1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
23 class X86TargetMachine
;
26 // X86 Specific DAG Nodes
27 enum NodeType
: unsigned {
28 // Start the numbering where the builtin ops leave off.
29 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
36 /// Double shift instructions. These correspond to
37 /// X86::SHLDxx and X86::SHRDxx instructions.
41 /// Bitwise logical AND of floating point values. This corresponds
42 /// to X86::ANDPS or X86::ANDPD.
45 /// Bitwise logical OR of floating point values. This corresponds
46 /// to X86::ORPS or X86::ORPD.
49 /// Bitwise logical XOR of floating point values. This corresponds
50 /// to X86::XORPS or X86::XORPD.
53 /// Bitwise logical ANDNOT of floating point values. This
54 /// corresponds to X86::ANDNPS or X86::ANDNPD.
57 /// These operations represent an abstract X86 call
58 /// instruction, which includes a bunch of information. In particular the
59 /// operands of these node are:
61 /// #0 - The incoming token chain
63 /// #2 - The number of arg bytes the caller pushes on the stack.
64 /// #3 - The number of arg bytes the callee pops off the stack.
65 /// #4 - The value to pass in AL/AX/EAX (optional)
66 /// #5 - The value to pass in DL/DX/EDX (optional)
68 /// The result values of these nodes are:
70 /// #0 - The outgoing token chain
71 /// #1 - The first register result value (optional)
72 /// #2 - The second register result value (optional)
76 /// Same as call except it adds the NoTrack prefix.
79 /// X86 compare and logical compare instructions.
82 /// X86 bit-test instructions.
85 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
86 /// operand, usually produced by a CMP instruction.
92 // Same as SETCC except it's materialized with a sbb and the value is all
93 // one's or all zero's.
94 SETCC_CARRY
, // R = carry_bit ? ~0 : 0
96 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
97 /// Operands are two FP values to compare; result is a mask of
98 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
101 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
102 /// and a version with SAE.
103 FSETCCM
, FSETCCM_SAE
,
105 /// X86 conditional moves. Operand 0 and operand 1 are the two values
106 /// to select from. Operand 2 is the condition code, and operand 3 is the
107 /// flag operand produced by a CMP or TEST instruction.
110 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
111 /// is the block to branch if condition is true, operand 2 is the
112 /// condition code, and operand 3 is the flag operand produced by a CMP
113 /// or TEST instruction.
116 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
117 /// operand 1 is the target address.
120 /// Return with a flag operand. Operand 0 is the chain operand, operand
121 /// 1 is the number of bytes of stack to pop.
124 /// Return from interrupt. Operand 0 is the number of bytes to pop.
127 /// Repeat fill, corresponds to X86::REP_STOSx.
130 /// Repeat move, corresponds to X86::REP_MOVSx.
133 /// On Darwin, this node represents the result of the popl
134 /// at function entry, used for PIC code.
137 /// A wrapper node for TargetConstantPool, TargetJumpTable,
138 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
139 /// MCSymbol and TargetBlockAddress.
142 /// Special wrapper used under X86-64 PIC mode for RIP
143 /// relative displacements.
146 /// Copies a 64-bit value from an MMX vector to the low word
147 /// of an XMM vector, with the high word zero filled.
150 /// Copies a 64-bit value from the low word of an XMM vector
151 /// to an MMX vector.
154 /// Copies a 32-bit value from the low word of a MMX
158 /// Copies a GPR into the low 32-bit word of a MMX vector
159 /// and zero out the high word.
162 /// Extract an 8-bit value from a vector and zero extend it to
163 /// i32, corresponds to X86::PEXTRB.
166 /// Extract a 16-bit value from a vector and zero extend it to
167 /// i32, corresponds to X86::PEXTRW.
170 /// Insert any element of a 4 x float vector into any element
171 /// of a destination 4 x floatvector.
174 /// Insert the lower 8-bits of a 32-bit value to a vector,
175 /// corresponds to X86::PINSRB.
178 /// Insert the lower 16-bits of a 32-bit value to a vector,
179 /// corresponds to X86::PINSRW.
182 /// Shuffle 16 8-bit values within a vector.
185 /// Compute Sum of Absolute Differences.
187 /// Compute Double Block Packed Sum-Absolute-Differences
190 /// Bitwise Logical AND NOT of Packed FP values.
193 /// Blend where the selector is an immediate.
196 /// Dynamic (non-constant condition) vector blend where only the sign bits
197 /// of the condition elements are used. This is used to enforce that the
198 /// condition mask is not valid for generic VSELECT optimizations. This
199 /// is also used to implement the intrinsics.
200 /// Operands are in VSELECT order: MASK, TRUE, FALSE
203 /// Combined add and sub on an FP vector.
206 // FP vector ops with rounding mode.
207 FADD_RND
, FADDS
, FADDS_RND
,
208 FSUB_RND
, FSUBS
, FSUBS_RND
,
209 FMUL_RND
, FMULS
, FMULS_RND
,
210 FDIV_RND
, FDIVS
, FDIVS_RND
,
213 FSQRT_RND
, FSQRTS
, FSQRTS_RND
,
215 // FP vector get exponent.
216 FGETEXP
, FGETEXP_SAE
, FGETEXPS
, FGETEXPS_SAE
,
217 // Extract Normalized Mantissas.
218 VGETMANT
, VGETMANT_SAE
, VGETMANTS
, VGETMANTS_SAE
,
221 SCALEFS
, SCALEFS_RND
,
223 // Unsigned Integer average.
226 /// Integer horizontal add/sub.
230 /// Floating point horizontal add/sub.
234 // Detect Conflicts Within a Vector
237 /// Floating point max and min.
240 /// Commutative FMIN and FMAX.
243 /// Scalar intrinsic floating point max and min.
246 /// Floating point reciprocal-sqrt and reciprocal approximation.
247 /// Note that these typically require refinement
248 /// in order to obtain suitable precision.
251 // AVX-512 reciprocal approximations with a little more precision.
252 RSQRT14
, RSQRT14S
, RCP14
, RCP14S
,
254 // Thread Local Storage.
257 // Thread Local Storage. A call to get the start address
258 // of the TLS block for the current module.
261 // Thread Local Storage. When calling to an OS provided
262 // thunk at the address from an earlier relocation.
265 // Exception Handling helpers.
268 // SjLj exception handling setjmp.
271 // SjLj exception handling longjmp.
274 // SjLj exception handling dispatch.
275 EH_SJLJ_SETUP_DISPATCH
,
277 /// Tail call return. See X86TargetLowering::LowerCall for
278 /// the list of operands.
