_vrshifts
:
12644 case Intrinsic::arm_neon_vrshiftu
:
12645 case Intrinsic::arm_neon_vrshiftn
:
12646 case Intrinsic::arm_neon_vqshifts
:
12647 case Intrinsic::arm_neon_vqshiftu
:
12648 case Intrinsic::arm_neon_vqshiftsu
:
12649 case Intrinsic::arm_neon_vqshiftns
:
12650 case Intrinsic::arm_neon_vqshiftnu
:
12651 case Intrinsic::arm_neon_vqshiftnsu
:
12652 case Intrinsic::arm_neon_vqrshiftns
:
12653 case Intrinsic::arm_neon_vqrshiftnu
:
12654 case Intrinsic::arm_neon_vqrshiftnsu
: {
12655 EVT VT
= N
->getOperand(1).getValueType();
12657 unsigned VShiftOpc
= 0;
12660 case Intrinsic::arm_neon_vshifts
:
12661 case Intrinsic::arm_neon_vshiftu
:
12662 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
12663 VShiftOpc
= ARMISD::VSHL
;
12666 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
12667 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
?
12668 ARMISD::VSHRs
: ARMISD::VSHRu
);
12673 case Intrinsic::arm_neon_vrshifts
:
12674 case Intrinsic::arm_neon_vrshiftu
:
12675 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
12679 case Intrinsic::arm_neon_vqshifts
:
12680 case Intrinsic::arm_neon_vqshiftu
:
12681 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
12685 case Intrinsic::arm_neon_vqshiftsu
:
12686 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
12688 llvm_unreachable("invalid shift count for vqshlu intrinsic");
12690 case Intrinsic::arm_neon_vrshiftn
:
12691 case Intrinsic::arm_neon_vqshiftns
:
12692 case Intrinsic::arm_neon_vqshiftnu
:
12693 case Intrinsic::arm_neon_vqshiftnsu
:
12694 case Intrinsic::arm_neon_vqrshiftns
:
12695 case Intrinsic::arm_neon_vqrshiftnu
:
12696 case Intrinsic::arm_neon_vqrshiftnsu
:
12697 // Narrowing shifts require an immediate right shift.
12698 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
12700 llvm_unreachable("invalid shift count for narrowing vector shift "
12704 llvm_unreachable("unhandled vector shift");
12708 case Intrinsic::arm_neon_vshifts
:
12709 case Intrinsic::arm_neon_vshiftu
:
12710 // Opcode already set above.
12712 case Intrinsic::arm_neon_vrshifts
:
12713 VShiftOpc
= ARMISD::VRSHRs
; break;
12714 case Intrinsic::arm_neon_vrshiftu
:
12715 VShiftOpc
= ARMISD::VRSHRu
; break;
12716 case Intrinsic::arm_neon_vrshiftn
:
12717 VShiftOpc
= ARMISD::VRSHRN
; break;
12718 case Intrinsic::arm_neon_vqshifts
:
12719 VShiftOpc
= ARMISD::VQSHLs
; break;
12720 case Intrinsic::arm_neon_vqshiftu
:
12721 VShiftOpc
= ARMISD::VQSHLu
; break;
12722 case Intrinsic::arm_neon_vqshiftsu
:
12723 VShiftOpc
= ARMISD::VQSHLsu
; break;
12724 case Intrinsic::arm_neon_vqshiftns
:
12725 VShiftOpc
= ARMISD::VQSHRNs
; break;
12726 case Intrinsic::arm_neon_vqshiftnu
:
12727 VShiftOpc
= ARMISD::VQSHRNu
; break;
12728 case Intrinsic::arm_neon_vqshiftnsu
:
12729 VShiftOpc
= ARMISD::VQSHRNsu
; break;
12730 case Intrinsic::arm_neon_vqrshiftns
:
12731 VShiftOpc
= ARMISD::VQRSHRNs
; break;
12732 case Intrinsic::arm_neon_vqrshiftnu
:
12733 VShiftOpc
= ARMISD::VQRSHRNu
; break;
12734 case Intrinsic::arm_neon_vqrshiftnsu
:
12735 VShiftOpc
= ARMISD::VQRSHRNsu
; break;
12739 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
12740 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
12743 case Intrinsic::arm_neon_vshiftins
: {
12744 EVT VT
= N
->getOperand(1).getValueType();
12746 unsigned VShiftOpc
= 0;
12748 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
12749 VShiftOpc
= ARMISD::VSLI
;
12750 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
12751 VShiftOpc
= ARMISD::VSRI
;
12753 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12757 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
12758 N
->getOperand(1), N
->getOperand(2),
12759 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
12762 case Intrinsic::arm_neon_vqrshifts
:
12763 case Intrinsic::arm_neon_vqrshiftu
:
12764 // No immediate versions of these to check for.
12771 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12772 /// lowers them. As with the vector shift intrinsics, this is done during DAG
12773 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12774 /// vector element shift counts are generally not legal, and it is hard to see
12775 /// their values after they get legalized to loads from a constant pool.
12776 static SDValue
PerformShiftCombine(SDNode
*N
,
12777 TargetLowering::DAGCombinerInfo
&DCI
,
12778 const ARMSubtarget
*ST
) {
12779 SelectionDAG
&DAG
= DCI
.DAG
;
12780 EVT VT
= N
->getValueType(0);
12781 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
12782 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12783 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12784 SDValue N1
= N
->getOperand(1);
12785 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
12786 SDValue N0
= N
->getOperand(0);
12787 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
12788 DAG
.MaskedValueIsZero(N0
.getOperand(0),
12789 APInt::getHighBitsSet(32, 16)))
12790 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
12794 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
12795 N
->getOperand(0)->getOpcode() == ISD::AND
&&
12796 N
->getOperand(0)->hasOneUse()) {
12797 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12799 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
12800 // usually show up because instcombine prefers to canonicalize it to
12801 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
12802 // out of GEP lowering in some cases.
12803 SDValue N0
= N
->getOperand(0);
12804 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
12807 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
12808 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
12811 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
12812 // Don't transform uxtb/uxth.
12813 if (AndMask
== 255 || AndMask
== 65535)
12815 if (isMask_32(AndMask
)) {
12816 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
12817 if (MaskedBits
> ShiftAmt
) {
12819 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
12820 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
12821 return DAG
.getNode(
12822 ISD::SRL
, DL
, MVT::i32
, SHL
,
12823 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
12828 // Nothing to be done for scalar shifts.
12829 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12830 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
12833 assert(ST
->hasNEON() && "unexpected vector shift");
12836 switch (N
->getOpcode()) {
12837 default: llvm_unreachable("unexpected shift opcode");
12840 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
12842 return DAG
.getNode(ARMISD::VSHL
, dl
, VT
, N
->getOperand(0),
12843 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
12849 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
12850 unsigned VShiftOpc
= (N
->getOpcode() == ISD::SRA
?
12851 ARMISD::VSHRs
: ARMISD::VSHRu
);
12853 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
12854 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
12860 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12861 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
12862 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
12863 const ARMSubtarget
*ST
) {
12864 SDValue N0
= N
->getOperand(0);
12866 // Check for sign- and zero-extensions of vector extract operations of 8-
12867 // and 16-bit vector elements. NEON supports these directly. They are
12868 // handled during DAG combining because type legalization will promote them
12869 // to 32-bit types and it is messy to recognize the operations after that.
12870 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
12871 SDValue Vec
= N0
.getOperand(0);
12872 SDValue Lane
= N0
.getOperand(1);
12873 EVT VT
= N
->getValueType(0);
12874 EVT EltVT
= N0
.getValueType();
12875 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12877 if (VT
== MVT::i32
&&
12878 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
12879 TLI
.isTypeLegal(Vec
.getValueType()) &&
12880 isa
<ConstantSDNode
>(Lane
)) {
12883 switch (N
->getOpcode()) {
12884 default: llvm_unreachable("unexpected opcode");
12885 case ISD::SIGN_EXTEND
:
12886 Opc
= ARMISD::VGETLANEs
;
12888 case ISD::ZERO_EXTEND
:
12889 case ISD::ANY_EXTEND
:
12890 Opc
= ARMISD::VGETLANEu
;
12893 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
12900 static const APInt
*isPowerOf2Constant(SDValue V
) {
12901 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
12904 const APInt
*CV
= &C
->getAPIntValue();
12905 return CV
->isPowerOf2() ? CV
: nullptr;
12908 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
12909 // If we have a CMOV, OR and AND combination such as:
12914 // * CN is a single bit;
12915 // * All bits covered by CM are known zero in y
12917 // Then we can convert this into a sequence of BFI instructions. This will
12918 // always be a win if CM is a single bit, will always be no worse than the
12919 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12920 // three bits (due to the extra IT instruction).
12922 SDValue Op0
= CMOV
->getOperand(0);
12923 SDValue Op1
= CMOV
->getOperand(1);
12924 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
12925 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
12926 SDValue CmpZ
= CMOV
->getOperand(4);
12928 // The compare must be against zero.
12929 if (!isNullConstant(CmpZ
->getOperand(1)))
12932 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
12933 SDValue And
= CmpZ
->getOperand(0);
12934 if (And
->getOpcode() != ISD::AND
)
12936 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
12939 SDValue X
= And
->getOperand(0);
12941 if (CC
== ARMCC::EQ
) {
12942 // We're performing an "equal to zero" compare. Swap the operands so we
12943 // canonicalize on a "not equal to zero" compare.
12944 std::swap(Op0
, Op1
);
12946 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
12949 if (Op1
->getOpcode() != ISD::OR
)
12952 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
12955 SDValue Y
= Op1
->getOperand(0);
12960 // Now, is it profitable to continue?
12961 APInt OrCI
= OrC
->getAPIntValue();
12962 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
12963 if (OrCI
.countPopulation() > Heuristic
)
12966 // Lastly, can we determine that the bits defined by OrCI
12968 KnownBits Known
= DAG
.computeKnownBits(Y
);
12969 if ((OrCI
& Known
.Zero
) != OrCI
)
12972 // OK, we can do the combine.
12975 EVT VT
= X
.getValueType();
12976 unsigned BitInX
= AndC
->logBase2();
12979 // We must shift X first.
