Fix for PR34888.
[llvm-core.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blob26ca58a76e4b97fd545f7e6778f39efeefa17eda
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/ObjectUtils.h"
33 #include "llvm/BinaryFormat/Dwarf.h"
34 #include "llvm/BinaryFormat/ELF.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/GCMetadataPrinter.h"
38 #include "llvm/CodeGen/GCStrategy.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineConstantPool.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBundle.h"
46 #include "llvm/CodeGen/MachineJumpTableInfo.h"
47 #include "llvm/CodeGen/MachineLoopInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugInfoMetadata.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalAlias.h"
60 #include "llvm/IR/GlobalIFunc.h"
61 #include "llvm/IR/GlobalIndirectSymbol.h"
62 #include "llvm/IR/GlobalObject.h"
63 #include "llvm/IR/GlobalValue.h"
64 #include "llvm/IR/GlobalVariable.h"
65 #include "llvm/IR/Mangler.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/MC/MCAsmInfo.h"
71 #include "llvm/MC/MCContext.h"
72 #include "llvm/MC/MCDirectives.h"
73 #include "llvm/MC/MCExpr.h"
74 #include "llvm/MC/MCInst.h"
75 #include "llvm/MC/MCSection.h"
76 #include "llvm/MC/MCSectionELF.h"
77 #include "llvm/MC/MCSectionMachO.h"
78 #include "llvm/MC/MCStreamer.h"
79 #include "llvm/MC/MCSubtargetInfo.h"
80 #include "llvm/MC/MCSymbol.h"
81 #include "llvm/MC/MCTargetOptions.h"
82 #include "llvm/MC/MCValue.h"
83 #include "llvm/MC/SectionKind.h"
84 #include "llvm/Pass.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/Compiler.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/Path.h"
91 #include "llvm/Support/TargetRegistry.h"
92 #include "llvm/Support/Timer.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Target/TargetFrameLowering.h"
95 #include "llvm/Target/TargetInstrInfo.h"
96 #include "llvm/Target/TargetLowering.h"
97 #include "llvm/Target/TargetLoweringObjectFile.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetRegisterInfo.h"
100 #include "llvm/Target/TargetSubtargetInfo.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cinttypes>
104 #include <cstdint>
105 #include <limits>
106 #include <memory>
107 #include <string>
108 #include <utility>
109 #include <vector>
111 using namespace llvm;
113 #define DEBUG_TYPE "asm-printer"
115 static const char *const DWARFGroupName = "dwarf";
116 static const char *const DWARFGroupDescription = "DWARF Emission";
117 static const char *const DbgTimerName = "emit";
118 static const char *const DbgTimerDescription = "Debug Info Emission";
119 static const char *const EHTimerName = "write_exception";
120 static const char *const EHTimerDescription = "DWARF Exception Writer";
121 static const char *const CodeViewLineTablesGroupName = "linetables";
122 static const char *const CodeViewLineTablesGroupDescription =
123 "CodeView Line Tables";
125 STATISTIC(EmittedInsts, "Number of machine instrs printed");
127 static cl::opt<bool>
128 PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
129 cl::desc("Print 'sched: [latency:throughput]' in .s output"));
131 char AsmPrinter::ID = 0;
133 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
134 static gcp_map_type &getGCMap(void *&P) {
135 if (!P)
136 P = new gcp_map_type();
137 return *(gcp_map_type*)P;
140 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
141 /// value in log2 form. This rounds up to the preferred alignment if possible
142 /// and legal.
143 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
144 unsigned InBits = 0) {
145 unsigned NumBits = 0;
146 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
147 NumBits = DL.getPreferredAlignmentLog(GVar);
149 // If InBits is specified, round it to it.
150 if (InBits > NumBits)
151 NumBits = InBits;
153 // If the GV has a specified alignment, take it into account.
154 if (GV->getAlignment() == 0)
155 return NumBits;
157 unsigned GVAlign = Log2_32(GV->getAlignment());
159 // If the GVAlign is larger than NumBits, or if we are required to obey
160 // NumBits because the GV has an assigned section, obey it.
161 if (GVAlign > NumBits || GV->hasSection())
162 NumBits = GVAlign;
163 return NumBits;
166 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
167 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
168 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
169 VerboseAsm = OutStreamer->isVerboseAsm();
172 AsmPrinter::~AsmPrinter() {
173 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
175 if (GCMetadataPrinters) {
176 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
178 delete &GCMap;
179 GCMetadataPrinters = nullptr;
183 bool AsmPrinter::isPositionIndependent() const {
184 return TM.isPositionIndependent();
187 /// getFunctionNumber - Return a unique ID for the current function.
189 unsigned AsmPrinter::getFunctionNumber() const {
190 return MF->getFunctionNumber();
193 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
194 return *TM.getObjFileLowering();
197 const DataLayout &AsmPrinter::getDataLayout() const {
198 return MMI->getModule()->getDataLayout();
201 // Do not use the cached DataLayout because some client use it without a Module
202 // (llvm-dsymutil, llvm-dwarfdump).
203 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
205 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
206 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
207 return MF->getSubtarget<MCSubtargetInfo>();
210 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
211 S.EmitInstruction(Inst, getSubtargetInfo());
214 /// getCurrentSection() - Return the current section we are emitting to.
215 const MCSection *AsmPrinter::getCurrentSection() const {
216 return OutStreamer->getCurrentSectionOnly();
219 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
220 AU.setPreservesAll();
221 MachineFunctionPass::getAnalysisUsage(AU);
222 AU.addRequired<MachineModuleInfo>();
223 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
224 AU.addRequired<GCModuleInfo>();
225 if (isVerbose())
226 AU.addRequired<MachineLoopInfo>();
229 bool AsmPrinter::doInitialization(Module &M) {
230 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
232 // Initialize TargetLoweringObjectFile.
233 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
234 .Initialize(OutContext, TM);
236 OutStreamer->InitSections(false);
238 // Emit the version-min deplyment target directive if needed.
240 // FIXME: If we end up with a collection of these sorts of Darwin-specific
241 // or ELF-specific things, it may make sense to have a platform helper class
242 // that will work with the target helper class. For now keep it here, as the
243 // alternative is duplicated code in each of the target asm printers that
244 // use the directive, where it would need the same conditionalization
245 // anyway.
246 const Triple &TT = TM.getTargetTriple();
247 // If there is a version specified, Major will be non-zero.
248 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
249 unsigned Major, Minor, Update;
250 MCVersionMinType VersionType;
251 if (TT.isWatchOS()) {
252 VersionType = MCVM_WatchOSVersionMin;
253 TT.getWatchOSVersion(Major, Minor, Update);
254 } else if (TT.isTvOS()) {
255 VersionType = MCVM_TvOSVersionMin;
256 TT.getiOSVersion(Major, Minor, Update);
257 } else if (TT.isMacOSX()) {
258 VersionType = MCVM_OSXVersionMin;
259 if (!TT.getMacOSXVersion(Major, Minor, Update))
260 Major = 0;
261 } else {
262 VersionType = MCVM_IOSVersionMin;
263 TT.getiOSVersion(Major, Minor, Update);
265 if (Major != 0)
266 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
269 // Allow the target to emit any magic that it wants at the start of the file.
270 EmitStartOfAsmFile(M);
272 // Very minimal debug info. It is ignored if we emit actual debug info. If we
273 // don't, this at least helps the user find where a global came from.
274 if (MAI->hasSingleParameterDotFile()) {
275 // .file "foo.c"
276 OutStreamer->EmitFileDirective(
277 llvm::sys::path::filename(M.getSourceFileName()));
280 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
281 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
282 for (auto &I : *MI)
283 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
284 MP->beginAssembly(M, *MI, *this);
286 // Emit module-level inline asm if it exists.
287 if (!M.getModuleInlineAsm().empty()) {
288 // We're at the module level. Construct MCSubtarget from the default CPU
289 // and target triple.
290 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
291 TM.getTargetTriple().str(), TM.getTargetCPU(),
292 TM.getTargetFeatureString()));
293 OutStreamer->AddComment("Start of file scope inline assembly");
294 OutStreamer->AddBlankLine();
295 EmitInlineAsm(M.getModuleInlineAsm()+"\n",
296 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
297 OutStreamer->AddComment("End of file scope inline assembly");
298 OutStreamer->AddBlankLine();
301 if (MAI->doesSupportDebugInformation()) {
302 bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
303 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
304 TM.getTargetTriple().isWindowsItaniumEnvironment())) {
305 Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
306 DbgTimerName, DbgTimerDescription,
307 CodeViewLineTablesGroupName,
308 CodeViewLineTablesGroupDescription));
310 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
311 DD = new DwarfDebug(this, &M);
312 DD->beginModule();
313 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
314 DWARFGroupName, DWARFGroupDescription));
318 switch (MAI->getExceptionHandlingType()) {
319 case ExceptionHandling::SjLj:
320 case ExceptionHandling::DwarfCFI:
321 case ExceptionHandling::ARM:
322 isCFIMoveForDebugging = true;
323 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
324 break;
325 for (auto &F: M.getFunctionList()) {
326 // If the module contains any function with unwind data,
327 // .eh_frame has to be emitted.
328 // Ignore functions that won't get emitted.
329 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
330 isCFIMoveForDebugging = false;
331 break;
334 break;
335 default:
336 isCFIMoveForDebugging = false;
337 break;
340 EHStreamer *ES = nullptr;
341 switch (MAI->getExceptionHandlingType()) {
342 case ExceptionHandling::None:
343 break;
344 case ExceptionHandling::SjLj:
345 case ExceptionHandling::DwarfCFI:
346 ES = new DwarfCFIException(this);
347 break;
348 case ExceptionHandling::ARM:
349 ES = new ARMException(this);
350 break;
351 case ExceptionHandling::WinEH:
352 switch (MAI->getWinEHEncodingType()) {
353 default: llvm_unreachable("unsupported unwinding information encoding");
354 case WinEH::EncodingType::Invalid:
355 break;
356 case WinEH::EncodingType::X86:
357 case WinEH::EncodingType::Itanium:
358 ES = new WinException(this);
359 break;
361 break;
363 if (ES)
364 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
365 DWARFGroupName, DWARFGroupDescription));
366 return false;
369 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
370 if (!MAI.hasWeakDefCanBeHiddenDirective())
371 return false;
373 return canBeOmittedFromSymbolTable(GV);
376 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
377 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
378 switch (Linkage) {
379 case GlobalValue::CommonLinkage:
380 case GlobalValue::LinkOnceAnyLinkage:
381 case GlobalValue::LinkOnceODRLinkage:
382 case GlobalValue::WeakAnyLinkage:
383 case GlobalValue::WeakODRLinkage:
384 if (MAI->hasWeakDefDirective()) {
385 // .globl _foo
386 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
388 if (!canBeHidden(GV, *MAI))
389 // .weak_definition _foo
390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
391 else
392 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
393 } else if (MAI->hasLinkOnceDirective()) {
394 // .globl _foo
395 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
396 //NOTE: linkonce is handled by the section the symbol was assigned to.