281 // Vector move to low scalar and zero higher vector elements.
284 // Vector integer truncate.
286 // Vector integer truncate with unsigned/signed saturation.
289 // Masked version of the above. Used when less than a 128-bit result is
290 // produced since the mask only applies to the lower elements and can't
291 // be represented by a select.
292 // SRC, PASSTHRU, MASK
293 VMTRUNC
, VMTRUNCUS
, VMTRUNCS
,
296 VFPEXT
, VFPEXT_SAE
, VFPEXTS
, VFPEXTS_SAE
,
299 VFPROUND
, VFPROUND_RND
, VFPROUNDS
, VFPROUNDS_RND
,
301 // Masked version of above. Used for v2f64->v4f32.
302 // SRC, PASSTHRU, MASK
305 // 128-bit vector logical left / right shift
308 // Vector shift elements
311 // Vector variable shift
314 // Vector shift elements by immediate
317 // Shifts of mask registers.
320 // Bit rotate by immediate
323 // Vector packed double/float comparison.
326 // Vector integer comparisons.
329 // v8i16 Horizontal minimum and position.
334 /// Vector comparison generating mask bits for fp and
335 /// integer signed and unsigned data types.
337 // Vector comparison with SAE for FP values
340 // Arithmetic operations with FLAGS results.
341 ADD
, SUB
, ADC
, SBB
, SMUL
, UMUL
,
344 // Bit field extract.
347 // Zero High Bits Starting with Specified Bit Position.
350 // X86-specific multiply by immediate.
353 // Vector sign bit extraction.
356 // Vector bitwise comparisons.
359 // Vector packed fp sign bitwise comparisons.
362 // OR/AND test for masks.
369 // Several flavors of instructions with vector shuffle behaviors.
370 // Saturated signed/unnsigned packing.
373 // Intra-lane alignr.
375 // AVX512 inter-lane alignr.
381 // VBMI2 Concat & Shift.
386 //Shuffle Packed Values at 128-bit granularity.
402 // Variable Permute (VPERM).
403 // Res = VPERMV MaskV, V0
406 // 3-op Variable Permute (VPERMT2).
407 // Res = VPERMV3 V0, MaskV, V1
410 // Bitwise ternary logic.
412 // Fix Up Special Packed Float32/64 values.
413 VFIXUPIMM
, VFIXUPIMM_SAE
,
414 VFIXUPIMMS
, VFIXUPIMMS_SAE
,
415 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
416 VRANGE
, VRANGE_SAE
, VRANGES
, VRANGES_SAE
,
417 // Reduce - Perform Reduction Transformation on scalar\packed FP.
418 VREDUCE
, VREDUCE_SAE
, VREDUCES
, VREDUCES_SAE
,
419 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
420 // Also used by the legacy (V)ROUND intrinsics where we mask out the
421 // scaling part of the immediate.
422 VRNDSCALE
, VRNDSCALE_SAE
, VRNDSCALES
, VRNDSCALES_SAE
,
423 // Tests Types Of a FP Values for packed types.
425 // Tests Types Of a FP Values for scalar types.
428 // Broadcast scalar to vector.
430 // Broadcast mask to vector.
432 // Broadcast subvector to vector.
435 /// SSE4A Extraction and Insertion.
438 // XOP arithmetic/logical shifts.
440 // XOP signed/unsigned integer comparisons.
442 // XOP packed permute bytes.
444 // XOP two source permutation.
447 // Vector multiply packed unsigned doubleword integers.
449 // Vector multiply packed signed doubleword integers.
451 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
454 // Multiply and Add Packed Integers.
455 VPMADDUBSW
, VPMADDWD
,
457 // AVX512IFMA multiply and add.
458 // NOTE: These are different than the instruction and perform
460 VPMADD52L
, VPMADD52H
,
469 // We use the target independent ISD::FMA for the non-inverted case.
476 // FMA with rounding mode.
484 // Compress and expand.
491 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
492 SINT_TO_FP_RND
, UINT_TO_FP_RND
,
493 SCALAR_SINT_TO_FP
, SCALAR_UINT_TO_FP
,
494 SCALAR_SINT_TO_FP_RND
, SCALAR_UINT_TO_FP_RND
,
496 // Vector float/double to signed/unsigned integer.
497 CVTP2SI
, CVTP2UI
, CVTP2SI_RND
, CVTP2UI_RND
,
498 // Scalar float/double to signed/unsigned integer.
499 CVTS2SI
, CVTS2UI
, CVTS2SI_RND
, CVTS2UI_RND
,
501 // Vector float/double to signed/unsigned integer with truncation.
502 CVTTP2SI
, CVTTP2UI
, CVTTP2SI_SAE
, CVTTP2UI_SAE
,
503 // Scalar float/double to signed/unsigned integer with truncation.
504 CVTTS2SI
, CVTTS2UI
, CVTTS2SI_SAE
, CVTTS2UI_SAE
,
506 // Vector signed/unsigned integer to float/double.
509 // Masked versions of above. Used for v2f64->v4f32.
510 // SRC, PASSTHRU, MASK
511 MCVTP2SI
, MCVTP2UI
, MCVTTP2SI
, MCVTTP2UI
,
514 // Vector float to bfloat16.
515 // Convert TWO packed single data to one packed BF16 data
517 // Convert packed single data to packed BF16 data
519 // Masked version of above.
520 // SRC, PASSTHRU, MASK
523 // Dot product of BF16 pairs to accumulated into
524 // packed single precision.
527 // Save xmm argument registers to the stack, according to %al. An operator
528 // is needed so that this can be expanded with control flow.
529 VASTART_SAVE_XMM_REGS
,
531 // Windows's _chkstk call to do stack probing.
534 // For allocating variable amounts of stack space when using
535 // segmented stacks. Check if the current stacklet has enough space, and
536 // falls back to heap allocation if not.
543 // Store FP status word into i16 register.
546 // Store contents of %ah into %eflags.
549 // Get a random integer and indicate whether it is valid in CF.
552 // Get a NIST SP800-90B & C compliant random integer and
553 // indicate whether it is valid in CF.
557 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
558 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
562 // SSE42 string comparisons.
563 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
564 // will emit one or two instructions based on which results are used. If
565 // flags and index/mask this allows us to use a single instruction since
566 // we won't have to pick and opcode for flags. Instead we can rely on the
567 // DAG to CSE everything and decide at isel.
571 // Test if in transactional execution.
575 RSQRT28
, RSQRT28_SAE
, RSQRT28S
, RSQRT28S_SAE
,
576 RCP28
, RCP28_SAE
, RCP28S
, RCP28S_SAE
, EXP2
, EXP2_SAE
,
578 // Conversions between float and half-float.
