[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / X86 / X86ISelLowering.h
blobfbc9509f058ddc7b4d5aa9a7b0af26167ab6939c
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
21 namespace llvm {
22 class X86Subtarget;
23 class X86TargetMachine;
25 namespace X86ISD {
26 // X86 Specific DAG Nodes
27 enum NodeType : unsigned {
28 // Start the numbering where the builtin ops leave off.
29 FIRST_NUMBER = ISD::BUILTIN_OP_END,
31 /// Bit scan forward.
32 BSF,
33 /// Bit scan reverse.
34 BSR,
36 /// Double shift instructions. These correspond to
37 /// X86::SHLDxx and X86::SHRDxx instructions.
38 SHLD,
39 SHRD,
41 /// Bitwise logical AND of floating point values. This corresponds
42 /// to X86::ANDPS or X86::ANDPD.
43 FAND,
45 /// Bitwise logical OR of floating point values. This corresponds
46 /// to X86::ORPS or X86::ORPD.
47 FOR,
49 /// Bitwise logical XOR of floating point values. This corresponds
50 /// to X86::XORPS or X86::XORPD.
51 FXOR,
53 /// Bitwise logical ANDNOT of floating point values. This
54 /// corresponds to X86::ANDNPS or X86::ANDNPD.
55 FANDN,
57 /// These operations represent an abstract X86 call
58 /// instruction, which includes a bunch of information. In particular the
59 /// operands of these node are:
60 ///
61 /// #0 - The incoming token chain
62 /// #1 - The callee
63 /// #2 - The number of arg bytes the caller pushes on the stack.
64 /// #3 - The number of arg bytes the callee pops off the stack.
65 /// #4 - The value to pass in AL/AX/EAX (optional)
66 /// #5 - The value to pass in DL/DX/EDX (optional)
67 ///
68 /// The result values of these nodes are:
69 ///
70 /// #0 - The outgoing token chain
71 /// #1 - The first register result value (optional)
72 /// #2 - The second register result value (optional)
73 ///
74 CALL,
76 /// Same as call except it adds the NoTrack prefix.
77 NT_CALL,
79 /// X86 compare and logical compare instructions.
80 CMP, COMI, UCOMI,
82 /// X86 bit-test instructions.
83 BT,
85 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
86 /// operand, usually produced by a CMP instruction.
87 SETCC,
89 /// X86 Select
90 SELECTS,
92 // Same as SETCC except it's materialized with a sbb and the value is all
93 // one's or all zero's.
94 SETCC_CARRY, // R = carry_bit ? ~0 : 0
96 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
97 /// Operands are two FP values to compare; result is a mask of
98 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
99 FSETCC,
101 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
102 /// and a version with SAE.
103 FSETCCM, FSETCCM_SAE,
105 /// X86 conditional moves. Operand 0 and operand 1 are the two values
106 /// to select from. Operand 2 is the condition code, and operand 3 is the
107 /// flag operand produced by a CMP or TEST instruction.
108 CMOV,
110 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
111 /// is the block to branch if condition is true, operand 2 is the
112 /// condition code, and operand 3 is the flag operand produced by a CMP
113 /// or TEST instruction.
114 BRCOND,
116 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
117 /// operand 1 is the target address.
118 NT_BRIND,
120 /// Return with a flag operand. Operand 0 is the chain operand, operand
121 /// 1 is the number of bytes of stack to pop.
122 RET_FLAG,
124 /// Return from interrupt. Operand 0 is the number of bytes to pop.
125 IRET,
127 /// Repeat fill, corresponds to X86::REP_STOSx.
128 REP_STOS,
130 /// Repeat move, corresponds to X86::REP_MOVSx.
131 REP_MOVS,
133 /// On Darwin, this node represents the result of the popl
134 /// at function entry, used for PIC code.
135 GlobalBaseReg,
137 /// A wrapper node for TargetConstantPool, TargetJumpTable,
138 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
139 /// MCSymbol and TargetBlockAddress.
140 Wrapper,
142 /// Special wrapper used under X86-64 PIC mode for RIP
143 /// relative displacements.
144 WrapperRIP,
146 /// Copies a 64-bit value from an MMX vector to the low word
147 /// of an XMM vector, with the high word zero filled.
148 MOVQ2DQ,
150 /// Copies a 64-bit value from the low word of an XMM vector
151 /// to an MMX vector.
152 MOVDQ2Q,
154 /// Copies a 32-bit value from the low word of a MMX
155 /// vector to a GPR.
156 MMX_MOVD2W,
158 /// Copies a GPR into the low 32-bit word of a MMX vector
159 /// and zero out the high word.
160 MMX_MOVW2D,
162 /// Extract an 8-bit value from a vector and zero extend it to
163 /// i32, corresponds to X86::PEXTRB.
164 PEXTRB,
166 /// Extract a 16-bit value from a vector and zero extend it to
167 /// i32, corresponds to X86::PEXTRW.
168 PEXTRW,
170 /// Insert any element of a 4 x float vector into any element
171 /// of a destination 4 x floatvector.
172 INSERTPS,
174 /// Insert the lower 8-bits of a 32-bit value to a vector,
175 /// corresponds to X86::PINSRB.
176 PINSRB,
178 /// Insert the lower 16-bits of a 32-bit value to a vector,
179 /// corresponds to X86::PINSRW.
180 PINSRW,
182 /// Shuffle 16 8-bit values within a vector.
183 PSHUFB,
185 /// Compute Sum of Absolute Differences.
186 PSADBW,
187 /// Compute Double Block Packed Sum-Absolute-Differences
188 DBPSADBW,
190 /// Bitwise Logical AND NOT of Packed FP values.
191 ANDNP,
193 /// Blend where the selector is an immediate.
194 BLENDI,
196 /// Dynamic (non-constant condition) vector blend where only the sign bits
197 /// of the condition elements are used. This is used to enforce that the
198 /// condition mask is not valid for generic VSELECT optimizations. This
199 /// is also used to implement the intrinsics.
200 /// Operands are in VSELECT order: MASK, TRUE, FALSE
201 BLENDV,
203 /// Combined add and sub on an FP vector.
204 ADDSUB,
206 // FP vector ops with rounding mode.
