[ASan] Make insertion of version mismatch guard configurable
[llvm-core.git] / lib / Transforms / Utils / LoopSimplify.cpp
blobd0f89dc54bfbcde876a7faae6f5177492b0977d3
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header. This simplifies a
15 // number of analyses and transformations, such as LICM.
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header). This simplifies transformations such as store-sinking
21 // that are built into LICM.
23 // This pass also guarantees that loops will have exactly one backedge.
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Utils.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/LoopUtils.h"
76 using namespace llvm;
78 #define DEBUG_TYPE "loop-simplify"
80 STATISTIC(NumNested , "Number of nested loops split out");
82 // If the block isn't already, move the new block to right after some 'outside
83 // block' block. This prevents the preheader from being placed inside the loop
84 // body, e.g. when the loop hasn't been rotated.
85 static void placeSplitBlockCarefully(BasicBlock *NewBB,
86 SmallVectorImpl<BasicBlock *> &SplitPreds,
87 Loop *L) {
88 // Check to see if NewBB is already well placed.
89 Function::iterator BBI = --NewBB->getIterator();
90 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
91 if (&*BBI == SplitPreds[i])
92 return;
95 // If it isn't already after an outside block, move it after one. This is
96 // always good as it makes the uncond branch from the outside block into a
97 // fall-through.
99 // Figure out *which* outside block to put this after. Prefer an outside
100 // block that neighbors a BB actually in the loop.
101 BasicBlock *FoundBB = nullptr;
102 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
103 Function::iterator BBI = SplitPreds[i]->getIterator();
104 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
105 FoundBB = SplitPreds[i];
106 break;
110 // If our heuristic for a *good* bb to place this after doesn't find
111 // anything, just pick something. It's likely better than leaving it within
112 // the loop.
113 if (!FoundBB)
114 FoundBB = SplitPreds[0];
115 NewBB->moveAfter(FoundBB);
118 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
119 /// preheader, this method is called to insert one. This method has two phases:
120 /// preheader insertion and analysis updating.
122 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
123 LoopInfo *LI, MemorySSAUpdater *MSSAU,
124 bool PreserveLCSSA) {
125 BasicBlock *Header = L->getHeader();
127 // Compute the set of predecessors of the loop that are not in the loop.
128 SmallVector<BasicBlock*, 8> OutsideBlocks;
129 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
130 PI != PE; ++PI) {
131 BasicBlock *P = *PI;
132 if (!L->contains(P)) { // Coming in from outside the loop?
133 // If the loop is branched to from an indirect terminator, we won't
134 // be able to fully transform the loop, because it prohibits
135 // edge splitting.
136 if (P->getTerminator()->isIndirectTerminator())
137 return nullptr;
139 // Keep track of it.
140 OutsideBlocks.push_back(P);
144 // Split out the loop pre-header.
145 BasicBlock *PreheaderBB;
146 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
147 LI, MSSAU, PreserveLCSSA);
148 if (!PreheaderBB)
149 return nullptr;
151 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
152 << PreheaderBB->getName() << "\n");
154 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
155 // code layout too horribly.
156 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
158 return PreheaderBB;
161 /// Add the specified block, and all of its predecessors, to the specified set,
162 /// if it's not already in there. Stop predecessor traversal when we reach
163 /// StopBlock.
164 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
165 std::set<BasicBlock*> &Blocks) {
166 SmallVector<BasicBlock *, 8> Worklist;
167 Worklist.push_back(InputBB);
168 do {
169 BasicBlock *BB = Worklist.pop_back_val();
170 if (Blocks.insert(BB).second && BB != StopBlock)
171 // If BB is not already processed and it is not a stop block then
172 // insert its predecessor in the work list
173 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
174 BasicBlock *WBB = *I;
175 Worklist.push_back(WBB);
177 } while (!Worklist.empty());
180 /// The first part of loop-nestification is to find a PHI node that tells
181 /// us how to partition the loops.