397 } else {
398 // .weak _foo
399 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
401 return;
402 case GlobalValue::ExternalLinkage:
403 // If external, declare as a global symbol: .globl _foo
404 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
405 return;
406 case GlobalValue::PrivateLinkage:
407 case GlobalValue::InternalLinkage:
408 return;
409 case GlobalValue::AppendingLinkage:
410 case GlobalValue::AvailableExternallyLinkage:
411 case GlobalValue::ExternalWeakLinkage:
412 llvm_unreachable("Should never emit this");
414 llvm_unreachable("Unknown linkage type!");
417 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
418 const GlobalValue *GV) const {
419 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
422 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
423 return TM.getSymbol(GV);
426 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
427 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
428 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
429 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
430 "No emulated TLS variables in the common section");
432 // Never emit TLS variable xyz in emulated TLS model.
433 // The initialization value is in __emutls_t.xyz instead of xyz.
434 if (IsEmuTLSVar)
435 return;
437 if (GV->hasInitializer()) {
438 // Check to see if this is a special global used by LLVM, if so, emit it.
439 if (EmitSpecialLLVMGlobal(GV))
440 return;
442 // Skip the emission of global equivalents. The symbol can be emitted later
443 // on by emitGlobalGOTEquivs in case it turns out to be needed.
444 if (GlobalGOTEquivs.count(getSymbol(GV)))
445 return;
447 if (isVerbose()) {
448 // When printing the control variable __emutls_v.*,
449 // we don't need to print the original TLS variable name.
450 GV->printAsOperand(OutStreamer->GetCommentOS(),
451 /*PrintType=*/false, GV->getParent());
452 OutStreamer->GetCommentOS() << '\n';
456 MCSymbol *GVSym = getSymbol(GV);
457 MCSymbol *EmittedSym = GVSym;
459 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
460 // attributes.
461 // GV's or GVSym's attributes will be used for the EmittedSym.
462 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
464 if (!GV->hasInitializer()) // External globals require no extra code.
465 return;
467 GVSym->redefineIfPossible();
468 if (GVSym->isDefined() || GVSym->isVariable())
469 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
470 "' is already defined");
472 if (MAI->hasDotTypeDotSizeDirective())
473 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
475 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
477 const DataLayout &DL = GV->getParent()->getDataLayout();
478 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
480 // If the alignment is specified, we *must* obey it. Overaligning a global
481 // with a specified alignment is a prompt way to break globals emitted to
482 // sections and expected to be contiguous (e.g. ObjC metadata).
483 unsigned AlignLog = getGVAlignmentLog2(GV, DL);
485 for (const HandlerInfo &HI : Handlers) {
486 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
487 HI.TimerGroupName, HI.TimerGroupDescription,
488 TimePassesIsEnabled);
489 HI.Handler->setSymbolSize(GVSym, Size);
492 // Handle common symbols
493 if (GVKind.isCommon()) {
494 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
495 unsigned Align = 1 << AlignLog;
496 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
497 Align = 0;
499 // .comm _foo, 42, 4
500 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
501 return;
504 // Determine to which section this global should be emitted.
505 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
507 // If we have a bss global going to a section that supports the
508 // zerofill directive, do so here.
509 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
510 TheSection->isVirtualSection()) {
511 if (Size == 0)
512 Size = 1; // zerofill of 0 bytes is undefined.
513 unsigned Align = 1 << AlignLog;
514 EmitLinkage(GV, GVSym);
515 // .zerofill __DATA, __bss, _foo, 400, 5
516 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
517 return;
520 // If this is a BSS local symbol and we are emitting in the BSS
521 // section use .lcomm/.comm directive.
522 if (GVKind.isBSSLocal() &&
523 getObjFileLowering().getBSSSection() == TheSection) {
524 if (Size == 0)
525 Size = 1; // .comm Foo, 0 is undefined, avoid it.
526 unsigned Align = 1 << AlignLog;
528 // Use .lcomm only if it supports user-specified alignment.
529 // Otherwise, while it would still be correct to use .lcomm in some
530 // cases (e.g. when Align == 1), the external assembler might enfore
531 // some -unknown- default alignment behavior, which could cause
532 // spurious differences between external and integrated assembler.
533 // Prefer to simply fall back to .local / .comm in this case.
534 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
535 // .lcomm _foo, 42
536 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
537 return;
540 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
541 Align = 0;
543 // .local _foo
544 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
545 // .comm _foo, 42, 4
546 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
547 return;
550 // Handle thread local data for mach-o which requires us to output an
551 // additional structure of data and mangle the original symbol so that we
552 // can reference it later.
554 // TODO: This should become an "emit thread local global" method on TLOF.
555 // All of this macho specific stuff should be sunk down into TLOFMachO and
556 // stuff like "TLSExtraDataSection" should no longer be part of the parent
557 // TLOF class. This will also make it more obvious that stuff like
558 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
559 // specific code.
560 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
561 // Emit the .tbss symbol
562 MCSymbol *MangSym =
563 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
565 if (GVKind.isThreadBSS()) {
566 TheSection = getObjFileLowering().getTLSBSSSection();
567 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
568 } else if (GVKind.isThreadData()) {
569 OutStreamer->SwitchSection(TheSection);
571 EmitAlignment(AlignLog, GV);
572 OutStreamer->EmitLabel(MangSym);
574 EmitGlobalConstant(GV->getParent()->getDataLayout(),
575 GV->getInitializer());
578 OutStreamer->AddBlankLine();
580 // Emit the variable struct for the runtime.
581 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
583 OutStreamer->SwitchSection(TLVSect);
584 // Emit the linkage here.
585 EmitLinkage(GV, GVSym);
586 OutStreamer->EmitLabel(GVSym);
588 // Three pointers in size:
589 // - __tlv_bootstrap - used to make sure support exists
590 // - spare pointer, used when mapped by the runtime
591 // - pointer to mangled symbol above with initializer
592 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
593 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
594 PtrSize);
595 OutStreamer->EmitIntValue(0, PtrSize);
596 OutStreamer->EmitSymbolValue(MangSym, PtrSize);
598 OutStreamer->AddBlankLine();
599 return;
602 MCSymbol *EmittedInitSym = GVSym;
604 OutStreamer->SwitchSection(TheSection);
606 EmitLinkage(GV, EmittedInitSym);
607 EmitAlignment(AlignLog, GV);
609 OutStreamer->EmitLabel(EmittedInitSym);
611 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
613 if (MAI->hasDotTypeDotSizeDirective())
614 // .size foo, 42
615 OutStreamer->emitELFSize(EmittedInitSym,
616 MCConstantExpr::create(Size, OutContext));
618 OutStreamer->AddBlankLine();
621 /// Emit the directive and value for debug thread local expression
623 /// \p Value - The value to emit.
624 /// \p Size - The size of the integer (in bytes) to emit.
625 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
626 unsigned Size) const {
627 OutStreamer->EmitValue(Value, Size);
630 /// EmitFunctionHeader - This method emits the header for the current
631 /// function.
632 void AsmPrinter::EmitFunctionHeader() {
633 const Function *F = MF->getFunction();
635 if (isVerbose())
636 OutStreamer->GetCommentOS()
637 << "-- Begin function "
638 << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n';
640 // Print out constants referenced by the function
641 EmitConstantPool();
643 // Print the 'header' of function.
644 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
645 EmitVisibility(CurrentFnSym, F->getVisibility());
647 EmitLinkage(F, CurrentFnSym);
648 if (MAI->hasFunctionAlignment())
649 EmitAlignment(MF->getAlignment(), F);
651 if (MAI->hasDotTypeDotSizeDirective())
652 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
654 if (isVerbose()) {
655 F->printAsOperand(OutStreamer->GetCommentOS(),
656 /*PrintType=*/false, F->getParent());
657 OutStreamer->GetCommentOS() << '\n';
660 // Emit the prefix data.
661 if (F->hasPrefixData()) {
662 if (MAI->hasSubsectionsViaSymbols()) {
663 // Preserving prefix data on platforms which use subsections-via-symbols
664 // is a bit tricky. Here we introduce a symbol for the prefix data
665 // and use the .alt_entry attribute to mark the function's real entry point
666 // as an alternative entry point to the prefix-data symbol.
667 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
668 OutStreamer->EmitLabel(PrefixSym);
670 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
672 // Emit an .alt_entry directive for the actual function symbol.
673 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
674 } else {
675 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
679 // Emit the CurrentFnSym. This is a virtual function to allow targets to
680 // do their wild and crazy things as required.
681 EmitFunctionEntryLabel();
683 // If the function had address-taken blocks that got deleted, then we have
684 // references to the dangling symbols. Emit them at the start of the function
685 // so that we don't get references to undefined symbols.
686 std::vector<MCSymbol*> DeadBlockSyms;
687 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
688 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
689 OutStreamer->AddComment("Address taken block that was later removed");
690 OutStreamer->EmitLabel(DeadBlockSyms[i]);
693 if (CurrentFnBegin) {
694 if (MAI->useAssignmentForEHBegin()) {
695 MCSymbol *CurPos = OutContext.createTempSymbol();
696 OutStreamer->EmitLabel(CurPos);
697 OutStreamer->EmitAssignment(CurrentFnBegin,
698 MCSymbolRefExpr::create(CurPos, OutContext));
699 } else {
700 OutStreamer->EmitLabel(CurrentFnBegin);
704 // Emit pre-function debug and/or EH information.
705 for (const HandlerInfo &HI : Handlers) {
706 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
707 HI.TimerGroupDescription, TimePassesIsEnabled);
708 HI.Handler->beginFunction(MF);
711 // Emit the prologue data.