12980 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
12981 DAG
.getConstant(BitInX
, dl
, VT
));
12984 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
12985 BitInY
< NumActiveBits
; ++BitInY
) {
12986 if (OrCI
[BitInY
] == 0)
12988 APInt
Mask(VT
.getSizeInBits(), 0);
12989 Mask
.setBit(BitInY
);
12990 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
12991 // Confusingly, the operand is an *inverted* mask.
12992 DAG
.getConstant(~Mask
, dl
, VT
));
12998 static SDValue
PerformHWLoopCombine(SDNode
*N
,
12999 TargetLowering::DAGCombinerInfo
&DCI
,
13000 const ARMSubtarget
*ST
) {
13001 // Look for (brcond (xor test.set.loop.iterations, -1)
13002 SDValue CC
= N
->getOperand(1);
13003 unsigned Opc
= CC
->getOpcode();
13006 if ((Opc
== ISD::XOR
|| Opc
== ISD::SETCC
) &&
13007 (CC
->getOperand(0)->getOpcode() == ISD::INTRINSIC_W_CHAIN
)) {
13009 assert((isa
<ConstantSDNode
>(CC
->getOperand(1)) &&
13010 cast
<ConstantSDNode
>(CC
->getOperand(1))->isOne()) &&
13011 "Expected to compare against 1");
13013 Int
= CC
->getOperand(0);
13014 } else if (CC
->getOpcode() == ISD::INTRINSIC_W_CHAIN
)
13019 unsigned IntOp
= cast
<ConstantSDNode
>(Int
.getOperand(1))->getZExtValue();
13020 if (IntOp
!= Intrinsic::test_set_loop_iterations
)
13024 SDValue Chain
= N
->getOperand(0);
13025 SDValue Elements
= Int
.getOperand(2);
13026 SDValue ExitBlock
= N
->getOperand(2);
13028 // TODO: Once we start supporting tail predication, we can add another
13029 // operand to WLS for the number of elements processed in a vector loop.
13031 SDValue Ops
[] = { Chain
, Elements
, ExitBlock
};
13032 SDValue Res
= DCI
.DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13033 DCI
.DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13037 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13039 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13040 SDValue Cmp
= N
->getOperand(4);
13041 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13042 // Only looking at NE cases.
13045 EVT VT
= N
->getValueType(0);
13047 SDValue LHS
= Cmp
.getOperand(0);
13048 SDValue RHS
= Cmp
.getOperand(1);
13049 SDValue Chain
= N
->getOperand(0);
13050 SDValue BB
= N
->getOperand(1);
13051 SDValue ARMcc
= N
->getOperand(2);
13052 ARMCC::CondCodes CC
=
13053 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13055 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13056 // -> (brcond Chain BB CC CPSR Cmp)
13057 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13058 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13059 LHS
->getOperand(0)->hasOneUse()) {
13060 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13061 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13062 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13063 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13064 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13065 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13066 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13067 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13068 return DAG
.getNode(
13069 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13070 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13077 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13079 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13080 SDValue Cmp
= N
->getOperand(4);
13081 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13082 // Only looking at EQ and NE cases.
13085 EVT VT
= N
->getValueType(0);
13087 SDValue LHS
= Cmp
.getOperand(0);
13088 SDValue RHS
= Cmp
.getOperand(1);
13089 SDValue FalseVal
= N
->getOperand(0);
13090 SDValue TrueVal
= N
->getOperand(1);
13091 SDValue ARMcc
= N
->getOperand(2);
13092 ARMCC::CondCodes CC
=
13093 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13095 // BFI is only available on V6T2+.
13096 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13097 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13118 /// FIXME: Turn this into a target neutral optimization?
13120 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13121 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13122 N
->getOperand(3), Cmp
);
13123 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13125 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13126 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13127 N
->getOperand(3), NewCmp
);
13130 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13131 // -> (cmov F T CC CPSR Cmp)
13132 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13133 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13134 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13135 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13136 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13137 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13138 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13139 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13140 LHS
->getOperand(2), LHS
->getOperand(3),
13141 LHS
->getOperand(4));
13145 if (!VT
.isInteger())
13148 // Materialize a boolean comparison for integers so we can avoid branching.
13149 if (isNullConstant(FalseVal
)) {
13150 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13151 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13152 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13153 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13154 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13155 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13156 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13157 DAG
.getConstant(5, dl
, MVT::i32
));
13159 // CMOV 0, 1, ==, (CMPZ x, y) ->
13160 // (ADDCARRY (SUB x, y), t:0, t:1)
13161 // where t = (SUBCARRY 0, (SUB x, y), 0)
13163 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13164 // x != y. In other words, a carry C == 1 when x == y, C == 0
13166 // The final ADDCARRY computes
13167 // x - y + (0 - (x - y)) + C == C
13168 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13169 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13170 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13171 // ISD::SUBCARRY returns a borrow but we want the carry here
13174 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13175 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13176 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13178 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13179 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13180 // This seems pointless but will allow us to combine it further below.
13181 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13183 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13184 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13185 Sub
.getValue(1), SDValue());
13186 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13187 N
->getOperand(3), CPSRGlue
.getValue(1));
13190 } else if (isNullConstant(TrueVal
)) {
13191 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13192 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13193 // This seems pointless but will allow us to combine it further below
13194 // Note that we change == for != as this is the dual for the case above.
13195 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13197 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13198 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13199 Sub
.getValue(1), SDValue());
13200 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13201 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13202 N
->getOperand(3), CPSRGlue
.getValue(1));
13207 // On Thumb1, the DAG above may be further combined if z is a power of 2
13209 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13210 // t1 = (USUBO (SUB x, y), 1)
13211 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13212 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13214 // This also handles the special case of comparing against zero; it's
13215 // essentially, the same pattern, except there's no SUBS:
13216 // CMOV x, z, !=, (CMPZ x, 0) ->
13217 // t1 = (USUBO x, 1)
13218 // t2 = (SUBCARRY x, t1:0, t1:1)
13219 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13220 const APInt
*TrueConst
;
13221 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13222 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13223 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13224 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13225 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13226 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13227 unsigned ShiftAmount
= TrueConst
->logBase2();
13229 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13230 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13231 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13234 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13235 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
13238 if (Res
.getNode()) {
13239 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
13240 // Capture demanded bits information that would be otherwise lost.
13241 if (Known
.Zero
== 0xfffffffe)
13242 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13243 DAG
.getValueType(MVT::i1
));
13244 else if (Known
.Zero
== 0xffffff00)
13245 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13246 DAG
.getValueType(MVT::i8
));
13247 else if (Known
.Zero
== 0xffff0000)
13248 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13249 DAG
.getValueType(MVT::i16
));
13255 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
13256 DAGCombinerInfo
&DCI
) const {
13257 switch (N
->getOpcode()) {
13259 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
13260 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
13261 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
13262 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
13263 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
13264 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
13265 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
13266 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
13267 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
13268 case ISD::BRCOND
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
13270 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
13271 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
13272 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
13273 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
13274 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
13275 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
13276 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
13277 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
13278 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
13279 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
13280 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
13281 case ISD::FP_TO_SINT
:
13282 case ISD::FP_TO_UINT
:
13283 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
13285 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
13286 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
13290 return PerformShiftCombine(N
, DCI
, Subtarget
);
13291 case ISD::SIGN_EXTEND
:
13292 case ISD::ZERO_EXTEND
:
13293 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
13294 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
13295 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
13296 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
13297 case ARMISD::VLD1DUP
:
13298 case ARMISD::VLD2DUP
:
13299 case ARMISD::VLD3DUP
:
13300 case ARMISD::VLD4DUP
:
13301 return PerformVLDCombine(N
, DCI
);
13302 case ARMISD::BUILD_VECTOR
:
13303 return PerformARMBUILD_VECTORCombine(N
, DCI
);
13304 case ARMISD::SMULWB
: {
13305 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13306 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13307 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13311 case ARMISD::SMULWT
: {
13312 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13313 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13314 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13318 case ARMISD::SMLALBB
: {
13319 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13320 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13321 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13322 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13326 case ARMISD::SMLALBT
: {
13327 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13328 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13329 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13330 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13331 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
13332 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
13336 case ARMISD::SMLALTB
: {
13337 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13338 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13339 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13340 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13341 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
13342 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
13346 case ARMISD::SMLALTT
: {
13347 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13348 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13349 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13350 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13354 case ISD::INTRINSIC_VOID
:
13355 case ISD::INTRINSIC_W_CHAIN
:
13356 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
13357 case Intrinsic::arm_neon_vld1
:
13358 case Intrinsic::arm_neon_vld1x2
:
13359 case Intrinsic::arm_neon_vld1x3
:
13360 case Intrinsic::arm_neon_vld1x4
:
13361 case Intrinsic::arm_neon_vld2
:
13362 case Intrinsic::arm_neon_vld3
:
13363 case Intrinsic::arm_neon_vld4
:
13364 case Intrinsic::arm_neon_vld2lane
:
13365 case Intrinsic::arm_neon_vld3lane
:
13366 case Intrinsic::arm_neon_vld4lane
:
13367 case Intrinsic::arm_neon_vld2dup
:
13368 case Intrinsic::arm_neon_vld3dup
:
13369 case Intrinsic::arm_neon_vld4dup
:
13370 case Intrinsic::arm_neon_vst1
:
13371 case Intrinsic::arm_neon_vst1x2
:
13372 case Intrinsic::arm_neon_vst1x3
:
13373 case Intrinsic::arm_neon_vst1x4
:
13374 case Intrinsic::arm_neon_vst2
:
13375 case Intrinsic::arm_neon_vst3
:
13376 case Intrinsic::arm_neon_vst4
:
13377 case Intrinsic::arm_neon_vst2lane
:
13378 case Intrinsic::arm_neon_vst3lane
:
13379 case Intrinsic::arm_neon_vst4lane
:
13380 return PerformVLDCombine(N
, DCI
);
13388 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
13390 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
13393 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
13394 unsigned Alignment
,
13395 MachineMemOperand::Flags
,
13396 bool *Fast
) const {
13397 // Depends what it gets converted into if the type is weird.
