[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blobfeb57eeafe7d17f3292a4da30199f0ee9b5db22c
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAGISel.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachinePassRegistry.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/SchedulerRegistry.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGNodes.h"
50 #include "llvm/CodeGen/StackProtector.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetLowering.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/BasicBlock.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DiagnosticInfo.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/InlineAsm.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCInstrDesc.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CodeGen.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/Timer.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetIntrinsicInfo.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <string>
99 #include <utility>
100 #include <vector>
102 using namespace llvm;
104 #define DEBUG_TYPE "isel"
106 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
107 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
108 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
109 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
110 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
111 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
112 STATISTIC(NumFastIselFailLowerArguments,
113 "Number of entry blocks where fast isel failed to lower arguments");
115 static cl::opt<int> EnableFastISelAbort(
116 "fast-isel-abort", cl::Hidden,
117 cl::desc("Enable abort calls when \"fast\" instruction selection "
118 "fails to lower an instruction: 0 disable the abort, 1 will "
119 "abort but for args, calls and terminators, 2 will also "
120 "abort for argument lowering, and 3 will never fallback "
121 "to SelectionDAG."));
123 static cl::opt<bool> EnableFastISelFallbackReport(
124 "fast-isel-report-on-fallback", cl::Hidden,
125 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
126 "falls back to SelectionDAG."));
128 static cl::opt<bool>
129 UseMBPI("use-mbpi",
130 cl::desc("use Machine Branch Probability Info"),
131 cl::init(true), cl::Hidden);
133 #ifndef NDEBUG
134 static cl::opt<std::string>
135 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
136 cl::desc("Only display the basic block whose name "
137 "matches this for all view-*-dags options"));
138 static cl::opt<bool>
139 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
140 cl::desc("Pop up a window to show dags before the first "
141 "dag combine pass"));
142 static cl::opt<bool>
143 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
144 cl::desc("Pop up a window to show dags before legalize types"));
145 static cl::opt<bool>
146 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
147 cl::desc("Pop up a window to show dags before legalize"));
148 static cl::opt<bool>
149 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
150 cl::desc("Pop up a window to show dags before the second "
151 "dag combine pass"));
152 static cl::opt<bool>
153 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
154 cl::desc("Pop up a window to show dags before the post legalize types"
155 " dag combine pass"));
156 static cl::opt<bool>
157 ViewISelDAGs("view-isel-dags", cl::Hidden,
158 cl::desc("Pop up a window to show isel dags as they are selected"));
159 static cl::opt<bool>
160 ViewSchedDAGs("view-sched-dags", cl::Hidden,
161 cl::desc("Pop up a window to show sched dags as they are processed"));
162 static cl::opt<bool>
163 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
164 cl::desc("Pop up a window to show SUnit dags after they are processed"));
165 #else
166 static const bool ViewDAGCombine1 = false,
167 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
168 ViewDAGCombine2 = false,
169 ViewDAGCombineLT = false,
170 ViewISelDAGs = false, ViewSchedDAGs = false,
171 ViewSUnitDAGs = false;
172 #endif
174 //===---------------------------------------------------------------------===//
176 /// RegisterScheduler class - Track the registration of instruction schedulers.
178 //===---------------------------------------------------------------------===//
179 MachinePassRegistry RegisterScheduler::Registry;
181 //===---------------------------------------------------------------------===//
183 /// ISHeuristic command line option for instruction schedulers.
185 //===---------------------------------------------------------------------===//
186 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
187 RegisterPassParser<RegisterScheduler>>
188 ISHeuristic("pre-RA-sched",
189 cl::init(&createDefaultScheduler), cl::Hidden,
190 cl::desc("Instruction schedulers available (before register"
191 " allocation):"));
193 static RegisterScheduler
194 defaultListDAGScheduler("default", "Best scheduler for the target",
195 createDefaultScheduler);
197 namespace llvm {
199 //===--------------------------------------------------------------------===//
200 /// This class is used by SelectionDAGISel to temporarily override
201 /// the optimization level on a per-function basis.
202 class OptLevelChanger {
203 SelectionDAGISel &IS;
204 CodeGenOpt::Level SavedOptLevel;
205 bool SavedFastISel;
207 public:
208 OptLevelChanger(SelectionDAGISel &ISel,
209 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
210 SavedOptLevel = IS.OptLevel;
211 if (NewOptLevel == SavedOptLevel)
212 return;
213 IS.OptLevel = NewOptLevel;
214 IS.TM.setOptLevel(NewOptLevel);
215 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
216 << IS.MF->getFunction().getName() << "\n");
217 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
218 << NewOptLevel << "\n");
219 SavedFastISel = IS.TM.Options.EnableFastISel;
220 if (NewOptLevel == CodeGenOpt::None) {
221 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
222 LLVM_DEBUG(
223 dbgs() << "\tFastISel is "
224 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
225 << "\n");
229 ~OptLevelChanger() {
230 if (IS.OptLevel == SavedOptLevel)
231 return;
232 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
233 << IS.MF->getFunction().getName() << "\n");
234 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
235 << SavedOptLevel << "\n");
236 IS.OptLevel = SavedOptLevel;
237 IS.TM.setOptLevel(SavedOptLevel);
238 IS.TM.setFastISel(SavedFastISel);
242 //===--------------------------------------------------------------------===//
243 /// createDefaultScheduler - This creates an instruction scheduler appropriate
244 /// for the target.
245 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
246 CodeGenOpt::Level OptLevel) {
247 const TargetLowering *TLI = IS->TLI;
248 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
250 // Try first to see if the Target has its own way of selecting a scheduler
251 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
252 return SchedulerCtor(IS, OptLevel);
255 if (OptLevel == CodeGenOpt::None ||
256 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
257 TLI->getSchedulingPreference() == Sched::Source)
258 return createSourceListDAGScheduler(IS, OptLevel);
259 if (TLI->getSchedulingPreference() == Sched::RegPressure)
260 return createBURRListDAGScheduler(IS, OptLevel);
261 if (TLI->getSchedulingPreference() == Sched::Hybrid)
262 return createHybridListDAGScheduler(IS, OptLevel);
263 if (TLI->getSchedulingPreference() == Sched::VLIW)
264 return createVLIWDAGScheduler(IS, OptLevel);
265 assert(TLI->getSchedulingPreference() == Sched::ILP &&
266 "Unknown sched type!");
267 return createILPListDAGScheduler(IS, OptLevel);
270 } // end namespace llvm
272 // EmitInstrWithCustomInserter - This method should be implemented by targets
273 // that mark instructions with the 'usesCustomInserter' flag. These
274 // instructions are special in various ways, which require special support to
275 // insert. The specified MachineInstr is created but not inserted into any
276 // basic blocks, and this method is called to expand it into a sequence of
277 // instructions, potentially also creating new basic blocks and control flow.
278 // When new basic blocks are inserted and the edges from MBB to its successors
279 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
280 // DenseMap.
281 MachineBasicBlock *
282 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
283 MachineBasicBlock *MBB) const {
284 #ifndef NDEBUG
285 dbgs() << "If a target marks an instruction with "
286 "'usesCustomInserter', it must implement "
287 "TargetLowering::EmitInstrWithCustomInserter!";
288 #endif
289 llvm_unreachable(nullptr);
292 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
293 SDNode *Node) const {
294 assert(!MI.hasPostISelHook() &&
295 "If a target marks an instruction with 'hasPostISelHook', "
296 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
299 //===----------------------------------------------------------------------===//
300 // SelectionDAGISel code
301 //===----------------------------------------------------------------------===//
303 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
304 CodeGenOpt::Level OL) :
305 MachineFunctionPass(ID), TM(tm),
306 FuncInfo(new FunctionLoweringInfo()),
307 CurDAG(new SelectionDAG(tm, OL)),
308 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
309 AA(), GFI(),
310 OptLevel(OL),
311 DAGSize(0) {
312 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
313 initializeBranchProbabilityInfoWrapperPassPass(
314 *PassRegistry::getPassRegistry());
315 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
316 initializeTargetLibraryInfoWrapperPassPass(
317 *PassRegistry::getPassRegistry());
320 SelectionDAGISel::~SelectionDAGISel() {
321 delete SDB;
322 delete CurDAG;
323 delete FuncInfo;
326 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
327 if (OptLevel != CodeGenOpt::None)
328 AU.addRequired<AAResultsWrapperPass>();
329 AU.addRequired<GCModuleInfo>();
330 AU.addRequired<StackProtector>();
331 AU.addPreserved<GCModuleInfo>();
332 AU.addRequired<TargetLibraryInfoWrapperPass>();
333 AU.addRequired<TargetTransformInfoWrapperPass>();
334 if (UseMBPI && OptLevel != CodeGenOpt::None)
335 AU.addRequired<BranchProbabilityInfoWrapperPass>();
336 MachineFunctionPass::getAnalysisUsage(AU);
339 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
340 /// may trap on it. In this case we have to split the edge so that the path
341 /// through the predecessor block that doesn't go to the phi block doesn't
342 /// execute the possibly trapping instruction. If available, we pass domtree
343 /// and loop info to be updated when we split critical edges. This is because
344 /// SelectionDAGISel preserves these analyses.
345 /// This is required for correctness, so it must be done at -O0.
347 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
348 LoopInfo *LI) {
349 // Loop for blocks with phi nodes.
350 for (BasicBlock &BB : Fn) {
351 PHINode *PN = dyn_cast<PHINode>(BB.begin());
352 if (!PN) continue;
354 ReprocessBlock:
355 // For each block with a PHI node, check to see if any of the input values
356 // are potentially trapping constant expressions. Constant expressions are
357 // the only potentially trapping value that can occur as the argument to a
358 // PHI.
359 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
360 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
361 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
362 if (!CE || !CE->canTrap()) continue;
364 // The only case we have to worry about is when the edge is critical.
365 // Since this block has a PHI Node, we assume it has multiple input
366 // edges: check to see if the pred has multiple successors.
367 BasicBlock *Pred = PN->getIncomingBlock(i);
368 if (Pred->getTerminator()->getNumSuccessors() == 1)
369 continue;
371 // Okay, we have to split this edge.
372 SplitCriticalEdge(
373 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
374 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
375 goto ReprocessBlock;
380 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
381 // If we already selected that function, we do not need to run SDISel.
382 if (mf.getProperties().hasProperty(
383 MachineFunctionProperties::Property::Selected))
384 return false;
385 // Do some sanity-checking on the command-line options.
386 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
387 "-fast-isel-abort > 0 requires -fast-isel");
389 const Function &Fn = mf.getFunction();
390 MF = &mf;
392 // Reset the target options before resetting the optimization
393 // level below.
394 // FIXME: This is a horrible hack and should be processed via
395 // codegen looking at the optimization level explicitly when
396 // it wants to look at it.
397 TM.resetTargetOptions(Fn);
398 // Reset OptLevel to None for optnone functions.
399 CodeGenOpt::Level NewOptLevel = OptLevel;
400 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
401 NewOptLevel = CodeGenOpt::None;
402 OptLevelChanger OLC(*this, NewOptLevel);
404 TII = MF->getSubtarget().getInstrInfo();
405 TLI = MF->getSubtarget().getTargetLowering();
406 RegInfo = &MF->getRegInfo();
407 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
408 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
409 ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
410 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
411 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
412 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
413 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
415 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
417 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
419 CurDAG->init(*MF, *ORE, this, LibInfo,
420 getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
421 FuncInfo->set(Fn, *MF, CurDAG);
423 // Now get the optional analyzes if we want to.
424 // This is based on the possibly changed OptLevel (after optnone is taken
425 // into account). That's unfortunate but OK because it just means we won't
426 // ask for passes that have been required anyway.
428 if (UseMBPI && OptLevel != CodeGenOpt::None)
429 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
430 else
431 FuncInfo->BPI = nullptr;
433 if (OptLevel != CodeGenOpt::None)
434 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
435 else
436 AA = nullptr;
438 SDB->init(GFI, AA, LibInfo);
440 MF->setHasInlineAsm(false);
442 FuncInfo->SplitCSR = false;
444 // We split CSR if the target supports it for the given function
445 // and the function has only return exits.
446 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
447 FuncInfo->SplitCSR = true;
449 // Collect all the return blocks.
450 for (const BasicBlock &BB : Fn) {
451 if (!succ_empty(&BB))
452 continue;
454 const TerminatorInst *Term = BB.getTerminator();
455 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
456 continue;
458 // Bail out if the exit block is not Return nor Unreachable.
459 FuncInfo->SplitCSR = false;
460 break;
464 MachineBasicBlock *EntryMBB = &MF->front();
465 if (FuncInfo->SplitCSR)
466 // This performs initialization so lowering for SplitCSR will be correct.
467 TLI->initializeSplitCSR(EntryMBB);
469 SelectAllBasicBlocks(Fn);
470 if (FastISelFailed && EnableFastISelFallbackReport) {
471 DiagnosticInfoISelFallback DiagFallback(Fn);
472 Fn.getContext().diagnose(DiagFallback);
475 // If the first basic block in the function has live ins that need to be
476 // copied into vregs, emit the copies into the top of the block before
477 // emitting the code for the block.
478 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
479 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
481 // Insert copies in the entry block and the return blocks.
482 if (FuncInfo->SplitCSR) {
483 SmallVector<MachineBasicBlock*, 4> Returns;
484 // Collect all the return blocks.
485 for (MachineBasicBlock &MBB : mf) {
486 if (!MBB.succ_empty())
487 continue;
489 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
490 if (Term != MBB.end() && Term->isReturn()) {
491 Returns.push_back(&MBB);
492 continue;
495 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
498 DenseMap<unsigned, unsigned> LiveInMap;
499 if (!FuncInfo->ArgDbgValues.empty())
500 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
501 if (LI.second)
502 LiveInMap.insert(LI);
504 // Insert DBG_VALUE instructions for function arguments to the entry block.
505 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
506 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
507 bool hasFI = MI->getOperand(0).isFI();
508 unsigned Reg =
509 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
510 if (TargetRegisterInfo::isPhysicalRegister(Reg))
511 EntryMBB->insert(EntryMBB->begin(), MI);
512 else {
513 MachineInstr *Def = RegInfo->getVRegDef(Reg);
514 if (Def) {
515 MachineBasicBlock::iterator InsertPos = Def;
516 // FIXME: VR def may not be in entry block.
