[Alignment] Move OffsetToAlignment to Alignment.h
[llvm-core.git] / lib / Target / Mips / MipsSEISelDAGToDAG.cpp
blob4f349618322bec55addd77f9111c62557898530d
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "Mips.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "mips-isel"
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
41 if (Subtarget->inMips16Mode())
42 return false;
43 return MipsDAGToDAGISel::runOnMachineFunction(MF);
46 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.addRequired<DominatorTreeWrapperPass>();
48 SelectionDAGISel::getAnalysisUsage(AU);
51 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
52 MachineFunction &MF) {
53 MachineInstrBuilder MIB(MF, &MI);
54 unsigned Mask = MI.getOperand(1).getImm();
55 unsigned Flag =
56 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58 if (Mask & 1)
59 MIB.addReg(Mips::DSPPos, Flag);
61 if (Mask & 2)
62 MIB.addReg(Mips::DSPSCount, Flag);
64 if (Mask & 4)
65 MIB.addReg(Mips::DSPCarry, Flag);
67 if (Mask & 8)
68 MIB.addReg(Mips::DSPOutFlag, Flag);
70 if (Mask & 16)
71 MIB.addReg(Mips::DSPCCond, Flag);
73 if (Mask & 32)
74 MIB.addReg(Mips::DSPEFI, Flag);
77 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
78 uint64_t RegNum = cast<ConstantSDNode>(RegIdx)->getZExtValue();
79 return Mips::MSACtrlRegClass.getRegister(RegNum);
82 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
83 const MachineInstr& MI) {
84 unsigned DstReg = 0, ZeroReg = 0;
86 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
87 if ((MI.getOpcode() == Mips::ADDiu) &&
88 (MI.getOperand(1).getReg() == Mips::ZERO) &&
89 (MI.getOperand(2).isImm()) &&
90 (MI.getOperand(2).getImm() == 0)) {
91 DstReg = MI.getOperand(0).getReg();
92 ZeroReg = Mips::ZERO;
93 } else if ((MI.getOpcode() == Mips::DADDiu) &&
94 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
95 (MI.getOperand(2).isImm()) &&
96 (MI.getOperand(2).getImm() == 0)) {
97 DstReg = MI.getOperand(0).getReg();
98 ZeroReg = Mips::ZERO_64;
101 if (!DstReg)
102 return false;
104 // Replace uses with ZeroReg.
105 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
106 E = MRI->use_end(); U != E;) {
107 MachineOperand &MO = *U;
108 unsigned OpNo = U.getOperandNo();
109 MachineInstr *MI = MO.getParent();
110 ++U;
112 // Do not replace if it is a phi's operand or is tied to def operand.
113 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
114 continue;
116 // Also, we have to check that the register class of the operand
117 // contains the zero register.
118 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
119 continue;
121 MO.setReg(ZeroReg);
124 return true;
127 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
128 MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg();
130 MachineRegisterInfo *MRI = &MF.getRegInfo();
132 for (auto &MBB: MF) {
133 for (auto &MI: MBB) {
134 switch (MI.getOpcode()) {
135 case Mips::RDDSP:
136 addDSPCtrlRegOperands(false, MI, MF);
137 break;
138 case Mips::WRDSP:
139 addDSPCtrlRegOperands(true, MI, MF);
140 break;
141 case Mips::BuildPairF64_64:
142 case Mips::ExtractElementF64_64:
143 if (!Subtarget->useOddSPReg()) {
144 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
145 break;
147 LLVM_FALLTHROUGH;
148 case Mips::BuildPairF64:
149 case Mips::ExtractElementF64:
150 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
151 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
152 break;
153 default:
154 replaceUsesWithZeroReg(MRI, MI);
160 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
161 SDValue InFlag = Node->getOperand(2);
162 unsigned Opc = InFlag.getOpcode();
163 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
164 EVT VT = LHS.getValueType();
166 // In the base case, we can rely on the carry bit from the addsc
167 // instruction.
