Re-land [openmp] Fix warnings when building on Windows with latest MSVC or Clang...
[llvm-project.git] / openmp / runtime / src / kmp_affinity.cpp
blob6a41d34b02372935b11779d2fb03db27e5467b58
1 /*
2 * kmp_affinity.cpp -- affinity management
3 */
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 #include <ctype.h>
31 // The machine topology
32 kmp_topology_t *__kmp_topology = nullptr;
33 // KMP_HW_SUBSET environment variable
34 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
36 // Store the real or imagined machine hierarchy here
37 static hierarchy_info machine_hierarchy;
39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
41 #if KMP_AFFINITY_SUPPORTED
42 // Helper class to see if place lists further restrict the fullMask
43 class kmp_full_mask_modifier_t {
44 kmp_affin_mask_t *mask;
46 public:
47 kmp_full_mask_modifier_t() {
48 KMP_CPU_ALLOC(mask);
49 KMP_CPU_ZERO(mask);
51 ~kmp_full_mask_modifier_t() {
52 KMP_CPU_FREE(mask);
53 mask = nullptr;
55 void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); }
56 // If the new full mask is different from the current full mask,
57 // then switch them. Returns true if full mask was affected, false otherwise.
58 bool restrict_to_mask() {
59 // See if the new mask further restricts or changes the full mask
60 if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask))
61 return false;
62 return __kmp_topology->restrict_to_mask(mask);
66 static inline const char *
67 __kmp_get_affinity_env_var(const kmp_affinity_t &affinity,
68 bool for_binding = false) {
69 if (affinity.flags.omp_places) {
70 if (for_binding)
71 return "OMP_PROC_BIND";
72 return "OMP_PLACES";
74 return affinity.env_var;
76 #endif // KMP_AFFINITY_SUPPORTED
78 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
79 kmp_uint32 depth;
80 // The test below is true if affinity is available, but set to "none". Need to
81 // init on first use of hierarchical barrier.
82 if (TCR_1(machine_hierarchy.uninitialized))
83 machine_hierarchy.init(nproc);
85 // Adjust the hierarchy in case num threads exceeds original
86 if (nproc > machine_hierarchy.base_num_threads)
87 machine_hierarchy.resize(nproc);
89 depth = machine_hierarchy.depth;
90 KMP_DEBUG_ASSERT(depth > 0);
92 thr_bar->depth = depth;
93 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
94 &(thr_bar->base_leaf_kids));
95 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
98 static int nCoresPerPkg, nPackages;
99 static int __kmp_nThreadsPerCore;
100 #ifndef KMP_DFLT_NTH_CORES
101 static int __kmp_ncores;
102 #endif
104 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
105 switch (type) {
106 case KMP_HW_SOCKET:
107 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
108 case KMP_HW_DIE:
109 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
110 case KMP_HW_MODULE:
111 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
112 case KMP_HW_TILE:
113 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
114 case KMP_HW_NUMA:
115 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
116 case KMP_HW_L3:
117 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
118 case KMP_HW_L2:
119 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
120 case KMP_HW_L1:
121 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
122 case KMP_HW_LLC:
123 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
124 case KMP_HW_CORE:
125 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
126 case KMP_HW_THREAD:
127 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
128 case KMP_HW_PROC_GROUP:
129 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
130 case KMP_HW_UNKNOWN:
131 case KMP_HW_LAST:
132 return KMP_I18N_STR(Unknown);
134 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
135 KMP_BUILTIN_UNREACHABLE;
138 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
139 switch (type) {
140 case KMP_HW_SOCKET:
141 return ((plural) ? "sockets" : "socket");
142 case KMP_HW_DIE:
143 return ((plural) ? "dice" : "die");
144 case KMP_HW_MODULE:
145 return ((plural) ? "modules" : "module");
146 case KMP_HW_TILE:
147 return ((plural) ? "tiles" : "tile");
148 case KMP_HW_NUMA:
149 return ((plural) ? "numa_domains" : "numa_domain");
150 case KMP_HW_L3:
151 return ((plural) ? "l3_caches" : "l3_cache");
152 case KMP_HW_L2:
153 return ((plural) ? "l2_caches" : "l2_cache");
154 case KMP_HW_L1:
155 return ((plural) ? "l1_caches" : "l1_cache");
156 case KMP_HW_LLC:
157 return ((plural) ? "ll_caches" : "ll_cache");
158 case KMP_HW_CORE:
159 return ((plural) ? "cores" : "core");
160 case KMP_HW_THREAD:
161 return ((plural) ? "threads" : "thread");
162 case KMP_HW_PROC_GROUP:
163 return ((plural) ? "proc_groups" : "proc_group");
164 case KMP_HW_UNKNOWN:
165 case KMP_HW_LAST:
166 return ((plural) ? "unknowns" : "unknown");
168 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
169 KMP_BUILTIN_UNREACHABLE;
172 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
173 switch (type) {
174 case KMP_HW_CORE_TYPE_UNKNOWN:
175 case KMP_HW_MAX_NUM_CORE_TYPES:
176 return "unknown";
177 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
178 case KMP_HW_CORE_TYPE_ATOM:
179 return "Intel Atom(R) processor";
180 case KMP_HW_CORE_TYPE_CORE:
181 return "Intel(R) Core(TM) processor";
182 #endif
184 KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration");
185 KMP_BUILTIN_UNREACHABLE;
188 #if KMP_AFFINITY_SUPPORTED
189 // If affinity is supported, check the affinity
190 // verbose and warning flags before printing warning
191 #define KMP_AFF_WARNING(s, ...) \
192 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \
193 KMP_WARNING(__VA_ARGS__); \
195 #else
196 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
197 #endif
199 ////////////////////////////////////////////////////////////////////////////////
200 // kmp_hw_thread_t methods
201 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
202 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
203 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
204 int depth = __kmp_topology->get_depth();
205 for (int level = 0; level < depth; ++level) {
206 if (ahwthread->ids[level] < bhwthread->ids[level])
207 return -1;
208 else if (ahwthread->ids[level] > bhwthread->ids[level])
209 return 1;
211 if (ahwthread->os_id < bhwthread->os_id)
212 return -1;
213 else if (ahwthread->os_id > bhwthread->os_id)
214 return 1;
215 return 0;
218 #if KMP_AFFINITY_SUPPORTED
219 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
220 int i;
221 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
222 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
223 int depth = __kmp_topology->get_depth();
224 int compact = __kmp_topology->compact;
225 KMP_DEBUG_ASSERT(compact >= 0);
226 KMP_DEBUG_ASSERT(compact <= depth);
227 for (i = 0; i < compact; i++) {
228 int j = depth - i - 1;
229 if (aa->sub_ids[j] < bb->sub_ids[j])
230 return -1;
231 if (aa->sub_ids[j] > bb->sub_ids[j])
232 return 1;
234 for (; i < depth; i++) {
235 int j = i - compact;
236 if (aa->sub_ids[j] < bb->sub_ids[j])
237 return -1;
238 if (aa->sub_ids[j] > bb->sub_ids[j])
239 return 1;
241 return 0;
243 #endif
245 void kmp_hw_thread_t::print() const {
246 int depth = __kmp_topology->get_depth();
247 printf("%4d ", os_id);
248 for (int i = 0; i < depth; ++i) {
249 printf("%4d ", ids[i]);
251 if (attrs) {
252 if (attrs.is_core_type_valid())
253 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
254 if (attrs.is_core_eff_valid())
255 printf(" (eff=%d)", attrs.get_core_eff());
257 if (leader)
258 printf(" (leader)");
259 printf("\n");
262 ////////////////////////////////////////////////////////////////////////////////
263 // kmp_topology_t methods
265 // Add a layer to the topology based on the ids. Assume the topology
266 // is perfectly nested (i.e., so no object has more than one parent)
267 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
268 // Figure out where the layer should go by comparing the ids of the current
269 // layers with the new ids
270 int target_layer;
271 int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
272 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
274 // Start from the highest layer and work down to find target layer
275 // If new layer is equal to another layer then put the new layer above
276 for (target_layer = 0; target_layer < depth; ++target_layer) {
277 bool layers_equal = true;
278 bool strictly_above_target_layer = false;
279 for (int i = 0; i < num_hw_threads; ++i) {
280 int id = hw_threads[i].ids[target_layer];
281 int new_id = ids[i];
282 if (id != previous_id && new_id == previous_new_id) {
283 // Found the layer we are strictly above
284 strictly_above_target_layer = true;
285 layers_equal = false;
286 break;
287 } else if (id == previous_id && new_id != previous_new_id) {
288 // Found a layer we are below. Move to next layer and check.
289 layers_equal = false;
290 break;
292 previous_id = id;
293 previous_new_id = new_id;
295 if (strictly_above_target_layer || layers_equal)
296 break;
299 // Found the layer we are above. Now move everything to accommodate the new
300 // layer. And put the new ids and type into the topology.
301 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
302 types[j] = types[i];
303 types[target_layer] = type;
304 for (int k = 0; k < num_hw_threads; ++k) {
305 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
306 hw_threads[k].ids[j] = hw_threads[k].ids[i];
307 hw_threads[k].ids[target_layer] = ids[k];
309 equivalent[type] = type;
310 depth++;
313 #if KMP_GROUP_AFFINITY
314 // Insert the Windows Processor Group structure into the topology
315 void kmp_topology_t::_insert_windows_proc_groups() {
316 // Do not insert the processor group structure for a single group
317 if (__kmp_num_proc_groups == 1)
318 return;
319 kmp_affin_mask_t *mask;
320 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
321 KMP_CPU_ALLOC(mask);
322 for (int i = 0; i < num_hw_threads; ++i) {
323 KMP_CPU_ZERO(mask);
324 KMP_CPU_SET(hw_threads[i].os_id, mask);
325 ids[i] = __kmp_get_proc_group(mask);
327 KMP_CPU_FREE(mask);
328 _insert_layer(KMP_HW_PROC_GROUP, ids);
329 __kmp_free(ids);
331 #endif
333 // Remove layers that don't add information to the topology.
334 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
335 void kmp_topology_t::_remove_radix1_layers() {
336 int preference[KMP_HW_LAST];
337 int top_index1, top_index2;
338 // Set up preference associative array
339 preference[KMP_HW_SOCKET] = 110;
340 preference[KMP_HW_PROC_GROUP] = 100;
341 preference[KMP_HW_CORE] = 95;
342 preference[KMP_HW_THREAD] = 90;
343 preference[KMP_HW_NUMA] = 85;
344 preference[KMP_HW_DIE] = 80;
345 preference[KMP_HW_TILE] = 75;
346 preference[KMP_HW_MODULE] = 73;
347 preference[KMP_HW_L3] = 70;
348 preference[KMP_HW_L2] = 65;
349 preference[KMP_HW_L1] = 60;
350 preference[KMP_HW_LLC] = 5;
351 top_index1 = 0;
352 top_index2 = 1;
353 while (top_index1 < depth - 1 && top_index2 < depth) {
354 kmp_hw_t type1 = types[top_index1];
355 kmp_hw_t type2 = types[top_index2];
356 KMP_ASSERT_VALID_HW_TYPE(type1);
357 KMP_ASSERT_VALID_HW_TYPE(type2);
358 // Do not allow the three main topology levels (sockets, cores, threads) to
359 // be compacted down
360 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
361 type1 == KMP_HW_SOCKET) &&
362 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
363 type2 == KMP_HW_SOCKET)) {
364 top_index1 = top_index2++;
365 continue;
367 bool radix1 = true;
368 bool all_same = true;
369 int id1 = hw_threads[0].ids[top_index1];
370 int id2 = hw_threads[0].ids[top_index2];
371 int pref1 = preference[type1];
372 int pref2 = preference[type2];
373 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
374 if (hw_threads[hwidx].ids[top_index1] == id1 &&
375 hw_threads[hwidx].ids[top_index2] != id2) {
376 radix1 = false;
377 break;
379 if (hw_threads[hwidx].ids[top_index2] != id2)
380 all_same = false;
381 id1 = hw_threads[hwidx].ids[top_index1];
382 id2 = hw_threads[hwidx].ids[top_index2];
384 if (radix1) {
385 // Select the layer to remove based on preference
386 kmp_hw_t remove_type, keep_type;
387 int remove_layer, remove_layer_ids;
388 if (pref1 > pref2) {
389 remove_type = type2;
390 remove_layer = remove_layer_ids = top_index2;
391 keep_type = type1;
392 } else {
393 remove_type = type1;
394 remove_layer = remove_layer_ids = top_index1;
395 keep_type = type2;
397 // If all the indexes for the second (deeper) layer are the same.
398 // e.g., all are zero, then make sure to keep the first layer's ids
399 if (all_same)
400 remove_layer_ids = top_index2;
401 // Remove radix one type by setting the equivalence, removing the id from
402 // the hw threads and removing the layer from types and depth
403 set_equivalent_type(remove_type, keep_type);
404 for (int idx = 0; idx < num_hw_threads; ++idx) {
405 kmp_hw_thread_t &hw_thread = hw_threads[idx];
406 for (int d = remove_layer_ids; d < depth - 1; ++d)
407 hw_thread.ids[d] = hw_thread.ids[d + 1];
409 for (int idx = remove_layer; idx < depth - 1; ++idx)
410 types[idx] = types[idx + 1];
411 depth--;
412 } else {
413 top_index1 = top_index2++;
416 KMP_ASSERT(depth > 0);
419 void kmp_topology_t::_set_last_level_cache() {
420 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
421 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
422 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
423 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
424 #if KMP_MIC_SUPPORTED
425 else if (__kmp_mic_type == mic3) {
426 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
427 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
428 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
429 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
430 // L2/Tile wasn't detected so just say L1
431 else
432 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
434 #endif
435 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
436 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
437 // Fallback is to set last level cache to socket or core
438 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
439 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
440 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
441 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
442 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
444 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
447 // Gather the count of each topology layer and the ratio
448 void kmp_topology_t::_gather_enumeration_information() {
449 int previous_id[KMP_HW_LAST];
450 int max[KMP_HW_LAST];
452 for (int i = 0; i < depth; ++i) {
453 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
454 max[i] = 0;
455 count[i] = 0;
456 ratio[i] = 0;
458 int core_level = get_level(KMP_HW_CORE);
459 for (int i = 0; i < num_hw_threads; ++i) {
460 kmp_hw_thread_t &hw_thread = hw_threads[i];
461 for (int layer = 0; layer < depth; ++layer) {
462 int id = hw_thread.ids[layer];
463 if (id != previous_id[layer]) {
464 // Add an additional increment to each count
465 for (int l = layer; l < depth; ++l)
466 count[l]++;
467 // Keep track of topology layer ratio statistics
468 max[layer]++;
469 for (int l = layer + 1; l < depth; ++l) {
470 if (max[l] > ratio[l])
471 ratio[l] = max[l];
472 max[l] = 1;
474 // Figure out the number of different core types
475 // and efficiencies for hybrid CPUs
476 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
477 if (hw_thread.attrs.is_core_eff_valid() &&
478 hw_thread.attrs.core_eff >= num_core_efficiencies) {
479 // Because efficiencies can range from 0 to max efficiency - 1,
480 // the number of efficiencies is max efficiency + 1
481 num_core_efficiencies = hw_thread.attrs.core_eff + 1;
483 if (hw_thread.attrs.is_core_type_valid()) {
484 bool found = false;
485 for (int j = 0; j < num_core_types; ++j) {
486 if (hw_thread.attrs.get_core_type() == core_types[j]) {
487 found = true;
488 break;
491 if (!found) {
492 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
493 core_types[num_core_types++] = hw_thread.attrs.get_core_type();
497 break;
500 for (int layer = 0; layer < depth; ++layer) {
501 previous_id[layer] = hw_thread.ids[layer];
504 for (int layer = 0; layer < depth; ++layer) {
505 if (max[layer] > ratio[layer])
506 ratio[layer] = max[layer];
510 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
511 int above_level,
512 bool find_all) const {
513 int current, current_max;
514 int previous_id[KMP_HW_LAST];
515 for (int i = 0; i < depth; ++i)
516 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
517 int core_level = get_level(KMP_HW_CORE);
518 if (find_all)
519 above_level = -1;
520 KMP_ASSERT(above_level < core_level);
521 current_max = 0;
522 current = 0;
523 for (int i = 0; i < num_hw_threads; ++i) {
524 kmp_hw_thread_t &hw_thread = hw_threads[i];
525 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
526 if (current > current_max)
527 current_max = current;
528 current = hw_thread.attrs.contains(attr);
529 } else {
530 for (int level = above_level + 1; level <= core_level; ++level) {
531 if (hw_thread.ids[level] != previous_id[level]) {
532 if (hw_thread.attrs.contains(attr))
533 current++;
534 break;
538 for (int level = 0; level < depth; ++level)
539 previous_id[level] = hw_thread.ids[level];
541 if (current > current_max)
542 current_max = current;
543 return current_max;
546 // Find out if the topology is uniform
547 void kmp_topology_t::_discover_uniformity() {
548 int num = 1;
549 for (int level = 0; level < depth; ++level)
550 num *= ratio[level];
551 flags.uniform = (num == count[depth - 1]);
554 // Set all the sub_ids for each hardware thread
555 void kmp_topology_t::_set_sub_ids() {
556 int previous_id[KMP_HW_LAST];
557 int sub_id[KMP_HW_LAST];
559 for (int i = 0; i < depth; ++i) {
560 previous_id[i] = -1;
561 sub_id[i] = -1;
563 for (int i = 0; i < num_hw_threads; ++i) {
564 kmp_hw_thread_t &hw_thread = hw_threads[i];
565 // Setup the sub_id
566 for (int j = 0; j < depth; ++j) {
567 if (hw_thread.ids[j] != previous_id[j]) {
568 sub_id[j]++;
569 for (int k = j + 1; k < depth; ++k) {
570 sub_id[k] = 0;
572 break;
575 // Set previous_id
576 for (int j = 0; j < depth; ++j) {
577 previous_id[j] = hw_thread.ids[j];
579 // Set the sub_ids field
580 for (int j = 0; j < depth; ++j) {
581 hw_thread.sub_ids[j] = sub_id[j];
586 void kmp_topology_t::_set_globals() {
587 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
588 int core_level, thread_level, package_level;
589 package_level = get_level(KMP_HW_SOCKET);
590 #if KMP_GROUP_AFFINITY
591 if (package_level == -1)
592 package_level = get_level(KMP_HW_PROC_GROUP);
593 #endif
594 core_level = get_level(KMP_HW_CORE);
595 thread_level = get_level(KMP_HW_THREAD);
597 KMP_ASSERT(core_level != -1);
598 KMP_ASSERT(thread_level != -1);
600 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
601 if (package_level != -1) {
602 nCoresPerPkg = calculate_ratio(core_level, package_level);
603 nPackages = get_count(package_level);
604 } else {
605 // assume one socket
606 nCoresPerPkg = get_count(core_level);
607 nPackages = 1;
609 #ifndef KMP_DFLT_NTH_CORES
610 __kmp_ncores = get_count(core_level);
611 #endif
614 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
615 const kmp_hw_t *types) {
616 kmp_topology_t *retval;
617 // Allocate all data in one large allocation
618 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
619 sizeof(int) * (size_t)KMP_HW_LAST * 3;
620 char *bytes = (char *)__kmp_allocate(size);
621 retval = (kmp_topology_t *)bytes;
622 if (nproc > 0) {
623 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
624 } else {
625 retval->hw_threads = nullptr;
627 retval->num_hw_threads = nproc;
628 retval->depth = ndepth;
629 int *arr =
630 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
631 retval->types = (kmp_hw_t *)arr;
632 retval->ratio = arr + (size_t)KMP_HW_LAST;
633 retval->count = arr + 2 * (size_t)KMP_HW_LAST;
634 retval->num_core_efficiencies = 0;
635 retval->num_core_types = 0;
636 retval->compact = 0;
637 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
638 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
639 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
640 for (int i = 0; i < ndepth; ++i) {
641 retval->types[i] = types[i];
642 retval->equivalent[types[i]] = types[i];
644 return retval;
647 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
648 if (topology)
649 __kmp_free(topology);
652 bool kmp_topology_t::check_ids() const {
653 // Assume ids have been sorted
654 if (num_hw_threads == 0)
655 return true;
656 for (int i = 1; i < num_hw_threads; ++i) {
657 kmp_hw_thread_t &current_thread = hw_threads[i];
658 kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
659 bool unique = false;
660 for (int j = 0; j < depth; ++j) {
661 if (previous_thread.ids[j] != current_thread.ids[j]) {
662 unique = true;
663 break;
666 if (unique)
667 continue;
668 return false;
670 return true;
673 void kmp_topology_t::dump() const {
674 printf("***********************\n");
675 printf("*** __kmp_topology: ***\n");
676 printf("***********************\n");
677 printf("* depth: %d\n", depth);
679 printf("* types: ");
680 for (int i = 0; i < depth; ++i)
681 printf("%15s ", __kmp_hw_get_keyword(types[i]));
682 printf("\n");
684 printf("* ratio: ");
685 for (int i = 0; i < depth; ++i) {
686 printf("%15d ", ratio[i]);
688 printf("\n");
690 printf("* count: ");
691 for (int i = 0; i < depth; ++i) {
692 printf("%15d ", count[i]);
694 printf("\n");
696 printf("* num_core_eff: %d\n", num_core_efficiencies);
697 printf("* num_core_types: %d\n", num_core_types);
698 printf("* core_types: ");
699 for (int i = 0; i < num_core_types; ++i)
700 printf("%3d ", core_types[i]);
701 printf("\n");
703 printf("* equivalent map:\n");
704 KMP_FOREACH_HW_TYPE(i) {
705 const char *key = __kmp_hw_get_keyword(i);
706 const char *value = __kmp_hw_get_keyword(equivalent[i]);
707 printf("%-15s -> %-15s\n", key, value);
710 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
712 printf("* num_hw_threads: %d\n", num_hw_threads);
713 printf("* hw_threads:\n");
714 for (int i = 0; i < num_hw_threads; ++i) {
715 hw_threads[i].print();
717 printf("***********************\n");
720 void kmp_topology_t::print(const char *env_var) const {
721 kmp_str_buf_t buf;
722 int print_types_depth;
723 __kmp_str_buf_init(&buf);
724 kmp_hw_t print_types[KMP_HW_LAST + 2];
726 // Num Available Threads
727 if (num_hw_threads) {
728 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
729 } else {
730 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
733 // Uniform or not
734 if (is_uniform()) {
735 KMP_INFORM(Uniform, env_var);
736 } else {
737 KMP_INFORM(NonUniform, env_var);
740 // Equivalent types
741 KMP_FOREACH_HW_TYPE(type) {
742 kmp_hw_t eq_type = equivalent[type];
743 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
744 KMP_INFORM(AffEqualTopologyTypes, env_var,
745 __kmp_hw_get_catalog_string(type),
746 __kmp_hw_get_catalog_string(eq_type));
750 // Quick topology
751 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
752 // Create a print types array that always guarantees printing
753 // the core and thread level
754 print_types_depth = 0;
755 for (int level = 0; level < depth; ++level)
756 print_types[print_types_depth++] = types[level];
757 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
758 // Force in the core level for quick topology
759 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
760 // Force core before thread e.g., 1 socket X 2 threads/socket
761 // becomes 1 socket X 1 core/socket X 2 threads/socket
762 print_types[print_types_depth - 1] = KMP_HW_CORE;
763 print_types[print_types_depth++] = KMP_HW_THREAD;
764 } else {
765 print_types[print_types_depth++] = KMP_HW_CORE;
768 // Always put threads at very end of quick topology
769 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
770 print_types[print_types_depth++] = KMP_HW_THREAD;
772 __kmp_str_buf_clear(&buf);
773 kmp_hw_t numerator_type;
774 kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
775 int core_level = get_level(KMP_HW_CORE);
776 int ncores = get_count(core_level);
778 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
779 int c;
780 bool plural;
781 numerator_type = print_types[plevel];
782 KMP_ASSERT_VALID_HW_TYPE(numerator_type);
783 if (equivalent[numerator_type] != numerator_type)
784 c = 1;
785 else
786 c = get_ratio(level++);
787 plural = (c > 1);
788 if (plevel == 0) {
789 __kmp_str_buf_print(&buf, "%d %s", c,
790 __kmp_hw_get_catalog_string(numerator_type, plural));
791 } else {
792 __kmp_str_buf_print(&buf, " x %d %s/%s", c,
793 __kmp_hw_get_catalog_string(numerator_type, plural),
794 __kmp_hw_get_catalog_string(denominator_type));
796 denominator_type = numerator_type;
798 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
800 // Hybrid topology information
801 if (__kmp_is_hybrid_cpu()) {
802 for (int i = 0; i < num_core_types; ++i) {
803 kmp_hw_core_type_t core_type = core_types[i];
804 kmp_hw_attr_t attr;
805 attr.clear();
806 attr.set_core_type(core_type);
807 int ncores = get_ncores_with_attr(attr);
808 if (ncores > 0) {
809 KMP_INFORM(TopologyHybrid, env_var, ncores,
810 __kmp_hw_get_core_type_string(core_type));
811 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
812 for (int eff = 0; eff < num_core_efficiencies; ++eff) {
813 attr.set_core_eff(eff);
814 int ncores_with_eff = get_ncores_with_attr(attr);
815 if (ncores_with_eff > 0) {
816 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
823 if (num_hw_threads <= 0) {
824 __kmp_str_buf_free(&buf);
825 return;
828 // Full OS proc to hardware thread map
829 KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
830 for (int i = 0; i < num_hw_threads; i++) {
831 __kmp_str_buf_clear(&buf);
832 for (int level = 0; level < depth; ++level) {
833 kmp_hw_t type = types[level];
834 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
835 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
837 if (__kmp_is_hybrid_cpu())
838 __kmp_str_buf_print(
839 &buf, "(%s)",
840 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
841 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
844 __kmp_str_buf_free(&buf);
847 #if KMP_AFFINITY_SUPPORTED
848 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
849 const char *env_var = __kmp_get_affinity_env_var(affinity);
850 // If requested hybrid CPU attributes for granularity (either OMP_PLACES or
851 // KMP_AFFINITY), but none exist, then reset granularity and have below method
852 // select a granularity and warn user.
