1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class. This is meant to be an easy way to get access to all
11 // instruction subclasses.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/OperandTraits.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/AtomicOrdering.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
54 //===----------------------------------------------------------------------===//
56 //===----------------------------------------------------------------------===//
58 /// an instruction to allocate memory on the stack
59 class AllocaInst
: public UnaryInstruction
{
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction
;
66 AllocaInst
*cloneImpl() const;
69 explicit AllocaInst(Type
*Ty
, unsigned AddrSpace
,
70 Value
*ArraySize
= nullptr,
71 const Twine
&Name
= "",
72 Instruction
*InsertBefore
= nullptr);
73 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
74 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
76 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
77 const Twine
&Name
, Instruction
*InsertBefore
= nullptr);
78 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
79 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
81 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
82 const Twine
&Name
= "", Instruction
*InsertBefore
= nullptr);
83 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
84 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value
*getArraySize() const { return getOperand(0); }
93 Value
*getArraySize() { return getOperand(0); }
95 /// Overload to return most specific pointer type.
96 PointerType
*getType() const {
97 return cast
<PointerType
>(Instruction::getType());
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional
<uint64_t> getAllocationSizeInBits(const DataLayout
&DL
) const;
104 /// Return the type that is being allocated by the instruction.
105 Type
*getAllocatedType() const { return AllocatedType
; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type
*Ty
) { AllocatedType
= Ty
; }
110 /// Return the alignment of the memory that is being allocated by the
112 unsigned getAlignment() const {
113 if (const auto MA
= decodeMaybeAlign(getSubclassDataFromInstruction() & 31))
117 // FIXME: Remove once migration to llvm::Align is over.
118 void setAlignment(unsigned Align
);
119 void setAlignment(llvm::MaybeAlign Align
);
121 /// Return true if this alloca is in the entry block of the function and is a
122 /// constant size. If so, the code generator will fold it into the
123 /// prolog/epilog code, so it is basically free.
124 bool isStaticAlloca() const;
126 /// Return true if this alloca is used as an inalloca argument to a call. Such
127 /// allocas are never considered static even if they are in the entry block.
128 bool isUsedWithInAlloca() const {
129 return getSubclassDataFromInstruction() & 32;
132 /// Specify whether this alloca is used to represent the arguments to a call.
133 void setUsedWithInAlloca(bool V
) {
134 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
138 /// Return true if this alloca is used as a swifterror argument to a call.
139 bool isSwiftError() const {
140 return getSubclassDataFromInstruction() & 64;
143 /// Specify whether this alloca is used to represent a swifterror.
144 void setSwiftError(bool V
) {
145 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
149 // Methods for support type inquiry through isa, cast, and dyn_cast:
150 static bool classof(const Instruction
*I
) {
151 return (I
->getOpcode() == Instruction::Alloca
);
153 static bool classof(const Value
*V
) {
154 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
158 // Shadow Instruction::setInstructionSubclassData with a private forwarding
159 // method so that subclasses cannot accidentally use it.
160 void setInstructionSubclassData(unsigned short D
) {
161 Instruction::setInstructionSubclassData(D
);
165 //===----------------------------------------------------------------------===//
167 //===----------------------------------------------------------------------===//
169 /// An instruction for reading from memory. This uses the SubclassData field in
170 /// Value to store whether or not the load is volatile.
171 class LoadInst
: public UnaryInstruction
{
175 // Note: Instruction needs to be a friend here to call cloneImpl.
176 friend class Instruction
;
178 LoadInst
*cloneImpl() const;
181 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
= "",
182 Instruction
*InsertBefore
= nullptr);
183 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
184 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
185 Instruction
*InsertBefore
= nullptr);
186 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
187 BasicBlock
*InsertAtEnd
);
188 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
189 unsigned Align
, Instruction
*InsertBefore
= nullptr);
190 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
191 unsigned Align
, BasicBlock
*InsertAtEnd
);
192 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
193 unsigned Align
, AtomicOrdering Order
,
194 SyncScope::ID SSID
= SyncScope::System
,
195 Instruction
*InsertBefore
= nullptr);
196 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
197 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
198 BasicBlock
*InsertAtEnd
);
200 // Deprecated [opaque pointer types]
201 explicit LoadInst(Value
*Ptr
, const Twine
&NameStr
= "",
202 Instruction
*InsertBefore
= nullptr)
203 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
205 LoadInst(Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
206 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
208 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
209 Instruction
*InsertBefore
= nullptr)
210 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
211 isVolatile
, InsertBefore
) {}
212 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
213 BasicBlock
*InsertAtEnd
)
214 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
215 isVolatile
, InsertAtEnd
) {}
216 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
217 Instruction
*InsertBefore
= nullptr)
218 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
219 isVolatile
, Align
, InsertBefore
) {}
220 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
221 BasicBlock
*InsertAtEnd
)
222 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
223 isVolatile
, Align
, InsertAtEnd
) {}
224 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
225 AtomicOrdering Order
, SyncScope::ID SSID
= SyncScope::System
,
226 Instruction
*InsertBefore
= nullptr)
227 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
228 isVolatile
, Align
, Order
, SSID
, InsertBefore
) {}
229 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
230 AtomicOrdering Order
, SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
)
231 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
232 isVolatile
, Align
, Order
, SSID
, InsertAtEnd
) {}
234 /// Return true if this is a load from a volatile memory location.
235 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
237 /// Specify whether this is a volatile load or not.
238 void setVolatile(bool V
) {
239 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
243 /// Return the alignment of the access that is being performed.
244 unsigned getAlignment() const {
246 decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31))
251 // FIXME: Remove once migration to llvm::Align is over.
252 void setAlignment(unsigned Align
);
253 void setAlignment(llvm::MaybeAlign Align
);
255 /// Returns the ordering constraint of this load instruction.
256 AtomicOrdering
getOrdering() const {
257 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
260 /// Sets the ordering constraint of this load instruction. May not be Release
261 /// or AcquireRelease.
262 void setOrdering(AtomicOrdering Ordering
) {
263 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
264 ((unsigned)Ordering
<< 7));
267 /// Returns the synchronization scope ID of this load instruction.
268 SyncScope::ID
getSyncScopeID() const {
272 /// Sets the synchronization scope ID of this load instruction.
273 void setSyncScopeID(SyncScope::ID SSID
) {
277 /// Sets the ordering constraint and the synchronization scope ID of this load
279 void setAtomic(AtomicOrdering Ordering
,
280 SyncScope::ID SSID
= SyncScope::System
) {
281 setOrdering(Ordering
);
282 setSyncScopeID(SSID
);
285 bool isSimple() const { return !isAtomic() && !isVolatile(); }
287 bool isUnordered() const {
288 return (getOrdering() == AtomicOrdering::NotAtomic
||
289 getOrdering() == AtomicOrdering::Unordered
) &&
293 Value
*getPointerOperand() { return getOperand(0); }
294 const Value
*getPointerOperand() const { return getOperand(0); }
295 static unsigned getPointerOperandIndex() { return 0U; }
296 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
298 /// Returns the address space of the pointer operand.
299 unsigned getPointerAddressSpace() const {
300 return getPointerOperandType()->getPointerAddressSpace();
303 // Methods for support type inquiry through isa, cast, and dyn_cast:
304 static bool classof(const Instruction
*I
) {
305 return I
->getOpcode() == Instruction::Load
;
307 static bool classof(const Value
*V
) {
308 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
312 // Shadow Instruction::setInstructionSubclassData with a private forwarding
313 // method so that subclasses cannot accidentally use it.
314 void setInstructionSubclassData(unsigned short D
) {
315 Instruction::setInstructionSubclassData(D
);
318 /// The synchronization scope ID of this load instruction. Not quite enough
319 /// room in SubClassData for everything, so synchronization scope ID gets its
324 //===----------------------------------------------------------------------===//
326 //===----------------------------------------------------------------------===//
328 /// An instruction for storing to memory.
329 class StoreInst
: public Instruction
{
333 // Note: Instruction needs to be a friend here to call cloneImpl.
334 friend class Instruction
;
336 StoreInst
*cloneImpl() const;
339 StoreInst(Value
*Val
, Value
*Ptr
, Instruction
*InsertBefore
);
340 StoreInst(Value
*Val
, Value
*Ptr
, BasicBlock
*InsertAtEnd
);
341 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
= false,
342 Instruction
*InsertBefore
= nullptr);
343 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, BasicBlock
*InsertAtEnd
);
344 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
345 unsigned Align
, Instruction
*InsertBefore
= nullptr);
346 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
347 unsigned Align
, BasicBlock
*InsertAtEnd
);
348 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
349 unsigned Align
, AtomicOrdering Order
,
350 SyncScope::ID SSID
= SyncScope::System
,
351 Instruction
*InsertBefore
= nullptr);
352 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
353 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
354 BasicBlock
*InsertAtEnd
);
356 // allocate space for exactly two operands
357 void *operator new(size_t s
) {
358 return User::operator new(s
, 2);
361 /// Return true if this is a store to a volatile memory location.
362 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
364 /// Specify whether this is a volatile store or not.
365 void setVolatile(bool V
) {
366 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
370 /// Transparently provide more efficient getOperand methods.
371 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
373 /// Return the alignment of the access that is being performed
374 unsigned getAlignment() const {
376 decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31))
381 // FIXME: Remove once migration to llvm::Align is over.
382 void setAlignment(unsigned Align
);
383 void setAlignment(llvm::MaybeAlign Align
);
385 /// Returns the ordering constraint of this store instruction.
386 AtomicOrdering
getOrdering() const {
387 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
390 /// Sets the ordering constraint of this store instruction. May not be
391 /// Acquire or AcquireRelease.
392 void setOrdering(AtomicOrdering Ordering
) {
393 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
394 ((unsigned)Ordering
<< 7));
397 /// Returns the synchronization scope ID of this store instruction.
398 SyncScope::ID
getSyncScopeID() const {
402 /// Sets the synchronization scope ID of this store instruction.
403 void setSyncScopeID(SyncScope::ID SSID
) {
407 /// Sets the ordering constraint and the synchronization scope ID of this
408 /// store instruction.
409 void setAtomic(AtomicOrdering Ordering
,
410 SyncScope::ID SSID
= SyncScope::System
) {
411 setOrdering(Ordering
);
412 setSyncScopeID(SSID
);
415 bool isSimple() const { return !isAtomic() && !isVolatile(); }
417 bool isUnordered() const {
418 return (getOrdering() == AtomicOrdering::NotAtomic
||
419 getOrdering() == AtomicOrdering::Unordered
) &&
423 Value
*getValueOperand() { return getOperand(0); }
424 const Value
*getValueOperand() const { return getOperand(0); }
426 Value
*getPointerOperand() { return getOperand(1); }
427 const Value
*getPointerOperand() const { return getOperand(1); }
428 static unsigned getPointerOperandIndex() { return 1U; }
429 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
431 /// Returns the address space of the pointer operand.
432 unsigned getPointerAddressSpace() const {
433 return getPointerOperandType()->getPointerAddressSpace();
436 // Methods for support type inquiry through isa, cast, and dyn_cast:
437 static bool classof(const Instruction
*I
) {
438 return I
->getOpcode() == Instruction::Store
;
440 static bool classof(const Value
*V
) {
441 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
445 // Shadow Instruction::setInstructionSubclassData with a private forwarding
446 // method so that subclasses cannot accidentally use it.
447 void setInstructionSubclassData(unsigned short D
) {
448 Instruction::setInstructionSubclassData(D
);
451 /// The synchronization scope ID of this store instruction. Not quite enough
452 /// room in SubClassData for everything, so synchronization scope ID gets its
458 struct OperandTraits
<StoreInst
> : public FixedNumOperandTraits
<StoreInst
, 2> {
461 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst
, Value
)
463 //===----------------------------------------------------------------------===//
465 //===----------------------------------------------------------------------===//
467 /// An instruction for ordering other memory operations.
468 class FenceInst
: public Instruction
{
469 void Init(AtomicOrdering Ordering
, SyncScope::ID SSID
);
472 // Note: Instruction needs to be a friend here to call cloneImpl.
473 friend class Instruction
;
475 FenceInst
*cloneImpl() const;
478 // Ordering may only be Acquire, Release, AcquireRelease, or
479 // SequentiallyConsistent.
480 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
481 SyncScope::ID SSID
= SyncScope::System
,
482 Instruction
*InsertBefore
= nullptr);
483 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
, SyncScope::ID SSID
,
484 BasicBlock
*InsertAtEnd
);
486 // allocate space for exactly zero operands
487 void *operator new(size_t s
) {
488 return User::operator new(s
, 0);
491 /// Returns the ordering constraint of this fence instruction.
492 AtomicOrdering
getOrdering() const {
493 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
496 /// Sets the ordering constraint of this fence instruction. May only be
497 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
498 void setOrdering(AtomicOrdering Ordering
) {
499 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
500 ((unsigned)Ordering
<< 1));
503 /// Returns the synchronization scope ID of this fence instruction.
504 SyncScope::ID
getSyncScopeID() const {
508 /// Sets the synchronization scope ID of this fence instruction.
509 void setSyncScopeID(SyncScope::ID SSID
) {
513 // Methods for support type inquiry through isa, cast, and dyn_cast:
514 static bool classof(const Instruction
*I
) {
515 return I
->getOpcode() == Instruction::Fence
;
517 static bool classof(const Value
*V
) {
518 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
522 // Shadow Instruction::setInstructionSubclassData with a private forwarding
523 // method so that subclasses cannot accidentally use it.
524 void setInstructionSubclassData(unsigned short D
) {
525 Instruction::setInstructionSubclassData(D
);
528 /// The synchronization scope ID of this fence instruction. Not quite enough
529 /// room in SubClassData for everything, so synchronization scope ID gets its
534 //===----------------------------------------------------------------------===//
535 // AtomicCmpXchgInst Class
536 //===----------------------------------------------------------------------===//
538 /// An instruction that atomically checks whether a
539 /// specified value is in a memory location, and, if it is, stores a new value
540 /// there. The value returned by this instruction is a pair containing the
541 /// original value as first element, and an i1 indicating success (true) or
542 /// failure (false) as second element.
544 class AtomicCmpXchgInst
: public Instruction
{
545 void Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
546 AtomicOrdering SuccessOrdering
, AtomicOrdering FailureOrdering
,
550 // Note: Instruction needs to be a friend here to call cloneImpl.
551 friend class Instruction
;
553 AtomicCmpXchgInst
*cloneImpl() const;
556 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
557 AtomicOrdering SuccessOrdering
,
558 AtomicOrdering FailureOrdering
,
559 SyncScope::ID SSID
, Instruction
*InsertBefore
= nullptr);
560 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
561 AtomicOrdering SuccessOrdering
,
562 AtomicOrdering FailureOrdering
,
563 SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
);
565 // allocate space for exactly three operands
566 void *operator new(size_t s
) {
567 return User::operator new(s
, 3);
570 /// Return true if this is a cmpxchg from a volatile memory
573 bool isVolatile() const {
574 return getSubclassDataFromInstruction() & 1;
577 /// Specify whether this is a volatile cmpxchg.
579 void setVolatile(bool V
) {
580 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
584 /// Return true if this cmpxchg may spuriously fail.
585 bool isWeak() const {
586 return getSubclassDataFromInstruction() & 0x100;
589 void setWeak(bool IsWeak
) {
590 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
594 /// Transparently provide more efficient getOperand methods.
595 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
597 /// Returns the success ordering constraint of this cmpxchg instruction.
598 AtomicOrdering
getSuccessOrdering() const {
599 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
602 /// Sets the success ordering constraint of this cmpxchg instruction.
603 void setSuccessOrdering(AtomicOrdering Ordering
) {
604 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
605 "CmpXchg instructions can only be atomic.");
606 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
607 ((unsigned)Ordering
<< 2));
610 /// Returns the failure ordering constraint of this cmpxchg instruction.
611 AtomicOrdering
getFailureOrdering() const {
612 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
615 /// Sets the failure ordering constraint of this cmpxchg instruction.
616 void setFailureOrdering(AtomicOrdering Ordering
) {
617 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
618 "CmpXchg instructions can only be atomic.");
619 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
620 ((unsigned)Ordering
<< 5));
623 /// Returns the synchronization scope ID of this cmpxchg instruction.
624 SyncScope::ID
getSyncScopeID() const {
628 /// Sets the synchronization scope ID of this cmpxchg instruction.
629 void setSyncScopeID(SyncScope::ID SSID
) {
633 Value
*getPointerOperand() { return getOperand(0); }
634 const Value
*getPointerOperand() const { return getOperand(0); }
635 static unsigned getPointerOperandIndex() { return 0U; }
637 Value
*getCompareOperand() { return getOperand(1); }
638 const Value
*getCompareOperand() const { return getOperand(1); }
640 Value
*getNewValOperand() { return getOperand(2); }
641 const Value
*getNewValOperand() const { return getOperand(2); }
643 /// Returns the address space of the pointer operand.
644 unsigned getPointerAddressSpace() const {
645 return getPointerOperand()->getType()->getPointerAddressSpace();
648 /// Returns the strongest permitted ordering on failure, given the
649 /// desired ordering on success.
651 /// If the comparison in a cmpxchg operation fails, there is no atomic store
652 /// so release semantics cannot be provided. So this function drops explicit
653 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
654 /// operation would remain SequentiallyConsistent.
655 static AtomicOrdering
656 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering
) {
657 switch (SuccessOrdering
) {
659 llvm_unreachable("invalid cmpxchg success ordering");
660 case AtomicOrdering::Release
:
661 case AtomicOrdering::Monotonic
:
662 return AtomicOrdering::Monotonic
;
663 case AtomicOrdering::AcquireRelease
:
664 case AtomicOrdering::Acquire
:
665 return AtomicOrdering::Acquire
;
666 case AtomicOrdering::SequentiallyConsistent
:
667 return AtomicOrdering::SequentiallyConsistent
;
671 // Methods for support type inquiry through isa, cast, and dyn_cast:
672 static bool classof(const Instruction
*I
) {
673 return I
->getOpcode() == Instruction::AtomicCmpXchg
;
675 static bool classof(const Value
*V
) {
676 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
680 // Shadow Instruction::setInstructionSubclassData with a private forwarding
681 // method so that subclasses cannot accidentally use it.
682 void setInstructionSubclassData(unsigned short D
) {
683 Instruction::setInstructionSubclassData(D
);
686 /// The synchronization scope ID of this cmpxchg instruction. Not quite
687 /// enough room in SubClassData for everything, so synchronization scope ID
688 /// gets its own field.
693 struct OperandTraits
<AtomicCmpXchgInst
> :
694 public FixedNumOperandTraits
<AtomicCmpXchgInst
, 3> {
697 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst
, Value
)
699 //===----------------------------------------------------------------------===//
700 // AtomicRMWInst Class
701 //===----------------------------------------------------------------------===//
703 /// an instruction that atomically reads a memory location,
704 /// combines it with another value, and then stores the result back. Returns
707 class AtomicRMWInst
: public Instruction
{
709 // Note: Instruction needs to be a friend here to call cloneImpl.
710 friend class Instruction
;
712 AtomicRMWInst
*cloneImpl() const;
715 /// This enumeration lists the possible modifications atomicrmw can make. In
716 /// the descriptions, 'p' is the pointer to the instruction's memory location,
717 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
718 /// instruction. These instructions always return 'old'.
