1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the SmallVector class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ADT_SMALLVECTOR_H
14 #define LLVM_ADT_SMALLVECTOR_H
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Support/AlignOf.h"
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include "llvm/Support/MemAlloc.h"
21 #include "llvm/Support/type_traits.h"
22 #include "llvm/Support/ErrorHandling.h"
28 #include <initializer_list>
32 #include <type_traits>
37 /// This is all the non-templated stuff common to all SmallVectors.
38 class SmallVectorBase
{
41 unsigned Size
= 0, Capacity
;
43 SmallVectorBase() = delete;
44 SmallVectorBase(void *FirstEl
, size_t TotalCapacity
)
45 : BeginX(FirstEl
), Capacity(TotalCapacity
) {}
47 /// This is an implementation of the grow() method which only works
48 /// on POD-like data types and is out of line to reduce code duplication.
49 void grow_pod(void *FirstEl
, size_t MinCapacity
, size_t TSize
);
52 size_t size() const { return Size
; }
53 size_t capacity() const { return Capacity
; }
55 LLVM_NODISCARD
bool empty() const { return !Size
; }
57 /// Set the array size to \p N, which the current array must have enough
60 /// This does not construct or destroy any elements in the vector.
62 /// Clients can use this in conjunction with capacity() to write past the end
63 /// of the buffer when they know that more elements are available, and only
64 /// update the size later. This avoids the cost of value initializing elements
65 /// which will only be overwritten.
66 void set_size(size_t N
) {
67 assert(N
<= capacity());
72 /// Figure out the offset of the first element.
73 template <class T
, typename
= void> struct SmallVectorAlignmentAndSize
{
74 AlignedCharArrayUnion
<SmallVectorBase
> Base
;
75 AlignedCharArrayUnion
<T
> FirstEl
;
78 /// This is the part of SmallVectorTemplateBase which does not depend on whether
79 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
80 /// to avoid unnecessarily requiring T to be complete.
81 template <typename T
, typename
= void>
82 class SmallVectorTemplateCommon
: public SmallVectorBase
{
83 /// Find the address of the first element. For this pointer math to be valid
84 /// with small-size of 0 for T with lots of alignment, it's important that
85 /// SmallVectorStorage is properly-aligned even for small-size of 0.
86 void *getFirstEl() const {
87 return const_cast<void *>(reinterpret_cast<const void *>(
88 reinterpret_cast<const char *>(this) +
89 offsetof(SmallVectorAlignmentAndSize
<T
>, FirstEl
)));
91 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
94 SmallVectorTemplateCommon(size_t Size
)
95 : SmallVectorBase(getFirstEl(), Size
) {}
97 void grow_pod(size_t MinCapacity
, size_t TSize
) {
98 SmallVectorBase::grow_pod(getFirstEl(), MinCapacity
, TSize
);
101 /// Return true if this is a smallvector which has not had dynamic
102 /// memory allocated for it.
103 bool isSmall() const { return BeginX
== getFirstEl(); }
105 /// Put this vector in a state of being small.
106 void resetToSmall() {
107 BeginX
= getFirstEl();
108 Size
= Capacity
= 0; // FIXME: Setting Capacity to 0 is suspect.
112 using size_type
= size_t;
113 using difference_type
= ptrdiff_t;
114 using value_type
= T
;
115 using iterator
= T
*;
116 using const_iterator
= const T
*;
118 using const_reverse_iterator
= std::reverse_iterator
<const_iterator
>;
119 using reverse_iterator
= std::reverse_iterator
<iterator
>;
121 using reference
= T
&;
122 using const_reference
= const T
&;
124 using const_pointer
= const T
*;
126 // forward iterator creation methods.
127 iterator
begin() { return (iterator
)this->BeginX
; }
128 const_iterator
begin() const { return (const_iterator
)this->BeginX
; }
129 iterator
end() { return begin() + size(); }
130 const_iterator
end() const { return begin() + size(); }
132 // reverse iterator creation methods.
133 reverse_iterator
rbegin() { return reverse_iterator(end()); }
134 const_reverse_iterator
rbegin() const{ return const_reverse_iterator(end()); }
135 reverse_iterator
rend() { return reverse_iterator(begin()); }
136 const_reverse_iterator
rend() const { return const_reverse_iterator(begin());}
138 size_type
size_in_bytes() const { return size() * sizeof(T
); }
139 size_type
max_size() const { return size_type(-1) / sizeof(T
); }
141 size_t capacity_in_bytes() const { return capacity() * sizeof(T
); }
143 /// Return a pointer to the vector's buffer, even if empty().