853 if (!__kmp_is_hybrid_cpu()) {
854 if (affinity.core_attr_gran.valid) {
855 // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores
856 // instead
857 KMP_AFF_WARNING(
858 affinity, AffIgnoringNonHybrid, env_var,
859 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
860 affinity.gran = KMP_HW_CORE;
861 affinity.gran_levels = -1;
862 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
863 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
864 } else if (affinity.flags.core_types_gran ||
865 affinity.flags.core_effs_gran) {
866 // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead
867 if (affinity.flags.omp_places) {
868 KMP_AFF_WARNING(
869 affinity, AffIgnoringNonHybrid, env_var,
870 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
871 } else {
872 // KMP_AFFINITY=granularity=core_type|core_eff,...
873 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
874 "Intel(R) Hybrid Technology core attribute",
875 __kmp_hw_get_catalog_string(KMP_HW_CORE));
877 affinity.gran = KMP_HW_CORE;
878 affinity.gran_levels = -1;
879 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
880 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
883 // Set the number of affinity granularity levels
884 if (affinity.gran_levels < 0) {
885 kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
886 // Check if user's granularity request is valid
887 if (gran_type == KMP_HW_UNKNOWN) {
888 // First try core, then thread, then package
889 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
890 for (auto g : gran_types) {
891 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
892 gran_type = g;
893 break;
896 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
897 // Warn user what granularity setting will be used instead
898 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
899 __kmp_hw_get_catalog_string(affinity.gran),
900 __kmp_hw_get_catalog_string(gran_type));
901 affinity.gran = gran_type;
903 #if KMP_GROUP_AFFINITY
904 // If more than one processor group exists, and the level of
905 // granularity specified by the user is too coarse, then the
906 // granularity must be adjusted "down" to processor group affinity
907 // because threads can only exist within one processor group.
908 // For example, if a user sets granularity=socket and there are two
909 // processor groups that cover a socket, then the runtime must
910 // restrict the granularity down to the processor group level.
911 if (__kmp_num_proc_groups > 1) {
912 int gran_depth = get_level(gran_type);
913 int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
914 if (gran_depth >= 0 && proc_group_depth >= 0 &&
915 gran_depth < proc_group_depth) {
916 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
917 __kmp_hw_get_catalog_string(affinity.gran));
918 affinity.gran = gran_type = KMP_HW_PROC_GROUP;
921 #endif
922 affinity.gran_levels = 0;
923 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
924 affinity.gran_levels++;
927 #endif
929 void kmp_topology_t::canonicalize() {
930 #if KMP_GROUP_AFFINITY
931 _insert_windows_proc_groups();
932 #endif
933 _remove_radix1_layers();
934 _gather_enumeration_information();
935 _discover_uniformity();
936 _set_sub_ids();
937 _set_globals();
938 _set_last_level_cache();
940 #if KMP_MIC_SUPPORTED
941 // Manually Add L2 = Tile equivalence
942 if (__kmp_mic_type == mic3) {
943 if (get_level(KMP_HW_L2) != -1)
944 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
945 else if (get_level(KMP_HW_TILE) != -1)
946 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
948 #endif
950 // Perform post canonicalization checking
951 KMP_ASSERT(depth > 0);
952 for (int level = 0; level < depth; ++level) {
953 // All counts, ratios, and types must be valid
954 KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
955 KMP_ASSERT_VALID_HW_TYPE(types[level]);
956 // Detected types must point to themselves
957 KMP_ASSERT(equivalent[types[level]] == types[level]);
961 // Canonicalize an explicit packages X cores/pkg X threads/core topology
962 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
963 int nthreads_per_core, int ncores) {
964 int ndepth = 3;
965 depth = ndepth;
966 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
967 for (int level = 0; level < depth; ++level) {
968 count[level] = 0;
969 ratio[level] = 0;
971 count[0] = npackages;
972 count[1] = ncores;
973 count[2] = __kmp_xproc;
974 ratio[0] = npackages;
975 ratio[1] = ncores_per_pkg;
976 ratio[2] = nthreads_per_core;
977 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
978 equivalent[KMP_HW_CORE] = KMP_HW_CORE;
979 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
980 types[0] = KMP_HW_SOCKET;
981 types[1] = KMP_HW_CORE;
982 types[2] = KMP_HW_THREAD;
983 //__kmp_avail_proc = __kmp_xproc;
984 _discover_uniformity();
987 // Represents running sub IDs for a single core attribute where
988 // attribute values have SIZE possibilities.
989 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
990 int last_level; // last level in topology to consider for sub_ids
991 int sub_id[SIZE]; // The sub ID for a given attribute value
992 int prev_sub_id[KMP_HW_LAST];
993 IndexFunc indexer;
995 public:
996 kmp_sub_ids_t(int last_level) : last_level(last_level) {
997 KMP_ASSERT(last_level < KMP_HW_LAST);
998 for (size_t i = 0; i < SIZE; ++i)
999 sub_id[i] = -1;
1000 for (size_t i = 0; i < KMP_HW_LAST; ++i)
1001 prev_sub_id[i] = -1;
1003 void update(const kmp_hw_thread_t &hw_thread) {
1004 int idx = indexer(hw_thread);
1005 KMP_ASSERT(idx < (int)SIZE);
1006 for (int level = 0; level <= last_level; ++level) {
1007 if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
1008 if (level < last_level)
1009 sub_id[idx] = -1;
1010 sub_id[idx]++;
1011 break;
1014 for (int level = 0; level <= last_level; ++level)
1015 prev_sub_id[level] = hw_thread.sub_ids[level];
1017 int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
1018 return sub_id[indexer(hw_thread)];
1022 #if KMP_AFFINITY_SUPPORTED
1023 static kmp_str_buf_t *
1024 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
1025 bool plural) {
1026 __kmp_str_buf_init(buf);
1027 if (attr.is_core_type_valid())
1028 __kmp_str_buf_print(buf, "%s %s",
1029 __kmp_hw_get_core_type_string(attr.get_core_type()),
1030 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
1031 else
1032 __kmp_str_buf_print(buf, "%s eff=%d",
1033 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
1034 attr.get_core_eff());
1035 return buf;
1038 bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) {
1039 // Apply the filter
1040 bool affected;
1041 int new_index = 0;
1042 for (int i = 0; i < num_hw_threads; ++i) {
1043 int os_id = hw_threads[i].os_id;
1044 if (KMP_CPU_ISSET(os_id, mask)) {
1045 if (i != new_index)
1046 hw_threads[new_index] = hw_threads[i];
1047 new_index++;
1048 } else {
1049 KMP_CPU_CLR(os_id, __kmp_affin_fullMask);
1050 __kmp_avail_proc--;
1054 KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1055 affected = (num_hw_threads != new_index);
1056 num_hw_threads = new_index;
1058 // Post hardware subset canonicalization
1059 if (affected) {
1060 _gather_enumeration_information();
1061 _discover_uniformity();
1062 _set_globals();
1063 _set_last_level_cache();
1064 #if KMP_OS_WINDOWS
1065 // Copy filtered full mask if topology has single processor group
1066 if (__kmp_num_proc_groups <= 1)
1067 #endif
1068 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
1070 return affected;
1073 // Apply the KMP_HW_SUBSET envirable to the topology
1074 // Returns true if KMP_HW_SUBSET filtered any processors
1075 // otherwise, returns false
1076 bool kmp_topology_t::filter_hw_subset() {
1077 // If KMP_HW_SUBSET wasn't requested, then do nothing.
1078 if (!__kmp_hw_subset)
1079 return false;
1081 // First, sort the KMP_HW_SUBSET items by the machine topology
1082 __kmp_hw_subset->sort();
1084 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
1085 bool using_core_types = false;
1086 bool using_core_effs = false;
1087 int hw_subset_depth = __kmp_hw_subset->get_depth();
1088 kmp_hw_t specified[KMP_HW_LAST];
1089 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
1090 KMP_ASSERT(hw_subset_depth > 0);
1091 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
1092 int core_level = get_level(KMP_HW_CORE);
1093 for (int i = 0; i < hw_subset_depth; ++i) {
1094 int max_count;
1095 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
1096 int num = item.num[0];
1097 int offset = item.offset[0];
1098 kmp_hw_t type = item.type;
1099 kmp_hw_t equivalent_type = equivalent[type];
1100 int level = get_level(type);
1101 topology_levels[i] = level;
1103 // Check to see if current layer is in detected machine topology
1104 if (equivalent_type != KMP_HW_UNKNOWN) {
1105 __kmp_hw_subset->at(i).type = equivalent_type;
1106 } else {
1107 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
1108 __kmp_hw_get_catalog_string(type));
1109 return false;
1112 // Check to see if current layer has already been
1113 // specified either directly or through an equivalent type
1114 if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
1115 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
1116 __kmp_hw_get_catalog_string(type),
1117 __kmp_hw_get_catalog_string(specified[equivalent_type]));
1118 return false;
1120 specified[equivalent_type] = type;
1122 // Check to see if each layer's num & offset parameters are valid
1123 max_count = get_ratio(level);
1124 if (max_count < 0 ||
1125 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1126 bool plural = (num > 1);
1127 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1128 __kmp_hw_get_catalog_string(type, plural));
1129 return false;
1132 // Check to see if core attributes are consistent
1133 if (core_level == level) {
1134 // Determine which core attributes are specified
1135 for (int j = 0; j < item.num_attrs; ++j) {
1136 if (item.attr[j].is_core_type_valid())
1137 using_core_types = true;
1138 if (item.attr[j].is_core_eff_valid())
1139 using_core_effs = true;
1142 // Check if using a single core attribute on non-hybrid arch.
1143 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1145 // Check if using multiple core attributes on non-hyrbid arch.
1146 // Ignore all of KMP_HW_SUBSET if this is the case.
1147 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1148 if (item.num_attrs == 1) {
1149 if (using_core_effs) {
1150 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1151 "efficiency");
1152 } else {
1153 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1154 "core_type");
1156 using_core_effs = false;
1157 using_core_types = false;
1158 } else {
1159 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1160 return false;
1164 // Check if using both core types and core efficiencies together
1165 if (using_core_types && using_core_effs) {
1166 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1167 "efficiency");
1168 return false;
1171 // Check that core efficiency values are valid
1172 if (using_core_effs) {
1173 for (int j = 0; j < item.num_attrs; ++j) {
1174 if (item.attr[j].is_core_eff_valid()) {
1175 int core_eff = item.attr[j].get_core_eff();
1176 if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1177 kmp_str_buf_t buf;
1178 __kmp_str_buf_init(&buf);
1179 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1180 __kmp_msg(kmp_ms_warning,
1181 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1182 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1183 __kmp_msg_null);
1184 __kmp_str_buf_free(&buf);
1185 return false;
1191 // Check that the number of requested cores with attributes is valid
1192 if (using_core_types || using_core_effs) {
1193 for (int j = 0; j < item.num_attrs; ++j) {
1194 int num = item.num[j];
1195 int offset = item.offset[j];
1196 int level_above = core_level - 1;
1197 if (level_above >= 0) {
1198 max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1199 if (max_count <= 0 ||
1200 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1201 kmp_str_buf_t buf;
1202 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1203 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1204 __kmp_str_buf_free(&buf);
1205 return false;
1211 if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1212 for (int j = 0; j < item.num_attrs; ++j) {
1213 // Ambiguous use of specific core attribute + generic core
1214 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1215 if (!item.attr[j]) {
1216 kmp_hw_attr_t other_attr;
1217 for (int k = 0; k < item.num_attrs; ++k) {
1218 if (item.attr[k] != item.attr[j]) {
1219 other_attr = item.attr[k];
1220 break;
1223 kmp_str_buf_t buf;
1224 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1225 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1226 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1227 __kmp_str_buf_free(&buf);
1228 return false;
1230 // Allow specifying a specific core type or core eff exactly once
1231 for (int k = 0; k < j; ++k) {
1232 if (!item.attr[j] || !item.attr[k])
1233 continue;
1234 if (item.attr[k] == item.attr[j]) {
1235 kmp_str_buf_t buf;
1236 __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1237 item.num[j] > 0);
1238 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1239 __kmp_str_buf_free(&buf);
1240 return false;
1248 struct core_type_indexer {
1249 int operator()(const kmp_hw_thread_t &t) const {
1250 switch (t.attrs.get_core_type()) {
1251 case KMP_HW_CORE_TYPE_UNKNOWN:
1252 case KMP_HW_MAX_NUM_CORE_TYPES:
1253 return 0;
1254 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1255 case KMP_HW_CORE_TYPE_ATOM:
1256 return 1;
1257 case KMP_HW_CORE_TYPE_CORE:
1258 return 2;
1259 #endif
1261 KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration");
1262 KMP_BUILTIN_UNREACHABLE;
1265 struct core_eff_indexer {
1266 int operator()(const kmp_hw_thread_t &t) const {
1267 return t.attrs.get_core_eff();
1271 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
1272 core_level);
1273 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids(
1274 core_level);
1276 // Determine which hardware threads should be filtered.
1277 int num_filtered = 0;
1278 kmp_affin_mask_t *filtered_mask;
1279 KMP_CPU_ALLOC(filtered_mask);
1280 KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask);
1281 for (int i = 0; i < num_hw_threads; ++i) {
1282 kmp_hw_thread_t &hw_thread = hw_threads[i];
1283 // Update type_sub_id
1284 if (using_core_types)
1285 core_type_sub_ids.update(hw_thread);
1286 if (using_core_effs)
1287 core_eff_sub_ids.update(hw_thread);
1289 // Check to see if this hardware thread should be filtered
1290 bool should_be_filtered = false;
1291 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1292 ++hw_subset_index) {
1293 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1294 int level = topology_levels[hw_subset_index];
1295 if (level == -1)
1296 continue;
1297 if ((using_core_effs || using_core_types) && level == core_level) {
1298 // Look for the core attribute in KMP_HW_SUBSET which corresponds
1299 // to this hardware thread's core attribute. Use this num,offset plus
1300 // the running sub_id for the particular core attribute of this hardware
1301 // thread to determine if the hardware thread should be filtered or not.
