1 //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information. It uses lazy annotations to cache information about how
11 // structure types are laid out and used.
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&. None of the members functions
15 // require modification to the object.
17 //===----------------------------------------------------------------------===//
19 #ifndef LLVM_IR_DATALAYOUT_H
20 #define LLVM_IR_DATALAYOUT_H
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/Alignment.h"
33 #include "llvm/Support/TypeSize.h"
38 // This needs to be outside of the namespace, to avoid conflict with llvm-c
40 using LLVMTargetDataRef
= struct LLVMOpaqueTargetData
*;
51 /// Enum used to categorize the alignment types stored by LayoutAlignElem
60 // FIXME: Currently the DataLayout string carries a "preferred alignment"
61 // for types. As the DataLayout is module/global, this should likely be
62 // sunk down to an FTTI element that is queried rather than a global
65 /// Layout alignment element.
67 /// Stores the alignment data associated with a given alignment type (integer,
68 /// vector, float) and type bit width.
70 /// \note The unusual order of elements in the structure attempts to reduce
71 /// padding and make the structure slightly more cache friendly.
72 struct LayoutAlignElem
{
73 /// Alignment type from \c AlignTypeEnum
74 unsigned AlignType
: 8;
75 unsigned TypeBitWidth
: 24;
79 static LayoutAlignElem
get(AlignTypeEnum align_type
, Align abi_align
,
80 Align pref_align
, uint32_t bit_width
);
82 bool operator==(const LayoutAlignElem
&rhs
) const;
85 /// Layout pointer alignment element.
87 /// Stores the alignment data associated with a given pointer and address space.
89 /// \note The unusual order of elements in the structure attempts to reduce
90 /// padding and make the structure slightly more cache friendly.
91 struct PointerAlignElem
{
94 uint32_t TypeByteWidth
;
95 uint32_t AddressSpace
;
99 static PointerAlignElem
get(uint32_t AddressSpace
, Align ABIAlign
,
100 Align PrefAlign
, uint32_t TypeByteWidth
,
101 uint32_t IndexWidth
);
103 bool operator==(const PointerAlignElem
&rhs
) const;
106 /// A parsed version of the target data layout string in and methods for
109 /// The target data layout string is specified *by the target* - a frontend
110 /// generating LLVM IR is required to generate the right target data for the
111 /// target being codegen'd to.
114 enum class FunctionPtrAlignType
{
115 /// The function pointer alignment is independent of the function alignment.
117 /// The function pointer alignment is a multiple of the function alignment.
118 MultipleOfFunctionAlign
,
121 /// Defaults to false.
124 unsigned AllocaAddrSpace
;
125 MaybeAlign StackNaturalAlign
;
126 unsigned ProgramAddrSpace
;
128 MaybeAlign FunctionPtrAlign
;
129 FunctionPtrAlignType TheFunctionPtrAlignType
;
139 ManglingModeT ManglingMode
;
141 SmallVector
<unsigned char, 8> LegalIntWidths
;
143 /// Primitive type alignment data. This is sorted by type and bit
144 /// width during construction.
145 using AlignmentsTy
= SmallVector
<LayoutAlignElem
, 16>;
146 AlignmentsTy Alignments
;
148 AlignmentsTy::const_iterator
149 findAlignmentLowerBound(AlignTypeEnum AlignType
, uint32_t BitWidth
) const {
150 return const_cast<DataLayout
*>(this)->findAlignmentLowerBound(AlignType
,
154 AlignmentsTy::iterator
155 findAlignmentLowerBound(AlignTypeEnum AlignType
, uint32_t BitWidth
);
157 /// The string representation used to create this DataLayout
158 std::string StringRepresentation
;
160 using PointersTy
= SmallVector
<PointerAlignElem
, 8>;
163 PointersTy::const_iterator
164 findPointerLowerBound(uint32_t AddressSpace
) const {
165 return const_cast<DataLayout
*>(this)->findPointerLowerBound(AddressSpace
);
168 PointersTy::iterator
findPointerLowerBound(uint32_t AddressSpace
);
170 // The StructType -> StructLayout map.
171 mutable void *LayoutMap
= nullptr;
173 /// Pointers in these address spaces are non-integral, and don't have a
174 /// well-defined bitwise representation.