144 pointer
data() { return pointer(begin()); }
145 /// Return a pointer to the vector's buffer, even if empty().
146 const_pointer
data() const { return const_pointer(begin()); }
148 reference
operator[](size_type idx
) {
149 assert(idx
< size());
152 const_reference
operator[](size_type idx
) const {
153 assert(idx
< size());
161 const_reference
front() const {
170 const_reference
back() const {
176 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
177 /// implementations that are designed to work with non-POD-like T's.
178 template <typename T
, bool = is_trivially_copyable
<T
>::value
>
179 class SmallVectorTemplateBase
: public SmallVectorTemplateCommon
<T
> {
181 SmallVectorTemplateBase(size_t Size
) : SmallVectorTemplateCommon
<T
>(Size
) {}
183 static void destroy_range(T
*S
, T
*E
) {
190 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
191 /// constructing elements as needed.
192 template<typename It1
, typename It2
>
193 static void uninitialized_move(It1 I
, It1 E
, It2 Dest
) {
194 std::uninitialized_copy(std::make_move_iterator(I
),
195 std::make_move_iterator(E
), Dest
);
198 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
199 /// constructing elements as needed.
200 template<typename It1
, typename It2
>
201 static void uninitialized_copy(It1 I
, It1 E
, It2 Dest
) {
202 std::uninitialized_copy(I
, E
, Dest
);
205 /// Grow the allocated memory (without initializing new elements), doubling
206 /// the size of the allocated memory. Guarantees space for at least one more
207 /// element, or MinSize more elements if specified.
208 void grow(size_t MinSize
= 0);
211 void push_back(const T
&Elt
) {
212 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
214 ::new ((void*) this->end()) T(Elt
);
215 this->set_size(this->size() + 1);
218 void push_back(T
&&Elt
) {
219 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
221 ::new ((void*) this->end()) T(::std::move(Elt
));
222 this->set_size(this->size() + 1);
226 this->set_size(this->size() - 1);
231 // Define this out-of-line to dissuade the C++ compiler from inlining it.
232 template <typename T
, bool TriviallyCopyable
>
233 void SmallVectorTemplateBase
<T
, TriviallyCopyable
>::grow(size_t MinSize
) {
234 if (MinSize
> UINT32_MAX
)
235 report_bad_alloc_error("SmallVector capacity overflow during allocation");
237 // Always grow, even from zero.
238 size_t NewCapacity
= size_t(NextPowerOf2(this->capacity() + 2));
239 NewCapacity
= std::min(std::max(NewCapacity
, MinSize
), size_t(UINT32_MAX
));
240 T
*NewElts
= static_cast<T
*>(llvm::safe_malloc(NewCapacity
*sizeof(T
)));
242 // Move the elements over.
243 this->uninitialized_move(this->begin(), this->end(), NewElts
);
245 // Destroy the original elements.
246 destroy_range(this->begin(), this->end());
248 // If this wasn't grown from the inline copy, deallocate the old space.
249 if (!this->isSmall())
252 this->BeginX
= NewElts
;
253 this->Capacity
= NewCapacity
;
256 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
257 /// method implementations that are designed to work with POD-like T's.
258 template <typename T
>
259 class SmallVectorTemplateBase
<T
, true> : public SmallVectorTemplateCommon
<T
> {
261 SmallVectorTemplateBase(size_t Size
) : SmallVectorTemplateCommon
<T
>(Size
) {}
263 // No need to do a destroy loop for POD's.
264 static void destroy_range(T
*, T
*) {}
266 /// Move the range [I, E) onto the uninitialized memory
267 /// starting with "Dest", constructing elements into it as needed.
268 template<typename It1
, typename It2
>
269 static void uninitialized_move(It1 I
, It1 E
, It2 Dest
) {
271 uninitialized_copy(I
, E
, Dest
);
274 /// Copy the range [I, E) onto the uninitialized memory
275 /// starting with "Dest", constructing elements into it as needed.
276 template<typename It1
, typename It2
>
277 static void uninitialized_copy(It1 I
, It1 E
, It2 Dest
) {
278 // Arbitrary iterator types; just use the basic implementation.