517 Def->getParent()->insert(std::next(InsertPos), MI);
518 } else
519 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
520 << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
523 // If Reg is live-in then update debug info to track its copy in a vreg.
524 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
525 if (LDI != LiveInMap.end()) {
526 assert(!hasFI && "There's no handling of frame pointer updating here yet "
527 "- add if needed");
528 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
529 MachineBasicBlock::iterator InsertPos = Def;
530 const MDNode *Variable = MI->getDebugVariable();
531 const MDNode *Expr = MI->getDebugExpression();
532 DebugLoc DL = MI->getDebugLoc();
533 bool IsIndirect = MI->isIndirectDebugValue();
534 if (IsIndirect)
535 assert(MI->getOperand(1).getImm() == 0 &&
536 "DBG_VALUE with nonzero offset");
537 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
538 "Expected inlined-at fields to agree");
539 // Def is never a terminator here, so it is ok to increment InsertPos.
540 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
541 IsIndirect, LDI->second, Variable, Expr);
543 // If this vreg is directly copied into an exported register then
544 // that COPY instructions also need DBG_VALUE, if it is the only
545 // user of LDI->second.
546 MachineInstr *CopyUseMI = nullptr;
547 for (MachineRegisterInfo::use_instr_iterator
548 UI = RegInfo->use_instr_begin(LDI->second),
549 E = RegInfo->use_instr_end(); UI != E; ) {
550 MachineInstr *UseMI = &*(UI++);
551 if (UseMI->isDebugValue()) continue;
552 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
553 CopyUseMI = UseMI; continue;
555 // Otherwise this is another use or second copy use.
556 CopyUseMI = nullptr; break;
558 if (CopyUseMI) {
559 // Use MI's debug location, which describes where Variable was
560 // declared, rather than whatever is attached to CopyUseMI.
561 MachineInstr *NewMI =
562 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
563 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
564 MachineBasicBlock::iterator Pos = CopyUseMI;
565 EntryMBB->insertAfter(Pos, NewMI);
570 // Determine if there are any calls in this machine function.
571 MachineFrameInfo &MFI = MF->getFrameInfo();
572 for (const auto &MBB : *MF) {
573 if (MFI.hasCalls() && MF->hasInlineAsm())
574 break;
576 for (const auto &MI : MBB) {
577 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
578 if ((MCID.isCall() && !MCID.isReturn()) ||
579 MI.isStackAligningInlineAsm()) {
580 MFI.setHasCalls(true);
582 if (MI.isInlineAsm()) {
583 MF->setHasInlineAsm(true);
588 // Determine if there is a call to setjmp in the machine function.
589 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
591 // Replace forward-declared registers with the registers containing
592 // the desired value.
593 MachineRegisterInfo &MRI = MF->getRegInfo();
594 for (DenseMap<unsigned, unsigned>::iterator
595 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
596 I != E; ++I) {
597 unsigned From = I->first;
598 unsigned To = I->second;
599 // If To is also scheduled to be replaced, find what its ultimate
600 // replacement is.
601 while (true) {
602 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
603 if (J == E) break;
604 To = J->second;
606 // Make sure the new register has a sufficiently constrained register class.
607 if (TargetRegisterInfo::isVirtualRegister(From) &&
608 TargetRegisterInfo::isVirtualRegister(To))
609 MRI.constrainRegClass(To, MRI.getRegClass(From));
610 // Replace it.
613 // Replacing one register with another won't touch the kill flags.
614 // We need to conservatively clear the kill flags as a kill on the old
615 // register might dominate existing uses of the new register.
616 if (!MRI.use_empty(To))
617 MRI.clearKillFlags(From);
618 MRI.replaceRegWith(From, To);
621 TLI->finalizeLowering(*MF);
623 // Release function-specific state. SDB and CurDAG are already cleared
624 // at this point.
625 FuncInfo->clear();
627 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
628 LLVM_DEBUG(MF->print(dbgs()));
630 return true;
633 static void reportFastISelFailure(MachineFunction &MF,
634 OptimizationRemarkEmitter &ORE,
635 OptimizationRemarkMissed &R,
636 bool ShouldAbort) {
637 // Print the function name explicitly if we don't have a debug location (which
638 // makes the diagnostic less useful) or if we're going to emit a raw error.
639 if (!R.getLocation().isValid() || ShouldAbort)
640 R << (" (in function: " + MF.getName() + ")").str();
642 if (ShouldAbort)
643 report_fatal_error(R.getMsg());
645 ORE.emit(R);
648 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
649 BasicBlock::const_iterator End,
650 bool &HadTailCall) {
651 // Allow creating illegal types during DAG building for the basic block.
652 CurDAG->NewNodesMustHaveLegalTypes = false;
654 // Lower the instructions. If a call is emitted as a tail call, cease emitting
655 // nodes for this block.
656 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
657 if (!ElidedArgCopyInstrs.count(&*I))
658 SDB->visit(*I);
661 // Make sure the root of the DAG is up-to-date.
662 CurDAG->setRoot(SDB->getControlRoot());
663 HadTailCall = SDB->HasTailCall;
664 SDB->clear();
666 // Final step, emit the lowered DAG as machine code.
667 CodeGenAndEmitDAG();
670 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
671 SmallPtrSet<SDNode*, 16> VisitedNodes;
672 SmallVector<SDNode*, 128> Worklist;
674 Worklist.push_back(CurDAG->getRoot().getNode());
676 KnownBits Known;
678 do {
679 SDNode *N = Worklist.pop_back_val();
681 // If we've already seen this node, ignore it.
682 if (!VisitedNodes.insert(N).second)
683 continue;
685 // Otherwise, add all chain operands to the worklist.
686 for (const SDValue &Op : N->op_values())
687 if (Op.getValueType() == MVT::Other)
688 Worklist.push_back(Op.getNode());
690 // If this is a CopyToReg with a vreg dest, process it.
691 if (N->getOpcode() != ISD::CopyToReg)
692 continue;
694 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
695 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
696 continue;
698 // Ignore non-scalar or non-integer values.
699 SDValue Src = N->getOperand(2);
700 EVT SrcVT = Src.getValueType();
701 if (!SrcVT.isInteger() || SrcVT.isVector())
702 continue;
704 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
705 CurDAG->computeKnownBits(Src, Known);
706 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
707 } while (!Worklist.empty());
710 void SelectionDAGISel::CodeGenAndEmitDAG() {
711 StringRef GroupName = "sdag";
712 StringRef GroupDescription = "Instruction Selection and Scheduling";
713 std::string BlockName;
714 int BlockNumber = -1;
715 (void)BlockNumber;
716 bool MatchFilterBB = false; (void)MatchFilterBB;
717 #ifndef NDEBUG
718 TargetTransformInfo &TTI =
719 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
720 #endif
722 // Pre-type legalization allow creation of any node types.
723 CurDAG->NewNodesMustHaveLegalTypes = false;
725 #ifndef NDEBUG
726 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
727 FilterDAGBasicBlockName ==
728 FuncInfo->MBB->getBasicBlock()->getName());
729 #endif
730 #ifdef NDEBUG
731 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
732 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
733 ViewSUnitDAGs)
734 #endif
736 BlockNumber = FuncInfo->MBB->getNumber();
737 BlockName =
738 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
740 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
741 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
742 << "'\n";
743 CurDAG->dump());
745 if (ViewDAGCombine1 && MatchFilterBB)
746 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
748 // Run the DAG combiner in pre-legalize mode.
750 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
751 GroupDescription, TimePassesIsEnabled);
752 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
755 #ifndef NDEBUG
756 if (TTI.hasBranchDivergence())
757 CurDAG->VerifyDAGDiverence();
758 #endif
760 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
761 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
762 << "'\n";
763 CurDAG->dump());
765 // Second step, hack on the DAG until it only uses operations and types that
766 // the target supports.
767 if (ViewLegalizeTypesDAGs && MatchFilterBB)
768 CurDAG->viewGraph("legalize-types input for " + BlockName);
770 bool Changed;
772 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
773 GroupDescription, TimePassesIsEnabled);
774 Changed = CurDAG->LegalizeTypes();
777 #ifndef NDEBUG
778 if (TTI.hasBranchDivergence())
779 CurDAG->VerifyDAGDiverence();
780 #endif
782 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
783 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
784 << "'\n";
785 CurDAG->dump());
787 // Only allow creation of legal node types.
788 CurDAG->NewNodesMustHaveLegalTypes = true;
790 if (Changed) {
791 if (ViewDAGCombineLT && MatchFilterBB)
792 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
794 // Run the DAG combiner in post-type-legalize mode.
796 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
797 GroupName, GroupDescription, TimePassesIsEnabled);
798 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
801 #ifndef NDEBUG
802 if (TTI.hasBranchDivergence())
803 CurDAG->VerifyDAGDiverence();
804 #endif
806 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
807 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
808 << "'\n";
809 CurDAG->dump());
813 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
814 GroupDescription, TimePassesIsEnabled);
815 Changed = CurDAG->LegalizeVectors();
818 if (Changed) {
819 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
820 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
821 << "'\n";
822 CurDAG->dump());
825 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
826 GroupDescription, TimePassesIsEnabled);
827 CurDAG->LegalizeTypes();
830 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
831 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
832 << "'\n";
833 CurDAG->dump());
835 if (ViewDAGCombineLT && MatchFilterBB)
836 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
838 // Run the DAG combiner in post-type-legalize mode.
840 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
841 GroupName, GroupDescription, TimePassesIsEnabled);
842 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
845 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
846 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
847 << "'\n";
848 CurDAG->dump());
850 #ifndef NDEBUG
851 if (TTI.hasBranchDivergence())
852 CurDAG->VerifyDAGDiverence();
853 #endif
856 if (ViewLegalizeDAGs && MatchFilterBB)
857 CurDAG->viewGraph("legalize input for " + BlockName);
860 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
861 GroupDescription, TimePassesIsEnabled);
862 CurDAG->Legalize();
865 #ifndef NDEBUG
866 if (TTI.hasBranchDivergence())
867 CurDAG->VerifyDAGDiverence();
868 #endif
870 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
871 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
872 << "'\n";
873 CurDAG->dump());
875 if (ViewDAGCombine2 && MatchFilterBB)
876 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
878 // Run the DAG combiner in post-legalize mode.
880 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
881 GroupDescription, TimePassesIsEnabled);
882 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
885 #ifndef NDEBUG
886 if (TTI.hasBranchDivergence())
887 CurDAG->VerifyDAGDiverence();
888 #endif
890 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
891 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
892 << "'\n";
893 CurDAG->dump());
895 if (OptLevel != CodeGenOpt::None)
896 ComputeLiveOutVRegInfo();
898 if (ViewISelDAGs && MatchFilterBB)
899 CurDAG->viewGraph("isel input for " + BlockName);
901 // Third, instruction select all of the operations to machine code, adding the
902 // code to the MachineBasicBlock.
904 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
905 GroupDescription, TimePassesIsEnabled);
906 DoInstructionSelection();
909 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
910 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
911 << "'\n";
912 CurDAG->dump());
914 if (ViewSchedDAGs && MatchFilterBB)
915 CurDAG->viewGraph("scheduler input for " + BlockName);
917 // Schedule machine code.
918 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
920 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
921 GroupDescription, TimePassesIsEnabled);
922 Scheduler->Run(CurDAG, FuncInfo->MBB);
925 if (ViewSUnitDAGs && MatchFilterBB)
926 Scheduler->viewGraph();
928 // Emit machine code to BB. This can change 'BB' to the last block being
929 // inserted into.
930 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
932 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
933 GroupDescription, TimePassesIsEnabled);
935 // FuncInfo->InsertPt is passed by reference and set to the end of the
936 // scheduled instructions.
937 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
940 // If the block was split, make sure we update any references that are used to
941 // update PHI nodes later on.
942 if (FirstMBB != LastMBB)
943 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
945 // Free the scheduler state.
947 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
948 GroupDescription, TimePassesIsEnabled);
949 delete Scheduler;
952 // Free the SelectionDAG state, now that we're finished with it.
953 CurDAG->clear();
956 namespace {
958 /// ISelUpdater - helper class to handle updates of the instruction selection
959 /// graph.
960 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
961 SelectionDAG::allnodes_iterator &ISelPosition;
963 public:
964 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
965 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
967 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
968 /// deleted is the current ISelPosition node, update ISelPosition.
970 void NodeDeleted(SDNode *N, SDNode *E) override {
971 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
972 ++ISelPosition;
976 } // end anonymous namespace
978 // This function is used to enforce the topological node id property
979 // property leveraged during Instruction selection. Before selection all
980 // nodes are given a non-negative id such that all nodes have a larger id than
981 // their operands. As this holds transitively we can prune checks that a node N
982 // is a predecessor of M another by not recursively checking through M's
983 // operands if N's ID is larger than M's ID. This is significantly improves
984 // performance of for various legality checks (e.g. IsLegalToFold /
985 // UpdateChains).
987 // However, when we fuse multiple nodes into a single node
988 // during selection we may induce a predecessor relationship between inputs and
989 // outputs of distinct nodes being merged violating the topological property.
990 // Should a fused node have a successor which has yet to be selected, our
991 // legality checks would be incorrect. To avoid this we mark all unselected
992 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
993 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
994 // We use bit-negation to more clearly enforce that node id -1 can only be
995 // achieved by selected nodes). As the conversion is reversable the original Id,
996 // topological pruning can still be leveraged when looking for unselected nodes.
997 // This method is call internally in all ISel replacement calls.
998 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
999 SmallVector<SDNode *, 4> Nodes;
1000 Nodes.push_back(Node);
1002 while (!Nodes.empty()) {
1003 SDNode *N = Nodes.pop_back_val();
1004 for (auto *U : N->uses()) {
1005 auto UId = U->getNodeId();
1006 if (UId > 0) {
1007 InvalidateNodeId(U);
1008 Nodes.push_back(U);
1014 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1015 // NodeId with the equivalent node id which is invalid for topological
1016 // pruning.
1017 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1018 int InvalidId = -(N->getNodeId() + 1);
1019 N->setNodeId(InvalidId);
1022 // getUninvalidatedNodeId - get original uninvalidated node id.