175 SmallVector
<unsigned, 8> NonIntegralAddressSpaces
;
177 void setAlignment(AlignTypeEnum align_type
, Align abi_align
, Align pref_align
,
179 Align
getAlignmentInfo(AlignTypeEnum align_type
, uint32_t bit_width
,
180 bool ABIAlign
, Type
*Ty
) const;
181 void setPointerAlignment(uint32_t AddrSpace
, Align ABIAlign
, Align PrefAlign
,
182 uint32_t TypeByteWidth
, uint32_t IndexWidth
);
184 /// Internal helper method that returns requested alignment for type.
185 Align
getAlignment(Type
*Ty
, bool abi_or_pref
) const;
187 /// Parses a target data specification string. Assert if the string is
189 void parseSpecifier(StringRef LayoutDescription
);
191 // Free all internal data structures.
195 /// Constructs a DataLayout from a specification string. See reset().
196 explicit DataLayout(StringRef LayoutDescription
) {
197 reset(LayoutDescription
);
200 /// Initialize target data from properties stored in the module.
201 explicit DataLayout(const Module
*M
);
203 DataLayout(const DataLayout
&DL
) { *this = DL
; }
205 ~DataLayout(); // Not virtual, do not subclass this class
207 DataLayout
&operator=(const DataLayout
&DL
) {
209 StringRepresentation
= DL
.StringRepresentation
;
210 BigEndian
= DL
.isBigEndian();
211 AllocaAddrSpace
= DL
.AllocaAddrSpace
;
212 StackNaturalAlign
= DL
.StackNaturalAlign
;
213 FunctionPtrAlign
= DL
.FunctionPtrAlign
;
214 TheFunctionPtrAlignType
= DL
.TheFunctionPtrAlignType
;
215 ProgramAddrSpace
= DL
.ProgramAddrSpace
;
216 ManglingMode
= DL
.ManglingMode
;
217 LegalIntWidths
= DL
.LegalIntWidths
;
218 Alignments
= DL
.Alignments
;
219 Pointers
= DL
.Pointers
;
220 NonIntegralAddressSpaces
= DL
.NonIntegralAddressSpaces
;
224 bool operator==(const DataLayout
&Other
) const;
225 bool operator!=(const DataLayout
&Other
) const { return !(*this == Other
); }
227 void init(const Module
*M
);
229 /// Parse a data layout string (with fallback to default values).
230 void reset(StringRef LayoutDescription
);
232 /// Layout endianness...
233 bool isLittleEndian() const { return !BigEndian
; }
234 bool isBigEndian() const { return BigEndian
; }
236 /// Returns the string representation of the DataLayout.
238 /// This representation is in the same format accepted by the string
239 /// constructor above. This should not be used to compare two DataLayout as
240 /// different string can represent the same layout.
241 const std::string
&getStringRepresentation() const {
242 return StringRepresentation
;
245 /// Test if the DataLayout was constructed from an empty string.
246 bool isDefault() const { return StringRepresentation
.empty(); }
248 /// Returns true if the specified type is known to be a native integer
249 /// type supported by the CPU.
251 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
252 /// on any known one. This returns false if the integer width is not legal.
254 /// The width is specified in bits.
255 bool isLegalInteger(uint64_t Width
) const {
256 for (unsigned LegalIntWidth
: LegalIntWidths
)
257 if (LegalIntWidth
== Width
)
262 bool isIllegalInteger(uint64_t Width
) const { return !isLegalInteger(Width
); }
264 /// Returns true if the given alignment exceeds the natural stack alignment.
265 bool exceedsNaturalStackAlignment(Align Alignment
) const {
266 return StackNaturalAlign
&& (Alignment
> StackNaturalAlign
);
269 Align
getStackAlignment() const {
270 assert(StackNaturalAlign
&& "StackNaturalAlign must be defined");
271 return *StackNaturalAlign
;
274 unsigned getAllocaAddrSpace() const { return AllocaAddrSpace
; }
276 /// Returns the alignment of function pointers, which may or may not be
277 /// related to the alignment of functions.
278 /// \see getFunctionPtrAlignType
279 MaybeAlign
getFunctionPtrAlign() const { return FunctionPtrAlign
; }
281 /// Return the type of function pointer alignment.
282 /// \see getFunctionPtrAlign
283 FunctionPtrAlignType
getFunctionPtrAlignType() const {
284 return TheFunctionPtrAlignType
;
287 unsigned getProgramAddressSpace() const { return ProgramAddrSpace
; }
289 bool hasMicrosoftFastStdCallMangling() const {
290 return ManglingMode
== MM_WinCOFFX86
;
293 /// Returns true if symbols with leading question marks should not receive IR
294 /// mangling. True for Windows mangling modes.