579 CVTPS2PH
, CVTPH2PS
, CVTPH2PS_SAE
,
581 // Masked version of above.
582 // SRC, RND, PASSTHRU, MASK
585 // Galois Field Arithmetic Instructions
586 GF2P8AFFINEINVQB
, GF2P8AFFINEQB
, GF2P8MULB
,
588 // LWP insert record.
594 // Enqueue Stores Instructions
597 // For avx512-vp2intersect
601 LCMPXCHG_DAG
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
604 LCMPXCHG8_SAVE_EBX_DAG
,
605 LCMPXCHG16_SAVE_RBX_DAG
,
607 /// LOCK-prefixed arithmetic read-modify-write instructions.
608 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
609 LADD
, LSUB
, LOR
, LXOR
, LAND
,
611 // Load, scalar_to_vector, and zero extend.
614 // extract_vector_elt, store.
617 // Store FP control world into i16 memory.
620 /// This instruction implements FP_TO_SINT with the
621 /// integer destination in memory and a FP reg source. This corresponds
622 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
623 /// has two inputs (token chain and address) and two outputs (int value
624 /// and token chain). Memory VT specifies the type to store to.
627 /// This instruction implements SINT_TO_FP with the
628 /// integer source in memory and FP reg result. This corresponds to the
629 /// X86::FILD*m instructions. It has two inputs (token chain and address)
630 /// and two outputs (FP value and token chain). FILD_FLAG also produces a
631 /// flag). The integer source type is specified by the memory VT.
635 /// This instruction implements a fp->int store from FP stack
636 /// slots. This corresponds to the fist instruction. It takes a
637 /// chain operand, value to store, address, and glue. The memory VT
638 /// specifies the type to store as.
641 /// This instruction implements an extending load to FP stack slots.
642 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
643 /// operand, and ptr to load from. The memory VT specifies the type to
647 /// This instruction implements a truncating store from FP stack
648 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
649 /// chain operand, value to store, address, and glue. The memory VT
650 /// specifies the type to store as.
653 /// This instruction grabs the address of the next argument
654 /// from a va_list. (reads and modifies the va_list in memory)
657 // Vector truncating store with unsigned/signed saturation
658 VTRUNCSTOREUS
, VTRUNCSTORES
,
659 // Vector truncating masked store with unsigned/signed saturation
660 VMTRUNCSTOREUS
, VMTRUNCSTORES
,
662 // X86 specific gather and scatter
665 // WARNING: Do not add anything in the end unless you want the node to
666 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
667 // opcodes will be thought as target memory ops!
669 } // end namespace X86ISD
671 /// Define some predicates that are used for node matching.
673 /// Returns true if Elt is a constant zero or floating point constant +0.0.
674 bool isZeroNode(SDValue Elt
);
676 /// Returns true of the given offset can be
677 /// fit into displacement field of the instruction.
678 bool isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
679 bool hasSymbolicDisplacement
= true);
681 /// Determines whether the callee is required to pop its
682 /// own arguments. Callee pop is necessary to support tail calls.
683 bool isCalleePop(CallingConv::ID CallingConv
,
684 bool is64Bit
, bool IsVarArg
, bool GuaranteeTCO
);
686 /// If Op is a constant whose elements are all the same constant or
687 /// undefined, return true and return the constant value in \p SplatVal.
688 bool isConstantSplat(SDValue Op
, APInt
&SplatVal
);
689 } // end namespace X86
691 //===--------------------------------------------------------------------===//
692 // X86 Implementation of the TargetLowering interface
693 class X86TargetLowering final
: public TargetLowering
{
695 explicit X86TargetLowering(const X86TargetMachine
&TM
,
696 const X86Subtarget
&STI
);
698 unsigned getJumpTableEncoding() const override
;
699 bool useSoftFloat() const override
;
701 void markLibCallAttributes(MachineFunction
*MF
, unsigned CC
,
702 ArgListTy
&Args
) const override
;
704 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT VT
) const override
{
709 LowerCustomJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
710 const MachineBasicBlock
*MBB
, unsigned uid
,
711 MCContext
&Ctx
) const override
;
713 /// Returns relocation base for the given PIC jumptable.
714 SDValue
getPICJumpTableRelocBase(SDValue Table
,
715 SelectionDAG
&DAG
) const override
;
717 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
718 unsigned JTI
, MCContext
&Ctx
) const override
;
720 /// Return the desired alignment for ByVal aggregate
721 /// function arguments in the caller parameter area. For X86, aggregates
722 /// that contains are placed at 16-byte boundaries while the rest are at
723 /// 4-byte boundaries.
724 unsigned getByValTypeAlignment(Type
*Ty
,
725 const DataLayout
&DL
) const override
;
727 /// Returns the target specific optimal type for load
728 /// and store operations as a result of memset, memcpy, and memmove
729 /// lowering. If DstAlign is zero that means it's safe to destination
730 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
731 /// means there isn't a need to check it against alignment requirement,
732 /// probably because the source does not need to be loaded. If 'IsMemset' is
733 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
734 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
735 /// source is constant so it does not need to be loaded.
736 /// It returns EVT::Other if the type should be determined using generic
737 /// target-independent logic.
738 EVT
getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
739 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
740 const AttributeList
&FuncAttributes
) const override
;
742 /// Returns true if it's safe to use load / store of the
743 /// specified type to expand memcpy / memset inline. This is mostly true
744 /// for all types except for some special cases. For example, on X86
745 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
746 /// also does type conversion. Note the specified type doesn't have to be
747 /// legal as the hook is used before type legalization.
748 bool isSafeMemOpType(MVT VT
) const override
;
750 /// Returns true if the target allows unaligned memory accesses of the
751 /// specified type. Returns whether it is "fast" in the last argument.
752 bool allowsMisalignedMemoryAccesses(EVT VT
, unsigned AS
, unsigned Align
,
753 MachineMemOperand::Flags Flags
,
754 bool *Fast
) const override
;
756 /// Provide custom lowering hooks for some operations.
758 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
760 /// Places new result values for the node in Results (their number
761 /// and types must exactly match those of the original return values of
762 /// the node), or leaves Results empty, which indicates that the node is not
763 /// to be custom lowered after all.
764 void LowerOperationWrapper(SDNode
*N
,
765 SmallVectorImpl
<SDValue
> &Results
,
766 SelectionDAG
&DAG
) const override
;
768 /// Replace the results of node with an illegal result
769 /// type with new values built out of custom code.