712 if (F->hasPrologueData())
713 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
716 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
717 /// function. This can be overridden by targets as required to do custom stuff.
718 void AsmPrinter::EmitFunctionEntryLabel() {
719 CurrentFnSym->redefineIfPossible();
721 // The function label could have already been emitted if two symbols end up
722 // conflicting due to asm renaming. Detect this and emit an error.
723 if (CurrentFnSym->isVariable())
724 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
725 "' is a protected alias");
726 if (CurrentFnSym->isDefined())
727 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
728 "' label emitted multiple times to assembly file");
730 return OutStreamer->EmitLabel(CurrentFnSym);
733 /// emitComments - Pretty-print comments for instructions.
734 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
735 AsmPrinter *AP) {
736 const MachineFunction *MF = MI.getParent()->getParent();
737 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
739 // Check for spills and reloads
740 int FI;
742 const MachineFrameInfo &MFI = MF->getFrameInfo();
743 bool Commented = false;
745 // We assume a single instruction only has a spill or reload, not
746 // both.
747 const MachineMemOperand *MMO;
748 if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
749 if (MFI.isSpillSlotObjectIndex(FI)) {
750 MMO = *MI.memoperands_begin();
751 CommentOS << MMO->getSize() << "-byte Reload";
752 Commented = true;
754 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
755 if (MFI.isSpillSlotObjectIndex(FI)) {
756 CommentOS << MMO->getSize() << "-byte Folded Reload";
757 Commented = true;
759 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
760 if (MFI.isSpillSlotObjectIndex(FI)) {
761 MMO = *MI.memoperands_begin();
762 CommentOS << MMO->getSize() << "-byte Spill";
763 Commented = true;
765 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
766 if (MFI.isSpillSlotObjectIndex(FI)) {
767 CommentOS << MMO->getSize() << "-byte Folded Spill";
768 Commented = true;
772 // Check for spill-induced copies
773 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
774 Commented = true;
775 CommentOS << " Reload Reuse";
778 if (Commented && AP->EnablePrintSchedInfo)
779 // If any comment was added above and we need sched info comment then
780 // add this new comment just after the above comment w/o "\n" between them.
781 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
782 else if (Commented)
783 CommentOS << "\n";
786 /// emitImplicitDef - This method emits the specified machine instruction
787 /// that is an implicit def.
788 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
789 unsigned RegNo = MI->getOperand(0).getReg();
791 SmallString<128> Str;
792 raw_svector_ostream OS(Str);
793 OS << "implicit-def: "
794 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
796 OutStreamer->AddComment(OS.str());
797 OutStreamer->AddBlankLine();
800 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
801 std::string Str;
802 raw_string_ostream OS(Str);
803 OS << "kill:";
804 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
805 const MachineOperand &Op = MI->getOperand(i);
806 assert(Op.isReg() && "KILL instruction must have only register operands");
807 OS << ' '
808 << PrintReg(Op.getReg(),
809 AP.MF->getSubtarget().getRegisterInfo())
810 << (Op.isDef() ? "<def>" : "<kill>");
812 AP.OutStreamer->AddComment(OS.str());
813 AP.OutStreamer->AddBlankLine();
816 /// emitDebugValueComment - This method handles the target-independent form
817 /// of DBG_VALUE, returning true if it was able to do so. A false return
818 /// means the target will need to handle MI in EmitInstruction.
819 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
820 // This code handles only the 4-operand target-independent form.
821 if (MI->getNumOperands() != 4)
822 return false;
824 SmallString<128> Str;
825 raw_svector_ostream OS(Str);
826 OS << "DEBUG_VALUE: ";
828 const DILocalVariable *V = MI->getDebugVariable();
829 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
830 StringRef Name = SP->getName();
831 if (!Name.empty())
832 OS << Name << ":";
834 OS << V->getName();
835 OS << " <- ";
837 // The second operand is only an offset if it's an immediate.
838 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
839 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
840 const DIExpression *Expr = MI->getDebugExpression();
841 if (Expr->getNumElements()) {
842 OS << '[';
843 bool NeedSep = false;
844 for (auto Op : Expr->expr_ops()) {
845 if (NeedSep)
846 OS << ", ";
847 else
848 NeedSep = true;
849 OS << dwarf::OperationEncodingString(Op.getOp());
850 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
851 OS << ' ' << Op.getArg(I);
853 OS << "] ";
856 // Register or immediate value. Register 0 means undef.
857 if (MI->getOperand(0).isFPImm()) {
858 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
859 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
860 OS << (double)APF.convertToFloat();
861 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
862 OS << APF.convertToDouble();
863 } else {
864 // There is no good way to print long double. Convert a copy to
865 // double. Ah well, it's only a comment.
866 bool ignored;
867 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
868 &ignored);
869 OS << "(long double) " << APF.convertToDouble();
871 } else if (MI->getOperand(0).isImm()) {
872 OS << MI->getOperand(0).getImm();
873 } else if (MI->getOperand(0).isCImm()) {
874 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
875 } else {
876 unsigned Reg;
877 if (MI->getOperand(0).isReg()) {
878 Reg = MI->getOperand(0).getReg();
879 } else {
880 assert(MI->getOperand(0).isFI() && "Unknown operand type");
881 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
882 Offset += TFI->getFrameIndexReference(*AP.MF,
883 MI->getOperand(0).getIndex(), Reg);
884 MemLoc = true;
886 if (Reg == 0) {
887 // Suppress offset, it is not meaningful here.
888 OS << "undef";
889 // NOTE: Want this comment at start of line, don't emit with AddComment.
890 AP.OutStreamer->emitRawComment(OS.str());
891 return true;
893 if (MemLoc)
894 OS << '[';
895 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
898 if (MemLoc)
899 OS << '+' << Offset << ']';
901 // NOTE: Want this comment at start of line, don't emit with AddComment.
902 AP.OutStreamer->emitRawComment(OS.str());
903 return true;
906 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
907 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
908 MF->getFunction()->needsUnwindTableEntry())
909 return CFI_M_EH;
911 if (MMI->hasDebugInfo())
912 return CFI_M_Debug;
914 return CFI_M_None;
917 bool AsmPrinter::needsSEHMoves() {
918 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
921 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
922 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
923 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
924 ExceptionHandlingType != ExceptionHandling::ARM)
925 return;
927 if (needsCFIMoves() == CFI_M_None)
928 return;
930 // If there is no "real" instruction following this CFI instruction, skip
931 // emitting it; it would be beyond the end of the function's FDE range.
932 auto *MBB = MI.getParent();
933 auto I = std::next(MI.getIterator());
934 while (I != MBB->end() && I->isTransient())
935 ++I;
936 if (I == MBB->instr_end() &&
937 MBB->getReverseIterator() == MBB->getParent()->rbegin())
938 return;
940 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
941 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
942 const MCCFIInstruction &CFI = Instrs[CFIIndex];
943 emitCFIInstruction(CFI);
946 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
947 // The operands are the MCSymbol and the frame offset of the allocation.
948 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
949 int FrameOffset = MI.getOperand(1).getImm();
951 // Emit a symbol assignment.
952 OutStreamer->EmitAssignment(FrameAllocSym,
953 MCConstantExpr::create(FrameOffset, OutContext));
956 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
957 MachineModuleInfo *MMI) {
958 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
959 return true;
961 // We might emit an EH table that uses function begin and end labels even if
962 // we don't have any landingpads.
963 if (!MF.getFunction()->hasPersonalityFn())
964 return false;
965 return !isNoOpWithoutInvoke(
966 classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
969 /// EmitFunctionBody - This method emits the body and trailer for a
970 /// function.
971 void AsmPrinter::EmitFunctionBody() {
972 EmitFunctionHeader();
974 // Emit target-specific gunk before the function body.
975 EmitFunctionBodyStart();
977 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
979 // Print out code for the function.
980 bool HasAnyRealCode = false;
981 int NumInstsInFunction = 0;
982 for (auto &MBB : *MF) {
983 // Print a label for the basic block.
984 EmitBasicBlockStart(MBB);
985 for (auto &MI : MBB) {
987 // Print the assembly for the instruction.
988 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
989 !MI.isDebugValue()) {
990 HasAnyRealCode = true;
991 ++NumInstsInFunction;
994 if (ShouldPrintDebugScopes) {
995 for (const HandlerInfo &HI : Handlers) {
996 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
997 HI.TimerGroupName, HI.TimerGroupDescription,
998 TimePassesIsEnabled);
999 HI.Handler->beginInstruction(&MI);
1003 if (isVerbose())
1004 emitComments(MI, OutStreamer->GetCommentOS(), this);
1006 switch (MI.getOpcode()) {
1007 case TargetOpcode::CFI_INSTRUCTION:
1008 emitCFIInstruction(MI);
1009 break;
1011 case TargetOpcode::LOCAL_ESCAPE:
1012 emitFrameAlloc(MI);
1013 break;
1015 case TargetOpcode::EH_LABEL:
1016 case TargetOpcode::GC_LABEL:
1017 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1018 break;
1019 case TargetOpcode::INLINEASM:
1020 EmitInlineAsm(&MI);
1021 break;
1022 case TargetOpcode::DBG_VALUE:
1023 if (isVerbose()) {
1024 if (!emitDebugValueComment(&MI, *this))
1025 EmitInstruction(&MI);
1027 break;
1028 case TargetOpcode::IMPLICIT_DEF:
1029 if (isVerbose()) emitImplicitDef(&MI);
1030 break;
1031 case TargetOpcode::KILL:
1032 if (isVerbose()) emitKill(&MI, *this);
1033 break;
1034 default:
1035 EmitInstruction(&MI);
1036 break;
1039 if (ShouldPrintDebugScopes) {
1040 for (const HandlerInfo &HI : Handlers) {
1041 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1042 HI.TimerGroupName, HI.TimerGroupDescription,
1043 TimePassesIsEnabled);
1044 HI.Handler->endInstruction();
1049 EmitBasicBlockEnd(MBB);
1052 EmittedInsts += NumInstsInFunction;
1053 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1054 MF->getFunction()->getSubprogram(),
1055 &MF->front());
1056 R << ore::NV("NumInstructions", NumInstsInFunction)
1057 << " instructions in function";
1058 ORE->emit(R);
1060 // If the function is empty and the object file uses .subsections_via_symbols,
1061 // then we need to emit *something* to the function body to prevent the
1062 // labels from collapsing together. Just emit a noop.
