[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
blob5be13fa745cbdf37e5bf39db60abcfeda44de8a5
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/ModuleUtils.h"
50 using namespace llvm;
52 #define DEBUG_TYPE "tsan"
54 static cl::opt<bool> ClInstrumentMemoryAccesses(
55 "tsan-instrument-memory-accesses", cl::init(true),
56 cl::desc("Instrument memory accesses"), cl::Hidden);
57 static cl::opt<bool> ClInstrumentFuncEntryExit(
58 "tsan-instrument-func-entry-exit", cl::init(true),
59 cl::desc("Instrument function entry and exit"), cl::Hidden);
60 static cl::opt<bool> ClHandleCxxExceptions(
61 "tsan-handle-cxx-exceptions", cl::init(true),
62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
63 cl::Hidden);
64 static cl::opt<bool> ClInstrumentAtomics(
65 "tsan-instrument-atomics", cl::init(true),
66 cl::desc("Instrument atomics"), cl::Hidden);
67 static cl::opt<bool> ClInstrumentMemIntrinsics(
68 "tsan-instrument-memintrinsics", cl::init(true),
69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
71 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
72 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
73 STATISTIC(NumOmittedReadsBeforeWrite,
74 "Number of reads ignored due to following writes");
75 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
76 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
77 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
78 STATISTIC(NumOmittedReadsFromConstantGlobals,
79 "Number of reads from constant globals");
80 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
81 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
83 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
84 static const char *const kTsanInitName = "__tsan_init";
86 namespace {
88 /// ThreadSanitizer: instrument the code in module to find races.
89 ///
90 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
91 /// declarations into the module if they don't exist already. Instantiating
92 /// ensures the __tsan_init function is in the list of global constructors for
93 /// the module.
94 struct ThreadSanitizer {
95 ThreadSanitizer(Module &M);
96 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
98 private:
99 void initializeCallbacks(Module &M);
100 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
101 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
102 bool instrumentMemIntrinsic(Instruction *I);
103 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
104 SmallVectorImpl<Instruction *> &All,
105 const DataLayout &DL);
106 bool addrPointsToConstantData(Value *Addr);
107 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
108 void InsertRuntimeIgnores(Function &F);
110 Type *IntptrTy;
111 IntegerType *OrdTy;
112 // Callbacks to run-time library are computed in doInitialization.
113 FunctionCallee TsanFuncEntry;
114 FunctionCallee TsanFuncExit;
115 FunctionCallee TsanIgnoreBegin;
116 FunctionCallee TsanIgnoreEnd;
117 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
118 static const size_t kNumberOfAccessSizes = 5;
119 FunctionCallee TsanRead[kNumberOfAccessSizes];
120 FunctionCallee TsanWrite[kNumberOfAccessSizes];
121 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
122 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
123 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
124 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
125 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
126 [kNumberOfAccessSizes];
127 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
128 FunctionCallee TsanAtomicThreadFence;
129 FunctionCallee TsanAtomicSignalFence;
130 FunctionCallee TsanVptrUpdate;
131 FunctionCallee TsanVptrLoad;
132 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
133 Function *TsanCtorFunction;
136 struct ThreadSanitizerLegacyPass : FunctionPass {
137 ThreadSanitizerLegacyPass() : FunctionPass(ID) {}
138 StringRef getPassName() const override;
139 void getAnalysisUsage(AnalysisUsage &AU) const override;
140 bool runOnFunction(Function &F) override;
141 bool doInitialization(Module &M) override;
142 static char ID; // Pass identification, replacement for typeid.
143 private:
144 Optional<ThreadSanitizer> TSan;
146 } // namespace
148 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
149 FunctionAnalysisManager &FAM) {
150 ThreadSanitizer TSan(*F.getParent());
151 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
152 return PreservedAnalyses::none();
153 return PreservedAnalyses::all();
156 char ThreadSanitizerLegacyPass::ID = 0;
157 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan",
158 "ThreadSanitizer: detects data races.", false, false)
159 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
160 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan",
161 "ThreadSanitizer: detects data races.", false, false)
163 StringRef ThreadSanitizerLegacyPass::getPassName() const {
164 return "ThreadSanitizerLegacyPass";
167 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
168 AU.addRequired<TargetLibraryInfoWrapperPass>();
171 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) {
172 TSan.emplace(M);
173 return true;
176 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) {
177 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
178 TSan->sanitizeFunction(F, TLI);
179 return true;
182 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() {
183 return new ThreadSanitizerLegacyPass();
186 void ThreadSanitizer::initializeCallbacks(Module &M) {
187 IRBuilder<> IRB(M.getContext());
188 AttributeList Attr;
189 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
190 Attribute::NoUnwind);
191 // Initialize the callbacks.