734 /// *p = old >signed v ? old : v
736 /// *p = old <signed v ? old : v
738 /// *p = old >unsigned v ? old : v
740 /// *p = old <unsigned v ? old : v
754 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
755 AtomicOrdering Ordering
, SyncScope::ID SSID
,
756 Instruction
*InsertBefore
= nullptr);
757 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
758 AtomicOrdering Ordering
, SyncScope::ID SSID
,
759 BasicBlock
*InsertAtEnd
);
761 // allocate space for exactly two operands
762 void *operator new(size_t s
) {
763 return User::operator new(s
, 2);
766 BinOp
getOperation() const {
767 return static_cast<BinOp
>(getSubclassDataFromInstruction() >> 5);
770 static StringRef
getOperationName(BinOp Op
);
772 static bool isFPOperation(BinOp Op
) {
774 case AtomicRMWInst::FAdd
:
775 case AtomicRMWInst::FSub
:
782 void setOperation(BinOp Operation
) {
783 unsigned short SubclassData
= getSubclassDataFromInstruction();
784 setInstructionSubclassData((SubclassData
& 31) |
788 /// Return true if this is a RMW on a volatile memory location.
790 bool isVolatile() const {
791 return getSubclassDataFromInstruction() & 1;
794 /// Specify whether this is a volatile RMW or not.
796 void setVolatile(bool V
) {
797 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
801 /// Transparently provide more efficient getOperand methods.
802 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
804 /// Returns the ordering constraint of this rmw instruction.
805 AtomicOrdering
getOrdering() const {
806 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
809 /// Sets the ordering constraint of this rmw instruction.
810 void setOrdering(AtomicOrdering Ordering
) {
811 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
812 "atomicrmw instructions can only be atomic.");
813 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
814 ((unsigned)Ordering
<< 2));
817 /// Returns the synchronization scope ID of this rmw instruction.
818 SyncScope::ID
getSyncScopeID() const {
822 /// Sets the synchronization scope ID of this rmw instruction.
823 void setSyncScopeID(SyncScope::ID SSID
) {
827 Value
*getPointerOperand() { return getOperand(0); }
828 const Value
*getPointerOperand() const { return getOperand(0); }
829 static unsigned getPointerOperandIndex() { return 0U; }
831 Value
*getValOperand() { return getOperand(1); }
832 const Value
*getValOperand() const { return getOperand(1); }
834 /// Returns the address space of the pointer operand.
835 unsigned getPointerAddressSpace() const {
836 return getPointerOperand()->getType()->getPointerAddressSpace();
839 bool isFloatingPointOperation() const {
840 return isFPOperation(getOperation());
843 // Methods for support type inquiry through isa, cast, and dyn_cast:
844 static bool classof(const Instruction
*I
) {
845 return I
->getOpcode() == Instruction::AtomicRMW
;
847 static bool classof(const Value
*V
) {
848 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
852 void Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
853 AtomicOrdering Ordering
, SyncScope::ID SSID
);
855 // Shadow Instruction::setInstructionSubclassData with a private forwarding
856 // method so that subclasses cannot accidentally use it.
857 void setInstructionSubclassData(unsigned short D
) {
858 Instruction::setInstructionSubclassData(D
);
861 /// The synchronization scope ID of this rmw instruction. Not quite enough
862 /// room in SubClassData for everything, so synchronization scope ID gets its
868 struct OperandTraits
<AtomicRMWInst
>
869 : public FixedNumOperandTraits
<AtomicRMWInst
,2> {
872 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst
, Value
)
874 //===----------------------------------------------------------------------===//
875 // GetElementPtrInst Class
876 //===----------------------------------------------------------------------===//
878 // checkGEPType - Simple wrapper function to give a better assertion failure
879 // message on bad indexes for a gep instruction.
881 inline Type
*checkGEPType(Type
*Ty
) {
882 assert(Ty
&& "Invalid GetElementPtrInst indices for type!");
886 /// an instruction for type-safe pointer arithmetic to
887 /// access elements of arrays and structs
889 class GetElementPtrInst
: public Instruction
{
890 Type
*SourceElementType
;
891 Type
*ResultElementType
;
893 GetElementPtrInst(const GetElementPtrInst
&GEPI
);
895 /// Constructors - Create a getelementptr instruction with a base pointer an
896 /// list of indices. The first ctor can optionally insert before an existing
897 /// instruction, the second appends the new instruction to the specified
899 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
900 ArrayRef
<Value
*> IdxList
, unsigned Values
,
901 const Twine
&NameStr
, Instruction
*InsertBefore
);
902 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
903 ArrayRef
<Value
*> IdxList
, unsigned Values
,
904 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
906 void init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
, const Twine
&NameStr
);
909 // Note: Instruction needs to be a friend here to call cloneImpl.
910 friend class Instruction
;
912 GetElementPtrInst
*cloneImpl() const;
915 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
916 ArrayRef
<Value
*> IdxList
,
917 const Twine
&NameStr
= "",
918 Instruction
*InsertBefore
= nullptr) {
919 unsigned Values
= 1 + unsigned(IdxList
.size());
922 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
926 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
927 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
928 NameStr
, InsertBefore
);
931 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
932 ArrayRef
<Value
*> IdxList
,
933 const Twine
&NameStr
,
934 BasicBlock
*InsertAtEnd
) {
935 unsigned Values
= 1 + unsigned(IdxList
.size());
938 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
942 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
943 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
944 NameStr
, InsertAtEnd
);
947 /// Create an "inbounds" getelementptr. See the documentation for the
948 /// "inbounds" flag in LangRef.html for details.
949 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
950 ArrayRef
<Value
*> IdxList
,
951 const Twine
&NameStr
= "",
952 Instruction
*InsertBefore
= nullptr){
953 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertBefore
);
956 static GetElementPtrInst
*
957 CreateInBounds(Type
*PointeeType
, Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
958 const Twine
&NameStr
= "",
959 Instruction
*InsertBefore
= nullptr) {
960 GetElementPtrInst
*GEP
=
961 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertBefore
);
962 GEP
->setIsInBounds(true);
966 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
967 ArrayRef
<Value
*> IdxList
,
968 const Twine
&NameStr
,
969 BasicBlock
*InsertAtEnd
) {
970 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
973 static GetElementPtrInst
*CreateInBounds(Type
*PointeeType
, Value
*Ptr
,
974 ArrayRef
<Value
*> IdxList
,
975 const Twine
&NameStr
,
976 BasicBlock
*InsertAtEnd
) {
977 GetElementPtrInst
*GEP
=
978 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
979 GEP
->setIsInBounds(true);
983 /// Transparently provide more efficient getOperand methods.
984 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
986 Type
*getSourceElementType() const { return SourceElementType
; }
988 void setSourceElementType(Type
*Ty
) { SourceElementType
= Ty
; }
989 void setResultElementType(Type
*Ty
) { ResultElementType
= Ty
; }
991 Type
*getResultElementType() const {
992 assert(ResultElementType
==
993 cast
<PointerType
>(getType()->getScalarType())->getElementType());
994 return ResultElementType
;
997 /// Returns the address space of this instruction's pointer type.
998 unsigned getAddressSpace() const {
999 // Note that this is always the same as the pointer operand's address space
1000 // and that is cheaper to compute, so cheat here.
1001 return getPointerAddressSpace();
1004 /// Returns the type of the element that would be loaded with
1005 /// a load instruction with the specified parameters.
1007 /// Null is returned if the indices are invalid for the specified
1010 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
);
1011 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Constant
*> IdxList
);
1012 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
);
1014 inline op_iterator
idx_begin() { return op_begin()+1; }
1015 inline const_op_iterator
idx_begin() const { return op_begin()+1; }
1016 inline op_iterator
idx_end() { return op_end(); }
1017 inline const_op_iterator
idx_end() const { return op_end(); }
1019 inline iterator_range
<op_iterator
> indices() {
1020 return make_range(idx_begin(), idx_end());
1023 inline iterator_range
<const_op_iterator
> indices() const {
1024 return make_range(idx_begin(), idx_end());
1027 Value
*getPointerOperand() {
1028 return getOperand(0);
1030 const Value
*getPointerOperand() const {
1031 return getOperand(0);
1033 static unsigned getPointerOperandIndex() {
1034 return 0U; // get index for modifying correct operand.
1037 /// Method to return the pointer operand as a
1039 Type
*getPointerOperandType() const {
1040 return getPointerOperand()->getType();
1043 /// Returns the address space of the pointer operand.
1044 unsigned getPointerAddressSpace() const {
1045 return getPointerOperandType()->getPointerAddressSpace();
1048 /// Returns the pointer type returned by the GEP
1049 /// instruction, which may be a vector of pointers.
1050 static Type
*getGEPReturnType(Value
*Ptr
, ArrayRef
<Value
*> IdxList
) {
1051 return getGEPReturnType(
1052 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType(),
1055 static Type
*getGEPReturnType(Type
*ElTy
, Value
*Ptr
,
1056 ArrayRef
<Value
*> IdxList
) {
1057 Type
*PtrTy
= PointerType::get(checkGEPType(getIndexedType(ElTy
, IdxList
)),
1058 Ptr
->getType()->getPointerAddressSpace());
1060 if (Ptr
->getType()->isVectorTy()) {
1061 unsigned NumElem
= Ptr
->getType()->getVectorNumElements();
1062 return VectorType::get(PtrTy
, NumElem
);
1064 for (Value
*Index
: IdxList
)
1065 if (Index
->getType()->isVectorTy()) {
1066 unsigned NumElem
= Index
->getType()->getVectorNumElements();
1067 return VectorType::get(PtrTy
, NumElem
);
1073 unsigned getNumIndices() const { // Note: always non-negative
1074 return getNumOperands() - 1;
1077 bool hasIndices() const {
1078 return getNumOperands() > 1;
1081 /// Return true if all of the indices of this GEP are
1082 /// zeros. If so, the result pointer and the first operand have the same
1083 /// value, just potentially different types.
1084 bool hasAllZeroIndices() const;
1086 /// Return true if all of the indices of this GEP are
1087 /// constant integers. If so, the result pointer and the first operand have
1088 /// a constant offset between them.
1089 bool hasAllConstantIndices() const;
1091 /// Set or clear the inbounds flag on this GEP instruction.
1092 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1093 void setIsInBounds(bool b
= true);
1095 /// Determine whether the GEP has the inbounds flag.
1096 bool isInBounds() const;
1098 /// Accumulate the constant address offset of this GEP if possible.
1100 /// This routine accepts an APInt into which it will accumulate the constant
1101 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1102 /// all-constant, it returns false and the value of the offset APInt is
1103 /// undefined (it is *not* preserved!). The APInt passed into this routine
1104 /// must be at least as wide as the IntPtr type for the address space of
1105 /// the base GEP pointer.
1106 bool accumulateConstantOffset(const DataLayout
&DL
, APInt
&Offset
) const;
1108 // Methods for support type inquiry through isa, cast, and dyn_cast:
1109 static bool classof(const Instruction
*I
) {
1110 return (I
->getOpcode() == Instruction::GetElementPtr
);
1112 static bool classof(const Value
*V
) {
1113 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1118 struct OperandTraits
<GetElementPtrInst
> :
1119 public VariadicOperandTraits
<GetElementPtrInst
, 1> {
1122 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1123 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1124 const Twine
&NameStr
,
1125 Instruction
*InsertBefore
)
1126 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1127 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1128 Values
, InsertBefore
),
1129 SourceElementType(PointeeType
),
1130 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1131 assert(ResultElementType
==
1132 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1133 init(Ptr
, IdxList
, NameStr
);
1136 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1137 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1138 const Twine
&NameStr
,
1139 BasicBlock
*InsertAtEnd
)
1140 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1141 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1142 Values
, InsertAtEnd
),
1143 SourceElementType(PointeeType
),
1144 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1145 assert(ResultElementType
==
1146 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1147 init(Ptr
, IdxList
, NameStr
);
1150 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst
, Value
)
1152 //===----------------------------------------------------------------------===//
1154 //===----------------------------------------------------------------------===//
1156 /// This instruction compares its operands according to the predicate given
1157 /// to the constructor. It only operates on integers or pointers. The operands
1158 /// must be identical types.
1159 /// Represent an integer comparison operator.
1160 class ICmpInst
: public CmpInst
{
1162 assert(isIntPredicate() &&
1163 "Invalid ICmp predicate value");
1164 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1165 "Both operands to ICmp instruction are not of the same type!");
1166 // Check that the operands are the right type
1167 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1168 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1169 "Invalid operand types for ICmp instruction");
1173 // Note: Instruction needs to be a friend here to call cloneImpl.
1174 friend class Instruction
;
1176 /// Clone an identical ICmpInst
1177 ICmpInst
*cloneImpl() const;
1180 /// Constructor with insert-before-instruction semantics.
1182 Instruction
*InsertBefore
, ///< Where to insert
1183 Predicate pred
, ///< The predicate to use for the comparison
1184 Value
*LHS
, ///< The left-hand-side of the expression
1185 Value
*RHS
, ///< The right-hand-side of the expression
1186 const Twine
&NameStr
= "" ///< Name of the instruction
1187 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1188 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1195 /// Constructor with insert-at-end semantics.
1197 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1198 Predicate pred
, ///< The predicate to use for the comparison
1199 Value
*LHS
, ///< The left-hand-side of the expression
1200 Value
*RHS
, ///< The right-hand-side of the expression
1201 const Twine
&NameStr
= "" ///< Name of the instruction
1202 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1203 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1210 /// Constructor with no-insertion semantics
1212 Predicate pred
, ///< The predicate to use for the comparison
1213 Value
*LHS
, ///< The left-hand-side of the expression
1214 Value
*RHS
, ///< The right-hand-side of the expression
1215 const Twine
&NameStr
= "" ///< Name of the instruction
1216 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1217 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
) {
1223 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1224 /// @returns the predicate that would be the result if the operand were
1225 /// regarded as signed.
1226 /// Return the signed version of the predicate
1227 Predicate
getSignedPredicate() const {
1228 return getSignedPredicate(getPredicate());
1231 /// This is a static version that you can use without an instruction.
1232 /// Return the signed version of the predicate.
1233 static Predicate
getSignedPredicate(Predicate pred
);
1235 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1236 /// @returns the predicate that would be the result if the operand were
1237 /// regarded as unsigned.
1238 /// Return the unsigned version of the predicate
1239 Predicate
getUnsignedPredicate() const {
1240 return getUnsignedPredicate(getPredicate());
1243 /// This is a static version that you can use without an instruction.
1244 /// Return the unsigned version of the predicate.
1245 static Predicate
getUnsignedPredicate(Predicate pred
);
1247 /// Return true if this predicate is either EQ or NE. This also
1248 /// tests for commutativity.
1249 static bool isEquality(Predicate P
) {
1250 return P
== ICMP_EQ
|| P
== ICMP_NE
;
1253 /// Return true if this predicate is either EQ or NE. This also
1254 /// tests for commutativity.
1255 bool isEquality() const {
1256 return isEquality(getPredicate());
1259 /// @returns true if the predicate of this ICmpInst is commutative
1260 /// Determine if this relation is commutative.
1261 bool isCommutative() const { return isEquality(); }
1263 /// Return true if the predicate is relational (not EQ or NE).
1265 bool isRelational() const {
1266 return !isEquality();
1269 /// Return true if the predicate is relational (not EQ or NE).
1271 static bool isRelational(Predicate P
) {
1272 return !isEquality(P
);
1275 /// Exchange the two operands to this instruction in such a way that it does
1276 /// not modify the semantics of the instruction. The predicate value may be
1277 /// changed to retain the same result if the predicate is order dependent
1279 /// Swap operands and adjust predicate.
1280 void swapOperands() {
1281 setPredicate(getSwappedPredicate());
1282 Op
<0>().swap(Op
<1>());
1285 // Methods for support type inquiry through isa, cast, and dyn_cast:
1286 static bool classof(const Instruction
*I
) {
1287 return I
->getOpcode() == Instruction::ICmp
;
1289 static bool classof(const Value
*V
) {
1290 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1294 //===----------------------------------------------------------------------===//
1296 //===----------------------------------------------------------------------===//
1298 /// This instruction compares its operands according to the predicate given
1299 /// to the constructor. It only operates on floating point values or packed
1300 /// vectors of floating point values. The operands must be identical types.
1301 /// Represents a floating point comparison operator.
1302 class FCmpInst
: public CmpInst
{
1304 assert(isFPPredicate() && "Invalid FCmp predicate value");
1305 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1306 "Both operands to FCmp instruction are not of the same type!");
1307 // Check that the operands are the right type
1308 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1309 "Invalid operand types for FCmp instruction");
1313 // Note: Instruction needs to be a friend here to call cloneImpl.
1314 friend class Instruction
;
1316 /// Clone an identical FCmpInst
1317 FCmpInst
*cloneImpl() const;
1320 /// Constructor with insert-before-instruction semantics.
1322 Instruction
*InsertBefore
, ///< Where to insert
1323 Predicate pred
, ///< The predicate to use for the comparison
1324 Value
*LHS
, ///< The left-hand-side of the expression
1325 Value
*RHS
, ///< The right-hand-side of the expression
1326 const Twine
&NameStr
= "" ///< Name of the instruction
1327 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1328 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1333 /// Constructor with insert-at-end semantics.
1335 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1336 Predicate pred
, ///< The predicate to use for the comparison
1337 Value
*LHS
, ///< The left-hand-side of the expression
1338 Value
*RHS
, ///< The right-hand-side of the expression
1339 const Twine
&NameStr
= "" ///< Name of the instruction
1340 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1341 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1346 /// Constructor with no-insertion semantics
1348 Predicate Pred
, ///< The predicate to use for the comparison
1349 Value
*LHS
, ///< The left-hand-side of the expression
1350 Value
*RHS
, ///< The right-hand-side of the expression
1351 const Twine
&NameStr
= "", ///< Name of the instruction
1352 Instruction
*FlagsSource
= nullptr
1353 ) : CmpInst(makeCmpResultType(LHS
->getType()), Instruction::FCmp
, Pred
, LHS
,
1354 RHS
, NameStr
, nullptr, FlagsSource
) {
1358 /// @returns true if the predicate of this instruction is EQ or NE.
1359 /// Determine if this is an equality predicate.
1360 static bool isEquality(Predicate Pred
) {
1361 return Pred
== FCMP_OEQ
|| Pred
== FCMP_ONE
|| Pred
== FCMP_UEQ
||
1365 /// @returns true if the predicate of this instruction is EQ or NE.
1366 /// Determine if this is an equality predicate.
1367 bool isEquality() const { return isEquality(getPredicate()); }
1369 /// @returns true if the predicate of this instruction is commutative.
1370 /// Determine if this is a commutative predicate.
1371 bool isCommutative() const {
1372 return isEquality() ||
1373 getPredicate() == FCMP_FALSE
||
1374 getPredicate() == FCMP_TRUE
||
1375 getPredicate() == FCMP_ORD
||
1376 getPredicate() == FCMP_UNO
;
1379 /// @returns true if the predicate is relational (not EQ or NE).
1380 /// Determine if this a relational predicate.
1381 bool isRelational() const { return !isEquality(); }
1383 /// Exchange the two operands to this instruction in such a way that it does
1384 /// not modify the semantics of the instruction. The predicate value may be
1385 /// changed to retain the same result if the predicate is order dependent
1387 /// Swap operands and adjust predicate.
1388 void swapOperands() {
1389 setPredicate(getSwappedPredicate());
1390 Op
<0>().swap(Op
<1>());
1393 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1394 static bool classof(const Instruction
*I
) {
1395 return I
->getOpcode() == Instruction::FCmp
;
1397 static bool classof(const Value
*V
) {
1398 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1402 //===----------------------------------------------------------------------===//
1403 /// This class represents a function call, abstracting a target
1404 /// machine's calling convention. This class uses low bit of the SubClassData
1405 /// field to indicate whether or not this is a tail call. The rest of the bits
1406 /// hold the calling convention of the call.
1408 class CallInst
: public CallBase
{
1409 CallInst(const CallInst
&CI
);
1411 /// Construct a CallInst given a range of arguments.
1412 /// Construct a CallInst from a range of arguments
1413 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1414 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1415 Instruction
*InsertBefore
);
1417 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1418 const Twine
&NameStr
, Instruction
*InsertBefore
)
1419 : CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
) {}
1421 /// Construct a CallInst given a range of arguments.