1063 // Similarly, don't emit empty functions on Windows either. It can lead to
1064 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1065 // after linking, causing the kernel not to load the binary:
1066 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1067 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1068 const Triple &TT = TM.getTargetTriple();
1069 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1070 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1071 MCInst Noop;
1072 MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1074 // Targets can opt-out of emitting the noop here by leaving the opcode
1075 // unspecified.
1076 if (Noop.getOpcode()) {
1077 OutStreamer->AddComment("avoids zero-length function");
1078 OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1082 const Function *F = MF->getFunction();
1083 for (const auto &BB : *F) {
1084 if (!BB.hasAddressTaken())
1085 continue;
1086 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1087 if (Sym->isDefined())
1088 continue;
1089 OutStreamer->AddComment("Address of block that was removed by CodeGen");
1090 OutStreamer->EmitLabel(Sym);
1093 // Emit target-specific gunk after the function body.
1094 EmitFunctionBodyEnd();
1096 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1097 MAI->hasDotTypeDotSizeDirective()) {
1098 // Create a symbol for the end of function.
1099 CurrentFnEnd = createTempSymbol("func_end");
1100 OutStreamer->EmitLabel(CurrentFnEnd);
1103 // If the target wants a .size directive for the size of the function, emit
1104 // it.
1105 if (MAI->hasDotTypeDotSizeDirective()) {
1106 // We can get the size as difference between the function label and the
1107 // temp label.
1108 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1109 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1110 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1111 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1114 for (const HandlerInfo &HI : Handlers) {
1115 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1116 HI.TimerGroupDescription, TimePassesIsEnabled);
1117 HI.Handler->markFunctionEnd();
1120 // Print out jump tables referenced by the function.
1121 EmitJumpTableInfo();
1123 // Emit post-function debug and/or EH information.
1124 for (const HandlerInfo &HI : Handlers) {
1125 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1126 HI.TimerGroupDescription, TimePassesIsEnabled);
1127 HI.Handler->endFunction(MF);
1130 if (isVerbose())
1131 OutStreamer->GetCommentOS() << "-- End function\n";
1133 OutStreamer->AddBlankLine();
1136 /// \brief Compute the number of Global Variables that uses a Constant.
1137 static unsigned getNumGlobalVariableUses(const Constant *C) {
1138 if (!C)
1139 return 0;
1141 if (isa<GlobalVariable>(C))
1142 return 1;
1144 unsigned NumUses = 0;
1145 for (auto *CU : C->users())
1146 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1148 return NumUses;
1151 /// \brief Only consider global GOT equivalents if at least one user is a
1152 /// cstexpr inside an initializer of another global variables. Also, don't
1153 /// handle cstexpr inside instructions. During global variable emission,
1154 /// candidates are skipped and are emitted later in case at least one cstexpr
1155 /// isn't replaced by a PC relative GOT entry access.
1156 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1157 unsigned &NumGOTEquivUsers) {
1158 // Global GOT equivalents are unnamed private globals with a constant
1159 // pointer initializer to another global symbol. They must point to a
1160 // GlobalVariable or Function, i.e., as GlobalValue.
1161 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1162 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1163 !dyn_cast<GlobalValue>(GV->getOperand(0)))
1164 return false;
1166 // To be a got equivalent, at least one of its users need to be a constant
1167 // expression used by another global variable.
1168 for (auto *U : GV->users())
1169 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1171 return NumGOTEquivUsers > 0;
1174 /// \brief Unnamed constant global variables solely contaning a pointer to
1175 /// another globals variable is equivalent to a GOT table entry; it contains the
1176 /// the address of another symbol. Optimize it and replace accesses to these
1177 /// "GOT equivalents" by using the GOT entry for the final global instead.
1178 /// Compute GOT equivalent candidates among all global variables to avoid
1179 /// emitting them if possible later on, after it use is replaced by a GOT entry
1180 /// access.
1181 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1182 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1183 return;
1185 for (const auto &G : M.globals()) {
1186 unsigned NumGOTEquivUsers = 0;
1187 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1188 continue;
1190 const MCSymbol *GOTEquivSym = getSymbol(&G);
1191 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1195 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1196 /// for PC relative GOT entry conversion, in such cases we need to emit such
1197 /// globals we previously omitted in EmitGlobalVariable.
1198 void AsmPrinter::emitGlobalGOTEquivs() {
1199 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1200 return;
1202 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1203 for (auto &I : GlobalGOTEquivs) {
1204 const GlobalVariable *GV = I.second.first;
1205 unsigned Cnt = I.second.second;
1206 if (Cnt)
1207 FailedCandidates.push_back(GV);
1209 GlobalGOTEquivs.clear();
1211 for (auto *GV : FailedCandidates)
1212 EmitGlobalVariable(GV);
1215 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1216 const GlobalIndirectSymbol& GIS) {
1217 MCSymbol *Name = getSymbol(&GIS);
1219 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1220 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1221 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1222 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1223 else
1224 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1226 // Set the symbol type to function if the alias has a function type.
1227 // This affects codegen when the aliasee is not a function.
1228 if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1229 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1230 if (isa<GlobalIFunc>(GIS))
1231 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1234 EmitVisibility(Name, GIS.getVisibility());
1236 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1238 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1239 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1241 // Emit the directives as assignments aka .set:
1242 OutStreamer->EmitAssignment(Name, Expr);
1244 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1245 // If the aliasee does not correspond to a symbol in the output, i.e. the
1246 // alias is not of an object or the aliased object is private, then set the
1247 // size of the alias symbol from the type of the alias. We don't do this in
1248 // other situations as the alias and aliasee having differing types but same
1249 // size may be intentional.
1250 const GlobalObject *BaseObject = GA->getBaseObject();
1251 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1252 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1253 const DataLayout &DL = M.getDataLayout();
1254 uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1255 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1260 bool AsmPrinter::doFinalization(Module &M) {
1261 // Set the MachineFunction to nullptr so that we can catch attempted
1262 // accesses to MF specific features at the module level and so that
1263 // we can conditionalize accesses based on whether or not it is nullptr.
1264 MF = nullptr;
1266 // Gather all GOT equivalent globals in the module. We really need two
1267 // passes over the globals: one to compute and another to avoid its emission
1268 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1269 // where the got equivalent shows up before its use.
1270 computeGlobalGOTEquivs(M);
1272 // Emit global variables.
1273 for (const auto &G : M.globals())
1274 EmitGlobalVariable(&G);
1276 // Emit remaining GOT equivalent globals.
1277 emitGlobalGOTEquivs();
1279 // Emit visibility info for declarations
1280 for (const Function &F : M) {
1281 if (!F.isDeclarationForLinker())
1282 continue;
1283 GlobalValue::VisibilityTypes V = F.getVisibility();
1284 if (V == GlobalValue::DefaultVisibility)
1285 continue;
1287 MCSymbol *Name = getSymbol(&F);
1288 EmitVisibility(Name, V, false);
1291 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1293 TLOF.emitModuleMetadata(*OutStreamer, M, TM);
1295 if (TM.getTargetTriple().isOSBinFormatELF()) {
1296 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1298 // Output stubs for external and common global variables.
1299 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1300 if (!Stubs.empty()) {
1301 OutStreamer->SwitchSection(TLOF.getDataSection());
1302 const DataLayout &DL = M.getDataLayout();
1304 for (const auto &Stub : Stubs) {
1305 OutStreamer->EmitLabel(Stub.first);
1306 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1307 DL.getPointerSize());
1312 // Finalize debug and EH information.
1313 for (const HandlerInfo &HI : Handlers) {
1314 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1315 HI.TimerGroupDescription, TimePassesIsEnabled);
1316 HI.Handler->endModule();
1317 delete HI.Handler;
1319 Handlers.clear();
1320 DD = nullptr;
1322 // If the target wants to know about weak references, print them all.
1323 if (MAI->getWeakRefDirective()) {
1324 // FIXME: This is not lazy, it would be nice to only print weak references
1325 // to stuff that is actually used. Note that doing so would require targets
1326 // to notice uses in operands (due to constant exprs etc). This should
1327 // happen with the MC stuff eventually.
1329 // Print out module-level global objects here.
1330 for (const auto &GO : M.global_objects()) {
1331 if (!GO.hasExternalWeakLinkage())
1332 continue;
1333 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1337 OutStreamer->AddBlankLine();
1339 // Print aliases in topological order, that is, for each alias a = b,
1340 // b must be printed before a.
1341 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1342 // such an order to generate correct TOC information.
1343 SmallVector<const GlobalAlias *, 16> AliasStack;
1344 SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1345 for (const auto &Alias : M.aliases()) {
1346 for (const GlobalAlias *Cur = &Alias; Cur;
1347 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1348 if (!AliasVisited.insert(Cur).second)
1349 break;
1350 AliasStack.push_back(Cur);
1352 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1353 emitGlobalIndirectSymbol(M, *AncestorAlias);
1354 AliasStack.clear();
1356 for (const auto &IFunc : M.ifuncs())
1357 emitGlobalIndirectSymbol(M, IFunc);
1359 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1360 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1361 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1362 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1363 MP->finishAssembly(M, *MI, *this);
1365 // Emit llvm.ident metadata in an '.ident' directive.
1366 EmitModuleIdents(M);
1368 // Emit __morestack address if needed for indirect calls.
1369 if (MMI->usesMorestackAddr()) {
1370 unsigned Align = 1;
1371 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1372 getDataLayout(), SectionKind::getReadOnly(),
1373 /*C=*/nullptr, Align);
1374 OutStreamer->SwitchSection(ReadOnlySection);
1376 MCSymbol *AddrSymbol =
1377 OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1378 OutStreamer->EmitLabel(AddrSymbol);
1380 unsigned PtrSize = MAI->getCodePointerSize();
1381 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1382 PtrSize);
1385 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1386 // split-stack is used.
1387 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1388 OutStreamer->SwitchSection(
1389 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1390 if (MMI->hasNosplitStack())
1391 OutStreamer->SwitchSection(
1392 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1395 // If we don't have any trampolines, then we don't require stack memory
1396 // to be executable. Some targets have a directive to declare this.
1397 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1398 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1399 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1400 OutStreamer->SwitchSection(S);
1402 // Allow the target to emit any magic that it wants at the end of the file,
1403 // after everything else has gone out.
