1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
34 #define DEBUG_TYPE "cgscc"
38 // Explicit template instantiations and specialization definitions for core
42 static cl::opt
<bool> AbortOnMaxDevirtIterationsReached(
43 "abort-on-max-devirt-iterations-reached",
44 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
47 // Explicit instantiations for the core proxy templates.
48 template class AllAnalysesOn
<LazyCallGraph::SCC
>;
49 template class AnalysisManager
<LazyCallGraph::SCC
, LazyCallGraph
&>;
50 template class PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
,
51 LazyCallGraph
&, CGSCCUpdateResult
&>;
52 template class InnerAnalysisManagerProxy
<CGSCCAnalysisManager
, Module
>;
53 template class OuterAnalysisManagerProxy
<ModuleAnalysisManager
,
54 LazyCallGraph::SCC
, LazyCallGraph
&>;
55 template class OuterAnalysisManagerProxy
<CGSCCAnalysisManager
, Function
>;
57 /// Explicitly specialize the pass manager run method to handle call graph
61 PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
, LazyCallGraph
&,
62 CGSCCUpdateResult
&>::run(LazyCallGraph::SCC
&InitialC
,
63 CGSCCAnalysisManager
&AM
,
64 LazyCallGraph
&G
, CGSCCUpdateResult
&UR
) {
65 // Request PassInstrumentation from analysis manager, will use it to run
66 // instrumenting callbacks for the passes later.
67 PassInstrumentation PI
=
68 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, G
);
70 PreservedAnalyses PA
= PreservedAnalyses::all();
72 // The SCC may be refined while we are running passes over it, so set up
73 // a pointer that we can update.
74 LazyCallGraph::SCC
*C
= &InitialC
;
76 // Get Function analysis manager from its proxy.
77 FunctionAnalysisManager
&FAM
=
78 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
)->getManager();
80 for (auto &Pass
: Passes
) {
81 // Check the PassInstrumentation's BeforePass callbacks before running the
82 // pass, skip its execution completely if asked to (callback returns false).
83 if (!PI
.runBeforePass(*Pass
, *C
))
86 PreservedAnalyses PassPA
;
88 TimeTraceScope
TimeScope(Pass
->name());
89 PassPA
= Pass
->run(*C
, AM
, G
, UR
);
92 if (UR
.InvalidatedSCCs
.count(C
))
93 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
95 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
97 // Update the SCC if necessary.
98 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
100 // If C is updated, also create a proxy and update FAM inside the result.
102 &AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
);
103 ResultFAMCP
->updateFAM(FAM
);
106 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
107 // current SCC may simply need to be skipped if invalid.
108 if (UR
.InvalidatedSCCs
.count(C
)) {
109 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
112 // Check that we didn't miss any update scenario.
113 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
115 // Update the analysis manager as each pass runs and potentially
116 // invalidates analyses.
117 AM
.invalidate(*C
, PassPA
);
119 // Finally, we intersect the final preserved analyses to compute the
120 // aggregate preserved set for this pass manager.
121 PA
.intersect(std::move(PassPA
));
123 // FIXME: Historically, the pass managers all called the LLVM context's
124 // yield function here. We don't have a generic way to acquire the
125 // context and it isn't yet clear what the right pattern is for yielding
126 // in the new pass manager so it is currently omitted.
127 // ...getContext().yield();
130 // Before we mark all of *this* SCC's analyses as preserved below, intersect
131 // this with the cross-SCC preserved analysis set. This is used to allow
132 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
134 UR
.CrossSCCPA
.intersect(PA
);
136 // Invalidation was handled after each pass in the above loop for the current
137 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
138 // preserved. We mark this with a set so that we don't need to inspect each
140 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
146 ModuleToPostOrderCGSCCPassAdaptor::run(Module
&M
, ModuleAnalysisManager
&AM
) {
147 // Setup the CGSCC analysis manager from its proxy.