13398 if (!VT
.isSimple())
13401 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
13402 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
13403 auto Ty
= VT
.getSimpleVT().SimpleTy
;
13405 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
13406 // Unaligned access can use (for example) LRDB, LRDH, LDR
13407 if (AllowsUnaligned
) {
13409 *Fast
= Subtarget
->hasV7Ops();
13414 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
13415 // For any little-endian targets with neon, we can support unaligned ld/st
13416 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
13417 // A big-endian target may also explicitly support unaligned accesses
13418 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
13425 if (!Subtarget
->hasMVEIntegerOps())
13427 if (Ty
!= MVT::v16i8
&& Ty
!= MVT::v8i16
&& Ty
!= MVT::v8f16
&&
13428 Ty
!= MVT::v4i32
&& Ty
!= MVT::v4f32
&& Ty
!= MVT::v2i64
&&
13429 Ty
!= MVT::v2f64
&&
13430 // These are for truncated stores
13431 Ty
!= MVT::v4i8
&& Ty
!= MVT::v8i8
&& Ty
!= MVT::v4i16
)
13434 if (Subtarget
->isLittle()) {
13435 // In little-endian MVE, the store instructions VSTRB.U8,
13436 // VSTRH.U16 and VSTRW.U32 all store the vector register in
13437 // exactly the same format, and differ only in the range of
13438 // their immediate offset field and the required alignment.
13440 // In particular, VSTRB.U8 can store a vector at byte alignment.
13441 // So at this stage we can simply say that loads/stores of all
13442 // 128-bit wide vector types are permitted at any alignment,
13443 // because we know at least _one_ instruction can manage that.
13445 // Later on we might find that some of those loads are better
13446 // generated as VLDRW.U32 if alignment permits, to take
13447 // advantage of the larger immediate range. But for the moment,
13448 // all that matters is that if we don't lower the load then
13449 // _some_ instruction can handle it.
13454 // In big-endian MVE, those instructions aren't so similar
13455 // after all, because they reorder the bytes of the vector
13456 // differently. So this time we can only store a particular
13457 // kind of vector if its alignment is at least the element
13458 // type. And we can't store vectors of i64 or f64 at all
13459 // without having to do some postprocessing, because there's
13461 if (Ty
== MVT::v16i8
||
13462 ((Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
) && Alignment
>= 2) ||
13463 ((Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
) && Alignment
>= 4)) {
13473 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
13474 unsigned AlignCheck
) {
13475 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
13476 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
13479 EVT
ARMTargetLowering::getOptimalMemOpType(
13480 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
13481 bool ZeroMemset
, bool MemcpyStrSrc
,
13482 const AttributeList
&FuncAttributes
) const {
13483 // See if we can use NEON instructions for this...
13484 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
13485 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
13488 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
13489 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
13490 MachineMemOperand::MONone
, &Fast
) &&
13493 } else if (Size
>= 8 &&
13494 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
13495 (allowsMisalignedMemoryAccesses(
13496 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
13502 // Let the target-independent logic figure it out.
13506 // 64-bit integers are split into their high and low parts and held in two
13507 // different registers, so the trunc is free since the low register can just
13509 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
13510 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
13512 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
13513 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
13514 return (SrcBits
== 64 && DestBits
== 32);
13517 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
13518 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
13519 !DstVT
.isInteger())
13521 unsigned SrcBits
= SrcVT
.getSizeInBits();
13522 unsigned DestBits
= DstVT
.getSizeInBits();
13523 return (SrcBits
== 64 && DestBits
== 32);
13526 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
13527 if (Val
.getOpcode() != ISD::LOAD
)
13530 EVT VT1
= Val
.getValueType();
13531 if (!VT1
.isSimple() || !VT1
.isInteger() ||
13532 !VT2
.isSimple() || !VT2
.isInteger())
13535 switch (VT1
.getSimpleVT().SimpleTy
) {
13540 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
13547 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
13548 if (!VT
.isSimple())
13551 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
13552 // negate values directly (fneg is free). So, we don't want to let the DAG
13553 // combiner rewrite fneg into xors and some other instructions. For f16 and
13554 // FullFP16 argument passing, some bitcast nodes may be introduced,
13555 // triggering this DAG combine rewrite, so we are avoiding that with this.
13556 switch (VT
.getSimpleVT().SimpleTy
) {
13559 return Subtarget
->hasFullFP16();
13565 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
13566 /// of the vector elements.
13567 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
13568 auto areExtDoubled
= [](Instruction
*Ext
) {
13569 return Ext
->getType()->getScalarSizeInBits() ==
13570 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
13573 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
13574 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
13575 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
13576 !areExtDoubled(cast
<Instruction
>(Ext2
)))
13582 /// Check if sinking \p I's operands to I's basic block is profitable, because
13583 /// the operands can be folded into a target instruction, e.g.
13584 /// sext/zext can be folded into vsubl.
13585 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
13586 SmallVectorImpl
<Use
*> &Ops
) const {
13587 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
13590 switch (I
->getOpcode()) {
13591 case Instruction::Sub
:
13592 case Instruction::Add
: {
13593 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
13595 Ops
.push_back(&I
->getOperandUse(0));
13596 Ops
.push_back(&I
->getOperandUse(1));
13605 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
13606 EVT VT
= ExtVal
.getValueType();
13608 if (!isTypeLegal(VT
))
13611 // Don't create a loadext if we can fold the extension into a wide/long
13613 // If there's more than one user instruction, the loadext is desirable no
13614 // matter what. There can be two uses by the same instruction.
13615 if (ExtVal
->use_empty() ||
13616 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
13619 SDNode
*U
= *ExtVal
->use_begin();
13620 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
13621 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHL
))
13627 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
13628 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
13631 if (!isTypeLegal(EVT::getEVT(Ty1
)))
13634 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13636 // Assuming the caller doesn't have a zeroext or signext return parameter,
13637 // truncation all the way down to i1 is valid.
13641 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
13642 const AddrMode
&AM
, Type
*Ty
,
13643 unsigned AS
) const {
13644 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
13645 if (Subtarget
->hasFPAO())
13646 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
13652 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
13656 unsigned Scale
= 1;
13657 switch (VT
.getSimpleVT().SimpleTy
) {
13667 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
13673 if ((V
& (Scale
- 1)) != 0)
13675 return isUInt
<5>(V
/ Scale
);
13678 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
13679 const ARMSubtarget
*Subtarget
) {
13680 if (!VT
.isInteger() && !VT
.isFloatingPoint())
13682 if (VT
.isVector() && Subtarget
->hasNEON())
13684 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
13685 !Subtarget
->hasMVEFloatOps())
13688 bool IsNeg
= false;
13694 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
13696 // MVE: size * imm7
13697 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
13698 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
13701 return isShiftedUInt
<7,2>(V
);
13704 return isShiftedUInt
<7,1>(V
);
13706 return isUInt
<7>(V
);
13712 // half VLDR: 2 * imm8
13713 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
13714 return isShiftedUInt
<8, 1>(V
);
13715 // VLDR and LDRD: 4 * imm8
13716 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
13717 return isShiftedUInt
<8, 2>(V
);
13719 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
13720 // + imm12 or - imm8
13722 return isUInt
<8>(V
);
13723 return isUInt
<12>(V
);
13729 /// isLegalAddressImmediate - Return true if the integer value can be used
13730 /// as the offset of the target addressing mode for load / store of the
13732 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
13733 const ARMSubtarget
*Subtarget
) {
13737 if (!VT
.isSimple())
13740 if (Subtarget
->isThumb1Only())
13741 return isLegalT1AddressImmediate(V
, VT
);
13742 else if (Subtarget
->isThumb2())
13743 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
13748 switch (VT
.getSimpleVT().SimpleTy
) {
13749 default: return false;
13754 return isUInt
<12>(V
);
13757 return isUInt
<8>(V
);
13760 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
13762 return isShiftedUInt
<8, 2>(V
);
13766 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
13768 int Scale
= AM
.Scale
;
13772 switch (VT
.getSimpleVT().SimpleTy
) {
13773 default: return false;
13781 Scale
= Scale
& ~1;
13782 return Scale
== 2 || Scale
== 4 || Scale
== 8;
13784 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13785 // version in Thumb mode.
13789 // r * 2 (this can be lowered to r + r).
13790 if (!AM
.HasBaseReg
&& Scale
== 2)
13794 // Note, we allow "void" uses (basically, uses that aren't loads or
13795 // stores), because arm allows folding a scale into many arithmetic
13796 // operations. This should be made more precise and revisited later.
13798 // Allow r << imm, but the imm has to be a multiple of two.
13799 if (Scale
& 1) return false;
13800 return isPowerOf2_32(Scale
);
13804 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
13806 const int Scale
= AM
.Scale
;
13808 // Negative scales are not supported in Thumb1.
13812 // Thumb1 addressing modes do not support register scaling excepting the
13813 // following cases:
13814 // 1. Scale == 1 means no scaling.
13815 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13816 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
13819 /// isLegalAddressingMode - Return true if the addressing mode represented
13820 /// by AM is legal for this target, for a load/store of the specified type.
13821 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
13822 const AddrMode
&AM
, Type
*Ty
,
13823 unsigned AS
, Instruction
*I
) const {
13824 EVT VT
= getValueType(DL
, Ty
, true);
13825 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
13828 // Can never fold addr of global into load/store.
13832 switch (AM
.Scale
) {
13833 case 0: // no scale reg, must be "r+i" or "r", or "i".
13836 // ARM doesn't support any R+R*scale+imm addr modes.
13840 if (!VT
.isSimple())
13843 if (Subtarget
->isThumb1Only())
13844 return isLegalT1ScaledAddressingMode(AM
, VT
);
13846 if (Subtarget
->isThumb2())
13847 return isLegalT2ScaledAddressingMode(AM
, VT
);
13849 int Scale
= AM
.Scale
;
13850 switch (VT
.getSimpleVT().SimpleTy
) {
13851 default: return false;
13855 if (Scale
< 0) Scale
= -Scale
;
13859 return isPowerOf2_32(Scale
& ~1);
13863 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
13865 // r * 2 (this can be lowered to r + r).
13866 if (!AM
.HasBaseReg
&& Scale
== 2)
13871 // Note, we allow "void" uses (basically, uses that aren't loads or
13872 // stores), because arm allows folding a scale into many arithmetic
13873 // operations. This should be made more precise and revisited later.
13875 // Allow r << imm, but the imm has to be a multiple of two.
13876 if (Scale
& 1) return false;
13877 return isPowerOf2_32(Scale
);
13883 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13884 /// icmp immediate, that is the target has icmp instructions which can compare
13885 /// a register against the immediate without having to materialize the
13886 /// immediate into a register.