207 FADD_RND, FADDS, FADDS_RND,
208 FSUB_RND, FSUBS, FSUBS_RND,
209 FMUL_RND, FMULS, FMULS_RND,
210 FDIV_RND, FDIVS, FDIVS_RND,
211 FMAX_SAE, FMAXS_SAE,
212 FMIN_SAE, FMINS_SAE,
213 FSQRT_RND, FSQRTS, FSQRTS_RND,
215 // FP vector get exponent.
216 FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
217 // Extract Normalized Mantissas.
218 VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
219 // FP Scale.
220 SCALEF, SCALEF_RND,
221 SCALEFS, SCALEFS_RND,
223 // Unsigned Integer average.
224 AVG,
226 /// Integer horizontal add/sub.
227 HADD,
228 HSUB,
230 /// Floating point horizontal add/sub.
231 FHADD,
232 FHSUB,
234 // Detect Conflicts Within a Vector
235 CONFLICT,
237 /// Floating point max and min.
238 FMAX, FMIN,
240 /// Commutative FMIN and FMAX.
241 FMAXC, FMINC,
243 /// Scalar intrinsic floating point max and min.
244 FMAXS, FMINS,
246 /// Floating point reciprocal-sqrt and reciprocal approximation.
247 /// Note that these typically require refinement
248 /// in order to obtain suitable precision.
249 FRSQRT, FRCP,
251 // AVX-512 reciprocal approximations with a little more precision.
252 RSQRT14, RSQRT14S, RCP14, RCP14S,
254 // Thread Local Storage.
255 TLSADDR,
257 // Thread Local Storage. A call to get the start address
258 // of the TLS block for the current module.
259 TLSBASEADDR,
261 // Thread Local Storage. When calling to an OS provided
262 // thunk at the address from an earlier relocation.
263 TLSCALL,
265 // Exception Handling helpers.
266 EH_RETURN,
268 // SjLj exception handling setjmp.
269 EH_SJLJ_SETJMP,
271 // SjLj exception handling longjmp.
272 EH_SJLJ_LONGJMP,
274 // SjLj exception handling dispatch.
275 EH_SJLJ_SETUP_DISPATCH,
277 /// Tail call return. See X86TargetLowering::LowerCall for
278 /// the list of operands.
279 TC_RETURN,
281 // Vector move to low scalar and zero higher vector elements.
282 VZEXT_MOVL,
284 // Vector integer truncate.
285 VTRUNC,
286 // Vector integer truncate with unsigned/signed saturation.
287 VTRUNCUS, VTRUNCS,
289 // Masked version of the above. Used when less than a 128-bit result is
290 // produced since the mask only applies to the lower elements and can't
291 // be represented by a select.
292 // SRC, PASSTHRU, MASK
293 VMTRUNC, VMTRUNCUS, VMTRUNCS,
295 // Vector FP extend.
296 VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,
298 // Vector FP round.
299 VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,
301 // Masked version of above. Used for v2f64->v4f32.
302 // SRC, PASSTHRU, MASK
303 VMFPROUND,
305 // 128-bit vector logical left / right shift
306 VSHLDQ, VSRLDQ,
308 // Vector shift elements
309 VSHL, VSRL, VSRA,
311 // Vector variable shift
312 VSHLV, VSRLV, VSRAV,
314 // Vector shift elements by immediate
315 VSHLI, VSRLI, VSRAI,
317 // Shifts of mask registers.
318 KSHIFTL, KSHIFTR,
320 // Bit rotate by immediate
321 VROTLI, VROTRI,
323 // Vector packed double/float comparison.
324 CMPP,
326 // Vector integer comparisons.
327 PCMPEQ, PCMPGT,
329 // v8i16 Horizontal minimum and position.
330 PHMINPOS,
332 MULTISHIFT,
334 /// Vector comparison generating mask bits for fp and
335 /// integer signed and unsigned data types.
336 CMPM,
337 // Vector comparison with SAE for FP values
338 CMPM_SAE,
340 // Arithmetic operations with FLAGS results.
341 ADD, SUB, ADC, SBB, SMUL, UMUL,
342 OR, XOR, AND,
344 // Bit field extract.
345 BEXTR,
347 // Zero High Bits Starting with Specified Bit Position.
348 BZHI,
350 // X86-specific multiply by immediate.
351 MUL_IMM,
353 // Vector sign bit extraction.
354 MOVMSK,
356 // Vector bitwise comparisons.
357 PTEST,
359 // Vector packed fp sign bitwise comparisons.
360 TESTP,
362 // OR/AND test for masks.
363 KORTEST,
364 KTEST,
366 // ADD for masks.
367 KADD,
369 // Several flavors of instructions with vector shuffle behaviors.
370 // Saturated signed/unnsigned packing.
371 PACKSS,
372 PACKUS,
373 // Intra-lane alignr.
374 PALIGNR,
375 // AVX512 inter-lane alignr.
376 VALIGN,
377 PSHUFD,
378 PSHUFHW,
379 PSHUFLW,
380 SHUFP,
381 // VBMI2 Concat & Shift.
382 VSHLD,
383 VSHRD,
384 VSHLDV,
385 VSHRDV,
386 //Shuffle Packed Values at 128-bit granularity.
387 SHUF128,
388 MOVDDUP,
389 MOVSHDUP,
390 MOVSLDUP,
391 MOVLHPS,
392 MOVHLPS,
393 MOVSD,
394 MOVSS,
395 UNPCKL,
396 UNPCKH,
397 VPERMILPV,
398 VPERMILPI,
399 VPERMI,
400 VPERM2X128,
402 // Variable Permute (VPERM).
403 // Res = VPERMV MaskV, V0
404 VPERMV,
406 // 3-op Variable Permute (VPERMT2).
407 // Res = VPERMV3 V0, MaskV, V1
408 VPERMV3,
410 // Bitwise ternary logic.
411 VPTERNLOG,
412 // Fix Up Special Packed Float32/64 values.
413 VFIXUPIMM, VFIXUPIMM_SAE,
414 VFIXUPIMMS, VFIXUPIMMS_SAE,
415 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
416 VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
417 // Reduce - Perform Reduction Transformation on scalar\packed FP.
418 VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
419 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
420 // Also used by the legacy (V)ROUND intrinsics where we mask out the
421 // scaling part of the immediate.
422 VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
423 // Tests Types Of a FP Values for packed types.
424 VFPCLASS,
425 // Tests Types Of a FP Values for scalar types.
426 VFPCLASSS,
428 // Broadcast scalar to vector.