1023 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1024 int Id = N->getNodeId();
1025 if (Id < -1)
1026 return -(Id + 1);
1027 return Id;
1030 void SelectionDAGISel::DoInstructionSelection() {
1031 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1032 << printMBBReference(*FuncInfo->MBB) << " '"
1033 << FuncInfo->MBB->getName() << "'\n");
1035 PreprocessISelDAG();
1037 // Select target instructions for the DAG.
1039 // Number all nodes with a topological order and set DAGSize.
1040 DAGSize = CurDAG->AssignTopologicalOrder();
1042 // Create a dummy node (which is not added to allnodes), that adds
1043 // a reference to the root node, preventing it from being deleted,
1044 // and tracking any changes of the root.
1045 HandleSDNode Dummy(CurDAG->getRoot());
1046 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1047 ++ISelPosition;
1049 // Make sure that ISelPosition gets properly updated when nodes are deleted
1050 // in calls made from this function.
1051 ISelUpdater ISU(*CurDAG, ISelPosition);
1053 // The AllNodes list is now topological-sorted. Visit the
1054 // nodes by starting at the end of the list (the root of the
1055 // graph) and preceding back toward the beginning (the entry
1056 // node).
1057 while (ISelPosition != CurDAG->allnodes_begin()) {
1058 SDNode *Node = &*--ISelPosition;
1059 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1060 // but there are currently some corner cases that it misses. Also, this
1061 // makes it theoretically possible to disable the DAGCombiner.
1062 if (Node->use_empty())
1063 continue;
1065 #ifndef NDEBUG
1066 SmallVector<SDNode *, 4> Nodes;
1067 Nodes.push_back(Node);
1069 while (!Nodes.empty()) {
1070 auto N = Nodes.pop_back_val();
1071 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1072 continue;
1073 for (const SDValue &Op : N->op_values()) {
1074 if (Op->getOpcode() == ISD::TokenFactor)
1075 Nodes.push_back(Op.getNode());
1076 else {
1077 // We rely on topological ordering of node ids for checking for
1078 // cycles when fusing nodes during selection. All unselected nodes
1079 // successors of an already selected node should have a negative id.
1080 // This assertion will catch such cases. If this assertion triggers
1081 // it is likely you using DAG-level Value/Node replacement functions
1082 // (versus equivalent ISEL replacement) in backend-specific
1083 // selections. See comment in EnforceNodeIdInvariant for more
1084 // details.
1085 assert(Op->getNodeId() != -1 &&
1086 "Node has already selected predecessor node");
1090 #endif
1092 // When we are using non-default rounding modes or FP exception behavior
1093 // FP operations are represented by StrictFP pseudo-operations. They
1094 // need to be simplified here so that the target-specific instruction
1095 // selectors know how to handle them.
1097 // If the current node is a strict FP pseudo-op, the isStrictFPOp()
1098 // function will provide the corresponding normal FP opcode to which the
1099 // node should be mutated.
1101 // FIXME: The backends need a way to handle FP constraints.
1102 if (Node->isStrictFPOpcode())
1103 Node = CurDAG->mutateStrictFPToFP(Node);
1105 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1106 Node->dump(CurDAG));
1108 Select(Node);
1111 CurDAG->setRoot(Dummy.getValue());
1114 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1116 PostprocessISelDAG();
1119 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1120 for (const User *U : CPI->users()) {
1121 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1122 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1123 if (IID == Intrinsic::eh_exceptionpointer ||
1124 IID == Intrinsic::eh_exceptioncode)
1125 return true;
1128 return false;
1131 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1132 /// do other setup for EH landing-pad blocks.
1133 bool SelectionDAGISel::PrepareEHLandingPad() {
1134 MachineBasicBlock *MBB = FuncInfo->MBB;
1135 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1136 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1137 const TargetRegisterClass *PtrRC =
1138 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1140 // Catchpads have one live-in register, which typically holds the exception
1141 // pointer or code.
1142 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1143 if (hasExceptionPointerOrCodeUser(CPI)) {
1144 // Get or create the virtual register to hold the pointer or code. Mark
1145 // the live in physreg and copy into the vreg.
1146 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1147 assert(EHPhysReg && "target lacks exception pointer register");
1148 MBB->addLiveIn(EHPhysReg);
1149 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1150 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1151 TII->get(TargetOpcode::COPY), VReg)
1152 .addReg(EHPhysReg, RegState::Kill);
1154 return true;
1157 if (!LLVMBB->isLandingPad())
1158 return true;
1160 // Add a label to mark the beginning of the landing pad. Deletion of the
1161 // landing pad can thus be detected via the MachineModuleInfo.
1162 MCSymbol *Label = MF->addLandingPad(MBB);
1164 // Assign the call site to the landing pad's begin label.
1165 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1167 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1168 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1169 .addSym(Label);
1171 // Mark exception register as live in.
1172 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1173 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1175 // Mark exception selector register as live in.
1176 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1177 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1179 return true;
1182 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1183 /// side-effect free and is either dead or folded into a generated instruction.
1184 /// Return false if it needs to be emitted.
1185 static bool isFoldedOrDeadInstruction(const Instruction *I,
1186 FunctionLoweringInfo *FuncInfo) {
1187 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1188 !I->isTerminator() && // Terminators aren't folded.
1189 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1190 !I->isEHPad() && // EH pad instructions aren't folded.
1191 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1194 /// Set up SwiftErrorVals by going through the function. If the function has
1195 /// swifterror argument, it will be the first entry.
1196 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1197 FunctionLoweringInfo *FuncInfo) {
1198 if (!TLI->supportSwiftError())
1199 return;
1201 FuncInfo->SwiftErrorVals.clear();
1202 FuncInfo->SwiftErrorVRegDefMap.clear();
1203 FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1204 FuncInfo->SwiftErrorVRegDefUses.clear();
1205 FuncInfo->SwiftErrorArg = nullptr;
1207 // Check if function has a swifterror argument.
1208 bool HaveSeenSwiftErrorArg = false;
1209 for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1210 AI != AE; ++AI)
1211 if (AI->hasSwiftErrorAttr()) {
1212 assert(!HaveSeenSwiftErrorArg &&
1213 "Must have only one swifterror parameter");
1214 (void)HaveSeenSwiftErrorArg; // silence warning.
1215 HaveSeenSwiftErrorArg = true;
1216 FuncInfo->SwiftErrorArg = &*AI;
1217 FuncInfo->SwiftErrorVals.push_back(&*AI);
1220 for (const auto &LLVMBB : Fn)
1221 for (const auto &Inst : LLVMBB) {
1222 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1223 if (Alloca->isSwiftError())
1224 FuncInfo->SwiftErrorVals.push_back(Alloca);
1228 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1229 FastISel *FastIS,
1230 const TargetLowering *TLI,
1231 const TargetInstrInfo *TII,
1232 SelectionDAGBuilder *SDB) {
1233 if (!TLI->supportSwiftError())
1234 return;
1236 // We only need to do this when we have swifterror parameter or swifterror
1237 // alloc.
1238 if (FuncInfo->SwiftErrorVals.empty())
1239 return;
1241 assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
1242 "expected to insert into entry block");
1243 auto &DL = FuncInfo->MF->getDataLayout();
1244 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1245 for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1246 // We will always generate a copy from the argument. It is always used at
1247 // least by the 'return' of the swifterror.
1248 if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1249 continue;
1250 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1251 // Assign Undef to Vreg. We construct MI directly to make sure it works
1252 // with FastISel.
1253 BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1254 SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1255 VReg);
1257 // Keep FastIS informed about the value we just inserted.
1258 if (FastIS)
1259 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1261 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1265 /// Collect llvm.dbg.declare information. This is done after argument lowering
1266 /// in case the declarations refer to arguments.
1267 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1268 MachineFunction *MF = FuncInfo->MF;
1269 const DataLayout &DL = MF->getDataLayout();
1270 for (const BasicBlock &BB : *FuncInfo->Fn) {
1271 for (const Instruction &I : BB) {
1272 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1273 if (!DI)
1274 continue;
1276 assert(DI->getVariable() && "Missing variable");
1277 assert(DI->getDebugLoc() && "Missing location");
1278 const Value *Address = DI->getAddress();
1279 if (!Address)
1280 continue;
1282 // Look through casts and constant offset GEPs. These mostly come from
1283 // inalloca.
1284 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1285 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1287 // Check if the variable is a static alloca or a byval or inalloca
1288 // argument passed in memory. If it is not, then we will ignore this
1289 // intrinsic and handle this during isel like dbg.value.
1290 int FI = std::numeric_limits<int>::max();
1291 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1292 auto SI = FuncInfo->StaticAllocaMap.find(AI);
1293 if (SI != FuncInfo->StaticAllocaMap.end())
1294 FI = SI->second;
1295 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1296 FI = FuncInfo->getArgumentFrameIndex(Arg);
1298 if (FI == std::numeric_limits<int>::max())
1299 continue;
1301 DIExpression *Expr = DI->getExpression();
1302 if (Offset.getBoolValue())
1303 Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
1304 Offset.getZExtValue());
1305 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1310 /// Propagate swifterror values through the machine function CFG.
1311 static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1312 auto *TLI = FuncInfo->TLI;
1313 if (!TLI->supportSwiftError())
1314 return;
1316 // We only need to do this when we have swifterror parameter or swifterror
1317 // alloc.
1318 if (FuncInfo->SwiftErrorVals.empty())
1319 return;
1321 // For each machine basic block in reverse post order.
1322 ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1323 for (MachineBasicBlock *MBB : RPOT) {
1324 // For each swifterror value in the function.
1325 for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1326 auto Key = std::make_pair(MBB, SwiftErrorVal);
1327 auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1328 auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1329 bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1330 unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1331 bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1332 assert(!(UpwardsUse && !DownwardDef) &&
1333 "We can't have an upwards use but no downwards def");
1335 // If there is no upwards exposed use and an entry for the swifterror in
1336 // the def map for this value we don't need to do anything: We already
1337 // have a downward def for this basic block.
1338 if (!UpwardsUse && DownwardDef)
1339 continue;
1341 // Otherwise we either have an upwards exposed use vreg that we need to
1342 // materialize or need to forward the downward def from predecessors.
1344 // Check whether we have a single vreg def from all predecessors.
1345 // Otherwise we need a phi.
1346 SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1347 SmallSet<const MachineBasicBlock*, 8> Visited;
1348 for (auto *Pred : MBB->predecessors()) {
1349 if (!Visited.insert(Pred).second)
1350 continue;
1351 VRegs.push_back(std::make_pair(
1352 Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1353 if (Pred != MBB)
1354 continue;
1355 // We have a self-edge.
1356 // If there was no upwards use in this basic block there is now one: the
1357 // phi needs to use it self.
1358 if (!UpwardsUse) {
1359 UpwardsUse = true;
1360 UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1361 assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1362 UUseVReg = UUseIt->second;
1366 // We need a phi node if we have more than one predecessor with different
1367 // downward defs.
1368 bool needPHI =
1369 VRegs.size() >= 1 &&
1370 std::find_if(
1371 VRegs.begin(), VRegs.end(),
1372 [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1373 -> bool { return V.second != VRegs[0].second; }) !=
1374 VRegs.end();
1376 // If there is no upwards exposed used and we don't need a phi just
1377 // forward the swifterror vreg from the predecessor(s).
1378 if (!UpwardsUse && !needPHI) {
1379 assert(!VRegs.empty() &&
1380 "No predecessors? The entry block should bail out earlier");
1381 // Just forward the swifterror vreg from the predecessor(s).
1382 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1383 continue;
1386 auto DLoc = isa<Instruction>(SwiftErrorVal)
1387 ? cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1388 : DebugLoc();
1389 const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1391 // If we don't need a phi create a copy to the upward exposed vreg.
1392 if (!needPHI) {
1393 assert(UpwardsUse);
1394 assert(!VRegs.empty() &&
1395 "No predecessors? Is the Calling Convention correct?");
1396 unsigned DestReg = UUseVReg;
1397 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1398 DestReg)
1399 .addReg(VRegs[0].second);
1400 continue;
1403 // We need a phi: if there is an upwards exposed use we already have a
1404 // destination virtual register number otherwise we generate a new one.
1405 auto &DL = FuncInfo->MF->getDataLayout();
1406 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1407 unsigned PHIVReg =
1408 UpwardsUse ? UUseVReg
1409 : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1410 MachineInstrBuilder SwiftErrorPHI =
1411 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1412 TII->get(TargetOpcode::PHI), PHIVReg);
1413 for (auto BBRegPair : VRegs) {
1414 SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1417 // We did not have a definition in this block before: store the phi's vreg
1418 // as this block downward exposed def.
1419 if (!UpwardsUse)
1420 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1425 static void preassignSwiftErrorRegs(const TargetLowering *TLI,
1426 FunctionLoweringInfo *FuncInfo,
1427 BasicBlock::const_iterator Begin,
1428 BasicBlock::const_iterator End) {
1429 if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
1430 return;
1432 // Iterator over instructions and assign vregs to swifterror defs and uses.
1433 for (auto It = Begin; It != End; ++It) {
1434 ImmutableCallSite CS(&*It);
1435 if (CS) {
1436 // A call-site with a swifterror argument is both use and def.
1437 const Value *SwiftErrorAddr = nullptr;
1438 for (auto &Arg : CS.args()) {
1439 if (!Arg->isSwiftError())
1440 continue;
1441 // Use of swifterror.
1442 assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
1443 SwiftErrorAddr = &*Arg;
1444 assert(SwiftErrorAddr->isSwiftError() &&
1445 "Must have a swifterror value argument");
1446 unsigned VReg; bool CreatedReg;
1447 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1448 &*It, FuncInfo->MBB, SwiftErrorAddr);
1449 assert(CreatedReg);
1451 if (!SwiftErrorAddr)
1452 continue;
1454 // Def of swifterror.
1455 unsigned VReg; bool CreatedReg;
1456 std::tie(VReg, CreatedReg) =
1457 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1458 assert(CreatedReg);
1459 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1461 // A load is a use.
1462 } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
1463 const Value *V = LI->getOperand(0);
1464 if (!V->isSwiftError())
1465 continue;
1467 unsigned VReg; bool CreatedReg;
1468 std::tie(VReg, CreatedReg) =
1469 FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
1470 assert(CreatedReg);
1472 // A store is a def.
1473 } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
1474 const Value *SwiftErrorAddr = SI->getOperand(1);
1475 if (!SwiftErrorAddr->isSwiftError())
1476 continue;
1478 // Def of swifterror.