771 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
772 SelectionDAG
&DAG
) const override
;
774 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
776 // Return true if it is profitable to combine a BUILD_VECTOR with a
777 // stride-pattern to a shuffle and a truncate.
778 // Example of such a combine:
779 // v4i32 build_vector((extract_elt V, 1),
780 // (extract_elt V, 3),
781 // (extract_elt V, 5),
782 // (extract_elt V, 7))
784 // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
786 bool isDesirableToCombineBuildVectorToShuffleTruncate(
787 ArrayRef
<int> ShuffleMask
, EVT SrcVT
, EVT TruncVT
) const override
;
789 /// Return true if the target has native support for
790 /// the specified value type and it is 'desirable' to use the type for the
791 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
792 /// instruction encodings are longer and some i16 instructions are slow.
793 bool isTypeDesirableForOp(unsigned Opc
, EVT VT
) const override
;
795 /// Return true if the target has native support for the
796 /// specified value type and it is 'desirable' to use the type. e.g. On x86
797 /// i16 is legal, but undesirable since i16 instruction encodings are longer
798 /// and some i16 instructions are slow.
799 bool IsDesirableToPromoteOp(SDValue Op
, EVT
&PVT
) const override
;
802 EmitInstrWithCustomInserter(MachineInstr
&MI
,
803 MachineBasicBlock
*MBB
) const override
;
805 /// This method returns the name of a target specific DAG node.
806 const char *getTargetNodeName(unsigned Opcode
) const override
;
808 /// Do not merge vector stores after legalization because that may conflict
809 /// with x86-specific store splitting optimizations.
810 bool mergeStoresAfterLegalization(EVT MemVT
) const override
{
811 return !MemVT
.isVector();
814 bool canMergeStoresTo(unsigned AddressSpace
, EVT MemVT
,
815 const SelectionDAG
&DAG
) const override
;
817 bool isCheapToSpeculateCttz() const override
;
819 bool isCheapToSpeculateCtlz() const override
;
821 bool isCtlzFast() const override
;
823 bool hasBitPreservingFPLogic(EVT VT
) const override
{
824 return VT
== MVT::f32
|| VT
== MVT::f64
|| VT
.isVector();
827 bool isMultiStoresCheaperThanBitsMerge(EVT LTy
, EVT HTy
) const override
{
828 // If the pair to store is a mixture of float and int values, we will
829 // save two bitwise instructions and one float-to-int instruction and
830 // increase one store instruction. There is potentially a more
831 // significant benefit because it avoids the float->int domain switch
832 // for input value. So It is more likely a win.
833 if ((LTy
.isFloatingPoint() && HTy
.isInteger()) ||
834 (LTy
.isInteger() && HTy
.isFloatingPoint()))
836 // If the pair only contains int values, we will save two bitwise
837 // instructions and increase one store instruction (costing one more
838 // store buffer). Since the benefit is more blurred so we leave
839 // such pair out until we get testcase to prove it is a win.
843 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
845 bool hasAndNotCompare(SDValue Y
) const override
;
847 bool hasAndNot(SDValue Y
) const override
;
849 bool hasBitTest(SDValue X
, SDValue Y
) const override
;
851 bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
852 SDValue X
, ConstantSDNode
*XC
, ConstantSDNode
*CC
, SDValue Y
,
853 unsigned OldShiftOpcode
, unsigned NewShiftOpcode
,
854 SelectionDAG
&DAG
) const override
;
856 bool shouldFoldConstantShiftPairToMask(const SDNode
*N
,
857 CombineLevel Level
) const override
;
859 bool shouldFoldMaskToVariableShiftPair(SDValue Y
) const override
;
862 shouldTransformSignedTruncationCheck(EVT XVT
,
863 unsigned KeptBits
) const override
{
864 // For vectors, we don't have a preference..
868 auto VTIsOk
= [](EVT VT
) -> bool {
869 return VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
||
873 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
874 // XVT will be larger than KeptBitsVT.
875 MVT KeptBitsVT
= MVT::getIntegerVT(KeptBits
);
876 return VTIsOk(XVT
) && VTIsOk(KeptBitsVT
);
879 bool shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const override
;
881 bool shouldSplatInsEltVarIndex(EVT VT
) const override
;
883 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
884 return VT
.isScalarInteger();
887 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
888 MVT
hasFastEqualityCompare(unsigned NumBits
) const override
;
890 /// Return the value type to use for ISD::SETCC.
891 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
892 EVT VT
) const override
;
894 bool targetShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
895 TargetLoweringOpt
&TLO
) const override
;
897 /// Determine which of the bits specified in Mask are known to be either
898 /// zero or one and return them in the KnownZero/KnownOne bitsets.
899 void computeKnownBitsForTargetNode(const SDValue Op
,
901 const APInt
&DemandedElts
,
902 const SelectionDAG
&DAG
,
903 unsigned Depth
= 0) const override
;
905 /// Determine the number of bits in the operation that are sign bits.
906 unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
907 const APInt
&DemandedElts
,
908 const SelectionDAG
&DAG
,
909 unsigned Depth
) const override
;
911 bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op
,
912 const APInt
&DemandedElts
,
915 TargetLoweringOpt
&TLO
,
916 unsigned Depth
) const override
;
918 bool SimplifyDemandedBitsForTargetNode(SDValue Op
,
919 const APInt
&DemandedBits
,
920 const APInt
&DemandedElts
,
922 TargetLoweringOpt
&TLO
,
923 unsigned Depth
) const override
;
925 SDValue
SimplifyMultipleUseDemandedBitsForTargetNode(
926 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
927 SelectionDAG
&DAG
, unsigned Depth
) const override
;
929 const Constant
*getTargetConstantFromLoad(LoadSDNode
*LD
) const override
;
931 SDValue
unwrapAddress(SDValue N
) const override
;
933 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
) const;
935 bool ExpandInlineAsm(CallInst
*CI
) const override
;
937 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
939 /// Examine constraint string and operand type and determine a weight value.
940 /// The operand object must already have been set up with the operand type.
942 getSingleConstraintMatchWeight(AsmOperandInfo
&info
,
943 const char *constraint
) const override
;
945 const char *LowerXConstraint(EVT ConstraintVT
) const override
;
947 /// Lower the specified operand into the Ops vector. If it is invalid, don't
948 /// add anything to Ops. If hasMemory is true it means one of the asm
949 /// constraint of the inline asm instruction being processed is 'm'.