1422 /// Construct a CallInst from a range of arguments
1423 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1424 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1425 BasicBlock
*InsertAtEnd
);
1427 explicit CallInst(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1428 Instruction
*InsertBefore
);
1430 CallInst(FunctionType
*ty
, Value
*F
, const Twine
&NameStr
,
1431 BasicBlock
*InsertAtEnd
);
1433 void init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
1434 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
1435 void init(FunctionType
*FTy
, Value
*Func
, const Twine
&NameStr
);
1437 /// Compute the number of operands to allocate.
1438 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
1439 // We need one operand for the called function, plus the input operand
1441 return 1 + NumArgs
+ NumBundleInputs
;
1445 // Note: Instruction needs to be a friend here to call cloneImpl.
1446 friend class Instruction
;
1448 CallInst
*cloneImpl() const;
1451 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
= "",
1452 Instruction
*InsertBefore
= nullptr) {
1453 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertBefore
);
1456 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1457 const Twine
&NameStr
,
1458 Instruction
*InsertBefore
= nullptr) {
1459 return new (ComputeNumOperands(Args
.size()))
1460 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
);
1463 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1464 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1465 const Twine
&NameStr
= "",
1466 Instruction
*InsertBefore
= nullptr) {
1467 const int NumOperands
=
1468 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1469 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1471 return new (NumOperands
, DescriptorBytes
)
1472 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1475 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1476 BasicBlock
*InsertAtEnd
) {
1477 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertAtEnd
);
1480 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1481 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1482 return new (ComputeNumOperands(Args
.size()))
1483 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertAtEnd
);
1486 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1487 ArrayRef
<OperandBundleDef
> Bundles
,
1488 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1489 const int NumOperands
=
1490 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1491 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1493 return new (NumOperands
, DescriptorBytes
)
1494 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1497 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
= "",
1498 Instruction
*InsertBefore
= nullptr) {
1499 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1503 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1504 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1505 const Twine
&NameStr
= "",
1506 Instruction
*InsertBefore
= nullptr) {
1507 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1508 NameStr
, InsertBefore
);
1511 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1512 const Twine
&NameStr
,
1513 Instruction
*InsertBefore
= nullptr) {
1514 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1518 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
,
1519 BasicBlock
*InsertAtEnd
) {
1520 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1524 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1525 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1526 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1530 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1531 ArrayRef
<OperandBundleDef
> Bundles
,
1532 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1533 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1534 NameStr
, InsertAtEnd
);
1537 // Deprecated [opaque pointer types]
1538 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
= "",
1539 Instruction
*InsertBefore
= nullptr) {
1540 return Create(cast
<FunctionType
>(
1541 cast
<PointerType
>(Func
->getType())->getElementType()),
1542 Func
, NameStr
, InsertBefore
);
1545 // Deprecated [opaque pointer types]
1546 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1547 const Twine
&NameStr
,
1548 Instruction
*InsertBefore
= nullptr) {
1549 return Create(cast
<FunctionType
>(
1550 cast
<PointerType
>(Func
->getType())->getElementType()),
1551 Func
, Args
, NameStr
, InsertBefore
);
1554 // Deprecated [opaque pointer types]
1555 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1556 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1557 const Twine
&NameStr
= "",
1558 Instruction
*InsertBefore
= nullptr) {
1559 return Create(cast
<FunctionType
>(
1560 cast
<PointerType
>(Func
->getType())->getElementType()),
1561 Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1564 // Deprecated [opaque pointer types]
1565 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
,
1566 BasicBlock
*InsertAtEnd
) {
1567 return Create(cast
<FunctionType
>(
1568 cast
<PointerType
>(Func
->getType())->getElementType()),
1569 Func
, NameStr
, InsertAtEnd
);
1572 // Deprecated [opaque pointer types]
1573 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1574 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1575 return Create(cast
<FunctionType
>(
1576 cast
<PointerType
>(Func
->getType())->getElementType()),
1577 Func
, Args
, NameStr
, InsertAtEnd
);
1580 // Deprecated [opaque pointer types]
1581 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1582 ArrayRef
<OperandBundleDef
> Bundles
,
1583 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1584 return Create(cast
<FunctionType
>(
1585 cast
<PointerType
>(Func
->getType())->getElementType()),
1586 Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1589 /// Create a clone of \p CI with a different set of operand bundles and
1590 /// insert it before \p InsertPt.
1592 /// The returned call instruction is identical \p CI in every way except that
1593 /// the operand bundles for the new instruction are set to the operand bundles
1595 static CallInst
*Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> Bundles
,
1596 Instruction
*InsertPt
= nullptr);
1598 /// Generate the IR for a call to malloc:
1599 /// 1. Compute the malloc call's argument as the specified type's size,
1600 /// possibly multiplied by the array size if the array size is not
1602 /// 2. Call malloc with that argument.
1603 /// 3. Bitcast the result of the malloc call to the specified type.
1604 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1605 Type
*AllocTy
, Value
*AllocSize
,
1606 Value
*ArraySize
= nullptr,
1607 Function
*MallocF
= nullptr,
1608 const Twine
&Name
= "");
1609 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1610 Type
*AllocTy
, Value
*AllocSize
,
1611 Value
*ArraySize
= nullptr,
1612 Function
*MallocF
= nullptr,
1613 const Twine
&Name
= "");
1614 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1615 Type
*AllocTy
, Value
*AllocSize
,
1616 Value
*ArraySize
= nullptr,
1617 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1618 Function
*MallocF
= nullptr,
1619 const Twine
&Name
= "");
1620 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1621 Type
*AllocTy
, Value
*AllocSize
,
1622 Value
*ArraySize
= nullptr,
1623 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1624 Function
*MallocF
= nullptr,
1625 const Twine
&Name
= "");
1626 /// Generate the IR for a call to the builtin free function.
1627 static Instruction
*CreateFree(Value
*Source
, Instruction
*InsertBefore
);
1628 static Instruction
*CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
);
1629 static Instruction
*CreateFree(Value
*Source
,
1630 ArrayRef
<OperandBundleDef
> Bundles
,
1631 Instruction
*InsertBefore
);
1632 static Instruction
*CreateFree(Value
*Source
,
1633 ArrayRef
<OperandBundleDef
> Bundles
,
1634 BasicBlock
*InsertAtEnd
);
1636 // Note that 'musttail' implies 'tail'.
1643 TailCallKind
getTailCallKind() const {
1644 return TailCallKind(getSubclassDataFromInstruction() & 3);
1647 bool isTailCall() const {
1648 unsigned Kind
= getSubclassDataFromInstruction() & 3;
1649 return Kind
== TCK_Tail
|| Kind
== TCK_MustTail
;
1652 bool isMustTailCall() const {
1653 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail
;
1656 bool isNoTailCall() const {
1657 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail
;
1660 void setTailCall(bool isTC
= true) {
1661 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1662 unsigned(isTC
? TCK_Tail
: TCK_None
));
1665 void setTailCallKind(TailCallKind TCK
) {
1666 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1670 /// Return true if the call can return twice
1671 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice
); }
1672 void setCanReturnTwice() {
1673 addAttribute(AttributeList::FunctionIndex
, Attribute::ReturnsTwice
);
1676 // Methods for support type inquiry through isa, cast, and dyn_cast:
1677 static bool classof(const Instruction
*I
) {
1678 return I
->getOpcode() == Instruction::Call
;
1680 static bool classof(const Value
*V
) {
1681 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1684 /// Updates profile metadata by scaling it by \p S / \p T.
1685 void updateProfWeight(uint64_t S
, uint64_t T
);
1688 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1689 // method so that subclasses cannot accidentally use it.
1690 void setInstructionSubclassData(unsigned short D
) {
1691 Instruction::setInstructionSubclassData(D
);
1695 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1696 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1697 BasicBlock
*InsertAtEnd
)
1698 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1699 OperandTraits
<CallBase
>::op_end(this) -
1700 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1701 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1703 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1706 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1707 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1708 Instruction
*InsertBefore
)
1709 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1710 OperandTraits
<CallBase
>::op_end(this) -
1711 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1712 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1714 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1717 //===----------------------------------------------------------------------===//
1719 //===----------------------------------------------------------------------===//
1721 /// This class represents the LLVM 'select' instruction.
1723 class SelectInst
: public Instruction
{
1724 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1725 Instruction
*InsertBefore
)
1726 : Instruction(S1
->getType(), Instruction::Select
,
1727 &Op
<0>(), 3, InsertBefore
) {
1732 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1733 BasicBlock
*InsertAtEnd
)
1734 : Instruction(S1
->getType(), Instruction::Select
,
1735 &Op
<0>(), 3, InsertAtEnd
) {
1740 void init(Value
*C
, Value
*S1
, Value
*S2
) {
1741 assert(!areInvalidOperands(C
, S1
, S2
) && "Invalid operands for select");
1748 // Note: Instruction needs to be a friend here to call cloneImpl.
1749 friend class Instruction
;
1751 SelectInst
*cloneImpl() const;
1754 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1755 const Twine
&NameStr
= "",
1756 Instruction
*InsertBefore
= nullptr,
1757 Instruction
*MDFrom
= nullptr) {
1758 SelectInst
*Sel
= new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertBefore
);
1760 Sel
->copyMetadata(*MDFrom
);
1764 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1765 const Twine
&NameStr
,
1766 BasicBlock
*InsertAtEnd
) {
1767 return new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertAtEnd
);
1770 const Value
*getCondition() const { return Op
<0>(); }
1771 const Value
*getTrueValue() const { return Op
<1>(); }
1772 const Value
*getFalseValue() const { return Op
<2>(); }
1773 Value
*getCondition() { return Op
<0>(); }
1774 Value
*getTrueValue() { return Op
<1>(); }
1775 Value
*getFalseValue() { return Op
<2>(); }
1777 void setCondition(Value
*V
) { Op
<0>() = V
; }
1778 void setTrueValue(Value
*V
) { Op
<1>() = V
; }
1779 void setFalseValue(Value
*V
) { Op
<2>() = V
; }
1781 /// Swap the true and false values of the select instruction.
1782 /// This doesn't swap prof metadata.
1783 void swapValues() { Op
<1>().swap(Op
<2>()); }
1785 /// Return a string if the specified operands are invalid
1786 /// for a select operation, otherwise return null.
1787 static const char *areInvalidOperands(Value
*Cond
, Value
*True
, Value
*False
);
1789 /// Transparently provide more efficient getOperand methods.
1790 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1792 OtherOps
getOpcode() const {
1793 return static_cast<OtherOps
>(Instruction::getOpcode());
1796 // Methods for support type inquiry through isa, cast, and dyn_cast:
1797 static bool classof(const Instruction
*I
) {
1798 return I
->getOpcode() == Instruction::Select
;
1800 static bool classof(const Value
*V
) {
1801 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1806 struct OperandTraits
<SelectInst
> : public FixedNumOperandTraits
<SelectInst
, 3> {
1809 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst
, Value
)
1811 //===----------------------------------------------------------------------===//
1813 //===----------------------------------------------------------------------===//
1815 /// This class represents the va_arg llvm instruction, which returns
1816 /// an argument of the specified type given a va_list and increments that list
1818 class VAArgInst
: public UnaryInstruction
{
1820 // Note: Instruction needs to be a friend here to call cloneImpl.
1821 friend class Instruction
;
1823 VAArgInst
*cloneImpl() const;
1826 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
= "",
1827 Instruction
*InsertBefore
= nullptr)
1828 : UnaryInstruction(Ty
, VAArg
, List
, InsertBefore
) {
1832 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
,
1833 BasicBlock
*InsertAtEnd
)
1834 : UnaryInstruction(Ty
, VAArg
, List
, InsertAtEnd
) {
1838 Value
*getPointerOperand() { return getOperand(0); }
1839 const Value
*getPointerOperand() const { return getOperand(0); }
1840 static unsigned getPointerOperandIndex() { return 0U; }
1842 // Methods for support type inquiry through isa, cast, and dyn_cast:
1843 static bool classof(const Instruction
*I
) {
1844 return I
->getOpcode() == VAArg
;
1846 static bool classof(const Value
*V
) {
1847 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1851 //===----------------------------------------------------------------------===//
1852 // ExtractElementInst Class
1853 //===----------------------------------------------------------------------===//
1855 /// This instruction extracts a single (scalar)
1856 /// element from a VectorType value
1858 class ExtractElementInst
: public Instruction
{
1859 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
= "",
1860 Instruction
*InsertBefore
= nullptr);
1861 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
,
1862 BasicBlock
*InsertAtEnd
);
1865 // Note: Instruction needs to be a friend here to call cloneImpl.
1866 friend class Instruction
;
1868 ExtractElementInst
*cloneImpl() const;
1871 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1872 const Twine
&NameStr
= "",
1873 Instruction
*InsertBefore
= nullptr) {
1874 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertBefore
);
1877 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1878 const Twine
&NameStr
,
1879 BasicBlock
*InsertAtEnd
) {
1880 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertAtEnd
);
1883 /// Return true if an extractelement instruction can be
1884 /// formed with the specified operands.
1885 static bool isValidOperands(const Value
*Vec
, const Value
*Idx
);
1887 Value
*getVectorOperand() { return Op
<0>(); }
1888 Value
*getIndexOperand() { return Op
<1>(); }
1889 const Value
*getVectorOperand() const { return Op
<0>(); }
1890 const Value
*getIndexOperand() const { return Op
<1>(); }
1892 VectorType
*getVectorOperandType() const {
1893 return cast
<VectorType
>(getVectorOperand()->getType());
1896 /// Transparently provide more efficient getOperand methods.
1897 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1899 // Methods for support type inquiry through isa, cast, and dyn_cast:
1900 static bool classof(const Instruction
*I
) {
1901 return I
->getOpcode() == Instruction::ExtractElement
;
1903 static bool classof(const Value
*V
) {
1904 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1909 struct OperandTraits
<ExtractElementInst
> :
1910 public FixedNumOperandTraits
<ExtractElementInst
, 2> {
1913 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst
, Value
)
1915 //===----------------------------------------------------------------------===//
1916 // InsertElementInst Class
1917 //===----------------------------------------------------------------------===//
1919 /// This instruction inserts a single (scalar)
1920 /// element into a VectorType value
1922 class InsertElementInst
: public Instruction
{
1923 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1924 const Twine
&NameStr
= "",
1925 Instruction
*InsertBefore
= nullptr);
1926 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
, const Twine
&NameStr
,
1927 BasicBlock
*InsertAtEnd
);
1930 // Note: Instruction needs to be a friend here to call cloneImpl.
1931 friend class Instruction
;
1933 InsertElementInst
*cloneImpl() const;
1936 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1937 const Twine
&NameStr
= "",
1938 Instruction
*InsertBefore
= nullptr) {
1939 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertBefore
);
1942 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1943 const Twine
&NameStr
,
1944 BasicBlock
*InsertAtEnd
) {
1945 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertAtEnd
);
1948 /// Return true if an insertelement instruction can be
1949 /// formed with the specified operands.
1950 static bool isValidOperands(const Value
*Vec
, const Value
*NewElt
,
1953 /// Overload to return most specific vector type.
1955 VectorType
*getType() const {
1956 return cast
<VectorType
>(Instruction::getType());
1959 /// Transparently provide more efficient getOperand methods.
1960 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1962 // Methods for support type inquiry through isa, cast, and dyn_cast:
1963 static bool classof(const Instruction
*I
) {
1964 return I
->getOpcode() == Instruction::InsertElement
;
1966 static bool classof(const Value
*V
) {
1967 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1972 struct OperandTraits
<InsertElementInst
> :
1973 public FixedNumOperandTraits
<InsertElementInst
, 3> {
1976 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst
, Value
)
1978 //===----------------------------------------------------------------------===//
1979 // ShuffleVectorInst Class
1980 //===----------------------------------------------------------------------===//
1982 /// This instruction constructs a fixed permutation of two
1985 class ShuffleVectorInst
: public Instruction
{
1987 // Note: Instruction needs to be a friend here to call cloneImpl.
1988 friend class Instruction
;
1990 ShuffleVectorInst
*cloneImpl() const;
1993 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1994 const Twine
&NameStr
= "",
1995 Instruction
*InsertBefor
= nullptr);
1996 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1997 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
1999 // allocate space for exactly three operands
2000 void *operator new(size_t s
) {
2001 return User::operator new(s
, 3);
2004 /// Swap the first 2 operands and adjust the mask to preserve the semantics
2005 /// of the instruction.
2008 /// Return true if a shufflevector instruction can be
2009 /// formed with the specified operands.
2010 static bool isValidOperands(const Value
*V1
, const Value
*V2
,
2013 /// Overload to return most specific vector type.
2015 VectorType
*getType() const {
2016 return cast
<VectorType
>(Instruction::getType());
2019 /// Transparently provide more efficient getOperand methods.
2020 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2022 Constant
*getMask() const {
2023 return cast
<Constant
>(getOperand(2));
2026 /// Return the shuffle mask value for the specified element of the mask.
2027 /// Return -1 if the element is undef.
2028 static int getMaskValue(const Constant
*Mask
, unsigned Elt
);
2030 /// Return the shuffle mask value of this instruction for the given element
2031 /// index. Return -1 if the element is undef.
2032 int getMaskValue(unsigned Elt
) const {
2033 return getMaskValue(getMask(), Elt
);
2036 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2037 /// elements of the mask are returned as -1.
2038 static void getShuffleMask(const Constant
*Mask
,
2039 SmallVectorImpl
<int> &Result
);
2041 /// Return the mask for this instruction as a vector of integers. Undefined
2042 /// elements of the mask are returned as -1.
2043 void getShuffleMask(SmallVectorImpl
<int> &Result
) const {
2044 return getShuffleMask(getMask(), Result
);
2047 SmallVector
<int, 16> getShuffleMask() const {
2048 SmallVector
<int, 16> Mask
;
2049 getShuffleMask(Mask
);
2053 /// Return true if this shuffle returns a vector with a different number of
2054 /// elements than its source vectors.
2055 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2056 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2057 bool changesLength() const {
2058 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2059 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2060 return NumSourceElts
!= NumMaskElts
;
2063 /// Return true if this shuffle returns a vector with a greater number of
2064 /// elements than its source vectors.
2065 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2066 bool increasesLength() const {
2067 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2068 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2069 return NumSourceElts
< NumMaskElts
;
2072 /// Return true if this shuffle mask chooses elements from exactly one source
2074 /// Example: <7,5,undef,7>
2075 /// This assumes that vector operands are the same length as the mask.
2076 static bool isSingleSourceMask(ArrayRef
<int> Mask
);
2077 static bool isSingleSourceMask(const Constant
*Mask
) {
2078 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2079 SmallVector
<int, 16> MaskAsInts
;
2080 getShuffleMask(Mask
, MaskAsInts
);
2081 return isSingleSourceMask(MaskAsInts
);
2084 /// Return true if this shuffle chooses elements from exactly one source
2085 /// vector without changing the length of that vector.
2086 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2087 /// TODO: Optionally allow length-changing shuffles.
2088 bool isSingleSource() const {
2089 return !changesLength() && isSingleSourceMask(getMask());
2092 /// Return true if this shuffle mask chooses elements from exactly one source
2093 /// vector without lane crossings. A shuffle using this mask is not
2094 /// necessarily a no-op because it may change the number of elements from its
2095 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2096 /// Example: <undef,undef,2,3>
2097 static bool isIdentityMask(ArrayRef
<int> Mask
);
2098 static bool isIdentityMask(const Constant
*Mask
) {
2099 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2100 SmallVector
<int, 16> MaskAsInts
;
2101 getShuffleMask(Mask
, MaskAsInts
);
2102 return isIdentityMask(MaskAsInts
);
2105 /// Return true if this shuffle chooses elements from exactly one source
2106 /// vector without lane crossings and does not change the number of elements
2107 /// from its input vectors.