148 CGSCCAnalysisManager
&CGAM
=
149 AM
.getResult
<CGSCCAnalysisManagerModuleProxy
>(M
).getManager();
151 // Get the call graph for this module.
152 LazyCallGraph
&CG
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
154 // Get Function analysis manager from its proxy.
155 FunctionAnalysisManager
&FAM
=
156 AM
.getCachedResult
<FunctionAnalysisManagerModuleProxy
>(M
)->getManager();
158 // We keep worklists to allow us to push more work onto the pass manager as
159 // the passes are run.
160 SmallPriorityWorklist
<LazyCallGraph::RefSCC
*, 1> RCWorklist
;
161 SmallPriorityWorklist
<LazyCallGraph::SCC
*, 1> CWorklist
;
163 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
164 // iterating off the worklists.
165 SmallPtrSet
<LazyCallGraph::RefSCC
*, 4> InvalidRefSCCSet
;
166 SmallPtrSet
<LazyCallGraph::SCC
*, 4> InvalidSCCSet
;
168 SmallDenseSet
<std::pair
<LazyCallGraph::Node
*, LazyCallGraph::SCC
*>, 4>
169 InlinedInternalEdges
;
171 CGSCCUpdateResult UR
= {
172 RCWorklist
, CWorklist
, InvalidRefSCCSet
, InvalidSCCSet
,
173 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges
,
176 // Request PassInstrumentation from analysis manager, will use it to run
177 // instrumenting callbacks for the passes later.
178 PassInstrumentation PI
= AM
.getResult
<PassInstrumentationAnalysis
>(M
);
180 PreservedAnalyses PA
= PreservedAnalyses::all();
182 for (auto RCI
= CG
.postorder_ref_scc_begin(),
183 RCE
= CG
.postorder_ref_scc_end();
185 assert(RCWorklist
.empty() &&
186 "Should always start with an empty RefSCC worklist");
187 // The postorder_ref_sccs range we are walking is lazily constructed, so
188 // we only push the first one onto the worklist. The worklist allows us
189 // to capture *new* RefSCCs created during transformations.
191 // We really want to form RefSCCs lazily because that makes them cheaper
192 // to update as the program is simplified and allows us to have greater
193 // cache locality as forming a RefSCC touches all the parts of all the
194 // functions within that RefSCC.
196 // We also eagerly increment the iterator to the next position because
197 // the CGSCC passes below may delete the current RefSCC.
198 RCWorklist
.insert(&*RCI
++);
201 LazyCallGraph::RefSCC
*RC
= RCWorklist
.pop_back_val();
202 if (InvalidRefSCCSet
.count(RC
)) {
203 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
207 assert(CWorklist
.empty() &&
208 "Should always start with an empty SCC worklist");
210 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
213 // The top of the worklist may *also* be the same SCC we just ran over
214 // (and invalidated for). Keep track of that last SCC we processed due
215 // to SCC update to avoid redundant processing when an SCC is both just
216 // updated itself and at the top of the worklist.
217 LazyCallGraph::SCC
*LastUpdatedC
= nullptr;
219 // Push the initial SCCs in reverse post-order as we'll pop off the
220 // back and so see this in post-order.
221 for (LazyCallGraph::SCC
&C
: llvm::reverse(*RC
))
222 CWorklist
.insert(&C
);
225 LazyCallGraph::SCC
*C
= CWorklist
.pop_back_val();
226 // Due to call graph mutations, we may have invalid SCCs or SCCs from
227 // other RefSCCs in the worklist. The invalid ones are dead and the
228 // other RefSCCs should be queued above, so we just need to skip both
230 if (InvalidSCCSet
.count(C
)) {
231 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
234 if (LastUpdatedC
== C
) {
235 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C
<< "\n");
238 if (&C
->getOuterRefSCC() != RC
) {
239 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
244 // Ensure we can proxy analysis updates from the CGSCC analysis manager
245 // into the the Function analysis manager by getting a proxy here.