950 void LowerAsmOperandForConstraint(SDValue Op
,
951 std::string
&Constraint
,
952 std::vector
<SDValue
> &Ops
,
953 SelectionDAG
&DAG
) const override
;
956 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
957 if (ConstraintCode
== "i")
958 return InlineAsm::Constraint_i
;
959 else if (ConstraintCode
== "o")
960 return InlineAsm::Constraint_o
;
961 else if (ConstraintCode
== "v")
962 return InlineAsm::Constraint_v
;
963 else if (ConstraintCode
== "X")
964 return InlineAsm::Constraint_X
;
965 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
968 /// Handle Lowering flag assembly outputs.
969 SDValue
LowerAsmOutputForConstraint(SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
,
970 const AsmOperandInfo
&Constraint
,
971 SelectionDAG
&DAG
) const override
;
973 /// Given a physical register constraint
974 /// (e.g. {edx}), return the register number and the register class for the
975 /// register. This should only be used for C_Register constraints. On
976 /// error, this returns a register number of 0.
977 std::pair
<unsigned, const TargetRegisterClass
*>
978 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
979 StringRef Constraint
, MVT VT
) const override
;
981 /// Return true if the addressing mode represented
982 /// by AM is legal for this target, for a load/store of the specified type.
983 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
984 Type
*Ty
, unsigned AS
,
985 Instruction
*I
= nullptr) const override
;
987 /// Return true if the specified immediate is legal
988 /// icmp immediate, that is the target has icmp instructions which can
989 /// compare a register against the immediate without having to materialize
990 /// the immediate into a register.
991 bool isLegalICmpImmediate(int64_t Imm
) const override
;
993 /// Return true if the specified immediate is legal
994 /// add immediate, that is the target has add instructions which can
995 /// add a register and the immediate without having to materialize
996 /// the immediate into a register.
997 bool isLegalAddImmediate(int64_t Imm
) const override
;
999 bool isLegalStoreImmediate(int64_t Imm
) const override
;
1001 /// Return the cost of the scaling factor used in the addressing
1002 /// mode represented by AM for this target, for a load/store
1003 /// of the specified type.
1004 /// If the AM is supported, the return value must be >= 0.
1005 /// If the AM is not supported, it returns a negative value.
1006 int getScalingFactorCost(const DataLayout
&DL
, const AddrMode
&AM
, Type
*Ty
,
1007 unsigned AS
) const override
;
1009 bool isVectorShiftByScalarCheap(Type
*Ty
) const override
;
1011 /// Add x86-specific opcodes to the default list.
1012 bool isBinOp(unsigned Opcode
) const override
;
1014 /// Returns true if the opcode is a commutative binary operation.
1015 bool isCommutativeBinOp(unsigned Opcode
) const override
;
1017 /// Return true if it's free to truncate a value of
1018 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1019 /// register EAX to i16 by referencing its sub-register AX.
1020 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
1021 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
1023 bool allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const override
;
1025 /// Return true if any actual instruction that defines a
1026 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1027 /// register. This does not necessarily include registers defined in
1028 /// unknown ways, such as incoming arguments, or copies from unknown
1029 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1030 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1031 /// all instructions that define 32-bit values implicit zero-extend the
1032 /// result out to 64 bits.
1033 bool isZExtFree(Type
*Ty1
, Type
*Ty2
) const override
;
1034 bool isZExtFree(EVT VT1
, EVT VT2
) const override
;
1035 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
1037 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1038 /// extend node) is profitable.
1039 bool isVectorLoadExtDesirable(SDValue
) const override
;
1041 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1042 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1043 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1044 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
1046 /// Return true if it's profitable to narrow
1047 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1048 /// from i32 to i8 but not from i32 to i16.
1049 bool isNarrowingProfitable(EVT VT1
, EVT VT2
) const override
;
1051 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1052 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1053 /// true and stores the intrinsic information into the IntrinsicInfo that was
1054 /// passed to the function.
1055 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
, const CallInst
&I
,
1056 MachineFunction
&MF
,
1057 unsigned Intrinsic
) const override
;
1059 /// Returns true if the target can instruction select the
1060 /// specified FP immediate natively. If false, the legalizer will
1061 /// materialize the FP immediate as a load from a constant pool.
1062 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
,
1063 bool ForCodeSize
) const override
;
1065 /// Targets can use this to indicate that they only support *some*
1066 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1067 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1069 bool isShuffleMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1071 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1072 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1073 /// constant pool entry.
1074 bool isVectorClearMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1076 /// Returns true if lowering to a jump table is allowed.
1077 bool areJTsAllowed(const Function
*Fn
) const override
;
1079 /// If true, then instruction selection should
1080 /// seek to shrink the FP constant of the specified type to a smaller type
1081 /// in order to save space and / or reduce runtime.
1082 bool ShouldShrinkFPConstant(EVT VT
) const override
{
1083 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
1084 // expensive than a straight movsd. On the other hand, it's important to
1085 // shrink long double fp constant since fldt is very slow.
1086 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
1089 /// Return true if we believe it is correct and profitable to reduce the
1090 /// load node to a smaller type.
1091 bool shouldReduceLoadWidth(SDNode
*Load
, ISD::LoadExtType ExtTy
,
1092 EVT NewVT
) const override
;
1094 /// Return true if the specified scalar FP type is computed in an SSE
1095 /// register, not on the X87 floating point stack.
1096 bool isScalarFPTypeInSSEReg(EVT VT
) const {
1097 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
1098 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
1101 /// Returns true if it is beneficial to convert a load of a constant
1102 /// to just the constant itself.
1103 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
1104 Type
*Ty
) const override
;
1106 bool reduceSelectOfFPConstantLoads(bool IsFPSetCC
) const override
;
1108 bool convertSelectOfConstantsToMath(EVT VT
) const override
;
1110 bool decomposeMulByConstant(LLVMContext
&Context
, EVT VT
,
1111 SDValue C
) const override
;
1113 bool shouldUseStrictFP_TO_INT(EVT FpVT
, EVT IntVT
,
1114 bool IsSigned
) const override
;
1116 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1117 /// with this index.
1118 bool isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
1119 unsigned Index
) const override
;
1121 /// Scalar ops always have equal or better analysis/performance/power than
1122 /// the vector equivalent, so this always makes sense if the scalar op is
1124 bool shouldScalarizeBinop(SDValue
) const override
;
1126 /// Extract of a scalar FP value from index 0 of a vector is free.
1127 bool isExtractVecEltCheap(EVT VT
, unsigned Index
) const override
{
1128 EVT EltVT
= VT
.getScalarType();
1129 return (EltVT
== MVT::f32
|| EltVT
== MVT::f64
) && Index
== 0;
1132 /// Overflow nodes should get combined/lowered to optimal instructions
1133 /// (they should allow eliminating explicit compares by getting flags from
1135 bool shouldFormOverflowOp(unsigned Opcode
, EVT VT
) const override
;
1137 bool storeOfVectorConstantIsCheap(EVT MemVT
, unsigned NumElem
,
1138 unsigned AddrSpace
) const override
{
1139 // If we can replace more than 2 scalar stores, there will be a reduction
1140 // in instructions even after we add a vector constant load.