182 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
183 AssumptionCache *AC) {
184 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
185 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
186 PHINode *PN = cast<PHINode>(I);
187 ++I;
188 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
189 // This is a degenerate PHI already, don't modify it!
190 PN->replaceAllUsesWith(V);
191 PN->eraseFromParent();
192 continue;
195 // Scan this PHI node looking for a use of the PHI node by itself.
196 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
197 if (PN->getIncomingValue(i) == PN &&
198 L->contains(PN->getIncomingBlock(i)))
199 // We found something tasty to remove.
200 return PN;
202 return nullptr;
205 /// If this loop has multiple backedges, try to pull one of them out into
206 /// a nested loop.
208 /// This is important for code that looks like
209 /// this:
211 /// Loop:
212 /// ...
213 /// br cond, Loop, Next
214 /// ...
215 /// br cond2, Loop, Out
217 /// To identify this common case, we look at the PHI nodes in the header of the
218 /// loop. PHI nodes with unchanging values on one backedge correspond to values
219 /// that change in the "outer" loop, but not in the "inner" loop.
221 /// If we are able to separate out a loop, return the new outer loop that was
222 /// created.
224 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
225 DominatorTree *DT, LoopInfo *LI,
226 ScalarEvolution *SE, bool PreserveLCSSA,
227 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
228 // Don't try to separate loops without a preheader.
229 if (!Preheader)
230 return nullptr;
232 // The header is not a landing pad; preheader insertion should ensure this.
233 BasicBlock *Header = L->getHeader();
234 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
236 PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
237 if (!PN) return nullptr; // No known way to partition.
239 // Pull out all predecessors that have varying values in the loop. This
240 // handles the case when a PHI node has multiple instances of itself as
241 // arguments.
242 SmallVector<BasicBlock*, 8> OuterLoopPreds;
243 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
244 if (PN->getIncomingValue(i) != PN ||
245 !L->contains(PN->getIncomingBlock(i))) {
246 // We can't split indirect control flow edges.
247 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
248 return nullptr;
249 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
252 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
254 // If ScalarEvolution is around and knows anything about values in
255 // this loop, tell it to forget them, because we're about to
256 // substantially change it.
257 if (SE)
258 SE->forgetLoop(L);
260 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
261 DT, LI, MSSAU, PreserveLCSSA);
263 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
264 // code layout too horribly.
265 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
267 // Create the new outer loop.
268 Loop *NewOuter = LI->AllocateLoop();
270 // Change the parent loop to use the outer loop as its child now.
271 if (Loop *Parent = L->getParentLoop())
272 Parent->replaceChildLoopWith(L, NewOuter);
273 else
274 LI->changeTopLevelLoop(L, NewOuter);
276 // L is now a subloop of our outer loop.
277 NewOuter->addChildLoop(L);
279 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
280 I != E; ++I)
281 NewOuter->addBlockEntry(*I);
283 // Now reset the header in L, which had been moved by
284 // SplitBlockPredecessors for the outer loop.
285 L->moveToHeader(Header);
287 // Determine which blocks should stay in L and which should be moved out to
288 // the Outer loop now.
289 std::set<BasicBlock*> BlocksInL;
290 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
291 BasicBlock *P = *PI;
292 if (DT->dominates(Header, P))
293 addBlockAndPredsToSet(P, Header, BlocksInL);
296 // Scan all of the loop children of L, moving them to OuterLoop if they are
297 // not part of the inner loop.
298 const std::vector<Loop*> &SubLoops = L->getSubLoops();
299 for (size_t I = 0; I != SubLoops.size(); )
300 if (BlocksInL.count(SubLoops[I]->getHeader()))
301 ++I; // Loop remains in L
302 else
303 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
305 SmallVector<BasicBlock *, 8> OuterLoopBlocks;
306 OuterLoopBlocks.push_back(NewBB);
307 // Now that we know which blocks are in L and which need to be moved to
308 // OuterLoop, move any blocks that need it.