1479 unsigned VReg; bool CreatedReg;
1480 std::tie(VReg, CreatedReg) =
1481 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1482 assert(CreatedReg);
1483 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1485 // A return in a swiferror returning function is a use.
1486 } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
1487 const Function *F = R->getParent()->getParent();
1488 if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1489 continue;
1491 unsigned VReg; bool CreatedReg;
1492 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1493 R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
1494 assert(CreatedReg);
1499 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1500 FastISelFailed = false;
1501 // Initialize the Fast-ISel state, if needed.
1502 FastISel *FastIS = nullptr;
1503 if (TM.Options.EnableFastISel) {
1504 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1505 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1508 setupSwiftErrorVals(Fn, TLI, FuncInfo);
1510 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1512 // Lower arguments up front. An RPO iteration always visits the entry block
1513 // first.
1514 assert(*RPOT.begin() == &Fn.getEntryBlock());
1515 ++NumEntryBlocks;
1517 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1518 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1519 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1521 CurDAG->setFunctionLoweringInfo(FuncInfo);
1523 if (!FastIS) {
1524 LowerArguments(Fn);
1525 } else {
1526 // See if fast isel can lower the arguments.
1527 FastIS->startNewBlock();
1528 if (!FastIS->lowerArguments()) {
1529 FastISelFailed = true;
1530 // Fast isel failed to lower these arguments
1531 ++NumFastIselFailLowerArguments;
1533 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1534 Fn.getSubprogram(),
1535 &Fn.getEntryBlock());
1536 R << "FastISel didn't lower all arguments: "
1537 << ore::NV("Prototype", Fn.getType());
1538 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1540 // Use SelectionDAG argument lowering
1541 LowerArguments(Fn);
1542 CurDAG->setRoot(SDB->getControlRoot());
1543 SDB->clear();
1544 CodeGenAndEmitDAG();
1547 // If we inserted any instructions at the beginning, make a note of
1548 // where they are, so we can be sure to emit subsequent instructions
1549 // after them.
1550 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1551 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1552 else
1553 FastIS->setLastLocalValue(nullptr);
1555 createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
1557 processDbgDeclares(FuncInfo);
1559 // Iterate over all basic blocks in the function.
1560 StackProtector &SP = getAnalysis<StackProtector>();
1561 for (const BasicBlock *LLVMBB : RPOT) {
1562 if (OptLevel != CodeGenOpt::None) {
1563 bool AllPredsVisited = true;
1564 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1565 PI != PE; ++PI) {
1566 if (!FuncInfo->VisitedBBs.count(*PI)) {
1567 AllPredsVisited = false;
1568 break;
1572 if (AllPredsVisited) {
1573 for (const PHINode &PN : LLVMBB->phis())
1574 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1575 } else {
1576 for (const PHINode &PN : LLVMBB->phis())
1577 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1580 FuncInfo->VisitedBBs.insert(LLVMBB);
1583 BasicBlock::const_iterator const Begin =
1584 LLVMBB->getFirstNonPHI()->getIterator();
1585 BasicBlock::const_iterator const End = LLVMBB->end();
1586 BasicBlock::const_iterator BI = End;
1588 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1589 if (!FuncInfo->MBB)
1590 continue; // Some blocks like catchpads have no code or MBB.
1592 // Insert new instructions after any phi or argument setup code.
1593 FuncInfo->InsertPt = FuncInfo->MBB->end();
1595 // Setup an EH landing-pad block.
1596 FuncInfo->ExceptionPointerVirtReg = 0;
1597 FuncInfo->ExceptionSelectorVirtReg = 0;
1598 if (LLVMBB->isEHPad())
1599 if (!PrepareEHLandingPad())
1600 continue;
1602 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1603 if (FastIS) {
1604 if (LLVMBB != &Fn.getEntryBlock())
1605 FastIS->startNewBlock();
1607 unsigned NumFastIselRemaining = std::distance(Begin, End);
1609 // Pre-assign swifterror vregs.
1610 preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
1612 // Do FastISel on as many instructions as possible.
1613 for (; BI != Begin; --BI) {
1614 const Instruction *Inst = &*std::prev(BI);
1616 // If we no longer require this instruction, skip it.
1617 if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1618 ElidedArgCopyInstrs.count(Inst)) {
1619 --NumFastIselRemaining;
1620 continue;
1623 // Bottom-up: reset the insert pos at the top, after any local-value
1624 // instructions.
1625 FastIS->recomputeInsertPt();
1627 // Try to select the instruction with FastISel.
1628 if (FastIS->selectInstruction(Inst)) {
1629 --NumFastIselRemaining;
1630 ++NumFastIselSuccess;
1631 // If fast isel succeeded, skip over all the folded instructions, and
1632 // then see if there is a load right before the selected instructions.
1633 // Try to fold the load if so.
1634 const Instruction *BeforeInst = Inst;
1635 while (BeforeInst != &*Begin) {
1636 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1637 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1638 break;
1640 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1641 BeforeInst->hasOneUse() &&
1642 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1643 // If we succeeded, don't re-select the load.
1644 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1645 --NumFastIselRemaining;
1646 ++NumFastIselSuccess;
1648 continue;
1651 FastISelFailed = true;
1653 // Then handle certain instructions as single-LLVM-Instruction blocks.
1654 // We cannot separate out GCrelocates to their own blocks since we need
1655 // to keep track of gc-relocates for a particular gc-statepoint. This is
1656 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1657 // visitGCRelocate.
1658 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) {
1659 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1660 Inst->getDebugLoc(), LLVMBB);
1662 R << "FastISel missed call";
1664 if (R.isEnabled() || EnableFastISelAbort) {
1665 std::string InstStrStorage;
1666 raw_string_ostream InstStr(InstStrStorage);
1667 InstStr << *Inst;
1669 R << ": " << InstStr.str();
1672 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1674 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1675 !Inst->use_empty()) {
1676 unsigned &R = FuncInfo->ValueMap[Inst];
1677 if (!R)
1678 R = FuncInfo->CreateRegs(Inst->getType());
1681 bool HadTailCall = false;
1682 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1683 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1685 // If the call was emitted as a tail call, we're done with the block.
1686 // We also need to delete any previously emitted instructions.
1687 if (HadTailCall) {
1688 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1689 --BI;
1690 break;
1693 // Recompute NumFastIselRemaining as Selection DAG instruction
1694 // selection may have handled the call, input args, etc.
1695 unsigned RemainingNow = std::distance(Begin, BI);
1696 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1697 NumFastIselRemaining = RemainingNow;
1698 continue;
1701 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1702 Inst->getDebugLoc(), LLVMBB);
1704 bool ShouldAbort = EnableFastISelAbort;
1705 if (Inst->isTerminator()) {
1706 // Use a different message for terminator misses.
1707 R << "FastISel missed terminator";
1708 // Don't abort for terminator unless the level is really high
1709 ShouldAbort = (EnableFastISelAbort > 2);
1710 } else {
1711 R << "FastISel missed";
1714 if (R.isEnabled() || EnableFastISelAbort) {
1715 std::string InstStrStorage;
1716 raw_string_ostream InstStr(InstStrStorage);
1717 InstStr << *Inst;
1718 R << ": " << InstStr.str();
1721 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1723 NumFastIselFailures += NumFastIselRemaining;
1724 break;
1727 FastIS->recomputeInsertPt();
1730 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1731 bool FunctionBasedInstrumentation =
1732 TLI->getSSPStackGuardCheck(*Fn.getParent());
1733 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1734 FunctionBasedInstrumentation);
1737 if (Begin != BI)
1738 ++NumDAGBlocks;
1739 else
1740 ++NumFastIselBlocks;
1742 if (Begin != BI) {
1743 // Run SelectionDAG instruction selection on the remainder of the block
1744 // not handled by FastISel. If FastISel is not run, this is the entire
1745 // block.
1746 bool HadTailCall;
1747 SelectBasicBlock(Begin, BI, HadTailCall);
1749 // But if FastISel was run, we already selected some of the block.
1750 // If we emitted a tail-call, we need to delete any previously emitted
1751 // instruction that follows it.
1752 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1753 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1756 if (FastIS)
1757 FastIS->finishBasicBlock();
1758 FinishBasicBlock();
1759 FuncInfo->PHINodesToUpdate.clear();
1760 ElidedArgCopyInstrs.clear();
1763 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1765 propagateSwiftErrorVRegs(FuncInfo);
1767 delete FastIS;
1768 SDB->clearDanglingDebugInfo();
1769 SDB->SPDescriptor.resetPerFunctionState();
1772 /// Given that the input MI is before a partial terminator sequence TSeq, return
1773 /// true if M + TSeq also a partial terminator sequence.
1775 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1776 /// lowering copy vregs into physical registers, which are then passed into
1777 /// terminator instructors so we can satisfy ABI constraints. A partial
1778 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1779 /// may be the whole terminator sequence).
1780 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1781 // If we do not have a copy or an implicit def, we return true if and only if
1782 // MI is a debug value.
1783 if (!MI.isCopy() && !MI.isImplicitDef())
1784 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1785 // physical registers if there is debug info associated with the terminator
1786 // of our mbb. We want to include said debug info in our terminator
1787 // sequence, so we return true in that case.
1788 return MI.isDebugValue();
1790 // We have left the terminator sequence if we are not doing one of the
1791 // following:
1793 // 1. Copying a vreg into a physical register.
1794 // 2. Copying a vreg into a vreg.
1795 // 3. Defining a register via an implicit def.
1797 // OPI should always be a register definition...
1798 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1799 if (!OPI->isReg() || !OPI->isDef())
1800 return false;
1802 // Defining any register via an implicit def is always ok.
1803 if (MI.isImplicitDef())
1804 return true;
1806 // Grab the copy source...
1807 MachineInstr::const_mop_iterator OPI2 = OPI;
1808 ++OPI2;
1809 assert(OPI2 != MI.operands_end()
1810 && "Should have a copy implying we should have 2 arguments.");
1812 // Make sure that the copy dest is not a vreg when the copy source is a
1813 // physical register.
1814 if (!OPI2->isReg() ||
1815 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1816 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1817 return false;
1819 return true;
1822 /// Find the split point at which to splice the end of BB into its success stack
1823 /// protector check machine basic block.
1825 /// On many platforms, due to ABI constraints, terminators, even before register
1826 /// allocation, use physical registers. This creates an issue for us since
1827 /// physical registers at this point can not travel across basic
1828 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1829 /// when they enter functions and moves them through a sequence of copies back
1830 /// into the physical registers right before the terminator creating a
1831 /// ``Terminator Sequence''. This function is searching for the beginning of the
1832 /// terminator sequence so that we can ensure that we splice off not just the
1833 /// terminator, but additionally the copies that move the vregs into the
1834 /// physical registers.
1835 static MachineBasicBlock::iterator
1836 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1837 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1839 if (SplitPoint == BB->begin())
1840 return SplitPoint;
1842 MachineBasicBlock::iterator Start = BB->begin();
1843 MachineBasicBlock::iterator Previous = SplitPoint;
1844 --Previous;
1846 while (MIIsInTerminatorSequence(*Previous)) {
1847 SplitPoint = Previous;
1848 if (Previous == Start)
1849 break;
1850 --Previous;
1853 return SplitPoint;
1856 void
1857 SelectionDAGISel::FinishBasicBlock() {
1858 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1859 << FuncInfo->PHINodesToUpdate.size() << "\n";
1860 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1861 ++i) dbgs()
1862 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1863 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1865 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1866 // PHI nodes in successors.
1867 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1868 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1869 assert(PHI->isPHI() &&
1870 "This is not a machine PHI node that we are updating!");
1871 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1872 continue;
1873 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1876 // Handle stack protector.
1877 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1878 // The target provides a guard check function. There is no need to
1879 // generate error handling code or to split current basic block.
1880 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1882 // Add load and check to the basicblock.
1883 FuncInfo->MBB = ParentMBB;
1884 FuncInfo->InsertPt =
1885 FindSplitPointForStackProtector(ParentMBB);
1886 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1887 CurDAG->setRoot(SDB->getRoot());
1888 SDB->clear();
1889 CodeGenAndEmitDAG();
1891 // Clear the Per-BB State.
1892 SDB->SPDescriptor.resetPerBBState();
1893 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1894 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1895 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1897 // Find the split point to split the parent mbb. At the same time copy all
1898 // physical registers used in the tail of parent mbb into virtual registers
1899 // before the split point and back into physical registers after the split
1900 // point. This prevents us needing to deal with Live-ins and many other
1901 // register allocation issues caused by us splitting the parent mbb. The
1902 // register allocator will clean up said virtual copies later on.
1903 MachineBasicBlock::iterator SplitPoint =
1904 FindSplitPointForStackProtector(ParentMBB);
1906 // Splice the terminator of ParentMBB into SuccessMBB.
1907 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1908 SplitPoint,
1909 ParentMBB->end());
1911 // Add compare/jump on neq/jump to the parent BB.
1912 FuncInfo->MBB = ParentMBB;
1913 FuncInfo->InsertPt = ParentMBB->end();
1914 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1915 CurDAG->setRoot(SDB->getRoot());
1916 SDB->clear();
1917 CodeGenAndEmitDAG();
1919 // CodeGen Failure MBB if we have not codegened it yet.
1920 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1921 if (FailureMBB->empty()) {
1922 FuncInfo->MBB = FailureMBB;
1923 FuncInfo->InsertPt = FailureMBB->end();
1924 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1925 CurDAG->setRoot(SDB->getRoot());
1926 SDB->clear();
1927 CodeGenAndEmitDAG();
1930 // Clear the Per-BB State.
1931 SDB->SPDescriptor.resetPerBBState();
1934 // Lower each BitTestBlock.