192 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
193 IRB.getVoidTy(), IRB.getInt8PtrTy());
194 TsanFuncExit =
195 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
196 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
197 IRB.getVoidTy());
198 TsanIgnoreEnd =
199 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
200 OrdTy = IRB.getInt32Ty();
201 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
202 const unsigned ByteSize = 1U << i;
203 const unsigned BitSize = ByteSize * 8;
204 std::string ByteSizeStr = utostr(ByteSize);
205 std::string BitSizeStr = utostr(BitSize);
206 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
207 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
208 IRB.getInt8PtrTy());
210 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
211 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
212 IRB.getInt8PtrTy());
214 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
215 TsanUnalignedRead[i] = M.getOrInsertFunction(
216 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
218 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
219 TsanUnalignedWrite[i] = M.getOrInsertFunction(
220 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
222 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
223 Type *PtrTy = Ty->getPointerTo();
224 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
225 TsanAtomicLoad[i] =
226 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy);
228 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
229 TsanAtomicStore[i] = M.getOrInsertFunction(
230 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
232 for (int op = AtomicRMWInst::FIRST_BINOP;
233 op <= AtomicRMWInst::LAST_BINOP; ++op) {
234 TsanAtomicRMW[op][i] = nullptr;
235 const char *NamePart = nullptr;
236 if (op == AtomicRMWInst::Xchg)
237 NamePart = "_exchange";
238 else if (op == AtomicRMWInst::Add)
239 NamePart = "_fetch_add";
240 else if (op == AtomicRMWInst::Sub)
241 NamePart = "_fetch_sub";
242 else if (op == AtomicRMWInst::And)
243 NamePart = "_fetch_and";
244 else if (op == AtomicRMWInst::Or)
245 NamePart = "_fetch_or";
246 else if (op == AtomicRMWInst::Xor)
247 NamePart = "_fetch_xor";
248 else if (op == AtomicRMWInst::Nand)
249 NamePart = "_fetch_nand";
250 else
251 continue;
252 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
253 TsanAtomicRMW[op][i] =
254 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy);
257 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
258 "_compare_exchange_val");
259 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty,
260 Ty, OrdTy, OrdTy);
262 TsanVptrUpdate =
263 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
264 IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
265 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
266 IRB.getVoidTy(), IRB.getInt8PtrTy());
267 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
268 Attr, IRB.getVoidTy(), OrdTy);
269 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
270 Attr, IRB.getVoidTy(), OrdTy);
272 MemmoveFn =
273 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
274 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
275 MemcpyFn =
276 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
277 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
278 MemsetFn =
279 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
280 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
283 ThreadSanitizer::ThreadSanitizer(Module &M) {
284 const DataLayout &DL = M.getDataLayout();
285 IntptrTy = DL.getIntPtrType(M.getContext());
286 std::tie(TsanCtorFunction, std::ignore) =
287 getOrCreateSanitizerCtorAndInitFunctions(
288 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
289 /*InitArgs=*/{},
290 // This callback is invoked when the functions are created the first
291 // time. Hook them into the global ctors list in that case:
292 [&](Function *Ctor, FunctionCallee) {
293 appendToGlobalCtors(M, Ctor, 0);
297 static bool isVtableAccess(Instruction *I) {
298 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
299 return Tag->isTBAAVtableAccess();
300 return false;
303 // Do not instrument known races/"benign races" that come from compiler
304 // instrumentatin. The user has no way of suppressing them.
305 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
306 // Peel off GEPs and BitCasts.
307 Addr = Addr->stripInBoundsOffsets();
309 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
310 if (GV->hasSection()) {
311 StringRef SectionName = GV->getSection();
312 // Check if the global is in the PGO counters section.
313 auto OF = Triple(M->getTargetTriple()).getObjectFormat();
314 if (SectionName.endswith(
315 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
316 return false;
319 // Check if the global is private gcov data.