429 VBROADCAST,
430 // Broadcast mask to vector.
431 VBROADCASTM,
432 // Broadcast subvector to vector.
433 SUBV_BROADCAST,
435 /// SSE4A Extraction and Insertion.
436 EXTRQI, INSERTQI,
438 // XOP arithmetic/logical shifts.
439 VPSHA, VPSHL,
440 // XOP signed/unsigned integer comparisons.
441 VPCOM, VPCOMU,
442 // XOP packed permute bytes.
443 VPPERM,
444 // XOP two source permutation.
445 VPERMIL2,
447 // Vector multiply packed unsigned doubleword integers.
448 PMULUDQ,
449 // Vector multiply packed signed doubleword integers.
450 PMULDQ,
451 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
452 MULHRS,
454 // Multiply and Add Packed Integers.
455 VPMADDUBSW, VPMADDWD,
457 // AVX512IFMA multiply and add.
458 // NOTE: These are different than the instruction and perform
459 // op0 x op1 + op2.
460 VPMADD52L, VPMADD52H,
462 // VNNI
463 VPDPBUSD,
464 VPDPBUSDS,
465 VPDPWSSD,
466 VPDPWSSDS,
468 // FMA nodes.
469 // We use the target independent ISD::FMA for the non-inverted case.
470 FNMADD,
471 FMSUB,
472 FNMSUB,
473 FMADDSUB,
474 FMSUBADD,
476 // FMA with rounding mode.
477 FMADD_RND,
478 FNMADD_RND,
479 FMSUB_RND,
480 FNMSUB_RND,
481 FMADDSUB_RND,
482 FMSUBADD_RND,
484 // Compress and expand.
485 COMPRESS,
486 EXPAND,
488 // Bits shuffle
489 VPSHUFBITQMB,
491 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
492 SINT_TO_FP_RND, UINT_TO_FP_RND,
493 SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
494 SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,
496 // Vector float/double to signed/unsigned integer.
497 CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
498 // Scalar float/double to signed/unsigned integer.
499 CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,
501 // Vector float/double to signed/unsigned integer with truncation.
502 CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
503 // Scalar float/double to signed/unsigned integer with truncation.
504 CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,
506 // Vector signed/unsigned integer to float/double.
507 CVTSI2P, CVTUI2P,
509 // Masked versions of above. Used for v2f64->v4f32.
510 // SRC, PASSTHRU, MASK
511 MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
512 MCVTSI2P, MCVTUI2P,
514 // Vector float to bfloat16.
515 // Convert TWO packed single data to one packed BF16 data
516 CVTNE2PS2BF16,
517 // Convert packed single data to packed BF16 data
518 CVTNEPS2BF16,
519 // Masked version of above.
520 // SRC, PASSTHRU, MASK
521 MCVTNEPS2BF16,
523 // Dot product of BF16 pairs to accumulated into
524 // packed single precision.
525 DPBF16PS,
527 // Save xmm argument registers to the stack, according to %al. An operator
528 // is needed so that this can be expanded with control flow.
529 VASTART_SAVE_XMM_REGS,
531 // Windows's _chkstk call to do stack probing.
532 WIN_ALLOCA,
534 // For allocating variable amounts of stack space when using
535 // segmented stacks. Check if the current stacklet has enough space, and
536 // falls back to heap allocation if not.
537 SEG_ALLOCA,
539 // Memory barriers.
540 MEMBARRIER,
541 MFENCE,
543 // Store FP status word into i16 register.
544 FNSTSW16r,
546 // Store contents of %ah into %eflags.
547 SAHF,
549 // Get a random integer and indicate whether it is valid in CF.
550 RDRAND,
552 // Get a NIST SP800-90B & C compliant random integer and
553 // indicate whether it is valid in CF.
554 RDSEED,
556 // Protection keys
557 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
558 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
559 // value for ECX.
560 RDPKRU, WRPKRU,
562 // SSE42 string comparisons.
563 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
564 // will emit one or two instructions based on which results are used. If
565 // flags and index/mask this allows us to use a single instruction since
566 // we won't have to pick and opcode for flags. Instead we can rely on the
567 // DAG to CSE everything and decide at isel.
568 PCMPISTR,
569 PCMPESTR,
571 // Test if in transactional execution.
572 XTEST,
574 // ERI instructions.
575 RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
576 RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,
578 // Conversions between float and half-float.
579 CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,
581 // Masked version of above.
582 // SRC, RND, PASSTHRU, MASK
583 MCVTPS2PH,
585 // Galois Field Arithmetic Instructions
586 GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,
588 // LWP insert record.
589 LWPINS,
591 // User level wait
592 UMWAIT, TPAUSE,
594 // Enqueue Stores Instructions
595 ENQCMD, ENQCMDS,
597 // For avx512-vp2intersect
598 VP2INTERSECT,
600 // Compare and swap.
601 LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
602 LCMPXCHG8_DAG,
603 LCMPXCHG16_DAG,
604 LCMPXCHG8_SAVE_EBX_DAG,
605 LCMPXCHG16_SAVE_RBX_DAG,
607 /// LOCK-prefixed arithmetic read-modify-write instructions.
608 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
609 LADD, LSUB, LOR, LXOR, LAND,
611 // Load, scalar_to_vector, and zero extend.
612 VZEXT_LOAD,
614 // extract_vector_elt, store.
615 VEXTRACT_STORE,
617 // Store FP control world into i16 memory.
618 FNSTCW16m,
620 /// This instruction implements FP_TO_SINT with the
621 /// integer destination in memory and a FP reg source. This corresponds
622 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
623 /// has two inputs (token chain and address) and two outputs (int value
624 /// and token chain). Memory VT specifies the type to store to.
625 FP_TO_INT_IN_MEM,
627 /// This instruction implements SINT_TO_FP with the
628 /// integer source in memory and FP reg result. This corresponds to the
629 /// X86::FILD*m instructions. It has two inputs (token chain and address)
630 /// and two outputs (FP value and token chain). FILD_FLAG also produces a
631 /// flag). The integer source type is specified by the memory VT.
632 FILD,
633 FILD_FLAG,
635 /// This instruction implements a fp->int store from FP stack
636 /// slots. This corresponds to the fist instruction. It takes a
637 /// chain operand, value to store, address, and glue. The memory VT
638 /// specifies the type to store as.
639 FIST,
641 /// This instruction implements an extending load to FP stack slots.