13887 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
13888 // Thumb2 and ARM modes can use cmn for negative immediates.
13889 if (!Subtarget
->isThumb())
13890 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
13891 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
13892 if (Subtarget
->isThumb2())
13893 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
13894 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
13895 // Thumb1 doesn't have cmn, and only 8-bit immediates.
13896 return Imm
>= 0 && Imm
<= 255;
13899 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13900 /// *or sub* immediate, that is the target has add or sub instructions which can
13901 /// add a register with the immediate without having to materialize the
13902 /// immediate into a register.
13903 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
13904 // Same encoding for add/sub, just flip the sign.
13905 int64_t AbsImm
= std::abs(Imm
);
13906 if (!Subtarget
->isThumb())
13907 return ARM_AM::getSOImmVal(AbsImm
) != -1;
13908 if (Subtarget
->isThumb2())
13909 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
13910 // Thumb1 only has 8-bit unsigned immediate.
13911 return AbsImm
>= 0 && AbsImm
<= 255;
13914 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
13915 bool isSEXTLoad
, SDValue
&Base
,
13916 SDValue
&Offset
, bool &isInc
,
13917 SelectionDAG
&DAG
) {
13918 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
13921 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
13922 // AddressingMode 3
13923 Base
= Ptr
->getOperand(0);
13924 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
13925 int RHSC
= (int)RHS
->getZExtValue();
13926 if (RHSC
< 0 && RHSC
> -256) {
13927 assert(Ptr
->getOpcode() == ISD::ADD
);
13929 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
13933 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
13934 Offset
= Ptr
->getOperand(1);
13936 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
13937 // AddressingMode 2
13938 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
13939 int RHSC
= (int)RHS
->getZExtValue();
13940 if (RHSC
< 0 && RHSC
> -0x1000) {
13941 assert(Ptr
->getOpcode() == ISD::ADD
);
13943 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
13944 Base
= Ptr
->getOperand(0);
13949 if (Ptr
->getOpcode() == ISD::ADD
) {
13951 ARM_AM::ShiftOpc ShOpcVal
=
13952 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
13953 if (ShOpcVal
!= ARM_AM::no_shift
) {
13954 Base
= Ptr
->getOperand(1);
13955 Offset
= Ptr
->getOperand(0);
13957 Base
= Ptr
->getOperand(0);
13958 Offset
= Ptr
->getOperand(1);
13963 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
13964 Base
= Ptr
->getOperand(0);
13965 Offset
= Ptr
->getOperand(1);
13969 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13973 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
13974 bool isSEXTLoad
, SDValue
&Base
,
13975 SDValue
&Offset
, bool &isInc
,
13976 SelectionDAG
&DAG
) {
13977 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
13980 Base
= Ptr
->getOperand(0);
13981 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
13982 int RHSC
= (int)RHS
->getZExtValue();
13983 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
13984 assert(Ptr
->getOpcode() == ISD::ADD
);
13986 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
13988 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
13989 isInc
= Ptr
->getOpcode() == ISD::ADD
;
13990 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
13998 /// getPreIndexedAddressParts - returns true by value, base pointer and
13999 /// offset pointer and addressing mode by reference if the node's address
14000 /// can be legally represented as pre-indexed load / store address.
14002 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14004 ISD::MemIndexedMode
&AM
,
14005 SelectionDAG
&DAG
) const {
14006 if (Subtarget
->isThumb1Only())
14011 bool isSEXTLoad
= false;
14012 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14013 Ptr
= LD
->getBasePtr();
14014 VT
= LD
->getMemoryVT();
14015 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14016 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14017 Ptr
= ST
->getBasePtr();
14018 VT
= ST
->getMemoryVT();
14023 bool isLegal
= false;
14024 if (Subtarget
->isThumb2())
14025 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14026 Offset
, isInc
, DAG
);
14028 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14029 Offset
, isInc
, DAG
);
14033 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14037 /// getPostIndexedAddressParts - returns true by value, base pointer and
14038 /// offset pointer and addressing mode by reference if this node can be
14039 /// combined with a load / store to form a post-indexed load / store.
14040 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14043 ISD::MemIndexedMode
&AM
,
14044 SelectionDAG
&DAG
) const {
14047 bool isSEXTLoad
= false, isNonExt
;
14048 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14049 VT
= LD
->getMemoryVT();
14050 Ptr
= LD
->getBasePtr();
14051 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14052 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14053 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14054 VT
= ST
->getMemoryVT();
14055 Ptr
= ST
->getBasePtr();
14056 isNonExt
= !ST
->isTruncatingStore();
14060 if (Subtarget
->isThumb1Only()) {
14061 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14062 // must be non-extending/truncating, i32, with an offset of 4.
14063 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14064 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14066 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14067 if (!RHS
|| RHS
->getZExtValue() != 4)
14070 Offset
= Op
->getOperand(1);
14071 Base
= Op
->getOperand(0);
14072 AM
= ISD::POST_INC
;
14077 bool isLegal
= false;
14078 if (Subtarget
->isThumb2())
14079 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14082 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14088 // Swap base ptr and offset to catch more post-index load / store when
14089 // it's legal. In Thumb2 mode, offset must be an immediate.
14090 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14091 !Subtarget
->isThumb2())
14092 std::swap(Base
, Offset
);
14094 // Post-indexed load / store update the base pointer.
14099 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14103 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14105 const APInt
&DemandedElts
,
14106 const SelectionDAG
&DAG
,
14107 unsigned Depth
) const {
14108 unsigned BitWidth
= Known
.getBitWidth();
14110 switch (Op
.getOpcode()) {
14116 // Special cases when we convert a carry to a boolean.
14117 if (Op
.getResNo() == 0) {
14118 SDValue LHS
= Op
.getOperand(0);
14119 SDValue RHS
= Op
.getOperand(1);
14120 // (ADDE 0, 0, C) will give us a single bit.
14121 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14122 isNullConstant(RHS
)) {
14123 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14128 case ARMISD::CMOV
: {
14129 // Bits are known zero/one if known on the LHS and RHS.
14130 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14131 if (Known
.isUnknown())
14134 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14135 Known
.Zero
&= KnownRHS
.Zero
;
14136 Known
.One
&= KnownRHS
.One
;
14139 case ISD::INTRINSIC_W_CHAIN
: {
14140 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14141 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14144 case Intrinsic::arm_ldaex
:
14145 case Intrinsic::arm_ldrex
: {
14146 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14147 unsigned MemBits
= VT
.getScalarSizeInBits();
14148 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14153 case ARMISD::BFI
: {
14154 // Conservatively, we can recurse down the first operand
14155 // and just mask out all affected bits.
14156 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14158 // The operand to BFI is already a mask suitable for removing the bits it
14160 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14161 const APInt
&Mask
= CI
->getAPIntValue();
14162 Known
.Zero
&= Mask
;
14166 case ARMISD::VGETLANEs
:
14167 case ARMISD::VGETLANEu
: {
14168 const SDValue
&SrcSV
= Op
.getOperand(0);
14169 EVT VecVT
= SrcSV
.getValueType();
14170 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14171 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14172 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14173 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14174 "VGETLANE index out of bounds");
14175 unsigned Idx
= Pos
->getZExtValue();
14176 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14177 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
14179 EVT VT
= Op
.getValueType();
14180 const unsigned DstSz
= VT
.getScalarSizeInBits();
14181 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
14183 assert(SrcSz
== Known
.getBitWidth());
14184 assert(DstSz
> SrcSz
);
14185 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
14186 Known
= Known
.sext(DstSz
);
14188 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
14190 assert(DstSz
== Known
.getBitWidth());
14197 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
14198 const APInt
&DemandedAPInt
,
14199 TargetLoweringOpt
&TLO
) const {
14200 // Delay optimization, so we don't have to deal with illegal types, or block
14205 // Only optimize AND for now.
14206 if (Op
.getOpcode() != ISD::AND
)
14209 EVT VT
= Op
.getValueType();
14215 assert(VT
== MVT::i32
&& "Unexpected integer type");
14217 // Make sure the RHS really is a constant.
14218 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
14222 unsigned Mask
= C
->getZExtValue();
14224 unsigned Demanded
= DemandedAPInt
.getZExtValue();
14225 unsigned ShrunkMask
= Mask
& Demanded
;
14226 unsigned ExpandedMask
= Mask
| ~Demanded
;
14228 // If the mask is all zeros, let the target-independent code replace the
14229 // result with zero.
14230 if (ShrunkMask
== 0)
14233 // If the mask is all ones, erase the AND. (Currently, the target-independent
14234 // code won't do this, so we have to do it explicitly to avoid an infinite
14235 // loop in obscure cases.)
14236 if (ExpandedMask
== ~0U)
14237 return TLO
.CombineTo(Op
, Op
.getOperand(0));
14239 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
14240 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
14242 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
14243 if (NewMask
== Mask
)
14246 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
14247 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
14248 return TLO
.CombineTo(Op
, NewOp
);
14251 // Prefer uxtb mask.
14252 if (IsLegalMask(0xFF))
14253 return UseMask(0xFF);
14255 // Prefer uxth mask.
14256 if (IsLegalMask(0xFFFF))
14257 return UseMask(0xFFFF);
14259 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14260 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14261 if (ShrunkMask
< 256)
14262 return UseMask(ShrunkMask
);
14264 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14265 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14266 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
14267 return UseMask(ExpandedMask
);
14269 // Potential improvements:
14271 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14272 // We could try to prefer Thumb1 immediates which can be lowered to a
14273 // two-instruction sequence.
14274 // We could try to recognize more legal ARM/Thumb2 immediates here.
14280 //===----------------------------------------------------------------------===//
14281 // ARM Inline Assembly Support
14282 //===----------------------------------------------------------------------===//
14284 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
14285 // Looking for "rev" which is V6+.
14286 if (!Subtarget
->hasV6Ops())
14289 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
14290 std::string AsmStr
= IA
->getAsmString();
14291 SmallVector
<StringRef
, 4> AsmPieces
;
14292 SplitString(AsmStr
, AsmPieces
, ";\n");
14294 switch (AsmPieces
.size()) {
14295 default: return false;
14297 AsmStr
= AsmPieces
[0];
14299 SplitString(AsmStr
, AsmPieces
, " \t,");
14302 if (AsmPieces
.size() == 3 &&
14303 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
14304 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
14305 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
14306 if (Ty
&& Ty
->getBitWidth() == 32)
14307 return IntrinsicLowering::LowerToByteSwap(CI
);
14315 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
14316 // At this point, we have to lower this constraint to something else, so we
14317 // lower it to an "r" or "w". However, by doing this we will force the result
14318 // to be in register, while the X constraint is much more permissive.