309 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
310 BasicBlock *BB = L->getBlocks()[i];
311 if (!BlocksInL.count(BB)) {
312 // Move this block to the parent, updating the exit blocks sets
313 L->removeBlockFromLoop(BB);
314 if ((*LI)[BB] == L) {
315 LI->changeLoopFor(BB, NewOuter);
316 OuterLoopBlocks.push_back(BB);
318 --i;
322 // Split edges to exit blocks from the inner loop, if they emerged in the
323 // process of separating the outer one.
324 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
326 if (PreserveLCSSA) {
327 // Fix LCSSA form for L. Some values, which previously were only used inside
328 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
329 // in corresponding exit blocks.
330 // We don't need to form LCSSA recursively, because there cannot be uses
331 // inside a newly created loop of defs from inner loops as those would
332 // already be a use of an LCSSA phi node.
333 formLCSSA(*L, *DT, LI, SE);
335 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
336 "LCSSA is broken after separating nested loops!");
339 return NewOuter;
342 /// This method is called when the specified loop has more than one
343 /// backedge in it.
345 /// If this occurs, revector all of these backedges to target a new basic block
346 /// and have that block branch to the loop header. This ensures that loops
347 /// have exactly one backedge.
348 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
349 DominatorTree *DT, LoopInfo *LI,
350 MemorySSAUpdater *MSSAU) {
351 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
353 // Get information about the loop
354 BasicBlock *Header = L->getHeader();
355 Function *F = Header->getParent();
357 // Unique backedge insertion currently depends on having a preheader.
358 if (!Preheader)
359 return nullptr;
361 // The header is not an EH pad; preheader insertion should ensure this.
362 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
364 // Figure out which basic blocks contain back-edges to the loop header.
365 std::vector<BasicBlock*> BackedgeBlocks;
366 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
367 BasicBlock *P = *I;
369 // Indirect edges cannot be split, so we must fail if we find one.
370 if (P->getTerminator()->isIndirectTerminator())
371 return nullptr;
373 if (P != Preheader) BackedgeBlocks.push_back(P);
376 // Create and insert the new backedge block...
377 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
378 Header->getName() + ".backedge", F);
379 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
380 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
382 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
383 << BEBlock->getName() << "\n");
385 // Move the new backedge block to right after the last backedge block.
386 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
387 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
389 // Now that the block has been inserted into the function, create PHI nodes in
390 // the backedge block which correspond to any PHI nodes in the header block.
391 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
392 PHINode *PN = cast<PHINode>(I);
393 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
394 PN->getName()+".be", BETerminator);
396 // Loop over the PHI node, moving all entries except the one for the
397 // preheader over to the new PHI node.
398 unsigned PreheaderIdx = ~0U;
399 bool HasUniqueIncomingValue = true;
400 Value *UniqueValue = nullptr;
401 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
402 BasicBlock *IBB = PN->getIncomingBlock(i);
403 Value *IV = PN->getIncomingValue(i);
404 if (IBB == Preheader) {
405 PreheaderIdx = i;
406 } else {
407 NewPN->addIncoming(IV, IBB);
408 if (HasUniqueIncomingValue) {
409 if (!UniqueValue)
410 UniqueValue = IV;
411 else if (UniqueValue != IV)
412 HasUniqueIncomingValue = false;
417 // Delete all of the incoming values from the old PN except the preheader's
418 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
419 if (PreheaderIdx != 0) {
420 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
421 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
423 // Nuke all entries except the zero'th.
424 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
425 PN->removeIncomingValue(e-i, false);
427 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
428 PN->addIncoming(NewPN, BEBlock);
430 // As an optimization, if all incoming values in the new PhiNode (which is a
431 // subset of the incoming values of the old PHI node) have the same value,
432 // eliminate the PHI Node.
433 if (HasUniqueIncomingValue) {
434 NewPN->replaceAllUsesWith(UniqueValue);
435 BEBlock->getInstList().erase(NewPN);
439 // Now that all of the PHI nodes have been inserted and adjusted, modify the
440 // backedge blocks to jump to the BEBlock instead of the header.