246 // This also needs to update the FunctionAnalysisManager, as this may be
247 // the first time we see this SCC.
248 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
251 // Each time we visit a new SCC pulled off the worklist,
252 // a transformation of a child SCC may have also modified this parent
253 // and invalidated analyses. So we invalidate using the update record's
254 // cross-SCC preserved set. This preserved set is intersected by any
255 // CGSCC pass that handles invalidation (primarily pass managers) prior
256 // to marking its SCC as preserved. That lets us track everything that
257 // might need invalidation across SCCs without excessive invalidations
260 // This essentially allows SCC passes to freely invalidate analyses
261 // of any ancestor SCC. If this becomes detrimental to successfully
262 // caching analyses, we could force each SCC pass to manually
263 // invalidate the analyses for any SCCs other than themselves which
264 // are mutated. However, that seems to lose the robustness of the
265 // pass-manager driven invalidation scheme.
266 CGAM
.invalidate(*C
, UR
.CrossSCCPA
);
269 // Check that we didn't miss any update scenario.
270 assert(!InvalidSCCSet
.count(C
) && "Processing an invalid SCC!");
271 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
272 assert(&C
->getOuterRefSCC() == RC
&&
273 "Processing an SCC in a different RefSCC!");
275 LastUpdatedC
= UR
.UpdatedC
;
276 UR
.UpdatedRC
= nullptr;
277 UR
.UpdatedC
= nullptr;
279 // Check the PassInstrumentation's BeforePass callbacks before
280 // running the pass, skip its execution completely if asked to
281 // (callback returns false).
282 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
285 PreservedAnalyses PassPA
;
287 TimeTraceScope
TimeScope(Pass
->name());
288 PassPA
= Pass
->run(*C
, CGAM
, CG
, UR
);
291 if (UR
.InvalidatedSCCs
.count(C
))
292 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
294 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
296 // Update the SCC and RefSCC if necessary.
297 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
298 RC
= UR
.UpdatedRC
? UR
.UpdatedRC
: RC
;
301 // If we're updating the SCC, also update the FAM inside the proxy's
303 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
307 // If the CGSCC pass wasn't able to provide a valid updated SCC,
308 // the current SCC may simply need to be skipped if invalid.
309 if (UR
.InvalidatedSCCs
.count(C
)) {
310 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
313 // Check that we didn't miss any update scenario.
314 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
316 // We handle invalidating the CGSCC analysis manager's information
317 // for the (potentially updated) SCC here. Note that any other SCCs
318 // whose structure has changed should have been invalidated by
319 // whatever was updating the call graph. This SCC gets invalidated
320 // late as it contains the nodes that were actively being
322 CGAM
.invalidate(*C
, PassPA
);
324 // Then intersect the preserved set so that invalidation of module
325 // analyses will eventually occur when the module pass completes.
326 // Also intersect with the cross-SCC preserved set to capture any
327 // cross-SCC invalidation.
328 UR
.CrossSCCPA
.intersect(PassPA
);
329 PA
.intersect(std::move(PassPA
));
331 // The pass may have restructured the call graph and refined the
332 // current SCC and/or RefSCC. We need to update our current SCC and
333 // RefSCC pointers to follow these. Also, when the current SCC is
334 // refined, re-run the SCC pass over the newly refined SCC in order
335 // to observe the most precise SCC model available. This inherently
336 // cannot cycle excessively as it only happens when we split SCCs
337 // apart, at most converging on a DAG of single nodes.
338 // FIXME: If we ever start having RefSCC passes, we'll want to
339 // iterate there too.
342 << "Re-running SCC passes after a refinement of the "
344 << *UR
.UpdatedC
<< "\n");
346 // Note that both `C` and `RC` may at this point refer to deleted,
347 // invalid SCC and RefSCCs respectively. But we will short circuit
348 // the processing when we check them in the loop above.