2108 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2109 bool isIdentity() const {
2110 return !changesLength() && isIdentityMask(getShuffleMask());
2113 /// Return true if this shuffle lengthens exactly one source vector with
2114 /// undefs in the high elements.
2115 bool isIdentityWithPadding() const;
2117 /// Return true if this shuffle extracts the first N elements of exactly one
2119 bool isIdentityWithExtract() const;
2121 /// Return true if this shuffle concatenates its 2 source vectors. This
2122 /// returns false if either input is undefined. In that case, the shuffle is
2123 /// is better classified as an identity with padding operation.
2124 bool isConcat() const;
2126 /// Return true if this shuffle mask chooses elements from its source vectors
2127 /// without lane crossings. A shuffle using this mask would be
2128 /// equivalent to a vector select with a constant condition operand.
2129 /// Example: <4,1,6,undef>
2130 /// This returns false if the mask does not choose from both input vectors.
2131 /// In that case, the shuffle is better classified as an identity shuffle.
2132 /// This assumes that vector operands are the same length as the mask
2133 /// (a length-changing shuffle can never be equivalent to a vector select).
2134 static bool isSelectMask(ArrayRef
<int> Mask
);
2135 static bool isSelectMask(const Constant
*Mask
) {
2136 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2137 SmallVector
<int, 16> MaskAsInts
;
2138 getShuffleMask(Mask
, MaskAsInts
);
2139 return isSelectMask(MaskAsInts
);
2142 /// Return true if this shuffle chooses elements from its source vectors
2143 /// without lane crossings and all operands have the same number of elements.
2144 /// In other words, this shuffle is equivalent to a vector select with a
2145 /// constant condition operand.
2146 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2147 /// This returns false if the mask does not choose from both input vectors.
2148 /// In that case, the shuffle is better classified as an identity shuffle.
2149 /// TODO: Optionally allow length-changing shuffles.
2150 bool isSelect() const {
2151 return !changesLength() && isSelectMask(getMask());
2154 /// Return true if this shuffle mask swaps the order of elements from exactly
2155 /// one source vector.
2156 /// Example: <7,6,undef,4>
2157 /// This assumes that vector operands are the same length as the mask.
2158 static bool isReverseMask(ArrayRef
<int> Mask
);
2159 static bool isReverseMask(const Constant
*Mask
) {
2160 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2161 SmallVector
<int, 16> MaskAsInts
;
2162 getShuffleMask(Mask
, MaskAsInts
);
2163 return isReverseMask(MaskAsInts
);
2166 /// Return true if this shuffle swaps the order of elements from exactly
2167 /// one source vector.
2168 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2169 /// TODO: Optionally allow length-changing shuffles.
2170 bool isReverse() const {
2171 return !changesLength() && isReverseMask(getMask());
2174 /// Return true if this shuffle mask chooses all elements with the same value
2175 /// as the first element of exactly one source vector.
2176 /// Example: <4,undef,undef,4>
2177 /// This assumes that vector operands are the same length as the mask.
2178 static bool isZeroEltSplatMask(ArrayRef
<int> Mask
);
2179 static bool isZeroEltSplatMask(const Constant
*Mask
) {
2180 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2181 SmallVector
<int, 16> MaskAsInts
;
2182 getShuffleMask(Mask
, MaskAsInts
);
2183 return isZeroEltSplatMask(MaskAsInts
);
2186 /// Return true if all elements of this shuffle are the same value as the
2187 /// first element of exactly one source vector without changing the length
2189 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2190 /// TODO: Optionally allow length-changing shuffles.
2191 /// TODO: Optionally allow splats from other elements.
2192 bool isZeroEltSplat() const {
2193 return !changesLength() && isZeroEltSplatMask(getMask());
2196 /// Return true if this shuffle mask is a transpose mask.
2197 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2198 /// even- or odd-numbered vector elements from two n-dimensional source
2199 /// vectors and write each result into consecutive elements of an
2200 /// n-dimensional destination vector. Two shuffles are necessary to complete
2201 /// the transpose, one for the even elements and another for the odd elements.
2202 /// This description closely follows how the TRN1 and TRN2 AArch64
2203 /// instructions operate.
2205 /// For example, a simple 2x2 matrix can be transposed with:
2207 /// ; Original matrix
2211 /// ; Transposed matrix
2212 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2213 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2215 /// For matrices having greater than n columns, the resulting nx2 transposed
2216 /// matrix is stored in two result vectors such that one vector contains
2217 /// interleaved elements from all the even-numbered rows and the other vector
2218 /// contains interleaved elements from all the odd-numbered rows. For example,
2219 /// a 2x4 matrix can be transposed with:
2221 /// ; Original matrix
2222 /// m0 = < a, b, c, d >
2223 /// m1 = < e, f, g, h >
2225 /// ; Transposed matrix
2226 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2227 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2228 static bool isTransposeMask(ArrayRef
<int> Mask
);
2229 static bool isTransposeMask(const Constant
*Mask
) {
2230 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2231 SmallVector
<int, 16> MaskAsInts
;
2232 getShuffleMask(Mask
, MaskAsInts
);
2233 return isTransposeMask(MaskAsInts
);
2236 /// Return true if this shuffle transposes the elements of its inputs without
2237 /// changing the length of the vectors. This operation may also be known as a
2238 /// merge or interleave. See the description for isTransposeMask() for the
2239 /// exact specification.
2240 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2241 bool isTranspose() const {
2242 return !changesLength() && isTransposeMask(getMask());
2245 /// Return true if this shuffle mask is an extract subvector mask.
2246 /// A valid extract subvector mask returns a smaller vector from a single
2247 /// source operand. The base extraction index is returned as well.
2248 static bool isExtractSubvectorMask(ArrayRef
<int> Mask
, int NumSrcElts
,
2250 static bool isExtractSubvectorMask(const Constant
*Mask
, int NumSrcElts
,
2252 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2253 SmallVector
<int, 16> MaskAsInts
;
2254 getShuffleMask(Mask
, MaskAsInts
);
2255 return isExtractSubvectorMask(MaskAsInts
, NumSrcElts
, Index
);
2258 /// Return true if this shuffle mask is an extract subvector mask.
2259 bool isExtractSubvectorMask(int &Index
) const {
2260 int NumSrcElts
= Op
<0>()->getType()->getVectorNumElements();
2261 return isExtractSubvectorMask(getMask(), NumSrcElts
, Index
);
2264 /// Change values in a shuffle permute mask assuming the two vector operands
2265 /// of length InVecNumElts have swapped position.
2266 static void commuteShuffleMask(MutableArrayRef
<int> Mask
,
2267 unsigned InVecNumElts
) {
2268 for (int &Idx
: Mask
) {
2271 Idx
= Idx
< (int)InVecNumElts
? Idx
+ InVecNumElts
: Idx
- InVecNumElts
;
2272 assert(Idx
>= 0 && Idx
< (int)InVecNumElts
* 2 &&
2273 "shufflevector mask index out of range");
2277 // Methods for support type inquiry through isa, cast, and dyn_cast:
2278 static bool classof(const Instruction
*I
) {
2279 return I
->getOpcode() == Instruction::ShuffleVector
;
2281 static bool classof(const Value
*V
) {
2282 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2287 struct OperandTraits
<ShuffleVectorInst
> :
2288 public FixedNumOperandTraits
<ShuffleVectorInst
, 3> {
2291 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst
, Value
)
2293 //===----------------------------------------------------------------------===//
2294 // ExtractValueInst Class
2295 //===----------------------------------------------------------------------===//
2297 /// This instruction extracts a struct member or array
2298 /// element value from an aggregate value.
2300 class ExtractValueInst
: public UnaryInstruction
{
2301 SmallVector
<unsigned, 4> Indices
;
2303 ExtractValueInst(const ExtractValueInst
&EVI
);
2305 /// Constructors - Create a extractvalue instruction with a base aggregate
2306 /// value and a list of indices. The first ctor can optionally insert before
2307 /// an existing instruction, the second appends the new instruction to the
2308 /// specified BasicBlock.
2309 inline ExtractValueInst(Value
*Agg
,
2310 ArrayRef
<unsigned> Idxs
,
2311 const Twine
&NameStr
,
2312 Instruction
*InsertBefore
);
2313 inline ExtractValueInst(Value
*Agg
,
2314 ArrayRef
<unsigned> Idxs
,
2315 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2317 void init(ArrayRef
<unsigned> Idxs
, const Twine
&NameStr
);
2320 // Note: Instruction needs to be a friend here to call cloneImpl.
2321 friend class Instruction
;
2323 ExtractValueInst
*cloneImpl() const;
2326 static ExtractValueInst
*Create(Value
*Agg
,
2327 ArrayRef
<unsigned> Idxs
,
2328 const Twine
&NameStr
= "",
2329 Instruction
*InsertBefore
= nullptr) {
2331 ExtractValueInst(Agg
, Idxs
, NameStr
, InsertBefore
);
2334 static ExtractValueInst
*Create(Value
*Agg
,
2335 ArrayRef
<unsigned> Idxs
,
2336 const Twine
&NameStr
,
2337 BasicBlock
*InsertAtEnd
) {
2338 return new ExtractValueInst(Agg
, Idxs
, NameStr
, InsertAtEnd
);
2341 /// Returns the type of the element that would be extracted
2342 /// with an extractvalue instruction with the specified parameters.
2344 /// Null is returned if the indices are invalid for the specified type.
2345 static Type
*getIndexedType(Type
*Agg
, ArrayRef
<unsigned> Idxs
);
2347 using idx_iterator
= const unsigned*;
2349 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2350 inline idx_iterator
idx_end() const { return Indices
.end(); }
2351 inline iterator_range
<idx_iterator
> indices() const {
2352 return make_range(idx_begin(), idx_end());
2355 Value
*getAggregateOperand() {
2356 return getOperand(0);
2358 const Value
*getAggregateOperand() const {
2359 return getOperand(0);
2361 static unsigned getAggregateOperandIndex() {
2362 return 0U; // get index for modifying correct operand
2365 ArrayRef
<unsigned> getIndices() const {
2369 unsigned getNumIndices() const {
2370 return (unsigned)Indices
.size();
2373 bool hasIndices() const {
2377 // Methods for support type inquiry through isa, cast, and dyn_cast:
2378 static bool classof(const Instruction
*I
) {
2379 return I
->getOpcode() == Instruction::ExtractValue
;
2381 static bool classof(const Value
*V
) {
2382 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2386 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2387 ArrayRef
<unsigned> Idxs
,
2388 const Twine
&NameStr
,
2389 Instruction
*InsertBefore
)
2390 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2391 ExtractValue
, Agg
, InsertBefore
) {
2392 init(Idxs
, NameStr
);
2395 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2396 ArrayRef
<unsigned> Idxs
,
2397 const Twine
&NameStr
,
2398 BasicBlock
*InsertAtEnd
)
2399 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2400 ExtractValue
, Agg
, InsertAtEnd
) {
2401 init(Idxs
, NameStr
);
2404 //===----------------------------------------------------------------------===//
2405 // InsertValueInst Class
2406 //===----------------------------------------------------------------------===//
2408 /// This instruction inserts a struct field of array element
2409 /// value into an aggregate value.
2411 class InsertValueInst
: public Instruction
{
2412 SmallVector
<unsigned, 4> Indices
;
2414 InsertValueInst(const InsertValueInst
&IVI
);
2416 /// Constructors - Create a insertvalue instruction with a base aggregate
2417 /// value, a value to insert, and a list of indices. The first ctor can
2418 /// optionally insert before an existing instruction, the second appends
2419 /// the new instruction to the specified BasicBlock.
2420 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2421 ArrayRef
<unsigned> Idxs
,
2422 const Twine
&NameStr
,
2423 Instruction
*InsertBefore
);
2424 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2425 ArrayRef
<unsigned> Idxs
,
2426 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2428 /// Constructors - These two constructors are convenience methods because one
2429 /// and two index insertvalue instructions are so common.
2430 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
,
2431 const Twine
&NameStr
= "",
2432 Instruction
*InsertBefore
= nullptr);
2433 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
, const Twine
&NameStr
,
2434 BasicBlock
*InsertAtEnd
);
2436 void init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
2437 const Twine
&NameStr
);
2440 // Note: Instruction needs to be a friend here to call cloneImpl.
2441 friend class Instruction
;
2443 InsertValueInst
*cloneImpl() const;
2446 // allocate space for exactly two operands
2447 void *operator new(size_t s
) {
2448 return User::operator new(s
, 2);
2451 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2452 ArrayRef
<unsigned> Idxs
,
2453 const Twine
&NameStr
= "",
2454 Instruction
*InsertBefore
= nullptr) {
2455 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertBefore
);
2458 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2459 ArrayRef
<unsigned> Idxs
,
2460 const Twine
&NameStr
,
2461 BasicBlock
*InsertAtEnd
) {
2462 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertAtEnd
);
2465 /// Transparently provide more efficient getOperand methods.
2466 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2468 using idx_iterator
= const unsigned*;
2470 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2471 inline idx_iterator
idx_end() const { return Indices
.end(); }
2472 inline iterator_range
<idx_iterator
> indices() const {
2473 return make_range(idx_begin(), idx_end());
2476 Value
*getAggregateOperand() {
2477 return getOperand(0);
2479 const Value
*getAggregateOperand() const {
2480 return getOperand(0);
2482 static unsigned getAggregateOperandIndex() {
2483 return 0U; // get index for modifying correct operand
2486 Value
*getInsertedValueOperand() {
2487 return getOperand(1);
2489 const Value
*getInsertedValueOperand() const {
2490 return getOperand(1);
2492 static unsigned getInsertedValueOperandIndex() {
2493 return 1U; // get index for modifying correct operand
2496 ArrayRef
<unsigned> getIndices() const {
2500 unsigned getNumIndices() const {
2501 return (unsigned)Indices
.size();
2504 bool hasIndices() const {
2508 // Methods for support type inquiry through isa, cast, and dyn_cast:
2509 static bool classof(const Instruction
*I
) {
2510 return I
->getOpcode() == Instruction::InsertValue
;
2512 static bool classof(const Value
*V
) {
2513 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2518 struct OperandTraits
<InsertValueInst
> :
2519 public FixedNumOperandTraits
<InsertValueInst
, 2> {
2522 InsertValueInst::InsertValueInst(Value
*Agg
,
2524 ArrayRef
<unsigned> Idxs
,
2525 const Twine
&NameStr
,
2526 Instruction
*InsertBefore
)
2527 : Instruction(Agg
->getType(), InsertValue
,
2528 OperandTraits
<InsertValueInst
>::op_begin(this),
2530 init(Agg
, Val
, Idxs
, NameStr
);
2533 InsertValueInst::InsertValueInst(Value
*Agg
,
2535 ArrayRef
<unsigned> Idxs
,
2536 const Twine
&NameStr
,
2537 BasicBlock
*InsertAtEnd
)
2538 : Instruction(Agg
->getType(), InsertValue
,
2539 OperandTraits
<InsertValueInst
>::op_begin(this),
2541 init(Agg
, Val
, Idxs
, NameStr
);
2544 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst
, Value
)
2546 //===----------------------------------------------------------------------===//
2548 //===----------------------------------------------------------------------===//
2550 // PHINode - The PHINode class is used to represent the magical mystical PHI
2551 // node, that can not exist in nature, but can be synthesized in a computer
2552 // scientist's overactive imagination.
2554 class PHINode
: public Instruction
{
2555 /// The number of operands actually allocated. NumOperands is
2556 /// the number actually in use.
2557 unsigned ReservedSpace
;
2559 PHINode(const PHINode
&PN
);
2561 explicit PHINode(Type
*Ty
, unsigned NumReservedValues
,
2562 const Twine
&NameStr
= "",
2563 Instruction
*InsertBefore
= nullptr)
2564 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertBefore
),
2565 ReservedSpace(NumReservedValues
) {
2567 allocHungoffUses(ReservedSpace
);
2570 PHINode(Type
*Ty
, unsigned NumReservedValues
, const Twine
&NameStr
,
2571 BasicBlock
*InsertAtEnd
)
2572 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertAtEnd
),
2573 ReservedSpace(NumReservedValues
) {
2575 allocHungoffUses(ReservedSpace
);
2579 // Note: Instruction needs to be a friend here to call cloneImpl.
2580 friend class Instruction
;
2582 PHINode
*cloneImpl() const;
2584 // allocHungoffUses - this is more complicated than the generic
2585 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2586 // values and pointers to the incoming blocks, all in one allocation.
2587 void allocHungoffUses(unsigned N
) {
2588 User::allocHungoffUses(N
, /* IsPhi */ true);
2592 /// Constructors - NumReservedValues is a hint for the number of incoming
2593 /// edges that this phi node will have (use 0 if you really have no idea).
2594 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2595 const Twine
&NameStr
= "",
2596 Instruction
*InsertBefore
= nullptr) {
2597 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertBefore
);
2600 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2601 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
2602 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertAtEnd
);
2605 /// Provide fast operand accessors
2606 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2608 // Block iterator interface. This provides access to the list of incoming
2609 // basic blocks, which parallels the list of incoming values.
2611 using block_iterator
= BasicBlock
**;
2612 using const_block_iterator
= BasicBlock
* const *;
2614 block_iterator
block_begin() {
2616 reinterpret_cast<Use::UserRef
*>(op_begin() + ReservedSpace
);
2617 return reinterpret_cast<block_iterator
>(ref
+ 1);
2620 const_block_iterator
block_begin() const {
2621 const Use::UserRef
*ref
=
2622 reinterpret_cast<const Use::UserRef
*>(op_begin() + ReservedSpace
);
2623 return reinterpret_cast<const_block_iterator
>(ref
+ 1);
2626 block_iterator
block_end() {
2627 return block_begin() + getNumOperands();
2630 const_block_iterator
block_end() const {
2631 return block_begin() + getNumOperands();
2634 iterator_range
<block_iterator
> blocks() {
2635 return make_range(block_begin(), block_end());
2638 iterator_range
<const_block_iterator
> blocks() const {
2639 return make_range(block_begin(), block_end());
2642 op_range
incoming_values() { return operands(); }
2644 const_op_range
incoming_values() const { return operands(); }
2646 /// Return the number of incoming edges
2648 unsigned getNumIncomingValues() const { return getNumOperands(); }
2650 /// Return incoming value number x
2652 Value
*getIncomingValue(unsigned i
) const {
2653 return getOperand(i
);
2655 void setIncomingValue(unsigned i
, Value
*V
) {
2656 assert(V
&& "PHI node got a null value!");
2657 assert(getType() == V
->getType() &&
2658 "All operands to PHI node must be the same type as the PHI node!");
2662 static unsigned getOperandNumForIncomingValue(unsigned i
) {
2666 static unsigned getIncomingValueNumForOperand(unsigned i
) {
2670 /// Return incoming basic block number @p i.
2672 BasicBlock
*getIncomingBlock(unsigned i
) const {
2673 return block_begin()[i
];
2676 /// Return incoming basic block corresponding
2677 /// to an operand of the PHI.
2679 BasicBlock
*getIncomingBlock(const Use
&U
) const {
2680 assert(this == U
.getUser() && "Iterator doesn't point to PHI's Uses?");
2681 return getIncomingBlock(unsigned(&U
- op_begin()));
2684 /// Return incoming basic block corresponding
2685 /// to value use iterator.
2687 BasicBlock
*getIncomingBlock(Value::const_user_iterator I
) const {
2688 return getIncomingBlock(I
.getUse());
2691 void setIncomingBlock(unsigned i
, BasicBlock
*BB
) {
2692 assert(BB
&& "PHI node got a null basic block!");
2693 block_begin()[i
] = BB
;
2696 /// Replace every incoming basic block \p Old to basic block \p New.