279 std::uninitialized_copy(I
, E
, Dest
);
282 /// Copy the range [I, E) onto the uninitialized memory
283 /// starting with "Dest", constructing elements into it as needed.
284 template <typename T1
, typename T2
>
285 static void uninitialized_copy(
286 T1
*I
, T1
*E
, T2
*Dest
,
287 typename
std::enable_if
<std::is_same
<typename
std::remove_const
<T1
>::type
,
288 T2
>::value
>::type
* = nullptr) {
289 // Use memcpy for PODs iterated by pointers (which includes SmallVector
290 // iterators): std::uninitialized_copy optimizes to memmove, but we can
291 // use memcpy here. Note that I and E are iterators and thus might be
292 // invalid for memcpy if they are equal.
294 memcpy(reinterpret_cast<void *>(Dest
), I
, (E
- I
) * sizeof(T
));
297 /// Double the size of the allocated memory, guaranteeing space for at
298 /// least one more element or MinSize if specified.
299 void grow(size_t MinSize
= 0) { this->grow_pod(MinSize
, sizeof(T
)); }
302 void push_back(const T
&Elt
) {
303 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
305 memcpy(reinterpret_cast<void *>(this->end()), &Elt
, sizeof(T
));
306 this->set_size(this->size() + 1);
309 void pop_back() { this->set_size(this->size() - 1); }
312 /// This class consists of common code factored out of the SmallVector class to
313 /// reduce code duplication based on the SmallVector 'N' template parameter.
314 template <typename T
>
315 class SmallVectorImpl
: public SmallVectorTemplateBase
<T
> {
316 using SuperClass
= SmallVectorTemplateBase
<T
>;
319 using iterator
= typename
SuperClass::iterator
;
320 using const_iterator
= typename
SuperClass::const_iterator
;
321 using reference
= typename
SuperClass::reference
;
322 using size_type
= typename
SuperClass::size_type
;
325 // Default ctor - Initialize to empty.
326 explicit SmallVectorImpl(unsigned N
)
327 : SmallVectorTemplateBase
<T
>(N
) {}
330 SmallVectorImpl(const SmallVectorImpl
&) = delete;
333 // Subclass has already destructed this vector's elements.
334 // If this wasn't grown from the inline copy, deallocate the old space.
335 if (!this->isSmall())
340 this->destroy_range(this->begin(), this->end());
344 void resize(size_type N
) {
345 if (N
< this->size()) {
346 this->destroy_range(this->begin()+N
, this->end());
348 } else if (N
> this->size()) {
349 if (this->capacity() < N
)
351 for (auto I
= this->end(), E
= this->begin() + N
; I
!= E
; ++I
)
357 void resize(size_type N
, const T
&NV
) {
358 if (N
< this->size()) {
359 this->destroy_range(this->begin()+N
, this->end());
361 } else if (N
> this->size()) {
362 if (this->capacity() < N
)
364 std::uninitialized_fill(this->end(), this->begin()+N
, NV
);
369 void reserve(size_type N
) {
370 if (this->capacity() < N
)
374 LLVM_NODISCARD T
pop_back_val() {
375 T Result
= ::std::move(this->back());
380 void swap(SmallVectorImpl
&RHS
);
382 /// Add the specified range to the end of the SmallVector.
383 template <typename in_iter
,
384 typename
= typename
std::enable_if
<std::is_convertible
<
385 typename
std::iterator_traits
<in_iter
>::iterator_category
,
386 std::input_iterator_tag
>::value
>::type
>
387 void append(in_iter in_start
, in_iter in_end
) {
388 size_type NumInputs
= std::distance(in_start
, in_end
);
389 if (NumInputs
> this->capacity() - this->size())
390 this->grow(this->size()+NumInputs
);
392 this->uninitialized_copy(in_start
, in_end
, this->end());
393 this->set_size(this->size() + NumInputs
);
396 /// Append \p NumInputs copies of \p Elt to the end.
397 void append(size_type NumInputs
, const T
&Elt
) {
398 if (NumInputs
> this->capacity() - this->size())
399 this->grow(this->size()+NumInputs
);
401 std::uninitialized_fill_n(this->end(), NumInputs
, Elt
);
402 this->set_size(this->size() + NumInputs
);
405 void append(std::initializer_list
<T
> IL
) {
406 append(IL
.begin(), IL
.end());
409 // FIXME: Consider assigning over existing elements, rather than clearing &
410 // re-initializing them - for all assign(...) variants.