349 } while (UR
.UpdatedC
);
350 } while (!CWorklist
.empty());
352 // We only need to keep internal inlined edge information within
353 // a RefSCC, clear it to save on space and let the next time we visit
354 // any of these functions have a fresh start.
355 InlinedInternalEdges
.clear();
356 } while (!RCWorklist
.empty());
359 // By definition we preserve the call garph, all SCC analyses, and the
360 // analysis proxies by handling them above and in any nested pass managers.
361 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
362 PA
.preserve
<LazyCallGraphAnalysis
>();
363 PA
.preserve
<CGSCCAnalysisManagerModuleProxy
>();
364 PA
.preserve
<FunctionAnalysisManagerModuleProxy
>();
368 PreservedAnalyses
DevirtSCCRepeatedPass::run(LazyCallGraph::SCC
&InitialC
,
369 CGSCCAnalysisManager
&AM
,
371 CGSCCUpdateResult
&UR
) {
372 PreservedAnalyses PA
= PreservedAnalyses::all();
373 PassInstrumentation PI
=
374 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, CG
);
376 // The SCC may be refined while we are running passes over it, so set up
377 // a pointer that we can update.
378 LazyCallGraph::SCC
*C
= &InitialC
;
380 // Struct to track the counts of direct and indirect calls in each function
387 // Put value handles on all of the indirect calls and return the number of
388 // direct calls for each function in the SCC.
389 auto ScanSCC
= [](LazyCallGraph::SCC
&C
,
390 SmallMapVector
<Value
*, WeakTrackingVH
, 16> &CallHandles
) {
391 assert(CallHandles
.empty() && "Must start with a clear set of handles.");
393 SmallDenseMap
<Function
*, CallCount
> CallCounts
;
394 CallCount CountLocal
= {0, 0};
395 for (LazyCallGraph::Node
&N
: C
) {
397 CallCounts
.insert(std::make_pair(&N
.getFunction(), CountLocal
))
399 for (Instruction
&I
: instructions(N
.getFunction()))
400 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
401 if (CB
->getCalledFunction()) {
405 CallHandles
.insert({CB
, WeakTrackingVH(CB
)});
413 UR
.IndirectVHs
.clear();
414 // Populate the initial call handles and get the initial call counts.
415 auto CallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
417 for (int Iteration
= 0;; ++Iteration
) {
418 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
421 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, CG
, UR
);
423 if (UR
.InvalidatedSCCs
.count(C
))
424 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
426 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
428 // If the SCC structure has changed, bail immediately and let the outer
429 // CGSCC layer handle any iteration to reflect the refined structure.
430 if (UR
.UpdatedC
&& UR
.UpdatedC
!= C
) {
431 PA
.intersect(std::move(PassPA
));
435 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
436 // current SCC may simply need to be skipped if invalid.
437 if (UR
.InvalidatedSCCs
.count(C
)) {
438 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
442 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
444 // Check whether any of the handles were devirtualized.
445 bool Devirt
= llvm::any_of(UR
.IndirectVHs
, [](auto &P
) -> bool {
447 if (CallBase
*CB
= dyn_cast
<CallBase
>(P
.second
)) {
448 if (CB
->getCalledFunction()) {
449 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB
<< "\n");
457 // Rescan to build up a new set of handles and count how many direct
458 // calls remain. If we decide to iterate, this also sets up the input to
459 // the next iteration.
460 UR
.IndirectVHs
.clear();
461 auto NewCallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
463 // If we haven't found an explicit devirtualization already see if we
464 // have decreased the number of indirect calls and increased the number
465 // of direct calls for any function in the SCC. This can be fooled by all
466 // manner of transformations such as DCE and other things, but seems to
467 // work well in practice.
469 // Iterate over the keys in NewCallCounts, if Function also exists in
470 // CallCounts, make the check below.