642 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
643 /// operand, and ptr to load from. The memory VT specifies the type to
644 /// load from.
645 FLD,
647 /// This instruction implements a truncating store from FP stack
648 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
649 /// chain operand, value to store, address, and glue. The memory VT
650 /// specifies the type to store as.
651 FST,
653 /// This instruction grabs the address of the next argument
654 /// from a va_list. (reads and modifies the va_list in memory)
655 VAARG_64,
657 // Vector truncating store with unsigned/signed saturation
658 VTRUNCSTOREUS, VTRUNCSTORES,
659 // Vector truncating masked store with unsigned/signed saturation
660 VMTRUNCSTOREUS, VMTRUNCSTORES,
662 // X86 specific gather and scatter
663 MGATHER, MSCATTER,
665 // WARNING: Do not add anything in the end unless you want the node to
666 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
667 // opcodes will be thought as target memory ops!
669 } // end namespace X86ISD
671 /// Define some predicates that are used for node matching.
672 namespace X86 {
673 /// Returns true if Elt is a constant zero or floating point constant +0.0.
674 bool isZeroNode(SDValue Elt);
676 /// Returns true of the given offset can be
677 /// fit into displacement field of the instruction.
678 bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
679 bool hasSymbolicDisplacement = true);
681 /// Determines whether the callee is required to pop its
682 /// own arguments. Callee pop is necessary to support tail calls.
683 bool isCalleePop(CallingConv::ID CallingConv,
684 bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
686 /// If Op is a constant whose elements are all the same constant or
687 /// undefined, return true and return the constant value in \p SplatVal.
688 bool isConstantSplat(SDValue Op, APInt &SplatVal);
689 } // end namespace X86
691 //===--------------------------------------------------------------------===//
692 // X86 Implementation of the TargetLowering interface
693 class X86TargetLowering final : public TargetLowering {
694 public:
695 explicit X86TargetLowering(const X86TargetMachine &TM,
696 const X86Subtarget &STI);
698 unsigned getJumpTableEncoding() const override;
699 bool useSoftFloat() const override;
701 void markLibCallAttributes(MachineFunction *MF, unsigned CC,
702 ArgListTy &Args) const override;
704 MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
705 return MVT::i8;
708 const MCExpr *
709 LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
710 const MachineBasicBlock *MBB, unsigned uid,
711 MCContext &Ctx) const override;
713 /// Returns relocation base for the given PIC jumptable.
714 SDValue getPICJumpTableRelocBase(SDValue Table,
715 SelectionDAG &DAG) const override;
716 const MCExpr *
717 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
718 unsigned JTI, MCContext &Ctx) const override;
720 /// Return the desired alignment for ByVal aggregate
721 /// function arguments in the caller parameter area. For X86, aggregates
722 /// that contains are placed at 16-byte boundaries while the rest are at
723 /// 4-byte boundaries.
724 unsigned getByValTypeAlignment(Type *Ty,
725 const DataLayout &DL) const override;
727 /// Returns the target specific optimal type for load
728 /// and store operations as a result of memset, memcpy, and memmove
729 /// lowering. If DstAlign is zero that means it's safe to destination
730 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
731 /// means there isn't a need to check it against alignment requirement,
732 /// probably because the source does not need to be loaded. If 'IsMemset' is
733 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
734 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
735 /// source is constant so it does not need to be loaded.
736 /// It returns EVT::Other if the type should be determined using generic
737 /// target-independent logic.
738 EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
739 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
740 const AttributeList &FuncAttributes) const override;
742 /// Returns true if it's safe to use load / store of the
743 /// specified type to expand memcpy / memset inline. This is mostly true
744 /// for all types except for some special cases. For example, on X86
745 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
746 /// also does type conversion. Note the specified type doesn't have to be
747 /// legal as the hook is used before type legalization.
748 bool isSafeMemOpType(MVT VT) const override;
750 /// Returns true if the target allows unaligned memory accesses of the
751 /// specified type. Returns whether it is "fast" in the last argument.
752 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
753 MachineMemOperand::Flags Flags,
754 bool *Fast) const override;
756 /// Provide custom lowering hooks for some operations.
758 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
760 /// Places new result values for the node in Results (their number
761 /// and types must exactly match those of the original return values of
762 /// the node), or leaves Results empty, which indicates that the node is not
763 /// to be custom lowered after all.
764 void LowerOperationWrapper(SDNode *N,
765 SmallVectorImpl<SDValue> &Results,
766 SelectionDAG &DAG) const override;
768 /// Replace the results of node with an illegal result
769 /// type with new values built out of custom code.
771 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
772 SelectionDAG &DAG) const override;
774 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
776 // Return true if it is profitable to combine a BUILD_VECTOR with a
777 // stride-pattern to a shuffle and a truncate.
778 // Example of such a combine:
779 // v4i32 build_vector((extract_elt V, 1),
780 // (extract_elt V, 3),
781 // (extract_elt V, 5),
782 // (extract_elt V, 7))
783 // -->
784 // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
785 // v4i64)
786 bool isDesirableToCombineBuildVectorToShuffleTruncate(
787 ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;
789 /// Return true if the target has native support for
790 /// the specified value type and it is 'desirable' to use the type for the
791 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
792 /// instruction encodings are longer and some i16 instructions are slow.
793 bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
795 /// Return true if the target has native support for the
796 /// specified value type and it is 'desirable' to use the type. e.g. On x86
797 /// i16 is legal, but undesirable since i16 instruction encodings are longer
798 /// and some i16 instructions are slow.
799 bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
801 MachineBasicBlock *
802 EmitInstrWithCustomInserter(MachineInstr &MI,
803 MachineBasicBlock *MBB) const override;
805 /// This method returns the name of a target specific DAG node.
806 const char *getTargetNodeName(unsigned Opcode) const override;
808 /// Do not merge vector stores after legalization because that may conflict
809 /// with x86-specific store splitting optimizations.
810 bool mergeStoresAfterLegalization(EVT MemVT) const override {
811 return !MemVT.isVector();
814 bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
815 const SelectionDAG &DAG) const override;
817 bool isCheapToSpeculateCttz() const override;
819 bool isCheapToSpeculateCtlz() const override;
821 bool isCtlzFast() const override;
823 bool hasBitPreservingFPLogic(EVT VT) const override {
824 return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
827 bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
828 // If the pair to store is a mixture of float and int values, we will
829 // save two bitwise instructions and one float-to-int instruction and
830 // increase one store instruction. There is potentially a more
831 // significant benefit because it avoids the float->int domain switch
832 // for input value. So It is more likely a win.
