1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
27 class MachineInstrBuilder
;
28 class X86RegisterInfo
;
34 // For instr that was compressed from EVEX to VEX.
35 AC_EVEX_2_VEX
= MachineInstr::TAsmComments
38 /// Return a pair of condition code for the given predicate and whether
39 /// the instruction operands should be swaped to match the condition code.
40 std::pair
<CondCode
, bool> getX86ConditionCode(CmpInst::Predicate Predicate
);
42 /// Return a setcc opcode based on whether it has a memory operand.
43 unsigned getSETOpc(bool HasMemoryOperand
= false);
45 /// Return a cmov opcode for the given register size in bytes, and operand type.
46 unsigned getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
= false);
48 // Turn jCC instruction into condition code.
49 CondCode
getCondFromBranch(const MachineInstr
&MI
);
51 // Turn setCC instruction into condition code.
52 CondCode
getCondFromSETCC(const MachineInstr
&MI
);
54 // Turn CMov instruction into condition code.
55 CondCode
getCondFromCMov(const MachineInstr
&MI
);
57 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
58 /// e.g. turning COND_E to COND_NE.
59 CondCode
GetOppositeBranchCondition(CondCode CC
);
61 /// Get the VPCMP immediate for the given condition.
62 unsigned getVPCMPImmForCond(ISD::CondCode CC
);
64 /// Get the VPCMP immediate if the opcodes are swapped.
65 unsigned getSwappedVPCMPImm(unsigned Imm
);
67 /// Get the VPCOM immediate if the opcodes are swapped.
68 unsigned getSwappedVPCOMImm(unsigned Imm
);
72 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
73 /// a reference to a stub for a global, not the global itself.
74 inline static bool isGlobalStubReference(unsigned char TargetFlag
) {
76 case X86II::MO_DLLIMPORT
: // dllimport stub.
77 case X86II::MO_GOTPCREL
: // rip-relative GOT reference.
78 case X86II::MO_GOT
: // normal GOT reference.
79 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: // Normal $non_lazy_ptr ref.
80 case X86II::MO_DARWIN_NONLAZY
: // Normal $non_lazy_ptr ref.
81 case X86II::MO_COFFSTUB
: // COFF .refptr stub.
88 /// isGlobalRelativeToPICBase - Return true if the specified global value
89 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
90 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
91 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag
) {
93 case X86II::MO_GOTOFF
: // isPICStyleGOT: local global.
94 case X86II::MO_GOT
: // isPICStyleGOT: other global.
95 case X86II::MO_PIC_BASE_OFFSET
: // Darwin local global.
96 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: // Darwin/32 external global.
97 case X86II::MO_TLVP
: // ??? Pretty sure..
104 inline static bool isScale(const MachineOperand
&MO
) {
105 return MO
.isImm() && (MO
.getImm() == 1 || MO
.getImm() == 2 ||
106 MO
.getImm() == 4 || MO
.getImm() == 8);
109 inline static bool isLeaMem(const MachineInstr
&MI
, unsigned Op
) {
110 if (MI
.getOperand(Op
).isFI())
112 return Op
+ X86::AddrSegmentReg
<= MI
.getNumOperands() &&
113 MI
.getOperand(Op
+ X86::AddrBaseReg
).isReg() &&
114 isScale(MI
.getOperand(Op
+ X86::AddrScaleAmt
)) &&
115 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
116 (MI
.getOperand(Op
+ X86::AddrDisp
).isImm() ||
117 MI
.getOperand(Op
+ X86::AddrDisp
).isGlobal() ||
118 MI
.getOperand(Op
+ X86::AddrDisp
).isCPI() ||
119 MI
.getOperand(Op
+ X86::AddrDisp
).isJTI());
122 inline static bool isMem(const MachineInstr
&MI
, unsigned Op
) {
123 if (MI
.getOperand(Op
).isFI())
125 return Op
+ X86::AddrNumOperands
<= MI
.getNumOperands() &&
126 MI
.getOperand(Op
+ X86::AddrSegmentReg
).isReg() && isLeaMem(MI
, Op
);
129 class X86InstrInfo final
: public X86GenInstrInfo
{
130 X86Subtarget
&Subtarget
;
131 const X86RegisterInfo RI
;
133 virtual void anchor();
135 bool AnalyzeBranchImpl(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
136 MachineBasicBlock
*&FBB
,
137 SmallVectorImpl
<MachineOperand
> &Cond
,
138 SmallVectorImpl
<MachineInstr
*> &CondBranches
,
139 bool AllowModify
) const;
142 explicit X86InstrInfo(X86Subtarget
&STI
);
144 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
145 /// such, whenever a client has an instance of instruction info, it should
146 /// always be able to get register info as well (through this method).