168 if (Opc == ISD::ADDC) {
169 SDValue Ops[3] = {LHS, RHS, InFlag};
170 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
171 return;
174 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
176 // The more complex case is when there is a chain of ISD::ADDE nodes like:
177 // (adde (adde (adde (addc a b) c) d) e).
179 // The addwc instruction does not write to the carry bit, instead it writes
180 // to bit 20 of the dsp control register. To match this series of nodes, each
181 // intermediate adde node must be expanded to write the carry bit before the
182 // addition.
184 // Start by reading the overflow field for addsc and moving the value to the
185 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
186 // corresponds to reading/writing the entire control register to/from a GPR.
188 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
190 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
192 SDNode *DSPCtrlField =
193 CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag);
195 SDNode *Carry = CurDAG->getMachineNode(
196 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
198 SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
199 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
200 SDValue(Carry, 0)};
201 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
203 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
204 // would like about whether bit 20 always gets overwritten by addwc.
205 // Hence take an extremely conservative view and presume it's sticky. We
206 // therefore need to clear it.
208 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
210 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
211 SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
213 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
214 SDValue(DSPCtrlFinal, 0), CstOne);
216 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
217 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
220 /// Match frameindex
221 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
222 SDValue &Offset) const {
223 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
224 EVT ValTy = Addr.getValueType();
226 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
227 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
228 return true;
230 return false;
233 /// Match frameindex+offset and frameindex|offset
234 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
235 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
236 unsigned ShiftAmount = 0) const {
237 if (CurDAG->isBaseWithConstantOffset(Addr)) {
238 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
239 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
240 EVT ValTy = Addr.getValueType();
242 // If the first operand is a FI, get the TargetFI Node
243 if (FrameIndexSDNode *FIN =
244 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
245 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
246 else {
247 Base = Addr.getOperand(0);
248 // If base is a FI, additional offset calculation is done in
249 // eliminateFrameIndex, otherwise we need to check the alignment
250 const llvm::Align Align(1ULL << ShiftAmount);
251 if (!isAligned(Align, CN->getZExtValue()))
252 return false;
255 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
256 ValTy);
257 return true;
260 return false;
263 /// ComplexPattern used on MipsInstrInfo
264 /// Used on Mips Load/Store instructions
265 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
266 SDValue &Offset) const {
267 // if Address is FI, get the TargetFrameIndex.
268 if (selectAddrFrameIndex(Addr, Base, Offset))
269 return true;
271 // on PIC code Load GA
272 if (Addr.getOpcode() == MipsISD::Wrapper) {
273 Base = Addr.getOperand(0);
274 Offset = Addr.getOperand(1);
275 return true;
278 if (!TM.isPositionIndependent()) {
279 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
280 Addr.getOpcode() == ISD::TargetGlobalAddress))
281 return false;
284 // Addresses of the form FI+const or FI|const
285 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
286 return true;
288 // Operand is a result from an ADD.
289 if (Addr.getOpcode() == ISD::ADD) {
290 // When loading from constant pools, load the lower address part in
291 // the instruction itself. Example, instead of:
292 // lui $2, %hi($CPI1_0)
293 // addiu $2, $2, %lo($CPI1_0)
294 // lwc1 $f0, 0($2)
295 // Generate:
296 // lui $2, %hi($CPI1_0)
297 // lwc1 $f0, %lo($CPI1_0)($2)
298 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
299 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
300 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
301 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
302 isa<JumpTableSDNode>(Opnd0)) {
303 Base = Addr.getOperand(0);
304 Offset = Opnd0;
305 return true;
310 return false;
313 /// ComplexPattern used on MipsInstrInfo
314 /// Used on Mips Load/Store instructions
315 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
316 SDValue &Offset) const {
317 Base = Addr;
318 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
319 return true;
322 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
323 SDValue &Offset) const {
324 return selectAddrRegImm(Addr, Base, Offset) ||
325 selectAddrDefault(Addr, Base, Offset);
328 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