441 // If one of the backedges has llvm.loop metadata attached, we remove
442 // it from the backedge and add it to BEBlock.
443 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
444 MDNode *LoopMD = nullptr;
445 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
446 Instruction *TI = BackedgeBlocks[i]->getTerminator();
447 if (!LoopMD)
448 LoopMD = TI->getMetadata(LoopMDKind);
449 TI->setMetadata(LoopMDKind, nullptr);
450 TI->replaceSuccessorWith(Header, BEBlock);
452 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
454 //===--- Update all analyses which we must preserve now -----------------===//
456 // Update Loop Information - we know that this block is now in the current
457 // loop and all parent loops.
458 L->addBasicBlockToLoop(BEBlock, *LI);
460 // Update dominator information
461 DT->splitBlock(BEBlock);
463 if (MSSAU)
464 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
465 BEBlock);
467 return BEBlock;
470 /// Simplify one loop and queue further loops for simplification.
471 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
472 DominatorTree *DT, LoopInfo *LI,
473 ScalarEvolution *SE, AssumptionCache *AC,
474 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
475 bool Changed = false;
476 if (MSSAU && VerifyMemorySSA)
477 MSSAU->getMemorySSA()->verifyMemorySSA();
479 ReprocessLoop:
481 // Check to see that no blocks (other than the header) in this loop have
482 // predecessors that are not in the loop. This is not valid for natural
483 // loops, but can occur if the blocks are unreachable. Since they are
484 // unreachable we can just shamelessly delete those CFG edges!
485 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
486 BB != E; ++BB) {
487 if (*BB == L->getHeader()) continue;
489 SmallPtrSet<BasicBlock*, 4> BadPreds;
490 for (pred_iterator PI = pred_begin(*BB),
491 PE = pred_end(*BB); PI != PE; ++PI) {
492 BasicBlock *P = *PI;
493 if (!L->contains(P))
494 BadPreds.insert(P);
497 // Delete each unique out-of-loop (and thus dead) predecessor.
498 for (BasicBlock *P : BadPreds) {
500 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
501 << P->getName() << "\n");
503 // Zap the dead pred's terminator and replace it with unreachable.
504 Instruction *TI = P->getTerminator();
505 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
506 /*DTU=*/nullptr, MSSAU);
507 Changed = true;
511 if (MSSAU && VerifyMemorySSA)
512 MSSAU->getMemorySSA()->verifyMemorySSA();
514 // If there are exiting blocks with branches on undef, resolve the undef in
515 // the direction which will exit the loop. This will help simplify loop
516 // trip count computations.
517 SmallVector<BasicBlock*, 8> ExitingBlocks;
518 L->getExitingBlocks(ExitingBlocks);
519 for (BasicBlock *ExitingBlock : ExitingBlocks)
520 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
521 if (BI->isConditional()) {
522 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
524 LLVM_DEBUG(dbgs()
525 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
526 << ExitingBlock->getName() << "\n");
528 BI->setCondition(ConstantInt::get(Cond->getType(),
529 !L->contains(BI->getSuccessor(0))));
531 Changed = true;
535 // Does the loop already have a preheader? If so, don't insert one.
536 BasicBlock *Preheader = L->getLoopPreheader();
537 if (!Preheader) {
538 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
539 if (Preheader)
540 Changed = true;
543 // Next, check to make sure that all exit nodes of the loop only have
544 // predecessors that are inside of the loop. This check guarantees that the
545 // loop preheader/header will dominate the exit blocks. If the exit block has
546 // predecessors from outside of the loop, split the edge now.
547 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
548 Changed = true;
550 if (MSSAU && VerifyMemorySSA)
551 MSSAU->getMemorySSA()->verifyMemorySSA();
553 // If the header has more than two predecessors at this point (from the
554 // preheader and from multiple backedges), we must adjust the loop.