412 void assign(size_type NumElts
, const T
&Elt
) {
414 if (this->capacity() < NumElts
)
416 this->set_size(NumElts
);
417 std::uninitialized_fill(this->begin(), this->end(), Elt
);
420 template <typename in_iter
,
421 typename
= typename
std::enable_if
<std::is_convertible
<
422 typename
std::iterator_traits
<in_iter
>::iterator_category
,
423 std::input_iterator_tag
>::value
>::type
>
424 void assign(in_iter in_start
, in_iter in_end
) {
426 append(in_start
, in_end
);
429 void assign(std::initializer_list
<T
> IL
) {
434 iterator
erase(const_iterator CI
) {
435 // Just cast away constness because this is a non-const member function.
436 iterator I
= const_cast<iterator
>(CI
);
438 assert(I
>= this->begin() && "Iterator to erase is out of bounds.");
439 assert(I
< this->end() && "Erasing at past-the-end iterator.");
442 // Shift all elts down one.
443 std::move(I
+1, this->end(), I
);
444 // Drop the last elt.
449 iterator
erase(const_iterator CS
, const_iterator CE
) {
450 // Just cast away constness because this is a non-const member function.
451 iterator S
= const_cast<iterator
>(CS
);
452 iterator E
= const_cast<iterator
>(CE
);
454 assert(S
>= this->begin() && "Range to erase is out of bounds.");
455 assert(S
<= E
&& "Trying to erase invalid range.");
456 assert(E
<= this->end() && "Trying to erase past the end.");
459 // Shift all elts down.
460 iterator I
= std::move(E
, this->end(), S
);
461 // Drop the last elts.
462 this->destroy_range(I
, this->end());
463 this->set_size(I
- this->begin());
467 iterator
insert(iterator I
, T
&&Elt
) {
468 if (I
== this->end()) { // Important special case for empty vector.
469 this->push_back(::std::move(Elt
));
470 return this->end()-1;
473 assert(I
>= this->begin() && "Insertion iterator is out of bounds.");
474 assert(I
<= this->end() && "Inserting past the end of the vector.");
476 if (this->size() >= this->capacity()) {
477 size_t EltNo
= I
-this->begin();
479 I
= this->begin()+EltNo
;
482 ::new ((void*) this->end()) T(::std::move(this->back()));
483 // Push everything else over.
484 std::move_backward(I
, this->end()-1, this->end());
485 this->set_size(this->size() + 1);
487 // If we just moved the element we're inserting, be sure to update
490 if (I
<= EltPtr
&& EltPtr
< this->end())
493 *I
= ::std::move(*EltPtr
);
497 iterator
insert(iterator I
, const T
&Elt
) {
498 if (I
== this->end()) { // Important special case for empty vector.
499 this->push_back(Elt
);
500 return this->end()-1;
503 assert(I
>= this->begin() && "Insertion iterator is out of bounds.");
504 assert(I
<= this->end() && "Inserting past the end of the vector.");
506 if (this->size() >= this->capacity()) {
507 size_t EltNo
= I
-this->begin();
509 I
= this->begin()+EltNo
;
511 ::new ((void*) this->end()) T(std::move(this->back()));
512 // Push everything else over.
513 std::move_backward(I
, this->end()-1, this->end());
514 this->set_size(this->size() + 1);
516 // If we just moved the element we're inserting, be sure to update
518 const T
*EltPtr
= &Elt
;
519 if (I
<= EltPtr
&& EltPtr
< this->end())
526 iterator
insert(iterator I
, size_type NumToInsert
, const T
&Elt
) {
527 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
528 size_t InsertElt
= I
- this->begin();
530 if (I
== this->end()) { // Important special case for empty vector.
531 append(NumToInsert
, Elt
);
532 return this->begin()+InsertElt
;
535 assert(I
>= this->begin() && "Insertion iterator is out of bounds.");
536 assert(I
<= this->end() && "Inserting past the end of the vector.");
538 // Ensure there is enough space.
539 reserve(this->size() + NumToInsert
);
541 // Uninvalidate the iterator.
542 I
= this->begin()+InsertElt
;
544 // If there are more elements between the insertion point and the end of the
545 // range than there are being inserted, we can use a simple approach to
546 // insertion. Since we already reserved space, we know that this won't
547 // reallocate the vector.