1302 int attr_idx;
1303 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1304 int core_eff = hw_thread.attrs.get_core_eff();
1305 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1306 if (using_core_types &&
1307 hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1308 break;
1309 if (using_core_effs &&
1310 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1311 break;
1313 // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1314 if (attr_idx == hw_subset_item.num_attrs) {
1315 should_be_filtered = true;
1316 break;
1318 int sub_id;
1319 int num = hw_subset_item.num[attr_idx];
1320 int offset = hw_subset_item.offset[attr_idx];
1321 if (using_core_types)
1322 sub_id = core_type_sub_ids.get_sub_id(hw_thread);
1323 else
1324 sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
1325 if (sub_id < offset ||
1326 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1327 should_be_filtered = true;
1328 break;
1330 } else {
1331 int num = hw_subset_item.num[0];
1332 int offset = hw_subset_item.offset[0];
1333 if (hw_thread.sub_ids[level] < offset ||
1334 (num != kmp_hw_subset_t::USE_ALL &&
1335 hw_thread.sub_ids[level] >= offset + num)) {
1336 should_be_filtered = true;
1337 break;
1341 // Collect filtering information
1342 if (should_be_filtered) {
1343 KMP_CPU_CLR(hw_thread.os_id, filtered_mask);
1344 num_filtered++;
1348 // One last check that we shouldn't allow filtering entire machine
1349 if (num_filtered == num_hw_threads) {
1350 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1351 return false;
1354 // Apply the filter
1355 restrict_to_mask(filtered_mask);
1356 return true;
1359 bool kmp_topology_t::is_close(int hwt1, int hwt2,
1360 const kmp_affinity_t &stgs) const {
1361 int hw_level = stgs.gran_levels;
1362 if (hw_level >= depth)
1363 return true;
1364 bool retval = true;
1365 const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1366 const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1367 if (stgs.flags.core_types_gran)
1368 return t1.attrs.get_core_type() == t2.attrs.get_core_type();
1369 if (stgs.flags.core_effs_gran)
1370 return t1.attrs.get_core_eff() == t2.attrs.get_core_eff();
1371 for (int i = 0; i < (depth - hw_level); ++i) {
1372 if (t1.ids[i] != t2.ids[i])
1373 return false;
1375 return retval;
1378 ////////////////////////////////////////////////////////////////////////////////
1380 bool KMPAffinity::picked_api = false;
1382 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1383 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1384 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1385 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1386 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1387 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1389 void KMPAffinity::pick_api() {
1390 KMPAffinity *affinity_dispatch;
1391 if (picked_api)
1392 return;
1393 #if KMP_USE_HWLOC
1394 // Only use Hwloc if affinity isn't explicitly disabled and
1395 // user requests Hwloc topology method
1396 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1397 __kmp_affinity.type != affinity_disabled) {
1398 affinity_dispatch = new KMPHwlocAffinity();
1399 } else
1400 #endif
1402 affinity_dispatch = new KMPNativeAffinity();
1404 __kmp_affinity_dispatch = affinity_dispatch;
1405 picked_api = true;
1408 void KMPAffinity::destroy_api() {
1409 if (__kmp_affinity_dispatch != NULL) {
1410 delete __kmp_affinity_dispatch;
1411 __kmp_affinity_dispatch = NULL;
1412 picked_api = false;
1416 #define KMP_ADVANCE_SCAN(scan) \
1417 while (*scan != '\0') { \
1418 scan++; \
1421 // Print the affinity mask to the character array in a pretty format.
1422 // The format is a comma separated list of non-negative integers or integer
1423 // ranges: e.g., 1,2,3-5,7,9-15
1424 // The format can also be the string "{<empty>}" if no bits are set in mask
1425 char *__kmp_affinity_print_mask(char *buf, int buf_len,
1426 kmp_affin_mask_t *mask) {
1427 int start = 0, finish = 0, previous = 0;
1428 bool first_range;
1429 KMP_ASSERT(buf);
1430 KMP_ASSERT(buf_len >= 40);
1431 KMP_ASSERT(mask);
1432 char *scan = buf;
1433 char *end = buf + buf_len - 1;
1435 // Check for empty set.
1436 if (mask->begin() == mask->end()) {
1437 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1438 KMP_ADVANCE_SCAN(scan);
1439 KMP_ASSERT(scan <= end);
1440 return buf;
1443 first_range = true;
1444 start = mask->begin();
1445 while (1) {
1446 // Find next range
1447 // [start, previous] is inclusive range of contiguous bits in mask
1448 for (finish = mask->next(start), previous = start;
1449 finish == previous + 1 && finish != mask->end();
1450 finish = mask->next(finish)) {
1451 previous = finish;
1454 // The first range does not need a comma printed before it, but the rest
1455 // of the ranges do need a comma beforehand
1456 if (!first_range) {
1457 KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1458 KMP_ADVANCE_SCAN(scan);
1459 } else {
1460 first_range = false;
1462 // Range with three or more contiguous bits in the affinity mask
1463 if (previous - start > 1) {
1464 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1465 } else {
1466 // Range with one or two contiguous bits in the affinity mask
1467 KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1468 KMP_ADVANCE_SCAN(scan);
1469 if (previous - start > 0) {
1470 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1473 KMP_ADVANCE_SCAN(scan);
1474 // Start over with new start point
1475 start = finish;
1476 if (start == mask->end())
1477 break;
1478 // Check for overflow
1479 if (end - scan < 2)
1480 break;
1483 // Check for overflow
1484 KMP_ASSERT(scan <= end);
1485 return buf;
1487 #undef KMP_ADVANCE_SCAN
1489 // Print the affinity mask to the string buffer object in a pretty format
1490 // The format is a comma separated list of non-negative integers or integer
1491 // ranges: e.g., 1,2,3-5,7,9-15
1492 // The format can also be the string "{<empty>}" if no bits are set in mask
1493 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1494 kmp_affin_mask_t *mask) {
1495 int start = 0, finish = 0, previous = 0;
1496 bool first_range;
1497 KMP_ASSERT(buf);
1498 KMP_ASSERT(mask);
1500 __kmp_str_buf_clear(buf);
1502 // Check for empty set.
1503 if (mask->begin() == mask->end()) {
1504 __kmp_str_buf_print(buf, "%s", "{<empty>}");
1505 return buf;
1508 first_range = true;
1509 start = mask->begin();
1510 while (1) {
1511 // Find next range
1512 // [start, previous] is inclusive range of contiguous bits in mask
1513 for (finish = mask->next(start), previous = start;
1514 finish == previous + 1 && finish != mask->end();
1515 finish = mask->next(finish)) {
1516 previous = finish;
1519 // The first range does not need a comma printed before it, but the rest
1520 // of the ranges do need a comma beforehand
1521 if (!first_range) {
1522 __kmp_str_buf_print(buf, "%s", ",");
1523 } else {
1524 first_range = false;
1526 // Range with three or more contiguous bits in the affinity mask
1527 if (previous - start > 1) {
1528 __kmp_str_buf_print(buf, "%u-%u", start, previous);
1529 } else {
1530 // Range with one or two contiguous bits in the affinity mask
1531 __kmp_str_buf_print(buf, "%u", start);
1532 if (previous - start > 0) {
1533 __kmp_str_buf_print(buf, ",%u", previous);
1536 // Start over with new start point
1537 start = finish;
1538 if (start == mask->end())
1539 break;
1541 return buf;
1544 // Return (possibly empty) affinity mask representing the offline CPUs
1545 // Caller must free the mask
1546 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1547 kmp_affin_mask_t *offline;
1548 KMP_CPU_ALLOC(offline);
1549 KMP_CPU_ZERO(offline);
1550 #if KMP_OS_LINUX
1551 int n, begin_cpu, end_cpu;
1552 kmp_safe_raii_file_t offline_file;
1553 auto skip_ws = [](FILE *f) {
1554 int c;
1555 do {
1556 c = fgetc(f);
1557 } while (isspace(c));
1558 if (c != EOF)
1559 ungetc(c, f);
1561 // File contains CSV of integer ranges representing the offline CPUs
1562 // e.g., 1,2,4-7,9,11-15
1563 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1564 if (status != 0)
1565 return offline;
1566 while (!feof(offline_file)) {
1567 skip_ws(offline_file);
1568 n = fscanf(offline_file, "%d", &begin_cpu);
1569 if (n != 1)
1570 break;
1571 skip_ws(offline_file);
1572 int c = fgetc(offline_file);
1573 if (c == EOF || c == ',') {
1574 // Just single CPU
1575 end_cpu = begin_cpu;
1576 } else if (c == '-') {
1577 // Range of CPUs
1578 skip_ws(offline_file);
1579 n = fscanf(offline_file, "%d", &end_cpu);
1580 if (n != 1)
1581 break;
1582 skip_ws(offline_file);
1583 c = fgetc(offline_file); // skip ','
1584 } else {
1585 // Syntax problem
1586 break;
1588 // Ensure a valid range of CPUs
1589 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1590 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1591 continue;
1593 // Insert [begin_cpu, end_cpu] into offline mask
1594 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1595 KMP_CPU_SET(cpu, offline);
1598 #endif
1599 return offline;
1602 // Return the number of available procs
1603 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1604 int avail_proc = 0;
1605 KMP_CPU_ZERO(mask);
1607 #if KMP_GROUP_AFFINITY
1609 if (__kmp_num_proc_groups > 1) {
1610 int group;
1611 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1612 for (group = 0; group < __kmp_num_proc_groups; group++) {
1613 int i;
1614 int num = __kmp_GetActiveProcessorCount(group);
1615 for (i = 0; i < num; i++) {
1616 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1617 avail_proc++;
1620 } else
1622 #endif /* KMP_GROUP_AFFINITY */
1625 int proc;
1626 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1627 for (proc = 0; proc < __kmp_xproc; proc++) {
1628 // Skip offline CPUs
1629 if (KMP_CPU_ISSET(proc, offline_cpus))
1630 continue;
1631 KMP_CPU_SET(proc, mask);
1632 avail_proc++;
1634 KMP_CPU_FREE(offline_cpus);
1637 return avail_proc;
1640 // All of the __kmp_affinity_create_*_map() routines should allocate the
1641 // internal topology object and set the layer ids for it. Each routine
1642 // returns a boolean on whether it was successful at doing so.
1643 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1644 // Original mask is a subset of full mask in multiple processor groups topology
1645 kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1647 #if KMP_USE_HWLOC
1648 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1649 #if HWLOC_API_VERSION >= 0x00020000
1650 return hwloc_obj_type_is_cache(obj->type);
1651 #else
1652 return obj->type == HWLOC_OBJ_CACHE;
1653 #endif
1656 // Returns KMP_HW_* type derived from HWLOC_* type
1657 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1659 if (__kmp_hwloc_is_cache_type(obj)) {
1660 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1661 return KMP_HW_UNKNOWN;
1662 switch (obj->attr->cache.depth) {
1663 case 1:
1664 return KMP_HW_L1;
1665 case 2:
1666 #if KMP_MIC_SUPPORTED
1667 if (__kmp_mic_type == mic3) {
1668 return KMP_HW_TILE;
1670 #endif
1671 return KMP_HW_L2;
1672 case 3:
1673 return KMP_HW_L3;
1675 return KMP_HW_UNKNOWN;
1678 switch (obj->type) {
1679 case HWLOC_OBJ_PACKAGE:
1680 return KMP_HW_SOCKET;
1681 case HWLOC_OBJ_NUMANODE:
1682 return KMP_HW_NUMA;
1683 case HWLOC_OBJ_CORE:
1684 return KMP_HW_CORE;
1685 case HWLOC_OBJ_PU:
1686 return KMP_HW_THREAD;
1687 case HWLOC_OBJ_GROUP:
1688 #if HWLOC_API_VERSION >= 0x00020000
1689 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1690 return KMP_HW_DIE;
1691 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1692 return KMP_HW_TILE;
1693 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1694 return KMP_HW_MODULE;
1695 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1696 return KMP_HW_PROC_GROUP;
1697 #endif
1698 return KMP_HW_UNKNOWN;
1699 #if HWLOC_API_VERSION >= 0x00020100
1700 case HWLOC_OBJ_DIE:
1701 return KMP_HW_DIE;
1702 #endif
1704 return KMP_HW_UNKNOWN;
1707 // Returns the number of objects of type 'type' below 'obj' within the topology
1708 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1709 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1710 // object.
1711 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1712 hwloc_obj_type_t type) {
1713 int retval = 0;
1714 hwloc_obj_t first;
1715 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1716 obj->logical_index, type, 0);
1717 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1718 obj->type, first) == obj;
1719 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1720 first)) {
1721 ++retval;
1723 return retval;
1726 // This gets the sub_id for a lower object under a higher object in the
1727 // topology tree
1728 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1729 hwloc_obj_t lower) {
1730 hwloc_obj_t obj;
1731 hwloc_obj_type_t ltype = lower->type;
1732 int lindex = lower->logical_index - 1;
1733 int sub_id = 0;
1734 // Get the previous lower object
1735 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1736 while (obj && lindex >= 0 &&
1737 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1738 if (obj->userdata) {
1739 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1740 break;
1742 sub_id++;
1743 lindex--;
1744 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1746 // store sub_id + 1 so that 0 is differed from NULL
1747 lower->userdata = RCAST(void *, sub_id + 1);
1748 return sub_id;
1751 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1752 kmp_hw_t type;
1753 int hw_thread_index, sub_id;
1754 int depth;
1755 hwloc_obj_t pu, obj, root, prev;
1756 kmp_hw_t types[KMP_HW_LAST];
1757 hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1759 hwloc_topology_t tp = __kmp_hwloc_topology;
1760 *msg_id = kmp_i18n_null;
1761 if (__kmp_affinity.flags.verbose) {
1762 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1765 if (!KMP_AFFINITY_CAPABLE()) {
1766 // Hack to try and infer the machine topology using only the data
1767 // available from hwloc on the current thread, and __kmp_xproc.
1768 KMP_ASSERT(__kmp_affinity.type == affinity_none);
1769 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1770 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1771 if (o != NULL)
1772 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1773 else
1774 nCoresPerPkg = 1; // no PACKAGE found
1775 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1776 if (o != NULL)
1777 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1778 else
1779 __kmp_nThreadsPerCore = 1; // no CORE found
1780 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1781 if (nCoresPerPkg == 0)
1782 nCoresPerPkg = 1; // to prevent possible division by 0
1783 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1784 return true;
1787 #if HWLOC_API_VERSION >= 0x00020400
1788 // Handle multiple types of cores if they exist on the system
1789 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1791 typedef struct kmp_hwloc_cpukinds_info_t {
1792 int efficiency;
1793 kmp_hw_core_type_t core_type;
1794 hwloc_bitmap_t mask;
1795 } kmp_hwloc_cpukinds_info_t;
1796 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1798 if (nr_cpu_kinds > 0) {
1799 unsigned nr_infos;
1800 struct hwloc_info_s *infos;
1801 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1802 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1803 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1804 cpukinds[idx].efficiency = -1;
1805 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1806 cpukinds[idx].mask = hwloc_bitmap_alloc();
1807 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1808 &cpukinds[idx].efficiency, &nr_infos, &infos,
1809 0) == 0) {
1810 for (unsigned i = 0; i < nr_infos; ++i) {
1811 if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1812 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1813 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1814 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1815 break;
1816 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1817 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1818 break;
1820 #endif
1826 #endif
1828 root = hwloc_get_root_obj(tp);
1830 // Figure out the depth and types in the topology
1831 depth = 0;
1832 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1833 KMP_ASSERT(pu);
1834 obj = pu;
1835 types[depth] = KMP_HW_THREAD;
1836 hwloc_types[depth] = obj->type;
1837 depth++;
1838 while (obj != root && obj != NULL) {
1839 obj = obj->parent;
1840 #if HWLOC_API_VERSION >= 0x00020000
1841 if (obj->memory_arity) {
1842 hwloc_obj_t memory;
1843 for (memory = obj->memory_first_child; memory;
1844 memory = hwloc_get_next_child(tp, obj, memory)) {
1845 if (memory->type == HWLOC_OBJ_NUMANODE)
1846 break;
1848 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1849 types[depth] = KMP_HW_NUMA;
1850 hwloc_types[depth] = memory->type;
1851 depth++;
1854 #endif
1855 type = __kmp_hwloc_type_2_topology_type(obj);
1856 if (type != KMP_HW_UNKNOWN) {
1857 types[depth] = type;
1858 hwloc_types[depth] = obj->type;
1859 depth++;
1862 KMP_ASSERT(depth > 0);
1864 // Get the order for the types correct
1865 for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1866 hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1867 kmp_hw_t temp = types[i];
1868 types[i] = types[j];
1869 types[j] = temp;
1870 hwloc_types[i] = hwloc_types[j];
1871 hwloc_types[j] = hwloc_temp;
1874 // Allocate the data structure to be returned.
1875 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1877 hw_thread_index = 0;
1878 pu = NULL;
1879 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1880 int index = depth - 1;
1881 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1882 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1883 if (included) {
1884 hw_thread.clear();
1885 hw_thread.ids[index] = pu->logical_index;
1886 hw_thread.os_id = pu->os_index;
1887 // If multiple core types, then set that attribute for the hardware thread
1888 #if HWLOC_API_VERSION >= 0x00020400
1889 if (cpukinds) {
1890 int cpukind_index = -1;
1891 for (int i = 0; i < nr_cpu_kinds; ++i) {
1892 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1893 cpukind_index = i;
1894 break;
1897 if (cpukind_index >= 0) {
1898 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1899 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1902 #endif
1903 index--;
1905 obj = pu;
1906 prev = obj;
1907 while (obj != root && obj != NULL) {
1908 obj = obj->parent;
1909 #if HWLOC_API_VERSION >= 0x00020000
1910 // NUMA Nodes are handled differently since they are not within the
1911 // parent/child structure anymore. They are separate children
1912 // of obj (memory_first_child points to first memory child)
1913 if (obj->memory_arity) {
1914 hwloc_obj_t memory;
1915 for (memory = obj->memory_first_child; memory;
1916 memory = hwloc_get_next_child(tp, obj, memory)) {
1917 if (memory->type == HWLOC_OBJ_NUMANODE)
1918 break;
1920 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1921 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1922 if (included) {
1923 hw_thread.ids[index] = memory->logical_index;
1924 hw_thread.ids[index + 1] = sub_id;
1925 index--;
1927 prev = memory;
1929 prev = obj;
1931 #endif
1932 type = __kmp_hwloc_type_2_topology_type(obj);
1933 if (type != KMP_HW_UNKNOWN) {
1934 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1935 if (included) {
1936 hw_thread.ids[index] = obj->logical_index;
1937 hw_thread.ids[index + 1] = sub_id;
1938 index--;
1940 prev = obj;
1943 if (included)
1944 hw_thread_index++;
1947 #if HWLOC_API_VERSION >= 0x00020400
1948 // Free the core types information
1949 if (cpukinds) {
1950 for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1951 hwloc_bitmap_free(cpukinds[idx].mask);
1952 __kmp_free(cpukinds);
1954 #endif
1955 __kmp_topology->sort_ids();
1956 return true;
1958 #endif // KMP_USE_HWLOC
1960 // If we don't know how to retrieve the machine's processor topology, or
1961 // encounter an error in doing so, this routine is called to form a "flat"
1962 // mapping of os thread id's <-> processor id's.
1963 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1964 *msg_id = kmp_i18n_null;
1965 int depth = 3;
1966 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1968 if (__kmp_affinity.flags.verbose) {
1969 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1972 // Even if __kmp_affinity.type == affinity_none, this routine might still
1973 // be called to set __kmp_ncores, as well as
1974 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1975 if (!KMP_AFFINITY_CAPABLE()) {
1976 KMP_ASSERT(__kmp_affinity.type == affinity_none);
1977 __kmp_ncores = nPackages = __kmp_xproc;
1978 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1979 return true;
1982 // When affinity is off, this routine will still be called to set
1983 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1984 // Make sure all these vars are set correctly, and return now if affinity is
1985 // not enabled.
1986 __kmp_ncores = nPackages = __kmp_avail_proc;
1987 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1989 // Construct the data structure to be returned.
1990 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1991 int avail_ct = 0;
1992 int i;
1993 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1994 // Skip this proc if it is not included in the machine model.
1995 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1996 continue;
1998 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1999 hw_thread.clear();
2000 hw_thread.os_id = i;
2001 hw_thread.ids[0] = i;
2002 hw_thread.ids[1] = 0;
2003 hw_thread.ids[2] = 0;
2004 avail_ct++;
2006 if (__kmp_affinity.flags.verbose) {
2007 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
2009 return true;
2012 #if KMP_GROUP_AFFINITY
2013 // If multiple Windows* OS processor groups exist, we can create a 2-level
2014 // topology map with the groups at level 0 and the individual procs at level 1.
2015 // This facilitates letting the threads float among all procs in a group,
2016 // if granularity=group (the default when there are multiple groups).
2017 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
2018 *msg_id = kmp_i18n_null;
2019 int depth = 3;
2020 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
2021 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
2023 if (__kmp_affinity.flags.verbose) {
2024 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
2027 // If we aren't affinity capable, then use flat topology
2028 if (!KMP_AFFINITY_CAPABLE()) {
2029 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2030 nPackages = __kmp_num_proc_groups;
2031 __kmp_nThreadsPerCore = 1;
2032 __kmp_ncores = __kmp_xproc;
2033 nCoresPerPkg = nPackages / __kmp_ncores;
2034 return true;
2037 // Construct the data structure to be returned.