320 if (GV->getName().startswith("__llvm_gcov") ||
321 GV->getName().startswith("__llvm_gcda"))
322 return false;
325 // Do not instrument acesses from different address spaces; we cannot deal
326 // with them.
327 if (Addr) {
328 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
329 if (PtrTy->getPointerAddressSpace() != 0)
330 return false;
333 return true;
336 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
337 // If this is a GEP, just analyze its pointer operand.
338 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
339 Addr = GEP->getPointerOperand();
341 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
342 if (GV->isConstant()) {
343 // Reads from constant globals can not race with any writes.
344 NumOmittedReadsFromConstantGlobals++;
345 return true;
347 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
348 if (isVtableAccess(L)) {
349 // Reads from a vtable pointer can not race with any writes.
350 NumOmittedReadsFromVtable++;
351 return true;
354 return false;
357 // Instrumenting some of the accesses may be proven redundant.
358 // Currently handled:
359 // - read-before-write (within same BB, no calls between)
360 // - not captured variables
362 // We do not handle some of the patterns that should not survive
363 // after the classic compiler optimizations.
364 // E.g. two reads from the same temp should be eliminated by CSE,
365 // two writes should be eliminated by DSE, etc.
367 // 'Local' is a vector of insns within the same BB (no calls between).
368 // 'All' is a vector of insns that will be instrumented.
369 void ThreadSanitizer::chooseInstructionsToInstrument(
370 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
371 const DataLayout &DL) {
372 SmallPtrSet<Value*, 8> WriteTargets;
373 // Iterate from the end.
374 for (Instruction *I : reverse(Local)) {
375 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
376 Value *Addr = Store->getPointerOperand();
377 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
378 continue;
379 WriteTargets.insert(Addr);
380 } else {
381 LoadInst *Load = cast<LoadInst>(I);
382 Value *Addr = Load->getPointerOperand();
383 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
384 continue;
385 if (WriteTargets.count(Addr)) {
386 // We will write to this temp, so no reason to analyze the read.
387 NumOmittedReadsBeforeWrite++;
388 continue;
390 if (addrPointsToConstantData(Addr)) {
391 // Addr points to some constant data -- it can not race with any writes.
392 continue;
395 Value *Addr = isa<StoreInst>(*I)
396 ? cast<StoreInst>(I)->getPointerOperand()
397 : cast<LoadInst>(I)->getPointerOperand();
398 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
399 !PointerMayBeCaptured(Addr, true, true)) {
400 // The variable is addressable but not captured, so it cannot be
401 // referenced from a different thread and participate in a data race
402 // (see llvm/Analysis/CaptureTracking.h for details).
403 NumOmittedNonCaptured++;
404 continue;
406 All.push_back(I);
408 Local.clear();
411 static bool isAtomic(Instruction *I) {
412 // TODO: Ask TTI whether synchronization scope is between threads.
413 if (LoadInst *LI = dyn_cast<LoadInst>(I))
414 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
415 if (StoreInst *SI = dyn_cast<StoreInst>(I))
416 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
417 if (isa<AtomicRMWInst>(I))
418 return true;
419 if (isa<AtomicCmpXchgInst>(I))
420 return true;
421 if (isa<FenceInst>(I))
422 return true;
423 return false;
426 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
427 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
428 IRB.CreateCall(TsanIgnoreBegin);
429 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
430 while (IRBuilder<> *AtExit = EE.Next()) {
431 AtExit->CreateCall(TsanIgnoreEnd);
435 bool ThreadSanitizer::sanitizeFunction(Function &F,
436 const TargetLibraryInfo &TLI) {
437 // This is required to prevent instrumenting call to __tsan_init from within
438 // the module constructor.
439 if (&F == TsanCtorFunction)
440 return false;
441 initializeCallbacks(*F.getParent());
442 SmallVector<Instruction*, 8> AllLoadsAndStores;
443 SmallVector<Instruction*, 8> LocalLoadsAndStores;
444 SmallVector<Instruction*, 8> AtomicAccesses;
445 SmallVector<Instruction*, 8> MemIntrinCalls;
446 bool Res = false;
447 bool HasCalls = false;
448 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
449 const DataLayout &DL = F.getParent()->getDataLayout();
451 // Traverse all instructions, collect loads/stores/returns, check for calls.