329 SDValue &Offset) const {
330 if (selectAddrFrameIndex(Addr, Base, Offset))
331 return true;
333 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
334 return true;
336 return false;
339 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
340 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
341 SDValue &Offset) const {
342 if (selectAddrFrameIndex(Addr, Base, Offset))
343 return true;
345 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
346 return true;
348 return false;
351 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
352 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
353 SDValue &Offset) const {
354 if (selectAddrFrameIndex(Addr, Base, Offset))
355 return true;
357 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
358 return true;
360 return false;
363 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
364 SDValue &Offset) const {
365 if (selectAddrFrameIndex(Addr, Base, Offset))
366 return true;
368 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
369 return true;
371 return false;
374 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
375 SDValue &Offset) const {
376 return selectAddrRegImm11(Addr, Base, Offset) ||
377 selectAddrDefault(Addr, Base, Offset);
380 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
381 SDValue &Offset) const {
382 return selectAddrRegImm12(Addr, Base, Offset) ||
383 selectAddrDefault(Addr, Base, Offset);
386 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
387 SDValue &Offset) const {
388 return selectAddrRegImm16(Addr, Base, Offset) ||
389 selectAddrDefault(Addr, Base, Offset);
392 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
393 SDValue &Offset) const {
394 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
395 if (isa<FrameIndexSDNode>(Base))
396 return false;
398 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
399 unsigned CnstOff = CN->getZExtValue();
400 return (CnstOff == (CnstOff & 0x3c));
403 return false;
406 // For all other cases where "lw" would be selected, don't select "lw16"
407 // because it would result in additional instructions to prepare operands.
408 if (selectAddrRegImm(Addr, Base, Offset))
409 return false;
411 return selectAddrDefault(Addr, Base, Offset);
414 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
415 SDValue &Offset) const {
417 if (selectAddrFrameIndex(Addr, Base, Offset))
418 return true;
420 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
421 return true;
423 return selectAddrDefault(Addr, Base, Offset);
426 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
427 SDValue &Offset) const {
428 if (selectAddrFrameIndex(Addr, Base, Offset))
429 return true;
431 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
432 return true;
434 return selectAddrDefault(Addr, Base, Offset);
437 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
438 SDValue &Offset) const {
439 if (selectAddrFrameIndex(Addr, Base, Offset))
440 return true;
442 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
443 return true;
445 return selectAddrDefault(Addr, Base, Offset);
448 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
449 SDValue &Offset) const {
450 if (selectAddrFrameIndex(Addr, Base, Offset))
451 return true;
453 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
454 return true;
456 return selectAddrDefault(Addr, Base, Offset);
459 // Select constant vector splats.
461 // Returns true and sets Imm if:
462 // * MSA is enabled
463 // * N is a ISD::BUILD_VECTOR representing a constant splat
464 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
465 unsigned MinSizeInBits) const {
466 if (!Subtarget->hasMSA())
467 return false;
469 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
471 if (!Node)
472 return false;
474 APInt SplatValue, SplatUndef;
475 unsigned SplatBitSize;
476 bool HasAnyUndefs;
478 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
479 MinSizeInBits, !Subtarget->isLittle()))
480 return false;
482 Imm = SplatValue;
484 return true;
487 // Select constant vector splats.
489 // In addition to the requirements of selectVSplat(), this function returns
490 // true and sets Imm if:
491 // * The splat value is the same width as the elements of the vector
492 // * The splat value fits in an integer with the specified signed-ness and
493 // width.
495 // This function looks through ISD::BITCAST nodes.
496 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
497 // sometimes a shuffle in big-endian mode.
499 // It's worth noting that this function is not used as part of the selection
500 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
501 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
502 // MipsSEDAGToDAGISel::selectNode.
503 bool MipsSEDAGToDAGISel::
504 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
505 unsigned ImmBitSize) const {
506 APInt ImmValue;
507 EVT EltTy = N->getValueType(0).getVectorElementType();
509 if (N->getOpcode() == ISD::BITCAST)
510 N = N->getOperand(0);
512 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
513 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
515 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
516 (!Signed && ImmValue.isIntN(ImmBitSize))) {
517 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
518 return true;
522 return false;
525 // Select constant vector splats.