471 for (auto &Pair
: NewCallCounts
) {
472 auto &CallCountNew
= Pair
.second
;
473 auto CountIt
= CallCounts
.find(Pair
.first
);
474 if (CountIt
!= CallCounts
.end()) {
475 const auto &CallCountOld
= CountIt
->second
;
476 if (CallCountOld
.Indirect
> CallCountNew
.Indirect
&&
477 CallCountOld
.Direct
< CallCountNew
.Direct
) {
485 PA
.intersect(std::move(PassPA
));
489 // Otherwise, if we've already hit our max, we're done.
490 if (Iteration
>= MaxIterations
) {
491 if (AbortOnMaxDevirtIterationsReached
)
492 report_fatal_error("Max devirtualization iterations reached");
494 dbgs() << "Found another devirtualization after hitting the max "
495 "number of repetitions ("
496 << MaxIterations
<< ") on SCC: " << *C
<< "\n");
497 PA
.intersect(std::move(PassPA
));
502 dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
505 // Move over the new call counts in preparation for iterating.
506 CallCounts
= std::move(NewCallCounts
);
508 // Update the analysis manager with each run and intersect the total set
509 // of preserved analyses so we're ready to iterate.
510 AM
.invalidate(*C
, PassPA
);
512 PA
.intersect(std::move(PassPA
));
515 // Note that we don't add any preserved entries here unlike a more normal
516 // "pass manager" because we only handle invalidation *between* iterations,
517 // not after the last iteration.
521 PreservedAnalyses
CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC
&C
,
522 CGSCCAnalysisManager
&AM
,
524 CGSCCUpdateResult
&UR
) {
525 // Setup the function analysis manager from its proxy.
526 FunctionAnalysisManager
&FAM
=
527 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
529 SmallVector
<LazyCallGraph::Node
*, 4> Nodes
;
530 for (LazyCallGraph::Node
&N
: C
)
533 // The SCC may get split while we are optimizing functions due to deleting
534 // edges. If this happens, the current SCC can shift, so keep track of
535 // a pointer we can overwrite.
536 LazyCallGraph::SCC
*CurrentC
= &C
;
538 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C
<< "\n");
540 PreservedAnalyses PA
= PreservedAnalyses::all();
541 for (LazyCallGraph::Node
*N
: Nodes
) {
542 // Skip nodes from other SCCs. These may have been split out during
543 // processing. We'll eventually visit those SCCs and pick up the nodes
545 if (CG
.lookupSCC(*N
) != CurrentC
)
548 Function
&F
= N
->getFunction();
550 PassInstrumentation PI
= FAM
.getResult
<PassInstrumentationAnalysis
>(F
);
551 if (!PI
.runBeforePass
<Function
>(*Pass
, F
))
554 PreservedAnalyses PassPA
;
556 TimeTraceScope
TimeScope(Pass
->name());
557 PassPA
= Pass
->run(F
, FAM
);
560 PI
.runAfterPass
<Function
>(*Pass
, F
, PassPA
);
562 // We know that the function pass couldn't have invalidated any other
563 // function's analyses (that's the contract of a function pass), so
564 // directly handle the function analysis manager's invalidation here.
565 FAM
.invalidate(F
, PassPA
);
567 // Then intersect the preserved set so that invalidation of module
568 // analyses will eventually occur when the module pass completes.
569 PA
.intersect(std::move(PassPA
));
571 // If the call graph hasn't been preserved, update it based on this
572 // function pass. This may also update the current SCC to point to
573 // a smaller, more refined SCC.
574 auto PAC
= PA
.getChecker
<LazyCallGraphAnalysis
>();
575 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) {
576 CurrentC
= &updateCGAndAnalysisManagerForFunctionPass(CG
, *CurrentC
, *N
,
578 assert(CG
.lookupSCC(*N
) == CurrentC
&&
579 "Current SCC not updated to the SCC containing the current node!");
583 // By definition we preserve the proxy. And we preserve all analyses on
584 // Functions. This precludes *any* invalidation of function analyses by the
585 // proxy, but that's OK because we've taken care to invalidate analyses in
586 // the function analysis manager incrementally above.