148 const X86RegisterInfo
&getRegisterInfo() const { return RI
; }
150 /// Returns the stack pointer adjustment that happens inside the frame
151 /// setup..destroy sequence (e.g. by pushes, or inside the callee).
152 int64_t getFrameAdjustment(const MachineInstr
&I
) const {
153 assert(isFrameInstr(I
));
155 return I
.getOperand(2).getImm();
156 return I
.getOperand(1).getImm();
159 /// Sets the stack pointer adjustment made inside the frame made up by this
161 void setFrameAdjustment(MachineInstr
&I
, int64_t V
) const {
162 assert(isFrameInstr(I
));
164 I
.getOperand(2).setImm(V
);
166 I
.getOperand(1).setImm(V
);
169 /// getSPAdjust - This returns the stack pointer adjustment made by
170 /// this instruction. For x86, we need to handle more complex call
171 /// sequences involving PUSHes.
172 int getSPAdjust(const MachineInstr
&MI
) const override
;
174 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
175 /// extension instruction. That is, it's like a copy where it's legal for the
176 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
177 /// true, then it's expected the pre-extension value is available as a subreg
178 /// of the result register. This also returns the sub-register index in
180 bool isCoalescableExtInstr(const MachineInstr
&MI
, unsigned &SrcReg
,
181 unsigned &DstReg
, unsigned &SubIdx
) const override
;
183 unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
184 int &FrameIndex
) const override
;
185 unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
187 unsigned &MemBytes
) const override
;
188 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
189 /// stack locations as well. This uses a heuristic so it isn't
190 /// reliable for correctness.
191 unsigned isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
192 int &FrameIndex
) const override
;
194 unsigned isStoreToStackSlot(const MachineInstr
&MI
,
195 int &FrameIndex
) const override
;
196 unsigned isStoreToStackSlot(const MachineInstr
&MI
,
198 unsigned &MemBytes
) const override
;
199 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
200 /// stack locations as well. This uses a heuristic so it isn't
201 /// reliable for correctness.
202 unsigned isStoreToStackSlotPostFE(const MachineInstr
&MI
,
203 int &FrameIndex
) const override
;
205 bool isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
206 AliasAnalysis
*AA
) const override
;
207 void reMaterialize(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
208 unsigned DestReg
, unsigned SubIdx
,
209 const MachineInstr
&Orig
,
210 const TargetRegisterInfo
&TRI
) const override
;
212 /// Given an operand within a MachineInstr, insert preceding code to put it
213 /// into the right format for a particular kind of LEA instruction. This may
214 /// involve using an appropriate super-register instead (with an implicit use
215 /// of the original) or creating a new virtual register and inserting COPY
216 /// instructions to get the data into the right class.
218 /// Reference parameters are set to indicate how caller should add this
219 /// operand to the LEA instruction.
220 bool classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
221 unsigned LEAOpcode
, bool AllowSP
, Register
&NewSrc
,
222 bool &isKill
, MachineOperand
&ImplicitOp
,
223 LiveVariables
*LV
) const;
225 /// convertToThreeAddress - This method must be implemented by targets that
226 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
227 /// may be able to convert a two-address instruction into a true
228 /// three-address instruction on demand. This allows the X86 target (for
229 /// example) to convert ADD and SHL instructions into LEA instructions if they
230 /// would require register copies due to two-addressness.
232 /// This method returns a null pointer if the transformation cannot be
233 /// performed, otherwise it returns the new instruction.
235 MachineInstr
*convertToThreeAddress(MachineFunction::iterator
&MFI
,
237 LiveVariables
*LV
) const override
;
239 /// Returns true iff the routine could find two commutable operands in the
240 /// given machine instruction.
241 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
242 /// input values can be re-defined in this method only if the input values
243 /// are not pre-defined, which is designated by the special value
244 /// 'CommuteAnyOperandIndex' assigned to it.
245 /// If both of indices are pre-defined and refer to some operands, then the
246 /// method simply returns true if the corresponding operands are commutable
247 /// and returns false otherwise.
249 /// For example, calling this method this way:
250 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
251 /// findCommutedOpIndices(MI, Op1, Op2);
252 /// can be interpreted as a query asking to find an operand that would be
253 /// commutable with the operand#1.
254 bool findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
255 unsigned &SrcOpIdx2
) const override
;
257 /// Returns an adjusted FMA opcode that must be used in FMA instruction that
258 /// performs the same computations as the given \p MI but which has the
259 /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
260 /// It may return 0 if it is unsafe to commute the operands.