14320 // Although we are correct (we are free to emit anything, without
14321 // constraints), we might break use cases that would expect us to be more
14322 // efficient and emit something else.
14323 if (!Subtarget
->hasVFP2Base())
14325 if (ConstraintVT
.isFloatingPoint())
14327 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
14328 (ConstraintVT
.getSizeInBits() == 64 ||
14329 ConstraintVT
.getSizeInBits() == 128))
14335 /// getConstraintType - Given a constraint letter, return the type of
14336 /// constraint it is for this target.
14337 ARMTargetLowering::ConstraintType
14338 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
14339 if (Constraint
.size() == 1) {
14340 switch (Constraint
[0]) {
14342 case 'l': return C_RegisterClass
;
14343 case 'w': return C_RegisterClass
;
14344 case 'h': return C_RegisterClass
;
14345 case 'x': return C_RegisterClass
;
14346 case 't': return C_RegisterClass
;
14347 case 'j': return C_Other
; // Constant for movw.
14348 // An address with a single base register. Due to the way we
14349 // currently handle addresses it is the same as an 'r' memory constraint.
14350 case 'Q': return C_Memory
;
14352 } else if (Constraint
.size() == 2) {
14353 switch (Constraint
[0]) {
14355 case 'T': return C_RegisterClass
;
14356 // All 'U+' constraints are addresses.
14357 case 'U': return C_Memory
;
14360 return TargetLowering::getConstraintType(Constraint
);
14363 /// Examine constraint type and operand type and determine a weight value.
14364 /// This object must already have been set up with the operand type
14365 /// and the current alternative constraint selected.
14366 TargetLowering::ConstraintWeight
14367 ARMTargetLowering::getSingleConstraintMatchWeight(
14368 AsmOperandInfo
&info
, const char *constraint
) const {
14369 ConstraintWeight weight
= CW_Invalid
;
14370 Value
*CallOperandVal
= info
.CallOperandVal
;
14371 // If we don't have a value, we can't do a match,
14372 // but allow it at the lowest weight.
14373 if (!CallOperandVal
)
14375 Type
*type
= CallOperandVal
->getType();
14376 // Look at the constraint type.
14377 switch (*constraint
) {
14379 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
14382 if (type
->isIntegerTy()) {
14383 if (Subtarget
->isThumb())
14384 weight
= CW_SpecificReg
;
14386 weight
= CW_Register
;
14390 if (type
->isFloatingPointTy())
14391 weight
= CW_Register
;
14397 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
14399 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
14400 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
14401 switch (Constraint
.size()) {
14403 // GCC ARM Constraint Letters
14404 switch (Constraint
[0]) {
14405 case 'l': // Low regs or general regs.
14406 if (Subtarget
->isThumb())
14407 return RCPair(0U, &ARM::tGPRRegClass
);
14408 return RCPair(0U, &ARM::GPRRegClass
);
14409 case 'h': // High regs or no regs.
14410 if (Subtarget
->isThumb())
14411 return RCPair(0U, &ARM::hGPRRegClass
);
14414 if (Subtarget
->isThumb1Only())
14415 return RCPair(0U, &ARM::tGPRRegClass
);
14416 return RCPair(0U, &ARM::GPRRegClass
);
14418 if (VT
== MVT::Other
)
14420 if (VT
== MVT::f32
)
14421 return RCPair(0U, &ARM::SPRRegClass
);
14422 if (VT
.getSizeInBits() == 64)
14423 return RCPair(0U, &ARM::DPRRegClass
);
14424 if (VT
.getSizeInBits() == 128)
14425 return RCPair(0U, &ARM::QPRRegClass
);
14428 if (VT
== MVT::Other
)
14430 if (VT
== MVT::f32
)
14431 return RCPair(0U, &ARM::SPR_8RegClass
);
14432 if (VT
.getSizeInBits() == 64)
14433 return RCPair(0U, &ARM::DPR_8RegClass
);
14434 if (VT
.getSizeInBits() == 128)
14435 return RCPair(0U, &ARM::QPR_8RegClass
);
14438 if (VT
== MVT::Other
)
14440 if (VT
== MVT::f32
|| VT
== MVT::i32
)
14441 return RCPair(0U, &ARM::SPRRegClass
);
14442 if (VT
.getSizeInBits() == 64)
14443 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
14444 if (VT
.getSizeInBits() == 128)
14445 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
14451 if (Constraint
[0] == 'T') {
14452 switch (Constraint
[1]) {
14456 return RCPair(0U, &ARM::tGPREvenRegClass
);
14458 return RCPair(0U, &ARM::tGPROddRegClass
);
14467 if (StringRef("{cc}").equals_lower(Constraint
))
14468 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
14470 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
14473 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14474 /// vector. If it is invalid, don't add anything to Ops.
14475 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
14476 std::string
&Constraint
,
14477 std::vector
<SDValue
>&Ops
,
14478 SelectionDAG
&DAG
) const {
14481 // Currently only support length 1 constraints.
14482 if (Constraint
.length() != 1) return;
14484 char ConstraintLetter
= Constraint
[0];
14485 switch (ConstraintLetter
) {
14488 case 'I': case 'J': case 'K': case 'L':
14489 case 'M': case 'N': case 'O':
14490 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
14494 int64_t CVal64
= C
->getSExtValue();
14495 int CVal
= (int) CVal64
;
14496 // None of these constraints allow values larger than 32 bits. Check
14497 // that the value fits in an int.
14498 if (CVal
!= CVal64
)
14501 switch (ConstraintLetter
) {
14503 // Constant suitable for movw, must be between 0 and
14505 if (Subtarget
->hasV6T2Ops())
14506 if (CVal
>= 0 && CVal
<= 65535)
14510 if (Subtarget
->isThumb1Only()) {
14511 // This must be a constant between 0 and 255, for ADD
14513 if (CVal
>= 0 && CVal
<= 255)
14515 } else if (Subtarget
->isThumb2()) {
14516 // A constant that can be used as an immediate value in a
14517 // data-processing instruction.
14518 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
14521 // A constant that can be used as an immediate value in a
14522 // data-processing instruction.
14523 if (ARM_AM::getSOImmVal(CVal
) != -1)
14529 if (Subtarget
->isThumb1Only()) {
14530 // This must be a constant between -255 and -1, for negated ADD
14531 // immediates. This can be used in GCC with an "n" modifier that
14532 // prints the negated value, for use with SUB instructions. It is
14533 // not useful otherwise but is implemented for compatibility.
14534 if (CVal
>= -255 && CVal
<= -1)
14537 // This must be a constant between -4095 and 4095. It is not clear
14538 // what this constraint is intended for. Implemented for
14539 // compatibility with GCC.
14540 if (CVal
>= -4095 && CVal
<= 4095)
14546 if (Subtarget
->isThumb1Only()) {
14547 // A 32-bit value where only one byte has a nonzero value. Exclude
14548 // zero to match GCC. This constraint is used by GCC internally for
14549 // constants that can be loaded with a move/shift combination.
14550 // It is not useful otherwise but is implemented for compatibility.
14551 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
14553 } else if (Subtarget
->isThumb2()) {
14554 // A constant whose bitwise inverse can be used as an immediate
14555 // value in a data-processing instruction. This can be used in GCC
14556 // with a "B" modifier that prints the inverted value, for use with
14557 // BIC and MVN instructions. It is not useful otherwise but is
14558 // implemented for compatibility.
14559 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
14562 // A constant whose bitwise inverse can be used as an immediate
14563 // value in a data-processing instruction. This can be used in GCC
14564 // with a "B" modifier that prints the inverted value, for use with
14565 // BIC and MVN instructions. It is not useful otherwise but is
14566 // implemented for compatibility.
14567 if (ARM_AM::getSOImmVal(~CVal
) != -1)
14573 if (Subtarget
->isThumb1Only()) {
14574 // This must be a constant between -7 and 7,
14575 // for 3-operand ADD/SUB immediate instructions.
14576 if (CVal
>= -7 && CVal
< 7)
14578 } else if (Subtarget
->isThumb2()) {
14579 // A constant whose negation can be used as an immediate value in a
14580 // data-processing instruction. This can be used in GCC with an "n"
14581 // modifier that prints the negated value, for use with SUB
14582 // instructions. It is not useful otherwise but is implemented for
14584 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
14587 // A constant whose negation can be used as an immediate value in a
14588 // data-processing instruction. This can be used in GCC with an "n"
14589 // modifier that prints the negated value, for use with SUB
14590 // instructions. It is not useful otherwise but is implemented for
14592 if (ARM_AM::getSOImmVal(-CVal
) != -1)
14598 if (Subtarget
->isThumb1Only()) {
14599 // This must be a multiple of 4 between 0 and 1020, for
14600 // ADD sp + immediate.
14601 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
14604 // A power of two or a constant between 0 and 32. This is used in
14605 // GCC for the shift amount on shifted register operands, but it is
14606 // useful in general for any shift amounts.
14607 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
14613 if (Subtarget
->isThumb()) { // FIXME thumb2
14614 // This must be a constant between 0 and 31, for shift amounts.
14615 if (CVal
>= 0 && CVal
<= 31)
14621 if (Subtarget
->isThumb()) { // FIXME thumb2
14622 // This must be a multiple of 4 between -508 and 508, for
14623 // ADD/SUB sp = sp + immediate.