2038 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2039 int avail_ct = 0;
2040 int i;
2041 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2042 // Skip this proc if it is not included in the machine model.
2043 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2044 continue;
2046 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
2047 hw_thread.clear();
2048 hw_thread.os_id = i;
2049 hw_thread.ids[0] = i / BITS_PER_GROUP;
2050 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
2052 return true;
2054 #endif /* KMP_GROUP_AFFINITY */
2056 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2058 template <kmp_uint32 LSB, kmp_uint32 MSB>
2059 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
2060 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
2061 const kmp_uint32 SHIFT_RIGHT = LSB;
2062 kmp_uint32 retval = v;
2063 retval <<= SHIFT_LEFT;
2064 retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
2065 return retval;
2068 static int __kmp_cpuid_mask_width(int count) {
2069 int r = 0;
2071 while ((1 << r) < count)
2072 ++r;
2073 return r;
2076 class apicThreadInfo {
2077 public:
2078 unsigned osId; // param to __kmp_affinity_bind_thread
2079 unsigned apicId; // from cpuid after binding
2080 unsigned maxCoresPerPkg; // ""
2081 unsigned maxThreadsPerPkg; // ""
2082 unsigned pkgId; // inferred from above values
2083 unsigned coreId; // ""
2084 unsigned threadId; // ""
2087 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
2088 const void *b) {
2089 const apicThreadInfo *aa = (const apicThreadInfo *)a;
2090 const apicThreadInfo *bb = (const apicThreadInfo *)b;
2091 if (aa->pkgId < bb->pkgId)
2092 return -1;
2093 if (aa->pkgId > bb->pkgId)
2094 return 1;
2095 if (aa->coreId < bb->coreId)
2096 return -1;
2097 if (aa->coreId > bb->coreId)
2098 return 1;
2099 if (aa->threadId < bb->threadId)
2100 return -1;
2101 if (aa->threadId > bb->threadId)
2102 return 1;
2103 return 0;
2106 class kmp_cache_info_t {
2107 public:
2108 struct info_t {
2109 unsigned level, mask;
2111 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
2112 size_t get_depth() const { return depth; }
2113 info_t &operator[](size_t index) { return table[index]; }
2114 const info_t &operator[](size_t index) const { return table[index]; }
2116 static kmp_hw_t get_topology_type(unsigned level) {
2117 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2118 switch (level) {
2119 case 1:
2120 return KMP_HW_L1;
2121 case 2:
2122 return KMP_HW_L2;
2123 case 3:
2124 return KMP_HW_L3;
2126 return KMP_HW_UNKNOWN;
2129 private:
2130 static const int MAX_CACHE_LEVEL = 3;
2132 size_t depth;
2133 info_t table[MAX_CACHE_LEVEL];
2135 void get_leaf4_levels() {
2136 unsigned level = 0;
2137 while (depth < MAX_CACHE_LEVEL) {
2138 unsigned cache_type, max_threads_sharing;
2139 unsigned cache_level, cache_mask_width;
2140 kmp_cpuid buf2;
2141 __kmp_x86_cpuid(4, level, &buf2);
2142 cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2143 if (!cache_type)
2144 break;
2145 // Skip instruction caches
2146 if (cache_type == 2) {
2147 level++;
2148 continue;
2150 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2151 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2152 cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2153 table[depth].level = cache_level;
2154 table[depth].mask = ((-1) << cache_mask_width);
2155 depth++;
2156 level++;
2161 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2162 // an algorithm which cycles through the available os threads, setting
2163 // the current thread's affinity mask to that thread, and then retrieves
2164 // the Apic Id for each thread context using the cpuid instruction.
2165 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2166 kmp_cpuid buf;
2167 *msg_id = kmp_i18n_null;
2169 if (__kmp_affinity.flags.verbose) {
2170 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2173 // Check if cpuid leaf 4 is supported.
2174 __kmp_x86_cpuid(0, 0, &buf);
2175 if (buf.eax < 4) {
2176 *msg_id = kmp_i18n_str_NoLeaf4Support;
2177 return false;
2180 // The algorithm used starts by setting the affinity to each available thread
2181 // and retrieving info from the cpuid instruction, so if we are not capable of
2182 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2183 // need to do something else - use the defaults that we calculated from
2184 // issuing cpuid without binding to each proc.
2185 if (!KMP_AFFINITY_CAPABLE()) {
2186 // Hack to try and infer the machine topology using only the data
2187 // available from cpuid on the current thread, and __kmp_xproc.
2188 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2190 // Get an upper bound on the number of threads per package using cpuid(1).
2191 // On some OS/chps combinations where HT is supported by the chip but is
2192 // disabled, this value will be 2 on a single core chip. Usually, it will be
2193 // 2 if HT is enabled and 1 if HT is disabled.
2194 __kmp_x86_cpuid(1, 0, &buf);
2195 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2196 if (maxThreadsPerPkg == 0) {
2197 maxThreadsPerPkg = 1;
2200 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2201 // value.
2203 // The author of cpu_count.cpp treated this only an upper bound on the
2204 // number of cores, but I haven't seen any cases where it was greater than
2205 // the actual number of cores, so we will treat it as exact in this block of
2206 // code.
2208 // First, we need to check if cpuid(4) is supported on this chip. To see if
2209 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2210 // greater.
2211 __kmp_x86_cpuid(0, 0, &buf);
2212 if (buf.eax >= 4) {
2213 __kmp_x86_cpuid(4, 0, &buf);
2214 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2215 } else {
2216 nCoresPerPkg = 1;
2219 // There is no way to reliably tell if HT is enabled without issuing the
2220 // cpuid instruction from every thread, can correlating the cpuid info, so
2221 // if the machine is not affinity capable, we assume that HT is off. We have
2222 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2223 // does not support HT.
2225 // - Older OSes are usually found on machines with older chips, which do not
2226 // support HT.
2227 // - The performance penalty for mistakenly identifying a machine as HT when
2228 // it isn't (which results in blocktime being incorrectly set to 0) is
2229 // greater than the penalty when for mistakenly identifying a machine as
2230 // being 1 thread/core when it is really HT enabled (which results in
2231 // blocktime being incorrectly set to a positive value).
2232 __kmp_ncores = __kmp_xproc;
2233 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2234 __kmp_nThreadsPerCore = 1;
2235 return true;
2238 // From here on, we can assume that it is safe to call
2239 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2240 // __kmp_affinity.type = affinity_none.
2242 // Save the affinity mask for the current thread.
2243 kmp_affinity_raii_t previous_affinity;
2245 // Run through each of the available contexts, binding the current thread
2246 // to it, and obtaining the pertinent information using the cpuid instr.
2248 // The relevant information is:
2249 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2250 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2251 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2252 // of this field determines the width of the core# + thread# fields in the
2253 // Apic Id. It is also an upper bound on the number of threads per
2254 // package, but it has been verified that situations happen were it is not
2255 // exact. In particular, on certain OS/chip combinations where Intel(R)
2256 // Hyper-Threading Technology is supported by the chip but has been
2257 // disabled, the value of this field will be 2 (for a single core chip).
2258 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
2259 // Technology, the value of this field will be 1 when Intel(R)
2260 // Hyper-Threading Technology is disabled and 2 when it is enabled.
2261 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2262 // of this field (+1) determines the width of the core# field in the Apic
2263 // Id. The comments in "cpucount.cpp" say that this value is an upper
2264 // bound, but the IA-32 architecture manual says that it is exactly the
2265 // number of cores per package, and I haven't seen any case where it
2266 // wasn't.
2268 // From this information, deduce the package Id, core Id, and thread Id,
2269 // and set the corresponding fields in the apicThreadInfo struct.
2270 unsigned i;
2271 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2272 __kmp_avail_proc * sizeof(apicThreadInfo));
2273 unsigned nApics = 0;
2274 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2275 // Skip this proc if it is not included in the machine model.
2276 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2277 continue;
2279 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2281 __kmp_affinity_dispatch->bind_thread(i);
2282 threadInfo[nApics].osId = i;
2284 // The apic id and max threads per pkg come from cpuid(1).
2285 __kmp_x86_cpuid(1, 0, &buf);
2286 if (((buf.edx >> 9) & 1) == 0) {
2287 __kmp_free(threadInfo);
2288 *msg_id = kmp_i18n_str_ApicNotPresent;
2289 return false;
2291 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2292 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2293 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2294 threadInfo[nApics].maxThreadsPerPkg = 1;
2297 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2298 // value.
2300 // First, we need to check if cpuid(4) is supported on this chip. To see if
2301 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2302 // or greater.
2303 __kmp_x86_cpuid(0, 0, &buf);
2304 if (buf.eax >= 4) {
2305 __kmp_x86_cpuid(4, 0, &buf);
2306 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2307 } else {
2308 threadInfo[nApics].maxCoresPerPkg = 1;
2311 // Infer the pkgId / coreId / threadId using only the info obtained locally.
2312 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2313 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2315 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2316 int widthT = widthCT - widthC;
2317 if (widthT < 0) {
2318 // I've never seen this one happen, but I suppose it could, if the cpuid
2319 // instruction on a chip was really screwed up. Make sure to restore the
2320 // affinity mask before the tail call.
2321 __kmp_free(threadInfo);
2322 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2323 return false;
2326 int maskC = (1 << widthC) - 1;
2327 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2329 int maskT = (1 << widthT) - 1;
2330 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2332 nApics++;
2335 // We've collected all the info we need.
2336 // Restore the old affinity mask for this thread.
2337 previous_affinity.restore();
2339 // Sort the threadInfo table by physical Id.
2340 qsort(threadInfo, nApics, sizeof(*threadInfo),
2341 __kmp_affinity_cmp_apicThreadInfo_phys_id);
2343 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2344 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2345 // the chips on a system. Although coreId's are usually assigned
2346 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2347 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2349 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2350 // total # packages) are at this point - we want to determine that now. We
2351 // only have an upper bound on the first two figures.
2353 // We also perform a consistency check at this point: the values returned by
2354 // the cpuid instruction for any thread bound to a given package had better
2355 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2356 nPackages = 1;
2357 nCoresPerPkg = 1;
2358 __kmp_nThreadsPerCore = 1;
2359 unsigned nCores = 1;
2361 unsigned pkgCt = 1; // to determine radii
2362 unsigned lastPkgId = threadInfo[0].pkgId;
2363 unsigned coreCt = 1;
2364 unsigned lastCoreId = threadInfo[0].coreId;
2365 unsigned threadCt = 1;
2366 unsigned lastThreadId = threadInfo[0].threadId;
2368 // intra-pkg consist checks
2369 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2370 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2372 for (i = 1; i < nApics; i++) {
2373 if (threadInfo[i].pkgId != lastPkgId) {
2374 nCores++;
2375 pkgCt++;
2376 lastPkgId = threadInfo[i].pkgId;
2377 if ((int)coreCt > nCoresPerPkg)
2378 nCoresPerPkg = coreCt;
2379 coreCt = 1;
2380 lastCoreId = threadInfo[i].coreId;
2381 if ((int)threadCt > __kmp_nThreadsPerCore)
2382 __kmp_nThreadsPerCore = threadCt;
2383 threadCt = 1;
2384 lastThreadId = threadInfo[i].threadId;
2386 // This is a different package, so go on to the next iteration without
2387 // doing any consistency checks. Reset the consistency check vars, though.
2388 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2389 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2390 continue;
2393 if (threadInfo[i].coreId != lastCoreId) {
2394 nCores++;
2395 coreCt++;
2396 lastCoreId = threadInfo[i].coreId;
2397 if ((int)threadCt > __kmp_nThreadsPerCore)
2398 __kmp_nThreadsPerCore = threadCt;
2399 threadCt = 1;
2400 lastThreadId = threadInfo[i].threadId;
2401 } else if (threadInfo[i].threadId != lastThreadId) {
2402 threadCt++;
2403 lastThreadId = threadInfo[i].threadId;
2404 } else {
2405 __kmp_free(threadInfo);
2406 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2407 return false;
2410 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2411 // fields agree between all the threads bounds to a given package.
2412 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2413 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2414 __kmp_free(threadInfo);
2415 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2416 return false;
2419 // When affinity is off, this routine will still be called to set
2420 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2421 // Make sure all these vars are set correctly
2422 nPackages = pkgCt;
2423 if ((int)coreCt > nCoresPerPkg)
2424 nCoresPerPkg = coreCt;
2425 if ((int)threadCt > __kmp_nThreadsPerCore)
2426 __kmp_nThreadsPerCore = threadCt;
2427 __kmp_ncores = nCores;
2428 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2430 // Now that we've determined the number of packages, the number of cores per
2431 // package, and the number of threads per core, we can construct the data
2432 // structure that is to be returned.
2433 int idx = 0;
2434 int pkgLevel = 0;
2435 int coreLevel = 1;
2436 int threadLevel = 2;
2437 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2438 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2439 kmp_hw_t types[3];
2440 if (pkgLevel >= 0)
2441 types[idx++] = KMP_HW_SOCKET;
2442 if (coreLevel >= 0)
2443 types[idx++] = KMP_HW_CORE;
2444 if (threadLevel >= 0)
2445 types[idx++] = KMP_HW_THREAD;
2447 KMP_ASSERT(depth > 0);
2448 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2450 for (i = 0; i < nApics; ++i) {
2451 idx = 0;
2452 unsigned os = threadInfo[i].osId;
2453 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2454 hw_thread.clear();
2456 if (pkgLevel >= 0) {
2457 hw_thread.ids[idx++] = threadInfo[i].pkgId;
2459 if (coreLevel >= 0) {
2460 hw_thread.ids[idx++] = threadInfo[i].coreId;
2462 if (threadLevel >= 0) {
2463 hw_thread.ids[idx++] = threadInfo[i].threadId;
2465 hw_thread.os_id = os;
2468 __kmp_free(threadInfo);
2469 __kmp_topology->sort_ids();
2470 if (!__kmp_topology->check_ids()) {
2471 kmp_topology_t::deallocate(__kmp_topology);
2472 __kmp_topology = nullptr;
2473 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2474 return false;
2476 return true;
2479 // Hybrid cpu detection using CPUID.1A
2480 // Thread should be pinned to processor already
2481 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2482 unsigned *native_model_id) {
2483 kmp_cpuid buf;
2484 __kmp_x86_cpuid(0x1a, 0, &buf);
2485 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2486 switch (*type) {
2487 case KMP_HW_CORE_TYPE_ATOM:
2488 *efficiency = 0;
2489 break;
2490 case KMP_HW_CORE_TYPE_CORE:
2491 *efficiency = 1;
2492 break;
2493 default:
2494 *efficiency = 0;
2496 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2499 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
2500 // architectures support a newer interface for specifying the x2APIC Ids,
2501 // based on CPUID.B or CPUID.1F
2503 * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2504 Bits Bits Bits Bits
2505 31-16 15-8 7-4 4-0
2506 ---+-----------+--------------+-------------+-----------------+
2507 EAX| reserved | reserved | reserved | Bits to Shift |
2508 ---+-----------|--------------+-------------+-----------------|
2509 EBX| reserved | Num logical processors at level (16 bits) |
2510 ---+-----------|--------------+-------------------------------|
2511 ECX| reserved | Level Type | Level Number (8 bits) |
2512 ---+-----------+--------------+-------------------------------|
2513 EDX| X2APIC ID (32 bits) |
2514 ---+----------------------------------------------------------+
2517 enum {
2518 INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2519 INTEL_LEVEL_TYPE_SMT = 1,
2520 INTEL_LEVEL_TYPE_CORE = 2,
2521 INTEL_LEVEL_TYPE_MODULE = 3,
2522 INTEL_LEVEL_TYPE_TILE = 4,
2523 INTEL_LEVEL_TYPE_DIE = 5,
2524 INTEL_LEVEL_TYPE_LAST = 6,
2527 struct cpuid_level_info_t {
2528 unsigned level_type, mask, mask_width, nitems, cache_mask;
2531 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2532 switch (intel_type) {
2533 case INTEL_LEVEL_TYPE_INVALID:
2534 return KMP_HW_SOCKET;
2535 case INTEL_LEVEL_TYPE_SMT:
2536 return KMP_HW_THREAD;
2537 case INTEL_LEVEL_TYPE_CORE:
2538 return KMP_HW_CORE;
2539 case INTEL_LEVEL_TYPE_TILE:
2540 return KMP_HW_TILE;
2541 case INTEL_LEVEL_TYPE_MODULE:
2542 return KMP_HW_MODULE;
2543 case INTEL_LEVEL_TYPE_DIE:
2544 return KMP_HW_DIE;
2546 return KMP_HW_UNKNOWN;
2549 // This function takes the topology leaf, a levels array to store the levels
2550 // detected and a bitmap of the known levels.
2551 // Returns the number of levels in the topology
2552 static unsigned
2553 __kmp_x2apicid_get_levels(int leaf,
2554 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2555 kmp_uint64 known_levels) {
2556 unsigned level, levels_index;
2557 unsigned level_type, mask_width, nitems;
2558 kmp_cpuid buf;
2560 // New algorithm has known topology layers act as highest unknown topology
2561 // layers when unknown topology layers exist.
2562 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2563 // are unknown topology layers, Then SMT will take the characteristics of
2564 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2565 // This eliminates unknown portions of the topology while still keeping the
2566 // correct structure.
2567 level = levels_index = 0;
2568 do {
2569 __kmp_x86_cpuid(leaf, level, &buf);
2570 level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2571 mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2572 nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2573 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2574 return 0;
2576 if (known_levels & (1ull << level_type)) {
2577 // Add a new level to the topology
2578 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2579 levels[levels_index].level_type = level_type;
2580 levels[levels_index].mask_width = mask_width;
2581 levels[levels_index].nitems = nitems;
2582 levels_index++;
2583 } else {
2584 // If it is an unknown level, then logically move the previous layer up
2585 if (levels_index > 0) {
2586 levels[levels_index - 1].mask_width = mask_width;
2587 levels[levels_index - 1].nitems = nitems;
2590 level++;
2591 } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2593 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
2594 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
2595 return 0;
2597 // Set the masks to & with apicid
2598 for (unsigned i = 0; i < levels_index; ++i) {
2599 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2600 levels[i].mask = ~((-1) << levels[i].mask_width);
2601 levels[i].cache_mask = (-1) << levels[i].mask_width;
2602 for (unsigned j = 0; j < i; ++j)
2603 levels[i].mask ^= levels[j].mask;
2604 } else {
2605 KMP_DEBUG_ASSERT(i > 0);
2606 levels[i].mask = (-1) << levels[i - 1].mask_width;
2607 levels[i].cache_mask = 0;
2610 return levels_index;
2613 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2615 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2616 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2617 unsigned levels_index;
2618 kmp_cpuid buf;
2619 kmp_uint64 known_levels;
2620 int topology_leaf, highest_leaf, apic_id;
2621 int num_leaves;
2622 static int leaves[] = {0, 0};
2624 kmp_i18n_id_t leaf_message_id;
2626 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2628 *msg_id = kmp_i18n_null;
2629 if (__kmp_affinity.flags.verbose) {
2630 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2633 // Figure out the known topology levels
2634 known_levels = 0ull;
2635 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2636 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2637 known_levels |= (1ull << i);
2641 // Get the highest cpuid leaf supported
2642 __kmp_x86_cpuid(0, 0, &buf);
2643 highest_leaf = buf.eax;
2645 // If a specific topology method was requested, only allow that specific leaf
2646 // otherwise, try both leaves 31 and 11 in that order
2647 num_leaves = 0;
2648 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2649 num_leaves = 1;
2650 leaves[0] = 11;
2651 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2652 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2653 num_leaves = 1;
2654 leaves[0] = 31;
2655 leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2656 } else {
2657 num_leaves = 2;
2658 leaves[0] = 31;
2659 leaves[1] = 11;
2660 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2663 // Check to see if cpuid leaf 31 or 11 is supported.
2664 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2665 topology_leaf = -1;
2666 for (int i = 0; i < num_leaves; ++i) {
2667 int leaf = leaves[i];
2668 if (highest_leaf < leaf)
2669 continue;
2670 __kmp_x86_cpuid(leaf, 0, &buf);
2671 if (buf.ebx == 0)
2672 continue;
2673 topology_leaf = leaf;
2674 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2675 if (levels_index == 0)
2676 continue;
2677 break;
2679 if (topology_leaf == -1 || levels_index == 0) {
2680 *msg_id = leaf_message_id;
2681 return false;
2683 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2685 // The algorithm used starts by setting the affinity to each available thread
2686 // and retrieving info from the cpuid instruction, so if we are not capable of
2687 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2688 // we need to do something else - use the defaults that we calculated from
2689 // issuing cpuid without binding to each proc.