1404 EmitEndOfAsmFile(M);
1406 MMI = nullptr;
1408 OutStreamer->Finish();
1409 OutStreamer->reset();
1411 return false;
1414 MCSymbol *AsmPrinter::getCurExceptionSym() {
1415 if (!CurExceptionSym)
1416 CurExceptionSym = createTempSymbol("exception");
1417 return CurExceptionSym;
1420 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1421 this->MF = &MF;
1422 // Get the function symbol.
1423 CurrentFnSym = getSymbol(MF.getFunction());
1424 CurrentFnSymForSize = CurrentFnSym;
1425 CurrentFnBegin = nullptr;
1426 CurExceptionSym = nullptr;
1427 bool NeedsLocalForSize = MAI->needsLocalForSize();
1428 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) {
1429 CurrentFnBegin = createTempSymbol("func_begin");
1430 if (NeedsLocalForSize)
1431 CurrentFnSymForSize = CurrentFnBegin;
1434 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1435 if (isVerbose())
1436 LI = &getAnalysis<MachineLoopInfo>();
1438 const TargetSubtargetInfo &STI = MF.getSubtarget();
1439 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1440 ? PrintSchedule
1441 : STI.supportPrintSchedInfo();
1444 namespace {
1446 // Keep track the alignment, constpool entries per Section.
1447 struct SectionCPs {
1448 MCSection *S;
1449 unsigned Alignment;
1450 SmallVector<unsigned, 4> CPEs;
1452 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1455 } // end anonymous namespace
1457 /// EmitConstantPool - Print to the current output stream assembly
1458 /// representations of the constants in the constant pool MCP. This is
1459 /// used to print out constants which have been "spilled to memory" by
1460 /// the code generator.
1462 void AsmPrinter::EmitConstantPool() {
1463 const MachineConstantPool *MCP = MF->getConstantPool();
1464 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1465 if (CP.empty()) return;
1467 // Calculate sections for constant pool entries. We collect entries to go into
1468 // the same section together to reduce amount of section switch statements.
1469 SmallVector<SectionCPs, 4> CPSections;
1470 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1471 const MachineConstantPoolEntry &CPE = CP[i];
1472 unsigned Align = CPE.getAlignment();
1474 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1476 const Constant *C = nullptr;
1477 if (!CPE.isMachineConstantPoolEntry())
1478 C = CPE.Val.ConstVal;
1480 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1481 Kind, C, Align);
1483 // The number of sections are small, just do a linear search from the
1484 // last section to the first.
1485 bool Found = false;
1486 unsigned SecIdx = CPSections.size();
1487 while (SecIdx != 0) {
1488 if (CPSections[--SecIdx].S == S) {
1489 Found = true;
1490 break;
1493 if (!Found) {
1494 SecIdx = CPSections.size();
1495 CPSections.push_back(SectionCPs(S, Align));
1498 if (Align > CPSections[SecIdx].Alignment)
1499 CPSections[SecIdx].Alignment = Align;
1500 CPSections[SecIdx].CPEs.push_back(i);
1503 // Now print stuff into the calculated sections.
1504 const MCSection *CurSection = nullptr;
1505 unsigned Offset = 0;
1506 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1507 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1508 unsigned CPI = CPSections[i].CPEs[j];
1509 MCSymbol *Sym = GetCPISymbol(CPI);
1510 if (!Sym->isUndefined())
1511 continue;
1513 if (CurSection != CPSections[i].S) {
1514 OutStreamer->SwitchSection(CPSections[i].S);
1515 EmitAlignment(Log2_32(CPSections[i].Alignment));
1516 CurSection = CPSections[i].S;
1517 Offset = 0;
1520 MachineConstantPoolEntry CPE = CP[CPI];
1522 // Emit inter-object padding for alignment.
1523 unsigned AlignMask = CPE.getAlignment() - 1;
1524 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1525 OutStreamer->EmitZeros(NewOffset - Offset);
1527 Type *Ty = CPE.getType();
1528 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1530 OutStreamer->EmitLabel(Sym);
1531 if (CPE.isMachineConstantPoolEntry())
1532 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1533 else
1534 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1539 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1540 /// by the current function to the current output stream.
1542 void AsmPrinter::EmitJumpTableInfo() {
1543 const DataLayout &DL = MF->getDataLayout();
1544 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1545 if (!MJTI) return;
1546 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1547 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1548 if (JT.empty()) return;
1550 // Pick the directive to use to print the jump table entries, and switch to
1551 // the appropriate section.
1552 const Function *F = MF->getFunction();
1553 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1554 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1555 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1556 *F);
1557 if (JTInDiffSection) {
1558 // Drop it in the readonly section.
1559 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
1560 OutStreamer->SwitchSection(ReadOnlySection);
1563 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1565 // Jump tables in code sections are marked with a data_region directive
1566 // where that's supported.
1567 if (!JTInDiffSection)
1568 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1570 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1571 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1573 // If this jump table was deleted, ignore it.
1574 if (JTBBs.empty()) continue;
1576 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1577 /// emit a .set directive for each unique entry.
1578 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1579 MAI->doesSetDirectiveSuppressReloc()) {
1580 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1581 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1582 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1583 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1584 const MachineBasicBlock *MBB = JTBBs[ii];
1585 if (!EmittedSets.insert(MBB).second)
1586 continue;
1588 // .set LJTSet, LBB32-base
1589 const MCExpr *LHS =
1590 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1591 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1592 MCBinaryExpr::createSub(LHS, Base,
1593 OutContext));
1597 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1598 // before each jump table. The first label is never referenced, but tells
1599 // the assembler and linker the extents of the jump table object. The
1600 // second label is actually referenced by the code.
1601 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1602 // FIXME: This doesn't have to have any specific name, just any randomly
1603 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1604 OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1606 OutStreamer->EmitLabel(GetJTISymbol(JTI));
1608 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1609 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1611 if (!JTInDiffSection)
1612 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1615 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1616 /// current stream.
1617 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1618 const MachineBasicBlock *MBB,
1619 unsigned UID) const {
1620 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1621 const MCExpr *Value = nullptr;
1622 switch (MJTI->getEntryKind()) {
1623 case MachineJumpTableInfo::EK_Inline:
1624 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1625 case MachineJumpTableInfo::EK_Custom32:
1626 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1627 MJTI, MBB, UID, OutContext);
1628 break;
1629 case MachineJumpTableInfo::EK_BlockAddress:
1630 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1631 // .word LBB123
1632 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1633 break;
1634 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1635 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1636 // with a relocation as gp-relative, e.g.:
1637 // .gprel32 LBB123
1638 MCSymbol *MBBSym = MBB->getSymbol();
1639 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1640 return;
1643 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1644 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1645 // with a relocation as gp-relative, e.g.:
1646 // .gpdword LBB123
1647 MCSymbol *MBBSym = MBB->getSymbol();
1648 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1649 return;
1652 case MachineJumpTableInfo::EK_LabelDifference32: {
1653 // Each entry is the address of the block minus the address of the jump
1654 // table. This is used for PIC jump tables where gprel32 is not supported.
1655 // e.g.:
1656 // .word LBB123 - LJTI1_2
1657 // If the .set directive avoids relocations, this is emitted as:
1658 // .set L4_5_set_123, LBB123 - LJTI1_2
1659 // .word L4_5_set_123
1660 if (MAI->doesSetDirectiveSuppressReloc()) {
1661 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1662 OutContext);
1663 break;
1665 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1666 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1667 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1668 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1669 break;
1673 assert(Value && "Unknown entry kind!");
1675 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1676 OutStreamer->EmitValue(Value, EntrySize);
1679 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1680 /// special global used by LLVM. If so, emit it and return true, otherwise
1681 /// do nothing and return false.
1682 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1683 if (GV->getName() == "llvm.used") {
1684 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1685 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1686 return true;
1689 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1690 if (GV->getSection() == "llvm.metadata" ||
1691 GV->hasAvailableExternallyLinkage())
1692 return true;
1694 if (!GV->hasAppendingLinkage()) return false;
1696 assert(GV->hasInitializer() && "Not a special LLVM global!");
1698 if (GV->getName() == "llvm.global_ctors") {
1699 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1700 /* isCtor */ true);
1702 return true;
1705 if (GV->getName() == "llvm.global_dtors") {
1706 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1707 /* isCtor */ false);
1709 return true;
1712 report_fatal_error("unknown special variable");
1715 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1716 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1717 /// is true, as being used with this directive.
1718 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1719 // Should be an array of 'i8*'.
1720 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1721 const GlobalValue *GV =
1722 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1723 if (GV)
1724 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1728 namespace {
1730 struct Structor {
1731 int Priority = 0;
1732 Constant *Func = nullptr;
1733 GlobalValue *ComdatKey = nullptr;
1735 Structor() = default;
1738 } // end anonymous namespace
1740 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1741 /// priority.
1742 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1743 bool isCtor) {
1744 // Should be an array of '{ int, void ()* }' structs. The first value is the
1745 // init priority.
1746 if (!isa<ConstantArray>(List)) return;
1748 // Sanity check the structors list.
1749 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1750 if (!InitList) return; // Not an array!
1751 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1752 // FIXME: Only allow the 3-field form in LLVM 4.0.
1753 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1754 return; // Not an array of two or three elements!
1755 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1756 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1757 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1758 return; // Not (int, ptr, ptr).
1760 // Gather the structors in a form that's convenient for sorting by priority.
1761 SmallVector<Structor, 8> Structors;
1762 for (Value *O : InitList->operands()) {
1763 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1764 if (!CS) continue; // Malformed.
1765 if (CS->getOperand(1)->isNullValue())
1766 break; // Found a null terminator, skip the rest.
1767 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1768 if (!Priority) continue; // Malformed.
1769 Structors.push_back(Structor());
1770 Structor &S = Structors.back();
1771 S.Priority = Priority->getLimitedValue(65535);
1772 S.Func = CS->getOperand(1);
1773 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1774 S.ComdatKey =
1775 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1778 // Emit the function pointers in the target-specific order
1779 unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1780 std::stable_sort(Structors.begin(), Structors.end(),
1781 [](const Structor &L,
1782 const Structor &R) { return L.Priority < R.Priority; });
1783 for (Structor &S : Structors) {
1784 const TargetLoweringObjectFile &Obj = getObjFileLowering();
1785 const MCSymbol *KeySym = nullptr;
1786 if (GlobalValue *GV = S.ComdatKey) {
1787 if (GV->isDeclarationForLinker())
1788 // If the associated variable is not defined in this module
1789 // (it might be available_externally, or have been an
1790 // available_externally definition that was dropped by the
1791 // EliminateAvailableExternally pass), some other TU
1792 // will provide its dynamic initializer.