1144 bool isLoadBitCastBeneficial(EVT LoadVT
, EVT BitcastVT
,
1145 const SelectionDAG
&DAG
,
1146 const MachineMemOperand
&MMO
) const override
;
1148 /// Intel processors have a unified instruction and data cache
1149 const char * getClearCacheBuiltinName() const override
{
1150 return nullptr; // nothing to do, move along.
1153 unsigned getRegisterByName(const char* RegName
, EVT VT
,
1154 SelectionDAG
&DAG
) const override
;
1156 /// If a physical register, this returns the register that receives the
1157 /// exception address on entry to an EH pad.
1159 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
1161 /// If a physical register, this returns the register that receives the
1162 /// exception typeid on entry to a landing pad.
1164 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
1166 virtual bool needsFixedCatchObjects() const override
;
1168 /// This method returns a target specific FastISel object,
1169 /// or null if the target does not support "fast" ISel.
1170 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1171 const TargetLibraryInfo
*libInfo
) const override
;
1173 /// If the target has a standard location for the stack protector cookie,
1174 /// returns the address of that location. Otherwise, returns nullptr.
1175 Value
*getIRStackGuard(IRBuilder
<> &IRB
) const override
;
1177 bool useLoadStackGuardNode() const override
;
1178 bool useStackGuardXorFP() const override
;
1179 void insertSSPDeclarations(Module
&M
) const override
;
1180 Value
*getSDagStackGuard(const Module
&M
) const override
;
1181 Function
*getSSPStackGuardCheck(const Module
&M
) const override
;
1182 SDValue
emitStackGuardXorFP(SelectionDAG
&DAG
, SDValue Val
,
1183 const SDLoc
&DL
) const override
;
1186 /// Return true if the target stores SafeStack pointer at a fixed offset in
1187 /// some non-standard address space, and populates the address space and
1188 /// offset as appropriate.
1189 Value
*getSafeStackPointerLocation(IRBuilder
<> &IRB
) const override
;
1191 SDValue
BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
, SDValue StackSlot
,
1192 SelectionDAG
&DAG
) const;
1194 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
;
1196 /// Customize the preferred legalization strategy for certain types.
1197 LegalizeTypeAction
getPreferredVectorAction(MVT VT
) const override
;
1199 MVT
getRegisterTypeForCallingConv(LLVMContext
&Context
, CallingConv::ID CC
,
1200 EVT VT
) const override
;
1202 unsigned getNumRegistersForCallingConv(LLVMContext
&Context
,
1204 EVT VT
) const override
;
1206 bool isIntDivCheap(EVT VT
, AttributeList Attr
) const override
;
1208 bool supportSwiftError() const override
;
1210 StringRef
getStackProbeSymbolName(MachineFunction
&MF
) const override
;
1212 unsigned getStackProbeSize(MachineFunction
&MF
) const;
1214 bool hasVectorBlend() const override
{ return true; }
1216 unsigned getMaxSupportedInterleaveFactor() const override
{ return 4; }
1218 /// Lower interleaved load(s) into target specific
1219 /// instructions/intrinsics.
1220 bool lowerInterleavedLoad(LoadInst
*LI
,
1221 ArrayRef
<ShuffleVectorInst
*> Shuffles
,
1222 ArrayRef
<unsigned> Indices
,
1223 unsigned Factor
) const override
;
1225 /// Lower interleaved store(s) into target specific
1226 /// instructions/intrinsics.
1227 bool lowerInterleavedStore(StoreInst
*SI
, ShuffleVectorInst
*SVI
,
1228 unsigned Factor
) const override
;
1230 SDValue
expandIndirectJTBranch(const SDLoc
& dl
, SDValue Value
,
1231 SDValue Addr
, SelectionDAG
&DAG
)
1235 std::pair
<const TargetRegisterClass
*, uint8_t>
1236 findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1237 MVT VT
) const override
;
1240 /// Keep a reference to the X86Subtarget around so that we can
1241 /// make the right decision when generating code for different targets.
1242 const X86Subtarget
&Subtarget
;
1244 /// Select between SSE or x87 floating point ops.
1245 /// When SSE is available, use it for f32 operations.
1246 /// When SSE2 is available, use it for f64 operations.
1247 bool X86ScalarSSEf32
;
1248 bool X86ScalarSSEf64
;
1250 /// A list of legal FP immediates.
1251 std::vector
<APFloat
> LegalFPImmediates
;
1253 /// Indicate that this x86 target can instruction
1254 /// select the specified FP immediate natively.
1255 void addLegalFPImmediate(const APFloat
& Imm
) {
1256 LegalFPImmediates
.push_back(Imm
);
1259 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1260 CallingConv::ID CallConv
, bool isVarArg
,
1261 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1262 const SDLoc
&dl
, SelectionDAG
&DAG
,
1263 SmallVectorImpl
<SDValue
> &InVals
,
1264 uint32_t *RegMask
) const;
1265 SDValue
LowerMemArgument(SDValue Chain
, CallingConv::ID CallConv
,
1266 const SmallVectorImpl
<ISD::InputArg
> &ArgInfo
,
1267 const SDLoc
&dl
, SelectionDAG
&DAG
,
1268 const CCValAssign
&VA
, MachineFrameInfo
&MFI
,
1270 SDValue
LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
, SDValue Arg
,
1271 const SDLoc
&dl
, SelectionDAG
&DAG
,
1272 const CCValAssign
&VA
,
1273 ISD::ArgFlagsTy Flags
) const;
1275 // Call lowering helpers.
1277 /// Check whether the call is eligible for tail call optimization. Targets
1278 /// that want to do tail call optimization should implement this function.