587 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
588 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
590 // We've also ensured that we updated the call graph along the way.
591 PA
.preserve
<LazyCallGraphAnalysis
>();
596 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
597 Module
&M
, const PreservedAnalyses
&PA
,
598 ModuleAnalysisManager::Invalidator
&Inv
) {
599 // If literally everything is preserved, we're done.
600 if (PA
.areAllPreserved())
601 return false; // This is still a valid proxy.
603 // If this proxy or the call graph is going to be invalidated, we also need
604 // to clear all the keys coming from that analysis.
606 // We also directly invalidate the FAM's module proxy if necessary, and if
607 // that proxy isn't preserved we can't preserve this proxy either. We rely on
608 // it to handle module -> function analysis invalidation in the face of
609 // structural changes and so if it's unavailable we conservatively clear the
610 // entire SCC layer as well rather than trying to do invalidation ourselves.
611 auto PAC
= PA
.getChecker
<CGSCCAnalysisManagerModuleProxy
>();
612 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) ||
613 Inv
.invalidate
<LazyCallGraphAnalysis
>(M
, PA
) ||
614 Inv
.invalidate
<FunctionAnalysisManagerModuleProxy
>(M
, PA
)) {
617 // And the proxy itself should be marked as invalid so that we can observe
618 // the new call graph. This isn't strictly necessary because we cheat
619 // above, but is still useful.
623 // Directly check if the relevant set is preserved so we can short circuit
624 // invalidating SCCs below.
625 bool AreSCCAnalysesPreserved
=
626 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
628 // Ok, we have a graph, so we can propagate the invalidation down into it.
630 for (auto &RC
: G
->postorder_ref_sccs())
632 Optional
<PreservedAnalyses
> InnerPA
;
634 // Check to see whether the preserved set needs to be adjusted based on
635 // module-level analysis invalidation triggering deferred invalidation
637 if (auto *OuterProxy
=
638 InnerAM
->getCachedResult
<ModuleAnalysisManagerCGSCCProxy
>(C
))
639 for (const auto &OuterInvalidationPair
:
640 OuterProxy
->getOuterInvalidations()) {
641 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
642 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
643 if (Inv
.invalidate(OuterAnalysisID
, M
, PA
)) {
646 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
647 InnerPA
->abandon(InnerAnalysisID
);
651 // Check if we needed a custom PA set. If so we'll need to run the inner
654 InnerAM
->invalidate(C
, *InnerPA
);
658 // Otherwise we only need to do invalidation if the original PA set didn't
659 // preserve all SCC analyses.
660 if (!AreSCCAnalysesPreserved
)
661 InnerAM
->invalidate(C
, PA
);
664 // Return false to indicate that this result is still a valid proxy.
669 CGSCCAnalysisManagerModuleProxy::Result
670 CGSCCAnalysisManagerModuleProxy::run(Module
&M
, ModuleAnalysisManager
&AM
) {
671 // Force the Function analysis manager to also be available so that it can
672 // be accessed in an SCC analysis and proxied onward to function passes.
673 // FIXME: It is pretty awkward to just drop the result here and assert that
674 // we can find it again later.
675 (void)AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
);
677 return Result(*InnerAM
, AM
.getResult
<LazyCallGraphAnalysis
>(M
));
680 AnalysisKey
FunctionAnalysisManagerCGSCCProxy::Key
;
682 FunctionAnalysisManagerCGSCCProxy::Result
683 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC
&C
,
684 CGSCCAnalysisManager
&AM
,
686 // Note: unconditionally getting checking that the proxy exists may get it at
687 // this point. There are cases when this is being run unnecessarily, but
688 // it is cheap and having the assertion in place is more valuable.