555 BasicBlock *LoopLatch = L->getLoopLatch();
556 if (!LoopLatch) {
557 // If this is really a nested loop, rip it out into a child loop. Don't do
558 // this for loops with a giant number of backedges, just factor them into a
559 // common backedge instead.
560 if (L->getNumBackEdges() < 8) {
561 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
562 PreserveLCSSA, AC, MSSAU)) {
563 ++NumNested;
564 // Enqueue the outer loop as it should be processed next in our
565 // depth-first nest walk.
566 Worklist.push_back(OuterL);
568 // This is a big restructuring change, reprocess the whole loop.
569 Changed = true;
570 // GCC doesn't tail recursion eliminate this.
571 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
572 goto ReprocessLoop;
576 // If we either couldn't, or didn't want to, identify nesting of the loops,
577 // insert a new block that all backedges target, then make it jump to the
578 // loop header.
579 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
580 if (LoopLatch)
581 Changed = true;
584 if (MSSAU && VerifyMemorySSA)
585 MSSAU->getMemorySSA()->verifyMemorySSA();
587 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
589 // Scan over the PHI nodes in the loop header. Since they now have only two
590 // incoming values (the loop is canonicalized), we may have simplified the PHI
591 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
592 PHINode *PN;
593 for (BasicBlock::iterator I = L->getHeader()->begin();
594 (PN = dyn_cast<PHINode>(I++)); )
595 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
596 if (SE) SE->forgetValue(PN);
597 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
598 PN->replaceAllUsesWith(V);
599 PN->eraseFromParent();
603 // If this loop has multiple exits and the exits all go to the same
604 // block, attempt to merge the exits. This helps several passes, such
605 // as LoopRotation, which do not support loops with multiple exits.
606 // SimplifyCFG also does this (and this code uses the same utility
607 // function), however this code is loop-aware, where SimplifyCFG is
608 // not. That gives it the advantage of being able to hoist
609 // loop-invariant instructions out of the way to open up more
610 // opportunities, and the disadvantage of having the responsibility
611 // to preserve dominator information.
612 auto HasUniqueExitBlock = [&]() {
613 BasicBlock *UniqueExit = nullptr;
614 for (auto *ExitingBB : ExitingBlocks)
615 for (auto *SuccBB : successors(ExitingBB)) {
616 if (L->contains(SuccBB))
617 continue;
619 if (!UniqueExit)
620 UniqueExit = SuccBB;
621 else if (UniqueExit != SuccBB)
622 return false;
625 return true;
627 if (HasUniqueExitBlock()) {
628 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
629 BasicBlock *ExitingBlock = ExitingBlocks[i];
630 if (!ExitingBlock->getSinglePredecessor()) continue;
631 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
632 if (!BI || !BI->isConditional()) continue;
633 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
634 if (!CI || CI->getParent() != ExitingBlock) continue;
636 // Attempt to hoist out all instructions except for the
637 // comparison and the branch.
638 bool AllInvariant = true;
639 bool AnyInvariant = false;
640 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
641 Instruction *Inst = &*I++;
642 if (Inst == CI)
643 continue;
644 if (!L->makeLoopInvariant(
645 Inst, AnyInvariant,
646 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
647 AllInvariant = false;
648 break;
651 if (AnyInvariant) {
652 Changed = true;
653 // The loop disposition of all SCEV expressions that depend on any
654 // hoisted values have also changed.
655 if (SE)
656 SE->forgetLoopDispositions(L);
658 if (!AllInvariant) continue;
660 // The block has now been cleared of all instructions except for
661 // a comparison and a conditional branch. SimplifyCFG may be able
662 // to fold it now.
663 if (!FoldBranchToCommonDest(BI, MSSAU))
664 continue;
666 // Success. The block is now dead, so remove it from the loop,
667 // update the dominator tree and delete it.