2690 if (!KMP_AFFINITY_CAPABLE()) {
2691 // Hack to try and infer the machine topology using only the data
2692 // available from cpuid on the current thread, and __kmp_xproc.
2693 KMP_ASSERT(__kmp_affinity.type == affinity_none);
2694 for (unsigned i = 0; i < levels_index; ++i) {
2695 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2696 __kmp_nThreadsPerCore = levels[i].nitems;
2697 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2698 nCoresPerPkg = levels[i].nitems;
2701 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2702 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2703 return true;
2706 // Allocate the data structure to be returned.
2707 int depth = levels_index;
2708 for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2709 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2710 __kmp_topology =
2711 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2713 // Insert equivalent cache types if they exist
2714 kmp_cache_info_t cache_info;
2715 for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2716 const kmp_cache_info_t::info_t &info = cache_info[i];
2717 unsigned cache_mask = info.mask;
2718 unsigned cache_level = info.level;
2719 for (unsigned j = 0; j < levels_index; ++j) {
2720 unsigned hw_cache_mask = levels[j].cache_mask;
2721 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2722 if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2723 kmp_hw_t type =
2724 __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2725 __kmp_topology->set_equivalent_type(cache_type, type);
2730 // From here on, we can assume that it is safe to call
2731 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2732 // __kmp_affinity.type = affinity_none.
2734 // Save the affinity mask for the current thread.
2735 kmp_affinity_raii_t previous_affinity;
2737 // Run through each of the available contexts, binding the current thread
2738 // to it, and obtaining the pertinent information using the cpuid instr.
2739 unsigned int proc;
2740 int hw_thread_index = 0;
2741 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2742 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2743 unsigned my_levels_index;
2745 // Skip this proc if it is not included in the machine model.
2746 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2747 continue;
2749 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2751 __kmp_affinity_dispatch->bind_thread(proc);
2753 // New algorithm
2754 __kmp_x86_cpuid(topology_leaf, 0, &buf);
2755 apic_id = buf.edx;
2756 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2757 my_levels_index =
2758 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2759 if (my_levels_index == 0 || my_levels_index != levels_index) {
2760 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2761 return false;
2763 hw_thread.clear();
2764 hw_thread.os_id = proc;
2765 // Put in topology information
2766 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2767 hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2768 if (j > 0) {
2769 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2772 // Hybrid information
2773 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2774 kmp_hw_core_type_t type;
2775 unsigned native_model_id;
2776 int efficiency;
2777 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2778 hw_thread.attrs.set_core_type(type);
2779 hw_thread.attrs.set_core_eff(efficiency);
2781 hw_thread_index++;
2783 KMP_ASSERT(hw_thread_index > 0);
2784 __kmp_topology->sort_ids();
2785 if (!__kmp_topology->check_ids()) {
2786 kmp_topology_t::deallocate(__kmp_topology);
2787 __kmp_topology = nullptr;
2788 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2789 return false;
2791 return true;
2793 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2795 #define osIdIndex 0
2796 #define threadIdIndex 1
2797 #define coreIdIndex 2
2798 #define pkgIdIndex 3
2799 #define nodeIdIndex 4
2801 typedef unsigned *ProcCpuInfo;
2802 static unsigned maxIndex = pkgIdIndex;
2804 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2805 const void *b) {
2806 unsigned i;
2807 const unsigned *aa = *(unsigned *const *)a;
2808 const unsigned *bb = *(unsigned *const *)b;
2809 for (i = maxIndex;; i--) {
2810 if (aa[i] < bb[i])
2811 return -1;
2812 if (aa[i] > bb[i])
2813 return 1;
2814 if (i == osIdIndex)
2815 break;
2817 return 0;
2820 #if KMP_USE_HIER_SCHED
2821 // Set the array sizes for the hierarchy layers
2822 static void __kmp_dispatch_set_hierarchy_values() {
2823 // Set the maximum number of L1's to number of cores
2824 // Set the maximum number of L2's to either number of cores / 2 for
2825 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2826 // Or the number of cores for Intel(R) Xeon(R) processors
2827 // Set the maximum number of NUMA nodes and L3's to number of packages
2828 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2829 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2830 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2831 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2832 KMP_MIC_SUPPORTED
2833 if (__kmp_mic_type >= mic3)
2834 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2835 else
2836 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2837 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2838 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2839 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2840 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2841 // Set the number of threads per unit
2842 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2843 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2844 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2845 __kmp_nThreadsPerCore;
2846 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2847 KMP_MIC_SUPPORTED
2848 if (__kmp_mic_type >= mic3)
2849 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2850 2 * __kmp_nThreadsPerCore;
2851 else
2852 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2853 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2854 __kmp_nThreadsPerCore;
2855 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2856 nCoresPerPkg * __kmp_nThreadsPerCore;
2857 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2858 nCoresPerPkg * __kmp_nThreadsPerCore;
2859 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2860 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2863 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2864 // i.e., this thread's L1 or this thread's L2, etc.
2865 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2866 int index = type + 1;
2867 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2868 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2869 if (type == kmp_hier_layer_e::LAYER_THREAD)
2870 return tid;
2871 else if (type == kmp_hier_layer_e::LAYER_LOOP)
2872 return 0;
2873 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2874 if (tid >= num_hw_threads)
2875 tid = tid % num_hw_threads;
2876 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2879 // Return the number of t1's per t2
2880 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2881 int i1 = t1 + 1;
2882 int i2 = t2 + 1;
2883 KMP_DEBUG_ASSERT(i1 <= i2);
2884 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2885 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2886 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2887 // (nthreads/t2) / (nthreads/t1) = t1 / t2
2888 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2890 #endif // KMP_USE_HIER_SCHED
2892 static inline const char *__kmp_cpuinfo_get_filename() {
2893 const char *filename;
2894 if (__kmp_cpuinfo_file != nullptr)
2895 filename = __kmp_cpuinfo_file;
2896 else
2897 filename = "/proc/cpuinfo";
2898 return filename;
2901 static inline const char *__kmp_cpuinfo_get_envvar() {
2902 const char *envvar = nullptr;
2903 if (__kmp_cpuinfo_file != nullptr)
2904 envvar = "KMP_CPUINFO_FILE";
2905 return envvar;
2908 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2909 // affinity map.
2910 static bool __kmp_affinity_create_cpuinfo_map(int *line,
2911 kmp_i18n_id_t *const msg_id) {
2912 const char *filename = __kmp_cpuinfo_get_filename();
2913 const char *envvar = __kmp_cpuinfo_get_envvar();
2914 *msg_id = kmp_i18n_null;
2916 if (__kmp_affinity.flags.verbose) {
2917 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2920 kmp_safe_raii_file_t f(filename, "r", envvar);
2922 // Scan of the file, and count the number of "processor" (osId) fields,
2923 // and find the highest value of <n> for a node_<n> field.
2924 char buf[256];
2925 unsigned num_records = 0;
2926 while (!feof(f)) {
2927 buf[sizeof(buf) - 1] = 1;
2928 if (!fgets(buf, sizeof(buf), f)) {
2929 // Read errors presumably because of EOF
2930 break;
2933 char s1[] = "processor";
2934 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2935 num_records++;
2936 continue;
2939 // FIXME - this will match "node_<n> <garbage>"
2940 unsigned level;
2941 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2942 // validate the input fisrt:
2943 if (level > (unsigned)__kmp_xproc) { // level is too big
2944 level = __kmp_xproc;
2946 if (nodeIdIndex + level >= maxIndex) {
2947 maxIndex = nodeIdIndex + level;
2949 continue;
2953 // Check for empty file / no valid processor records, or too many. The number
2954 // of records can't exceed the number of valid bits in the affinity mask.
2955 if (num_records == 0) {
2956 *msg_id = kmp_i18n_str_NoProcRecords;
2957 return false;
2959 if (num_records > (unsigned)__kmp_xproc) {
2960 *msg_id = kmp_i18n_str_TooManyProcRecords;
2961 return false;
2964 // Set the file pointer back to the beginning, so that we can scan the file
2965 // again, this time performing a full parse of the data. Allocate a vector of
2966 // ProcCpuInfo object, where we will place the data. Adding an extra element
2967 // at the end allows us to remove a lot of extra checks for termination
2968 // conditions.
2969 if (fseek(f, 0, SEEK_SET) != 0) {
2970 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2971 return false;
2974 // Allocate the array of records to store the proc info in. The dummy
2975 // element at the end makes the logic in filling them out easier to code.
2976 unsigned **threadInfo =
2977 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2978 unsigned i;
2979 for (i = 0; i <= num_records; i++) {
2980 threadInfo[i] =
2981 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2984 #define CLEANUP_THREAD_INFO \
2985 for (i = 0; i <= num_records; i++) { \
2986 __kmp_free(threadInfo[i]); \
2988 __kmp_free(threadInfo);
2990 // A value of UINT_MAX means that we didn't find the field
2991 unsigned __index;
2993 #define INIT_PROC_INFO(p) \
2994 for (__index = 0; __index <= maxIndex; __index++) { \
2995 (p)[__index] = UINT_MAX; \
2998 for (i = 0; i <= num_records; i++) {
2999 INIT_PROC_INFO(threadInfo[i]);
3002 unsigned num_avail = 0;
3003 *line = 0;
3004 #if KMP_ARCH_S390X
3005 bool reading_s390x_sys_info = true;
3006 #endif
3007 while (!feof(f)) {
3008 // Create an inner scoping level, so that all the goto targets at the end of
3009 // the loop appear in an outer scoping level. This avoids warnings about
3010 // jumping past an initialization to a target in the same block.
3012 buf[sizeof(buf) - 1] = 1;
3013 bool long_line = false;
3014 if (!fgets(buf, sizeof(buf), f)) {
3015 // Read errors presumably because of EOF
3016 // If there is valid data in threadInfo[num_avail], then fake
3017 // a blank line in ensure that the last address gets parsed.
3018 bool valid = false;
3019 for (i = 0; i <= maxIndex; i++) {
3020 if (threadInfo[num_avail][i] != UINT_MAX) {
3021 valid = true;
3024 if (!valid) {
3025 break;
3027 buf[0] = 0;
3028 } else if (!buf[sizeof(buf) - 1]) {
3029 // The line is longer than the buffer. Set a flag and don't
3030 // emit an error if we were going to ignore the line, anyway.
3031 long_line = true;
3033 #define CHECK_LINE \
3034 if (long_line) { \
3035 CLEANUP_THREAD_INFO; \
3036 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
3037 return false; \
3040 (*line)++;
3042 #if KMP_ARCH_LOONGARCH64
3043 // The parsing logic of /proc/cpuinfo in this function highly depends on
3044 // the blank lines between each processor info block. But on LoongArch a
3045 // blank line exists before the first processor info block (i.e. after the
3046 // "system type" line). This blank line was added because the "system
3047 // type" line is unrelated to any of the CPUs. We must skip this line so
3048 // that the original logic works on LoongArch.
3049 if (*buf == '\n' && *line == 2)
3050 continue;
3051 #endif
3052 #if KMP_ARCH_S390X
3053 // s390x /proc/cpuinfo starts with a variable number of lines containing
3054 // the overall system information. Skip them.
3055 if (reading_s390x_sys_info) {
3056 if (*buf == '\n')
3057 reading_s390x_sys_info = false;
3058 continue;
3060 #endif
3062 #if KMP_ARCH_S390X
3063 char s1[] = "cpu number";
3064 #else
3065 char s1[] = "processor";
3066 #endif
3067 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
3068 CHECK_LINE;
3069 char *p = strchr(buf + sizeof(s1) - 1, ':');
3070 unsigned val;
3071 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3072 goto no_val;
3073 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
3074 #if KMP_ARCH_AARCH64
3075 // Handle the old AArch64 /proc/cpuinfo layout differently,
3076 // it contains all of the 'processor' entries listed in a
3077 // single 'Processor' section, therefore the normal looking
3078 // for duplicates in that section will always fail.
3079 num_avail++;
3080 #else
3081 goto dup_field;
3082 #endif
3083 threadInfo[num_avail][osIdIndex] = val;
3084 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
3085 char path[256];
3086 KMP_SNPRINTF(
3087 path, sizeof(path),
3088 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
3089 threadInfo[num_avail][osIdIndex]);
3090 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
3092 #if KMP_ARCH_S390X
3093 // Disambiguate physical_package_id.
3094 unsigned book_id;
3095 KMP_SNPRINTF(path, sizeof(path),
3096 "/sys/devices/system/cpu/cpu%u/topology/book_id",
3097 threadInfo[num_avail][osIdIndex]);
3098 __kmp_read_from_file(path, "%u", &book_id);
3099 threadInfo[num_avail][pkgIdIndex] |= (book_id << 8);
3101 unsigned drawer_id;
3102 KMP_SNPRINTF(path, sizeof(path),
3103 "/sys/devices/system/cpu/cpu%u/topology/drawer_id",
3104 threadInfo[num_avail][osIdIndex]);
3105 __kmp_read_from_file(path, "%u", &drawer_id);
3106 threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16);
3107 #endif
3109 KMP_SNPRINTF(path, sizeof(path),
3110 "/sys/devices/system/cpu/cpu%u/topology/core_id",
3111 threadInfo[num_avail][osIdIndex]);
3112 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
3113 continue;
3114 #else
3116 char s2[] = "physical id";
3117 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
3118 CHECK_LINE;
3119 char *p = strchr(buf + sizeof(s2) - 1, ':');
3120 unsigned val;
3121 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3122 goto no_val;
3123 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
3124 goto dup_field;
3125 threadInfo[num_avail][pkgIdIndex] = val;
3126 continue;
3128 char s3[] = "core id";
3129 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
3130 CHECK_LINE;
3131 char *p = strchr(buf + sizeof(s3) - 1, ':');
3132 unsigned val;
3133 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3134 goto no_val;
3135 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3136 goto dup_field;
3137 threadInfo[num_avail][coreIdIndex] = val;
3138 continue;
3139 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
3141 char s4[] = "thread id";
3142 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3143 CHECK_LINE;
3144 char *p = strchr(buf + sizeof(s4) - 1, ':');
3145 unsigned val;
3146 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3147 goto no_val;
3148 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3149 goto dup_field;
3150 threadInfo[num_avail][threadIdIndex] = val;
3151 continue;
3153 unsigned level;
3154 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3155 CHECK_LINE;
3156 char *p = strchr(buf + sizeof(s4) - 1, ':');
3157 unsigned val;
3158 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3159 goto no_val;
3160 // validate the input before using level:
3161 if (level > (unsigned)__kmp_xproc) { // level is too big
3162 level = __kmp_xproc;
3164 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3165 goto dup_field;
3166 threadInfo[num_avail][nodeIdIndex + level] = val;
3167 continue;
3170 // We didn't recognize the leading token on the line. There are lots of
3171 // leading tokens that we don't recognize - if the line isn't empty, go on
3172 // to the next line.
3173 if ((*buf != 0) && (*buf != '\n')) {
3174 // If the line is longer than the buffer, read characters
3175 // until we find a newline.
3176 if (long_line) {
3177 int ch;
3178 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3181 continue;
3184 // A newline has signalled the end of the processor record.
3185 // Check that there aren't too many procs specified.
3186 if ((int)num_avail == __kmp_xproc) {
3187 CLEANUP_THREAD_INFO;
3188 *msg_id = kmp_i18n_str_TooManyEntries;
3189 return false;
3192 // Check for missing fields. The osId field must be there, and we
3193 // currently require that the physical id field is specified, also.
3194 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3195 CLEANUP_THREAD_INFO;
3196 *msg_id = kmp_i18n_str_MissingProcField;
3197 return false;
3199 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3200 CLEANUP_THREAD_INFO;
3201 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3202 return false;
3205 // Skip this proc if it is not included in the machine model.
3206 if (KMP_AFFINITY_CAPABLE() &&
3207 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3208 __kmp_affin_fullMask)) {
3209 INIT_PROC_INFO(threadInfo[num_avail]);
3210 continue;
3213 // We have a successful parse of this proc's info.
3214 // Increment the counter, and prepare for the next proc.
3215 num_avail++;
3216 KMP_ASSERT(num_avail <= num_records);
3217 INIT_PROC_INFO(threadInfo[num_avail]);
3219 continue;
3221 no_val:
3222 CLEANUP_THREAD_INFO;
3223 *msg_id = kmp_i18n_str_MissingValCpuinfo;
3224 return false;
3226 dup_field:
3227 CLEANUP_THREAD_INFO;
3228 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3229 return false;
3231 *line = 0;
3233 #if KMP_MIC && REDUCE_TEAM_SIZE
3234 unsigned teamSize = 0;
3235 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3237 // check for num_records == __kmp_xproc ???
3239 // If it is configured to omit the package level when there is only a single
3240 // package, the logic at the end of this routine won't work if there is only a
3241 // single thread
3242 KMP_ASSERT(num_avail > 0);
3243 KMP_ASSERT(num_avail <= num_records);
3245 // Sort the threadInfo table by physical Id.
3246 qsort(threadInfo, num_avail, sizeof(*threadInfo),
3247 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3249 // The table is now sorted by pkgId / coreId / threadId, but we really don't
3250 // know the radix of any of the fields. pkgId's may be sparsely assigned among
3251 // the chips on a system. Although coreId's are usually assigned
3252 // [0 .. coresPerPkg-1] and threadId's are usually assigned
3253 // [0..threadsPerCore-1], we don't want to make any such assumptions.
3255 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3256 // total # packages) are at this point - we want to determine that now. We
3257 // only have an upper bound on the first two figures.
3258 unsigned *counts =
3259 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3260 unsigned *maxCt =
3261 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3262 unsigned *totals =
3263 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3264 unsigned *lastId =
3265 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3267 bool assign_thread_ids = false;
3268 unsigned threadIdCt;
3269 unsigned index;
3271 restart_radix_check:
3272 threadIdCt = 0;
3274 // Initialize the counter arrays with data from threadInfo[0].
3275 if (assign_thread_ids) {
3276 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3277 threadInfo[0][threadIdIndex] = threadIdCt++;
3278 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3279 threadIdCt = threadInfo[0][threadIdIndex] + 1;
3282 for (index = 0; index <= maxIndex; index++) {
3283 counts[index] = 1;
3284 maxCt[index] = 1;
3285 totals[index] = 1;
3286 lastId[index] = threadInfo[0][index];
3290 // Run through the rest of the OS procs.
3291 for (i = 1; i < num_avail; i++) {
3292 // Find the most significant index whose id differs from the id for the
3293 // previous OS proc.
3294 for (index = maxIndex; index >= threadIdIndex; index--) {
3295 if (assign_thread_ids && (index == threadIdIndex)) {
3296 // Auto-assign the thread id field if it wasn't specified.
3297 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3298 threadInfo[i][threadIdIndex] = threadIdCt++;
3300 // Apparently the thread id field was specified for some entries and not
3301 // others. Start the thread id counter off at the next higher thread id.
3302 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3303 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3306 if (threadInfo[i][index] != lastId[index]) {
3307 // Run through all indices which are less significant, and reset the
3308 // counts to 1. At all levels up to and including index, we need to
3309 // increment the totals and record the last id.
3310 unsigned index2;
3311 for (index2 = threadIdIndex; index2 < index; index2++) {
3312 totals[index2]++;
3313 if (counts[index2] > maxCt[index2]) {
3314 maxCt[index2] = counts[index2];
3316 counts[index2] = 1;
3317 lastId[index2] = threadInfo[i][index2];
3319 counts[index]++;
3320 totals[index]++;
3321 lastId[index] = threadInfo[i][index];
3323 if (assign_thread_ids && (index > threadIdIndex)) {
3325 #if KMP_MIC && REDUCE_TEAM_SIZE
3326 // The default team size is the total #threads in the machine
3327 // minus 1 thread for every core that has 3 or more threads.
3328 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3329 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3331 // Restart the thread counter, as we are on a new core.
3332 threadIdCt = 0;
3334 // Auto-assign the thread id field if it wasn't specified.
3335 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3336 threadInfo[i][threadIdIndex] = threadIdCt++;
3339 // Apparently the thread id field was specified for some entries and
3340 // not others. Start the thread id counter off at the next higher
3341 // thread id.
3342 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3343 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3346 break;
3349 if (index < threadIdIndex) {
3350 // If thread ids were specified, it is an error if they are not unique.
3351 // Also, check that we waven't already restarted the loop (to be safe -
3352 // shouldn't need to).