2697 void replaceIncomingBlockWith(const BasicBlock
*Old
, BasicBlock
*New
) {
2698 assert(New
&& Old
&& "PHI node got a null basic block!");
2699 for (unsigned Op
= 0, NumOps
= getNumOperands(); Op
!= NumOps
; ++Op
)
2700 if (getIncomingBlock(Op
) == Old
)
2701 setIncomingBlock(Op
, New
);
2704 /// Add an incoming value to the end of the PHI list
2706 void addIncoming(Value
*V
, BasicBlock
*BB
) {
2707 if (getNumOperands() == ReservedSpace
)
2708 growOperands(); // Get more space!
2709 // Initialize some new operands.
2710 setNumHungOffUseOperands(getNumOperands() + 1);
2711 setIncomingValue(getNumOperands() - 1, V
);
2712 setIncomingBlock(getNumOperands() - 1, BB
);
2715 /// Remove an incoming value. This is useful if a
2716 /// predecessor basic block is deleted. The value removed is returned.
2718 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2719 /// is true), the PHI node is destroyed and any uses of it are replaced with
2720 /// dummy values. The only time there should be zero incoming values to a PHI
2721 /// node is when the block is dead, so this strategy is sound.
2723 Value
*removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
= true);
2725 Value
*removeIncomingValue(const BasicBlock
*BB
, bool DeletePHIIfEmpty
=true) {
2726 int Idx
= getBasicBlockIndex(BB
);
2727 assert(Idx
>= 0 && "Invalid basic block argument to remove!");
2728 return removeIncomingValue(Idx
, DeletePHIIfEmpty
);
2731 /// Return the first index of the specified basic
2732 /// block in the value list for this PHI. Returns -1 if no instance.
2734 int getBasicBlockIndex(const BasicBlock
*BB
) const {
2735 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
2736 if (block_begin()[i
] == BB
)
2741 Value
*getIncomingValueForBlock(const BasicBlock
*BB
) const {
2742 int Idx
= getBasicBlockIndex(BB
);
2743 assert(Idx
>= 0 && "Invalid basic block argument!");
2744 return getIncomingValue(Idx
);
2747 /// Set every incoming value(s) for block \p BB to \p V.
2748 void setIncomingValueForBlock(const BasicBlock
*BB
, Value
*V
) {
2749 assert(BB
&& "PHI node got a null basic block!");
2751 for (unsigned Op
= 0, NumOps
= getNumOperands(); Op
!= NumOps
; ++Op
)
2752 if (getIncomingBlock(Op
) == BB
) {
2754 setIncomingValue(Op
, V
);
2757 assert(Found
&& "Invalid basic block argument to set!");
2760 /// If the specified PHI node always merges together the
2761 /// same value, return the value, otherwise return null.
2762 Value
*hasConstantValue() const;
2764 /// Whether the specified PHI node always merges
2765 /// together the same value, assuming undefs are equal to a unique
2766 /// non-undef value.
2767 bool hasConstantOrUndefValue() const;
2769 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2770 static bool classof(const Instruction
*I
) {
2771 return I
->getOpcode() == Instruction::PHI
;
2773 static bool classof(const Value
*V
) {
2774 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2778 void growOperands();
2782 struct OperandTraits
<PHINode
> : public HungoffOperandTraits
<2> {
2785 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode
, Value
)
2787 //===----------------------------------------------------------------------===//
2788 // LandingPadInst Class
2789 //===----------------------------------------------------------------------===//
2791 //===---------------------------------------------------------------------------
2792 /// The landingpad instruction holds all of the information
2793 /// necessary to generate correct exception handling. The landingpad instruction
2794 /// cannot be moved from the top of a landing pad block, which itself is
2795 /// accessible only from the 'unwind' edge of an invoke. This uses the
2796 /// SubclassData field in Value to store whether or not the landingpad is a
2799 class LandingPadInst
: public Instruction
{
2800 /// The number of operands actually allocated. NumOperands is
2801 /// the number actually in use.
2802 unsigned ReservedSpace
;
2804 LandingPadInst(const LandingPadInst
&LP
);
2807 enum ClauseType
{ Catch
, Filter
};
2810 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2811 const Twine
&NameStr
, Instruction
*InsertBefore
);
2812 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2813 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2815 // Allocate space for exactly zero operands.
2816 void *operator new(size_t s
) {
2817 return User::operator new(s
);
2820 void growOperands(unsigned Size
);
2821 void init(unsigned NumReservedValues
, const Twine
&NameStr
);
2824 // Note: Instruction needs to be a friend here to call cloneImpl.
2825 friend class Instruction
;
2827 LandingPadInst
*cloneImpl() const;
2830 /// Constructors - NumReservedClauses is a hint for the number of incoming
2831 /// clauses that this landingpad will have (use 0 if you really have no idea).
2832 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2833 const Twine
&NameStr
= "",
2834 Instruction
*InsertBefore
= nullptr);
2835 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2836 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2838 /// Provide fast operand accessors
2839 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2841 /// Return 'true' if this landingpad instruction is a
2842 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2843 /// doesn't catch the exception.
2844 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2846 /// Indicate that this landingpad instruction is a cleanup.
2847 void setCleanup(bool V
) {
2848 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2852 /// Add a catch or filter clause to the landing pad.
2853 void addClause(Constant
*ClauseVal
);
2855 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2856 /// determine what type of clause this is.
2857 Constant
*getClause(unsigned Idx
) const {
2858 return cast
<Constant
>(getOperandList()[Idx
]);
2861 /// Return 'true' if the clause and index Idx is a catch clause.
2862 bool isCatch(unsigned Idx
) const {
2863 return !isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2866 /// Return 'true' if the clause and index Idx is a filter clause.
2867 bool isFilter(unsigned Idx
) const {
2868 return isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2871 /// Get the number of clauses for this landing pad.
2872 unsigned getNumClauses() const { return getNumOperands(); }
2874 /// Grow the size of the operand list to accommodate the new
2875 /// number of clauses.
2876 void reserveClauses(unsigned Size
) { growOperands(Size
); }
2878 // Methods for support type inquiry through isa, cast, and dyn_cast:
2879 static bool classof(const Instruction
*I
) {
2880 return I
->getOpcode() == Instruction::LandingPad
;
2882 static bool classof(const Value
*V
) {
2883 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2888 struct OperandTraits
<LandingPadInst
> : public HungoffOperandTraits
<1> {
2891 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst
, Value
)
2893 //===----------------------------------------------------------------------===//
2895 //===----------------------------------------------------------------------===//
2897 //===---------------------------------------------------------------------------
2898 /// Return a value (possibly void), from a function. Execution
2899 /// does not continue in this function any longer.
2901 class ReturnInst
: public Instruction
{
2902 ReturnInst(const ReturnInst
&RI
);
2905 // ReturnInst constructors:
2906 // ReturnInst() - 'ret void' instruction
2907 // ReturnInst( null) - 'ret void' instruction
2908 // ReturnInst(Value* X) - 'ret X' instruction
2909 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2910 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2911 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2912 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2914 // NOTE: If the Value* passed is of type void then the constructor behaves as
2915 // if it was passed NULL.
2916 explicit ReturnInst(LLVMContext
&C
, Value
*retVal
= nullptr,
2917 Instruction
*InsertBefore
= nullptr);
2918 ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
);
2919 explicit ReturnInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
2922 // Note: Instruction needs to be a friend here to call cloneImpl.
2923 friend class Instruction
;
2925 ReturnInst
*cloneImpl() const;
2928 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
= nullptr,
2929 Instruction
*InsertBefore
= nullptr) {
2930 return new(!!retVal
) ReturnInst(C
, retVal
, InsertBefore
);
2933 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
,
2934 BasicBlock
*InsertAtEnd
) {
2935 return new(!!retVal
) ReturnInst(C
, retVal
, InsertAtEnd
);
2938 static ReturnInst
* Create(LLVMContext
&C
, BasicBlock
*InsertAtEnd
) {
2939 return new(0) ReturnInst(C
, InsertAtEnd
);
2942 /// Provide fast operand accessors
2943 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2945 /// Convenience accessor. Returns null if there is no return value.
2946 Value
*getReturnValue() const {
2947 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2950 unsigned getNumSuccessors() const { return 0; }
2952 // Methods for support type inquiry through isa, cast, and dyn_cast:
2953 static bool classof(const Instruction
*I
) {
2954 return (I
->getOpcode() == Instruction::Ret
);
2956 static bool classof(const Value
*V
) {
2957 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2961 BasicBlock
*getSuccessor(unsigned idx
) const {
2962 llvm_unreachable("ReturnInst has no successors!");
2965 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
2966 llvm_unreachable("ReturnInst has no successors!");
2971 struct OperandTraits
<ReturnInst
> : public VariadicOperandTraits
<ReturnInst
> {
2974 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst
, Value
)
2976 //===----------------------------------------------------------------------===//
2978 //===----------------------------------------------------------------------===//
2980 //===---------------------------------------------------------------------------
2981 /// Conditional or Unconditional Branch instruction.
2983 class BranchInst
: public Instruction
{
2984 /// Ops list - Branches are strange. The operands are ordered:
2985 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2986 /// they don't have to check for cond/uncond branchness. These are mostly
2987 /// accessed relative from op_end().
2988 BranchInst(const BranchInst
&BI
);
2989 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2990 // BranchInst(BB *B) - 'br B'
2991 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2992 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2993 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2994 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2995 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2996 explicit BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
= nullptr);
2997 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
2998 Instruction
*InsertBefore
= nullptr);
2999 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
);
3000 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
3001 BasicBlock
*InsertAtEnd
);
3006 // Note: Instruction needs to be a friend here to call cloneImpl.
3007 friend class Instruction
;
3009 BranchInst
*cloneImpl() const;
3012 /// Iterator type that casts an operand to a basic block.
3014 /// This only makes sense because the successors are stored as adjacent
3015 /// operands for branch instructions.
3016 struct succ_op_iterator
3017 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3018 std::random_access_iterator_tag
, BasicBlock
*,
3019 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3020 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3022 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3023 BasicBlock
*operator->() const { return operator*(); }
3026 /// The const version of `succ_op_iterator`.
3027 struct const_succ_op_iterator
3028 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3029 std::random_access_iterator_tag
,
3030 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3031 const BasicBlock
*> {
3032 explicit const_succ_op_iterator(const_value_op_iterator I
)
3033 : iterator_adaptor_base(I
) {}
3035 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3036 const BasicBlock
*operator->() const { return operator*(); }
3039 static BranchInst
*Create(BasicBlock
*IfTrue
,
3040 Instruction
*InsertBefore
= nullptr) {
3041 return new(1) BranchInst(IfTrue
, InsertBefore
);
3044 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3045 Value
*Cond
, Instruction
*InsertBefore
= nullptr) {
3046 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertBefore
);
3049 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
) {
3050 return new(1) BranchInst(IfTrue
, InsertAtEnd
);
3053 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3054 Value
*Cond
, BasicBlock
*InsertAtEnd
) {
3055 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertAtEnd
);
3058 /// Transparently provide more efficient getOperand methods.
3059 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3061 bool isUnconditional() const { return getNumOperands() == 1; }
3062 bool isConditional() const { return getNumOperands() == 3; }
3064 Value
*getCondition() const {
3065 assert(isConditional() && "Cannot get condition of an uncond branch!");
3069 void setCondition(Value
*V
) {
3070 assert(isConditional() && "Cannot set condition of unconditional branch!");
3074 unsigned getNumSuccessors() const { return 1+isConditional(); }
3076 BasicBlock
*getSuccessor(unsigned i
) const {
3077 assert(i
< getNumSuccessors() && "Successor # out of range for Branch!");
3078 return cast_or_null
<BasicBlock
>((&Op
<-1>() - i
)->get());
3081 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3082 assert(idx
< getNumSuccessors() && "Successor # out of range for Branch!");
3083 *(&Op
<-1>() - idx
) = NewSucc
;
3086 /// Swap the successors of this branch instruction.
3088 /// Swaps the successors of the branch instruction. This also swaps any
3089 /// branch weight metadata associated with the instruction so that it
3090 /// continues to map correctly to each operand.
3091 void swapSuccessors();
3093 iterator_range
<succ_op_iterator
> successors() {
3095 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3096 succ_op_iterator(value_op_end()));
3099 iterator_range
<const_succ_op_iterator
> successors() const {
3100 return make_range(const_succ_op_iterator(
3101 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3102 const_succ_op_iterator(value_op_end()));
3105 // Methods for support type inquiry through isa, cast, and dyn_cast:
3106 static bool classof(const Instruction
*I
) {
3107 return (I
->getOpcode() == Instruction::Br
);
3109 static bool classof(const Value
*V
) {
3110 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3115 struct OperandTraits
<BranchInst
> : public VariadicOperandTraits
<BranchInst
, 1> {
3118 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst
, Value
)
3120 //===----------------------------------------------------------------------===//
3122 //===----------------------------------------------------------------------===//
3124 //===---------------------------------------------------------------------------
3127 class SwitchInst
: public Instruction
{
3128 unsigned ReservedSpace
;
3130 // Operand[0] = Value to switch on
3131 // Operand[1] = Default basic block destination
3132 // Operand[2n ] = Value to match
3133 // Operand[2n+1] = BasicBlock to go to on match
3134 SwitchInst(const SwitchInst
&SI
);
3136 /// Create a new switch instruction, specifying a value to switch on and a
3137 /// default destination. The number of additional cases can be specified here
3138 /// to make memory allocation more efficient. This constructor can also
3139 /// auto-insert before another instruction.
3140 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3141 Instruction
*InsertBefore
);
3143 /// Create a new switch instruction, specifying a value to switch on and a
3144 /// default destination. The number of additional cases can be specified here
3145 /// to make memory allocation more efficient. This constructor also
3146 /// auto-inserts at the end of the specified BasicBlock.
3147 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3148 BasicBlock
*InsertAtEnd
);
3150 // allocate space for exactly zero operands
3151 void *operator new(size_t s
) {
3152 return User::operator new(s
);
3155 void init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
);
3156 void growOperands();
3159 // Note: Instruction needs to be a friend here to call cloneImpl.
3160 friend class Instruction
;
3162 SwitchInst
*cloneImpl() const;
3166 static const unsigned DefaultPseudoIndex
= static_cast<unsigned>(~0L-1);
3168 template <typename CaseHandleT
> class CaseIteratorImpl
;
3170 /// A handle to a particular switch case. It exposes a convenient interface
3171 /// to both the case value and the successor block.
3173 /// We define this as a template and instantiate it to form both a const and
3174 /// non-const handle.
3175 template <typename SwitchInstT
, typename ConstantIntT
, typename BasicBlockT
>
3176 class CaseHandleImpl
{
3177 // Directly befriend both const and non-const iterators.
3178 friend class SwitchInst::CaseIteratorImpl
<
3179 CaseHandleImpl
<SwitchInstT
, ConstantIntT
, BasicBlockT
>>;
3182 // Expose the switch type we're parameterized with to the iterator.
3183 using SwitchInstType
= SwitchInstT
;
3188 CaseHandleImpl() = default;
3189 CaseHandleImpl(SwitchInstT
*SI
, ptrdiff_t Index
) : SI(SI
), Index(Index
) {}
3192 /// Resolves case value for current case.
3193 ConstantIntT
*getCaseValue() const {
3194 assert((unsigned)Index
< SI
->getNumCases() &&
3195 "Index out the number of cases.");
3196 return reinterpret_cast<ConstantIntT
*>(SI
->getOperand(2 + Index
* 2));
3199 /// Resolves successor for current case.
3200 BasicBlockT
*getCaseSuccessor() const {
3201 assert(((unsigned)Index
< SI
->getNumCases() ||
3202 (unsigned)Index
== DefaultPseudoIndex
) &&
3203 "Index out the number of cases.");
3204 return SI
->getSuccessor(getSuccessorIndex());
3207 /// Returns number of current case.
3208 unsigned getCaseIndex() const { return Index
; }
3210 /// Returns successor index for current case successor.
3211 unsigned getSuccessorIndex() const {
3212 assert(((unsigned)Index
== DefaultPseudoIndex
||
3213 (unsigned)Index
< SI
->getNumCases()) &&
3214 "Index out the number of cases.");
3215 return (unsigned)Index
!= DefaultPseudoIndex
? Index
+ 1 : 0;
3218 bool operator==(const CaseHandleImpl
&RHS
) const {
3219 assert(SI
== RHS
.SI
&& "Incompatible operators.");
3220 return Index
== RHS
.Index
;
3224 using ConstCaseHandle
=
3225 CaseHandleImpl
<const SwitchInst
, const ConstantInt
, const BasicBlock
>;
3228 : public CaseHandleImpl
<SwitchInst
, ConstantInt
, BasicBlock
> {
3229 friend class SwitchInst::CaseIteratorImpl
<CaseHandle
>;
3232 CaseHandle(SwitchInst
*SI
, ptrdiff_t Index
) : CaseHandleImpl(SI
, Index
) {}
3234 /// Sets the new value for current case.
3235 void setValue(ConstantInt
*V
) {
3236 assert((unsigned)Index
< SI
->getNumCases() &&
3237 "Index out the number of cases.");
3238 SI
->setOperand(2 + Index
*2, reinterpret_cast<Value
*>(V
));
3241 /// Sets the new successor for current case.
3242 void setSuccessor(BasicBlock
*S
) {
3243 SI
->setSuccessor(getSuccessorIndex(), S
);
3247 template <typename CaseHandleT
>
3248 class CaseIteratorImpl
3249 : public iterator_facade_base
<CaseIteratorImpl
<CaseHandleT
>,
3250 std::random_access_iterator_tag
,
3252 using SwitchInstT
= typename
CaseHandleT::SwitchInstType
;
3257 /// Default constructed iterator is in an invalid state until assigned to
3258 /// a case for a particular switch.
3259 CaseIteratorImpl() = default;
3261 /// Initializes case iterator for given SwitchInst and for given
3263 CaseIteratorImpl(SwitchInstT
*SI
, unsigned CaseNum
) : Case(SI
, CaseNum
) {}
3265 /// Initializes case iterator for given SwitchInst and for given
3266 /// successor index.
3267 static CaseIteratorImpl
fromSuccessorIndex(SwitchInstT
*SI
,
3268 unsigned SuccessorIndex
) {
3269 assert(SuccessorIndex
< SI
->getNumSuccessors() &&
3270 "Successor index # out of range!");
3271 return SuccessorIndex
!= 0 ? CaseIteratorImpl(SI
, SuccessorIndex
- 1)
3272 : CaseIteratorImpl(SI
, DefaultPseudoIndex
);
3275 /// Support converting to the const variant. This will be a no-op for const
3277 operator CaseIteratorImpl
<ConstCaseHandle
>() const {
3278 return CaseIteratorImpl
<ConstCaseHandle
>(Case
.SI
, Case
.Index
);
3281 CaseIteratorImpl
&operator+=(ptrdiff_t N
) {
3282 // Check index correctness after addition.
3283 // Note: Index == getNumCases() means end().
3284 assert(Case
.Index
+ N
>= 0 &&
3285 (unsigned)(Case
.Index
+ N
) <= Case
.SI
->getNumCases() &&
3286 "Case.Index out the number of cases.");
3290 CaseIteratorImpl
&operator-=(ptrdiff_t N
) {
3291 // Check index correctness after subtraction.
3292 // Note: Case.Index == getNumCases() means end().