14624 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
14629 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
14633 if (Result
.getNode()) {
14634 Ops
.push_back(Result
);
14637 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
14640 static RTLIB::Libcall
getDivRemLibcall(
14641 const SDNode
*N
, MVT::SimpleValueType SVT
) {
14642 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
14643 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
14644 "Unhandled Opcode in getDivRemLibcall");
14645 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
14646 N
->getOpcode() == ISD::SREM
;
14649 default: llvm_unreachable("Unexpected request for libcall!");
14650 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
14651 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
14652 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
14653 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
14658 static TargetLowering::ArgListTy
getDivRemArgList(
14659 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
14660 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
14661 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
14662 "Unhandled Opcode in getDivRemArgList");
14663 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
14664 N
->getOpcode() == ISD::SREM
;
14665 TargetLowering::ArgListTy Args
;
14666 TargetLowering::ArgListEntry Entry
;
14667 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
14668 EVT ArgVT
= N
->getOperand(i
).getValueType();
14669 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
14670 Entry
.Node
= N
->getOperand(i
);
14672 Entry
.IsSExt
= isSigned
;
14673 Entry
.IsZExt
= !isSigned
;
14674 Args
.push_back(Entry
);
14676 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
14677 std::swap(Args
[0], Args
[1]);
14681 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
14682 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
14683 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
14684 Subtarget
->isTargetWindows()) &&
14685 "Register-based DivRem lowering only");
14686 unsigned Opcode
= Op
->getOpcode();
14687 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
14688 "Invalid opcode for Div/Rem lowering");
14689 bool isSigned
= (Opcode
== ISD::SDIVREM
);
14690 EVT VT
= Op
->getValueType(0);
14691 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
14694 // If the target has hardware divide, use divide + multiply + subtract:
14696 // rem = a - b * div
14697 // return {div, rem}
14698 // This should be lowered into UDIV/SDIV + MLS later on.
14699 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
14700 : Subtarget
->hasDivideInARMMode();
14701 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
14702 Op
->getSimpleValueType(0) == MVT::i32
) {
14703 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
14704 const SDValue Dividend
= Op
->getOperand(0);
14705 const SDValue Divisor
= Op
->getOperand(1);
14706 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
14707 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
14708 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
14710 SDValue Values
[2] = {Div
, Rem
};
14711 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
14714 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
14715 VT
.getSimpleVT().SimpleTy
);
14716 SDValue InChain
= DAG
.getEntryNode();
14718 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
14722 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
14723 getPointerTy(DAG
.getDataLayout()));
14725 Type
*RetTy
= StructType::get(Ty
, Ty
);
14727 if (Subtarget
->isTargetWindows())
14728 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
14730 TargetLowering::CallLoweringInfo
CLI(DAG
);
14731 CLI
.setDebugLoc(dl
).setChain(InChain
)
14732 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
14733 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
14735 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
14736 return CallInfo
.first
;
14739 // Lowers REM using divmod helpers
14740 // see RTABI section 4.2/4.3
14741 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
14742 // Build return types (div and rem)
14743 std::vector
<Type
*> RetTyParams
;
14744 Type
*RetTyElement
;
14746 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
14747 default: llvm_unreachable("Unexpected request for libcall!");
14748 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
14749 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
14750 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
14751 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
14754 RetTyParams
.push_back(RetTyElement
);
14755 RetTyParams
.push_back(RetTyElement
);
14756 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
14757 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
14759 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
14761 SDValue InChain
= DAG
.getEntryNode();
14762 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
14764 bool isSigned
= N
->getOpcode() == ISD::SREM
;
14765 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
14766 getPointerTy(DAG
.getDataLayout()));
14768 if (Subtarget
->isTargetWindows())
14769 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
14772 CallLoweringInfo
CLI(DAG
);
14773 CLI
.setChain(InChain
)
14774 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
14775 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
14776 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
14778 // Return second (rem) result operand (first contains div)
14779 SDNode
*ResNode
= CallResult
.first
.getNode();
14780 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
14781 return ResNode
->getOperand(1);
14785 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
14786 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
14790 SDValue Chain
= Op
.getOperand(0);
14791 SDValue Size
= Op
.getOperand(1);
14793 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
14794 "no-stack-arg-probe")) {
14795 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
14796 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
14797 Chain
= SP
.getValue(1);
14798 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
14800 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
14801 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
14802 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
14803 SDValue Ops
[2] = { SP
, Chain
};
14804 return DAG
.getMergeValues(Ops
, DL
);
14807 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
14808 DAG
.getConstant(2, DL
, MVT::i32
));
14811 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
14812 Flag
= Chain
.getValue(1);
14814 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
14815 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
14817 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
14818 Chain
= NewSP
.getValue(1);
14820 SDValue Ops
[2] = { NewSP
, Chain
};
14821 return DAG
.getMergeValues(Ops
, DL
);
14824 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
14825 SDValue SrcVal
= Op
.getOperand(0);
14826 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
14827 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
14828 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
14829 "Unexpected type for custom-lowering FP_EXTEND");
14831 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
14832 "With both FP DP and 16, any FP conversion is legal!");
14834 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
14835 "With FP16, 16 to 32 conversion is legal!");
14837 // Either we are converting from 16 -> 64, without FP16 and/or
14838 // FP.double-precision or without Armv8-fp. So we must do it in two
14840 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
14841 // without FP16. So we must do a function call.
14845 // Instruction from 16 -> 32
14846 if (Subtarget
->hasFP16())
14847 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
14848 // Lib call from 16 -> 32
14850 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
14851 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
14852 "Unexpected type for custom-lowering FP_EXTEND");
14854 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, /*isSigned*/ false, Loc
).first
;
14860 // For sure now SrcVal is 32 bits
14861 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
14862 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
14864 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
14865 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
14866 "Unexpected type for custom-lowering FP_EXTEND");
14867 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, /*isSigned*/ false, Loc
).first
;
14870 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
14871 SDValue SrcVal
= Op
.getOperand(0);
14872 EVT SrcVT
= SrcVal
.getValueType();
14873 EVT DstVT
= Op
.getValueType();
14874 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
14875 const unsigned SrcSz
= SrcVT
.getSizeInBits();
14877 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
14878 "Unexpected type for custom-lowering FP_ROUND");
14880 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
14881 "With both FP DP and 16, any FP conversion is legal!");
14885 // Instruction from 32 -> 16 if hasFP16 is valid
14886 if (SrcSz
== 32 && Subtarget
->hasFP16())
14889 // Lib call from 32 -> 16 / 64 -> [32, 16]
14890 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
14891 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
14892 "Unexpected type for custom-lowering FP_ROUND");
14893 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, /*isSigned*/ false, Loc
).first
;
14896 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
14897 SelectionDAG
&DAG
) const {
14898 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
14899 MVT HalfT
= MVT::i32
;
14901 SDValue Hi
, Lo
, Tmp
;
14903 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
14904 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
14907 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
14908 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
14910 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
14911 DAG
.getConstant(0, dl
, HalfT
));
14912 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
14913 DAG
.getConstant(1, dl
, HalfT
));
14915 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
14916 DAG
.getConstant(OpTypeBits
- 1, dl
,
14917 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
14918 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
14919 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
14920 SDValue(Lo
.getNode(), 1));
14921 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
14922 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
14924 Results
.push_back(Lo
);
14925 Results
.push_back(Hi
);
14929 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
14930 // The ARM target isn't yet aware of offsets.
14934 bool ARM::isBitFieldInvertedMask(unsigned v
) {
14935 if (v
== 0xffffffff)
14938 // there can be 1's on either or both "outsides", all the "inside"
14939 // bits must be 0's
14940 return isShiftedMask_32(~v
);
14943 /// isFPImmLegal - Returns true if the target can instruction select the
14944 /// specified FP immediate natively. If false, the legalizer will
14945 /// materialize the FP immediate as a load from a constant pool.
14946 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
14947 bool ForCodeSize
) const {
14948 if (!Subtarget
->hasVFP3Base())
14950 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
14951 return ARM_AM::getFP16Imm(Imm
) != -1;
14952 if (VT
== MVT::f32
)
14953 return ARM_AM::getFP32Imm(Imm
) != -1;
14954 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
14955 return ARM_AM::getFP64Imm(Imm
) != -1;
14959 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14960 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
14961 /// specified in the intrinsic calls.
14962 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
14964 MachineFunction
&MF
,
14965 unsigned Intrinsic
) const {
14966 switch (Intrinsic
) {
14967 case Intrinsic::arm_neon_vld1
:
14968 case Intrinsic::arm_neon_vld2
:
14969 case Intrinsic::arm_neon_vld3
:
14970 case Intrinsic::arm_neon_vld4
:
14971 case Intrinsic::arm_neon_vld2lane
:
14972 case Intrinsic::arm_neon_vld3lane
:
14973 case Intrinsic::arm_neon_vld4lane
:
14974 case Intrinsic::arm_neon_vld2dup
:
14975 case Intrinsic::arm_neon_vld3dup
:
14976 case Intrinsic::arm_neon_vld4dup
: {
14977 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
14978 // Conservatively set memVT to the entire set of vectors loaded.
14979 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
14980 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
14981 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
14982 Info
.ptrVal
= I
.getArgOperand(0);
14984 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
14985 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
14986 // volatile loads with NEON intrinsics not supported
14987 Info
.flags
= MachineMemOperand::MOLoad
;
14990 case Intrinsic::arm_neon_vld1x2
:
14991 case Intrinsic::arm_neon_vld1x3
:
14992 case Intrinsic::arm_neon_vld1x4
: {
14993 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
14994 // Conservatively set memVT to the entire set of vectors loaded.
14995 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
14996 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
14997 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
14998 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15001 // volatile loads with NEON intrinsics not supported
15002 Info
.flags
= MachineMemOperand::MOLoad
;
15005 case Intrinsic::arm_neon_vst1
:
15006 case Intrinsic::arm_neon_vst2
:
15007 case Intrinsic::arm_neon_vst3
:
15008 case Intrinsic::arm_neon_vst4
:
15009 case Intrinsic::arm_neon_vst2lane
:
15010 case Intrinsic::arm_neon_vst3lane
:
15011 case Intrinsic::arm_neon_vst4lane
: {
15012 Info
.opc
= ISD::INTRINSIC_VOID
;
15013 // Conservatively set memVT to the entire set of vectors stored.
15014 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15015 unsigned NumElts
= 0;
15016 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15017 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15018 if (!ArgTy
->isVectorTy())
15020 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15022 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15023 Info
.ptrVal
= I
.getArgOperand(0);
15025 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15026 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
15027 // volatile stores with NEON intrinsics not supported
15028 Info
.flags
= MachineMemOperand::MOStore
;
15031 case Intrinsic::arm_neon_vst1x2
:
15032 case Intrinsic::arm_neon_vst1x3
:
15033 case Intrinsic::arm_neon_vst1x4
: {
15034 Info
.opc
= ISD::INTRINSIC_VOID
;
15035 // Conservatively set memVT to the entire set of vectors stored.