3353 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3354 __kmp_free(lastId);
3355 __kmp_free(totals);
3356 __kmp_free(maxCt);
3357 __kmp_free(counts);
3358 CLEANUP_THREAD_INFO;
3359 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3360 return false;
3363 // If the thread ids were not specified and we see entries that
3364 // are duplicates, start the loop over and assign the thread ids manually.
3365 assign_thread_ids = true;
3366 goto restart_radix_check;
3370 #if KMP_MIC && REDUCE_TEAM_SIZE
3371 // The default team size is the total #threads in the machine
3372 // minus 1 thread for every core that has 3 or more threads.
3373 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3374 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3376 for (index = threadIdIndex; index <= maxIndex; index++) {
3377 if (counts[index] > maxCt[index]) {
3378 maxCt[index] = counts[index];
3382 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3383 nCoresPerPkg = maxCt[coreIdIndex];
3384 nPackages = totals[pkgIdIndex];
3386 // When affinity is off, this routine will still be called to set
3387 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3388 // Make sure all these vars are set correctly, and return now if affinity is
3389 // not enabled.
3390 __kmp_ncores = totals[coreIdIndex];
3391 if (!KMP_AFFINITY_CAPABLE()) {
3392 KMP_ASSERT(__kmp_affinity.type == affinity_none);
3393 return true;
3396 #if KMP_MIC && REDUCE_TEAM_SIZE
3397 // Set the default team size.
3398 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3399 __kmp_dflt_team_nth = teamSize;
3400 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3401 "__kmp_dflt_team_nth = %d\n",
3402 __kmp_dflt_team_nth));
3404 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3406 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3408 // Count the number of levels which have more nodes at that level than at the
3409 // parent's level (with there being an implicit root node of the top level).
3410 // This is equivalent to saying that there is at least one node at this level
3411 // which has a sibling. These levels are in the map, and the package level is
3412 // always in the map.
3413 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3414 for (index = threadIdIndex; index < maxIndex; index++) {
3415 KMP_ASSERT(totals[index] >= totals[index + 1]);
3416 inMap[index] = (totals[index] > totals[index + 1]);
3418 inMap[maxIndex] = (totals[maxIndex] > 1);
3419 inMap[pkgIdIndex] = true;
3420 inMap[coreIdIndex] = true;
3421 inMap[threadIdIndex] = true;
3423 int depth = 0;
3424 int idx = 0;
3425 kmp_hw_t types[KMP_HW_LAST];
3426 int pkgLevel = -1;
3427 int coreLevel = -1;
3428 int threadLevel = -1;
3429 for (index = threadIdIndex; index <= maxIndex; index++) {
3430 if (inMap[index]) {
3431 depth++;
3434 if (inMap[pkgIdIndex]) {
3435 pkgLevel = idx;
3436 types[idx++] = KMP_HW_SOCKET;
3438 if (inMap[coreIdIndex]) {
3439 coreLevel = idx;
3440 types[idx++] = KMP_HW_CORE;
3442 if (inMap[threadIdIndex]) {
3443 threadLevel = idx;
3444 types[idx++] = KMP_HW_THREAD;
3446 KMP_ASSERT(depth > 0);
3448 // Construct the data structure that is to be returned.
3449 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3451 for (i = 0; i < num_avail; ++i) {
3452 unsigned os = threadInfo[i][osIdIndex];
3453 int src_index;
3454 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3455 hw_thread.clear();
3456 hw_thread.os_id = os;
3458 idx = 0;
3459 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3460 if (!inMap[src_index]) {
3461 continue;
3463 if (src_index == pkgIdIndex) {
3464 hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3465 } else if (src_index == coreIdIndex) {
3466 hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3467 } else if (src_index == threadIdIndex) {
3468 hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3473 __kmp_free(inMap);
3474 __kmp_free(lastId);
3475 __kmp_free(totals);
3476 __kmp_free(maxCt);
3477 __kmp_free(counts);
3478 CLEANUP_THREAD_INFO;
3479 __kmp_topology->sort_ids();
3480 if (!__kmp_topology->check_ids()) {
3481 kmp_topology_t::deallocate(__kmp_topology);
3482 __kmp_topology = nullptr;
3483 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3484 return false;
3486 return true;
3489 // Create and return a table of affinity masks, indexed by OS thread ID.
3490 // This routine handles OR'ing together all the affinity masks of threads
3491 // that are sufficiently close, if granularity > fine.
3492 template <typename FindNextFunctionType>
3493 static void __kmp_create_os_id_masks(unsigned *numUnique,
3494 kmp_affinity_t &affinity,
3495 FindNextFunctionType find_next) {
3496 // First form a table of affinity masks in order of OS thread id.
3497 int maxOsId;
3498 int i;
3499 int numAddrs = __kmp_topology->get_num_hw_threads();
3500 int depth = __kmp_topology->get_depth();
3501 const char *env_var = __kmp_get_affinity_env_var(affinity);
3502 KMP_ASSERT(numAddrs);
3503 KMP_ASSERT(depth);
3505 i = find_next(-1);
3506 // If could not find HW thread location with attributes, then return and
3507 // fallback to increment find_next and disregard core attributes.
3508 if (i >= numAddrs)
3509 return;
3511 maxOsId = 0;
3512 for (i = numAddrs - 1;; --i) {
3513 int osId = __kmp_topology->at(i).os_id;
3514 if (osId > maxOsId) {
3515 maxOsId = osId;
3517 if (i == 0)
3518 break;
3520 affinity.num_os_id_masks = maxOsId + 1;
3521 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3522 KMP_ASSERT(affinity.gran_levels >= 0);
3523 if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3524 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3526 if (affinity.gran_levels >= (int)depth) {
3527 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3530 // Run through the table, forming the masks for all threads on each core.
3531 // Threads on the same core will have identical kmp_hw_thread_t objects, not
3532 // considering the last level, which must be the thread id. All threads on a
3533 // core will appear consecutively.
3534 int unique = 0;
3535 int j = 0; // index of 1st thread on core
3536 int leader = 0;
3537 kmp_affin_mask_t *sum;
3538 KMP_CPU_ALLOC_ON_STACK(sum);
3539 KMP_CPU_ZERO(sum);
3541 i = j = leader = find_next(-1);
3542 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3543 kmp_full_mask_modifier_t full_mask;
3544 for (i = find_next(i); i < numAddrs; i = find_next(i)) {
3545 // If this thread is sufficiently close to the leader (within the
3546 // granularity setting), then set the bit for this os thread in the
3547 // affinity mask for this group, and go on to the next thread.
3548 if (__kmp_topology->is_close(leader, i, affinity)) {
3549 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3550 continue;
3553 // For every thread in this group, copy the mask to the thread's entry in
3554 // the OS Id mask table. Mark the first address as a leader.
3555 for (; j < i; j = find_next(j)) {
3556 int osId = __kmp_topology->at(j).os_id;
3557 KMP_DEBUG_ASSERT(osId <= maxOsId);
3558 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3559 KMP_CPU_COPY(mask, sum);
3560 __kmp_topology->at(j).leader = (j == leader);
3562 unique++;
3564 // Start a new mask.
3565 leader = i;
3566 full_mask.include(sum);
3567 KMP_CPU_ZERO(sum);
3568 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3571 // For every thread in last group, copy the mask to the thread's
3572 // entry in the OS Id mask table.
3573 for (; j < i; j = find_next(j)) {
3574 int osId = __kmp_topology->at(j).os_id;
3575 KMP_DEBUG_ASSERT(osId <= maxOsId);
3576 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3577 KMP_CPU_COPY(mask, sum);
3578 __kmp_topology->at(j).leader = (j == leader);
3580 full_mask.include(sum);
3581 unique++;
3582 KMP_CPU_FREE_FROM_STACK(sum);
3584 // See if the OS Id mask table further restricts or changes the full mask
3585 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
3586 __kmp_topology->print(env_var);
3589 *numUnique = unique;
3592 // Stuff for the affinity proclist parsers. It's easier to declare these vars
3593 // as file-static than to try and pass them through the calling sequence of
3594 // the recursive-descent OMP_PLACES parser.
3595 static kmp_affin_mask_t *newMasks;
3596 static int numNewMasks;
3597 static int nextNewMask;
3599 #define ADD_MASK(_mask) \
3601 if (nextNewMask >= numNewMasks) { \
3602 int i; \
3603 numNewMasks *= 2; \
3604 kmp_affin_mask_t *temp; \
3605 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
3606 for (i = 0; i < numNewMasks / 2; i++) { \
3607 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
3608 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
3609 KMP_CPU_COPY(dest, src); \
3611 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
3612 newMasks = temp; \
3614 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
3615 nextNewMask++; \
3618 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
3620 if (((_osId) > _maxOsId) || \
3621 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
3622 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \
3623 } else { \
3624 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
3628 // Re-parse the proclist (for the explicit affinity type), and form the list
3629 // of affinity newMasks indexed by gtid.
3630 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
3631 int i;
3632 kmp_affin_mask_t **out_masks = &affinity.masks;
3633 unsigned *out_numMasks = &affinity.num_masks;
3634 const char *proclist = affinity.proclist;
3635 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3636 int maxOsId = affinity.num_os_id_masks - 1;
3637 const char *scan = proclist;
3638 const char *next = proclist;
3640 // We use malloc() for the temporary mask vector, so that we can use
3641 // realloc() to extend it.
3642 numNewMasks = 2;
3643 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3644 nextNewMask = 0;
3645 kmp_affin_mask_t *sumMask;
3646 KMP_CPU_ALLOC(sumMask);
3647 int setSize = 0;
3649 for (;;) {
3650 int start, end, stride;
3652 SKIP_WS(scan);
3653 next = scan;
3654 if (*next == '\0') {
3655 break;
3658 if (*next == '{') {
3659 int num;
3660 setSize = 0;
3661 next++; // skip '{'
3662 SKIP_WS(next);
3663 scan = next;
3665 // Read the first integer in the set.
3666 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3667 SKIP_DIGITS(next);
3668 num = __kmp_str_to_int(scan, *next);
3669 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3671 // Copy the mask for that osId to the sum (union) mask.
3672 if ((num > maxOsId) ||
3673 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3674 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3675 KMP_CPU_ZERO(sumMask);
3676 } else {
3677 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3678 setSize = 1;
3681 for (;;) {
3682 // Check for end of set.
3683 SKIP_WS(next);
3684 if (*next == '}') {
3685 next++; // skip '}'
3686 break;
3689 // Skip optional comma.
3690 if (*next == ',') {
3691 next++;
3693 SKIP_WS(next);
3695 // Read the next integer in the set.
3696 scan = next;
3697 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3699 SKIP_DIGITS(next);
3700 num = __kmp_str_to_int(scan, *next);
3701 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3703 // Add the mask for that osId to the sum mask.
3704 if ((num > maxOsId) ||
3705 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3706 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3707 } else {
3708 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3709 setSize++;
3712 if (setSize > 0) {
3713 ADD_MASK(sumMask);
3716 SKIP_WS(next);
3717 if (*next == ',') {
3718 next++;
3720 scan = next;
3721 continue;
3724 // Read the first integer.
3725 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3726 SKIP_DIGITS(next);
3727 start = __kmp_str_to_int(scan, *next);
3728 KMP_ASSERT2(start >= 0, "bad explicit proc list");
3729 SKIP_WS(next);
3731 // If this isn't a range, then add a mask to the list and go on.
3732 if (*next != '-') {
3733 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3735 // Skip optional comma.
3736 if (*next == ',') {
3737 next++;
3739 scan = next;
3740 continue;
3743 // This is a range. Skip over the '-' and read in the 2nd int.
3744 next++; // skip '-'
3745 SKIP_WS(next);
3746 scan = next;
3747 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3748 SKIP_DIGITS(next);
3749 end = __kmp_str_to_int(scan, *next);
3750 KMP_ASSERT2(end >= 0, "bad explicit proc list");
3752 // Check for a stride parameter
3753 stride = 1;
3754 SKIP_WS(next);
3755 if (*next == ':') {
3756 // A stride is specified. Skip over the ':" and read the 3rd int.
3757 int sign = +1;
3758 next++; // skip ':'
3759 SKIP_WS(next);
3760 scan = next;
3761 if (*next == '-') {
3762 sign = -1;
3763 next++;
3764 SKIP_WS(next);
3765 scan = next;
3767 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3768 SKIP_DIGITS(next);
3769 stride = __kmp_str_to_int(scan, *next);
3770 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3771 stride *= sign;
3774 // Do some range checks.
3775 KMP_ASSERT2(stride != 0, "bad explicit proc list");
3776 if (stride > 0) {
3777 KMP_ASSERT2(start <= end, "bad explicit proc list");
3778 } else {
3779 KMP_ASSERT2(start >= end, "bad explicit proc list");
3781 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3783 // Add the mask for each OS proc # to the list.
3784 if (stride > 0) {
3785 do {
3786 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3787 start += stride;
3788 } while (start <= end);
3789 } else {
3790 do {
3791 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3792 start += stride;
3793 } while (start >= end);
3796 // Skip optional comma.
3797 SKIP_WS(next);
3798 if (*next == ',') {
3799 next++;
3801 scan = next;
3804 *out_numMasks = nextNewMask;
3805 if (nextNewMask == 0) {
3806 *out_masks = NULL;
3807 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3808 return;
3810 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3811 for (i = 0; i < nextNewMask; i++) {
3812 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3813 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3814 KMP_CPU_COPY(dest, src);
3816 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3817 KMP_CPU_FREE(sumMask);
3820 /*-----------------------------------------------------------------------------
3821 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3822 places. Again, Here is the grammar:
3824 place_list := place
3825 place_list := place , place_list
3826 place := num
3827 place := place : num
3828 place := place : num : signed
3829 place := { subplacelist }
3830 place := ! place // (lowest priority)
3831 subplace_list := subplace
3832 subplace_list := subplace , subplace_list
3833 subplace := num
3834 subplace := num : num
3835 subplace := num : num : signed
3836 signed := num
3837 signed := + signed
3838 signed := - signed
3839 -----------------------------------------------------------------------------*/
3840 static void __kmp_process_subplace_list(const char **scan,
3841 kmp_affinity_t &affinity, int maxOsId,
3842 kmp_affin_mask_t *tempMask,
3843 int *setSize) {
3844 const char *next;
3845 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3847 for (;;) {
3848 int start, count, stride, i;
3850 // Read in the starting proc id
3851 SKIP_WS(*scan);
3852 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3853 next = *scan;
3854 SKIP_DIGITS(next);
3855 start = __kmp_str_to_int(*scan, *next);
3856 KMP_ASSERT(start >= 0);
3857 *scan = next;
3859 // valid follow sets are ',' ':' and '}'
3860 SKIP_WS(*scan);
3861 if (**scan == '}' || **scan == ',') {
3862 if ((start > maxOsId) ||
3863 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3864 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3865 } else {
3866 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3867 (*setSize)++;
3869 if (**scan == '}') {
3870 break;
3872 (*scan)++; // skip ','
3873 continue;
3875 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3876 (*scan)++; // skip ':'
3878 // Read count parameter
3879 SKIP_WS(*scan);
3880 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3881 next = *scan;
3882 SKIP_DIGITS(next);
3883 count = __kmp_str_to_int(*scan, *next);
3884 KMP_ASSERT(count >= 0);
3885 *scan = next;
3887 // valid follow sets are ',' ':' and '}'
3888 SKIP_WS(*scan);
3889 if (**scan == '}' || **scan == ',') {
3890 for (i = 0; i < count; i++) {
3891 if ((start > maxOsId) ||
3892 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3893 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3894 break; // don't proliferate warnings for large count
3895 } else {
3896 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3897 start++;
3898 (*setSize)++;
3901 if (**scan == '}') {
3902 break;
3904 (*scan)++; // skip ','
3905 continue;
3907 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3908 (*scan)++; // skip ':'
3910 // Read stride parameter
3911 int sign = +1;
3912 for (;;) {
3913 SKIP_WS(*scan);
3914 if (**scan == '+') {
3915 (*scan)++; // skip '+'
3916 continue;
3918 if (**scan == '-') {
3919 sign *= -1;
3920 (*scan)++; // skip '-'
3921 continue;
3923 break;
3925 SKIP_WS(*scan);
3926 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3927 next = *scan;
3928 SKIP_DIGITS(next);
3929 stride = __kmp_str_to_int(*scan, *next);
3930 KMP_ASSERT(stride >= 0);
3931 *scan = next;
3932 stride *= sign;
3934 // valid follow sets are ',' and '}'
3935 SKIP_WS(*scan);
3936 if (**scan == '}' || **scan == ',') {
3937 for (i = 0; i < count; i++) {
3938 if ((start > maxOsId) ||
3939 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3940 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3941 break; // don't proliferate warnings for large count
3942 } else {
3943 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3944 start += stride;
3945 (*setSize)++;
3948 if (**scan == '}') {
3949 break;
3951 (*scan)++; // skip ','
3952 continue;
3955 KMP_ASSERT2(0, "bad explicit places list");
3959 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
3960 int maxOsId, kmp_affin_mask_t *tempMask,
3961 int *setSize) {
3962 const char *next;
3963 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3965 // valid follow sets are '{' '!' and num
3966 SKIP_WS(*scan);
3967 if (**scan == '{') {
3968 (*scan)++; // skip '{'
3969 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
3970 KMP_ASSERT2(**scan == '}', "bad explicit places list");
3971 (*scan)++; // skip '}'
3972 } else if (**scan == '!') {
3973 (*scan)++; // skip '!'
3974 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
3975 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3976 } else if ((**scan >= '0') && (**scan <= '9')) {
3977 next = *scan;
3978 SKIP_DIGITS(next);
3979 int num = __kmp_str_to_int(*scan, *next);
3980 KMP_ASSERT(num >= 0);
3981 if ((num > maxOsId) ||
3982 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3983 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3984 } else {
3985 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3986 (*setSize)++;
3988 *scan = next; // skip num
3989 } else {
3990 KMP_ASSERT2(0, "bad explicit places list");
3994 // static void
3995 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
3996 int i, j, count, stride, sign;
3997 kmp_affin_mask_t **out_masks = &affinity.masks;
3998 unsigned *out_numMasks = &affinity.num_masks;
3999 const char *placelist = affinity.proclist;
4000 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4001 int maxOsId = affinity.num_os_id_masks - 1;
4002 const char *scan = placelist;
4003 const char *next = placelist;
4005 numNewMasks = 2;
4006 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4007 nextNewMask = 0;
4009 // tempMask is modified based on the previous or initial
4010 // place to form the current place
4011 // previousMask contains the previous place
4012 kmp_affin_mask_t *tempMask;
4013 kmp_affin_mask_t *previousMask;
4014 KMP_CPU_ALLOC(tempMask);
4015 KMP_CPU_ZERO(tempMask);
4016 KMP_CPU_ALLOC(previousMask);
4017 KMP_CPU_ZERO(previousMask);
4018 int setSize = 0;
4020 for (;;) {
4021 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
4023 // valid follow sets are ',' ':' and EOL
4024 SKIP_WS(scan);
4025 if (*scan == '\0' || *scan == ',') {
4026 if (setSize > 0) {
4027 ADD_MASK(tempMask);
4029 KMP_CPU_ZERO(tempMask);
4030 setSize = 0;
4031 if (*scan == '\0') {
4032 break;
4034 scan++; // skip ','
4035 continue;
4038 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4039 scan++; // skip ':'
4041 // Read count parameter
4042 SKIP_WS(scan);
4043 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4044 next = scan;
4045 SKIP_DIGITS(next);
4046 count = __kmp_str_to_int(scan, *next);
4047 KMP_ASSERT(count >= 0);
4048 scan = next;
4050 // valid follow sets are ',' ':' and EOL
4051 SKIP_WS(scan);
4052 if (*scan == '\0' || *scan == ',') {
4053 stride = +1;
4054 } else {
4055 KMP_ASSERT2(*scan == ':', "bad explicit places list");
4056 scan++; // skip ':'
4058 // Read stride parameter
4059 sign = +1;
4060 for (;;) {
4061 SKIP_WS(scan);
4062 if (*scan == '+') {
4063 scan++; // skip '+'
4064 continue;
4066 if (*scan == '-') {
4067 sign *= -1;
4068 scan++; // skip '-'
4069 continue;
4071 break;
4073 SKIP_WS(scan);
4074 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4075 next = scan;
4076 SKIP_DIGITS(next);
4077 stride = __kmp_str_to_int(scan, *next);
4078 KMP_DEBUG_ASSERT(stride >= 0);
4079 scan = next;
4080 stride *= sign;
4083 // Add places determined by initial_place : count : stride
4084 for (i = 0; i < count; i++) {
4085 if (setSize == 0) {
4086 break;
4088 // Add the current place, then build the next place (tempMask) from that
4089 KMP_CPU_COPY(previousMask, tempMask);
4090 ADD_MASK(previousMask);
4091 KMP_CPU_ZERO(tempMask);
4092 setSize = 0;
4093 KMP_CPU_SET_ITERATE(j, previousMask) {
4094 if (!KMP_CPU_ISSET(j, previousMask)) {
4095 continue;
4097 if ((j + stride > maxOsId) || (j + stride < 0) ||
4098 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
4099 (!KMP_CPU_ISSET(j + stride,
4100 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
4101 if (i < count - 1) {
4102 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
4104 continue;
4106 KMP_CPU_SET(j + stride, tempMask);
4107 setSize++;
4110 KMP_CPU_ZERO(tempMask);
4111 setSize = 0;
4113 // valid follow sets are ',' and EOL
4114 SKIP_WS(scan);
4115 if (*scan == '\0') {
4116 break;
4118 if (*scan == ',') {
4119 scan++; // skip ','
4120 continue;
4123 KMP_ASSERT2(0, "bad explicit places list");
4126 *out_numMasks = nextNewMask;
4127 if (nextNewMask == 0) {
4128 *out_masks = NULL;
4129 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4130 return;
4132 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4133 KMP_CPU_FREE(tempMask);
4134 KMP_CPU_FREE(previousMask);
4135 for (i = 0; i < nextNewMask; i++) {
4136 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4137 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4138 KMP_CPU_COPY(dest, src);
4140 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4143 #undef ADD_MASK
4144 #undef ADD_MASK_OSID
4146 // This function figures out the deepest level at which there is at least one
4147 // cluster/core with more than one processing unit bound to it.