526 bool MipsSEDAGToDAGISel::
527 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
528 return selectVSplatCommon(N, Imm, false, 1);
531 bool MipsSEDAGToDAGISel::
532 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
533 return selectVSplatCommon(N, Imm, false, 2);
536 bool MipsSEDAGToDAGISel::
537 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
538 return selectVSplatCommon(N, Imm, false, 3);
541 // Select constant vector splats.
542 bool MipsSEDAGToDAGISel::
543 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
544 return selectVSplatCommon(N, Imm, false, 4);
547 // Select constant vector splats.
548 bool MipsSEDAGToDAGISel::
549 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
550 return selectVSplatCommon(N, Imm, false, 5);
553 // Select constant vector splats.
554 bool MipsSEDAGToDAGISel::
555 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
556 return selectVSplatCommon(N, Imm, false, 6);
559 // Select constant vector splats.
560 bool MipsSEDAGToDAGISel::
561 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
562 return selectVSplatCommon(N, Imm, false, 8);
565 // Select constant vector splats.
566 bool MipsSEDAGToDAGISel::
567 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
568 return selectVSplatCommon(N, Imm, true, 5);
571 // Select constant vector splats whose value is a power of 2.
573 // In addition to the requirements of selectVSplat(), this function returns
574 // true and sets Imm if:
575 // * The splat value is the same width as the elements of the vector
576 // * The splat value is a power of two.
578 // This function looks through ISD::BITCAST nodes.
579 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
580 // sometimes a shuffle in big-endian mode.
581 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
582 APInt ImmValue;
583 EVT EltTy = N->getValueType(0).getVectorElementType();
585 if (N->getOpcode() == ISD::BITCAST)
586 N = N->getOperand(0);
588 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
589 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
590 int32_t Log2 = ImmValue.exactLogBase2();
592 if (Log2 != -1) {
593 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
594 return true;
598 return false;
601 // Select constant vector splats whose value only has a consecutive sequence
602 // of left-most bits set (e.g. 0b11...1100...00).
604 // In addition to the requirements of selectVSplat(), this function returns
605 // true and sets Imm if:
606 // * The splat value is the same width as the elements of the vector
607 // * The splat value is a consecutive sequence of left-most bits.
609 // This function looks through ISD::BITCAST nodes.
610 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
611 // sometimes a shuffle in big-endian mode.
612 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
613 APInt ImmValue;
614 EVT EltTy = N->getValueType(0).getVectorElementType();
616 if (N->getOpcode() == ISD::BITCAST)
617 N = N->getOperand(0);
619 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
620 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
621 // Extract the run of set bits starting with bit zero from the bitwise
622 // inverse of ImmValue, and test that the inverse of this is the same
623 // as the original value.
624 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
626 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
627 EltTy);
628 return true;
632 return false;
635 // Select constant vector splats whose value only has a consecutive sequence
636 // of right-most bits set (e.g. 0b00...0011...11).
638 // In addition to the requirements of selectVSplat(), this function returns
639 // true and sets Imm if:
640 // * The splat value is the same width as the elements of the vector
641 // * The splat value is a consecutive sequence of right-most bits.
643 // This function looks through ISD::BITCAST nodes.
644 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
645 // sometimes a shuffle in big-endian mode.
646 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
647 APInt ImmValue;
648 EVT EltTy = N->getValueType(0).getVectorElementType();
650 if (N->getOpcode() == ISD::BITCAST)
651 N = N->getOperand(0);
653 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
654 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
655 // Extract the run of set bits starting with bit zero, and test that the
656 // result is the same as the original value
657 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
658 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
659 EltTy);
660 return true;
664 return false;
667 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
668 SDValue &Imm) const {
669 APInt ImmValue;
670 EVT EltTy = N->getValueType(0).getVectorElementType();
672 if (N->getOpcode() == ISD::BITCAST)
673 N = N->getOperand(0);
675 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
676 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
677 int32_t Log2 = (~ImmValue).exactLogBase2();
679 if (Log2 != -1) {
680 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
681 return true;
685 return false;
688 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
689 unsigned Opcode = Node->getOpcode();
690 SDLoc DL(Node);
693 // Instruction Selection not handled by the auto-generated
694 // tablegen selection should be handled here.