1935 for (auto &BTB : SDB->BitTestCases) {
1936 // Lower header first, if it wasn't already lowered
1937 if (!BTB.Emitted) {
1938 // Set the current basic block to the mbb we wish to insert the code into
1939 FuncInfo->MBB = BTB.Parent;
1940 FuncInfo->InsertPt = FuncInfo->MBB->end();
1941 // Emit the code
1942 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1943 CurDAG->setRoot(SDB->getRoot());
1944 SDB->clear();
1945 CodeGenAndEmitDAG();
1948 BranchProbability UnhandledProb = BTB.Prob;
1949 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1950 UnhandledProb -= BTB.Cases[j].ExtraProb;
1951 // Set the current basic block to the mbb we wish to insert the code into
1952 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1953 FuncInfo->InsertPt = FuncInfo->MBB->end();
1954 // Emit the code
1956 // If all cases cover a contiguous range, it is not necessary to jump to
1957 // the default block after the last bit test fails. This is because the
1958 // range check during bit test header creation has guaranteed that every
1959 // case here doesn't go outside the range. In this case, there is no need
1960 // to perform the last bit test, as it will always be true. Instead, make
1961 // the second-to-last bit-test fall through to the target of the last bit
1962 // test, and delete the last bit test.
1964 MachineBasicBlock *NextMBB;
1965 if (BTB.ContiguousRange && j + 2 == ej) {
1966 // Second-to-last bit-test with contiguous range: fall through to the
1967 // target of the final bit test.
1968 NextMBB = BTB.Cases[j + 1].TargetBB;
1969 } else if (j + 1 == ej) {
1970 // For the last bit test, fall through to Default.
1971 NextMBB = BTB.Default;
1972 } else {
1973 // Otherwise, fall through to the next bit test.
1974 NextMBB = BTB.Cases[j + 1].ThisBB;
1977 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1978 FuncInfo->MBB);
1980 CurDAG->setRoot(SDB->getRoot());
1981 SDB->clear();
1982 CodeGenAndEmitDAG();
1984 if (BTB.ContiguousRange && j + 2 == ej) {
1985 // Since we're not going to use the final bit test, remove it.
1986 BTB.Cases.pop_back();
1987 break;
1991 // Update PHI Nodes
1992 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1993 pi != pe; ++pi) {
1994 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1995 MachineBasicBlock *PHIBB = PHI->getParent();
1996 assert(PHI->isPHI() &&
1997 "This is not a machine PHI node that we are updating!");
1998 // This is "default" BB. We have two jumps to it. From "header" BB and
1999 // from last "case" BB, unless the latter was skipped.
2000 if (PHIBB == BTB.Default) {
2001 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
2002 if (!BTB.ContiguousRange) {
2003 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2004 .addMBB(BTB.Cases.back().ThisBB);
2007 // One of "cases" BB.
2008 for (unsigned j = 0, ej = BTB.Cases.size();
2009 j != ej; ++j) {
2010 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
2011 if (cBB->isSuccessor(PHIBB))
2012 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
2016 SDB->BitTestCases.clear();
2018 // If the JumpTable record is filled in, then we need to emit a jump table.
2019 // Updating the PHI nodes is tricky in this case, since we need to determine
2020 // whether the PHI is a successor of the range check MBB or the jump table MBB
2021 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
2022 // Lower header first, if it wasn't already lowered
2023 if (!SDB->JTCases[i].first.Emitted) {
2024 // Set the current basic block to the mbb we wish to insert the code into
2025 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
2026 FuncInfo->InsertPt = FuncInfo->MBB->end();
2027 // Emit the code
2028 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
2029 FuncInfo->MBB);
2030 CurDAG->setRoot(SDB->getRoot());
2031 SDB->clear();
2032 CodeGenAndEmitDAG();
2035 // Set the current basic block to the mbb we wish to insert the code into
2036 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
2037 FuncInfo->InsertPt = FuncInfo->MBB->end();
2038 // Emit the code
2039 SDB->visitJumpTable(SDB->JTCases[i].second);
2040 CurDAG->setRoot(SDB->getRoot());
2041 SDB->clear();
2042 CodeGenAndEmitDAG();
2044 // Update PHI Nodes
2045 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2046 pi != pe; ++pi) {
2047 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2048 MachineBasicBlock *PHIBB = PHI->getParent();
2049 assert(PHI->isPHI() &&
2050 "This is not a machine PHI node that we are updating!");
2051 // "default" BB. We can go there only from header BB.
2052 if (PHIBB == SDB->JTCases[i].second.Default)
2053 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2054 .addMBB(SDB->JTCases[i].first.HeaderBB);
2055 // JT BB. Just iterate over successors here
2056 if (FuncInfo->MBB->isSuccessor(PHIBB))
2057 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
2060 SDB->JTCases.clear();
2062 // If we generated any switch lowering information, build and codegen any
2063 // additional DAGs necessary.
2064 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
2065 // Set the current basic block to the mbb we wish to insert the code into
2066 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
2067 FuncInfo->InsertPt = FuncInfo->MBB->end();
2069 // Determine the unique successors.
2070 SmallVector<MachineBasicBlock *, 2> Succs;
2071 Succs.push_back(SDB->SwitchCases[i].TrueBB);
2072 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
2073 Succs.push_back(SDB->SwitchCases[i].FalseBB);
2075 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2076 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
2077 CurDAG->setRoot(SDB->getRoot());
2078 SDB->clear();
2079 CodeGenAndEmitDAG();
2081 // Remember the last block, now that any splitting is done, for use in
2082 // populating PHI nodes in successors.
2083 MachineBasicBlock *ThisBB = FuncInfo->MBB;
2085 // Handle any PHI nodes in successors of this chunk, as if we were coming
2086 // from the original BB before switch expansion. Note that PHI nodes can
2087 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2088 // handle them the right number of times.
2089 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
2090 FuncInfo->MBB = Succs[i];
2091 FuncInfo->InsertPt = FuncInfo->MBB->end();
2092 // FuncInfo->MBB may have been removed from the CFG if a branch was
2093 // constant folded.
2094 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2095 for (MachineBasicBlock::iterator
2096 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2097 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2098 MachineInstrBuilder PHI(*MF, MBBI);
2099 // This value for this PHI node is recorded in PHINodesToUpdate.
2100 for (unsigned pn = 0; ; ++pn) {
2101 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2102 "Didn't find PHI entry!");
2103 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2104 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2105 break;
2112 SDB->SwitchCases.clear();
2115 /// Create the scheduler. If a specific scheduler was specified
2116 /// via the SchedulerRegistry, use it, otherwise select the
2117 /// one preferred by the target.
2119 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2120 return ISHeuristic(this, OptLevel);
2123 //===----------------------------------------------------------------------===//
2124 // Helper functions used by the generated instruction selector.
2125 //===----------------------------------------------------------------------===//
2126 // Calls to these methods are generated by tblgen.
2128 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2129 /// the dag combiner simplified the 255, we still want to match. RHS is the
2130 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2131 /// specified in the .td file (e.g. 255).
2132 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2133 int64_t DesiredMaskS) const {
2134 const APInt &ActualMask = RHS->getAPIntValue();
2135 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2137 // If the actual mask exactly matches, success!
2138 if (ActualMask == DesiredMask)
2139 return true;
2141 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2142 if (!ActualMask.isSubsetOf(DesiredMask))
2143 return false;
2145 // Otherwise, the DAG Combiner may have proven that the value coming in is
2146 // either already zero or is not demanded. Check for known zero input bits.
2147 APInt NeededMask = DesiredMask & ~ActualMask;
2148 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2149 return true;
2151 // TODO: check to see if missing bits are just not demanded.
2153 // Otherwise, this pattern doesn't match.
2154 return false;
2157 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2158 /// the dag combiner simplified the 255, we still want to match. RHS is the
2159 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2160 /// specified in the .td file (e.g. 255).
2161 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2162 int64_t DesiredMaskS) const {
2163 const APInt &ActualMask = RHS->getAPIntValue();
2164 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2166 // If the actual mask exactly matches, success!
2167 if (ActualMask == DesiredMask)
2168 return true;
2170 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2171 if (!ActualMask.isSubsetOf(DesiredMask))
2172 return false;
2174 // Otherwise, the DAG Combiner may have proven that the value coming in is
2175 // either already zero or is not demanded. Check for known zero input bits.
2176 APInt NeededMask = DesiredMask & ~ActualMask;
2178 KnownBits Known;
2179 CurDAG->computeKnownBits(LHS, Known);
2181 // If all the missing bits in the or are already known to be set, match!
2182 if (NeededMask.isSubsetOf(Known.One))
2183 return true;
2185 // TODO: check to see if missing bits are just not demanded.
2187 // Otherwise, this pattern doesn't match.
2188 return false;
2191 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2192 /// by tblgen. Others should not call it.
2193 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2194 const SDLoc &DL) {
2195 std::vector<SDValue> InOps;
2196 std::swap(InOps, Ops);
2198 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2199 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2200 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2201 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2203 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2204 if (InOps[e-1].getValueType() == MVT::Glue)
2205 --e; // Don't process a glue operand if it is here.
2207 while (i != e) {
2208 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2209 if (!InlineAsm::isMemKind(Flags)) {
2210 // Just skip over this operand, copying the operands verbatim.
2211 Ops.insert(Ops.end(), InOps.begin()+i,
2212 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2213 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2214 } else {
2215 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2216 "Memory operand with multiple values?");
2218 unsigned TiedToOperand;
2219 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2220 // We need the constraint ID from the operand this is tied to.
2221 unsigned CurOp = InlineAsm::Op_FirstOperand;
2222 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2223 for (; TiedToOperand; --TiedToOperand) {
2224 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2225 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2229 // Otherwise, this is a memory operand. Ask the target to select it.
2230 std::vector<SDValue> SelOps;
2231 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2232 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2233 report_fatal_error("Could not match memory address. Inline asm"
2234 " failure!");
2236 // Add this to the output node.
2237 unsigned NewFlags =
2238 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2239 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2240 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2241 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2242 i += 2;
2246 // Add the glue input back if present.
2247 if (e != InOps.size())
2248 Ops.push_back(InOps.back());
2251 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2252 /// SDNode.
2254 static SDNode *findGlueUse(SDNode *N) {
2255 unsigned FlagResNo = N->getNumValues()-1;
2256 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2257 SDUse &Use = I.getUse();
2258 if (Use.getResNo() == FlagResNo)
2259 return Use.getUser();
2261 return nullptr;
2264 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2265 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2266 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2267 bool IgnoreChains) {
2268 SmallPtrSet<const SDNode *, 16> Visited;
2269 SmallVector<const SDNode *, 16> WorkList;
2270 // Only check if we have non-immediate uses of Def.
2271 if (ImmedUse->isOnlyUserOf(Def))
2272 return false;
2274 // We don't care about paths to Def that go through ImmedUse so mark it
2275 // visited and mark non-def operands as used.
2276 Visited.insert(ImmedUse);
2277 for (const SDValue &Op : ImmedUse->op_values()) {
2278 SDNode *N = Op.getNode();
2279 // Ignore chain deps (they are validated by
2280 // HandleMergeInputChains) and immediate uses
2281 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2282 continue;
2283 if (!Visited.insert(N).second)
2284 continue;
2285 WorkList.push_back(N);
2288 // Initialize worklist to operands of Root.
2289 if (Root != ImmedUse) {
2290 for (const SDValue &Op : Root->op_values()) {
2291 SDNode *N = Op.getNode();
2292 // Ignore chains (they are validated by HandleMergeInputChains)
2293 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2294 continue;
2295 if (!Visited.insert(N).second)
2296 continue;
2297 WorkList.push_back(N);
2301 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2304 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2305 /// operand node N of U during instruction selection that starts at Root.
2306 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2307 SDNode *Root) const {
2308 if (OptLevel == CodeGenOpt::None) return false;
2309 return N.hasOneUse();
2312 /// IsLegalToFold - Returns true if the specific operand node N of
2313 /// U can be folded during instruction selection that starts at Root.
2314 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2315 CodeGenOpt::Level OptLevel,
2316 bool IgnoreChains) {
2317 if (OptLevel == CodeGenOpt::None) return false;
2319 // If Root use can somehow reach N through a path that that doesn't contain
2320 // U then folding N would create a cycle. e.g. In the following
2321 // diagram, Root can reach N through X. If N is folded into Root, then
2322 // X is both a predecessor and a successor of U.
2324 // [N*] //
2325 // ^ ^ //
2326 // / \ //
2327 // [U*] [X]? //
2328 // ^ ^ //
2329 // \ / //
2330 // \ / //
2331 // [Root*] //
2333 // * indicates nodes to be folded together.
2335 // If Root produces glue, then it gets (even more) interesting. Since it
2336 // will be "glued" together with its glue use in the scheduler, we need to
2337 // check if it might reach N.
2339 // [N*] //
2340 // ^ ^ //
2341 // / \ //
2342 // [U*] [X]? //
2343 // ^ ^ //
2344 // \ \ //
2345 // \ | //
2346 // [Root*] | //
2347 // ^ | //
2348 // f | //
2349 // | / //
2350 // [Y] / //
2351 // ^ / //
2352 // f / //
2353 // | / //
2354 // [GU] //
2356 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2357 // (call it Fold), then X is a predecessor of GU and a successor of
2358 // Fold. But since Fold and GU are glued together, this will create
2359 // a cycle in the scheduling graph.
2361 // If the node has glue, walk down the graph to the "lowest" node in the
2362 // glueged set.
2363 EVT VT = Root->getValueType(Root->getNumValues()-1);
2364 while (VT == MVT::Glue) {
2365 SDNode *GU = findGlueUse(Root);
2366 if (!GU)
2367 break;
2368 Root = GU;
2369 VT = Root->getValueType(Root->getNumValues()-1);
2371 // If our query node has a glue result with a use, we've walked up it. If
2372 // the user (which has already been selected) has a chain or indirectly uses
2373 // the chain, HandleMergeInputChains will not consider it. Because of
2374 // this, we cannot ignore chains in this predicate.
2375 IgnoreChains = false;
2378 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2381 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2382 SDLoc DL(N);
2384 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2385 SelectInlineAsmMemoryOperands(Ops, DL);
2387 const EVT VTs[] = {MVT::Other, MVT::Glue};
2388 SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
2389 New->setNodeId(-1);
2390 ReplaceUses(N, New.getNode());
2391 CurDAG->RemoveDeadNode(N);
2394 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2395 SDLoc dl(Op);
2396 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2397 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2398 unsigned Reg =
2399 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2400 *CurDAG);
2401 SDValue New = CurDAG->getCopyFromReg(
2402 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2403 New->setNodeId(-1);
2404 ReplaceUses(Op, New.getNode());
2405 CurDAG->RemoveDeadNode(Op);
2408 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2409 SDLoc dl(Op);
2410 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2411 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2412 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2413 Op->getOperand(2).getValueType(),
2414 *CurDAG);
2415 SDValue New = CurDAG->getCopyToReg(
2416 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2417 New->setNodeId(-1);
2418 ReplaceUses(Op, New.getNode());
2419 CurDAG->RemoveDeadNode(Op);
2422 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2423 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2426 /// GetVBR - decode a vbr encoding whose top bit is set.