15036 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15037 unsigned NumElts
= 0;
15038 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15039 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15040 if (!ArgTy
->isVectorTy())
15042 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15044 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15045 Info
.ptrVal
= I
.getArgOperand(0);
15048 // volatile stores with NEON intrinsics not supported
15049 Info
.flags
= MachineMemOperand::MOStore
;
15052 case Intrinsic::arm_ldaex
:
15053 case Intrinsic::arm_ldrex
: {
15054 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15055 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15056 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15057 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15058 Info
.ptrVal
= I
.getArgOperand(0);
15060 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15061 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15064 case Intrinsic::arm_stlex
:
15065 case Intrinsic::arm_strex
: {
15066 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15067 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15068 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15069 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15070 Info
.ptrVal
= I
.getArgOperand(1);
15072 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15073 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15076 case Intrinsic::arm_stlexd
:
15077 case Intrinsic::arm_strexd
:
15078 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15079 Info
.memVT
= MVT::i64
;
15080 Info
.ptrVal
= I
.getArgOperand(2);
15083 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15086 case Intrinsic::arm_ldaexd
:
15087 case Intrinsic::arm_ldrexd
:
15088 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15089 Info
.memVT
= MVT::i64
;
15090 Info
.ptrVal
= I
.getArgOperand(0);
15093 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15103 /// Returns true if it is beneficial to convert a load of a constant
15104 /// to just the constant itself.
15105 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15107 assert(Ty
->isIntegerTy());
15109 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15110 if (Bits
== 0 || Bits
> 32)
15115 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15116 unsigned Index
) const {
15117 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15120 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15123 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15124 ARM_MB::MemBOpt Domain
) const {
15125 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15127 // First, if the target has no DMB, see what fallback we can use.
15128 if (!Subtarget
->hasDataBarrier()) {
15129 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15130 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15132 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15133 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15134 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15135 Builder
.getInt32(0), Builder
.getInt32(7),
15136 Builder
.getInt32(10), Builder
.getInt32(5)};
15137 return Builder
.CreateCall(MCR
, args
);
15139 // Instead of using barriers, atomic accesses on these subtargets use
15141 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15144 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15145 // Only a full system barrier exists in the M-class architectures.
15146 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15147 Constant
*CDomain
= Builder
.getInt32(Domain
);
15148 return Builder
.CreateCall(DMB
, CDomain
);
15152 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15153 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15155 AtomicOrdering Ord
) const {
15157 case AtomicOrdering::NotAtomic
:
15158 case AtomicOrdering::Unordered
:
15159 llvm_unreachable("Invalid fence: unordered/non-atomic");
15160 case AtomicOrdering::Monotonic
:
15161 case AtomicOrdering::Acquire
:
15162 return nullptr; // Nothing to do
15163 case AtomicOrdering::SequentiallyConsistent
:
15164 if (!Inst
->hasAtomicStore())
15165 return nullptr; // Nothing to do
15167 case AtomicOrdering::Release
:
15168 case AtomicOrdering::AcquireRelease
:
15169 if (Subtarget
->preferISHSTBarriers())
15170 return makeDMB(Builder
, ARM_MB::ISHST
);
15171 // FIXME: add a comment with a link to documentation justifying this.
15173 return makeDMB(Builder
, ARM_MB::ISH
);
15175 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15178 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
15180 AtomicOrdering Ord
) const {
15182 case AtomicOrdering::NotAtomic
:
15183 case AtomicOrdering::Unordered
:
15184 llvm_unreachable("Invalid fence: unordered/not-atomic");
15185 case AtomicOrdering::Monotonic
:
15186 case AtomicOrdering::Release
:
15187 return nullptr; // Nothing to do
15188 case AtomicOrdering::Acquire
:
15189 case AtomicOrdering::AcquireRelease
:
15190 case AtomicOrdering::SequentiallyConsistent
:
15191 return makeDMB(Builder
, ARM_MB::ISH
);
15193 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15196 // Loads and stores less than 64-bits are already atomic; ones above that
15197 // are doomed anyway, so defer to the default libcall and blame the OS when
15198 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15199 // anything for those.
15200 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
15201 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
15202 return (Size
== 64) && !Subtarget
->isMClass();
15205 // Loads and stores less than 64-bits are already atomic; ones above that
15206 // are doomed anyway, so defer to the default libcall and blame the OS when
15207 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15208 // anything for those.
15209 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15210 // guarantee, see DDI0406C ARM architecture reference manual,
15211 // sections A8.8.72-74 LDRD)
15212 TargetLowering::AtomicExpansionKind
15213 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
15214 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
15215 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
15216 : AtomicExpansionKind::None
;
15219 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15220 // and up to 64 bits on the non-M profiles
15221 TargetLowering::AtomicExpansionKind
15222 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
15223 if (AI
->isFloatingPointOperation())
15224 return AtomicExpansionKind::CmpXChg
;
15226 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
15227 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15228 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
15229 ? AtomicExpansionKind::LLSC
15230 : AtomicExpansionKind::None
;
15233 TargetLowering::AtomicExpansionKind
15234 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
15235 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15236 // implement cmpxchg without spilling. If the address being exchanged is also
15237 // on the stack and close enough to the spill slot, this can lead to a
15238 // situation where the monitor always gets cleared and the atomic operation
15239 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15240 bool HasAtomicCmpXchg
=
15241 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15242 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
15243 return AtomicExpansionKind::LLSC
;
15244 return AtomicExpansionKind::None
;
15247 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15248 const Instruction
*I
) const {
15249 return InsertFencesForAtomic
;
15252 // This has so far only been implemented for MachO.
15253 bool ARMTargetLowering::useLoadStackGuardNode() const {
15254 return Subtarget
->isTargetMachO();
15257 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
15258 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15259 return TargetLowering::insertSSPDeclarations(M
);
15261 // MSVC CRT has a global variable holding security cookie.
15262 M
.getOrInsertGlobal("__security_cookie",
15263 Type::getInt8PtrTy(M
.getContext()));
15265 // MSVC CRT has a function to validate security cookie.
15266 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
15267 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
15268 Type::getInt8PtrTy(M
.getContext()));
15269 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
15270 F
->addAttribute(1, Attribute::AttrKind::InReg
);
15273 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
15274 // MSVC CRT has a global variable holding security cookie.
15275 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15276 return M
.getGlobalVariable("__security_cookie");
15277 return TargetLowering::getSDagStackGuard(M
);
15280 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
15281 // MSVC CRT has a function to validate security cookie.
15282 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15283 return M
.getFunction("__security_check_cookie");
15284 return TargetLowering::getSSPStackGuardCheck(M
);
15287 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
15288 unsigned &Cost
) const {
15289 // If we do not have NEON, vector types are not natively supported.
15290 if (!Subtarget
->hasNEON())
15293 // Floating point values and vector values map to the same register file.
15294 // Therefore, although we could do a store extract of a vector type, this is
15295 // better to leave at float as we have more freedom in the addressing mode for
15297 if (VectorTy
->isFPOrFPVectorTy())
15300 // If the index is unknown at compile time, this is very expensive to lower
15301 // and it is not possible to combine the store with the extract.
15302 if (!isa
<ConstantInt
>(Idx
))
15305 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
15306 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
15307 // We can do a store + vector extract on any vector that fits perfectly in a D
15309 if (BitWidth
== 64 || BitWidth
== 128) {
15316 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
15317 return Subtarget
->hasV6T2Ops();
15320 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
15321 return Subtarget
->hasV6T2Ops();
15324 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
15325 return !Subtarget
->hasMinSize();
15328 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
15329 AtomicOrdering Ord
) const {
15330 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15331 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
15332 bool IsAcquire
= isAcquireOrStronger(Ord
);
15334 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
15335 // intrinsic must return {i32, i32} and we have to recombine them into a
15336 // single i64 here.
15337 if (ValTy
->getPrimitiveSizeInBits() == 64) {
15338 Intrinsic::ID Int
=
15339 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
15340 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
15342 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
15343 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
15345 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
15346 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
15347 if (!Subtarget
->isLittle())
15348 std::swap (Lo
, Hi
);
15349 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
15350 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
15351 return Builder
.CreateOr(
15352 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
15355 Type
*Tys
[] = { Addr
->getType() };
15356 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
15357 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
15359 return Builder
.CreateTruncOrBitCast(
15360 Builder
.CreateCall(Ldrex
, Addr
),
15361 cast
<PointerType
>(Addr
->getType())->getElementType());
15364 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
15365 IRBuilder
<> &Builder
) const {
15366 if (!Subtarget
->hasV7Ops())
15368 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15369 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
15372 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
15374 AtomicOrdering Ord
) const {
15375 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15376 bool IsRelease
= isReleaseOrStronger(Ord
);
15378 // Since the intrinsics must have legal type, the i64 intrinsics take two
15379 // parameters: "i32, i32". We must marshal Val into the appropriate form
15380 // before the call.
15381 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
15382 Intrinsic::ID Int
=
15383 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
15384 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
15385 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
15387 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
15388 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
15389 if (!Subtarget
->isLittle())
15391 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
15392 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
15395 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
15396 Type
*Tys
[] = { Addr
->getType() };
15397 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
15399 return Builder
.CreateCall(
15400 Strex
, {Builder
.CreateZExtOrBitCast(
15401 Val
, Strex
->getFunctionType()->getParamType(0)),
15406 bool ARMTargetLowering::alignLoopsWithOptSize() const {
15407 return Subtarget
->isMClass();
15410 /// A helper function for determining the number of interleaved accesses we
15411 /// will generate when lowering accesses of the given type.
15413 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
15414 const DataLayout
&DL
) const {
15415 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
15418 bool ARMTargetLowering::isLegalInterleavedAccessType(
15419 VectorType
*VecTy
, const DataLayout
&DL
) const {
15421 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
15422 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
15424 // Ensure the vector doesn't have f16 elements. Even though we could do an
15425 // i16 vldN, we can't hold the f16 vectors and will end up converting via
15427 if (VecTy
->getElementType()->isHalfTy())
15430 // Ensure the number of vector elements is greater than 1.
15431 if (VecTy
->getNumElements() < 2)
15434 // Ensure the element type is legal.
15435 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
15438 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
15439 // 128 will be split into multiple interleaved accesses.