696 switch(Opcode) {
697 default: break;
699 case Mips::PseudoD_SELECT_I:
700 case Mips::PseudoD_SELECT_I64: {
701 MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32;
702 SDValue cond = Node->getOperand(0);
703 SDValue Hi1 = Node->getOperand(1);
704 SDValue Lo1 = Node->getOperand(2);
705 SDValue Hi2 = Node->getOperand(3);
706 SDValue Lo2 = Node->getOperand(4);
708 SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2};
709 EVT NodeTys[] = {VT, VT};
710 ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit()
711 ? Mips::PseudoD_SELECT_I64
712 : Mips::PseudoD_SELECT_I,
713 DL, NodeTys, ops));
714 return true;
717 case ISD::ADDE: {
718 selectAddE(Node, DL);
719 return true;
722 case ISD::ConstantFP: {
723 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
724 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
725 if (Subtarget->isGP64bit()) {
726 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
727 Mips::ZERO_64, MVT::i64);
728 ReplaceNode(Node,
729 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
730 } else if (Subtarget->isFP64bit()) {
731 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
732 Mips::ZERO, MVT::i32);
733 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
734 MVT::f64, Zero, Zero));
735 } else {
736 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
737 Mips::ZERO, MVT::i32);
738 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
739 MVT::f64, Zero, Zero));
741 return true;
743 break;
746 case ISD::Constant: {
747 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
748 int64_t Imm = CN->getSExtValue();
749 unsigned Size = CN->getValueSizeInBits(0);
751 if (isInt<32>(Imm))
752 break;
754 MipsAnalyzeImmediate AnalyzeImm;
756 const MipsAnalyzeImmediate::InstSeq &Seq =
757 AnalyzeImm.Analyze(Imm, Size, false);
759 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
760 SDLoc DL(CN);
761 SDNode *RegOpnd;
762 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
763 DL, MVT::i64);
765 // The first instruction can be a LUi which is different from other
766 // instructions (ADDiu, ORI and SLL) in that it does not have a register
767 // operand.
768 if (Inst->Opc == Mips::LUi64)
769 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
770 else
771 RegOpnd =
772 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
773 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
774 ImmOpnd);
776 // The remaining instructions in the sequence are handled here.
777 for (++Inst; Inst != Seq.end(); ++Inst) {
778 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
779 MVT::i64);
780 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
781 SDValue(RegOpnd, 0), ImmOpnd);
784 ReplaceNode(Node, RegOpnd);
785 return true;
788 case ISD::INTRINSIC_W_CHAIN: {
789 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
790 default:
791 break;
793 case Intrinsic::mips_cfcmsa: {
794 SDValue ChainIn = Node->getOperand(0);
795 SDValue RegIdx = Node->getOperand(2);
796 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
797 getMSACtrlReg(RegIdx), MVT::i32);
798 ReplaceNode(Node, Reg.getNode());
799 return true;
802 break;
805 case ISD::INTRINSIC_WO_CHAIN: {
806 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
807 default:
808 break;
810 case Intrinsic::mips_move_v:
811 // Like an assignment but will always produce a move.v even if
812 // unnecessary.
813 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
814 Node->getValueType(0),
815 Node->getOperand(1)));
816 return true;
818 break;
821 case ISD::INTRINSIC_VOID: {
822 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
823 default:
824 break;
826 case Intrinsic::mips_ctcmsa: {
827 SDValue ChainIn = Node->getOperand(0);
828 SDValue RegIdx = Node->getOperand(2);
829 SDValue Value = Node->getOperand(3);
830 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
831 getMSACtrlReg(RegIdx), Value);
832 ReplaceNode(Node, ChainOut.getNode());
833 return true;
836 break;
839 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
840 // to be done in this fashion so that we respect the differences between
841 // dins and dinsm, as the difference is that the size operand has the range
842 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
843 // means SelectionDAGISel would have to test all the operands at once to
844 // match the instruction.
845 case MipsISD::Ins: {
847 // Sanity checking for the node operands.