261 /// Note that a machine instruction (instead of its opcode) is passed as the
262 /// first parameter to make it possible to analyze the instruction's uses and
263 /// commute the first operand of FMA even when it seems unsafe when you look
264 /// at the opcode. For example, it is Ok to commute the first operand of
265 /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
267 /// The returned FMA opcode may differ from the opcode in the given \p MI.
268 /// For example, commuting the operands #1 and #3 in the following FMA
269 /// FMA213 #1, #2, #3
270 /// results into instruction with adjusted opcode:
271 /// FMA231 #3, #2, #1
273 getFMA3OpcodeToCommuteOperands(const MachineInstr
&MI
, unsigned SrcOpIdx1
,
275 const X86InstrFMA3Group
&FMA3Group
) const;
278 bool isUnpredicatedTerminator(const MachineInstr
&MI
) const override
;
279 bool isUnconditionalTailCall(const MachineInstr
&MI
) const override
;
280 bool canMakeTailCallConditional(SmallVectorImpl
<MachineOperand
> &Cond
,
281 const MachineInstr
&TailCall
) const override
;
282 void replaceBranchWithTailCall(MachineBasicBlock
&MBB
,
283 SmallVectorImpl
<MachineOperand
> &Cond
,
284 const MachineInstr
&TailCall
) const override
;
286 bool analyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
287 MachineBasicBlock
*&FBB
,
288 SmallVectorImpl
<MachineOperand
> &Cond
,
289 bool AllowModify
) const override
;
291 bool getMemOperandWithOffset(const MachineInstr
&LdSt
,
292 const MachineOperand
*&BaseOp
,
294 const TargetRegisterInfo
*TRI
) const override
;
295 bool analyzeBranchPredicate(MachineBasicBlock
&MBB
,
296 TargetInstrInfo::MachineBranchPredicate
&MBP
,
297 bool AllowModify
= false) const override
;
299 unsigned removeBranch(MachineBasicBlock
&MBB
,
300 int *BytesRemoved
= nullptr) const override
;
301 unsigned insertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
302 MachineBasicBlock
*FBB
, ArrayRef
<MachineOperand
> Cond
,
304 int *BytesAdded
= nullptr) const override
;
305 bool canInsertSelect(const MachineBasicBlock
&, ArrayRef
<MachineOperand
> Cond
,
306 unsigned, unsigned, int &, int &, int &) const override
;
307 void insertSelect(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
308 const DebugLoc
&DL
, unsigned DstReg
,
309 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
310 unsigned FalseReg
) const override
;
311 void copyPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
312 const DebugLoc
&DL
, unsigned DestReg
, unsigned SrcReg
,
313 bool KillSrc
) const override
;
314 void storeRegToStackSlot(MachineBasicBlock
&MBB
,
315 MachineBasicBlock::iterator MI
, unsigned SrcReg
,
316 bool isKill
, int FrameIndex
,
317 const TargetRegisterClass
*RC
,
318 const TargetRegisterInfo
*TRI
) const override
;
320 void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
321 MachineBasicBlock::iterator MI
, unsigned DestReg
,
322 int FrameIndex
, const TargetRegisterClass
*RC
,
323 const TargetRegisterInfo
*TRI
) const override
;
325 bool expandPostRAPseudo(MachineInstr
&MI
) const override
;
327 /// Check whether the target can fold a load that feeds a subreg operand
328 /// (or a subreg operand that feeds a store).
329 bool isSubregFoldable() const override
{ return true; }
331 /// foldMemoryOperand - If this target supports it, fold a load or store of
332 /// the specified stack slot into the specified machine instruction for the
333 /// specified operand(s). If this is possible, the target should perform the
334 /// folding and return true, otherwise it should return false. If it folds
335 /// the instruction, it is likely that the MachineInstruction the iterator
336 /// references has been changed.
338 foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
339 ArrayRef
<unsigned> Ops
,
340 MachineBasicBlock::iterator InsertPt
, int FrameIndex
,
341 LiveIntervals
*LIS
= nullptr,
342 VirtRegMap
*VRM
= nullptr) const override
;
344 /// foldMemoryOperand - Same as the previous version except it allows folding
345 /// of any load and store from / to any address, not just from a specific
347 MachineInstr
*foldMemoryOperandImpl(
348 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
349 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
350 LiveIntervals
*LIS
= nullptr) const override
;
352 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
353 /// a store or a load and a store into two or more instruction. If this is
354 /// possible, returns true as well as the new instructions by reference.