452 for (auto &BB : F) {
453 for (auto &Inst : BB) {
454 if (isAtomic(&Inst))
455 AtomicAccesses.push_back(&Inst);
456 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
457 LocalLoadsAndStores.push_back(&Inst);
458 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
459 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
460 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
461 if (isa<MemIntrinsic>(Inst))
462 MemIntrinCalls.push_back(&Inst);
463 HasCalls = true;
464 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
465 DL);
468 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
471 // We have collected all loads and stores.
472 // FIXME: many of these accesses do not need to be checked for races
473 // (e.g. variables that do not escape, etc).
475 // Instrument memory accesses only if we want to report bugs in the function.
476 if (ClInstrumentMemoryAccesses && SanitizeFunction)
477 for (auto Inst : AllLoadsAndStores) {
478 Res |= instrumentLoadOrStore(Inst, DL);
481 // Instrument atomic memory accesses in any case (they can be used to
482 // implement synchronization).
483 if (ClInstrumentAtomics)
484 for (auto Inst : AtomicAccesses) {
485 Res |= instrumentAtomic(Inst, DL);
488 if (ClInstrumentMemIntrinsics && SanitizeFunction)
489 for (auto Inst : MemIntrinCalls) {
490 Res |= instrumentMemIntrinsic(Inst);
493 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
494 assert(!F.hasFnAttribute(Attribute::SanitizeThread));
495 if (HasCalls)
496 InsertRuntimeIgnores(F);
499 // Instrument function entry/exit points if there were instrumented accesses.
500 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
501 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
502 Value *ReturnAddress = IRB.CreateCall(
503 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
504 IRB.getInt32(0));
505 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
507 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
508 while (IRBuilder<> *AtExit = EE.Next()) {
509 AtExit->CreateCall(TsanFuncExit, {});
511 Res = true;
513 return Res;
516 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
517 const DataLayout &DL) {
518 IRBuilder<> IRB(I);
519 bool IsWrite = isa<StoreInst>(*I);
520 Value *Addr = IsWrite
521 ? cast<StoreInst>(I)->getPointerOperand()
522 : cast<LoadInst>(I)->getPointerOperand();
524 // swifterror memory addresses are mem2reg promoted by instruction selection.
525 // As such they cannot have regular uses like an instrumentation function and
526 // it makes no sense to track them as memory.
527 if (Addr->isSwiftError())
528 return false;
530 int Idx = getMemoryAccessFuncIndex(Addr, DL);
531 if (Idx < 0)
532 return false;
533 if (IsWrite && isVtableAccess(I)) {
534 LLVM_DEBUG(dbgs() << " VPTR : " << *I << "\n");
535 Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
536 // StoredValue may be a vector type if we are storing several vptrs at once.
537 // In this case, just take the first element of the vector since this is
538 // enough to find vptr races.
539 if (isa<VectorType>(StoredValue->getType()))
540 StoredValue = IRB.CreateExtractElement(
541 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
542 if (StoredValue->getType()->isIntegerTy())
543 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
544 // Call TsanVptrUpdate.
545 IRB.CreateCall(TsanVptrUpdate,
546 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
547 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
548 NumInstrumentedVtableWrites++;
549 return true;
551 if (!IsWrite && isVtableAccess(I)) {
552 IRB.CreateCall(TsanVptrLoad,
553 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
554 NumInstrumentedVtableReads++;
555 return true;
557 const unsigned Alignment = IsWrite
558 ? cast<StoreInst>(I)->getAlignment()
559 : cast<LoadInst>(I)->getAlignment();
560 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
561 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
562 FunctionCallee OnAccessFunc = nullptr;
563 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
564 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
565 else
566 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
567 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
568 if (IsWrite) NumInstrumentedWrites++;
569 else NumInstrumentedReads++;
570 return true;
573 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
574 uint32_t v = 0;
575 switch (ord) {
576 case AtomicOrdering::NotAtomic:
577 llvm_unreachable("unexpected atomic ordering!");
578 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH;
579 case AtomicOrdering::Monotonic: v = 0; break;
580 // Not specified yet:
581 // case AtomicOrdering::Consume: v = 1; break;
582 case AtomicOrdering::Acquire: v = 2; break;
583 case AtomicOrdering::Release: v = 3; break;
584 case AtomicOrdering::AcquireRelease: v = 4; break;
585 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
587 return IRB->getInt32(v);
590 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
591 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
592 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
593 // instead we simply replace them with regular function calls, which are then
594 // intercepted by the run-time.