833 if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
834 (LTy.isInteger() && HTy.isFloatingPoint()))
835 return true;
836 // If the pair only contains int values, we will save two bitwise
837 // instructions and increase one store instruction (costing one more
838 // store buffer). Since the benefit is more blurred so we leave
839 // such pair out until we get testcase to prove it is a win.
840 return false;
843 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
845 bool hasAndNotCompare(SDValue Y) const override;
847 bool hasAndNot(SDValue Y) const override;
849 bool hasBitTest(SDValue X, SDValue Y) const override;
851 bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
852 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
853 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
854 SelectionDAG &DAG) const override;
856 bool shouldFoldConstantShiftPairToMask(const SDNode *N,
857 CombineLevel Level) const override;
859 bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
861 bool
862 shouldTransformSignedTruncationCheck(EVT XVT,
863 unsigned KeptBits) const override {
864 // For vectors, we don't have a preference..
865 if (XVT.isVector())
866 return false;
868 auto VTIsOk = [](EVT VT) -> bool {
869 return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
870 VT == MVT::i64;
873 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
874 // XVT will be larger than KeptBitsVT.
875 MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
876 return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
879 bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;
881 bool shouldSplatInsEltVarIndex(EVT VT) const override;
883 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
884 return VT.isScalarInteger();
887 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
888 MVT hasFastEqualityCompare(unsigned NumBits) const override;
890 /// Return the value type to use for ISD::SETCC.
891 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
892 EVT VT) const override;
894 bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
895 TargetLoweringOpt &TLO) const override;
897 /// Determine which of the bits specified in Mask are known to be either
898 /// zero or one and return them in the KnownZero/KnownOne bitsets.
899 void computeKnownBitsForTargetNode(const SDValue Op,
900 KnownBits &Known,
901 const APInt &DemandedElts,
902 const SelectionDAG &DAG,
903 unsigned Depth = 0) const override;
905 /// Determine the number of bits in the operation that are sign bits.
906 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
907 const APInt &DemandedElts,
908 const SelectionDAG &DAG,
909 unsigned Depth) const override;
911 bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
912 const APInt &DemandedElts,
913 APInt &KnownUndef,
914 APInt &KnownZero,
915 TargetLoweringOpt &TLO,
916 unsigned Depth) const override;
918 bool SimplifyDemandedBitsForTargetNode(SDValue Op,
919 const APInt &DemandedBits,
920 const APInt &DemandedElts,
921 KnownBits &Known,
922 TargetLoweringOpt &TLO,
923 unsigned Depth) const override;
925 SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
926 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
927 SelectionDAG &DAG, unsigned Depth) const override;
929 const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
931 SDValue unwrapAddress(SDValue N) const override;
933 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
935 bool ExpandInlineAsm(CallInst *CI) const override;
937 ConstraintType getConstraintType(StringRef Constraint) const override;
939 /// Examine constraint string and operand type and determine a weight value.
940 /// The operand object must already have been set up with the operand type.
941 ConstraintWeight
942 getSingleConstraintMatchWeight(AsmOperandInfo &info,
943 const char *constraint) const override;
945 const char *LowerXConstraint(EVT ConstraintVT) const override;
947 /// Lower the specified operand into the Ops vector. If it is invalid, don't
948 /// add anything to Ops. If hasMemory is true it means one of the asm
949 /// constraint of the inline asm instruction being processed is 'm'.
950 void LowerAsmOperandForConstraint(SDValue Op,
951 std::string &Constraint,
952 std::vector<SDValue> &Ops,
953 SelectionDAG &DAG) const override;
955 unsigned
956 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
957 if (ConstraintCode == "i")
958 return InlineAsm::Constraint_i;
959 else if (ConstraintCode == "o")
960 return InlineAsm::Constraint_o;
961 else if (ConstraintCode == "v")
962 return InlineAsm::Constraint_v;
963 else if (ConstraintCode == "X")
964 return InlineAsm::Constraint_X;
965 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
968 /// Handle Lowering flag assembly outputs.
969 SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
970 const AsmOperandInfo &Constraint,
971 SelectionDAG &DAG) const override;
973 /// Given a physical register constraint
974 /// (e.g. {edx}), return the register number and the register class for the
975 /// register. This should only be used for C_Register constraints. On
976 /// error, this returns a register number of 0.
977 std::pair<unsigned, const TargetRegisterClass *>
978 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
979 StringRef Constraint, MVT VT) const override;
981 /// Return true if the addressing mode represented
982 /// by AM is legal for this target, for a load/store of the specified type.
983 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
984 Type *Ty, unsigned AS,
985 Instruction *I = nullptr) const override;
987 /// Return true if the specified immediate is legal
988 /// icmp immediate, that is the target has icmp instructions which can
989 /// compare a register against the immediate without having to materialize
990 /// the immediate into a register.
991 bool isLegalICmpImmediate(int64_t Imm) const override;
993 /// Return true if the specified immediate is legal
994 /// add immediate, that is the target has add instructions which can
995 /// add a register and the immediate without having to materialize
996 /// the immediate into a register.
997 bool isLegalAddImmediate(int64_t Imm) const override;
999 bool isLegalStoreImmediate(int64_t Imm) const override;
1001 /// Return the cost of the scaling factor used in the addressing
1002 /// mode represented by AM for this target, for a load/store
1003 /// of the specified type.
1004 /// If the AM is supported, the return value must be >= 0.
1005 /// If the AM is not supported, it returns a negative value.
1006 int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
1007 unsigned AS) const override;
1009 bool isVectorShiftByScalarCheap(Type *Ty) const override;
1011 /// Add x86-specific opcodes to the default list.
1012 bool isBinOp(unsigned Opcode) const override;
1014 /// Returns true if the opcode is a commutative binary operation.
1015 bool isCommutativeBinOp(unsigned Opcode) const override;
1017 /// Return true if it's free to truncate a value of
1018 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1019 /// register EAX to i16 by referencing its sub-register AX.
1020 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1021 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1023 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
1025 /// Return true if any actual instruction that defines a
1026 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1027 /// register. This does not necessarily include registers defined in
1028 /// unknown ways, such as incoming arguments, or copies from unknown
1029 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1030 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1031 /// all instructions that define 32-bit values implicit zero-extend the
1032 /// result out to 64 bits.