3293 assert(Case
.Index
- N
>= 0 &&
3294 (unsigned)(Case
.Index
- N
) <= Case
.SI
->getNumCases() &&
3295 "Case.Index out the number of cases.");
3299 ptrdiff_t operator-(const CaseIteratorImpl
&RHS
) const {
3300 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3301 return Case
.Index
- RHS
.Case
.Index
;
3303 bool operator==(const CaseIteratorImpl
&RHS
) const {
3304 return Case
== RHS
.Case
;
3306 bool operator<(const CaseIteratorImpl
&RHS
) const {
3307 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3308 return Case
.Index
< RHS
.Case
.Index
;
3310 CaseHandleT
&operator*() { return Case
; }
3311 const CaseHandleT
&operator*() const { return Case
; }
3314 using CaseIt
= CaseIteratorImpl
<CaseHandle
>;
3315 using ConstCaseIt
= CaseIteratorImpl
<ConstCaseHandle
>;
3317 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3319 Instruction
*InsertBefore
= nullptr) {
3320 return new SwitchInst(Value
, Default
, NumCases
, InsertBefore
);
3323 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3324 unsigned NumCases
, BasicBlock
*InsertAtEnd
) {
3325 return new SwitchInst(Value
, Default
, NumCases
, InsertAtEnd
);
3328 /// Provide fast operand accessors
3329 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3331 // Accessor Methods for Switch stmt
3332 Value
*getCondition() const { return getOperand(0); }
3333 void setCondition(Value
*V
) { setOperand(0, V
); }
3335 BasicBlock
*getDefaultDest() const {
3336 return cast
<BasicBlock
>(getOperand(1));
3339 void setDefaultDest(BasicBlock
*DefaultCase
) {
3340 setOperand(1, reinterpret_cast<Value
*>(DefaultCase
));
3343 /// Return the number of 'cases' in this switch instruction, excluding the
3345 unsigned getNumCases() const {
3346 return getNumOperands()/2 - 1;
3349 /// Returns a read/write iterator that points to the first case in the
3351 CaseIt
case_begin() {
3352 return CaseIt(this, 0);
3355 /// Returns a read-only iterator that points to the first case in the
3357 ConstCaseIt
case_begin() const {
3358 return ConstCaseIt(this, 0);
3361 /// Returns a read/write iterator that points one past the last in the
3364 return CaseIt(this, getNumCases());
3367 /// Returns a read-only iterator that points one past the last in the
3369 ConstCaseIt
case_end() const {
3370 return ConstCaseIt(this, getNumCases());
3373 /// Iteration adapter for range-for loops.
3374 iterator_range
<CaseIt
> cases() {
3375 return make_range(case_begin(), case_end());
3378 /// Constant iteration adapter for range-for loops.
3379 iterator_range
<ConstCaseIt
> cases() const {
3380 return make_range(case_begin(), case_end());
3383 /// Returns an iterator that points to the default case.
3384 /// Note: this iterator allows to resolve successor only. Attempt
3385 /// to resolve case value causes an assertion.
3386 /// Also note, that increment and decrement also causes an assertion and
3387 /// makes iterator invalid.
3388 CaseIt
case_default() {
3389 return CaseIt(this, DefaultPseudoIndex
);
3391 ConstCaseIt
case_default() const {
3392 return ConstCaseIt(this, DefaultPseudoIndex
);
3395 /// Search all of the case values for the specified constant. If it is
3396 /// explicitly handled, return the case iterator of it, otherwise return
3397 /// default case iterator to indicate that it is handled by the default
3399 CaseIt
findCaseValue(const ConstantInt
*C
) {
3400 CaseIt I
= llvm::find_if(
3401 cases(), [C
](CaseHandle
&Case
) { return Case
.getCaseValue() == C
; });
3402 if (I
!= case_end())
3405 return case_default();
3407 ConstCaseIt
findCaseValue(const ConstantInt
*C
) const {
3408 ConstCaseIt I
= llvm::find_if(cases(), [C
](ConstCaseHandle
&Case
) {
3409 return Case
.getCaseValue() == C
;
3411 if (I
!= case_end())
3414 return case_default();
3417 /// Finds the unique case value for a given successor. Returns null if the
3418 /// successor is not found, not unique, or is the default case.
3419 ConstantInt
*findCaseDest(BasicBlock
*BB
) {
3420 if (BB
== getDefaultDest())
3423 ConstantInt
*CI
= nullptr;
3424 for (auto Case
: cases()) {
3425 if (Case
.getCaseSuccessor() != BB
)
3429 return nullptr; // Multiple cases lead to BB.
3431 CI
= Case
.getCaseValue();
3437 /// Add an entry to the switch instruction.
3439 /// This action invalidates case_end(). Old case_end() iterator will
3440 /// point to the added case.
3441 void addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
);
3443 /// This method removes the specified case and its successor from the switch
3444 /// instruction. Note that this operation may reorder the remaining cases at
3445 /// index idx and above.
3447 /// This action invalidates iterators for all cases following the one removed,
3448 /// including the case_end() iterator. It returns an iterator for the next
3450 CaseIt
removeCase(CaseIt I
);
3452 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3453 BasicBlock
*getSuccessor(unsigned idx
) const {
3454 assert(idx
< getNumSuccessors() &&"Successor idx out of range for switch!");
3455 return cast
<BasicBlock
>(getOperand(idx
*2+1));
3457 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3458 assert(idx
< getNumSuccessors() && "Successor # out of range for switch!");
3459 setOperand(idx
* 2 + 1, NewSucc
);
3462 // Methods for support type inquiry through isa, cast, and dyn_cast:
3463 static bool classof(const Instruction
*I
) {
3464 return I
->getOpcode() == Instruction::Switch
;
3466 static bool classof(const Value
*V
) {
3467 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3471 /// A wrapper class to simplify modification of SwitchInst cases along with
3472 /// their prof branch_weights metadata.
3473 class SwitchInstProfUpdateWrapper
{
3475 Optional
<SmallVector
<uint32_t, 8> > Weights
= None
;
3476 bool Changed
= false;
3479 static MDNode
*getProfBranchWeightsMD(const SwitchInst
&SI
);
3481 MDNode
*buildProfBranchWeightsMD();
3486 using CaseWeightOpt
= Optional
<uint32_t>;
3487 SwitchInst
*operator->() { return &SI
; }
3488 SwitchInst
&operator*() { return SI
; }
3489 operator SwitchInst
*() { return &SI
; }
3491 SwitchInstProfUpdateWrapper(SwitchInst
&SI
) : SI(SI
) { init(); }
3493 ~SwitchInstProfUpdateWrapper() {
3495 SI
.setMetadata(LLVMContext::MD_prof
, buildProfBranchWeightsMD());
3498 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3499 /// correspondent branch weight.
3500 SwitchInst::CaseIt
removeCase(SwitchInst::CaseIt I
);
3502 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3503 /// specified branch weight for the added case.
3504 void addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
, CaseWeightOpt W
);
3506 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3507 /// this object to not touch the underlying SwitchInst in destructor.
3508 SymbolTableList
<Instruction
>::iterator
eraseFromParent();
3510 void setSuccessorWeight(unsigned idx
, CaseWeightOpt W
);
3511 CaseWeightOpt
getSuccessorWeight(unsigned idx
);
3513 static CaseWeightOpt
getSuccessorWeight(const SwitchInst
&SI
, unsigned idx
);
3517 struct OperandTraits
<SwitchInst
> : public HungoffOperandTraits
<2> {
3520 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst
, Value
)
3522 //===----------------------------------------------------------------------===//
3523 // IndirectBrInst Class
3524 //===----------------------------------------------------------------------===//
3526 //===---------------------------------------------------------------------------
3527 /// Indirect Branch Instruction.
3529 class IndirectBrInst
: public Instruction
{
3530 unsigned ReservedSpace
;
3532 // Operand[0] = Address to jump to
3533 // Operand[n+1] = n-th destination
3534 IndirectBrInst(const IndirectBrInst
&IBI
);
3536 /// Create a new indirectbr instruction, specifying an
3537 /// Address to jump to. The number of expected destinations can be specified
3538 /// here to make memory allocation more efficient. This constructor can also
3539 /// autoinsert before another instruction.
3540 IndirectBrInst(Value
*Address
, unsigned NumDests
, Instruction
*InsertBefore
);
3542 /// Create a new indirectbr instruction, specifying an
3543 /// Address to jump to. The number of expected destinations can be specified
3544 /// here to make memory allocation more efficient. This constructor also
3545 /// autoinserts at the end of the specified BasicBlock.
3546 IndirectBrInst(Value
*Address
, unsigned NumDests
, BasicBlock
*InsertAtEnd
);
3548 // allocate space for exactly zero operands
3549 void *operator new(size_t s
) {
3550 return User::operator new(s
);
3553 void init(Value
*Address
, unsigned NumDests
);
3554 void growOperands();
3557 // Note: Instruction needs to be a friend here to call cloneImpl.
3558 friend class Instruction
;
3560 IndirectBrInst
*cloneImpl() const;
3563 /// Iterator type that casts an operand to a basic block.
3565 /// This only makes sense because the successors are stored as adjacent
3566 /// operands for indirectbr instructions.
3567 struct succ_op_iterator
3568 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3569 std::random_access_iterator_tag
, BasicBlock
*,
3570 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3571 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3573 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3574 BasicBlock
*operator->() const { return operator*(); }
3577 /// The const version of `succ_op_iterator`.
3578 struct const_succ_op_iterator
3579 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3580 std::random_access_iterator_tag
,
3581 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3582 const BasicBlock
*> {
3583 explicit const_succ_op_iterator(const_value_op_iterator I
)
3584 : iterator_adaptor_base(I
) {}
3586 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3587 const BasicBlock
*operator->() const { return operator*(); }
3590 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3591 Instruction
*InsertBefore
= nullptr) {
3592 return new IndirectBrInst(Address
, NumDests
, InsertBefore
);
3595 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3596 BasicBlock
*InsertAtEnd
) {
3597 return new IndirectBrInst(Address
, NumDests
, InsertAtEnd
);
3600 /// Provide fast operand accessors.
3601 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3603 // Accessor Methods for IndirectBrInst instruction.
3604 Value
*getAddress() { return getOperand(0); }
3605 const Value
*getAddress() const { return getOperand(0); }
3606 void setAddress(Value
*V
) { setOperand(0, V
); }
3608 /// return the number of possible destinations in this
3609 /// indirectbr instruction.
3610 unsigned getNumDestinations() const { return getNumOperands()-1; }
3612 /// Return the specified destination.
3613 BasicBlock
*getDestination(unsigned i
) { return getSuccessor(i
); }
3614 const BasicBlock
*getDestination(unsigned i
) const { return getSuccessor(i
); }
3616 /// Add a destination.
3618 void addDestination(BasicBlock
*Dest
);
3620 /// This method removes the specified successor from the
3621 /// indirectbr instruction.
3622 void removeDestination(unsigned i
);
3624 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3625 BasicBlock
*getSuccessor(unsigned i
) const {
3626 return cast
<BasicBlock
>(getOperand(i
+1));
3628 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3629 setOperand(i
+ 1, NewSucc
);
3632 iterator_range
<succ_op_iterator
> successors() {
3633 return make_range(succ_op_iterator(std::next(value_op_begin())),
3634 succ_op_iterator(value_op_end()));
3637 iterator_range
<const_succ_op_iterator
> successors() const {
3638 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3639 const_succ_op_iterator(value_op_end()));
3642 // Methods for support type inquiry through isa, cast, and dyn_cast:
3643 static bool classof(const Instruction
*I
) {
3644 return I
->getOpcode() == Instruction::IndirectBr
;
3646 static bool classof(const Value
*V
) {
3647 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3652 struct OperandTraits
<IndirectBrInst
> : public HungoffOperandTraits
<1> {
3655 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst
, Value
)
3657 //===----------------------------------------------------------------------===//
3659 //===----------------------------------------------------------------------===//
3661 /// Invoke instruction. The SubclassData field is used to hold the
3662 /// calling convention of the call.
3664 class InvokeInst
: public CallBase
{
3665 /// The number of operands for this call beyond the called function,
3666 /// arguments, and operand bundles.
3667 static constexpr int NumExtraOperands
= 2;
3669 /// The index from the end of the operand array to the normal destination.
3670 static constexpr int NormalDestOpEndIdx
= -3;
3672 /// The index from the end of the operand array to the unwind destination.
3673 static constexpr int UnwindDestOpEndIdx
= -2;
3675 InvokeInst(const InvokeInst
&BI
);
3677 /// Construct an InvokeInst given a range of arguments.
3679 /// Construct an InvokeInst from a range of arguments
3680 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3681 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3682 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3683 const Twine
&NameStr
, Instruction
*InsertBefore
);
3685 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3686 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3687 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3688 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3690 void init(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3691 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3692 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3694 /// Compute the number of operands to allocate.
3695 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
3696 // We need one operand for the called function, plus our extra operands and
3697 // the input operand counts provided.
3698 return 1 + NumExtraOperands
+ NumArgs
+ NumBundleInputs
;
3702 // Note: Instruction needs to be a friend here to call cloneImpl.
3703 friend class Instruction
;
3705 InvokeInst
*cloneImpl() const;
3708 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3709 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3710 const Twine
&NameStr
,
3711 Instruction
*InsertBefore
= nullptr) {
3712 int NumOperands
= ComputeNumOperands(Args
.size());
3713 return new (NumOperands
)
3714 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3715 NameStr
, InsertBefore
);
3718 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3719 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3720 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3721 const Twine
&NameStr
= "",
3722 Instruction
*InsertBefore
= nullptr) {
3724 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3725 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3727 return new (NumOperands
, DescriptorBytes
)
3728 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3729 NameStr
, InsertBefore
);
3732 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3733 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3734 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3735 int NumOperands
= ComputeNumOperands(Args
.size());
3736 return new (NumOperands
)
3737 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3738 NameStr
, InsertAtEnd
);
3741 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3742 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3743 ArrayRef
<OperandBundleDef
> Bundles
,
3744 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3746 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3747 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3749 return new (NumOperands
, DescriptorBytes
)
3750 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3751 NameStr
, InsertAtEnd
);
3754 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3755 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3756 const Twine
&NameStr
,
3757 Instruction
*InsertBefore
= nullptr) {
3758 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3759 IfException
, Args
, None
, NameStr
, InsertBefore
);
3762 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3763 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3764 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3765 const Twine
&NameStr
= "",
3766 Instruction
*InsertBefore
= nullptr) {
3767 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3768 IfException
, Args
, Bundles
, NameStr
, InsertBefore
);
3771 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3772 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3773 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3774 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3775 IfException
, Args
, NameStr
, InsertAtEnd
);
3778 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3779 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3780 ArrayRef
<OperandBundleDef
> Bundles
,
3781 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3782 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3783 IfException
, Args
, Bundles
, NameStr
, InsertAtEnd
);
3786 // Deprecated [opaque pointer types]
3787 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3788 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3789 const Twine
&NameStr
,
3790 Instruction
*InsertBefore
= nullptr) {
3791 return Create(cast
<FunctionType
>(
3792 cast
<PointerType
>(Func
->getType())->getElementType()),
3793 Func
, IfNormal
, IfException
, Args
, None
, NameStr
,
3797 // Deprecated [opaque pointer types]
3798 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3799 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3800 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3801 const Twine
&NameStr
= "",
3802 Instruction
*InsertBefore
= nullptr) {
3803 return Create(cast
<FunctionType
>(
3804 cast
<PointerType
>(Func
->getType())->getElementType()),
3805 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3809 // Deprecated [opaque pointer types]
3810 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3811 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3812 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3813 return Create(cast
<FunctionType
>(
3814 cast
<PointerType
>(Func
->getType())->getElementType()),
3815 Func
, IfNormal
, IfException
, Args
, NameStr
, InsertAtEnd
);
3818 // Deprecated [opaque pointer types]
3819 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3820 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3821 ArrayRef
<OperandBundleDef
> Bundles
,
3822 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3823 return Create(cast
<FunctionType
>(
3824 cast
<PointerType
>(Func
->getType())->getElementType()),
3825 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3829 /// Create a clone of \p II with a different set of operand bundles and
3830 /// insert it before \p InsertPt.
3832 /// The returned invoke instruction is identical to \p II in every way except
3833 /// that the operand bundles for the new instruction are set to the operand
3834 /// bundles in \p Bundles.
3835 static InvokeInst
*Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> Bundles
,
3836 Instruction
*InsertPt
= nullptr);
3838 /// Determine if the call should not perform indirect branch tracking.
3839 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck
); }
3841 /// Determine if the call cannot unwind.
3842 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind
); }
3843 void setDoesNotThrow() {
3844 addAttribute(AttributeList::FunctionIndex
, Attribute::NoUnwind
);
3847 // get*Dest - Return the destination basic blocks...
3848 BasicBlock
*getNormalDest() const {
3849 return cast
<BasicBlock
>(Op
<NormalDestOpEndIdx
>());
3851 BasicBlock
*getUnwindDest() const {
3852 return cast
<BasicBlock
>(Op
<UnwindDestOpEndIdx
>());
3854 void setNormalDest(BasicBlock
*B
) {
3855 Op
<NormalDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3857 void setUnwindDest(BasicBlock
*B
) {
3858 Op
<UnwindDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3861 /// Get the landingpad instruction from the landing pad
3862 /// block (the unwind destination).
3863 LandingPadInst
*getLandingPadInst() const;
3865 BasicBlock
*getSuccessor(unsigned i
) const {
3866 assert(i
< 2 && "Successor # out of range for invoke!");
3867 return i
== 0 ? getNormalDest() : getUnwindDest();
3870 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3871 assert(i
< 2 && "Successor # out of range for invoke!");
3873 setNormalDest(NewSucc
);
3875 setUnwindDest(NewSucc
);
3878 unsigned getNumSuccessors() const { return 2; }
3880 // Methods for support type inquiry through isa, cast, and dyn_cast:
3881 static bool classof(const Instruction
*I
) {
3882 return (I
->getOpcode() == Instruction::Invoke
);
3884 static bool classof(const Value
*V
) {
3885 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3890 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3891 // method so that subclasses cannot accidentally use it.
3892 void setInstructionSubclassData(unsigned short D
) {
3893 Instruction::setInstructionSubclassData(D
);
3897 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3898 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3899 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3900 const Twine
&NameStr
, Instruction
*InsertBefore
)
3901 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3902 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3904 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3907 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3908 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3909 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3910 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
3911 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3912 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3914 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3917 //===----------------------------------------------------------------------===//
3919 //===----------------------------------------------------------------------===//
3921 /// CallBr instruction, tracking function calls that may not return control but
3922 /// instead transfer it to a third location. The SubclassData field is used to
3923 /// hold the calling convention of the call.
3925 class CallBrInst
: public CallBase
{
3927 unsigned NumIndirectDests
;
3929 CallBrInst(const CallBrInst
&BI
);
3931 /// Construct a CallBrInst given a range of arguments.
3933 /// Construct a CallBrInst from a range of arguments
3934 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3935 ArrayRef
<BasicBlock
*> IndirectDests
,
3936 ArrayRef
<Value
*> Args
,
3937 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3938 const Twine
&NameStr
, Instruction
*InsertBefore
);
3940 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3941 ArrayRef
<BasicBlock
*> IndirectDests
,
3942 ArrayRef
<Value
*> Args
,
3943 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3944 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3946 void init(FunctionType
*FTy
, Value
*Func
, BasicBlock
*DefaultDest
,
3947 ArrayRef
<BasicBlock
*> IndirectDests
, ArrayRef
<Value
*> Args
,
3948 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3950 /// Should the Indirect Destinations change, scan + update the Arg list.
3951 void updateArgBlockAddresses(unsigned i
, BasicBlock
*B
);
3953 /// Compute the number of operands to allocate.
3954 static int ComputeNumOperands(int NumArgs
, int NumIndirectDests
,
3955 int NumBundleInputs
= 0) {
3956 // We need one operand for the called function, plus our extra operands and
3957 // the input operand counts provided.
3958 return 2 + NumIndirectDests
+ NumArgs
+ NumBundleInputs
;
3962 // Note: Instruction needs to be a friend here to call cloneImpl.