595 // Since tsan is running after everyone else, the calls should not be
596 // replaced back with intrinsics. If that becomes wrong at some point,
597 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
598 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
599 IRBuilder<> IRB(I);
600 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
601 IRB.CreateCall(
602 MemsetFn,
603 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
604 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
605 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
606 I->eraseFromParent();
607 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
608 IRB.CreateCall(
609 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
610 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
611 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
612 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
613 I->eraseFromParent();
615 return false;
618 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
619 // standards. For background see C++11 standard. A slightly older, publicly
620 // available draft of the standard (not entirely up-to-date, but close enough
621 // for casual browsing) is available here:
622 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
623 // The following page contains more background information:
624 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
626 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
627 IRBuilder<> IRB(I);
628 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
629 Value *Addr = LI->getPointerOperand();
630 int Idx = getMemoryAccessFuncIndex(Addr, DL);
631 if (Idx < 0)
632 return false;
633 const unsigned ByteSize = 1U << Idx;
634 const unsigned BitSize = ByteSize * 8;
635 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
636 Type *PtrTy = Ty->getPointerTo();
637 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
638 createOrdering(&IRB, LI->getOrdering())};
639 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
640 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
641 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
642 I->replaceAllUsesWith(Cast);
643 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
644 Value *Addr = SI->getPointerOperand();
645 int Idx = getMemoryAccessFuncIndex(Addr, DL);
646 if (Idx < 0)
647 return false;
648 const unsigned ByteSize = 1U << Idx;
649 const unsigned BitSize = ByteSize * 8;
650 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
651 Type *PtrTy = Ty->getPointerTo();
652 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
653 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
654 createOrdering(&IRB, SI->getOrdering())};
655 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
656 ReplaceInstWithInst(I, C);
657 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
658 Value *Addr = RMWI->getPointerOperand();
659 int Idx = getMemoryAccessFuncIndex(Addr, DL);
660 if (Idx < 0)
661 return false;
662 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
663 if (!F)
664 return false;
665 const unsigned ByteSize = 1U << Idx;
666 const unsigned BitSize = ByteSize * 8;
667 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
668 Type *PtrTy = Ty->getPointerTo();
669 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
670 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
671 createOrdering(&IRB, RMWI->getOrdering())};
672 CallInst *C = CallInst::Create(F, Args);
673 ReplaceInstWithInst(I, C);
674 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
675 Value *Addr = CASI->getPointerOperand();
676 int Idx = getMemoryAccessFuncIndex(Addr, DL);
677 if (Idx < 0)
678 return false;
679 const unsigned ByteSize = 1U << Idx;
680 const unsigned BitSize = ByteSize * 8;
681 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
682 Type *PtrTy = Ty->getPointerTo();
683 Value *CmpOperand =
684 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
685 Value *NewOperand =
686 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
687 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
688 CmpOperand,
689 NewOperand,
690 createOrdering(&IRB, CASI->getSuccessOrdering()),
691 createOrdering(&IRB, CASI->getFailureOrdering())};
692 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
693 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
694 Value *OldVal = C;
695 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
696 if (Ty != OrigOldValTy) {
697 // The value is a pointer, so we need to cast the return value.
698 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
701 Value *Res =
702 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
703 Res = IRB.CreateInsertValue(Res, Success, 1);
705 I->replaceAllUsesWith(Res);
706 I->eraseFromParent();
707 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
708 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
709 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
710 ? TsanAtomicSignalFence
711 : TsanAtomicThreadFence;
712 CallInst *C = CallInst::Create(F, Args);
713 ReplaceInstWithInst(I, C);
715 return true;
718 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
719 const DataLayout &DL) {
720 Type *OrigPtrTy = Addr->getType();
721 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
722 assert(OrigTy->isSized());
723 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
724 if (TypeSize != 8 && TypeSize != 16 &&
725 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
726 NumAccessesWithBadSize++;
727 // Ignore all unusual sizes.
728 return -1;
730 size_t Idx = countTrailingZeros(TypeSize / 8);
731 assert(Idx < kNumberOfAccessSizes);
732 return Idx;