689 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerCGSCCProxy
>(C
, CG
);
690 Module
&M
= *C
.begin()->getFunction().getParent();
692 MAMProxy
.cachedResultExists
<FunctionAnalysisManagerModuleProxy
>(M
);
693 assert(ProxyExists
&&
694 "The CGSCC pass manager requires that the FAM module proxy is run "
695 "on the module prior to entering the CGSCC walk");
698 // We just return an empty result. The caller will use the updateFAM interface
699 // to correctly register the relevant FunctionAnalysisManager based on the
700 // context in which this proxy is run.
704 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
705 LazyCallGraph::SCC
&C
, const PreservedAnalyses
&PA
,
706 CGSCCAnalysisManager::Invalidator
&Inv
) {
707 // If literally everything is preserved, we're done.
708 if (PA
.areAllPreserved())
709 return false; // This is still a valid proxy.
711 // All updates to preserve valid results are done below, so we don't need to
712 // invalidate this proxy.
714 // Note that in order to preserve this proxy, a module pass must ensure that
715 // the FAM has been completely updated to handle the deletion of functions.
716 // Specifically, any FAM-cached results for those functions need to have been
717 // forcibly cleared. When preserved, this proxy will only invalidate results
718 // cached on functions *still in the module* at the end of the module pass.
719 auto PAC
= PA
.getChecker
<FunctionAnalysisManagerCGSCCProxy
>();
720 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>()) {
721 for (LazyCallGraph::Node
&N
: C
)
722 FAM
->invalidate(N
.getFunction(), PA
);
727 // Directly check if the relevant set is preserved.
728 bool AreFunctionAnalysesPreserved
=
729 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<Function
>>();
731 // Now walk all the functions to see if any inner analysis invalidation is
733 for (LazyCallGraph::Node
&N
: C
) {
734 Function
&F
= N
.getFunction();
735 Optional
<PreservedAnalyses
> FunctionPA
;
737 // Check to see whether the preserved set needs to be pruned based on
738 // SCC-level analysis invalidation that triggers deferred invalidation
739 // registered with the outer analysis manager proxy for this function.
740 if (auto *OuterProxy
=
741 FAM
->getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
))
742 for (const auto &OuterInvalidationPair
:
743 OuterProxy
->getOuterInvalidations()) {
744 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
745 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
746 if (Inv
.invalidate(OuterAnalysisID
, C
, PA
)) {
749 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
750 FunctionPA
->abandon(InnerAnalysisID
);
754 // Check if we needed a custom PA set, and if so we'll need to run the
755 // inner invalidation.
757 FAM
->invalidate(F
, *FunctionPA
);
761 // Otherwise we only need to do invalidation if the original PA set didn't
762 // preserve all function analyses.
763 if (!AreFunctionAnalysesPreserved
)
764 FAM
->invalidate(F
, PA
);
767 // Return false to indicate that this result is still a valid proxy.
771 } // end namespace llvm
773 /// When a new SCC is created for the graph we first update the
774 /// FunctionAnalysisManager in the Proxy's result.
775 /// As there might be function analysis results cached for the functions now in
776 /// that SCC, two forms of updates are required.
778 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
779 /// created so that any subsequent invalidation events to the SCC are
780 /// propagated to the function analysis results cached for functions within it.
782 /// Second, if any of the functions within the SCC have analysis results with
783 /// outer analysis dependencies, then those dependencies would point to the
784 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
785 /// function analyses so that they don't retain stale handles.
786 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC
&C
,
788 CGSCCAnalysisManager
&AM
,
789 FunctionAnalysisManager
&FAM
) {
790 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, G
).updateFAM(FAM
);
792 // Now walk the functions in this SCC and invalidate any function analysis
793 // results that might have outer dependencies on an SCC analysis.
794 for (LazyCallGraph::Node
&N
: C
) {
795 Function
&F
= N
.getFunction();
798 FAM
.getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
);
800 // No outer analyses were queried, nothing to do.
803 // Forcibly abandon all the inner analyses with dependencies, but
804 // invalidate nothing else.