4148 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
4149 int core_level = 0;
4151 for (int i = 0; i < nprocs; i++) {
4152 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
4153 for (int j = bottom_level; j > 0; j--) {
4154 if (hw_thread.ids[j] > 0) {
4155 if (core_level < (j - 1)) {
4156 core_level = j - 1;
4161 return core_level;
4164 // This function counts number of clusters/cores at given level.
4165 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4166 int core_level) {
4167 return __kmp_topology->get_count(core_level);
4169 // This function finds to which cluster/core given processing unit is bound.
4170 static int __kmp_affinity_find_core(int proc, int bottom_level,
4171 int core_level) {
4172 int core = 0;
4173 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4174 for (int i = 0; i <= proc; ++i) {
4175 if (i + 1 <= proc) {
4176 for (int j = 0; j <= core_level; ++j) {
4177 if (__kmp_topology->at(i + 1).sub_ids[j] !=
4178 __kmp_topology->at(i).sub_ids[j]) {
4179 core++;
4180 break;
4185 return core;
4188 // This function finds maximal number of processing units bound to a
4189 // cluster/core at given level.
4190 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4191 int core_level) {
4192 if (core_level >= bottom_level)
4193 return 1;
4194 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4195 return __kmp_topology->calculate_ratio(thread_level, core_level);
4198 static int *procarr = NULL;
4199 static int __kmp_aff_depth = 0;
4200 static int *__kmp_osid_to_hwthread_map = NULL;
4202 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4203 kmp_affinity_ids_t &ids,
4204 kmp_affinity_attrs_t &attrs) {
4205 if (!KMP_AFFINITY_CAPABLE())
4206 return;
4208 // Initiailze ids and attrs thread data
4209 for (int i = 0; i < KMP_HW_LAST; ++i)
4210 ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4211 attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4213 // Iterate through each os id within the mask and determine
4214 // the topology id and attribute information
4215 int cpu;
4216 int depth = __kmp_topology->get_depth();
4217 KMP_CPU_SET_ITERATE(cpu, mask) {
4218 int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4219 ids.os_id = cpu;
4220 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
4221 for (int level = 0; level < depth; ++level) {
4222 kmp_hw_t type = __kmp_topology->get_type(level);
4223 int id = hw_thread.sub_ids[level];
4224 if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) {
4225 ids.ids[type] = id;
4226 } else {
4227 // This mask spans across multiple topology units, set it as such
4228 // and mark every level below as such as well.
4229 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4230 for (; level < depth; ++level) {
4231 kmp_hw_t type = __kmp_topology->get_type(level);
4232 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4236 if (!attrs.valid) {
4237 attrs.core_type = hw_thread.attrs.get_core_type();
4238 attrs.core_eff = hw_thread.attrs.get_core_eff();
4239 attrs.valid = 1;
4240 } else {
4241 // This mask spans across multiple attributes, set it as such
4242 if (attrs.core_type != hw_thread.attrs.get_core_type())
4243 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4244 if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4245 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4250 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4251 if (!KMP_AFFINITY_CAPABLE())
4252 return;
4253 const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4254 kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4255 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4256 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4259 // Assign the topology information to each place in the place list
4260 // A thread can then grab not only its affinity mask, but the topology
4261 // information associated with that mask. e.g., Which socket is a thread on
4262 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4263 if (!KMP_AFFINITY_CAPABLE())
4264 return;
4265 if (affinity.type != affinity_none) {
4266 KMP_ASSERT(affinity.num_os_id_masks);
4267 KMP_ASSERT(affinity.os_id_masks);
4269 KMP_ASSERT(affinity.num_masks);
4270 KMP_ASSERT(affinity.masks);
4271 KMP_ASSERT(__kmp_affin_fullMask);
4273 int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4274 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4276 // Allocate thread topology information
4277 if (!affinity.ids) {
4278 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4279 sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4281 if (!affinity.attrs) {
4282 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4283 sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4285 if (!__kmp_osid_to_hwthread_map) {
4286 // Want the +1 because max_cpu should be valid index into map
4287 __kmp_osid_to_hwthread_map =
4288 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4291 // Create the OS proc to hardware thread map
4292 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) {
4293 int os_id = __kmp_topology->at(hw_thread).os_id;
4294 if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask))
4295 __kmp_osid_to_hwthread_map[os_id] = hw_thread;
4298 for (unsigned i = 0; i < affinity.num_masks; ++i) {
4299 kmp_affinity_ids_t &ids = affinity.ids[i];
4300 kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4301 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4302 __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4306 // Called when __kmp_topology is ready
4307 static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) {
4308 // Initialize other data structures which depend on the topology
4309 if (__kmp_topology && __kmp_topology->get_num_hw_threads()) {
4310 machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4311 __kmp_affinity_get_topology_info(affinity);
4312 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
4313 __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore();
4314 #endif
4318 // Create a one element mask array (set of places) which only contains the
4319 // initial process's affinity mask
4320 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4321 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4322 KMP_ASSERT(affinity.type == affinity_none);
4323 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4324 affinity.num_masks = 1;
4325 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4326 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4327 KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4328 __kmp_aux_affinity_initialize_other_data(affinity);
4331 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4332 // Create the "full" mask - this defines all of the processors that we
4333 // consider to be in the machine model. If respect is set, then it is the
4334 // initialization thread's affinity mask. Otherwise, it is all processors that
4335 // we know about on the machine.
4336 int verbose = affinity.flags.verbose;
4337 const char *env_var = affinity.env_var;
4339 // Already initialized
4340 if (__kmp_affin_fullMask && __kmp_affin_origMask)
4341 return;
4343 if (__kmp_affin_fullMask == NULL) {
4344 KMP_CPU_ALLOC(__kmp_affin_fullMask);
4346 if (__kmp_affin_origMask == NULL) {
4347 KMP_CPU_ALLOC(__kmp_affin_origMask);
4349 if (KMP_AFFINITY_CAPABLE()) {
4350 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4351 // Make a copy before possible expanding to the entire machine mask
4352 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4353 if (affinity.flags.respect) {
4354 // Count the number of available processors.
4355 unsigned i;
4356 __kmp_avail_proc = 0;
4357 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4358 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4359 continue;
4361 __kmp_avail_proc++;
4363 if (__kmp_avail_proc > __kmp_xproc) {
4364 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4365 affinity.type = affinity_none;
4366 KMP_AFFINITY_DISABLE();
4367 return;
4370 if (verbose) {
4371 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4372 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4373 __kmp_affin_fullMask);
4374 KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4376 } else {
4377 if (verbose) {
4378 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4379 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4380 __kmp_affin_fullMask);
4381 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4383 __kmp_avail_proc =
4384 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4385 #if KMP_OS_WINDOWS
4386 if (__kmp_num_proc_groups <= 1) {
4387 // Copy expanded full mask if topology has single processor group
4388 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4390 // Set the process affinity mask since threads' affinity
4391 // masks must be subset of process mask in Windows* OS
4392 __kmp_affin_fullMask->set_process_affinity(true);
4393 #endif
4398 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4399 bool success = false;
4400 const char *env_var = affinity.env_var;
4401 kmp_i18n_id_t msg_id = kmp_i18n_null;
4402 int verbose = affinity.flags.verbose;
4404 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4405 // KMP_TOPOLOGY_METHOD=cpuinfo
4406 if ((__kmp_cpuinfo_file != NULL) &&
4407 (__kmp_affinity_top_method == affinity_top_method_all)) {
4408 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4411 if (__kmp_affinity_top_method == affinity_top_method_all) {
4412 // In the default code path, errors are not fatal - we just try using
4413 // another method. We only emit a warning message if affinity is on, or the
4414 // verbose flag is set, an the nowarnings flag was not set.
4415 #if KMP_USE_HWLOC
4416 if (!success &&
4417 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4418 if (!__kmp_hwloc_error) {
4419 success = __kmp_affinity_create_hwloc_map(&msg_id);
4420 if (!success && verbose) {
4421 KMP_INFORM(AffIgnoringHwloc, env_var);
4423 } else if (verbose) {
4424 KMP_INFORM(AffIgnoringHwloc, env_var);
4427 #endif
4429 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4430 if (!success) {
4431 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4432 if (!success && verbose && msg_id != kmp_i18n_null) {
4433 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4436 if (!success) {
4437 success = __kmp_affinity_create_apicid_map(&msg_id);
4438 if (!success && verbose && msg_id != kmp_i18n_null) {
4439 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4442 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4444 #if KMP_OS_LINUX
4445 if (!success) {
4446 int line = 0;
4447 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4448 if (!success && verbose && msg_id != kmp_i18n_null) {
4449 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4452 #endif /* KMP_OS_LINUX */
4454 #if KMP_GROUP_AFFINITY
4455 if (!success && (__kmp_num_proc_groups > 1)) {
4456 success = __kmp_affinity_create_proc_group_map(&msg_id);
4457 if (!success && verbose && msg_id != kmp_i18n_null) {
4458 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4461 #endif /* KMP_GROUP_AFFINITY */
4463 if (!success) {
4464 success = __kmp_affinity_create_flat_map(&msg_id);
4465 if (!success && verbose && msg_id != kmp_i18n_null) {
4466 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4468 KMP_ASSERT(success);
4472 // If the user has specified that a paricular topology discovery method is to be
4473 // used, then we abort if that method fails. The exception is group affinity,
4474 // which might have been implicitly set.
4475 #if KMP_USE_HWLOC
4476 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4477 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4478 success = __kmp_affinity_create_hwloc_map(&msg_id);
4479 if (!success) {
4480 KMP_ASSERT(msg_id != kmp_i18n_null);
4481 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4484 #endif // KMP_USE_HWLOC
4486 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4487 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4488 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4489 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4490 if (!success) {
4491 KMP_ASSERT(msg_id != kmp_i18n_null);
4492 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4494 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4495 success = __kmp_affinity_create_apicid_map(&msg_id);
4496 if (!success) {
4497 KMP_ASSERT(msg_id != kmp_i18n_null);
4498 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4501 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4503 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4504 int line = 0;
4505 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4506 if (!success) {
4507 KMP_ASSERT(msg_id != kmp_i18n_null);
4508 const char *filename = __kmp_cpuinfo_get_filename();
4509 if (line > 0) {
4510 KMP_FATAL(FileLineMsgExiting, filename, line,
4511 __kmp_i18n_catgets(msg_id));
4512 } else {
4513 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4518 #if KMP_GROUP_AFFINITY
4519 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4520 success = __kmp_affinity_create_proc_group_map(&msg_id);
4521 KMP_ASSERT(success);
4522 if (!success) {
4523 KMP_ASSERT(msg_id != kmp_i18n_null);
4524 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4527 #endif /* KMP_GROUP_AFFINITY */
4529 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4530 success = __kmp_affinity_create_flat_map(&msg_id);
4531 // should not fail
4532 KMP_ASSERT(success);
4535 // Early exit if topology could not be created
4536 if (!__kmp_topology) {
4537 if (KMP_AFFINITY_CAPABLE()) {
4538 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4540 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4541 __kmp_ncores > 0) {
4542 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4543 __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4544 __kmp_nThreadsPerCore, __kmp_ncores);
4545 if (verbose) {
4546 __kmp_topology->print(env_var);
4549 return false;
4552 // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4553 __kmp_topology->canonicalize();
4554 if (verbose)
4555 __kmp_topology->print(env_var);
4556 bool filtered = __kmp_topology->filter_hw_subset();
4557 if (filtered && verbose)
4558 __kmp_topology->print("KMP_HW_SUBSET");
4559 return success;
4562 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4563 bool is_regular_affinity = (&affinity == &__kmp_affinity);
4564 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4565 const char *env_var = __kmp_get_affinity_env_var(affinity);
4567 if (affinity.flags.initialized) {
4568 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4569 return;
4572 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
4573 __kmp_aux_affinity_initialize_masks(affinity);
4575 if (is_regular_affinity && !__kmp_topology) {
4576 bool success = __kmp_aux_affinity_initialize_topology(affinity);
4577 if (success) {
4578 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4579 } else {
4580 affinity.type = affinity_none;
4581 KMP_AFFINITY_DISABLE();
4585 // If KMP_AFFINITY=none, then only create the single "none" place
4586 // which is the process's initial affinity mask or the number of
4587 // hardware threads depending on respect,norespect
4588 if (affinity.type == affinity_none) {
4589 __kmp_create_affinity_none_places(affinity);
4590 #if KMP_USE_HIER_SCHED
4591 __kmp_dispatch_set_hierarchy_values();
4592 #endif
4593 affinity.flags.initialized = TRUE;
4594 return;
4597 __kmp_topology->set_granularity(affinity);
4598 int depth = __kmp_topology->get_depth();
4600 // Create the table of masks, indexed by thread Id.
4601 unsigned numUnique;
4602 int numAddrs = __kmp_topology->get_num_hw_threads();
4603 // If OMP_PLACES=cores:<attribute> specified, then attempt
4604 // to make OS Id mask table using those attributes
4605 if (affinity.core_attr_gran.valid) {
4606 __kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) {
4607 KMP_ASSERT(idx >= -1);
4608 for (int i = idx + 1; i < numAddrs; ++i)
4609 if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran))
4610 return i;
4611 return numAddrs;
4613 if (!affinity.os_id_masks) {
4614 const char *core_attribute;
4615 if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF)
4616 core_attribute = "core_efficiency";
4617 else
4618 core_attribute = "core_type";
4619 KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var,
4620 core_attribute,
4621 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true))
4624 // If core attributes did not work, or none were specified,
4625 // then make OS Id mask table using typical incremental way.
4626 if (!affinity.os_id_masks) {
4627 __kmp_create_os_id_masks(&numUnique, affinity, [](int idx) {
4628 KMP_ASSERT(idx >= -1);
4629 return idx + 1;
4632 if (affinity.gran_levels == 0) {
4633 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4636 switch (affinity.type) {
4638 case affinity_explicit:
4639 KMP_DEBUG_ASSERT(affinity.proclist != NULL);
4640 if (is_hidden_helper_affinity ||
4641 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4642 __kmp_affinity_process_proclist(affinity);
4643 } else {
4644 __kmp_affinity_process_placelist(affinity);
4646 if (affinity.num_masks == 0) {
4647 KMP_AFF_WARNING(affinity, AffNoValidProcID);
4648 affinity.type = affinity_none;
4649 __kmp_create_affinity_none_places(affinity);
4650 affinity.flags.initialized = TRUE;
4651 return;
4653 break;
4655 // The other affinity types rely on sorting the hardware threads according to
4656 // some permutation of the machine topology tree. Set affinity.compact
4657 // and affinity.offset appropriately, then jump to a common code
4658 // fragment to do the sort and create the array of affinity masks.
4659 case affinity_logical:
4660 affinity.compact = 0;
4661 if (affinity.offset) {
4662 affinity.offset =
4663 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4665 goto sortTopology;
4667 case affinity_physical:
4668 if (__kmp_nThreadsPerCore > 1) {
4669 affinity.compact = 1;
4670 if (affinity.compact >= depth) {
4671 affinity.compact = 0;
4673 } else {
4674 affinity.compact = 0;
4676 if (affinity.offset) {
4677 affinity.offset =
4678 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4680 goto sortTopology;
4682 case affinity_scatter:
4683 if (affinity.compact >= depth) {
4684 affinity.compact = 0;
4685 } else {
4686 affinity.compact = depth - 1 - affinity.compact;
4688 goto sortTopology;
4690 case affinity_compact:
4691 if (affinity.compact >= depth) {
4692 affinity.compact = depth - 1;
4694 goto sortTopology;
4696 case affinity_balanced:
4697 if (depth <= 1 || is_hidden_helper_affinity) {
4698 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4699 affinity.type = affinity_none;
4700 __kmp_create_affinity_none_places(affinity);
4701 affinity.flags.initialized = TRUE;
4702 return;
4703 } else if (!__kmp_topology->is_uniform()) {
4704 // Save the depth for further usage
4705 __kmp_aff_depth = depth;
4707 int core_level =
4708 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4709 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4710 core_level);
4711 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4712 __kmp_avail_proc, depth - 1, core_level);
4714 int nproc = ncores * maxprocpercore;
4715 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4716 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4717 affinity.type = affinity_none;
4718 __kmp_create_affinity_none_places(affinity);
4719 affinity.flags.initialized = TRUE;
4720 return;
4723 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4724 for (int i = 0; i < nproc; i++) {
4725 procarr[i] = -1;
4728 int lastcore = -1;
4729 int inlastcore = 0;
4730 for (int i = 0; i < __kmp_avail_proc; i++) {
4731 int proc = __kmp_topology->at(i).os_id;
4732 int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4734 if (core == lastcore) {
4735 inlastcore++;
4736 } else {
4737 inlastcore = 0;
4739 lastcore = core;
4741 procarr[core * maxprocpercore + inlastcore] = proc;
4744 if (affinity.compact >= depth) {
4745 affinity.compact = depth - 1;
4748 sortTopology:
4749 // Allocate the gtid->affinity mask table.
4750 if (affinity.flags.dups) {
4751 affinity.num_masks = __kmp_avail_proc;
4752 } else {
4753 affinity.num_masks = numUnique;
4756 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4757 (__kmp_affinity_num_places > 0) &&
4758 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
4759 !is_hidden_helper_affinity) {
4760 affinity.num_masks = __kmp_affinity_num_places;
4763 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4765 // Sort the topology table according to the current setting of
4766 // affinity.compact, then fill out affinity.masks.
4767 __kmp_topology->sort_compact(affinity);
4769 int i;
4770 unsigned j;
4771 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4772 kmp_full_mask_modifier_t full_mask;
4773 for (i = 0, j = 0; i < num_hw_threads; i++) {
4774 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
4775 continue;
4777 int osId = __kmp_topology->at(i).os_id;
4779 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4780 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
4781 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4782 KMP_CPU_COPY(dest, src);
4783 full_mask.include(src);
4784 if (++j >= affinity.num_masks) {
4785 break;
4788 KMP_DEBUG_ASSERT(j == affinity.num_masks);
4789 // See if the places list further restricts or changes the full mask
4790 if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
4791 __kmp_topology->print(env_var);
4794 // Sort the topology back using ids
4795 __kmp_topology->sort_ids();
4796 break;
4798 default:
4799 KMP_ASSERT2(0, "Unexpected affinity setting");
4801 __kmp_aux_affinity_initialize_other_data(affinity);
4802 affinity.flags.initialized = TRUE;
4805 void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
4806 // Much of the code above was written assuming that if a machine was not
4807 // affinity capable, then affinity type == affinity_none.
4808 // We now explicitly represent this as affinity type == affinity_disabled.
4809 // There are too many checks for affinity type == affinity_none in this code.
4810 // Instead of trying to change them all, check if
4811 // affinity type == affinity_disabled, and if so, slam it with affinity_none,
4812 // call the real initialization routine, then restore affinity type to
4813 // affinity_disabled.