295 bool doNotMangleLeadingQuestionMark() const {
296 return ManglingMode
== MM_WinCOFF
|| ManglingMode
== MM_WinCOFFX86
;
299 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode
== MM_MachO
; }
301 StringRef
getLinkerPrivateGlobalPrefix() const {
302 if (ManglingMode
== MM_MachO
)
307 char getGlobalPrefix() const {
308 switch (ManglingMode
) {
318 llvm_unreachable("invalid mangling mode");
321 StringRef
getPrivateGlobalPrefix() const {
322 switch (ManglingMode
) {
334 llvm_unreachable("invalid mangling mode");
337 static const char *getManglingComponent(const Triple
&T
);
339 /// Returns true if the specified type fits in a native integer type
340 /// supported by the CPU.
342 /// For example, if the CPU only supports i32 as a native integer type, then
343 /// i27 fits in a legal integer type but i45 does not.
344 bool fitsInLegalInteger(unsigned Width
) const {
345 for (unsigned LegalIntWidth
: LegalIntWidths
)
346 if (Width
<= LegalIntWidth
)
351 /// Layout pointer alignment
352 Align
getPointerABIAlignment(unsigned AS
) const;
354 /// Return target's alignment for stack-based pointers
355 /// FIXME: The defaults need to be removed once all of
356 /// the backends/clients are updated.
357 Align
getPointerPrefAlignment(unsigned AS
= 0) const;
359 /// Layout pointer size
360 /// FIXME: The defaults need to be removed once all of
361 /// the backends/clients are updated.
362 unsigned getPointerSize(unsigned AS
= 0) const;
364 /// Returns the maximum pointer size over all address spaces.
365 unsigned getMaxPointerSize() const;
367 // Index size used for address calculation.
368 unsigned getIndexSize(unsigned AS
) const;
370 /// Return the address spaces containing non-integral pointers. Pointers in
371 /// this address space don't have a well-defined bitwise representation.
372 ArrayRef
<unsigned> getNonIntegralAddressSpaces() const {
373 return NonIntegralAddressSpaces
;
376 bool isNonIntegralAddressSpace(unsigned AddrSpace
) const {
377 ArrayRef
<unsigned> NonIntegralSpaces
= getNonIntegralAddressSpaces();
378 return find(NonIntegralSpaces
, AddrSpace
) != NonIntegralSpaces
.end();
381 bool isNonIntegralPointerType(PointerType
*PT
) const {
382 return isNonIntegralAddressSpace(PT
->getAddressSpace());
385 bool isNonIntegralPointerType(Type
*Ty
) const {
386 auto *PTy
= dyn_cast
<PointerType
>(Ty
);
387 return PTy
&& isNonIntegralPointerType(PTy
);
390 /// Layout pointer size, in bits
391 /// FIXME: The defaults need to be removed once all of
392 /// the backends/clients are updated.
393 unsigned getPointerSizeInBits(unsigned AS
= 0) const {
394 return getPointerSize(AS
) * 8;
397 /// Returns the maximum pointer size over all address spaces.
398 unsigned getMaxPointerSizeInBits() const {
399 return getMaxPointerSize() * 8;
402 /// Size in bits of index used for address calculation in getelementptr.
403 unsigned getIndexSizeInBits(unsigned AS
) const {
404 return getIndexSize(AS
) * 8;
407 /// Layout pointer size, in bits, based on the type. If this function is
408 /// called with a pointer type, then the type size of the pointer is returned.
409 /// If this function is called with a vector of pointers, then the type size
410 /// of the pointer is returned. This should only be called with a pointer or
411 /// vector of pointers.
412 unsigned getPointerTypeSizeInBits(Type
*) const;
414 /// Layout size of the index used in GEP calculation.
415 /// The function should be called with pointer or vector of pointers type.
416 unsigned getIndexTypeSizeInBits(Type
*Ty
) const;
418 unsigned getPointerTypeSize(Type
*Ty
) const {
419 return getPointerTypeSizeInBits(Ty
) / 8;
424 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
425 /// ---- ---------- --------------- ---------------
434 /// X86_FP80 80 80 96
436 /// [*] The alloc size depends on the alignment, and thus on the target.
437 /// These values are for x86-32 linux.
439 /// Returns the number of bits necessary to hold the specified type.
441 /// If Ty is a scalable vector type, the scalable property will be set and
442 /// the runtime size will be a positive integer multiple of the base size.