848 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
849 return false;
851 if (Node->getNumOperands() != 4)
852 return false;
854 if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
855 Node->getOperand(2)->getOpcode() != ISD::Constant)
856 return false;
858 MVT ResTy = Node->getSimpleValueType(0);
859 uint64_t Pos = Node->getConstantOperandVal(1);
860 uint64_t Size = Node->getConstantOperandVal(2);
862 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
863 if (!Size)
864 return false;
866 if (Pos + Size > 64)
867 return false;
869 if (ResTy != MVT::i32 && ResTy != MVT::i64)
870 return false;
872 unsigned Opcode = 0;
873 if (ResTy == MVT::i32) {
874 if (Pos + Size <= 32)
875 Opcode = Mips::INS;
876 } else {
877 if (Pos + Size <= 32)
878 Opcode = Mips::DINS;
879 else if (Pos < 32 && 1 < Size)
880 Opcode = Mips::DINSM;
881 else
882 Opcode = Mips::DINSU;
885 if (Opcode) {
886 SDValue Ops[4] = {
887 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
888 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
890 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
891 return true;
894 return false;
897 case MipsISD::ThreadPointer: {
898 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
899 unsigned RdhwrOpc, DestReg;
901 if (PtrVT == MVT::i32) {
902 RdhwrOpc = Mips::RDHWR;
903 DestReg = Mips::V1;
904 } else {
905 RdhwrOpc = Mips::RDHWR64;
906 DestReg = Mips::V1_64;
909 SDNode *Rdhwr =
910 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0),
911 CurDAG->getRegister(Mips::HWR29, MVT::i32),
912 CurDAG->getTargetConstant(0, DL, MVT::i32));
913 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
914 SDValue(Rdhwr, 0));
915 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
916 ReplaceNode(Node, ResNode.getNode());
917 return true;
920 case ISD::BUILD_VECTOR: {
921 // Select appropriate ldi.[bhwd] instructions for constant splats of
922 // 128-bit when MSA is enabled. Fixup any register class mismatches that
923 // occur as a result.
925 // This allows the compiler to use a wider range of immediates than would
926 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
927 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
928 // 0x01010101 } without using a constant pool. This would be sub-optimal
929 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
930 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
931 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
933 const MipsABIInfo &ABI =
934 static_cast<const MipsTargetMachine &>(TM).getABI();
936 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
937 APInt SplatValue, SplatUndef;
938 unsigned SplatBitSize;
939 bool HasAnyUndefs;
940 unsigned LdiOp;
941 EVT ResVecTy = BVN->getValueType(0);
942 EVT ViaVecTy;
944 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
945 return false;
947 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
948 HasAnyUndefs, 8,
949 !Subtarget->isLittle()))
950 return false;
952 switch (SplatBitSize) {
953 default:
954 return false;
955 case 8:
956 LdiOp = Mips::LDI_B;
957 ViaVecTy = MVT::v16i8;
958 break;
959 case 16:
960 LdiOp = Mips::LDI_H;
961 ViaVecTy = MVT::v8i16;
962 break;
963 case 32:
964 LdiOp = Mips::LDI_W;
965 ViaVecTy = MVT::v4i32;
966 break;
967 case 64:
968 LdiOp = Mips::LDI_D;
969 ViaVecTy = MVT::v2i64;
970 break;
973 SDNode *Res;
975 // If we have a signed 10 bit integer, we can splat it directly.
977 // If we have something bigger we can synthesize the value into a GPR and
978 // splat from there.
979 if (SplatValue.isSignedIntN(10)) {
980 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
981 ViaVecTy.getVectorElementType());
983 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
984 } else if (SplatValue.isSignedIntN(16) &&
985 ((ABI.IsO32() && SplatBitSize < 64) ||
986 (ABI.IsN32() || ABI.IsN64()))) {
987 // Only handle signed 16 bit values when the element size is GPR width.
988 // MIPS64 can handle all the cases but MIPS32 would need to handle
989 // negative cases specifically here. Instead, handle those cases as
990 // 64bit values.