356 unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
,
357 bool UnfoldLoad
, bool UnfoldStore
,
358 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const override
;
360 bool unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
361 SmallVectorImpl
<SDNode
*> &NewNodes
) const override
;
363 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
364 /// instruction after load / store are unfolded from an instruction of the
365 /// specified opcode. It returns zero if the specified unfolding is not
366 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
367 /// index of the operand which will hold the register holding the loaded
370 getOpcodeAfterMemoryUnfold(unsigned Opc
, bool UnfoldLoad
, bool UnfoldStore
,
371 unsigned *LoadRegIndex
= nullptr) const override
;
373 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
374 /// to determine if two loads are loading from the same base address. It
375 /// should only return true if the base pointers are the same and the
376 /// only differences between the two addresses are the offset. It also returns
377 /// the offsets by reference.
378 bool areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
, int64_t &Offset1
,
379 int64_t &Offset2
) const override
;
381 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
382 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
383 /// should be scheduled togther. On some targets if two loads are loading from
384 /// addresses in the same cache line, it's better if they are scheduled
385 /// together. This function takes two integers that represent the load offsets
386 /// from the common base address. It returns true if it decides it's desirable
387 /// to schedule the two loads together. "NumLoads" is the number of loads that
388 /// have already been scheduled after Load1.
389 bool shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
, int64_t Offset1
,
391 unsigned NumLoads
) const override
;
393 void getNoop(MCInst
&NopInst
) const override
;
396 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const override
;
398 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
399 /// instruction that defines the specified register class.
400 bool isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const override
;
402 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
403 /// would clobber the EFLAGS condition register. Note the result may be
404 /// conservative. If it cannot definitely determine the safety after visiting
405 /// a few instructions in each direction it assumes it's not safe.
406 bool isSafeToClobberEFLAGS(MachineBasicBlock
&MBB
,
407 MachineBasicBlock::iterator I
) const {
408 return MBB
.computeRegisterLiveness(&RI
, X86::EFLAGS
, I
, 4) ==
409 MachineBasicBlock::LQR_Dead
;
412 /// True if MI has a condition code def, e.g. EFLAGS, that is
414 bool hasLiveCondCodeDef(MachineInstr
&MI
) const;
416 /// getGlobalBaseReg - Return a virtual register initialized with the
417 /// the global base register value. Output instructions required to
418 /// initialize the register in the function entry block, if necessary.
420 unsigned getGlobalBaseReg(MachineFunction
*MF
) const;
422 std::pair
<uint16_t, uint16_t>
423 getExecutionDomain(const MachineInstr
&MI
) const override
;
425 uint16_t getExecutionDomainCustom(const MachineInstr
&MI
) const;
427 void setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const override
;
429 bool setExecutionDomainCustom(MachineInstr
&MI
, unsigned Domain
) const;
432 getPartialRegUpdateClearance(const MachineInstr
&MI
, unsigned OpNum
,
433 const TargetRegisterInfo
*TRI
) const override
;
434 unsigned getUndefRegClearance(const MachineInstr
&MI
, unsigned &OpNum
,
435 const TargetRegisterInfo
*TRI
) const override
;
436 void breakPartialRegDependency(MachineInstr
&MI
, unsigned OpNum
,
437 const TargetRegisterInfo
*TRI
) const override
;
439 MachineInstr
*foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
441 ArrayRef
<MachineOperand
> MOs
,
442 MachineBasicBlock::iterator InsertPt
,
443 unsigned Size
, unsigned Alignment
,
444 bool AllowCommute
) const;
446 bool isHighLatencyDef(int opc
) const override
;
448 bool hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
449 const MachineRegisterInfo
*MRI
,
450 const MachineInstr
&DefMI
, unsigned DefIdx
,
451 const MachineInstr
&UseMI
,
452 unsigned UseIdx
) const override
;
454 bool useMachineCombiner() const override
{ return true; }
456 bool isAssociativeAndCommutative(const MachineInstr
&Inst
) const override
;
458 bool hasReassociableOperands(const MachineInstr
&Inst
,
459 const MachineBasicBlock
*MBB
) const override
;
461 void setSpecialOperandAttr(MachineInstr
&OldMI1
, MachineInstr
&OldMI2
,
462 MachineInstr
&NewMI1
,
463 MachineInstr
&NewMI2
) const override
;
465 /// analyzeCompare - For a comparison instruction, return the source registers
466 /// in SrcReg and SrcReg2 if having two register operands, and the value it
467 /// compares against in CmpValue. Return true if the comparison instruction
469 bool analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
470 unsigned &SrcReg2
, int &CmpMask
,
471 int &CmpValue
) const override
;
473 /// optimizeCompareInstr - Check if there exists an earlier instruction that
474 /// operates on the same source operands and sets flags in the same way as
475 /// Compare; remove Compare if possible.