1793 continue;
1795 KeySym = getSymbol(GV);
1797 MCSection *OutputSection =
1798 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1799 : Obj.getStaticDtorSection(S.Priority, KeySym));
1800 OutStreamer->SwitchSection(OutputSection);
1801 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1802 EmitAlignment(Align);
1803 EmitXXStructor(DL, S.Func);
1807 void AsmPrinter::EmitModuleIdents(Module &M) {
1808 if (!MAI->hasIdentDirective())
1809 return;
1811 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1812 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1813 const MDNode *N = NMD->getOperand(i);
1814 assert(N->getNumOperands() == 1 &&
1815 "llvm.ident metadata entry can have only one operand");
1816 const MDString *S = cast<MDString>(N->getOperand(0));
1817 OutStreamer->EmitIdent(S->getString());
1822 //===--------------------------------------------------------------------===//
1823 // Emission and print routines
1826 /// EmitInt8 - Emit a byte directive and value.
1828 void AsmPrinter::EmitInt8(int Value) const {
1829 OutStreamer->EmitIntValue(Value, 1);
1832 /// EmitInt16 - Emit a short directive and value.
1834 void AsmPrinter::EmitInt16(int Value) const {
1835 OutStreamer->EmitIntValue(Value, 2);
1838 /// EmitInt32 - Emit a long directive and value.
1840 void AsmPrinter::EmitInt32(int Value) const {
1841 OutStreamer->EmitIntValue(Value, 4);
1844 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1845 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1846 /// .set if it avoids relocations.
1847 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1848 unsigned Size) const {
1849 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1852 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1853 /// where the size in bytes of the directive is specified by Size and Label
1854 /// specifies the label. This implicitly uses .set if it is available.
1855 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1856 unsigned Size,
1857 bool IsSectionRelative) const {
1858 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1859 OutStreamer->EmitCOFFSecRel32(Label, Offset);
1860 if (Size > 4)
1861 OutStreamer->EmitZeros(Size - 4);
1862 return;
1865 // Emit Label+Offset (or just Label if Offset is zero)
1866 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1867 if (Offset)
1868 Expr = MCBinaryExpr::createAdd(
1869 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1871 OutStreamer->EmitValue(Expr, Size);
1874 //===----------------------------------------------------------------------===//
1876 // EmitAlignment - Emit an alignment directive to the specified power of
1877 // two boundary. For example, if you pass in 3 here, you will get an 8
1878 // byte alignment. If a global value is specified, and if that global has
1879 // an explicit alignment requested, it will override the alignment request
1880 // if required for correctness.
1882 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1883 if (GV)
1884 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1886 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1888 assert(NumBits <
1889 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1890 "undefined behavior");
1891 if (getCurrentSection()->getKind().isText())
1892 OutStreamer->EmitCodeAlignment(1u << NumBits);
1893 else
1894 OutStreamer->EmitValueToAlignment(1u << NumBits);
1897 //===----------------------------------------------------------------------===//
1898 // Constant emission.
1899 //===----------------------------------------------------------------------===//
1901 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1902 MCContext &Ctx = OutContext;
1904 if (CV->isNullValue() || isa<UndefValue>(CV))
1905 return MCConstantExpr::create(0, Ctx);
1907 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1908 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1910 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1911 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1913 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1914 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1916 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1917 if (!CE) {
1918 llvm_unreachable("Unknown constant value to lower!");
1921 switch (CE->getOpcode()) {
1922 default:
1923 // If the code isn't optimized, there may be outstanding folding
1924 // opportunities. Attempt to fold the expression using DataLayout as a
1925 // last resort before giving up.
1926 if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1927 if (C != CE)
1928 return lowerConstant(C);
1930 // Otherwise report the problem to the user.
1932 std::string S;
1933 raw_string_ostream OS(S);
1934 OS << "Unsupported expression in static initializer: ";
1935 CE->printAsOperand(OS, /*PrintType=*/false,
1936 !MF ? nullptr : MF->getFunction()->getParent());
1937 report_fatal_error(OS.str());
1939 case Instruction::GetElementPtr: {
1940 // Generate a symbolic expression for the byte address
1941 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1942 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1944 const MCExpr *Base = lowerConstant(CE->getOperand(0));
1945 if (!OffsetAI)
1946 return Base;
1948 int64_t Offset = OffsetAI.getSExtValue();
1949 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1950 Ctx);
1953 case Instruction::Trunc:
1954 // We emit the value and depend on the assembler to truncate the generated
1955 // expression properly. This is important for differences between
1956 // blockaddress labels. Since the two labels are in the same function, it
1957 // is reasonable to treat their delta as a 32-bit value.
1958 LLVM_FALLTHROUGH;
1959 case Instruction::BitCast:
1960 return lowerConstant(CE->getOperand(0));
1962 case Instruction::IntToPtr: {
1963 const DataLayout &DL = getDataLayout();
1965 // Handle casts to pointers by changing them into casts to the appropriate
1966 // integer type. This promotes constant folding and simplifies this code.
1967 Constant *Op = CE->getOperand(0);
1968 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1969 false/*ZExt*/);
1970 return lowerConstant(Op);
1973 case Instruction::PtrToInt: {
1974 const DataLayout &DL = getDataLayout();
1976 // Support only foldable casts to/from pointers that can be eliminated by
1977 // changing the pointer to the appropriately sized integer type.
1978 Constant *Op = CE->getOperand(0);
1979 Type *Ty = CE->getType();
1981 const MCExpr *OpExpr = lowerConstant(Op);
1983 // We can emit the pointer value into this slot if the slot is an
1984 // integer slot equal to the size of the pointer.
1985 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1986 return OpExpr;
1988 // Otherwise the pointer is smaller than the resultant integer, mask off
1989 // the high bits so we are sure to get a proper truncation if the input is
1990 // a constant expr.
1991 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1992 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1993 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1996 case Instruction::Sub: {
1997 GlobalValue *LHSGV;
1998 APInt LHSOffset;
1999 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2000 getDataLayout())) {
2001 GlobalValue *RHSGV;
2002 APInt RHSOffset;
2003 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2004 getDataLayout())) {
2005 const MCExpr *RelocExpr =
2006 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2007 if (!RelocExpr)
2008 RelocExpr = MCBinaryExpr::createSub(
2009 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2010 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2011 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2012 if (Addend != 0)
2013 RelocExpr = MCBinaryExpr::createAdd(
2014 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2015 return RelocExpr;
2019 // else fallthrough
2021 // The MC library also has a right-shift operator, but it isn't consistently
2022 // signed or unsigned between different targets.
2023 case Instruction::Add:
2024 case Instruction::Mul:
2025 case Instruction::SDiv:
2026 case Instruction::SRem:
2027 case Instruction::Shl:
2028 case Instruction::And:
2029 case Instruction::Or:
2030 case Instruction::Xor: {
2031 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2032 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2033 switch (CE->getOpcode()) {
2034 default: llvm_unreachable("Unknown binary operator constant cast expr");
2035 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2036 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2037 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2038 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2039 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2040 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2041 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2042 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2043 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2049 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2050 AsmPrinter &AP,
2051 const Constant *BaseCV = nullptr,
2052 uint64_t Offset = 0);
2054 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2056 /// isRepeatedByteSequence - Determine whether the given value is
2057 /// composed of a repeated sequence of identical bytes and return the
2058 /// byte value. If it is not a repeated sequence, return -1.
2059 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2060 StringRef Data = V->getRawDataValues();
2061 assert(!Data.empty() && "Empty aggregates should be CAZ node");
2062 char C = Data[0];
2063 for (unsigned i = 1, e = Data.size(); i != e; ++i)
2064 if (Data[i] != C) return -1;
2065 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2068 /// isRepeatedByteSequence - Determine whether the given value is
2069 /// composed of a repeated sequence of identical bytes and return the
2070 /// byte value. If it is not a repeated sequence, return -1.
2071 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2072 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2073 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2074 assert(Size % 8 == 0);
2076 // Extend the element to take zero padding into account.
2077 APInt Value = CI->getValue().zextOrSelf(Size);
2078 if (!Value.isSplat(8))
2079 return -1;
2081 return Value.zextOrTrunc(8).getZExtValue();
2083 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2084 // Make sure all array elements are sequences of the same repeated
2085 // byte.
2086 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2087 Constant *Op0 = CA->getOperand(0);
2088 int Byte = isRepeatedByteSequence(Op0, DL);
2089 if (Byte == -1)
2090 return -1;
2092 // All array elements must be equal.
2093 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2094 if (CA->getOperand(i) != Op0)
2095 return -1;
2096 return Byte;
2099 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2100 return isRepeatedByteSequence(CDS);
2102 return -1;
2105 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2106 const ConstantDataSequential *CDS,
2107 AsmPrinter &AP) {
2108 // See if we can aggregate this into a .fill, if so, emit it as such.
2109 int Value = isRepeatedByteSequence(CDS, DL);
2110 if (Value != -1) {
2111 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2112 // Don't emit a 1-byte object as a .fill.
2113 if (Bytes > 1)
2114 return AP.OutStreamer->emitFill(Bytes, Value);
2117 // If this can be emitted with .ascii/.asciz, emit it as such.
2118 if (CDS->isString())
2119 return AP.OutStreamer->EmitBytes(CDS->getAsString());
2121 // Otherwise, emit the values in successive locations.
2122 unsigned ElementByteSize = CDS->getElementByteSize();
2123 if (isa<IntegerType>(CDS->getElementType())) {
2124 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2125 if (AP.isVerbose())
2126 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2127 CDS->getElementAsInteger(i));
2128 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2129 ElementByteSize);
2131 } else {
2132 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2133 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
2136 unsigned Size = DL.getTypeAllocSize(CDS->getType());
2137 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2138 CDS->getNumElements();
2139 if (unsigned Padding = Size - EmittedSize)
2140 AP.OutStreamer->EmitZeros(Padding);
2143 static void emitGlobalConstantArray(const DataLayout &DL,
2144 const ConstantArray *CA, AsmPrinter &AP,
2145 const Constant *BaseCV, uint64_t Offset) {
2146 // See if we can aggregate some values. Make sure it can be
2147 // represented as a series of bytes of the constant value.