992 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
993 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
994 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
995 SDValue ZeroVal = CurDAG->getRegister(
996 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
998 const unsigned FILLOp =
999 SplatBitSize == 16
1000 ? Mips::FILL_H
1001 : (SplatBitSize == 32 ? Mips::FILL_W
1002 : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1004 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1005 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1006 "Attempting to use fill.d on MIPS32!");
1008 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1009 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1011 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1012 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1014 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1015 // Only handle the cases where the splat size agrees with the size
1016 // of the SplatValue here.
1017 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1018 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1019 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1021 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1022 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1024 if (Hi)
1025 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1027 if (Lo)
1028 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1029 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1031 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1032 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1034 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1035 (ABI.IsN32() || ABI.IsN64())) {
1036 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1037 // integers due to having 64bit registers. lui will cause the necessary
1038 // zero/sign extension.
1039 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1040 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1041 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1043 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1044 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1046 if (Hi)
1047 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1049 if (Lo)
1050 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1051 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1053 Res = CurDAG->getMachineNode(
1054 Mips::SUBREG_TO_REG, DL, MVT::i64,
1055 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1056 SDValue(Res, 0),
1057 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1059 Res =
1060 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1062 } else if (SplatValue.isSignedIntN(64)) {
1063 // If we have a 64 bit Splat value, we perform a similar sequence to the
1064 // above:
1066 // MIPS32: MIPS64:
1067 // lui $res, %highest(val) lui $res, %highest(val)
1068 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1069 // lui $res2, %hi(val) lui $res2, %hi(val)
1070 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1071 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1072 // $res4 = insert.w $res3[1], $res fill.d $res
1073 // splat.d $res4, 0
1075 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1076 // having to materialize the value by shifts and ors.
1078 // FIXME: Implement the preferred sequence for MIPS64R6:
1080 // MIPS64R6:
1081 // ori $res, $zero, %lo(val)
1082 // daui $res, $res, %hi(val)
1083 // dahi $res, $res, %higher(val)
1084 // dati $res, $res, %highest(cal)
1085 // fill.d $res
1088 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1089 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1090 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1091 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1093 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1094 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1095 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1096 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1097 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1099 // Independent of whether we're targeting MIPS64 or not, the basic
1100 // operations are the same. Also, directly use the $zero register if
1101 // the 16 bit chunk is zero.
1103 // For optimization purposes we always synthesize the splat value as
1104 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1105 // just before combining the values with dinsu to produce an i64. This
1106 // enables SelectionDAG to aggressively share components of splat values
1107 // where possible.
1109 // FIXME: This is the general constant synthesis problem. This code
1110 // should be factored out into a class shared between all the
1111 // classes that need it. Specifically, for a splat size of 64
1112 // bits that's a negative number we can do better than LUi/ORi
1113 // for the upper 32bits.
1115 if (Hi)
1116 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1118 if (Lo)
1119 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1120 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1122 SDNode *HiRes;
1123 if (Highest)
1124 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1126 if (Higher)
1127 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1128 Highest ? SDValue(HiRes, 0) : ZeroVal,
1129 HigherVal);
1132 if (ABI.IsO32()) {
1133 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1134 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1136 Res = CurDAG->getMachineNode(
1137 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1138 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1139 CurDAG->getTargetConstant(1, DL, MVT::i32));
1141 const TargetLowering *TLI = getTargetLowering();
1142 const TargetRegisterClass *RC =
1143 TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1145 Res = CurDAG->getMachineNode(
1146 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1147 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1149 Res = CurDAG->getMachineNode(
1150 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1151 CurDAG->getTargetConstant(0, DL, MVT::i32));
1152 } else if (ABI.IsN64() || ABI.IsN32()) {
1154 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1155 const bool HiResNonZero = Highest || Higher;
1156 const bool ResNonZero = Hi || Lo;
1158 if (HiResNonZero)
1159 HiRes = CurDAG->getMachineNode(
1160 Mips::SUBREG_TO_REG, DL, MVT::i64,
1161 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1162 SDValue(HiRes, 0),
1163 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1165 if (ResNonZero)
1166 Res = CurDAG->getMachineNode(
1167 Mips::SUBREG_TO_REG, DL, MVT::i64,
1168 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1169 SDValue(Res, 0),
1170 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1172 // We have 3 cases:
1173 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1174 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1175 // Both are non zero => dinsu Res, HiRes, 32, 32
1177 // The obvious "missing" case is when both are zero, but that case is
1178 // handled by the ldi case.