4814 int disabled = (affinity.type == affinity_disabled);
4815 if (!KMP_AFFINITY_CAPABLE())
4816 KMP_ASSERT(disabled);
4817 if (disabled)
4818 affinity.type = affinity_none;
4819 __kmp_aux_affinity_initialize(affinity);
4820 if (disabled)
4821 affinity.type = affinity_disabled;
4824 void __kmp_affinity_uninitialize(void) {
4825 for (kmp_affinity_t *affinity : __kmp_affinities) {
4826 if (affinity->masks != NULL)
4827 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
4828 if (affinity->os_id_masks != NULL)
4829 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
4830 if (affinity->proclist != NULL)
4831 __kmp_free(affinity->proclist);
4832 if (affinity->ids != NULL)
4833 __kmp_free(affinity->ids);
4834 if (affinity->attrs != NULL)
4835 __kmp_free(affinity->attrs);
4836 *affinity = KMP_AFFINITY_INIT(affinity->env_var);
4838 if (__kmp_affin_origMask != NULL) {
4839 if (KMP_AFFINITY_CAPABLE()) {
4840 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
4842 KMP_CPU_FREE(__kmp_affin_origMask);
4843 __kmp_affin_origMask = NULL;
4845 __kmp_affinity_num_places = 0;
4846 if (procarr != NULL) {
4847 __kmp_free(procarr);
4848 procarr = NULL;
4850 if (__kmp_osid_to_hwthread_map) {
4851 __kmp_free(__kmp_osid_to_hwthread_map);
4852 __kmp_osid_to_hwthread_map = NULL;
4854 #if KMP_USE_HWLOC
4855 if (__kmp_hwloc_topology != NULL) {
4856 hwloc_topology_destroy(__kmp_hwloc_topology);
4857 __kmp_hwloc_topology = NULL;
4859 #endif
4860 if (__kmp_hw_subset) {
4861 kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4862 __kmp_hw_subset = nullptr;
4864 if (__kmp_topology) {
4865 kmp_topology_t::deallocate(__kmp_topology);
4866 __kmp_topology = nullptr;
4868 KMPAffinity::destroy_api();
4871 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
4872 int *place, kmp_affin_mask_t **mask) {
4873 int mask_idx;
4874 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4875 if (is_hidden_helper)
4876 // The first gtid is the regular primary thread, the second gtid is the main
4877 // thread of hidden team which does not participate in task execution.
4878 mask_idx = gtid - 2;
4879 else
4880 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4881 KMP_DEBUG_ASSERT(affinity->num_masks > 0);
4882 *place = (mask_idx + affinity->offset) % affinity->num_masks;
4883 *mask = KMP_CPU_INDEX(affinity->masks, *place);
4886 // This function initializes the per-thread data concerning affinity including
4887 // the mask and topology information
4888 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4890 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4892 // Set the thread topology information to default of unknown
4893 for (int id = 0; id < KMP_HW_LAST; ++id)
4894 th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
4895 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4897 if (!KMP_AFFINITY_CAPABLE()) {
4898 return;
4901 if (th->th.th_affin_mask == NULL) {
4902 KMP_CPU_ALLOC(th->th.th_affin_mask);
4903 } else {
4904 KMP_CPU_ZERO(th->th.th_affin_mask);
4907 // Copy the thread mask to the kmp_info_t structure. If
4908 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
4909 // one that has all of the OS proc ids set, or if
4910 // __kmp_affinity.flags.respect is set, then the full mask is the
4911 // same as the mask of the initialization thread.
4912 kmp_affin_mask_t *mask;
4913 int i;
4914 const kmp_affinity_t *affinity;
4915 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4917 if (is_hidden_helper)
4918 affinity = &__kmp_hh_affinity;
4919 else
4920 affinity = &__kmp_affinity;
4922 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
4923 if ((affinity->type == affinity_none) ||
4924 (affinity->type == affinity_balanced) ||
4925 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
4926 #if KMP_GROUP_AFFINITY
4927 if (__kmp_num_proc_groups > 1) {
4928 return;
4930 #endif
4931 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4932 i = 0;
4933 mask = __kmp_affin_fullMask;
4934 } else {
4935 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4937 } else {
4938 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
4939 #if KMP_GROUP_AFFINITY
4940 if (__kmp_num_proc_groups > 1) {
4941 return;
4943 #endif
4944 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4945 i = KMP_PLACE_ALL;
4946 mask = __kmp_affin_fullMask;
4947 } else {
4948 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4952 th->th.th_current_place = i;
4953 if (isa_root && !is_hidden_helper) {
4954 th->th.th_new_place = i;
4955 th->th.th_first_place = 0;
4956 th->th.th_last_place = affinity->num_masks - 1;
4957 } else if (KMP_AFFINITY_NON_PROC_BIND) {
4958 // When using a Non-OMP_PROC_BIND affinity method,
4959 // set all threads' place-partition-var to the entire place list
4960 th->th.th_first_place = 0;
4961 th->th.th_last_place = affinity->num_masks - 1;
4963 // Copy topology information associated with the place
4964 if (i >= 0) {
4965 th->th.th_topology_ids = __kmp_affinity.ids[i];
4966 th->th.th_topology_attrs = __kmp_affinity.attrs[i];
4969 if (i == KMP_PLACE_ALL) {
4970 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n",
4971 gtid));
4972 } else {
4973 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n",
4974 gtid, i));
4977 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4980 void __kmp_affinity_bind_init_mask(int gtid) {
4981 if (!KMP_AFFINITY_CAPABLE()) {
4982 return;
4984 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4985 const kmp_affinity_t *affinity;
4986 const char *env_var;
4987 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4989 if (is_hidden_helper)
4990 affinity = &__kmp_hh_affinity;
4991 else
4992 affinity = &__kmp_affinity;
4993 env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true);
4994 /* to avoid duplicate printing (will be correctly printed on barrier) */
4995 if (affinity->flags.verbose && (affinity->type == affinity_none ||
4996 (th->th.th_current_place != KMP_PLACE_ALL &&
4997 affinity->type != affinity_balanced)) &&
4998 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
4999 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5000 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5001 th->th.th_affin_mask);
5002 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5003 gtid, buf);
5006 #if KMP_OS_WINDOWS
5007 // On Windows* OS, the process affinity mask might have changed. If the user
5008 // didn't request affinity and this call fails, just continue silently.
5009 // See CQ171393.
5010 if (affinity->type == affinity_none) {
5011 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
5012 } else
5013 #endif
5014 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5017 void __kmp_affinity_bind_place(int gtid) {
5018 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
5019 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
5020 return;
5023 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5025 KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current "
5026 "place = %d)\n",
5027 gtid, th->th.th_new_place, th->th.th_current_place));
5029 // Check that the new place is within this thread's partition.
5030 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5031 KMP_ASSERT(th->th.th_new_place >= 0);
5032 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
5033 if (th->th.th_first_place <= th->th.th_last_place) {
5034 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
5035 (th->th.th_new_place <= th->th.th_last_place));
5036 } else {
5037 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
5038 (th->th.th_new_place >= th->th.th_last_place));
5041 // Copy the thread mask to the kmp_info_t structure,
5042 // and set this thread's affinity.
5043 kmp_affin_mask_t *mask =
5044 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
5045 KMP_CPU_COPY(th->th.th_affin_mask, mask);
5046 th->th.th_current_place = th->th.th_new_place;
5048 if (__kmp_affinity.flags.verbose) {
5049 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5050 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5051 th->th.th_affin_mask);
5052 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
5053 __kmp_gettid(), gtid, buf);
5055 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5058 int __kmp_aux_set_affinity(void **mask) {
5059 int gtid;
5060 kmp_info_t *th;
5061 int retval;
5063 if (!KMP_AFFINITY_CAPABLE()) {
5064 return -1;
5067 gtid = __kmp_entry_gtid();
5068 KA_TRACE(
5069 1000, (""); {
5070 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5071 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5072 (kmp_affin_mask_t *)(*mask));
5073 __kmp_debug_printf(
5074 "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
5075 gtid, buf);
5078 if (__kmp_env_consistency_check) {
5079 if ((mask == NULL) || (*mask == NULL)) {
5080 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5081 } else {
5082 unsigned proc;
5083 int num_procs = 0;
5085 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
5086 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5087 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5089 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
5090 continue;
5092 num_procs++;
5094 if (num_procs == 0) {
5095 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5098 #if KMP_GROUP_AFFINITY
5099 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
5100 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5102 #endif /* KMP_GROUP_AFFINITY */
5106 th = __kmp_threads[gtid];
5107 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5108 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5109 if (retval == 0) {
5110 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
5113 th->th.th_current_place = KMP_PLACE_UNDEFINED;
5114 th->th.th_new_place = KMP_PLACE_UNDEFINED;
5115 th->th.th_first_place = 0;
5116 th->th.th_last_place = __kmp_affinity.num_masks - 1;
5118 // Turn off 4.0 affinity for the current tread at this parallel level.
5119 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
5121 return retval;
5124 int __kmp_aux_get_affinity(void **mask) {
5125 int gtid;
5126 int retval;
5127 #if KMP_OS_WINDOWS || KMP_DEBUG
5128 kmp_info_t *th;
5129 #endif
5130 if (!KMP_AFFINITY_CAPABLE()) {
5131 return -1;
5134 gtid = __kmp_entry_gtid();
5135 #if KMP_OS_WINDOWS || KMP_DEBUG
5136 th = __kmp_threads[gtid];
5137 #else
5138 (void)gtid; // unused variable
5139 #endif
5140 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5142 KA_TRACE(
5143 1000, (""); {
5144 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5145 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5146 th->th.th_affin_mask);
5147 __kmp_printf(
5148 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
5149 buf);
5152 if (__kmp_env_consistency_check) {
5153 if ((mask == NULL) || (*mask == NULL)) {
5154 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
5158 #if !KMP_OS_WINDOWS
5160 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5161 KA_TRACE(
5162 1000, (""); {
5163 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5164 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5165 (kmp_affin_mask_t *)(*mask));
5166 __kmp_printf(
5167 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
5168 buf);
5170 return retval;
5172 #else
5173 (void)retval;
5175 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
5176 return 0;
5178 #endif /* KMP_OS_WINDOWS */
5181 int __kmp_aux_get_affinity_max_proc() {
5182 if (!KMP_AFFINITY_CAPABLE()) {
5183 return 0;
5185 #if KMP_GROUP_AFFINITY
5186 if (__kmp_num_proc_groups > 1) {
5187 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
5189 #endif
5190 return __kmp_xproc;
5193 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5194 if (!KMP_AFFINITY_CAPABLE()) {
5195 return -1;
5198 KA_TRACE(
5199 1000, (""); {
5200 int gtid = __kmp_entry_gtid();
5201 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5202 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5203 (kmp_affin_mask_t *)(*mask));
5204 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5205 "affinity mask for thread %d = %s\n",
5206 proc, gtid, buf);
5209 if (__kmp_env_consistency_check) {
5210 if ((mask == NULL) || (*mask == NULL)) {
5211 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5215 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5216 return -1;
5218 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5219 return -2;
5222 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5223 return 0;
5226 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5227 if (!KMP_AFFINITY_CAPABLE()) {
5228 return -1;
5231 KA_TRACE(
5232 1000, (""); {
5233 int gtid = __kmp_entry_gtid();
5234 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5235 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5236 (kmp_affin_mask_t *)(*mask));
5237 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5238 "affinity mask for thread %d = %s\n",
5239 proc, gtid, buf);
5242 if (__kmp_env_consistency_check) {
5243 if ((mask == NULL) || (*mask == NULL)) {
5244 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5248 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5249 return -1;
5251 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5252 return -2;
5255 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5256 return 0;
5259 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5260 if (!KMP_AFFINITY_CAPABLE()) {
5261 return -1;
5264 KA_TRACE(
5265 1000, (""); {
5266 int gtid = __kmp_entry_gtid();
5267 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5268 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5269 (kmp_affin_mask_t *)(*mask));
5270 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5271 "affinity mask for thread %d = %s\n",
5272 proc, gtid, buf);
5275 if (__kmp_env_consistency_check) {
5276 if ((mask == NULL) || (*mask == NULL)) {
5277 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5281 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5282 return -1;
5284 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5285 return 0;
5288 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5291 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
5292 // Returns first os proc id with ATOM core
5293 int __kmp_get_first_osid_with_ecore(void) {
5294 int low = 0;
5295 int high = __kmp_topology->get_num_hw_threads() - 1;
5296 int mid = 0;
5297 while (high - low > 1) {
5298 mid = (high + low) / 2;
5299 if (__kmp_topology->at(mid).attrs.get_core_type() ==
5300 KMP_HW_CORE_TYPE_CORE) {
5301 low = mid + 1;
5302 } else {
5303 high = mid;
5306 if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) {
5307 return mid;
5309 return -1;
5311 #endif
5313 // Dynamic affinity settings - Affinity balanced
5314 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5315 KMP_DEBUG_ASSERT(th);
5316 bool fine_gran = true;
5317 int tid = th->th.th_info.ds.ds_tid;
5318 const char *env_var = "KMP_AFFINITY";
5320 // Do not perform balanced affinity for the hidden helper threads
5321 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5322 return;
5324 switch (__kmp_affinity.gran) {
5325 case KMP_HW_THREAD:
5326 break;
5327 case KMP_HW_CORE:
5328 if (__kmp_nThreadsPerCore > 1) {
5329 fine_gran = false;
5331 break;
5332 case KMP_HW_SOCKET:
5333 if (nCoresPerPkg > 1) {
5334 fine_gran = false;
5336 break;
5337 default:
5338 fine_gran = false;
5341 if (__kmp_topology->is_uniform()) {
5342 int coreID;
5343 int threadID;
5344 // Number of hyper threads per core in HT machine
5345 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5346 // Number of cores
5347 int ncores = __kmp_ncores;
5348 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5349 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5350 ncores = nPackages;
5352 // How many threads will be bound to each core
5353 int chunk = nthreads / ncores;
5354 // How many cores will have an additional thread bound to it - "big cores"
5355 int big_cores = nthreads % ncores;
5356 // Number of threads on the big cores
5357 int big_nth = (chunk + 1) * big_cores;
5358 if (tid < big_nth) {
5359 coreID = tid / (chunk + 1);
5360 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5361 } else { // tid >= big_nth
5362 coreID = (tid - big_cores) / chunk;
5363 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5365 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5366 "Illegal set affinity operation when not capable");
5368 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5369 KMP_CPU_ZERO(mask);
5371 if (fine_gran) {
5372 int osID =
5373 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5374 KMP_CPU_SET(osID, mask);
5375 } else {
5376 for (int i = 0; i < __kmp_nth_per_core; i++) {
5377 int osID;
5378 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5379 KMP_CPU_SET(osID, mask);
5382 if (__kmp_affinity.flags.verbose) {
5383 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5384 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5385 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5386 tid, buf);
5388 __kmp_affinity_get_thread_topology_info(th);
5389 __kmp_set_system_affinity(mask, TRUE);
5390 } else { // Non-uniform topology
5392 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5393 KMP_CPU_ZERO(mask);
5395 int core_level =
5396 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5397 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5398 __kmp_aff_depth - 1, core_level);
5399 int nth_per_core = __kmp_affinity_max_proc_per_core(
5400 __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5402 // For performance gain consider the special case nthreads ==
5403 // __kmp_avail_proc
5404 if (nthreads == __kmp_avail_proc) {
5405 if (fine_gran) {
5406 int osID = __kmp_topology->at(tid).os_id;
5407 KMP_CPU_SET(osID, mask);
5408 } else {
5409 int core =
5410 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5411 for (int i = 0; i < __kmp_avail_proc; i++) {
5412 int osID = __kmp_topology->at(i).os_id;
5413 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5414 core) {
5415 KMP_CPU_SET(osID, mask);
5419 } else if (nthreads <= ncores) {
5421 int core = 0;
5422 for (int i = 0; i < ncores; i++) {
5423 // Check if this core from procarr[] is in the mask
5424 int in_mask = 0;
5425 for (int j = 0; j < nth_per_core; j++) {
5426 if (procarr[i * nth_per_core + j] != -1) {
5427 in_mask = 1;
5428 break;
5431 if (in_mask) {
5432 if (tid == core) {
5433 for (int j = 0; j < nth_per_core; j++) {
5434 int osID = procarr[i * nth_per_core + j];
5435 if (osID != -1) {
5436 KMP_CPU_SET(osID, mask);
5437 // For fine granularity it is enough to set the first available
5438 // osID for this core
5439 if (fine_gran) {
5440 break;
5444 break;
5445 } else {
5446 core++;
5450 } else { // nthreads > ncores
5451 // Array to save the number of processors at each core
5452 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5453 // Array to save the number of cores with "x" available processors;
5454 int *ncores_with_x_procs =
5455 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5456 // Array to save the number of cores with # procs from x to nth_per_core
5457 int *ncores_with_x_to_max_procs =
5458 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5460 for (int i = 0; i <= nth_per_core; i++) {
5461 ncores_with_x_procs[i] = 0;
5462 ncores_with_x_to_max_procs[i] = 0;
5465 for (int i = 0; i < ncores; i++) {
5466 int cnt = 0;
5467 for (int j = 0; j < nth_per_core; j++) {
5468 if (procarr[i * nth_per_core + j] != -1) {
5469 cnt++;
5472 nproc_at_core[i] = cnt;
5473 ncores_with_x_procs[cnt]++;
5476 for (int i = 0; i <= nth_per_core; i++) {
5477 for (int j = i; j <= nth_per_core; j++) {
5478 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5482 // Max number of processors
5483 int nproc = nth_per_core * ncores;
5484 // An array to keep number of threads per each context
5485 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5486 for (int i = 0; i < nproc; i++) {
5487 newarr[i] = 0;
5490 int nth = nthreads;
5491 int flag = 0;
5492 while (nth > 0) {
5493 for (int j = 1; j <= nth_per_core; j++) {
5494 int cnt = ncores_with_x_to_max_procs[j];
5495 for (int i = 0; i < ncores; i++) {
5496 // Skip the core with 0 processors
5497 if (nproc_at_core[i] == 0) {
5498 continue;
5500 for (int k = 0; k < nth_per_core; k++) {
5501 if (procarr[i * nth_per_core + k] != -1) {
5502 if (newarr[i * nth_per_core + k] == 0) {
5503 newarr[i * nth_per_core + k] = 1;
5504 cnt--;
5505 nth--;
5506 break;
5507 } else {
5508 if (flag != 0) {
5509 newarr[i * nth_per_core + k]++;
5510 cnt--;
5511 nth--;
5512 break;
5517 if (cnt == 0 || nth == 0) {
5518 break;
5521 if (nth == 0) {
5522 break;
5525 flag = 1;
5527 int sum = 0;
5528 for (int i = 0; i < nproc; i++) {
5529 sum += newarr[i];
5530 if (sum > tid) {
5531 if (fine_gran) {
5532 int osID = procarr[i];
5533 KMP_CPU_SET(osID, mask);
5534 } else {
5535 int coreID = i / nth_per_core;
5536 for (int ii = 0; ii < nth_per_core; ii++) {
5537 int osID = procarr[coreID * nth_per_core + ii];
5538 if (osID != -1) {
5539 KMP_CPU_SET(osID, mask);
5543 break;
5546 __kmp_free(newarr);
5549 if (__kmp_affinity.flags.verbose) {
5550 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5551 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5552 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5553 tid, buf);
5555 __kmp_affinity_get_thread_topology_info(th);
5556 __kmp_set_system_affinity(mask, TRUE);
5560 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5561 // We don't need this entry for Windows because
5562 // there is GetProcessAffinityMask() api
5564 // The intended usage is indicated by these steps:
5565 // 1) The user gets the current affinity mask
5566 // 2) Then sets the affinity by calling this function
5567 // 3) Error check the return value
5568 // 4) Use non-OpenMP parallelization
5569 // 5) Reset the affinity to what was stored in step 1)
5570 #ifdef __cplusplus
5571 extern "C"
5572 #endif
5574 kmp_set_thread_affinity_mask_initial()
5575 // the function returns 0 on success,
5576 // -1 if we cannot bind thread
5577 // >0 (errno) if an error happened during binding
5579 int gtid = __kmp_get_gtid();
5580 if (gtid < 0) {
5581 // Do not touch non-omp threads
5582 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5583 "non-omp thread, returning\n"));
5584 return -1;
5586 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5587 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5588 "affinity not initialized, returning\n"));
5589 return -1;
5591 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5592 "set full mask for thread %d\n",
5593 gtid));
5594 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5595 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5597 #endif
5599 #endif // KMP_AFFINITY_SUPPORTED