3963 friend class Instruction
;
3965 CallBrInst
*cloneImpl() const;
3968 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3969 BasicBlock
*DefaultDest
,
3970 ArrayRef
<BasicBlock
*> IndirectDests
,
3971 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3972 Instruction
*InsertBefore
= nullptr) {
3973 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
3974 return new (NumOperands
)
3975 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
3976 NumOperands
, NameStr
, InsertBefore
);
3979 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3980 BasicBlock
*DefaultDest
,
3981 ArrayRef
<BasicBlock
*> IndirectDests
,
3982 ArrayRef
<Value
*> Args
,
3983 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3984 const Twine
&NameStr
= "",
3985 Instruction
*InsertBefore
= nullptr) {
3986 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
3987 CountBundleInputs(Bundles
));
3988 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3990 return new (NumOperands
, DescriptorBytes
)
3991 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
3992 NumOperands
, NameStr
, InsertBefore
);
3995 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3996 BasicBlock
*DefaultDest
,
3997 ArrayRef
<BasicBlock
*> IndirectDests
,
3998 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3999 BasicBlock
*InsertAtEnd
) {
4000 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
4001 return new (NumOperands
)
4002 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
4003 NumOperands
, NameStr
, InsertAtEnd
);
4006 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
4007 BasicBlock
*DefaultDest
,
4008 ArrayRef
<BasicBlock
*> IndirectDests
,
4009 ArrayRef
<Value
*> Args
,
4010 ArrayRef
<OperandBundleDef
> Bundles
,
4011 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4012 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
4013 CountBundleInputs(Bundles
));
4014 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
4016 return new (NumOperands
, DescriptorBytes
)
4017 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
4018 NumOperands
, NameStr
, InsertAtEnd
);
4021 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4022 ArrayRef
<BasicBlock
*> IndirectDests
,
4023 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
4024 Instruction
*InsertBefore
= nullptr) {
4025 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4026 IndirectDests
, Args
, NameStr
, InsertBefore
);
4029 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4030 ArrayRef
<BasicBlock
*> IndirectDests
,
4031 ArrayRef
<Value
*> Args
,
4032 ArrayRef
<OperandBundleDef
> Bundles
= None
,
4033 const Twine
&NameStr
= "",
4034 Instruction
*InsertBefore
= nullptr) {
4035 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4036 IndirectDests
, Args
, Bundles
, NameStr
, InsertBefore
);
4039 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4040 ArrayRef
<BasicBlock
*> IndirectDests
,
4041 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
4042 BasicBlock
*InsertAtEnd
) {
4043 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4044 IndirectDests
, Args
, NameStr
, InsertAtEnd
);
4047 static CallBrInst
*Create(FunctionCallee Func
,
4048 BasicBlock
*DefaultDest
,
4049 ArrayRef
<BasicBlock
*> IndirectDests
,
4050 ArrayRef
<Value
*> Args
,
4051 ArrayRef
<OperandBundleDef
> Bundles
,
4052 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4053 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4054 IndirectDests
, Args
, Bundles
, NameStr
, InsertAtEnd
);
4057 /// Create a clone of \p CBI with a different set of operand bundles and
4058 /// insert it before \p InsertPt.
4060 /// The returned callbr instruction is identical to \p CBI in every way
4061 /// except that the operand bundles for the new instruction are set to the
4062 /// operand bundles in \p Bundles.
4063 static CallBrInst
*Create(CallBrInst
*CBI
,
4064 ArrayRef
<OperandBundleDef
> Bundles
,
4065 Instruction
*InsertPt
= nullptr);
4067 /// Return the number of callbr indirect dest labels.
4069 unsigned getNumIndirectDests() const { return NumIndirectDests
; }
4071 /// getIndirectDestLabel - Return the i-th indirect dest label.
4073 Value
*getIndirectDestLabel(unsigned i
) const {
4074 assert(i
< getNumIndirectDests() && "Out of bounds!");
4075 return getOperand(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4079 Value
*getIndirectDestLabelUse(unsigned i
) const {
4080 assert(i
< getNumIndirectDests() && "Out of bounds!");
4081 return getOperandUse(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4085 // Return the destination basic blocks...
4086 BasicBlock
*getDefaultDest() const {
4087 return cast
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() - 1));
4089 BasicBlock
*getIndirectDest(unsigned i
) const {
4090 return cast_or_null
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() + i
));
4092 SmallVector
<BasicBlock
*, 16> getIndirectDests() const {
4093 SmallVector
<BasicBlock
*, 16> IndirectDests
;
4094 for (unsigned i
= 0, e
= getNumIndirectDests(); i
< e
; ++i
)
4095 IndirectDests
.push_back(getIndirectDest(i
));
4096 return IndirectDests
;
4098 void setDefaultDest(BasicBlock
*B
) {
4099 *(&Op
<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value
*>(B
);
4101 void setIndirectDest(unsigned i
, BasicBlock
*B
) {
4102 updateArgBlockAddresses(i
, B
);
4103 *(&Op
<-1>() - getNumIndirectDests() + i
) = reinterpret_cast<Value
*>(B
);
4106 BasicBlock
*getSuccessor(unsigned i
) const {
4107 assert(i
< getNumSuccessors() + 1 &&
4108 "Successor # out of range for callbr!");
4109 return i
== 0 ? getDefaultDest() : getIndirectDest(i
- 1);
4112 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
4113 assert(i
< getNumIndirectDests() + 1 &&
4114 "Successor # out of range for callbr!");
4115 return i
== 0 ? setDefaultDest(NewSucc
) : setIndirectDest(i
- 1, NewSucc
);
4118 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4120 // Methods for support type inquiry through isa, cast, and dyn_cast:
4121 static bool classof(const Instruction
*I
) {
4122 return (I
->getOpcode() == Instruction::CallBr
);
4124 static bool classof(const Value
*V
) {
4125 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4130 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4131 // method so that subclasses cannot accidentally use it.
4132 void setInstructionSubclassData(unsigned short D
) {
4133 Instruction::setInstructionSubclassData(D
);
4137 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4138 ArrayRef
<BasicBlock
*> IndirectDests
,
4139 ArrayRef
<Value
*> Args
,
4140 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4141 const Twine
&NameStr
, Instruction
*InsertBefore
)
4142 : CallBase(Ty
->getReturnType(), Instruction::CallBr
,
4143 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4145 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4148 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4149 ArrayRef
<BasicBlock
*> IndirectDests
,
4150 ArrayRef
<Value
*> Args
,
4151 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4152 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
4155 cast
<PointerType
>(Func
->getType())->getElementType())
4157 Instruction::CallBr
,
4158 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4160 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4163 //===----------------------------------------------------------------------===//
4165 //===----------------------------------------------------------------------===//
4167 //===---------------------------------------------------------------------------
4168 /// Resume the propagation of an exception.
4170 class ResumeInst
: public Instruction
{
4171 ResumeInst(const ResumeInst
&RI
);
4173 explicit ResumeInst(Value
*Exn
, Instruction
*InsertBefore
=nullptr);
4174 ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
);
4177 // Note: Instruction needs to be a friend here to call cloneImpl.
4178 friend class Instruction
;
4180 ResumeInst
*cloneImpl() const;
4183 static ResumeInst
*Create(Value
*Exn
, Instruction
*InsertBefore
= nullptr) {
4184 return new(1) ResumeInst(Exn
, InsertBefore
);
4187 static ResumeInst
*Create(Value
*Exn
, BasicBlock
*InsertAtEnd
) {
4188 return new(1) ResumeInst(Exn
, InsertAtEnd
);
4191 /// Provide fast operand accessors
4192 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4194 /// Convenience accessor.
4195 Value
*getValue() const { return Op
<0>(); }
4197 unsigned getNumSuccessors() const { return 0; }
4199 // Methods for support type inquiry through isa, cast, and dyn_cast:
4200 static bool classof(const Instruction
*I
) {
4201 return I
->getOpcode() == Instruction::Resume
;
4203 static bool classof(const Value
*V
) {
4204 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4208 BasicBlock
*getSuccessor(unsigned idx
) const {
4209 llvm_unreachable("ResumeInst has no successors!");
4212 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
4213 llvm_unreachable("ResumeInst has no successors!");
4218 struct OperandTraits
<ResumeInst
> :
4219 public FixedNumOperandTraits
<ResumeInst
, 1> {
4222 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst
, Value
)
4224 //===----------------------------------------------------------------------===//
4225 // CatchSwitchInst Class
4226 //===----------------------------------------------------------------------===//
4227 class CatchSwitchInst
: public Instruction
{
4228 /// The number of operands actually allocated. NumOperands is
4229 /// the number actually in use.
4230 unsigned ReservedSpace
;
4232 // Operand[0] = Outer scope
4233 // Operand[1] = Unwind block destination
4234 // Operand[n] = BasicBlock to go to on match
4235 CatchSwitchInst(const CatchSwitchInst
&CSI
);
4237 /// Create a new switch instruction, specifying a
4238 /// default destination. The number of additional handlers can be specified
4239 /// here to make memory allocation more efficient.
4240 /// This constructor can also autoinsert before another instruction.
4241 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4242 unsigned NumHandlers
, const Twine
&NameStr
,
4243 Instruction
*InsertBefore
);
4245 /// Create a new switch instruction, specifying a
4246 /// default destination. The number of additional handlers can be specified
4247 /// here to make memory allocation more efficient.
4248 /// This constructor also autoinserts at the end of the specified BasicBlock.
4249 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4250 unsigned NumHandlers
, const Twine
&NameStr
,
4251 BasicBlock
*InsertAtEnd
);
4253 // allocate space for exactly zero operands
4254 void *operator new(size_t s
) { return User::operator new(s
); }
4256 void init(Value
*ParentPad
, BasicBlock
*UnwindDest
, unsigned NumReserved
);
4257 void growOperands(unsigned Size
);
4260 // Note: Instruction needs to be a friend here to call cloneImpl.
4261 friend class Instruction
;
4263 CatchSwitchInst
*cloneImpl() const;
4266 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4267 unsigned NumHandlers
,
4268 const Twine
&NameStr
= "",
4269 Instruction
*InsertBefore
= nullptr) {
4270 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4274 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4275 unsigned NumHandlers
, const Twine
&NameStr
,
4276 BasicBlock
*InsertAtEnd
) {
4277 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4281 /// Provide fast operand accessors
4282 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4284 // Accessor Methods for CatchSwitch stmt
4285 Value
*getParentPad() const { return getOperand(0); }
4286 void setParentPad(Value
*ParentPad
) { setOperand(0, ParentPad
); }
4288 // Accessor Methods for CatchSwitch stmt
4289 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4290 bool unwindsToCaller() const { return !hasUnwindDest(); }
4291 BasicBlock
*getUnwindDest() const {
4292 if (hasUnwindDest())
4293 return cast
<BasicBlock
>(getOperand(1));
4296 void setUnwindDest(BasicBlock
*UnwindDest
) {
4298 assert(hasUnwindDest());
4299 setOperand(1, UnwindDest
);
4302 /// return the number of 'handlers' in this catchswitch
4303 /// instruction, except the default handler
4304 unsigned getNumHandlers() const {
4305 if (hasUnwindDest())
4306 return getNumOperands() - 2;
4307 return getNumOperands() - 1;
4311 static BasicBlock
*handler_helper(Value
*V
) { return cast
<BasicBlock
>(V
); }
4312 static const BasicBlock
*handler_helper(const Value
*V
) {
4313 return cast
<BasicBlock
>(V
);
4317 using DerefFnTy
= BasicBlock
*(*)(Value
*);
4318 using handler_iterator
= mapped_iterator
<op_iterator
, DerefFnTy
>;
4319 using handler_range
= iterator_range
<handler_iterator
>;
4320 using ConstDerefFnTy
= const BasicBlock
*(*)(const Value
*);
4321 using const_handler_iterator
=
4322 mapped_iterator
<const_op_iterator
, ConstDerefFnTy
>;
4323 using const_handler_range
= iterator_range
<const_handler_iterator
>;
4325 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4326 handler_iterator
handler_begin() {
4327 op_iterator It
= op_begin() + 1;
4328 if (hasUnwindDest())
4330 return handler_iterator(It
, DerefFnTy(handler_helper
));
4333 /// Returns an iterator that points to the first handler in the
4334 /// CatchSwitchInst.
4335 const_handler_iterator
handler_begin() const {
4336 const_op_iterator It
= op_begin() + 1;
4337 if (hasUnwindDest())
4339 return const_handler_iterator(It
, ConstDerefFnTy(handler_helper
));
4342 /// Returns a read-only iterator that points one past the last
4343 /// handler in the CatchSwitchInst.
4344 handler_iterator
handler_end() {
4345 return handler_iterator(op_end(), DerefFnTy(handler_helper
));
4348 /// Returns an iterator that points one past the last handler in the
4349 /// CatchSwitchInst.
4350 const_handler_iterator
handler_end() const {
4351 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper
));
4354 /// iteration adapter for range-for loops.
4355 handler_range
handlers() {
4356 return make_range(handler_begin(), handler_end());
4359 /// iteration adapter for range-for loops.
4360 const_handler_range
handlers() const {
4361 return make_range(handler_begin(), handler_end());
4364 /// Add an entry to the switch instruction...
4366 /// This action invalidates handler_end(). Old handler_end() iterator will
4367 /// point to the added handler.
4368 void addHandler(BasicBlock
*Dest
);
4370 void removeHandler(handler_iterator HI
);
4372 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4373 BasicBlock
*getSuccessor(unsigned Idx
) const {
4374 assert(Idx
< getNumSuccessors() &&
4375 "Successor # out of range for catchswitch!");
4376 return cast
<BasicBlock
>(getOperand(Idx
+ 1));
4378 void setSuccessor(unsigned Idx
, BasicBlock
*NewSucc
) {
4379 assert(Idx
< getNumSuccessors() &&
4380 "Successor # out of range for catchswitch!");
4381 setOperand(Idx
+ 1, NewSucc
);
4384 // Methods for support type inquiry through isa, cast, and dyn_cast:
4385 static bool classof(const Instruction
*I
) {
4386 return I
->getOpcode() == Instruction::CatchSwitch
;
4388 static bool classof(const Value
*V
) {
4389 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4394 struct OperandTraits
<CatchSwitchInst
> : public HungoffOperandTraits
<2> {};
4396 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst
, Value
)
4398 //===----------------------------------------------------------------------===//
4399 // CleanupPadInst Class
4400 //===----------------------------------------------------------------------===//
4401 class CleanupPadInst
: public FuncletPadInst
{
4403 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4404 unsigned Values
, const Twine
&NameStr
,
4405 Instruction
*InsertBefore
)
4406 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4407 NameStr
, InsertBefore
) {}
4408 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4409 unsigned Values
, const Twine
&NameStr
,
4410 BasicBlock
*InsertAtEnd
)
4411 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4412 NameStr
, InsertAtEnd
) {}
4415 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
= None
,
4416 const Twine
&NameStr
= "",
4417 Instruction
*InsertBefore
= nullptr) {
4418 unsigned Values
= 1 + Args
.size();
4420 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertBefore
);
4423 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4424 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4425 unsigned Values
= 1 + Args
.size();
4427 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertAtEnd
);
4430 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4431 static bool classof(const Instruction
*I
) {
4432 return I
->getOpcode() == Instruction::CleanupPad
;
4434 static bool classof(const Value
*V
) {
4435 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4439 //===----------------------------------------------------------------------===//
4440 // CatchPadInst Class
4441 //===----------------------------------------------------------------------===//
4442 class CatchPadInst
: public FuncletPadInst
{
4444 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4445 unsigned Values
, const Twine
&NameStr
,
4446 Instruction
*InsertBefore
)
4447 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4448 NameStr
, InsertBefore
) {}
4449 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4450 unsigned Values
, const Twine
&NameStr
,
4451 BasicBlock
*InsertAtEnd
)
4452 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4453 NameStr
, InsertAtEnd
) {}
4456 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4457 const Twine
&NameStr
= "",
4458 Instruction
*InsertBefore
= nullptr) {
4459 unsigned Values
= 1 + Args
.size();
4461 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertBefore
);
4464 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4465 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4466 unsigned Values
= 1 + Args
.size();
4468 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertAtEnd
);
4471 /// Convenience accessors
4472 CatchSwitchInst
*getCatchSwitch() const {
4473 return cast
<CatchSwitchInst
>(Op
<-1>());
4475 void setCatchSwitch(Value
*CatchSwitch
) {
4476 assert(CatchSwitch
);
4477 Op
<-1>() = CatchSwitch
;
4480 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4481 static bool classof(const Instruction
*I
) {
4482 return I
->getOpcode() == Instruction::CatchPad
;
4484 static bool classof(const Value
*V
) {
4485 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4489 //===----------------------------------------------------------------------===//
4490 // CatchReturnInst Class
4491 //===----------------------------------------------------------------------===//
4493 class CatchReturnInst
: public Instruction
{
4494 CatchReturnInst(const CatchReturnInst
&RI
);
4495 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, Instruction
*InsertBefore
);
4496 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, BasicBlock
*InsertAtEnd
);
4498 void init(Value
*CatchPad
, BasicBlock
*BB
);
4501 // Note: Instruction needs to be a friend here to call cloneImpl.
4502 friend class Instruction
;
4504 CatchReturnInst
*cloneImpl() const;
4507 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4508 Instruction
*InsertBefore
= nullptr) {
4511 return new (2) CatchReturnInst(CatchPad
, BB
, InsertBefore
);
4514 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4515 BasicBlock
*InsertAtEnd
) {
4518 return new (2) CatchReturnInst(CatchPad
, BB
, InsertAtEnd
);
4521 /// Provide fast operand accessors
4522 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4524 /// Convenience accessors.
4525 CatchPadInst
*getCatchPad() const { return cast
<CatchPadInst
>(Op
<0>()); }
4526 void setCatchPad(CatchPadInst
*CatchPad
) {
4531 BasicBlock
*getSuccessor() const { return cast
<BasicBlock
>(Op
<1>()); }
4532 void setSuccessor(BasicBlock
*NewSucc
) {
4536 unsigned getNumSuccessors() const { return 1; }
4538 /// Get the parentPad of this catchret's catchpad's catchswitch.
4539 /// The successor block is implicitly a member of this funclet.
4540 Value
*getCatchSwitchParentPad() const {
4541 return getCatchPad()->getCatchSwitch()->getParentPad();
4544 // Methods for support type inquiry through isa, cast, and dyn_cast:
4545 static bool classof(const Instruction
*I
) {
4546 return (I
->getOpcode() == Instruction::CatchRet
);
4548 static bool classof(const Value
*V
) {
4549 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4553 BasicBlock
*getSuccessor(unsigned Idx
) const {
4554 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4555 return getSuccessor();
4558 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4559 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4565 struct OperandTraits
<CatchReturnInst
>
4566 : public FixedNumOperandTraits
<CatchReturnInst
, 2> {};
4568 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst
, Value
)
4570 //===----------------------------------------------------------------------===//
4571 // CleanupReturnInst Class
4572 //===----------------------------------------------------------------------===//
4574 class CleanupReturnInst
: public Instruction
{
4576 CleanupReturnInst(const CleanupReturnInst
&RI
);
4577 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4578 Instruction
*InsertBefore
= nullptr);
4579 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4580 BasicBlock
*InsertAtEnd
);
4582 void init(Value
*CleanupPad
, BasicBlock
*UnwindBB
);
4585 // Note: Instruction needs to be a friend here to call cloneImpl.
4586 friend class Instruction
;
4588 CleanupReturnInst
*cloneImpl() const;
4591 static CleanupReturnInst
*Create(Value
*CleanupPad
,
4592 BasicBlock
*UnwindBB
= nullptr,
4593 Instruction
*InsertBefore
= nullptr) {
4595 unsigned Values
= 1;
4599 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertBefore
);
4602 static CleanupReturnInst
*Create(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
4603 BasicBlock
*InsertAtEnd
) {
4605 unsigned Values
= 1;
4609 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertAtEnd
);
4612 /// Provide fast operand accessors
4613 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4615 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4616 bool unwindsToCaller() const { return !hasUnwindDest(); }
4618 /// Convenience accessor.