548 if (size_t(this->end()-I
) >= NumToInsert
) {
549 T
*OldEnd
= this->end();
550 append(std::move_iterator
<iterator
>(this->end() - NumToInsert
),
551 std::move_iterator
<iterator
>(this->end()));
553 // Copy the existing elements that get replaced.
554 std::move_backward(I
, OldEnd
-NumToInsert
, OldEnd
);
556 std::fill_n(I
, NumToInsert
, Elt
);
560 // Otherwise, we're inserting more elements than exist already, and we're
561 // not inserting at the end.
563 // Move over the elements that we're about to overwrite.
564 T
*OldEnd
= this->end();
565 this->set_size(this->size() + NumToInsert
);
566 size_t NumOverwritten
= OldEnd
-I
;
567 this->uninitialized_move(I
, OldEnd
, this->end()-NumOverwritten
);
569 // Replace the overwritten part.
570 std::fill_n(I
, NumOverwritten
, Elt
);
572 // Insert the non-overwritten middle part.
573 std::uninitialized_fill_n(OldEnd
, NumToInsert
-NumOverwritten
, Elt
);
577 template <typename ItTy
,
578 typename
= typename
std::enable_if
<std::is_convertible
<
579 typename
std::iterator_traits
<ItTy
>::iterator_category
,
580 std::input_iterator_tag
>::value
>::type
>
581 iterator
insert(iterator I
, ItTy From
, ItTy To
) {
582 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
583 size_t InsertElt
= I
- this->begin();
585 if (I
== this->end()) { // Important special case for empty vector.
587 return this->begin()+InsertElt
;
590 assert(I
>= this->begin() && "Insertion iterator is out of bounds.");
591 assert(I
<= this->end() && "Inserting past the end of the vector.");
593 size_t NumToInsert
= std::distance(From
, To
);
595 // Ensure there is enough space.
596 reserve(this->size() + NumToInsert
);
598 // Uninvalidate the iterator.
599 I
= this->begin()+InsertElt
;
601 // If there are more elements between the insertion point and the end of the
602 // range than there are being inserted, we can use a simple approach to
603 // insertion. Since we already reserved space, we know that this won't
604 // reallocate the vector.
605 if (size_t(this->end()-I
) >= NumToInsert
) {
606 T
*OldEnd
= this->end();
607 append(std::move_iterator
<iterator
>(this->end() - NumToInsert
),
608 std::move_iterator
<iterator
>(this->end()));
610 // Copy the existing elements that get replaced.
611 std::move_backward(I
, OldEnd
-NumToInsert
, OldEnd
);
613 std::copy(From
, To
, I
);
617 // Otherwise, we're inserting more elements than exist already, and we're
618 // not inserting at the end.
620 // Move over the elements that we're about to overwrite.
621 T
*OldEnd
= this->end();
622 this->set_size(this->size() + NumToInsert
);
623 size_t NumOverwritten
= OldEnd
-I
;
624 this->uninitialized_move(I
, OldEnd
, this->end()-NumOverwritten
);
626 // Replace the overwritten part.
627 for (T
*J
= I
; NumOverwritten
> 0; --NumOverwritten
) {
632 // Insert the non-overwritten middle part.
633 this->uninitialized_copy(From
, To
, OldEnd
);
637 void insert(iterator I
, std::initializer_list
<T
> IL
) {
638 insert(I
, IL
.begin(), IL
.end());
641 template <typename
... ArgTypes
> reference
emplace_back(ArgTypes
&&... Args
) {
642 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
644 ::new ((void *)this->end()) T(std::forward
<ArgTypes
>(Args
)...);
645 this->set_size(this->size() + 1);
649 SmallVectorImpl
&operator=(const SmallVectorImpl
&RHS
);
651 SmallVectorImpl
&operator=(SmallVectorImpl
&&RHS
);
653 bool operator==(const SmallVectorImpl
&RHS
) const {
654 if (this->size() != RHS
.size()) return false;
655 return std::equal(this->begin(), this->end(), RHS
.begin());
657 bool operator!=(const SmallVectorImpl
&RHS
) const {
658 return !(*this == RHS
);
661 bool operator<(const SmallVectorImpl
&RHS
) const {
662 return std::lexicographical_compare(this->begin(), this->end(),
663 RHS
.begin(), RHS
.end());
667 template <typename T
>
668 void SmallVectorImpl
<T
>::swap(SmallVectorImpl
<T
> &RHS
) {
669 if (this == &RHS
) return;
671 // We can only avoid copying elements if neither vector is small.