2427 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2428 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2429 assert(Val >= 128 && "Not a VBR");
2430 Val &= 127; // Remove first vbr bit.
2432 unsigned Shift = 7;
2433 uint64_t NextBits;
2434 do {
2435 NextBits = MatcherTable[Idx++];
2436 Val |= (NextBits&127) << Shift;
2437 Shift += 7;
2438 } while (NextBits & 128);
2440 return Val;
2443 /// When a match is complete, this method updates uses of interior chain results
2444 /// to use the new results.
2445 void SelectionDAGISel::UpdateChains(
2446 SDNode *NodeToMatch, SDValue InputChain,
2447 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2448 SmallVector<SDNode*, 4> NowDeadNodes;
2450 // Now that all the normal results are replaced, we replace the chain and
2451 // glue results if present.
2452 if (!ChainNodesMatched.empty()) {
2453 assert(InputChain.getNode() &&
2454 "Matched input chains but didn't produce a chain");
2455 // Loop over all of the nodes we matched that produced a chain result.
2456 // Replace all the chain results with the final chain we ended up with.
2457 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2458 SDNode *ChainNode = ChainNodesMatched[i];
2459 // If ChainNode is null, it's because we replaced it on a previous
2460 // iteration and we cleared it out of the map. Just skip it.
2461 if (!ChainNode)
2462 continue;
2464 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2465 "Deleted node left in chain");
2467 // Don't replace the results of the root node if we're doing a
2468 // MorphNodeTo.
2469 if (ChainNode == NodeToMatch && isMorphNodeTo)
2470 continue;
2472 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2473 if (ChainVal.getValueType() == MVT::Glue)
2474 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2475 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2476 SelectionDAG::DAGNodeDeletedListener NDL(
2477 *CurDAG, [&](SDNode *N, SDNode *E) {
2478 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2479 static_cast<SDNode *>(nullptr));
2481 if (ChainNode->getOpcode() != ISD::TokenFactor)
2482 ReplaceUses(ChainVal, InputChain);
2484 // If the node became dead and we haven't already seen it, delete it.
2485 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2486 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2487 NowDeadNodes.push_back(ChainNode);
2491 if (!NowDeadNodes.empty())
2492 CurDAG->RemoveDeadNodes(NowDeadNodes);
2494 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2497 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2498 /// operation for when the pattern matched at least one node with a chains. The
2499 /// input vector contains a list of all of the chained nodes that we match. We
2500 /// must determine if this is a valid thing to cover (i.e. matching it won't
2501 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2502 /// be used as the input node chain for the generated nodes.
2503 static SDValue
2504 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2505 SelectionDAG *CurDAG) {
2507 SmallPtrSet<const SDNode *, 16> Visited;
2508 SmallVector<const SDNode *, 8> Worklist;
2509 SmallVector<SDValue, 3> InputChains;
2510 unsigned int Max = 8192;
2512 // Quick exit on trivial merge.
2513 if (ChainNodesMatched.size() == 1)
2514 return ChainNodesMatched[0]->getOperand(0);
2516 // Add chains that aren't already added (internal). Peek through
2517 // token factors.
2518 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2519 if (V.getValueType() != MVT::Other)
2520 return;
2521 if (V->getOpcode() == ISD::EntryToken)
2522 return;
2523 if (!Visited.insert(V.getNode()).second)
2524 return;
2525 if (V->getOpcode() == ISD::TokenFactor) {
2526 for (const SDValue &Op : V->op_values())
2527 AddChains(Op);
2528 } else
2529 InputChains.push_back(V);
2532 for (auto *N : ChainNodesMatched) {
2533 Worklist.push_back(N);
2534 Visited.insert(N);
2537 while (!Worklist.empty())
2538 AddChains(Worklist.pop_back_val()->getOperand(0));
2540 // Skip the search if there are no chain dependencies.
2541 if (InputChains.size() == 0)
2542 return CurDAG->getEntryNode();
2544 // If one of these chains is a successor of input, we must have a
2545 // node that is both the predecessor and successor of the
2546 // to-be-merged nodes. Fail.
2547 Visited.clear();
2548 for (SDValue V : InputChains)
2549 Worklist.push_back(V.getNode());
2551 for (auto *N : ChainNodesMatched)
2552 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2553 return SDValue();
2555 // Return merged chain.
2556 if (InputChains.size() == 1)
2557 return InputChains[0];
2558 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2559 MVT::Other, InputChains);
2562 /// MorphNode - Handle morphing a node in place for the selector.
2563 SDNode *SelectionDAGISel::
2564 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2565 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2566 // It is possible we're using MorphNodeTo to replace a node with no
2567 // normal results with one that has a normal result (or we could be
2568 // adding a chain) and the input could have glue and chains as well.
2569 // In this case we need to shift the operands down.
2570 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2571 // than the old isel though.
2572 int OldGlueResultNo = -1, OldChainResultNo = -1;
2574 unsigned NTMNumResults = Node->getNumValues();
2575 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2576 OldGlueResultNo = NTMNumResults-1;
2577 if (NTMNumResults != 1 &&
2578 Node->getValueType(NTMNumResults-2) == MVT::Other)
2579 OldChainResultNo = NTMNumResults-2;
2580 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2581 OldChainResultNo = NTMNumResults-1;
2583 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2584 // that this deletes operands of the old node that become dead.
2585 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2587 // MorphNodeTo can operate in two ways: if an existing node with the
2588 // specified operands exists, it can just return it. Otherwise, it
2589 // updates the node in place to have the requested operands.
2590 if (Res == Node) {
2591 // If we updated the node in place, reset the node ID. To the isel,
2592 // this should be just like a newly allocated machine node.
2593 Res->setNodeId(-1);
2596 unsigned ResNumResults = Res->getNumValues();
2597 // Move the glue if needed.
2598 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2599 (unsigned)OldGlueResultNo != ResNumResults-1)
2600 ReplaceUses(SDValue(Node, OldGlueResultNo),
2601 SDValue(Res, ResNumResults - 1));
2603 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2604 --ResNumResults;
2606 // Move the chain reference if needed.
2607 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2608 (unsigned)OldChainResultNo != ResNumResults-1)
2609 ReplaceUses(SDValue(Node, OldChainResultNo),
2610 SDValue(Res, ResNumResults - 1));
2612 // Otherwise, no replacement happened because the node already exists. Replace
2613 // Uses of the old node with the new one.
2614 if (Res != Node) {
2615 ReplaceNode(Node, Res);
2616 } else {
2617 EnforceNodeIdInvariant(Res);
2620 return Res;
2623 /// CheckSame - Implements OP_CheckSame.
2624 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2625 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2626 SDValue N,
2627 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2628 // Accept if it is exactly the same as a previously recorded node.
2629 unsigned RecNo = MatcherTable[MatcherIndex++];
2630 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2631 return N == RecordedNodes[RecNo].first;
2634 /// CheckChildSame - Implements OP_CheckChildXSame.
2635 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2636 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2637 SDValue N,
2638 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2639 unsigned ChildNo) {
2640 if (ChildNo >= N.getNumOperands())
2641 return false; // Match fails if out of range child #.
2642 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2643 RecordedNodes);
2646 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2647 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2648 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2649 const SelectionDAGISel &SDISel) {
2650 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2653 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2654 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2655 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2656 const SelectionDAGISel &SDISel, SDNode *N) {
2657 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2660 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2661 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2662 SDNode *N) {
2663 uint16_t Opc = MatcherTable[MatcherIndex++];
2664 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2665 return N->getOpcode() == Opc;
2668 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2669 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2670 const TargetLowering *TLI, const DataLayout &DL) {
2671 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2672 if (N.getValueType() == VT) return true;
2674 // Handle the case when VT is iPTR.
2675 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2678 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2679 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2680 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2681 unsigned ChildNo) {
2682 if (ChildNo >= N.getNumOperands())
2683 return false; // Match fails if out of range child #.
2684 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2685 DL);
2688 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2689 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2690 SDValue N) {
2691 return cast<CondCodeSDNode>(N)->get() ==
2692 (ISD::CondCode)MatcherTable[MatcherIndex++];
2695 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2696 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2697 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2698 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2699 if (cast<VTSDNode>(N)->getVT() == VT)
2700 return true;
2702 // Handle the case when VT is iPTR.
2703 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2706 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2707 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2708 SDValue N) {
2709 int64_t Val = MatcherTable[MatcherIndex++];
2710 if (Val & 128)
2711 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2713 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2714 return C && C->getSExtValue() == Val;
2717 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2718 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2719 SDValue N, unsigned ChildNo) {
2720 if (ChildNo >= N.getNumOperands())
2721 return false; // Match fails if out of range child #.
2722 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2725 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2726 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2727 SDValue N, const SelectionDAGISel &SDISel) {
2728 int64_t Val = MatcherTable[MatcherIndex++];
2729 if (Val & 128)
2730 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2732 if (N->getOpcode() != ISD::AND) return false;
2734 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2735 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2738 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2739 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2740 SDValue N, const SelectionDAGISel &SDISel) {
2741 int64_t Val = MatcherTable[MatcherIndex++];
2742 if (Val & 128)
2743 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2745 if (N->getOpcode() != ISD::OR) return false;
2747 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2748 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2751 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2752 /// scope, evaluate the current node. If the current predicate is known to
2753 /// fail, set Result=true and return anything. If the current predicate is
2754 /// known to pass, set Result=false and return the MatcherIndex to continue
2755 /// with. If the current predicate is unknown, set Result=false and return the
2756 /// MatcherIndex to continue with.
2757 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2758 unsigned Index, SDValue N,
2759 bool &Result,
2760 const SelectionDAGISel &SDISel,
2761 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2762 switch (Table[Index++]) {
2763 default:
2764 Result = false;
2765 return Index-1; // Could not evaluate this predicate.
2766 case SelectionDAGISel::OPC_CheckSame:
2767 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2768 return Index;
2769 case SelectionDAGISel::OPC_CheckChild0Same:
2770 case SelectionDAGISel::OPC_CheckChild1Same:
2771 case SelectionDAGISel::OPC_CheckChild2Same:
2772 case SelectionDAGISel::OPC_CheckChild3Same:
2773 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2774 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2775 return Index;
2776 case SelectionDAGISel::OPC_CheckPatternPredicate:
2777 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2778 return Index;
2779 case SelectionDAGISel::OPC_CheckPredicate:
2780 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2781 return Index;
2782 case SelectionDAGISel::OPC_CheckOpcode:
2783 Result = !::CheckOpcode(Table, Index, N.getNode());
2784 return Index;
2785 case SelectionDAGISel::OPC_CheckType:
2786 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2787 SDISel.CurDAG->getDataLayout());
2788 return Index;
2789 case SelectionDAGISel::OPC_CheckTypeRes: {
2790 unsigned Res = Table[Index++];
2791 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2792 SDISel.CurDAG->getDataLayout());
2793 return Index;
2795 case SelectionDAGISel::OPC_CheckChild0Type:
2796 case SelectionDAGISel::OPC_CheckChild1Type:
2797 case SelectionDAGISel::OPC_CheckChild2Type:
2798 case SelectionDAGISel::OPC_CheckChild3Type:
2799 case SelectionDAGISel::OPC_CheckChild4Type:
2800 case SelectionDAGISel::OPC_CheckChild5Type:
2801 case SelectionDAGISel::OPC_CheckChild6Type:
2802 case SelectionDAGISel::OPC_CheckChild7Type:
2803 Result = !::CheckChildType(
2804 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2805 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2806 return Index;
2807 case SelectionDAGISel::OPC_CheckCondCode:
2808 Result = !::CheckCondCode(Table, Index, N);
2809 return Index;
2810 case SelectionDAGISel::OPC_CheckValueType:
2811 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2812 SDISel.CurDAG->getDataLayout());
2813 return Index;
2814 case SelectionDAGISel::OPC_CheckInteger:
2815 Result = !::CheckInteger(Table, Index, N);
2816 return Index;
2817 case SelectionDAGISel::OPC_CheckChild0Integer:
2818 case SelectionDAGISel::OPC_CheckChild1Integer:
2819 case SelectionDAGISel::OPC_CheckChild2Integer:
2820 case SelectionDAGISel::OPC_CheckChild3Integer:
2821 case SelectionDAGISel::OPC_CheckChild4Integer:
2822 Result = !::CheckChildInteger(Table, Index, N,
2823 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2824 return Index;
2825 case SelectionDAGISel::OPC_CheckAndImm:
2826 Result = !::CheckAndImm(Table, Index, N, SDISel);
2827 return Index;
2828 case SelectionDAGISel::OPC_CheckOrImm:
2829 Result = !::CheckOrImm(Table, Index, N, SDISel);
2830 return Index;
2834 namespace {
2836 struct MatchScope {
2837 /// FailIndex - If this match fails, this is the index to continue with.
2838 unsigned FailIndex;
2840 /// NodeStack - The node stack when the scope was formed.
2841 SmallVector<SDValue, 4> NodeStack;
2843 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2844 unsigned NumRecordedNodes;
2846 /// NumMatchedMemRefs - The number of matched memref entries.
2847 unsigned NumMatchedMemRefs;
2849 /// InputChain/InputGlue - The current chain/glue
2850 SDValue InputChain, InputGlue;
2852 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2853 bool HasChainNodesMatched;
2856 /// \A DAG update listener to keep the matching state
2857 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2858 /// change the DAG while matching. X86 addressing mode matcher is an example
2859 /// for this.
2860 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2862 SDNode **NodeToMatch;
2863 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2864 SmallVectorImpl<MatchScope> &MatchScopes;
2866 public:
2867 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2868 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2869 SmallVectorImpl<MatchScope> &MS)
2870 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2871 RecordedNodes(RN), MatchScopes(MS) {}
2873 void NodeDeleted(SDNode *N, SDNode *E) override {
2874 // Some early-returns here to avoid the search if we deleted the node or
2875 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2876 // do, so it's unnecessary to update matching state at that point).
2877 // Neither of these can occur currently because we only install this
2878 // update listener during matching a complex patterns.