4619 CleanupPadInst
*getCleanupPad() const {
4620 return cast
<CleanupPadInst
>(Op
<0>());
4622 void setCleanupPad(CleanupPadInst
*CleanupPad
) {
4624 Op
<0>() = CleanupPad
;
4627 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4629 BasicBlock
*getUnwindDest() const {
4630 return hasUnwindDest() ? cast
<BasicBlock
>(Op
<1>()) : nullptr;
4632 void setUnwindDest(BasicBlock
*NewDest
) {
4634 assert(hasUnwindDest());
4638 // Methods for support type inquiry through isa, cast, and dyn_cast:
4639 static bool classof(const Instruction
*I
) {
4640 return (I
->getOpcode() == Instruction::CleanupRet
);
4642 static bool classof(const Value
*V
) {
4643 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4647 BasicBlock
*getSuccessor(unsigned Idx
) const {
4649 return getUnwindDest();
4652 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4657 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4658 // method so that subclasses cannot accidentally use it.
4659 void setInstructionSubclassData(unsigned short D
) {
4660 Instruction::setInstructionSubclassData(D
);
4665 struct OperandTraits
<CleanupReturnInst
>
4666 : public VariadicOperandTraits
<CleanupReturnInst
, /*MINARITY=*/1> {};
4668 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst
, Value
)
4670 //===----------------------------------------------------------------------===//
4671 // UnreachableInst Class
4672 //===----------------------------------------------------------------------===//
4674 //===---------------------------------------------------------------------------
4675 /// This function has undefined behavior. In particular, the
4676 /// presence of this instruction indicates some higher level knowledge that the
4677 /// end of the block cannot be reached.
4679 class UnreachableInst
: public Instruction
{
4681 // Note: Instruction needs to be a friend here to call cloneImpl.
4682 friend class Instruction
;
4684 UnreachableInst
*cloneImpl() const;
4687 explicit UnreachableInst(LLVMContext
&C
, Instruction
*InsertBefore
= nullptr);
4688 explicit UnreachableInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
4690 // allocate space for exactly zero operands
4691 void *operator new(size_t s
) {
4692 return User::operator new(s
, 0);
4695 unsigned getNumSuccessors() const { return 0; }
4697 // Methods for support type inquiry through isa, cast, and dyn_cast:
4698 static bool classof(const Instruction
*I
) {
4699 return I
->getOpcode() == Instruction::Unreachable
;
4701 static bool classof(const Value
*V
) {
4702 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4706 BasicBlock
*getSuccessor(unsigned idx
) const {
4707 llvm_unreachable("UnreachableInst has no successors!");
4710 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
4711 llvm_unreachable("UnreachableInst has no successors!");
4715 //===----------------------------------------------------------------------===//
4717 //===----------------------------------------------------------------------===//
4719 /// This class represents a truncation of integer types.
4720 class TruncInst
: public CastInst
{
4722 // Note: Instruction needs to be a friend here to call cloneImpl.
4723 friend class Instruction
;
4725 /// Clone an identical TruncInst
4726 TruncInst
*cloneImpl() const;
4729 /// Constructor with insert-before-instruction semantics
4731 Value
*S
, ///< The value to be truncated
4732 Type
*Ty
, ///< The (smaller) type to truncate to
4733 const Twine
&NameStr
= "", ///< A name for the new instruction
4734 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4737 /// Constructor with insert-at-end-of-block semantics
4739 Value
*S
, ///< The value to be truncated
4740 Type
*Ty
, ///< The (smaller) type to truncate to
4741 const Twine
&NameStr
, ///< A name for the new instruction
4742 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4745 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4746 static bool classof(const Instruction
*I
) {
4747 return I
->getOpcode() == Trunc
;
4749 static bool classof(const Value
*V
) {
4750 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4754 //===----------------------------------------------------------------------===//
4756 //===----------------------------------------------------------------------===//
4758 /// This class represents zero extension of integer types.
4759 class ZExtInst
: public CastInst
{
4761 // Note: Instruction needs to be a friend here to call cloneImpl.
4762 friend class Instruction
;
4764 /// Clone an identical ZExtInst
4765 ZExtInst
*cloneImpl() const;
4768 /// Constructor with insert-before-instruction semantics
4770 Value
*S
, ///< The value to be zero extended
4771 Type
*Ty
, ///< The type to zero extend to
4772 const Twine
&NameStr
= "", ///< A name for the new instruction
4773 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4776 /// Constructor with insert-at-end semantics.
4778 Value
*S
, ///< The value to be zero extended
4779 Type
*Ty
, ///< The type to zero extend to
4780 const Twine
&NameStr
, ///< A name for the new instruction
4781 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4784 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4785 static bool classof(const Instruction
*I
) {
4786 return I
->getOpcode() == ZExt
;
4788 static bool classof(const Value
*V
) {
4789 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4793 //===----------------------------------------------------------------------===//
4795 //===----------------------------------------------------------------------===//
4797 /// This class represents a sign extension of integer types.
4798 class SExtInst
: public CastInst
{
4800 // Note: Instruction needs to be a friend here to call cloneImpl.
4801 friend class Instruction
;
4803 /// Clone an identical SExtInst
4804 SExtInst
*cloneImpl() const;
4807 /// Constructor with insert-before-instruction semantics
4809 Value
*S
, ///< The value to be sign extended
4810 Type
*Ty
, ///< The type to sign extend to
4811 const Twine
&NameStr
= "", ///< A name for the new instruction
4812 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4815 /// Constructor with insert-at-end-of-block semantics
4817 Value
*S
, ///< The value to be sign extended
4818 Type
*Ty
, ///< The type to sign extend to
4819 const Twine
&NameStr
, ///< A name for the new instruction
4820 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4823 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4824 static bool classof(const Instruction
*I
) {
4825 return I
->getOpcode() == SExt
;
4827 static bool classof(const Value
*V
) {
4828 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4832 //===----------------------------------------------------------------------===//
4833 // FPTruncInst Class
4834 //===----------------------------------------------------------------------===//
4836 /// This class represents a truncation of floating point types.
4837 class FPTruncInst
: public CastInst
{
4839 // Note: Instruction needs to be a friend here to call cloneImpl.
4840 friend class Instruction
;
4842 /// Clone an identical FPTruncInst
4843 FPTruncInst
*cloneImpl() const;
4846 /// Constructor with insert-before-instruction semantics
4848 Value
*S
, ///< The value to be truncated
4849 Type
*Ty
, ///< The type to truncate to
4850 const Twine
&NameStr
= "", ///< A name for the new instruction
4851 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4854 /// Constructor with insert-before-instruction semantics
4856 Value
*S
, ///< The value to be truncated
4857 Type
*Ty
, ///< The type to truncate to
4858 const Twine
&NameStr
, ///< A name for the new instruction
4859 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4862 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4863 static bool classof(const Instruction
*I
) {
4864 return I
->getOpcode() == FPTrunc
;
4866 static bool classof(const Value
*V
) {
4867 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4871 //===----------------------------------------------------------------------===//
4873 //===----------------------------------------------------------------------===//
4875 /// This class represents an extension of floating point types.
4876 class FPExtInst
: public CastInst
{
4878 // Note: Instruction needs to be a friend here to call cloneImpl.
4879 friend class Instruction
;
4881 /// Clone an identical FPExtInst
4882 FPExtInst
*cloneImpl() const;
4885 /// Constructor with insert-before-instruction semantics
4887 Value
*S
, ///< The value to be extended
4888 Type
*Ty
, ///< The type to extend to
4889 const Twine
&NameStr
= "", ///< A name for the new instruction
4890 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4893 /// Constructor with insert-at-end-of-block semantics
4895 Value
*S
, ///< The value to be extended
4896 Type
*Ty
, ///< The type to extend to
4897 const Twine
&NameStr
, ///< A name for the new instruction
4898 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4901 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4902 static bool classof(const Instruction
*I
) {
4903 return I
->getOpcode() == FPExt
;
4905 static bool classof(const Value
*V
) {
4906 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4910 //===----------------------------------------------------------------------===//
4912 //===----------------------------------------------------------------------===//
4914 /// This class represents a cast unsigned integer to floating point.
4915 class UIToFPInst
: public CastInst
{
4917 // Note: Instruction needs to be a friend here to call cloneImpl.
4918 friend class Instruction
;
4920 /// Clone an identical UIToFPInst
4921 UIToFPInst
*cloneImpl() const;
4924 /// Constructor with insert-before-instruction semantics
4926 Value
*S
, ///< The value to be converted
4927 Type
*Ty
, ///< The type to convert to
4928 const Twine
&NameStr
= "", ///< A name for the new instruction
4929 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4932 /// Constructor with insert-at-end-of-block semantics
4934 Value
*S
, ///< The value to be converted
4935 Type
*Ty
, ///< The type to convert to
4936 const Twine
&NameStr
, ///< A name for the new instruction
4937 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4940 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4941 static bool classof(const Instruction
*I
) {
4942 return I
->getOpcode() == UIToFP
;
4944 static bool classof(const Value
*V
) {
4945 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4949 //===----------------------------------------------------------------------===//
4951 //===----------------------------------------------------------------------===//
4953 /// This class represents a cast from signed integer to floating point.
4954 class SIToFPInst
: public CastInst
{
4956 // Note: Instruction needs to be a friend here to call cloneImpl.
4957 friend class Instruction
;
4959 /// Clone an identical SIToFPInst
4960 SIToFPInst
*cloneImpl() const;
4963 /// Constructor with insert-before-instruction semantics
4965 Value
*S
, ///< The value to be converted
4966 Type
*Ty
, ///< The type to convert to
4967 const Twine
&NameStr
= "", ///< A name for the new instruction
4968 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4971 /// Constructor with insert-at-end-of-block semantics
4973 Value
*S
, ///< The value to be converted
4974 Type
*Ty
, ///< The type to convert to
4975 const Twine
&NameStr
, ///< A name for the new instruction
4976 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4979 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4980 static bool classof(const Instruction
*I
) {
4981 return I
->getOpcode() == SIToFP
;
4983 static bool classof(const Value
*V
) {
4984 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4988 //===----------------------------------------------------------------------===//
4990 //===----------------------------------------------------------------------===//
4992 /// This class represents a cast from floating point to unsigned integer
4993 class FPToUIInst
: public CastInst
{
4995 // Note: Instruction needs to be a friend here to call cloneImpl.
4996 friend class Instruction
;
4998 /// Clone an identical FPToUIInst
4999 FPToUIInst
*cloneImpl() const;
5002 /// Constructor with insert-before-instruction semantics
5004 Value
*S
, ///< The value to be converted
5005 Type
*Ty
, ///< The type to convert to
5006 const Twine
&NameStr
= "", ///< A name for the new instruction
5007 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5010 /// Constructor with insert-at-end-of-block semantics
5012 Value
*S
, ///< The value to be converted
5013 Type
*Ty
, ///< The type to convert to
5014 const Twine
&NameStr
, ///< A name for the new instruction
5015 BasicBlock
*InsertAtEnd
///< Where to insert the new instruction
5018 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5019 static bool classof(const Instruction
*I
) {
5020 return I
->getOpcode() == FPToUI
;
5022 static bool classof(const Value
*V
) {
5023 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5027 //===----------------------------------------------------------------------===//
5029 //===----------------------------------------------------------------------===//
5031 /// This class represents a cast from floating point to signed integer.
5032 class FPToSIInst
: public CastInst
{
5034 // Note: Instruction needs to be a friend here to call cloneImpl.
5035 friend class Instruction
;
5037 /// Clone an identical FPToSIInst
5038 FPToSIInst
*cloneImpl() const;
5041 /// Constructor with insert-before-instruction semantics
5043 Value
*S
, ///< The value to be converted
5044 Type
*Ty
, ///< The type to convert to
5045 const Twine
&NameStr
= "", ///< A name for the new instruction
5046 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5049 /// Constructor with insert-at-end-of-block semantics
5051 Value
*S
, ///< The value to be converted
5052 Type
*Ty
, ///< The type to convert to
5053 const Twine
&NameStr
, ///< A name for the new instruction
5054 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5057 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5058 static bool classof(const Instruction
*I
) {
5059 return I
->getOpcode() == FPToSI
;
5061 static bool classof(const Value
*V
) {
5062 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5066 //===----------------------------------------------------------------------===//
5067 // IntToPtrInst Class
5068 //===----------------------------------------------------------------------===//
5070 /// This class represents a cast from an integer to a pointer.
5071 class IntToPtrInst
: public CastInst
{
5073 // Note: Instruction needs to be a friend here to call cloneImpl.
5074 friend class Instruction
;
5076 /// Constructor with insert-before-instruction semantics
5078 Value
*S
, ///< The value to be converted
5079 Type
*Ty
, ///< The type to convert to
5080 const Twine
&NameStr
= "", ///< A name for the new instruction
5081 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5084 /// Constructor with insert-at-end-of-block semantics
5086 Value
*S
, ///< The value to be converted
5087 Type
*Ty
, ///< The type to convert to
5088 const Twine
&NameStr
, ///< A name for the new instruction
5089 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5092 /// Clone an identical IntToPtrInst.
5093 IntToPtrInst
*cloneImpl() const;
5095 /// Returns the address space of this instruction's pointer type.
5096 unsigned getAddressSpace() const {
5097 return getType()->getPointerAddressSpace();
5100 // Methods for support type inquiry through isa, cast, and dyn_cast:
5101 static bool classof(const Instruction
*I
) {
5102 return I
->getOpcode() == IntToPtr
;
5104 static bool classof(const Value
*V
) {
5105 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5109 //===----------------------------------------------------------------------===//
5110 // PtrToIntInst Class
5111 //===----------------------------------------------------------------------===//
5113 /// This class represents a cast from a pointer to an integer.
5114 class PtrToIntInst
: public CastInst
{
5116 // Note: Instruction needs to be a friend here to call cloneImpl.
5117 friend class Instruction
;
5119 /// Clone an identical PtrToIntInst.
5120 PtrToIntInst
*cloneImpl() const;
5123 /// Constructor with insert-before-instruction semantics
5125 Value
*S
, ///< The value to be converted
5126 Type
*Ty
, ///< The type to convert to
5127 const Twine
&NameStr
= "", ///< A name for the new instruction
5128 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5131 /// Constructor with insert-at-end-of-block semantics
5133 Value
*S
, ///< The value to be converted
5134 Type
*Ty
, ///< The type to convert to
5135 const Twine
&NameStr
, ///< A name for the new instruction
5136 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5139 /// Gets the pointer operand.
5140 Value
*getPointerOperand() { return getOperand(0); }
5141 /// Gets the pointer operand.
5142 const Value
*getPointerOperand() const { return getOperand(0); }
5143 /// Gets the operand index of the pointer operand.
5144 static unsigned getPointerOperandIndex() { return 0U; }
5146 /// Returns the address space of the pointer operand.
5147 unsigned getPointerAddressSpace() const {
5148 return getPointerOperand()->getType()->getPointerAddressSpace();
5151 // Methods for support type inquiry through isa, cast, and dyn_cast:
5152 static bool classof(const Instruction
*I
) {
5153 return I
->getOpcode() == PtrToInt
;
5155 static bool classof(const Value
*V
) {
5156 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5160 //===----------------------------------------------------------------------===//
5161 // BitCastInst Class
5162 //===----------------------------------------------------------------------===//
5164 /// This class represents a no-op cast from one type to another.
5165 class BitCastInst
: public CastInst
{
5167 // Note: Instruction needs to be a friend here to call cloneImpl.
5168 friend class Instruction
;
5170 /// Clone an identical BitCastInst.
5171 BitCastInst
*cloneImpl() const;
5174 /// Constructor with insert-before-instruction semantics
5176 Value
*S
, ///< The value to be casted
5177 Type
*Ty
, ///< The type to casted to
5178 const Twine
&NameStr
= "", ///< A name for the new instruction
5179 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5182 /// Constructor with insert-at-end-of-block semantics
5184 Value
*S
, ///< The value to be casted
5185 Type
*Ty
, ///< The type to casted to
5186 const Twine
&NameStr
, ///< A name for the new instruction
5187 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5190 // Methods for support type inquiry through isa, cast, and dyn_cast:
5191 static bool classof(const Instruction
*I
) {
5192 return I
->getOpcode() == BitCast
;
5194 static bool classof(const Value
*V
) {
5195 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5199 //===----------------------------------------------------------------------===//
5200 // AddrSpaceCastInst Class
5201 //===----------------------------------------------------------------------===//
5203 /// This class represents a conversion between pointers from one address space
5205 class AddrSpaceCastInst
: public CastInst
{
5207 // Note: Instruction needs to be a friend here to call cloneImpl.
5208 friend class Instruction
;
5210 /// Clone an identical AddrSpaceCastInst.
5211 AddrSpaceCastInst
*cloneImpl() const;
5214 /// Constructor with insert-before-instruction semantics
5216 Value
*S
, ///< The value to be casted
5217 Type
*Ty
, ///< The type to casted to
5218 const Twine
&NameStr
= "", ///< A name for the new instruction
5219 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5222 /// Constructor with insert-at-end-of-block semantics
5224 Value
*S
, ///< The value to be casted
5225 Type
*Ty
, ///< The type to casted to
5226 const Twine
&NameStr
, ///< A name for the new instruction
5227 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5230 // Methods for support type inquiry through isa, cast, and dyn_cast:
5231 static bool classof(const Instruction
*I
) {
5232 return I
->getOpcode() == AddrSpaceCast
;
5234 static bool classof(const Value
*V
) {
5235 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5238 /// Gets the pointer operand.
5239 Value
*getPointerOperand() {
5240 return getOperand(0);
5243 /// Gets the pointer operand.
5244 const Value
*getPointerOperand() const {
5245 return getOperand(0);
5248 /// Gets the operand index of the pointer operand.
5249 static unsigned getPointerOperandIndex() {
5253 /// Returns the address space of the pointer operand.
5254 unsigned getSrcAddressSpace() const {
5255 return getPointerOperand()->getType()->getPointerAddressSpace();
5258 /// Returns the address space of the result.
5259 unsigned getDestAddressSpace() const {
5260 return getType()->getPointerAddressSpace();
5264 /// A helper function that returns the pointer operand of a load or store
5265 /// instruction. Returns nullptr if not load or store.
5266 inline const Value
*getLoadStorePointerOperand(const Value
*V
) {
5267 if (auto *Load
= dyn_cast
<LoadInst
>(V
))
5268 return Load
->getPointerOperand();
5269 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
5270 return Store
->getPointerOperand();
5273 inline Value
*getLoadStorePointerOperand(Value
*V
) {
5274 return const_cast<Value
*>(
5275 getLoadStorePointerOperand(static_cast<const Value
*>(V
)));
5278 /// A helper function that returns the pointer operand of a load, store
5279 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5280 inline const Value
*getPointerOperand(const Value
*V
) {
5281 if (auto *Ptr
= getLoadStorePointerOperand(V
))
5283 if (auto *Gep
= dyn_cast
<GetElementPtrInst
>(V
))
5284 return Gep
->getPointerOperand();
5287 inline Value
*getPointerOperand(Value
*V
) {
5288 return const_cast<Value
*>(getPointerOperand(static_cast<const Value
*>(V
)));
5291 /// A helper function that returns the alignment of load or store instruction.
5292 inline unsigned getLoadStoreAlignment(Value
*I
) {
5293 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5294 "Expected Load or Store instruction");
5295 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5296 return LI
->getAlignment();
5297 return cast
<StoreInst
>(I
)->getAlignment();
5300 /// A helper function that returns the address space of the pointer operand of
5301 /// load or store instruction.
5302 inline unsigned getLoadStoreAddressSpace(Value
*I
) {
5303 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5304 "Expected Load or Store instruction");
5305 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5306 return LI
->getPointerAddressSpace();
5307 return cast
<StoreInst
>(I
)->getPointerAddressSpace();
5310 } // end namespace llvm
5312 #endif // LLVM_IR_INSTRUCTIONS_H