1033 bool isZExtFree(Type *Ty1, Type *Ty2) const override;
1034 bool isZExtFree(EVT VT1, EVT VT2) const override;
1035 bool isZExtFree(SDValue Val, EVT VT2) const override;
1037 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1038 /// extend node) is profitable.
1039 bool isVectorLoadExtDesirable(SDValue) const override;
1041 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1042 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1043 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1044 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
1046 /// Return true if it's profitable to narrow
1047 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1048 /// from i32 to i8 but not from i32 to i16.
1049 bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
1051 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1052 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1053 /// true and stores the intrinsic information into the IntrinsicInfo that was
1054 /// passed to the function.
1055 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
1056 MachineFunction &MF,
1057 unsigned Intrinsic) const override;
1059 /// Returns true if the target can instruction select the
1060 /// specified FP immediate natively. If false, the legalizer will
1061 /// materialize the FP immediate as a load from a constant pool.
1062 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1063 bool ForCodeSize) const override;
1065 /// Targets can use this to indicate that they only support *some*
1066 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1067 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1068 /// be legal.
1069 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1071 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1072 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1073 /// constant pool entry.
1074 bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1076 /// Returns true if lowering to a jump table is allowed.
1077 bool areJTsAllowed(const Function *Fn) const override;
1079 /// If true, then instruction selection should
1080 /// seek to shrink the FP constant of the specified type to a smaller type
1081 /// in order to save space and / or reduce runtime.
1082 bool ShouldShrinkFPConstant(EVT VT) const override {
1083 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
1084 // expensive than a straight movsd. On the other hand, it's important to
1085 // shrink long double fp constant since fldt is very slow.
1086 return !X86ScalarSSEf64 || VT == MVT::f80;
1089 /// Return true if we believe it is correct and profitable to reduce the
1090 /// load node to a smaller type.
1091 bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1092 EVT NewVT) const override;
1094 /// Return true if the specified scalar FP type is computed in an SSE
1095 /// register, not on the X87 floating point stack.
1096 bool isScalarFPTypeInSSEReg(EVT VT) const {
1097 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
1098 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
1101 /// Returns true if it is beneficial to convert a load of a constant
1102 /// to just the constant itself.
1103 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1104 Type *Ty) const override;
1106 bool reduceSelectOfFPConstantLoads(bool IsFPSetCC) const override;
1108 bool convertSelectOfConstantsToMath(EVT VT) const override;
1110 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1111 SDValue C) const override;
1113 bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
1114 bool IsSigned) const override;
1116 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1117 /// with this index.
1118 bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1119 unsigned Index) const override;
1121 /// Scalar ops always have equal or better analysis/performance/power than
1122 /// the vector equivalent, so this always makes sense if the scalar op is
1123 /// supported.
1124 bool shouldScalarizeBinop(SDValue) const override;
1126 /// Extract of a scalar FP value from index 0 of a vector is free.
1127 bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
1128 EVT EltVT = VT.getScalarType();
1129 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
1132 /// Overflow nodes should get combined/lowered to optimal instructions
1133 /// (they should allow eliminating explicit compares by getting flags from
1134 /// math ops).
1135 bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;
1137 bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
1138 unsigned AddrSpace) const override {
1139 // If we can replace more than 2 scalar stores, there will be a reduction
1140 // in instructions even after we add a vector constant load.
1141 return NumElem > 2;
1144 bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
1145 const SelectionDAG &DAG,
1146 const MachineMemOperand &MMO) const override;
1148 /// Intel processors have a unified instruction and data cache
1149 const char * getClearCacheBuiltinName() const override {
1150 return nullptr; // nothing to do, move along.
1153 unsigned getRegisterByName(const char* RegName, EVT VT,
1154 SelectionDAG &DAG) const override;
1156 /// If a physical register, this returns the register that receives the
1157 /// exception address on entry to an EH pad.
1158 unsigned
1159 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1161 /// If a physical register, this returns the register that receives the
1162 /// exception typeid on entry to a landing pad.
1163 unsigned
1164 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1166 virtual bool needsFixedCatchObjects() const override;
1168 /// This method returns a target specific FastISel object,
1169 /// or null if the target does not support "fast" ISel.
1170 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1171 const TargetLibraryInfo *libInfo) const override;
1173 /// If the target has a standard location for the stack protector cookie,
1174 /// returns the address of that location. Otherwise, returns nullptr.
1175 Value *getIRStackGuard(IRBuilder<> &IRB) const override;
1177 bool useLoadStackGuardNode() const override;
1178 bool useStackGuardXorFP() const override;
1179 void insertSSPDeclarations(Module &M) const override;
1180 Value *getSDagStackGuard(const Module &M) const override;
1181 Function *getSSPStackGuardCheck(const Module &M) const override;
1182 SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
1183 const SDLoc &DL) const override;
1186 /// Return true if the target stores SafeStack pointer at a fixed offset in
1187 /// some non-standard address space, and populates the address space and
1188 /// offset as appropriate.
1189 Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;
1191 SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
1192 SelectionDAG &DAG) const;
1194 bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
1196 /// Customize the preferred legalization strategy for certain types.
1197 LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;
1199 MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
1200 EVT VT) const override;
1202 unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1203 CallingConv::ID CC,
1204 EVT VT) const override;
1206 bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
1208 bool supportSwiftError() const override;
1210 StringRef getStackProbeSymbolName(MachineFunction &MF) const override;
1212 unsigned getStackProbeSize(MachineFunction &MF) const;
1214 bool hasVectorBlend() const override { return true; }
1216 unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
1218 /// Lower interleaved load(s) into target specific
1219 /// instructions/intrinsics.
1220 bool lowerInterleavedLoad(LoadInst *LI,
1221 ArrayRef<ShuffleVectorInst *> Shuffles,
1222 ArrayRef<unsigned> Indices,
1223 unsigned Factor) const override;
1225 /// Lower interleaved store(s) into target specific
1226 /// instructions/intrinsics.
1227 bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
1228 unsigned Factor) const override;
1230 SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
1231 SDValue Addr, SelectionDAG &DAG)
1232 const override;
1234 protected:
1235 std::pair<const TargetRegisterClass *, uint8_t>
1236 findRepresentativeClass(const TargetRegisterInfo *TRI,
1237 MVT VT) const override;
1239 private:
1240 /// Keep a reference to the X86Subtarget around so that we can
1241 /// make the right decision when generating code for different targets.