476 bool optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
477 unsigned SrcReg2
, int CmpMask
, int CmpValue
,
478 const MachineRegisterInfo
*MRI
) const override
;
480 /// optimizeLoadInstr - Try to remove the load by folding it to a register
481 /// operand at the use. We fold the load instructions if and only if the
482 /// def and use are in the same BB. We only look at one load and see
483 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
484 /// defined by the load we are trying to fold. DefMI returns the machine
485 /// instruction that defines FoldAsLoadDefReg, and the function returns
486 /// the machine instruction generated due to folding.
487 MachineInstr
*optimizeLoadInstr(MachineInstr
&MI
,
488 const MachineRegisterInfo
*MRI
,
489 unsigned &FoldAsLoadDefReg
,
490 MachineInstr
*&DefMI
) const override
;
492 std::pair
<unsigned, unsigned>
493 decomposeMachineOperandsTargetFlags(unsigned TF
) const override
;
495 ArrayRef
<std::pair
<unsigned, const char *>>
496 getSerializableDirectMachineOperandTargetFlags() const override
;
498 virtual outliner::OutlinedFunction
getOutliningCandidateInfo(
499 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const override
;
501 bool isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
502 bool OutlineFromLinkOnceODRs
) const override
;
505 getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const override
;
507 void buildOutlinedFrame(MachineBasicBlock
&MBB
, MachineFunction
&MF
,
508 const outliner::OutlinedFunction
&OF
) const override
;
510 MachineBasicBlock::iterator
511 insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
512 MachineBasicBlock::iterator
&It
, MachineFunction
&MF
,
513 const outliner::Candidate
&C
) const override
;
515 #define GET_INSTRINFO_HELPER_DECLS
516 #include "X86GenInstrInfo.inc"
518 static bool hasLockPrefix(const MachineInstr
&MI
) {
519 return MI
.getDesc().TSFlags
& X86II::LOCK
;
522 Optional
<ParamLoadedValue
>
523 describeLoadedValue(const MachineInstr
&MI
) const override
;
526 /// Commutes the operands in the given instruction by changing the operands
527 /// order and/or changing the instruction's opcode and/or the immediate value
530 /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
533 /// Do not call this method for a non-commutable instruction or
534 /// non-commutable operands.
535 /// Even though the instruction is commutable, the method may still
536 /// fail to commute the operands, null pointer is returned in such cases.
537 MachineInstr
*commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
538 unsigned CommuteOpIdx1
,
539 unsigned CommuteOpIdx2
) const override
;
541 /// If the specific machine instruction is a instruction that moves/copies
542 /// value from one register to another register return true along with
543 /// @Source machine operand and @Destination machine operand.
544 bool isCopyInstrImpl(const MachineInstr
&MI
, const MachineOperand
*&Source
,
545 const MachineOperand
*&Destination
) const override
;
548 /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
549 /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
550 /// super-register and then truncating back down to a 8/16-bit sub-register.
551 MachineInstr
*convertToThreeAddressWithLEA(unsigned MIOpc
,
552 MachineFunction::iterator
&MFI
,
555 bool Is8BitOp
) const;
557 /// Handles memory folding for special case instructions, for instance those
558 /// requiring custom manipulation of the address.
559 MachineInstr
*foldMemoryOperandCustom(MachineFunction
&MF
, MachineInstr
&MI
,
561 ArrayRef
<MachineOperand
> MOs
,
562 MachineBasicBlock::iterator InsertPt
,
563 unsigned Size
, unsigned Align
) const;
565 /// isFrameOperand - Return true and the FrameIndex if the specified
566 /// operand and follow operands form a reference to the stack frame.
567 bool isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
568 int &FrameIndex
) const;
570 /// Returns true iff the routine could find two commutable operands in the
571 /// given machine instruction with 3 vector inputs.
572 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
573 /// input values can be re-defined in this method only if the input values
574 /// are not pre-defined, which is designated by the special value
575 /// 'CommuteAnyOperandIndex' assigned to it.
576 /// If both of indices are pre-defined and refer to some operands, then the
577 /// method simply returns true if the corresponding operands are commutable
578 /// and returns false otherwise.
580 /// For example, calling this method this way:
581 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
582 /// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
583 /// can be interpreted as a query asking to find an operand that would be
584 /// commutable with the operand#1.
586 /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
587 bool findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
590 bool IsIntrinsic
= false) const;