1279 bool IsEligibleForTailCallOptimization(SDValue Callee
,
1280 CallingConv::ID CalleeCC
,
1282 bool isCalleeStructRet
,
1283 bool isCallerStructRet
,
1285 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1286 const SmallVectorImpl
<SDValue
> &OutVals
,
1287 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1288 SelectionDAG
& DAG
) const;
1289 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
1290 SDValue Chain
, bool IsTailCall
,
1291 bool Is64Bit
, int FPDiff
,
1292 const SDLoc
&dl
) const;
1294 unsigned GetAlignedArgumentStackSize(unsigned StackSize
,
1295 SelectionDAG
&DAG
) const;
1297 unsigned getAddressSpace(void) const;
1299 SDValue
FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool isSigned
) const;
1301 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1302 SDValue
LowerVSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1303 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1304 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1306 unsigned getGlobalWrapperKind(const GlobalValue
*GV
= nullptr,
1307 const unsigned char OpFlags
= 0) const;
1308 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
1309 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1310 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1311 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1312 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) const;
1314 /// Creates target global address or external symbol nodes for calls or
1316 SDValue
LowerGlobalOrExternal(SDValue Op
, SelectionDAG
&DAG
,
1317 bool ForCall
) const;
1319 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1320 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1321 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
1322 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const;
1323 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
1324 SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) const;
1325 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1326 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const;
1327 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
1328 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
1329 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
1330 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
1331 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1332 SDValue
LowerADDROFRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1333 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1334 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
1335 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const;
1336 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1337 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1338 SDValue
lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
, SelectionDAG
&DAG
) const;
1339 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1340 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
1341 SDValue
LowerWin64_i128OP(SDValue Op
, SelectionDAG
&DAG
) const;
1342 SDValue
LowerGC_TRANSITION_START(SDValue Op
, SelectionDAG
&DAG
) const;
1343 SDValue
LowerGC_TRANSITION_END(SDValue Op
, SelectionDAG
&DAG
) const;
1344 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
1347 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1348 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1349 const SDLoc
&dl
, SelectionDAG
&DAG
,
1350 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1351 SDValue
LowerCall(CallLoweringInfo
&CLI
,
1352 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1354 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1355 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1356 const SmallVectorImpl
<SDValue
> &OutVals
,
1357 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1359 bool supportSplitCSR(MachineFunction
*MF
) const override
{
1360 return MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
1361 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
1363 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
1364 void insertCopiesSplitCSR(
1365 MachineBasicBlock
*Entry
,
1366 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
1368 bool isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const override
;
1370 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1372 EVT
getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
1373 ISD::NodeType ExtendKind
) const override
;
1375 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1377 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1378 LLVMContext
&Context
) const override
;
1380 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
1382 TargetLoweringBase::AtomicExpansionKind
1383 shouldExpandAtomicLoadInIR(LoadInst
*SI
) const override
;
1384 bool shouldExpandAtomicStoreInIR(StoreInst
*SI
) const override
;
1385 TargetLoweringBase::AtomicExpansionKind
1386 shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const override
;
1389 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst
*AI
) const override
;
1391 bool needsCmpXchgNb(Type
*MemType
) const;
1393 void SetupEntryBlockForSjLj(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
1394 MachineBasicBlock
*DispatchBB
, int FI
) const;
1396 // Utility function to emit the low-level va_arg code for X86-64.
1398 EmitVAARG64WithCustomInserter(MachineInstr
&MI
,
1399 MachineBasicBlock
*MBB
) const;
1401 /// Utility function to emit the xmm reg save portion of va_start.
1403 EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr
&BInstr
,
1404 MachineBasicBlock
*BB
) const;
1406 MachineBasicBlock
*EmitLoweredCascadedSelect(MachineInstr
&MI1
,
1408 MachineBasicBlock
*BB
) const;
1410 MachineBasicBlock
*EmitLoweredSelect(MachineInstr
&I
,
1411 MachineBasicBlock
*BB
) const;
1413 MachineBasicBlock
*EmitLoweredAtomicFP(MachineInstr
&I
,
1414 MachineBasicBlock
*BB
) const;
1416 MachineBasicBlock
*EmitLoweredCatchRet(MachineInstr
&MI
,
1417 MachineBasicBlock
*BB
) const;
1419 MachineBasicBlock
*EmitLoweredCatchPad(MachineInstr
&MI
,
1420 MachineBasicBlock
*BB
) const;
1422 MachineBasicBlock
*EmitLoweredSegAlloca(MachineInstr
&MI
,
1423 MachineBasicBlock
*BB
) const;
1425 MachineBasicBlock
*EmitLoweredTLSAddr(MachineInstr
&MI
,
1426 MachineBasicBlock
*BB
) const;
1428 MachineBasicBlock
*EmitLoweredTLSCall(MachineInstr
&MI
,
1429 MachineBasicBlock
*BB
) const;
1431 MachineBasicBlock
*EmitLoweredRetpoline(MachineInstr
&MI
,
1432 MachineBasicBlock
*BB
) const;
1434 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
1435 MachineBasicBlock
*MBB
) const;
1437 void emitSetJmpShadowStackFix(MachineInstr
&MI
,
1438 MachineBasicBlock
*MBB
) const;
1440 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
1441 MachineBasicBlock
*MBB
) const;
1443 MachineBasicBlock
*emitLongJmpShadowStackFix(MachineInstr
&MI
,
1444 MachineBasicBlock
*MBB
) const;
1446 MachineBasicBlock
*emitFMA3Instr(MachineInstr
&MI
,
1447 MachineBasicBlock
*MBB
) const;
1449 MachineBasicBlock
*EmitSjLjDispatchBlock(MachineInstr
&MI
,
1450 MachineBasicBlock
*MBB
) const;
1452 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1453 /// equivalent, for use with the given x86 condition code.
1454 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
, const SDLoc
&dl
,
1455 SelectionDAG
&DAG
) const;
1457 /// Convert a comparison if required by the subtarget.
1458 SDValue
ConvertCmpIfNecessary(SDValue Cmp
, SelectionDAG
&DAG
) const;
1460 /// Emit flags for the given setcc condition and operands. Also returns the
1461 /// corresponding X86 condition code constant in X86CC.
1462 SDValue
emitFlagsForSetcc(SDValue Op0
, SDValue Op1
,
1463 ISD::CondCode CC
, const SDLoc
&dl
,
1465 SDValue
&X86CC
) const;
1467 /// Check if replacement of SQRT with RSQRT should be disabled.
1468 bool isFsqrtCheap(SDValue Operand
, SelectionDAG
&DAG
) const override
;
1470 /// Use rsqrt* to speed up sqrt calculations.
1471 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1472 int &RefinementSteps
, bool &UseOneConstNR
,
1473 bool Reciprocal
) const override
;
1475 /// Use rcp* to speed up fdiv calculations.
1476 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1477 int &RefinementSteps
) const override
;
1479 /// Reassociate floating point divisions into multiply by reciprocal.
1480 unsigned combineRepeatedFPDivisors() const override
;
1482 SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
, SelectionDAG
&DAG
,
1483 SmallVectorImpl
<SDNode
*> &Created
) const override
;
1487 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1488 const TargetLibraryInfo
*libInfo
);
1489 } // end namespace X86
1491 // Base class for all X86 non-masked store operations.