444 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
445 /// have a size (Type::isSized() must return true).
446 TypeSize
getTypeSizeInBits(Type
*Ty
) const;
448 /// Returns the maximum number of bytes that may be overwritten by
449 /// storing the specified type.
451 /// If Ty is a scalable vector type, the scalable property will be set and
452 /// the runtime size will be a positive integer multiple of the base size.
454 /// For example, returns 5 for i36 and 10 for x86_fp80.
455 TypeSize
getTypeStoreSize(Type
*Ty
) const {
456 auto BaseSize
= getTypeSizeInBits(Ty
);
457 return { (BaseSize
.getKnownMinSize() + 7) / 8, BaseSize
.isScalable() };
460 /// Returns the maximum number of bits that may be overwritten by
461 /// storing the specified type; always a multiple of 8.
463 /// If Ty is a scalable vector type, the scalable property will be set and
464 /// the runtime size will be a positive integer multiple of the base size.
466 /// For example, returns 40 for i36 and 80 for x86_fp80.
467 TypeSize
getTypeStoreSizeInBits(Type
*Ty
) const {
468 return 8 * getTypeStoreSize(Ty
);
471 /// Returns true if no extra padding bits are needed when storing the
474 /// For example, returns false for i19 that has a 24-bit store size.
475 bool typeSizeEqualsStoreSize(Type
*Ty
) const {
476 return getTypeSizeInBits(Ty
) == getTypeStoreSizeInBits(Ty
);
479 /// Returns the offset in bytes between successive objects of the
480 /// specified type, including alignment padding.
482 /// If Ty is a scalable vector type, the scalable property will be set and
483 /// the runtime size will be a positive integer multiple of the base size.
485 /// This is the amount that alloca reserves for this type. For example,
486 /// returns 12 or 16 for x86_fp80, depending on alignment.
487 TypeSize
getTypeAllocSize(Type
*Ty
) const {
488 // Round up to the next alignment boundary.
489 return alignTo(getTypeStoreSize(Ty
), getABITypeAlignment(Ty
));
492 /// Returns the offset in bits between successive objects of the
493 /// specified type, including alignment padding; always a multiple of 8.
495 /// If Ty is a scalable vector type, the scalable property will be set and
496 /// the runtime size will be a positive integer multiple of the base size.
498 /// This is the amount that alloca reserves for this type. For example,
499 /// returns 96 or 128 for x86_fp80, depending on alignment.
500 TypeSize
getTypeAllocSizeInBits(Type
*Ty
) const {
501 return 8 * getTypeAllocSize(Ty
);
504 /// Returns the minimum ABI-required alignment for the specified type.
505 unsigned getABITypeAlignment(Type
*Ty
) const;
507 /// Returns the minimum ABI-required alignment for an integer type of
508 /// the specified bitwidth.
509 Align
getABIIntegerTypeAlignment(unsigned BitWidth
) const;
511 /// Returns the preferred stack/global alignment for the specified
514 /// This is always at least as good as the ABI alignment.
515 unsigned getPrefTypeAlignment(Type
*Ty
) const;
517 /// Returns an integer type with size at least as big as that of a
518 /// pointer in the given address space.
519 IntegerType
*getIntPtrType(LLVMContext
&C
, unsigned AddressSpace
= 0) const;
521 /// Returns an integer (vector of integer) type with size at least as
522 /// big as that of a pointer of the given pointer (vector of pointer) type.
523 Type
*getIntPtrType(Type
*) const;
525 /// Returns the smallest integer type with size at least as big as
527 Type
*getSmallestLegalIntType(LLVMContext
&C
, unsigned Width
= 0) const;
529 /// Returns the largest legal integer type, or null if none are set.
530 Type
*getLargestLegalIntType(LLVMContext
&C
) const {
531 unsigned LargestSize
= getLargestLegalIntTypeSizeInBits();
532 return (LargestSize
== 0) ? nullptr : Type::getIntNTy(C
, LargestSize
);
535 /// Returns the size of largest legal integer type size, or 0 if none
537 unsigned getLargestLegalIntTypeSizeInBits() const;
539 /// Returns the type of a GEP index.
540 /// If it was not specified explicitly, it will be the integer type of the
541 /// pointer width - IntPtrType.
542 Type
*getIndexType(Type
*PtrTy
) const;
544 /// Returns the offset from the beginning of the type for the specified
547 /// Note that this takes the element type, not the pointer type.
548 /// This is used to implement getelementptr.