668 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
669 << ExitingBlock->getName() << "\n");
671 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
672 Changed = true;
673 LI->removeBlock(ExitingBlock);
675 DomTreeNode *Node = DT->getNode(ExitingBlock);
676 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
677 Node->getChildren();
678 while (!Children.empty()) {
679 DomTreeNode *Child = Children.front();
680 DT->changeImmediateDominator(Child, Node->getIDom());
682 DT->eraseNode(ExitingBlock);
683 if (MSSAU) {
684 SmallSetVector<BasicBlock *, 8> ExitBlockSet;
685 ExitBlockSet.insert(ExitingBlock);
686 MSSAU->removeBlocks(ExitBlockSet);
689 BI->getSuccessor(0)->removePredecessor(
690 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
691 BI->getSuccessor(1)->removePredecessor(
692 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
693 ExitingBlock->eraseFromParent();
697 // Changing exit conditions for blocks may affect exit counts of this loop and
698 // any of its paretns, so we must invalidate the entire subtree if we've made
699 // any changes.
700 if (Changed && SE)
701 SE->forgetTopmostLoop(L);
703 if (MSSAU && VerifyMemorySSA)
704 MSSAU->getMemorySSA()->verifyMemorySSA();
706 return Changed;
709 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
710 ScalarEvolution *SE, AssumptionCache *AC,
711 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
712 bool Changed = false;
714 #ifndef NDEBUG
715 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
716 // form.
717 if (PreserveLCSSA) {
718 assert(DT && "DT not available.");
719 assert(LI && "LI not available.");
720 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
721 "Requested to preserve LCSSA, but it's already broken.");
723 #endif
725 // Worklist maintains our depth-first queue of loops in this nest to process.
726 SmallVector<Loop *, 4> Worklist;
727 Worklist.push_back(L);
729 // Walk the worklist from front to back, pushing newly found sub loops onto
730 // the back. This will let us process loops from back to front in depth-first
731 // order. We can use this simple process because loops form a tree.
732 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
733 Loop *L2 = Worklist[Idx];
734 Worklist.append(L2->begin(), L2->end());
737 while (!Worklist.empty())
738 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
739 AC, MSSAU, PreserveLCSSA);
741 return Changed;
744 namespace {
745 struct LoopSimplify : public FunctionPass {
746 static char ID; // Pass identification, replacement for typeid
747 LoopSimplify() : FunctionPass(ID) {
748 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
751 bool runOnFunction(Function &F) override;
753 void getAnalysisUsage(AnalysisUsage &AU) const override {
754 AU.addRequired<AssumptionCacheTracker>();
756 // We need loop information to identify the loops...
757 AU.addRequired<DominatorTreeWrapperPass>();
758 AU.addPreserved<DominatorTreeWrapperPass>();
760 AU.addRequired<LoopInfoWrapperPass>();
761 AU.addPreserved<LoopInfoWrapperPass>();
763 AU.addPreserved<BasicAAWrapperPass>();
764 AU.addPreserved<AAResultsWrapperPass>();
765 AU.addPreserved<GlobalsAAWrapperPass>();
766 AU.addPreserved<ScalarEvolutionWrapperPass>();
767 AU.addPreserved<SCEVAAWrapperPass>();
768 AU.addPreservedID(LCSSAID);
769 AU.addPreserved<DependenceAnalysisWrapperPass>();
770 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
771 AU.addPreserved<BranchProbabilityInfoWrapperPass>();
772 if (EnableMSSALoopDependency)
773 AU.addPreserved<MemorySSAWrapperPass>();
776 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
777 void verifyAnalysis() const override;
781 char LoopSimplify::ID = 0;
782 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
783 "Canonicalize natural loops", false, false)
784 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
785 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
786 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
787 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
788 "Canonicalize natural loops", false, false)
790 // Publicly exposed interface to pass...
791 char &llvm::LoopSimplifyID = LoopSimplify::ID;
792 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
794 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
795 /// it in any convenient order) inserting preheaders...