1242 const X86Subtarget &Subtarget;
1244 /// Select between SSE or x87 floating point ops.
1245 /// When SSE is available, use it for f32 operations.
1246 /// When SSE2 is available, use it for f64 operations.
1247 bool X86ScalarSSEf32;
1248 bool X86ScalarSSEf64;
1250 /// A list of legal FP immediates.
1251 std::vector<APFloat> LegalFPImmediates;
1253 /// Indicate that this x86 target can instruction
1254 /// select the specified FP immediate natively.
1255 void addLegalFPImmediate(const APFloat& Imm) {
1256 LegalFPImmediates.push_back(Imm);
1259 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1260 CallingConv::ID CallConv, bool isVarArg,
1261 const SmallVectorImpl<ISD::InputArg> &Ins,
1262 const SDLoc &dl, SelectionDAG &DAG,
1263 SmallVectorImpl<SDValue> &InVals,
1264 uint32_t *RegMask) const;
1265 SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
1266 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
1267 const SDLoc &dl, SelectionDAG &DAG,
1268 const CCValAssign &VA, MachineFrameInfo &MFI,
1269 unsigned i) const;
1270 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
1271 const SDLoc &dl, SelectionDAG &DAG,
1272 const CCValAssign &VA,
1273 ISD::ArgFlagsTy Flags) const;
1275 // Call lowering helpers.
1277 /// Check whether the call is eligible for tail call optimization. Targets
1278 /// that want to do tail call optimization should implement this function.
1279 bool IsEligibleForTailCallOptimization(SDValue Callee,
1280 CallingConv::ID CalleeCC,
1281 bool isVarArg,
1282 bool isCalleeStructRet,
1283 bool isCallerStructRet,
1284 Type *RetTy,
1285 const SmallVectorImpl<ISD::OutputArg> &Outs,
1286 const SmallVectorImpl<SDValue> &OutVals,
1287 const SmallVectorImpl<ISD::InputArg> &Ins,
1288 SelectionDAG& DAG) const;
1289 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
1290 SDValue Chain, bool IsTailCall,
1291 bool Is64Bit, int FPDiff,
1292 const SDLoc &dl) const;
1294 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
1295 SelectionDAG &DAG) const;
1297 unsigned getAddressSpace(void) const;
1299 SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned) const;
1301 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1302 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
1303 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1304 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1306 unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
1307 const unsigned char OpFlags = 0) const;
1308 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1309 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1310 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1311 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1312 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
1314 /// Creates target global address or external symbol nodes for calls or
1315 /// other uses.
1316 SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
1317 bool ForCall) const;
1319 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1320 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1321 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1322 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
1323 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1324 SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
1325 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
1326 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
1327 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1328 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1329 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1330 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1331 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1332 SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1333 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1334 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1335 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
1336 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1337 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1338 SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
1339 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1340 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
1341 SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
1342 SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
1343 SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
1344 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1346 SDValue
1347 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1348 const SmallVectorImpl<ISD::InputArg> &Ins,
1349 const SDLoc &dl, SelectionDAG &DAG,
1350 SmallVectorImpl<SDValue> &InVals) const override;
1351 SDValue LowerCall(CallLoweringInfo &CLI,
1352 SmallVectorImpl<SDValue> &InVals) const override;
1354 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1355 const SmallVectorImpl<ISD::OutputArg> &Outs,
1356 const SmallVectorImpl<SDValue> &OutVals,
1357 const SDLoc &dl, SelectionDAG &DAG) const override;
1359 bool supportSplitCSR(MachineFunction *MF) const override {
1360 return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
1361 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
1363 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
1364 void insertCopiesSplitCSR(
1365 MachineBasicBlock *Entry,
1366 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
1368 bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
1370 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1372 EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
1373 ISD::NodeType ExtendKind) const override;
1375 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1376 bool isVarArg,
1377 const SmallVectorImpl<ISD::OutputArg> &Outs,
1378 LLVMContext &Context) const override;
1380 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1382 TargetLoweringBase::AtomicExpansionKind
1383 shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
1384 bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
1385 TargetLoweringBase::AtomicExpansionKind
1386 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
1388 LoadInst *
1389 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
1391 bool needsCmpXchgNb(Type *MemType) const;
1393 void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
1394 MachineBasicBlock *DispatchBB, int FI) const;
1396 // Utility function to emit the low-level va_arg code for X86-64.
1397 MachineBasicBlock *
1398 EmitVAARG64WithCustomInserter(MachineInstr &MI,
1399 MachineBasicBlock *MBB) const;
1401 /// Utility function to emit the xmm reg save portion of va_start.
1402 MachineBasicBlock *
1403 EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
1404 MachineBasicBlock *BB) const;
1406 MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
1407 MachineInstr &MI2,
1408 MachineBasicBlock *BB) const;
1410 MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
1411 MachineBasicBlock *BB) const;
1413 MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
1414 MachineBasicBlock *BB) const;
1416 MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
1417 MachineBasicBlock *BB) const;
1419 MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
1420 MachineBasicBlock *BB) const;
1422 MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
1423 MachineBasicBlock *BB) const;
1425 MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
1426 MachineBasicBlock *BB) const;
1428 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
1429 MachineBasicBlock *BB) const;
1431 MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
1432 MachineBasicBlock *BB) const;
1434 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
1435 MachineBasicBlock *MBB) const;
1437 void emitSetJmpShadowStackFix(MachineInstr &MI,
1438 MachineBasicBlock *MBB) const;
1440 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
1441 MachineBasicBlock *MBB) const;
1443 MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
1444 MachineBasicBlock *MBB) const;
1446 MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
1447 MachineBasicBlock *MBB) const;
1449 MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
1450 MachineBasicBlock *MBB) const;
1452 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1453 /// equivalent, for use with the given x86 condition code.
1454 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
1455 SelectionDAG &DAG) const;
1457 /// Convert a comparison if required by the subtarget.
1458 SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
1460 /// Emit flags for the given setcc condition and operands. Also returns the
1461 /// corresponding X86 condition code constant in X86CC.
1462 SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1,
1463 ISD::CondCode CC, const SDLoc &dl,
1464 SelectionDAG &DAG,
1465 SDValue &X86CC) const;
1467 /// Check if replacement of SQRT with RSQRT should be disabled.