2879 if (!E || E->isMachineOpcode())
2880 return;
2881 // Check if NodeToMatch was updated.
2882 if (N == *NodeToMatch)
2883 *NodeToMatch = E;
2884 // Performing linear search here does not matter because we almost never
2885 // run this code. You'd have to have a CSE during complex pattern
2886 // matching.
2887 for (auto &I : RecordedNodes)
2888 if (I.first.getNode() == N)
2889 I.first.setNode(E);
2891 for (auto &I : MatchScopes)
2892 for (auto &J : I.NodeStack)
2893 if (J.getNode() == N)
2894 J.setNode(E);
2898 } // end anonymous namespace
2900 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2901 const unsigned char *MatcherTable,
2902 unsigned TableSize) {
2903 // FIXME: Should these even be selected? Handle these cases in the caller?
2904 switch (NodeToMatch->getOpcode()) {
2905 default:
2906 break;
2907 case ISD::EntryToken: // These nodes remain the same.
2908 case ISD::BasicBlock:
2909 case ISD::Register:
2910 case ISD::RegisterMask:
2911 case ISD::HANDLENODE:
2912 case ISD::MDNODE_SDNODE:
2913 case ISD::TargetConstant:
2914 case ISD::TargetConstantFP:
2915 case ISD::TargetConstantPool:
2916 case ISD::TargetFrameIndex:
2917 case ISD::TargetExternalSymbol:
2918 case ISD::MCSymbol:
2919 case ISD::TargetBlockAddress:
2920 case ISD::TargetJumpTable:
2921 case ISD::TargetGlobalTLSAddress:
2922 case ISD::TargetGlobalAddress:
2923 case ISD::TokenFactor:
2924 case ISD::CopyFromReg:
2925 case ISD::CopyToReg:
2926 case ISD::EH_LABEL:
2927 case ISD::ANNOTATION_LABEL:
2928 case ISD::LIFETIME_START:
2929 case ISD::LIFETIME_END:
2930 NodeToMatch->setNodeId(-1); // Mark selected.
2931 return;
2932 case ISD::AssertSext:
2933 case ISD::AssertZext:
2934 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2935 CurDAG->RemoveDeadNode(NodeToMatch);
2936 return;
2937 case ISD::INLINEASM:
2938 Select_INLINEASM(NodeToMatch);
2939 return;
2940 case ISD::READ_REGISTER:
2941 Select_READ_REGISTER(NodeToMatch);
2942 return;
2943 case ISD::WRITE_REGISTER:
2944 Select_WRITE_REGISTER(NodeToMatch);
2945 return;
2946 case ISD::UNDEF:
2947 Select_UNDEF(NodeToMatch);
2948 return;
2951 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2953 // Set up the node stack with NodeToMatch as the only node on the stack.
2954 SmallVector<SDValue, 8> NodeStack;
2955 SDValue N = SDValue(NodeToMatch, 0);
2956 NodeStack.push_back(N);
2958 // MatchScopes - Scopes used when matching, if a match failure happens, this
2959 // indicates where to continue checking.
2960 SmallVector<MatchScope, 8> MatchScopes;
2962 // RecordedNodes - This is the set of nodes that have been recorded by the
2963 // state machine. The second value is the parent of the node, or null if the
2964 // root is recorded.
2965 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2967 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2968 // pattern.
2969 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2971 // These are the current input chain and glue for use when generating nodes.
2972 // Various Emit operations change these. For example, emitting a copytoreg
2973 // uses and updates these.
2974 SDValue InputChain, InputGlue;
2976 // ChainNodesMatched - If a pattern matches nodes that have input/output
2977 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2978 // which ones they are. The result is captured into this list so that we can
2979 // update the chain results when the pattern is complete.
2980 SmallVector<SDNode*, 3> ChainNodesMatched;
2982 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2984 // Determine where to start the interpreter. Normally we start at opcode #0,
2985 // but if the state machine starts with an OPC_SwitchOpcode, then we
2986 // accelerate the first lookup (which is guaranteed to be hot) with the
2987 // OpcodeOffset table.
2988 unsigned MatcherIndex = 0;
2990 if (!OpcodeOffset.empty()) {
2991 // Already computed the OpcodeOffset table, just index into it.
2992 if (N.getOpcode() < OpcodeOffset.size())
2993 MatcherIndex = OpcodeOffset[N.getOpcode()];
2994 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2996 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2997 // Otherwise, the table isn't computed, but the state machine does start
2998 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2999 // is the first time we're selecting an instruction.
3000 unsigned Idx = 1;
3001 while (true) {
3002 // Get the size of this case.
3003 unsigned CaseSize = MatcherTable[Idx++];
3004 if (CaseSize & 128)
3005 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
3006 if (CaseSize == 0) break;
3008 // Get the opcode, add the index to the table.
3009 uint16_t Opc = MatcherTable[Idx++];
3010 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
3011 if (Opc >= OpcodeOffset.size())
3012 OpcodeOffset.resize((Opc+1)*2);
3013 OpcodeOffset[Opc] = Idx;
3014 Idx += CaseSize;
3017 // Okay, do the lookup for the first opcode.
3018 if (N.getOpcode() < OpcodeOffset.size())
3019 MatcherIndex = OpcodeOffset[N.getOpcode()];
3022 while (true) {
3023 assert(MatcherIndex < TableSize && "Invalid index");
3024 #ifndef NDEBUG
3025 unsigned CurrentOpcodeIndex = MatcherIndex;
3026 #endif
3027 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
3028 switch (Opcode) {
3029 case OPC_Scope: {
3030 // Okay, the semantics of this operation are that we should push a scope
3031 // then evaluate the first child. However, pushing a scope only to have
3032 // the first check fail (which then pops it) is inefficient. If we can
3033 // determine immediately that the first check (or first several) will
3034 // immediately fail, don't even bother pushing a scope for them.
3035 unsigned FailIndex;
3037 while (true) {
3038 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3039 if (NumToSkip & 128)
3040 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3041 // Found the end of the scope with no match.
3042 if (NumToSkip == 0) {
3043 FailIndex = 0;
3044 break;
3047 FailIndex = MatcherIndex+NumToSkip;
3049 unsigned MatcherIndexOfPredicate = MatcherIndex;
3050 (void)MatcherIndexOfPredicate; // silence warning.
3052 // If we can't evaluate this predicate without pushing a scope (e.g. if
3053 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3054 // push the scope and evaluate the full predicate chain.
3055 bool Result;
3056 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3057 Result, *this, RecordedNodes);
3058 if (!Result)
3059 break;
3061 LLVM_DEBUG(
3062 dbgs() << " Skipped scope entry (due to false predicate) at "
3063 << "index " << MatcherIndexOfPredicate << ", continuing at "
3064 << FailIndex << "\n");
3065 ++NumDAGIselRetries;
3067 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3068 // move to the next case.
3069 MatcherIndex = FailIndex;
3072 // If the whole scope failed to match, bail.
3073 if (FailIndex == 0) break;
3075 // Push a MatchScope which indicates where to go if the first child fails
3076 // to match.
3077 MatchScope NewEntry;
3078 NewEntry.FailIndex = FailIndex;
3079 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3080 NewEntry.NumRecordedNodes = RecordedNodes.size();
3081 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3082 NewEntry.InputChain = InputChain;
3083 NewEntry.InputGlue = InputGlue;
3084 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3085 MatchScopes.push_back(NewEntry);
3086 continue;
3088 case OPC_RecordNode: {
3089 // Remember this node, it may end up being an operand in the pattern.
3090 SDNode *Parent = nullptr;
3091 if (NodeStack.size() > 1)
3092 Parent = NodeStack[NodeStack.size()-2].getNode();
3093 RecordedNodes.push_back(std::make_pair(N, Parent));
3094 continue;
3097 case OPC_RecordChild0: case OPC_RecordChild1:
3098 case OPC_RecordChild2: case OPC_RecordChild3:
3099 case OPC_RecordChild4: case OPC_RecordChild5:
3100 case OPC_RecordChild6: case OPC_RecordChild7: {
3101 unsigned ChildNo = Opcode-OPC_RecordChild0;
3102 if (ChildNo >= N.getNumOperands())
3103 break; // Match fails if out of range child #.
3105 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3106 N.getNode()));
3107 continue;
3109 case OPC_RecordMemRef:
3110 if (auto *MN = dyn_cast<MemSDNode>(N))
3111 MatchedMemRefs.push_back(MN->getMemOperand());
3112 else {
3113 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3114 dbgs() << '\n');
3117 continue;
3119 case OPC_CaptureGlueInput:
3120 // If the current node has an input glue, capture it in InputGlue.
3121 if (N->getNumOperands() != 0 &&
3122 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3123 InputGlue = N->getOperand(N->getNumOperands()-1);
3124 continue;
3126 case OPC_MoveChild: {
3127 unsigned ChildNo = MatcherTable[MatcherIndex++];
3128 if (ChildNo >= N.getNumOperands())
3129 break; // Match fails if out of range child #.
3130 N = N.getOperand(ChildNo);
3131 NodeStack.push_back(N);
3132 continue;
3135 case OPC_MoveChild0: case OPC_MoveChild1:
3136 case OPC_MoveChild2: case OPC_MoveChild3:
3137 case OPC_MoveChild4: case OPC_MoveChild5:
3138 case OPC_MoveChild6: case OPC_MoveChild7: {
3139 unsigned ChildNo = Opcode-OPC_MoveChild0;
3140 if (ChildNo >= N.getNumOperands())
3141 break; // Match fails if out of range child #.
3142 N = N.getOperand(ChildNo);
3143 NodeStack.push_back(N);
3144 continue;
3147 case OPC_MoveParent:
3148 // Pop the current node off the NodeStack.
3149 NodeStack.pop_back();
3150 assert(!NodeStack.empty() && "Node stack imbalance!");
3151 N = NodeStack.back();
3152 continue;
3154 case OPC_CheckSame:
3155 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3156 continue;
3158 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3159 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3160 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3161 Opcode-OPC_CheckChild0Same))
3162 break;
3163 continue;
3165 case OPC_CheckPatternPredicate:
3166 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3167 continue;
3168 case OPC_CheckPredicate:
3169 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3170 N.getNode()))
3171 break;
3172 continue;
3173 case OPC_CheckComplexPat: {
3174 unsigned CPNum = MatcherTable[MatcherIndex++];
3175 unsigned RecNo = MatcherTable[MatcherIndex++];
3176 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3178 // If target can modify DAG during matching, keep the matching state
3179 // consistent.
3180 std::unique_ptr<MatchStateUpdater> MSU;
3181 if (ComplexPatternFuncMutatesDAG())
3182 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3183 MatchScopes));
3185 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3186 RecordedNodes[RecNo].first, CPNum,
3187 RecordedNodes))
3188 break;
3189 continue;
3191 case OPC_CheckOpcode:
3192 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3193 continue;
3195 case OPC_CheckType:
3196 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3197 CurDAG->getDataLayout()))
3198 break;
3199 continue;
3201 case OPC_CheckTypeRes: {
3202 unsigned Res = MatcherTable[MatcherIndex++];
3203 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3204 CurDAG->getDataLayout()))
3205 break;
3206 continue;
3209 case OPC_SwitchOpcode: {
3210 unsigned CurNodeOpcode = N.getOpcode();
3211 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3212 unsigned CaseSize;
3213 while (true) {
3214 // Get the size of this case.
3215 CaseSize = MatcherTable[MatcherIndex++];
3216 if (CaseSize & 128)
3217 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3218 if (CaseSize == 0) break;
3220 uint16_t Opc = MatcherTable[MatcherIndex++];
3221 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3223 // If the opcode matches, then we will execute this case.
3224 if (CurNodeOpcode == Opc)
3225 break;
3227 // Otherwise, skip over this case.
3228 MatcherIndex += CaseSize;
3231 // If no cases matched, bail out.
3232 if (CaseSize == 0) break;
3234 // Otherwise, execute the case we found.
3235 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3236 << MatcherIndex << "\n");
3237 continue;
3240 case OPC_SwitchType: {
3241 MVT CurNodeVT = N.getSimpleValueType();
3242 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3243 unsigned CaseSize;
3244 while (true) {
3245 // Get the size of this case.
3246 CaseSize = MatcherTable[MatcherIndex++];
3247 if (CaseSize & 128)
3248 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3249 if (CaseSize == 0) break;
3251 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3252 if (CaseVT == MVT::iPTR)
3253 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3255 // If the VT matches, then we will execute this case.
3256 if (CurNodeVT == CaseVT)
3257 break;
3259 // Otherwise, skip over this case.
3260 MatcherIndex += CaseSize;
3263 // If no cases matched, bail out.
3264 if (CaseSize == 0) break;
3266 // Otherwise, execute the case we found.
3267 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3268 << "] from " << SwitchStart << " to " << MatcherIndex
3269 << '\n');
3270 continue;
3272 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3273 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3274 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3275 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3276 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3277 CurDAG->getDataLayout(),
3278 Opcode - OPC_CheckChild0Type))
3279 break;
3280 continue;
3281 case OPC_CheckCondCode:
3282 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3283 continue;
3284 case OPC_CheckValueType:
3285 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3286 CurDAG->getDataLayout()))
3287 break;
3288 continue;
3289 case OPC_CheckInteger:
3290 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3291 continue;
3292 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3293 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3294 case OPC_CheckChild4Integer:
3295 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3296 Opcode-OPC_CheckChild0Integer)) break;
3297 continue;
3298 case OPC_CheckAndImm:
3299 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3300 continue;
3301 case OPC_CheckOrImm:
3302 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3303 continue;
3305 case OPC_CheckFoldableChainNode: {
3306 assert(NodeStack.size() != 1 && "No parent node");
3307 // Verify that all intermediate nodes between the root and this one have
3308 // a single use.
3309 bool HasMultipleUses = false;
3310 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3311 if (!NodeStack[i].getNode()->hasOneUse()) {
3312 HasMultipleUses = true;
3313 break;
3315 if (HasMultipleUses) break;
3317 // Check to see that the target thinks this is profitable to fold and that
3318 // we can fold it without inducing cycles in the graph.