797 bool LoopSimplify::runOnFunction(Function &F) {
798 bool Changed = false;
799 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
800 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
801 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
802 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
803 AssumptionCache *AC =
804 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
805 MemorySSA *MSSA = nullptr;
806 std::unique_ptr<MemorySSAUpdater> MSSAU;
807 if (EnableMSSALoopDependency) {
808 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
809 if (MSSAAnalysis) {
810 MSSA = &MSSAAnalysis->getMSSA();
811 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
815 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
817 // Simplify each loop nest in the function.
818 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
819 Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
821 #ifndef NDEBUG
822 if (PreserveLCSSA) {
823 bool InLCSSA = all_of(
824 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
825 assert(InLCSSA && "LCSSA is broken after loop-simplify.");
827 #endif
828 return Changed;
831 PreservedAnalyses LoopSimplifyPass::run(Function &F,
832 FunctionAnalysisManager &AM) {
833 bool Changed = false;
834 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
835 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
836 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
837 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
838 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
839 std::unique_ptr<MemorySSAUpdater> MSSAU;
840 if (MSSAAnalysis) {
841 auto *MSSA = &MSSAAnalysis->getMSSA();
842 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
846 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
847 // after simplifying the loops. MemorySSA is preserved if it exists.
848 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
849 Changed |=
850 simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
852 if (!Changed)
853 return PreservedAnalyses::all();
855 PreservedAnalyses PA;
856 PA.preserve<DominatorTreeAnalysis>();
857 PA.preserve<LoopAnalysis>();
858 PA.preserve<BasicAA>();
859 PA.preserve<GlobalsAA>();
860 PA.preserve<SCEVAA>();
861 PA.preserve<ScalarEvolutionAnalysis>();
862 PA.preserve<DependenceAnalysis>();
863 if (MSSAAnalysis)
864 PA.preserve<MemorySSAAnalysis>();
865 // BPI maps conditional terminators to probabilities, LoopSimplify can insert
866 // blocks, but it does so only by splitting existing blocks and edges. This
867 // results in the interesting property that all new terminators inserted are
868 // unconditional branches which do not appear in BPI. All deletions are
869 // handled via ValueHandle callbacks w/in BPI.
870 PA.preserve<BranchProbabilityAnalysis>();
871 return PA;
874 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
875 // below.
876 #if 0
877 static void verifyLoop(Loop *L) {
878 // Verify subloops.
879 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
880 verifyLoop(*I);
882 // It used to be possible to just assert L->isLoopSimplifyForm(), however
883 // with the introduction of indirectbr, there are now cases where it's
884 // not possible to transform a loop as necessary. We can at least check
885 // that there is an indirectbr near any time there's trouble.
887 // Indirectbr can interfere with preheader and unique backedge insertion.
888 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
889 bool HasIndBrPred = false;
890 for (pred_iterator PI = pred_begin(L->getHeader()),
891 PE = pred_end(L->getHeader()); PI != PE; ++PI)
892 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
893 HasIndBrPred = true;
894 break;
896 assert(HasIndBrPred &&
897 "LoopSimplify has no excuse for missing loop header info!");
898 (void)HasIndBrPred;
901 // Indirectbr can interfere with exit block canonicalization.
902 if (!L->hasDedicatedExits()) {
903 bool HasIndBrExiting = false;
904 SmallVector<BasicBlock*, 8> ExitingBlocks;
905 L->getExitingBlocks(ExitingBlocks);
906 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
907 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
908 HasIndBrExiting = true;
909 break;
913 assert(HasIndBrExiting &&
914 "LoopSimplify has no excuse for missing exit block info!");
915 (void)HasIndBrExiting;
918 #endif
920 void LoopSimplify::verifyAnalysis() const {
921 // FIXME: This routine is being called mid-way through the loop pass manager
922 // as loop passes destroy this analysis. That's actually fine, but we have no
923 // way of expressing that here. Once all of the passes that destroy this are
924 // hoisted out of the loop pass manager we can add back verification here.
925 #if 0
926 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
927 verifyLoop(*I);
928 #endif