15440 return VecSize
== 64 || VecSize
% 128 == 0;
15443 /// Lower an interleaved load into a vldN intrinsic.
15445 /// E.g. Lower an interleaved load (Factor = 2):
15446 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
15447 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
15448 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
15451 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
15452 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
15453 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
15454 bool ARMTargetLowering::lowerInterleavedLoad(
15455 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
15456 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
15457 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
15458 "Invalid interleave factor");
15459 assert(!Shuffles
.empty() && "Empty shufflevector input");
15460 assert(Shuffles
.size() == Indices
.size() &&
15461 "Unmatched number of shufflevectors and indices");
15463 VectorType
*VecTy
= Shuffles
[0]->getType();
15464 Type
*EltTy
= VecTy
->getVectorElementType();
15466 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
15468 // Skip if we do not have NEON and skip illegal vector types. We can
15469 // "legalize" wide vector types into multiple interleaved accesses as long as
15470 // the vector types are divisible by 128.
15471 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
15474 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
15476 // A pointer vector can not be the return type of the ldN intrinsics. Need to
15477 // load integer vectors first and then convert to pointer vectors.
15478 if (EltTy
->isPointerTy())
15480 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
15482 IRBuilder
<> Builder(LI
);
15484 // The base address of the load.
15485 Value
*BaseAddr
= LI
->getPointerOperand();
15487 if (NumLoads
> 1) {
15488 // If we're going to generate more than one load, reset the sub-vector type
15489 // to something legal.
15490 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
15491 VecTy
->getVectorNumElements() / NumLoads
);
15493 // We will compute the pointer operand of each load from the original base
15494 // address using GEPs. Cast the base address to a pointer to the scalar
15496 BaseAddr
= Builder
.CreateBitCast(
15497 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
15498 LI
->getPointerAddressSpace()));
15501 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
15503 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
15504 Type
*Tys
[] = {VecTy
, Int8Ptr
};
15505 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
15506 Intrinsic::arm_neon_vld3
,
15507 Intrinsic::arm_neon_vld4
};
15508 Function
*VldnFunc
=
15509 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
15511 // Holds sub-vectors extracted from the load intrinsic return values. The
15512 // sub-vectors are associated with the shufflevector instructions they will
15514 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
15516 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
15517 // If we're generating more than one load, compute the base address of
15518 // subsequent loads as an offset from the previous.
15521 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
15522 VecTy
->getVectorNumElements() * Factor
);
15524 SmallVector
<Value
*, 2> Ops
;
15525 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
15526 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
15528 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
15530 // Replace uses of each shufflevector with the corresponding vector loaded
15532 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
15533 ShuffleVectorInst
*SV
= Shuffles
[i
];
15534 unsigned Index
= Indices
[i
];
15536 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
15538 // Convert the integer vector to pointer vector if the element is pointer.
15539 if (EltTy
->isPointerTy())
15540 SubVec
= Builder
.CreateIntToPtr(
15541 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
15542 VecTy
->getVectorNumElements()));
15544 SubVecs
[SV
].push_back(SubVec
);
15548 // Replace uses of the shufflevector instructions with the sub-vectors
15549 // returned by the load intrinsic. If a shufflevector instruction is
15550 // associated with more than one sub-vector, those sub-vectors will be
15551 // concatenated into a single wide vector.
15552 for (ShuffleVectorInst
*SVI
: Shuffles
) {
15553 auto &SubVec
= SubVecs
[SVI
];
15555 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
15556 SVI
->replaceAllUsesWith(WideVec
);
15562 /// Lower an interleaved store into a vstN intrinsic.
15564 /// E.g. Lower an interleaved store (Factor = 3):
15565 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
15566 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
15567 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
15570 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
15571 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
15572 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
15573 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
15575 /// Note that the new shufflevectors will be removed and we'll only generate one
15576 /// vst3 instruction in CodeGen.
15578 /// Example for a more general valid mask (Factor 3). Lower:
15579 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
15580 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
15581 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
15584 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
15585 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
15586 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
15587 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
15588 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
15589 ShuffleVectorInst
*SVI
,
15590 unsigned Factor
) const {
15591 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
15592 "Invalid interleave factor");
15594 VectorType
*VecTy
= SVI
->getType();
15595 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
15596 "Invalid interleaved store");
15598 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
15599 Type
*EltTy
= VecTy
->getVectorElementType();
15600 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
15602 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
15604 // Skip if we do not have NEON and skip illegal vector types. We can
15605 // "legalize" wide vector types into multiple interleaved accesses as long as
15606 // the vector types are divisible by 128.
15607 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
15610 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
15612 Value
*Op0
= SVI
->getOperand(0);
15613 Value
*Op1
= SVI
->getOperand(1);
15614 IRBuilder
<> Builder(SI
);
15616 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
15617 // vectors to integer vectors.
15618 if (EltTy
->isPointerTy()) {
15619 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
15621 // Convert to the corresponding integer vector.
15623 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
15624 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
15625 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
15627 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
15630 // The base address of the store.
15631 Value
*BaseAddr
= SI
->getPointerOperand();
15633 if (NumStores
> 1) {
15634 // If we're going to generate more than one store, reset the lane length
15635 // and sub-vector type to something legal.
15636 LaneLen
/= NumStores
;
15637 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
15639 // We will compute the pointer operand of each store from the original base
15640 // address using GEPs. Cast the base address to a pointer to the scalar
15642 BaseAddr
= Builder
.CreateBitCast(
15643 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
15644 SI
->getPointerAddressSpace()));
15647 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
15649 auto Mask
= SVI
->getShuffleMask();
15651 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
15652 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
15653 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
15654 Intrinsic::arm_neon_vst3
,
15655 Intrinsic::arm_neon_vst4
};
15657 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
15658 // If we generating more than one store, we compute the base address of
15659 // subsequent stores as an offset from the previous.
15660 if (StoreCount
> 0)
15661 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
15662 BaseAddr
, LaneLen
* Factor
);
15664 SmallVector
<Value
*, 6> Ops
;
15665 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
15667 Function
*VstNFunc
=
15668 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
15670 // Split the shufflevector operands into sub vectors for the new vstN call.
15671 for (unsigned i
= 0; i
< Factor
; i
++) {
15672 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
15673 if (Mask
[IdxI
] >= 0) {
15674 Ops
.push_back(Builder
.CreateShuffleVector(
15675 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
15677 unsigned StartMask
= 0;
15678 for (unsigned j
= 1; j
< LaneLen
; j
++) {
15679 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
15680 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
15681 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
15685 // Note: If all elements in a chunk are undefs, StartMask=0!
15686 // Note: Filling undef gaps with random elements is ok, since
15687 // those elements were being written anyway (with undefs).
15688 // In the case of all undefs we're defaulting to using elems from 0
15689 // Note: StartMask cannot be negative, it's checked in
15690 // isReInterleaveMask
15691 Ops
.push_back(Builder
.CreateShuffleVector(
15692 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
15696 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
15697 Builder
.CreateCall(VstNFunc
, Ops
);
15710 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
15711 uint64_t &Members
) {
15712 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
15713 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
15714 uint64_t SubMembers
= 0;
15715 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
15717 Members
+= SubMembers
;
15719 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
15720 uint64_t SubMembers
= 0;
15721 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
15723 Members
+= SubMembers
* AT
->getNumElements();
15724 } else if (Ty
->isFloatTy()) {
15725 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
15729 } else if (Ty
->isDoubleTy()) {
15730 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
15734 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
15741 return VT
->getBitWidth() == 64;
15743 return VT
->getBitWidth() == 128;
15745 switch (VT
->getBitWidth()) {
15758 return (Members
> 0 && Members
<= 4);
15761 /// Return the correct alignment for the current calling convention.
15763 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
15764 DataLayout DL
) const {
15765 if (!ArgTy
->isVectorTy())
15766 return DL
.getABITypeAlignment(ArgTy
);
15768 // Avoid over-aligning vector parameters. It would require realigning the
15769 // stack and waste space for no real benefit.
15770 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
15773 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
15774 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
15775 /// passing according to AAPCS rules.
15776 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
15777 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
15778 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
15779 CallingConv::ARM_AAPCS_VFP
)
15782 HABaseType Base
= HA_UNKNOWN
;
15783 uint64_t Members
= 0;
15784 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
15785 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
15787 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
15788 return IsHA
|| IsIntArray
;
15791 unsigned ARMTargetLowering::getExceptionPointerRegister(
15792 const Constant
*PersonalityFn
) const {
15793 // Platforms which do not use SjLj EH may return values in these registers
15794 // via the personality function.
15795 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
15798 unsigned ARMTargetLowering::getExceptionSelectorRegister(
15799 const Constant
*PersonalityFn
) const {
15800 // Platforms which do not use SjLj EH may return values in these registers
15801 // via the personality function.
15802 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
15805 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
15806 // Update IsSplitCSR in ARMFunctionInfo.
15807 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
15808 AFI
->setIsSplitCSR(true);
15811 void ARMTargetLowering::insertCopiesSplitCSR(
15812 MachineBasicBlock
*Entry
,
15813 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
15814 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
15815 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
15819 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
15820 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
15821 MachineBasicBlock::iterator MBBI
= Entry
->begin();
15822 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
15823 const TargetRegisterClass
*RC
= nullptr;
15824 if (ARM::GPRRegClass
.contains(*I
))
15825 RC
= &ARM::GPRRegClass
;
15826 else if (ARM::DPRRegClass
.contains(*I
))
15827 RC
= &ARM::DPRRegClass
;
15829 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15831 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
15832 // Create copy from CSR to a virtual register.
15833 // FIXME: this currently does not emit CFI pseudo-instructions, it works
15834 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15835 // nounwind. If we want to generalize this later, we may need to emit
15836 // CFI pseudo-instructions.
15837 assert(Entry
->getParent()->getFunction().hasFnAttribute(
15838 Attribute::NoUnwind
) &&
15839 "Function should be nounwind in insertCopiesSplitCSR!");
15840 Entry
->addLiveIn(*I
);
15841 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
15844 // Insert the copy-back instructions right before the terminator.
15845 for (auto *Exit
: Exits
)
15846 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
15847 TII
->get(TargetOpcode::COPY
), *I
)
15852 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
15853 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
15854 TargetLoweringBase::finalizeLowering(MF
);