672 if (!this->isSmall() && !RHS
.isSmall()) {
673 std::swap(this->BeginX
, RHS
.BeginX
);
674 std::swap(this->Size
, RHS
.Size
);
675 std::swap(this->Capacity
, RHS
.Capacity
);
678 if (RHS
.size() > this->capacity())
679 this->grow(RHS
.size());
680 if (this->size() > RHS
.capacity())
681 RHS
.grow(this->size());
683 // Swap the shared elements.
684 size_t NumShared
= this->size();
685 if (NumShared
> RHS
.size()) NumShared
= RHS
.size();
686 for (size_type i
= 0; i
!= NumShared
; ++i
)
687 std::swap((*this)[i
], RHS
[i
]);
689 // Copy over the extra elts.
690 if (this->size() > RHS
.size()) {
691 size_t EltDiff
= this->size() - RHS
.size();
692 this->uninitialized_copy(this->begin()+NumShared
, this->end(), RHS
.end());
693 RHS
.set_size(RHS
.size() + EltDiff
);
694 this->destroy_range(this->begin()+NumShared
, this->end());
695 this->set_size(NumShared
);
696 } else if (RHS
.size() > this->size()) {
697 size_t EltDiff
= RHS
.size() - this->size();
698 this->uninitialized_copy(RHS
.begin()+NumShared
, RHS
.end(), this->end());
699 this->set_size(this->size() + EltDiff
);
700 this->destroy_range(RHS
.begin()+NumShared
, RHS
.end());
701 RHS
.set_size(NumShared
);
705 template <typename T
>
706 SmallVectorImpl
<T
> &SmallVectorImpl
<T
>::
707 operator=(const SmallVectorImpl
<T
> &RHS
) {
708 // Avoid self-assignment.
709 if (this == &RHS
) return *this;
711 // If we already have sufficient space, assign the common elements, then
712 // destroy any excess.
713 size_t RHSSize
= RHS
.size();
714 size_t CurSize
= this->size();
715 if (CurSize
>= RHSSize
) {
716 // Assign common elements.
719 NewEnd
= std::copy(RHS
.begin(), RHS
.begin()+RHSSize
, this->begin());
721 NewEnd
= this->begin();
723 // Destroy excess elements.
724 this->destroy_range(NewEnd
, this->end());
727 this->set_size(RHSSize
);
731 // If we have to grow to have enough elements, destroy the current elements.
732 // This allows us to avoid copying them during the grow.
733 // FIXME: don't do this if they're efficiently moveable.
734 if (this->capacity() < RHSSize
) {
735 // Destroy current elements.
736 this->destroy_range(this->begin(), this->end());
740 } else if (CurSize
) {
741 // Otherwise, use assignment for the already-constructed elements.
742 std::copy(RHS
.begin(), RHS
.begin()+CurSize
, this->begin());
745 // Copy construct the new elements in place.
746 this->uninitialized_copy(RHS
.begin()+CurSize
, RHS
.end(),
747 this->begin()+CurSize
);
750 this->set_size(RHSSize
);
754 template <typename T
>
755 SmallVectorImpl
<T
> &SmallVectorImpl
<T
>::operator=(SmallVectorImpl
<T
> &&RHS
) {
756 // Avoid self-assignment.
757 if (this == &RHS
) return *this;
759 // If the RHS isn't small, clear this vector and then steal its buffer.
760 if (!RHS
.isSmall()) {
761 this->destroy_range(this->begin(), this->end());
762 if (!this->isSmall()) free(this->begin());
763 this->BeginX
= RHS
.BeginX
;
764 this->Size
= RHS
.Size
;
765 this->Capacity
= RHS
.Capacity
;
770 // If we already have sufficient space, assign the common elements, then
771 // destroy any excess.
772 size_t RHSSize
= RHS
.size();
773 size_t CurSize
= this->size();
774 if (CurSize
>= RHSSize
) {
775 // Assign common elements.
776 iterator NewEnd
= this->begin();
778 NewEnd
= std::move(RHS
.begin(), RHS
.end(), NewEnd
);
780 // Destroy excess elements and trim the bounds.
781 this->destroy_range(NewEnd
, this->end());
782 this->set_size(RHSSize
);
790 // If we have to grow to have enough elements, destroy the current elements.
791 // This allows us to avoid copying them during the grow.