1179 if (ResNonZero) {
1180 IntegerType *Int32Ty =
1181 IntegerType::get(MF->getFunction().getContext(), 32);
1182 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1183 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1184 CurDAG->getConstant(*Const32, DL, MVT::i32),
1185 CurDAG->getConstant(*Const32, DL, MVT::i32),
1186 SDValue(Res, 0)};
1188 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1189 } else if (HiResNonZero) {
1190 Res = CurDAG->getMachineNode(
1191 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1192 CurDAG->getTargetConstant(0, DL, MVT::i32));
1193 } else
1194 llvm_unreachable(
1195 "Zero splat value handled by non-zero 64bit splat synthesis!");
1197 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1198 } else
1199 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1201 } else
1202 return false;
1204 if (ResVecTy != ViaVecTy) {
1205 // If LdiOp is writing to a different register class to ResVecTy, then
1206 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1207 // since the source and destination register sets contain the same
1208 // registers.
1209 const TargetLowering *TLI = getTargetLowering();
1210 MVT ResVecTySimple = ResVecTy.getSimpleVT();
1211 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1212 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1213 ResVecTy, SDValue(Res, 0),
1214 CurDAG->getTargetConstant(RC->getID(), DL,
1215 MVT::i32));
1218 ReplaceNode(Node, Res);
1219 return true;
1224 return false;
1227 bool MipsSEDAGToDAGISel::
1228 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1229 std::vector<SDValue> &OutOps) {
1230 SDValue Base, Offset;
1232 switch(ConstraintID) {
1233 default:
1234 llvm_unreachable("Unexpected asm memory constraint");
1235 // All memory constraints can at least accept raw pointers.
1236 case InlineAsm::Constraint_i:
1237 OutOps.push_back(Op);
1238 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1239 return false;
1240 case InlineAsm::Constraint_m:
1241 case InlineAsm::Constraint_o:
1242 if (selectAddrRegImm16(Op, Base, Offset)) {
1243 OutOps.push_back(Base);
1244 OutOps.push_back(Offset);
1245 return false;
1247 OutOps.push_back(Op);
1248 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1249 return false;
1250 case InlineAsm::Constraint_R:
1251 // The 'R' constraint is supposed to be much more complicated than this.
1252 // However, it's becoming less useful due to architectural changes and
1253 // ought to be replaced by other constraints such as 'ZC'.
1254 // For now, support 9-bit signed offsets which is supportable by all
1255 // subtargets for all instructions.
1256 if (selectAddrRegImm9(Op, Base, Offset)) {
1257 OutOps.push_back(Base);
1258 OutOps.push_back(Offset);
1259 return false;
1261 OutOps.push_back(Op);
1262 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1263 return false;
1264 case InlineAsm::Constraint_ZC:
1265 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1266 // given subtarget.
1267 if (Subtarget->inMicroMipsMode()) {
1268 // On microMIPS, they can handle 12-bit offsets.
1269 if (selectAddrRegImm12(Op, Base, Offset)) {
1270 OutOps.push_back(Base);
1271 OutOps.push_back(Offset);
1272 return false;
1274 } else if (Subtarget->hasMips32r6()) {
1275 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1276 if (selectAddrRegImm9(Op, Base, Offset)) {
1277 OutOps.push_back(Base);
1278 OutOps.push_back(Offset);
1279 return false;
1281 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1282 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1283 OutOps.push_back(Base);
1284 OutOps.push_back(Offset);
1285 return false;
1287 // In all cases, 0-bit offsets are acceptable.
1288 OutOps.push_back(Op);
1289 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1290 return false;
1292 return true;
1295 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1296 CodeGenOpt::Level OptLevel) {
1297 return new MipsSEDAGToDAGISel(TM, OptLevel);