1492 class X86StoreSDNode
: public MemSDNode
{
1494 X86StoreSDNode(unsigned Opcode
, unsigned Order
, const DebugLoc
&dl
,
1495 SDVTList VTs
, EVT MemVT
,
1496 MachineMemOperand
*MMO
)
1497 :MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1498 const SDValue
&getValue() const { return getOperand(1); }
1499 const SDValue
&getBasePtr() const { return getOperand(2); }
1501 static bool classof(const SDNode
*N
) {
1502 return N
->getOpcode() == X86ISD::VTRUNCSTORES
||
1503 N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1507 // Base class for all X86 masked store operations.
1508 // The class has the same order of operands as MaskedStoreSDNode for
1510 class X86MaskedStoreSDNode
: public MemSDNode
{
1512 X86MaskedStoreSDNode(unsigned Opcode
, unsigned Order
,
1513 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1514 MachineMemOperand
*MMO
)
1515 : MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1517 const SDValue
&getValue() const { return getOperand(1); }
1518 const SDValue
&getBasePtr() const { return getOperand(2); }
1519 const SDValue
&getMask() const { return getOperand(3); }
1521 static bool classof(const SDNode
*N
) {
1522 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
||
1523 N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1527 // X86 Truncating Store with Signed saturation.
1528 class TruncSStoreSDNode
: public X86StoreSDNode
{
1530 TruncSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1531 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1532 : X86StoreSDNode(X86ISD::VTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1534 static bool classof(const SDNode
*N
) {
1535 return N
->getOpcode() == X86ISD::VTRUNCSTORES
;
1539 // X86 Truncating Store with Unsigned saturation.
1540 class TruncUSStoreSDNode
: public X86StoreSDNode
{
1542 TruncUSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1543 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1544 : X86StoreSDNode(X86ISD::VTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1546 static bool classof(const SDNode
*N
) {
1547 return N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1551 // X86 Truncating Masked Store with Signed saturation.
1552 class MaskedTruncSStoreSDNode
: public X86MaskedStoreSDNode
{
1554 MaskedTruncSStoreSDNode(unsigned Order
,
1555 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1556 MachineMemOperand
*MMO
)
1557 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1559 static bool classof(const SDNode
*N
) {
1560 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
;
1564 // X86 Truncating Masked Store with Unsigned saturation.
1565 class MaskedTruncUSStoreSDNode
: public X86MaskedStoreSDNode
{
1567 MaskedTruncUSStoreSDNode(unsigned Order
,
1568 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1569 MachineMemOperand
*MMO
)
1570 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1572 static bool classof(const SDNode
*N
) {
1573 return N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1577 // X86 specific Gather/Scatter nodes.
1578 // The class has the same order of operands as MaskedGatherScatterSDNode for
1580 class X86MaskedGatherScatterSDNode
: public MemSDNode
{
1582 X86MaskedGatherScatterSDNode(unsigned Opc
, unsigned Order
,
1583 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1584 MachineMemOperand
*MMO
)
1585 : MemSDNode(Opc
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1587 const SDValue
&getBasePtr() const { return getOperand(3); }
1588 const SDValue
&getIndex() const { return getOperand(4); }
1589 const SDValue
&getMask() const { return getOperand(2); }
1590 const SDValue
&getScale() const { return getOperand(5); }
1592 static bool classof(const SDNode
*N
) {
1593 return N
->getOpcode() == X86ISD::MGATHER
||
1594 N
->getOpcode() == X86ISD::MSCATTER
;
1598 class X86MaskedGatherSDNode
: public X86MaskedGatherScatterSDNode
{
1600 X86MaskedGatherSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1601 EVT MemVT
, MachineMemOperand
*MMO
)
1602 : X86MaskedGatherScatterSDNode(X86ISD::MGATHER
, Order
, dl
, VTs
, MemVT
,
1605 const SDValue
&getPassThru() const { return getOperand(1); }
1607 static bool classof(const SDNode
*N
) {
1608 return N
->getOpcode() == X86ISD::MGATHER
;
1612 class X86MaskedScatterSDNode
: public X86MaskedGatherScatterSDNode
{
1614 X86MaskedScatterSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1615 EVT MemVT
, MachineMemOperand
*MMO
)
1616 : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER
, Order
, dl
, VTs
, MemVT
,
1619 const SDValue
&getValue() const { return getOperand(1); }
1621 static bool classof(const SDNode
*N
) {
1622 return N
->getOpcode() == X86ISD::MSCATTER
;
1626 /// Generate unpacklo/unpackhi shuffle mask.
1627 template <typename T
= int>
1628 void createUnpackShuffleMask(MVT VT
, SmallVectorImpl
<T
> &Mask
, bool Lo
,
1630 assert(Mask
.empty() && "Expected an empty shuffle mask vector");
1631 int NumElts
= VT
.getVectorNumElements();
1632 int NumEltsInLane
= 128 / VT
.getScalarSizeInBits();
1633 for (int i
= 0; i
< NumElts
; ++i
) {
1634 unsigned LaneStart
= (i
/ NumEltsInLane
) * NumEltsInLane
;
1635 int Pos
= (i
% NumEltsInLane
) / 2 + LaneStart
;
1636 Pos
+= (Unary
? 0 : NumElts
* (i
% 2));
1637 Pos
+= (Lo
? 0 : NumEltsInLane
/ 2);
1638 Mask
.push_back(Pos
);
1642 /// Helper function to scale a shuffle or target shuffle mask, replacing each
1643 /// mask index with the scaled sequential indices for an equivalent narrowed
1644 /// mask. This is the reverse process to canWidenShuffleElements, but can
1646 template <typename T
>
1647 void scaleShuffleMask(int Scale
, ArrayRef
<T
> Mask
,
1648 SmallVectorImpl
<T
> &ScaledMask
) {
1649 assert(0 < Scale
&& "Unexpected scaling factor");
1650 size_t NumElts
= Mask
.size();
1651 ScaledMask
.assign(NumElts
* Scale
, -1);
1653 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
1656 // Repeat sentinel values in every mask element.
1658 for (int s
= 0; s
!= Scale
; ++s
)
1659 ScaledMask
[(Scale
* i
) + s
] = M
;
1663 // Scale mask element and increment across each mask element.
1664 for (int s
= 0; s
!= Scale
; ++s
)
1665 ScaledMask
[(Scale
* i
) + s
] = (Scale
* M
) + s
;
1668 } // end namespace llvm
1670 #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H