792 // FIXME: this may not actually make any sense if we can efficiently move
794 if (this->capacity() < RHSSize
) {
795 // Destroy current elements.
796 this->destroy_range(this->begin(), this->end());
800 } else if (CurSize
) {
801 // Otherwise, use assignment for the already-constructed elements.
802 std::move(RHS
.begin(), RHS
.begin()+CurSize
, this->begin());
805 // Move-construct the new elements in place.
806 this->uninitialized_move(RHS
.begin()+CurSize
, RHS
.end(),
807 this->begin()+CurSize
);
810 this->set_size(RHSSize
);
816 /// Storage for the SmallVector elements. This is specialized for the N=0 case
817 /// to avoid allocating unnecessary storage.
818 template <typename T
, unsigned N
>
819 struct SmallVectorStorage
{
820 AlignedCharArrayUnion
<T
> InlineElts
[N
];
823 /// We need the storage to be properly aligned even for small-size of 0 so that
824 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
826 template <typename T
> struct alignas(alignof(T
)) SmallVectorStorage
<T
, 0> {};
828 /// This is a 'vector' (really, a variable-sized array), optimized
829 /// for the case when the array is small. It contains some number of elements
830 /// in-place, which allows it to avoid heap allocation when the actual number of
831 /// elements is below that threshold. This allows normal "small" cases to be
832 /// fast without losing generality for large inputs.
834 /// Note that this does not attempt to be exception safe.
836 template <typename T
, unsigned N
>
837 class SmallVector
: public SmallVectorImpl
<T
>, SmallVectorStorage
<T
, N
> {
839 SmallVector() : SmallVectorImpl
<T
>(N
) {}
842 // Destroy the constructed elements in the vector.
843 this->destroy_range(this->begin(), this->end());
846 explicit SmallVector(size_t Size
, const T
&Value
= T())
847 : SmallVectorImpl
<T
>(N
) {
848 this->assign(Size
, Value
);
851 template <typename ItTy
,
852 typename
= typename
std::enable_if
<std::is_convertible
<
853 typename
std::iterator_traits
<ItTy
>::iterator_category
,
854 std::input_iterator_tag
>::value
>::type
>
855 SmallVector(ItTy S
, ItTy E
) : SmallVectorImpl
<T
>(N
) {
859 template <typename RangeTy
>
860 explicit SmallVector(const iterator_range
<RangeTy
> &R
)
861 : SmallVectorImpl
<T
>(N
) {
862 this->append(R
.begin(), R
.end());
865 SmallVector(std::initializer_list
<T
> IL
) : SmallVectorImpl
<T
>(N
) {
869 SmallVector(const SmallVector
&RHS
) : SmallVectorImpl
<T
>(N
) {
871 SmallVectorImpl
<T
>::operator=(RHS
);
874 const SmallVector
&operator=(const SmallVector
&RHS
) {
875 SmallVectorImpl
<T
>::operator=(RHS
);
879 SmallVector(SmallVector
&&RHS
) : SmallVectorImpl
<T
>(N
) {
881 SmallVectorImpl
<T
>::operator=(::std::move(RHS
));
884 SmallVector(SmallVectorImpl
<T
> &&RHS
) : SmallVectorImpl
<T
>(N
) {
886 SmallVectorImpl
<T
>::operator=(::std::move(RHS
));
889 const SmallVector
&operator=(SmallVector
&&RHS
) {
890 SmallVectorImpl
<T
>::operator=(::std::move(RHS
));
894 const SmallVector
&operator=(SmallVectorImpl
<T
> &&RHS
) {
895 SmallVectorImpl
<T
>::operator=(::std::move(RHS
));
899 const SmallVector
&operator=(std::initializer_list
<T
> IL
) {
905 template <typename T
, unsigned N
>
906 inline size_t capacity_in_bytes(const SmallVector
<T
, N
> &X
) {
907 return X
.capacity_in_bytes();
910 } // end namespace llvm
914 /// Implement std::swap in terms of SmallVector swap.
917 swap(llvm::SmallVectorImpl
<T
> &LHS
, llvm::SmallVectorImpl
<T
> &RHS
) {
921 /// Implement std::swap in terms of SmallVector swap.
922 template<typename T
, unsigned N
>
924 swap(llvm::SmallVector
<T
, N
> &LHS
, llvm::SmallVector
<T
, N
> &RHS
) {
928 } // end namespace std
930 #endif // LLVM_ADT_SMALLVECTOR_H