2148 int Value = isRepeatedByteSequence(CA, DL);
2150 if (Value != -1) {
2151 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2152 AP.OutStreamer->emitFill(Bytes, Value);
2154 else {
2155 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2156 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2157 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2162 static void emitGlobalConstantVector(const DataLayout &DL,
2163 const ConstantVector *CV, AsmPrinter &AP) {
2164 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2165 emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2167 unsigned Size = DL.getTypeAllocSize(CV->getType());
2168 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2169 CV->getType()->getNumElements();
2170 if (unsigned Padding = Size - EmittedSize)
2171 AP.OutStreamer->EmitZeros(Padding);
2174 static void emitGlobalConstantStruct(const DataLayout &DL,
2175 const ConstantStruct *CS, AsmPrinter &AP,
2176 const Constant *BaseCV, uint64_t Offset) {
2177 // Print the fields in successive locations. Pad to align if needed!
2178 unsigned Size = DL.getTypeAllocSize(CS->getType());
2179 const StructLayout *Layout = DL.getStructLayout(CS->getType());
2180 uint64_t SizeSoFar = 0;
2181 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2182 const Constant *Field = CS->getOperand(i);
2184 // Print the actual field value.
2185 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2187 // Check if padding is needed and insert one or more 0s.
2188 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2189 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2190 - Layout->getElementOffset(i)) - FieldSize;
2191 SizeSoFar += FieldSize + PadSize;
2193 // Insert padding - this may include padding to increase the size of the
2194 // current field up to the ABI size (if the struct is not packed) as well
2195 // as padding to ensure that the next field starts at the right offset.
2196 AP.OutStreamer->EmitZeros(PadSize);
2198 assert(SizeSoFar == Layout->getSizeInBytes() &&
2199 "Layout of constant struct may be incorrect!");
2202 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2203 APInt API = CFP->getValueAPF().bitcastToAPInt();
2205 // First print a comment with what we think the original floating-point value
2206 // should have been.
2207 if (AP.isVerbose()) {
2208 SmallString<8> StrVal;
2209 CFP->getValueAPF().toString(StrVal);
2211 if (CFP->getType())
2212 CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2213 else
2214 AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2215 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2218 // Now iterate through the APInt chunks, emitting them in endian-correct
2219 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2220 // floats).
2221 unsigned NumBytes = API.getBitWidth() / 8;
2222 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2223 const uint64_t *p = API.getRawData();
2225 // PPC's long double has odd notions of endianness compared to how LLVM
2226 // handles it: p[0] goes first for *big* endian on PPC.
2227 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2228 int Chunk = API.getNumWords() - 1;
2230 if (TrailingBytes)
2231 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2233 for (; Chunk >= 0; --Chunk)
2234 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2235 } else {
2236 unsigned Chunk;
2237 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2238 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2240 if (TrailingBytes)
2241 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2244 // Emit the tail padding for the long double.
2245 const DataLayout &DL = AP.getDataLayout();
2246 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2247 DL.getTypeStoreSize(CFP->getType()));
2250 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2251 const DataLayout &DL = AP.getDataLayout();
2252 unsigned BitWidth = CI->getBitWidth();
2254 // Copy the value as we may massage the layout for constants whose bit width
2255 // is not a multiple of 64-bits.
2256 APInt Realigned(CI->getValue());
2257 uint64_t ExtraBits = 0;
2258 unsigned ExtraBitsSize = BitWidth & 63;
2260 if (ExtraBitsSize) {
2261 // The bit width of the data is not a multiple of 64-bits.
2262 // The extra bits are expected to be at the end of the chunk of the memory.
2263 // Little endian:
2264 // * Nothing to be done, just record the extra bits to emit.
2265 // Big endian:
2266 // * Record the extra bits to emit.
2267 // * Realign the raw data to emit the chunks of 64-bits.
2268 if (DL.isBigEndian()) {
2269 // Basically the structure of the raw data is a chunk of 64-bits cells:
2270 // 0 1 BitWidth / 64
2271 // [chunk1][chunk2] ... [chunkN].
2272 // The most significant chunk is chunkN and it should be emitted first.
2273 // However, due to the alignment issue chunkN contains useless bits.
2274 // Realign the chunks so that they contain only useless information:
2275 // ExtraBits 0 1 (BitWidth / 64) - 1
2276 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2277 ExtraBits = Realigned.getRawData()[0] &
2278 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2279 Realigned.lshrInPlace(ExtraBitsSize);
2280 } else
2281 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2284 // We don't expect assemblers to support integer data directives
2285 // for more than 64 bits, so we emit the data in at most 64-bit
2286 // quantities at a time.
2287 const uint64_t *RawData = Realigned.getRawData();
2288 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2289 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2290 AP.OutStreamer->EmitIntValue(Val, 8);
2293 if (ExtraBitsSize) {
2294 // Emit the extra bits after the 64-bits chunks.
2296 // Emit a directive that fills the expected size.
2297 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2298 Size -= (BitWidth / 64) * 8;
2299 assert(Size && Size * 8 >= ExtraBitsSize &&
2300 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2301 == ExtraBits && "Directive too small for extra bits.");
2302 AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2306 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2307 /// equivalent global, by a target specific GOT pc relative access to the
2308 /// final symbol.
2309 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2310 const Constant *BaseCst,
2311 uint64_t Offset) {
2312 // The global @foo below illustrates a global that uses a got equivalent.
2314 // @bar = global i32 42
2315 // @gotequiv = private unnamed_addr constant i32* @bar
2316 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2317 // i64 ptrtoint (i32* @foo to i64))
2318 // to i32)
2320 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2321 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2322 // form:
2324 // foo = cstexpr, where
2325 // cstexpr := <gotequiv> - "." + <cst>
2326 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2328 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2330 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2331 // gotpcrelcst := <offset from @foo base> + <cst>
2333 MCValue MV;
2334 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2335 return;
2336 const MCSymbolRefExpr *SymA = MV.getSymA();
2337 if (!SymA)
2338 return;
2340 // Check that GOT equivalent symbol is cached.
2341 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2342 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2343 return;
2345 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2346 if (!BaseGV)
2347 return;
2349 // Check for a valid base symbol
2350 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2351 const MCSymbolRefExpr *SymB = MV.getSymB();
2353 if (!SymB || BaseSym != &SymB->getSymbol())
2354 return;
2356 // Make sure to match:
2358 // gotpcrelcst := <offset from @foo base> + <cst>
2360 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2361 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2362 // if the target knows how to encode it.
2364 int64_t GOTPCRelCst = Offset + MV.getConstant();
2365 if (GOTPCRelCst < 0)
2366 return;
2367 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2368 return;
2370 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2372 // bar:
2373 // .long 42
2374 // gotequiv:
2375 // .quad bar
2376 // foo:
2377 // .long gotequiv - "." + <cst>
2379 // is replaced by the target specific equivalent to:
2381 // bar:
2382 // .long 42
2383 // foo:
2384 // .long bar@GOTPCREL+<gotpcrelcst>
2386 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2387 const GlobalVariable *GV = Result.first;
2388 int NumUses = (int)Result.second;
2389 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2390 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2391 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2392 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2394 // Update GOT equivalent usage information
2395 --NumUses;
2396 if (NumUses >= 0)
2397 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2400 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2401 AsmPrinter &AP, const Constant *BaseCV,
2402 uint64_t Offset) {
2403 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2405 // Globals with sub-elements such as combinations of arrays and structs
2406 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2407 // constant symbol base and the current position with BaseCV and Offset.
2408 if (!BaseCV && CV->hasOneUse())
2409 BaseCV = dyn_cast<Constant>(CV->user_back());
2411 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2412 return AP.OutStreamer->EmitZeros(Size);
2414 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2415 switch (Size) {
2416 case 1:
2417 case 2:
2418 case 4:
2419 case 8:
2420 if (AP.isVerbose())
2421 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2422 CI->getZExtValue());
2423 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2424 return;
2425 default:
2426 emitGlobalConstantLargeInt(CI, AP);
2427 return;
2431 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2432 return emitGlobalConstantFP(CFP, AP);
2434 if (isa<ConstantPointerNull>(CV)) {
2435 AP.OutStreamer->EmitIntValue(0, Size);
2436 return;
2439 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2440 return emitGlobalConstantDataSequential(DL, CDS, AP);
2442 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2443 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2445 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2446 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2448 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2449 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2450 // vectors).
2451 if (CE->getOpcode() == Instruction::BitCast)
2452 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2454 if (Size > 8) {
2455 // If the constant expression's size is greater than 64-bits, then we have
2456 // to emit the value in chunks. Try to constant fold the value and emit it
2457 // that way.
2458 Constant *New = ConstantFoldConstant(CE, DL);
2459 if (New && New != CE)
2460 return emitGlobalConstantImpl(DL, New, AP);
2464 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2465 return emitGlobalConstantVector(DL, V, AP);
2467 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2468 // thread the streamer with EmitValue.
2469 const MCExpr *ME = AP.lowerConstant(CV);
2471 // Since lowerConstant already folded and got rid of all IR pointer and
2472 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2473 // directly.
2474 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2475 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2477 AP.OutStreamer->EmitValue(ME, Size);
2480 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2481 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2482 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2483 if (Size)
2484 emitGlobalConstantImpl(DL, CV, *this);
2485 else if (MAI->hasSubsectionsViaSymbols()) {
2486 // If the global has zero size, emit a single byte so that two labels don't
2487 // look like they are at the same location.
2488 OutStreamer->EmitIntValue(0, 1);
2492 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2493 // Target doesn't support this yet!
2494 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2497 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2498 if (Offset > 0)
2499 OS << '+' << Offset;
2500 else if (Offset < 0)
2501 OS << Offset;
2504 //===----------------------------------------------------------------------===//
2505 // Symbol Lowering Routines.
2506 //===----------------------------------------------------------------------===//
2508 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2509 return OutContext.createTempSymbol(Name, true);
2512 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2513 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2516 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2517 return MMI->getAddrLabelSymbol(BB);
2520 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2521 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2522 const DataLayout &DL = getDataLayout();
2523 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2524 "CPI" + Twine(getFunctionNumber()) + "_" +
2525 Twine(CPID));
2528 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2529 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2530 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2533 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2534 /// FIXME: privatize to AsmPrinter.