549 int64_t getIndexedOffsetInType(Type
*ElemTy
, ArrayRef
<Value
*> Indices
) const;
551 /// Returns a StructLayout object, indicating the alignment of the
552 /// struct, its size, and the offsets of its fields.
554 /// Note that this information is lazily cached.
555 const StructLayout
*getStructLayout(StructType
*Ty
) const;
557 /// Returns the preferred alignment of the specified global.
559 /// This includes an explicitly requested alignment (if the global has one).
560 unsigned getPreferredAlignment(const GlobalVariable
*GV
) const;
562 /// Returns the preferred alignment of the specified global, returned
565 /// This includes an explicitly requested alignment (if the global has one).
566 unsigned getPreferredAlignmentLog(const GlobalVariable
*GV
) const;
569 inline DataLayout
*unwrap(LLVMTargetDataRef P
) {
570 return reinterpret_cast<DataLayout
*>(P
);
573 inline LLVMTargetDataRef
wrap(const DataLayout
*P
) {
574 return reinterpret_cast<LLVMTargetDataRef
>(const_cast<DataLayout
*>(P
));
577 /// Used to lazily calculate structure layout information for a target machine,
578 /// based on the DataLayout structure.
581 Align StructAlignment
;
582 unsigned IsPadded
: 1;
583 unsigned NumElements
: 31;
584 uint64_t MemberOffsets
[1]; // variable sized array!
587 uint64_t getSizeInBytes() const { return StructSize
; }
589 uint64_t getSizeInBits() const { return 8 * StructSize
; }
591 Align
getAlignment() const { return StructAlignment
; }
593 /// Returns whether the struct has padding or not between its fields.
594 /// NB: Padding in nested element is not taken into account.
595 bool hasPadding() const { return IsPadded
; }
597 /// Given a valid byte offset into the structure, returns the structure
598 /// index that contains it.
599 unsigned getElementContainingOffset(uint64_t Offset
) const;
601 uint64_t getElementOffset(unsigned Idx
) const {
602 assert(Idx
< NumElements
&& "Invalid element idx!");
603 return MemberOffsets
[Idx
];
606 uint64_t getElementOffsetInBits(unsigned Idx
) const {
607 return getElementOffset(Idx
) * 8;
611 friend class DataLayout
; // Only DataLayout can create this class
613 StructLayout(StructType
*ST
, const DataLayout
&DL
);
616 // The implementation of this method is provided inline as it is particularly
617 // well suited to constant folding when called on a specific Type subclass.
618 inline TypeSize
DataLayout::getTypeSizeInBits(Type
*Ty
) const {
619 assert(Ty
->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
620 switch (Ty
->getTypeID()) {
621 case Type::LabelTyID
:
622 return TypeSize::Fixed(getPointerSizeInBits(0));
623 case Type::PointerTyID
:
624 return TypeSize::Fixed(getPointerSizeInBits(Ty
->getPointerAddressSpace()));
625 case Type::ArrayTyID
: {
626 ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
627 return ATy
->getNumElements() *
628 getTypeAllocSizeInBits(ATy
->getElementType());
630 case Type::StructTyID
:
631 // Get the layout annotation... which is lazily created on demand.
632 return TypeSize::Fixed(
633 getStructLayout(cast
<StructType
>(Ty
))->getSizeInBits());
634 case Type::IntegerTyID
:
635 return TypeSize::Fixed(Ty
->getIntegerBitWidth());
637 return TypeSize::Fixed(16);
638 case Type::FloatTyID
:
639 return TypeSize::Fixed(32);
640 case Type::DoubleTyID
:
641 case Type::X86_MMXTyID
:
642 return TypeSize::Fixed(64);
643 case Type::PPC_FP128TyID
:
644 case Type::FP128TyID
:
645 return TypeSize::Fixed(128);
646 // In memory objects this is always aligned to a higher boundary, but
647 // only 80 bits contain information.
648 case Type::X86_FP80TyID
:
649 return TypeSize::Fixed(80);
650 case Type::VectorTyID
: {
651 VectorType
*VTy
= cast
<VectorType
>(Ty
);
652 auto EltCnt
= VTy
->getElementCount();
653 uint64_t MinBits
= EltCnt
.Min
*
654 getTypeSizeInBits(VTy
->getElementType()).getFixedSize();
655 return TypeSize(MinBits
, EltCnt
.Scalable
);
658 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
662 } // end namespace llvm
664 #endif // LLVM_IR_DATALAYOUT_H