1468 bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;
1470 /// Use rsqrt* to speed up sqrt calculations.
1471 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1472 int &RefinementSteps, bool &UseOneConstNR,
1473 bool Reciprocal) const override;
1475 /// Use rcp* to speed up fdiv calculations.
1476 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1477 int &RefinementSteps) const override;
1479 /// Reassociate floating point divisions into multiply by reciprocal.
1480 unsigned combineRepeatedFPDivisors() const override;
1482 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
1483 SmallVectorImpl<SDNode *> &Created) const override;
1486 namespace X86 {
1487 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1488 const TargetLibraryInfo *libInfo);
1489 } // end namespace X86
1491 // Base class for all X86 non-masked store operations.
1492 class X86StoreSDNode : public MemSDNode {
1493 public:
1494 X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1495 SDVTList VTs, EVT MemVT,
1496 MachineMemOperand *MMO)
1497 :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
1498 const SDValue &getValue() const { return getOperand(1); }
1499 const SDValue &getBasePtr() const { return getOperand(2); }
1501 static bool classof(const SDNode *N) {
1502 return N->getOpcode() == X86ISD::VTRUNCSTORES ||
1503 N->getOpcode() == X86ISD::VTRUNCSTOREUS;
1507 // Base class for all X86 masked store operations.
1508 // The class has the same order of operands as MaskedStoreSDNode for
1509 // convenience.
1510 class X86MaskedStoreSDNode : public MemSDNode {
1511 public:
1512 X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
1513 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1514 MachineMemOperand *MMO)
1515 : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
1517 const SDValue &getValue() const { return getOperand(1); }
1518 const SDValue &getBasePtr() const { return getOperand(2); }
1519 const SDValue &getMask() const { return getOperand(3); }
1521 static bool classof(const SDNode *N) {
1522 return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
1523 N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
1527 // X86 Truncating Store with Signed saturation.
1528 class TruncSStoreSDNode : public X86StoreSDNode {
1529 public:
1530 TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
1531 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
1532 : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
1534 static bool classof(const SDNode *N) {
1535 return N->getOpcode() == X86ISD::VTRUNCSTORES;
1539 // X86 Truncating Store with Unsigned saturation.
1540 class TruncUSStoreSDNode : public X86StoreSDNode {
1541 public:
1542 TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
1543 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
1544 : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
1546 static bool classof(const SDNode *N) {
1547 return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
1551 // X86 Truncating Masked Store with Signed saturation.
1552 class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
1553 public:
1554 MaskedTruncSStoreSDNode(unsigned Order,
1555 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1556 MachineMemOperand *MMO)
1557 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
1559 static bool classof(const SDNode *N) {
1560 return N->getOpcode() == X86ISD::VMTRUNCSTORES;
1564 // X86 Truncating Masked Store with Unsigned saturation.
1565 class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
1566 public:
1567 MaskedTruncUSStoreSDNode(unsigned Order,
1568 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1569 MachineMemOperand *MMO)
1570 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
1572 static bool classof(const SDNode *N) {
1573 return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
1577 // X86 specific Gather/Scatter nodes.
1578 // The class has the same order of operands as MaskedGatherScatterSDNode for
1579 // convenience.
1580 class X86MaskedGatherScatterSDNode : public MemSDNode {
1581 public:
1582 X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
1583 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1584 MachineMemOperand *MMO)
1585 : MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}
1587 const SDValue &getBasePtr() const { return getOperand(3); }
1588 const SDValue &getIndex() const { return getOperand(4); }
1589 const SDValue &getMask() const { return getOperand(2); }
1590 const SDValue &getScale() const { return getOperand(5); }
1592 static bool classof(const SDNode *N) {
1593 return N->getOpcode() == X86ISD::MGATHER ||
1594 N->getOpcode() == X86ISD::MSCATTER;
1598 class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
1599 public:
1600 X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1601 EVT MemVT, MachineMemOperand *MMO)
1602 : X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
1603 MMO) {}
1605 const SDValue &getPassThru() const { return getOperand(1); }
1607 static bool classof(const SDNode *N) {
1608 return N->getOpcode() == X86ISD::MGATHER;
1612 class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
1613 public:
1614 X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1615 EVT MemVT, MachineMemOperand *MMO)
1616 : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
1617 MMO) {}
1619 const SDValue &getValue() const { return getOperand(1); }
1621 static bool classof(const SDNode *N) {
1622 return N->getOpcode() == X86ISD::MSCATTER;
1626 /// Generate unpacklo/unpackhi shuffle mask.
1627 template <typename T = int>
1628 void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
1629 bool Unary) {
1630 assert(Mask.empty() && "Expected an empty shuffle mask vector");
1631 int NumElts = VT.getVectorNumElements();
1632 int NumEltsInLane = 128 / VT.getScalarSizeInBits();
1633 for (int i = 0; i < NumElts; ++i) {
1634 unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
1635 int Pos = (i % NumEltsInLane) / 2 + LaneStart;
1636 Pos += (Unary ? 0 : NumElts * (i % 2));
1637 Pos += (Lo ? 0 : NumEltsInLane / 2);
1638 Mask.push_back(Pos);
1642 /// Helper function to scale a shuffle or target shuffle mask, replacing each
1643 /// mask index with the scaled sequential indices for an equivalent narrowed
1644 /// mask. This is the reverse process to canWidenShuffleElements, but can
1645 /// always succeed.
1646 template <typename T>
1647 void scaleShuffleMask(int Scale, ArrayRef<T> Mask,
1648 SmallVectorImpl<T> &ScaledMask) {
1649 assert(0 < Scale && "Unexpected scaling factor");
1650 size_t NumElts = Mask.size();
1651 ScaledMask.assign(NumElts * Scale, -1);
1653 for (int i = 0; i != (int)NumElts; ++i) {
1654 int M = Mask[i];
1656 // Repeat sentinel values in every mask element.
1657 if (M < 0) {
1658 for (int s = 0; s != Scale; ++s)
1659 ScaledMask[(Scale * i) + s] = M;
1660 continue;
1663 // Scale mask element and increment across each mask element.
1664 for (int s = 0; s != Scale; ++s)
1665 ScaledMask[(Scale * i) + s] = (Scale * M) + s;
1668 } // end namespace llvm
1670 #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H