2535 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2536 const DataLayout &DL = getDataLayout();
2537 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2538 Twine(getFunctionNumber()) + "_" +
2539 Twine(UID) + "_set_" + Twine(MBBID));
2542 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2543 StringRef Suffix) const {
2544 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2547 /// Return the MCSymbol for the specified ExternalSymbol.
2548 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2549 SmallString<60> NameStr;
2550 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2551 return OutContext.getOrCreateSymbol(NameStr);
2554 /// PrintParentLoopComment - Print comments about parent loops of this one.
2555 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2556 unsigned FunctionNumber) {
2557 if (!Loop) return;
2558 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2559 OS.indent(Loop->getLoopDepth()*2)
2560 << "Parent Loop BB" << FunctionNumber << "_"
2561 << Loop->getHeader()->getNumber()
2562 << " Depth=" << Loop->getLoopDepth() << '\n';
2566 /// PrintChildLoopComment - Print comments about child loops within
2567 /// the loop for this basic block, with nesting.
2568 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2569 unsigned FunctionNumber) {
2570 // Add child loop information
2571 for (const MachineLoop *CL : *Loop) {
2572 OS.indent(CL->getLoopDepth()*2)
2573 << "Child Loop BB" << FunctionNumber << "_"
2574 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2575 << '\n';
2576 PrintChildLoopComment(OS, CL, FunctionNumber);
2580 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2581 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2582 const MachineLoopInfo *LI,
2583 const AsmPrinter &AP) {
2584 // Add loop depth information
2585 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2586 if (!Loop) return;
2588 MachineBasicBlock *Header = Loop->getHeader();
2589 assert(Header && "No header for loop");
2591 // If this block is not a loop header, just print out what is the loop header
2592 // and return.
2593 if (Header != &MBB) {
2594 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
2595 Twine(AP.getFunctionNumber())+"_" +
2596 Twine(Loop->getHeader()->getNumber())+
2597 " Depth="+Twine(Loop->getLoopDepth()));
2598 return;
2601 // Otherwise, it is a loop header. Print out information about child and
2602 // parent loops.
2603 raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2605 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2607 OS << "=>";
2608 OS.indent(Loop->getLoopDepth()*2-2);
2610 OS << "This ";
2611 if (Loop->empty())
2612 OS << "Inner ";
2613 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2615 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2618 /// EmitBasicBlockStart - This method prints the label for the specified
2619 /// MachineBasicBlock, an alignment (if present) and a comment describing
2620 /// it if appropriate.
2621 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2622 // End the previous funclet and start a new one.
2623 if (MBB.isEHFuncletEntry()) {
2624 for (const HandlerInfo &HI : Handlers) {
2625 HI.Handler->endFunclet();
2626 HI.Handler->beginFunclet(MBB);
2630 // Emit an alignment directive for this block, if needed.
2631 if (unsigned Align = MBB.getAlignment())
2632 EmitAlignment(Align);
2634 // If the block has its address taken, emit any labels that were used to
2635 // reference the block. It is possible that there is more than one label
2636 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2637 // the references were generated.
2638 if (MBB.hasAddressTaken()) {
2639 const BasicBlock *BB = MBB.getBasicBlock();
2640 if (isVerbose())
2641 OutStreamer->AddComment("Block address taken");
2643 // MBBs can have their address taken as part of CodeGen without having
2644 // their corresponding BB's address taken in IR
2645 if (BB->hasAddressTaken())
2646 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2647 OutStreamer->EmitLabel(Sym);
2650 // Print some verbose block comments.
2651 if (isVerbose()) {
2652 if (const BasicBlock *BB = MBB.getBasicBlock()) {
2653 if (BB->hasName()) {
2654 BB->printAsOperand(OutStreamer->GetCommentOS(),
2655 /*PrintType=*/false, BB->getModule());
2656 OutStreamer->GetCommentOS() << '\n';
2659 emitBasicBlockLoopComments(MBB, LI, *this);
2662 // Print the main label for the block.
2663 if (MBB.pred_empty() ||
2664 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2665 if (isVerbose()) {
2666 // NOTE: Want this comment at start of line, don't emit with AddComment.
2667 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2669 } else {
2670 OutStreamer->EmitLabel(MBB.getSymbol());
2674 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2675 bool IsDefinition) const {
2676 MCSymbolAttr Attr = MCSA_Invalid;
2678 switch (Visibility) {
2679 default: break;
2680 case GlobalValue::HiddenVisibility:
2681 if (IsDefinition)
2682 Attr = MAI->getHiddenVisibilityAttr();
2683 else
2684 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2685 break;
2686 case GlobalValue::ProtectedVisibility:
2687 Attr = MAI->getProtectedVisibilityAttr();
2688 break;
2691 if (Attr != MCSA_Invalid)
2692 OutStreamer->EmitSymbolAttribute(Sym, Attr);
2695 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2696 /// exactly one predecessor and the control transfer mechanism between
2697 /// the predecessor and this block is a fall-through.
2698 bool AsmPrinter::
2699 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2700 // If this is a landing pad, it isn't a fall through. If it has no preds,
2701 // then nothing falls through to it.
2702 if (MBB->isEHPad() || MBB->pred_empty())
2703 return false;
2705 // If there isn't exactly one predecessor, it can't be a fall through.
2706 if (MBB->pred_size() > 1)
2707 return false;
2709 // The predecessor has to be immediately before this block.
2710 MachineBasicBlock *Pred = *MBB->pred_begin();
2711 if (!Pred->isLayoutSuccessor(MBB))
2712 return false;
2714 // If the block is completely empty, then it definitely does fall through.
2715 if (Pred->empty())
2716 return true;
2718 // Check the terminators in the previous blocks
2719 for (const auto &MI : Pred->terminators()) {
2720 // If it is not a simple branch, we are in a table somewhere.
2721 if (!MI.isBranch() || MI.isIndirectBranch())
2722 return false;
2724 // If we are the operands of one of the branches, this is not a fall
2725 // through. Note that targets with delay slots will usually bundle
2726 // terminators with the delay slot instruction.
2727 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2728 if (OP->isJTI())
2729 return false;
2730 if (OP->isMBB() && OP->getMBB() == MBB)
2731 return false;
2735 return true;
2738 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2739 if (!S.usesMetadata())
2740 return nullptr;
2742 assert(!S.useStatepoints() && "statepoints do not currently support custom"
2743 " stackmap formats, please see the documentation for a description of"
2744 " the default format. If you really need a custom serialized format,"
2745 " please file a bug");
2747 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2748 gcp_map_type::iterator GCPI = GCMap.find(&S);
2749 if (GCPI != GCMap.end())
2750 return GCPI->second.get();
2752 auto Name = S.getName();
2754 for (GCMetadataPrinterRegistry::iterator
2755 I = GCMetadataPrinterRegistry::begin(),
2756 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2757 if (Name == I->getName()) {
2758 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2759 GMP->S = &S;
2760 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2761 return IterBool.first->second.get();
2764 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2767 /// Pin vtable to this file.
2768 AsmPrinterHandler::~AsmPrinterHandler() = default;
2770 void AsmPrinterHandler::markFunctionEnd() {}
2772 // In the binary's "xray_instr_map" section, an array of these function entries
2773 // describes each instrumentation point. When XRay patches your code, the index
2774 // into this table will be given to your handler as a patch point identifier.
2775 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2776 const MCSymbol *CurrentFnSym) const {
2777 Out->EmitSymbolValue(Sled, Bytes);
2778 Out->EmitSymbolValue(CurrentFnSym, Bytes);
2779 auto Kind8 = static_cast<uint8_t>(Kind);
2780 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2781 Out->EmitBinaryData(
2782 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2783 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
2784 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
2785 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
2786 Out->EmitZeros(Padding);
2789 void AsmPrinter::emitXRayTable() {
2790 if (Sleds.empty())
2791 return;
2793 auto PrevSection = OutStreamer->getCurrentSectionOnly();
2794 auto Fn = MF->getFunction();
2795 MCSection *InstMap = nullptr;
2796 MCSection *FnSledIndex = nullptr;
2797 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2798 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
2799 assert(Associated != nullptr);
2800 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
2801 std::string GroupName;
2802 if (Fn->hasComdat()) {
2803 Flags |= ELF::SHF_GROUP;
2804 GroupName = Fn->getComdat()->getName();
2807 auto UniqueID = ++XRayFnUniqueID;
2808 InstMap =
2809 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
2810 GroupName, UniqueID, Associated);
2811 FnSledIndex =
2812 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
2813 GroupName, UniqueID, Associated);
2814 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2815 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2816 SectionKind::getReadOnlyWithRel());
2817 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
2818 SectionKind::getReadOnlyWithRel());
2819 } else {
2820 llvm_unreachable("Unsupported target");
2823 auto WordSizeBytes = MAI->getCodePointerSize();
2825 // Now we switch to the instrumentation map section. Because this is done
2826 // per-function, we are able to create an index entry that will represent the
2827 // range of sleds associated with a function.
2828 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
2829 OutStreamer->SwitchSection(InstMap);
2830 OutStreamer->EmitLabel(SledsStart);
2831 for (const auto &Sled : Sleds)
2832 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2833 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
2834 OutStreamer->EmitLabel(SledsEnd);
2836 // We then emit a single entry in the index per function. We use the symbols
2837 // that bound the instrumentation map as the range for a specific function.
2838 // Each entry here will be 2 * word size aligned, as we're writing down two
2839 // pointers. This should work for both 32-bit and 64-bit platforms.
2840 OutStreamer->SwitchSection(FnSledIndex);
2841 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
2842 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
2843 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
2844 OutStreamer->SwitchSection(PrevSection);
2845 Sleds.clear();
2848 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2849 SledKind Kind, uint8_t Version) {
2850 auto Fn = MI.getParent()->getParent()->getFunction();
2851 auto Attr = Fn->getFnAttribute("function-instrument");
2852 bool LogArgs = Fn->hasFnAttribute("xray-log-args");
2853 bool AlwaysInstrument =
2854 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2855 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
2856 Kind = SledKind::LOG_ARGS_ENTER;
2857 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
2858 AlwaysInstrument, Fn, Version});
2861 uint16_t AsmPrinter::getDwarfVersion() const {
2862 return OutStreamer->getContext().getDwarfVersion();
2865 void AsmPrinter::setDwarfVersion(uint16_t Version) {
2866 OutStreamer->getContext().setDwarfVersion(Version);