3319 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3320 NodeToMatch) ||
3321 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3322 NodeToMatch, OptLevel,
3323 true/*We validate our own chains*/))
3324 break;
3326 continue;
3328 case OPC_EmitInteger: {
3329 MVT::SimpleValueType VT =
3330 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3331 int64_t Val = MatcherTable[MatcherIndex++];
3332 if (Val & 128)
3333 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3334 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3335 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3336 VT), nullptr));
3337 continue;
3339 case OPC_EmitRegister: {
3340 MVT::SimpleValueType VT =
3341 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3342 unsigned RegNo = MatcherTable[MatcherIndex++];
3343 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3344 CurDAG->getRegister(RegNo, VT), nullptr));
3345 continue;
3347 case OPC_EmitRegister2: {
3348 // For targets w/ more than 256 register names, the register enum
3349 // values are stored in two bytes in the matcher table (just like
3350 // opcodes).
3351 MVT::SimpleValueType VT =
3352 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3353 unsigned RegNo = MatcherTable[MatcherIndex++];
3354 RegNo |= MatcherTable[MatcherIndex++] << 8;
3355 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3356 CurDAG->getRegister(RegNo, VT), nullptr));
3357 continue;
3360 case OPC_EmitConvertToTarget: {
3361 // Convert from IMM/FPIMM to target version.
3362 unsigned RecNo = MatcherTable[MatcherIndex++];
3363 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3364 SDValue Imm = RecordedNodes[RecNo].first;
3366 if (Imm->getOpcode() == ISD::Constant) {
3367 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3368 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3369 Imm.getValueType());
3370 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3371 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3372 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3373 Imm.getValueType());
3376 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3377 continue;
3380 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3381 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3382 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3383 // These are space-optimized forms of OPC_EmitMergeInputChains.
3384 assert(!InputChain.getNode() &&
3385 "EmitMergeInputChains should be the first chain producing node");
3386 assert(ChainNodesMatched.empty() &&
3387 "Should only have one EmitMergeInputChains per match");
3389 // Read all of the chained nodes.
3390 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3391 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3392 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3394 // FIXME: What if other value results of the node have uses not matched
3395 // by this pattern?
3396 if (ChainNodesMatched.back() != NodeToMatch &&
3397 !RecordedNodes[RecNo].first.hasOneUse()) {
3398 ChainNodesMatched.clear();
3399 break;
3402 // Merge the input chains if they are not intra-pattern references.
3403 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3405 if (!InputChain.getNode())
3406 break; // Failed to merge.
3407 continue;
3410 case OPC_EmitMergeInputChains: {
3411 assert(!InputChain.getNode() &&
3412 "EmitMergeInputChains should be the first chain producing node");
3413 // This node gets a list of nodes we matched in the input that have
3414 // chains. We want to token factor all of the input chains to these nodes
3415 // together. However, if any of the input chains is actually one of the
3416 // nodes matched in this pattern, then we have an intra-match reference.
3417 // Ignore these because the newly token factored chain should not refer to
3418 // the old nodes.
3419 unsigned NumChains = MatcherTable[MatcherIndex++];
3420 assert(NumChains != 0 && "Can't TF zero chains");
3422 assert(ChainNodesMatched.empty() &&
3423 "Should only have one EmitMergeInputChains per match");
3425 // Read all of the chained nodes.
3426 for (unsigned i = 0; i != NumChains; ++i) {
3427 unsigned RecNo = MatcherTable[MatcherIndex++];
3428 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3429 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3431 // FIXME: What if other value results of the node have uses not matched
3432 // by this pattern?
3433 if (ChainNodesMatched.back() != NodeToMatch &&
3434 !RecordedNodes[RecNo].first.hasOneUse()) {
3435 ChainNodesMatched.clear();
3436 break;
3440 // If the inner loop broke out, the match fails.
3441 if (ChainNodesMatched.empty())
3442 break;
3444 // Merge the input chains if they are not intra-pattern references.
3445 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3447 if (!InputChain.getNode())
3448 break; // Failed to merge.
3450 continue;
3453 case OPC_EmitCopyToReg: {
3454 unsigned RecNo = MatcherTable[MatcherIndex++];
3455 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3456 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3458 if (!InputChain.getNode())
3459 InputChain = CurDAG->getEntryNode();
3461 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3462 DestPhysReg, RecordedNodes[RecNo].first,
3463 InputGlue);
3465 InputGlue = InputChain.getValue(1);
3466 continue;
3469 case OPC_EmitNodeXForm: {
3470 unsigned XFormNo = MatcherTable[MatcherIndex++];
3471 unsigned RecNo = MatcherTable[MatcherIndex++];
3472 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3473 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3474 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3475 continue;
3477 case OPC_Coverage: {
3478 // This is emitted right before MorphNode/EmitNode.
3479 // So it should be safe to assume that this node has been selected
3480 unsigned index = MatcherTable[MatcherIndex++];
3481 index |= (MatcherTable[MatcherIndex++] << 8);
3482 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3483 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3484 continue;
3487 case OPC_EmitNode: case OPC_MorphNodeTo:
3488 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3489 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3490 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3491 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3492 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3493 // Get the result VT list.
3494 unsigned NumVTs;
3495 // If this is one of the compressed forms, get the number of VTs based
3496 // on the Opcode. Otherwise read the next byte from the table.
3497 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3498 NumVTs = Opcode - OPC_MorphNodeTo0;
3499 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3500 NumVTs = Opcode - OPC_EmitNode0;
3501 else
3502 NumVTs = MatcherTable[MatcherIndex++];
3503 SmallVector<EVT, 4> VTs;
3504 for (unsigned i = 0; i != NumVTs; ++i) {
3505 MVT::SimpleValueType VT =
3506 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3507 if (VT == MVT::iPTR)
3508 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3509 VTs.push_back(VT);
3512 if (EmitNodeInfo & OPFL_Chain)
3513 VTs.push_back(MVT::Other);
3514 if (EmitNodeInfo & OPFL_GlueOutput)
3515 VTs.push_back(MVT::Glue);
3517 // This is hot code, so optimize the two most common cases of 1 and 2
3518 // results.
3519 SDVTList VTList;
3520 if (VTs.size() == 1)
3521 VTList = CurDAG->getVTList(VTs[0]);
3522 else if (VTs.size() == 2)
3523 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3524 else
3525 VTList = CurDAG->getVTList(VTs);
3527 // Get the operand list.
3528 unsigned NumOps = MatcherTable[MatcherIndex++];
3529 SmallVector<SDValue, 8> Ops;
3530 for (unsigned i = 0; i != NumOps; ++i) {
3531 unsigned RecNo = MatcherTable[MatcherIndex++];
3532 if (RecNo & 128)
3533 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3535 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3536 Ops.push_back(RecordedNodes[RecNo].first);
3539 // If there are variadic operands to add, handle them now.
3540 if (EmitNodeInfo & OPFL_VariadicInfo) {
3541 // Determine the start index to copy from.
3542 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3543 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3544 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3545 "Invalid variadic node");
3546 // Copy all of the variadic operands, not including a potential glue
3547 // input.
3548 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3549 i != e; ++i) {
3550 SDValue V = NodeToMatch->getOperand(i);
3551 if (V.getValueType() == MVT::Glue) break;
3552 Ops.push_back(V);
3556 // If this has chain/glue inputs, add them.
3557 if (EmitNodeInfo & OPFL_Chain)
3558 Ops.push_back(InputChain);
3559 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3560 Ops.push_back(InputGlue);
3562 // Create the node.
3563 MachineSDNode *Res = nullptr;
3564 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3565 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3566 if (!IsMorphNodeTo) {
3567 // If this is a normal EmitNode command, just create the new node and
3568 // add the results to the RecordedNodes list.
3569 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3570 VTList, Ops);
3572 // Add all the non-glue/non-chain results to the RecordedNodes list.
3573 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3574 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3575 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3576 nullptr));
3578 } else {
3579 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3580 "NodeToMatch was removed partway through selection");
3581 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3582 SDNode *E) {
3583 CurDAG->salvageDebugInfo(*N);
3584 auto &Chain = ChainNodesMatched;
3585 assert((!E || !is_contained(Chain, N)) &&
3586 "Chain node replaced during MorphNode");
3587 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3589 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3590 Ops, EmitNodeInfo));
3593 // If the node had chain/glue results, update our notion of the current
3594 // chain and glue.
3595 if (EmitNodeInfo & OPFL_GlueOutput) {
3596 InputGlue = SDValue(Res, VTs.size()-1);
3597 if (EmitNodeInfo & OPFL_Chain)
3598 InputChain = SDValue(Res, VTs.size()-2);
3599 } else if (EmitNodeInfo & OPFL_Chain)
3600 InputChain = SDValue(Res, VTs.size()-1);
3602 // If the OPFL_MemRefs glue is set on this node, slap all of the
3603 // accumulated memrefs onto it.
3605 // FIXME: This is vastly incorrect for patterns with multiple outputs
3606 // instructions that access memory and for ComplexPatterns that match
3607 // loads.
3608 if (EmitNodeInfo & OPFL_MemRefs) {
3609 // Only attach load or store memory operands if the generated
3610 // instruction may load or store.
3611 const MCInstrDesc &MCID = TII->get(TargetOpc);
3612 bool mayLoad = MCID.mayLoad();
3613 bool mayStore = MCID.mayStore();
3615 // We expect to have relatively few of these so just filter them into a
3616 // temporary buffer so that we can easily add them to the instruction.
3617 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3618 for (MachineMemOperand *MMO : MatchedMemRefs) {
3619 if (MMO->isLoad()) {
3620 if (mayLoad)
3621 FilteredMemRefs.push_back(MMO);
3622 } else if (MMO->isStore()) {
3623 if (mayStore)
3624 FilteredMemRefs.push_back(MMO);
3625 } else {
3626 FilteredMemRefs.push_back(MMO);
3630 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3633 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3634 << " Dropping mem operands\n";
3635 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3636 << " node: ";
3637 Res->dump(CurDAG););
3639 // If this was a MorphNodeTo then we're completely done!
3640 if (IsMorphNodeTo) {
3641 // Update chain uses.
3642 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3643 return;
3645 continue;
3648 case OPC_CompleteMatch: {
3649 // The match has been completed, and any new nodes (if any) have been
3650 // created. Patch up references to the matched dag to use the newly
3651 // created nodes.
3652 unsigned NumResults = MatcherTable[MatcherIndex++];
3654 for (unsigned i = 0; i != NumResults; ++i) {
3655 unsigned ResSlot = MatcherTable[MatcherIndex++];
3656 if (ResSlot & 128)
3657 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3659 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3660 SDValue Res = RecordedNodes[ResSlot].first;
3662 assert(i < NodeToMatch->getNumValues() &&
3663 NodeToMatch->getValueType(i) != MVT::Other &&
3664 NodeToMatch->getValueType(i) != MVT::Glue &&
3665 "Invalid number of results to complete!");
3666 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3667 NodeToMatch->getValueType(i) == MVT::iPTR ||
3668 Res.getValueType() == MVT::iPTR ||
3669 NodeToMatch->getValueType(i).getSizeInBits() ==
3670 Res.getValueSizeInBits()) &&
3671 "invalid replacement");
3672 ReplaceUses(SDValue(NodeToMatch, i), Res);
3675 // Update chain uses.
3676 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3678 // If the root node defines glue, we need to update it to the glue result.
3679 // TODO: This never happens in our tests and I think it can be removed /
3680 // replaced with an assert, but if we do it this the way the change is
3681 // NFC.
3682 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3683 MVT::Glue &&
3684 InputGlue.getNode())
3685 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3686 InputGlue);
3688 assert(NodeToMatch->use_empty() &&
3689 "Didn't replace all uses of the node?");
3690 CurDAG->RemoveDeadNode(NodeToMatch);
3692 return;
3696 // If the code reached this point, then the match failed. See if there is
3697 // another child to try in the current 'Scope', otherwise pop it until we
3698 // find a case to check.
3699 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3700 << "\n");
3701 ++NumDAGIselRetries;
3702 while (true) {
3703 if (MatchScopes.empty()) {
3704 CannotYetSelect(NodeToMatch);
3705 return;
3708 // Restore the interpreter state back to the point where the scope was
3709 // formed.
3710 MatchScope &LastScope = MatchScopes.back();
3711 RecordedNodes.resize(LastScope.NumRecordedNodes);
3712 NodeStack.clear();
3713 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3714 N = NodeStack.back();
3716 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3717 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3718 MatcherIndex = LastScope.FailIndex;
3720 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3722 InputChain = LastScope.InputChain;
3723 InputGlue = LastScope.InputGlue;
3724 if (!LastScope.HasChainNodesMatched)
3725 ChainNodesMatched.clear();
3727 // Check to see what the offset is at the new MatcherIndex. If it is zero
3728 // we have reached the end of this scope, otherwise we have another child
3729 // in the current scope to try.
3730 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3731 if (NumToSkip & 128)
3732 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3734 // If we have another child in this scope to match, update FailIndex and
3735 // try it.
3736 if (NumToSkip != 0) {
3737 LastScope.FailIndex = MatcherIndex+NumToSkip;
3738 break;
3741 // End of this scope, pop it and try the next child in the containing
3742 // scope.
3743 MatchScopes.pop_back();
3748 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3749 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3750 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3751 if (!C)
3752 return false;
3754 // Detect when "or" is used to add an offset to a stack object.
3755 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3756 MachineFrameInfo &MFI = MF->getFrameInfo();
3757 unsigned A = MFI.getObjectAlignment(FN->getIndex());
3758 assert(isPowerOf2_32(A) && "Unexpected alignment");
3759 int32_t Off = C->getSExtValue();
3760 // If the alleged offset fits in the zero bits guaranteed by
3761 // the alignment, then this or is really an add.
3762 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3764 return false;
3767 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3768 std::string msg;
3769 raw_string_ostream Msg(msg);
3770 Msg << "Cannot select: ";
3772 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3773 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3774 N->getOpcode() != ISD::INTRINSIC_VOID) {
3775 N->printrFull(Msg, CurDAG);
3776 Msg << "\nIn function: " << MF->getName();
3777 } else {
3778 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3779 unsigned iid =
3780 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3781 if (iid < Intrinsic::num_intrinsics)
3782 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3783 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3784 Msg << "target intrinsic %" << TII->getName(iid);
3785 else
3786 Msg << "unknown intrinsic #" << iid;
3788 report_fatal_error(Msg.str());
3791 char SelectionDAGISel::ID = 0;