805 auto PA
= PreservedAnalyses::all();
806 for (const auto &OuterInvalidationPair
:
807 OuterProxy
->getOuterInvalidations()) {
808 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
809 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
810 PA
.abandon(InnerAnalysisID
);
813 // Now invalidate anything we found.
814 FAM
.invalidate(F
, PA
);
818 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
819 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
822 /// The range of new SCCs must be in postorder already. The SCC they were split
823 /// out of must be provided as \p C. The current node being mutated and
824 /// triggering updates must be passed as \p N.
826 /// This function returns the SCC containing \p N. This will be either \p C if
827 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
828 template <typename SCCRangeT
>
829 static LazyCallGraph::SCC
*
830 incorporateNewSCCRange(const SCCRangeT
&NewSCCRange
, LazyCallGraph
&G
,
831 LazyCallGraph::Node
&N
, LazyCallGraph::SCC
*C
,
832 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
) {
833 using SCC
= LazyCallGraph::SCC
;
835 if (NewSCCRange
.empty())
838 // Add the current SCC to the worklist as its shape has changed.
839 UR
.CWorklist
.insert(C
);
840 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
845 // Update the current SCC. Note that if we have new SCCs, this must actually
847 assert(C
!= &*NewSCCRange
.begin() &&
848 "Cannot insert new SCCs without changing current SCC!");
849 C
= &*NewSCCRange
.begin();
850 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
852 // If we had a cached FAM proxy originally, we will want to create more of
853 // them for each SCC that was split off.
854 FunctionAnalysisManager
*FAM
= nullptr;
856 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*OldC
))
857 FAM
= &FAMProxy
->getManager();
859 // We need to propagate an invalidation call to all but the newly current SCC
860 // because the outer pass manager won't do that for us after splitting them.
861 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
862 // there are preserved analysis we can avoid invalidating them here for
864 // We know however that this will preserve any FAM proxy so go ahead and mark
866 PreservedAnalyses PA
;
867 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
868 AM
.invalidate(*OldC
, PA
);
870 // Ensure the now-current SCC's function analyses are updated.
872 updateNewSCCFunctionAnalyses(*C
, G
, AM
, *FAM
);
874 for (SCC
&NewC
: llvm::reverse(llvm::drop_begin(NewSCCRange
))) {
875 assert(C
!= &NewC
&& "No need to re-visit the current SCC!");
876 assert(OldC
!= &NewC
&& "Already handled the original SCC!");
877 UR
.CWorklist
.insert(&NewC
);
878 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC
<< "\n");
880 // Ensure new SCCs' function analyses are updated.
882 updateNewSCCFunctionAnalyses(NewC
, G
, AM
, *FAM
);
884 // Also propagate a normal invalidation to the new SCC as only the current
885 // will get one from the pass manager infrastructure.
886 AM
.invalidate(NewC
, PA
);
891 static LazyCallGraph::SCC
&updateCGAndAnalysisManagerForPass(
892 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
893 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
894 FunctionAnalysisManager
&FAM
, bool FunctionPass
) {
895 using Node
= LazyCallGraph::Node
;
896 using Edge
= LazyCallGraph::Edge
;
897 using SCC
= LazyCallGraph::SCC
;
898 using RefSCC
= LazyCallGraph::RefSCC
;
900 RefSCC
&InitialRC
= InitialC
.getOuterRefSCC();
902 RefSCC
*RC
= &InitialRC
;
903 Function
&F
= N
.getFunction();
905 // Walk the function body and build up the set of retained, promoted, and
907 SmallVector
<Constant
*, 16> Worklist
;
908 SmallPtrSet
<Constant
*, 16> Visited
;
909 SmallPtrSet
<Node
*, 16> RetainedEdges
;
910 SmallSetVector
<Node
*, 4> PromotedRefTargets
;
911 SmallSetVector
<Node
*, 4> DemotedCallTargets
;
912 SmallSetVector
<Node
*, 4> NewCallEdges
;
913 SmallSetVector
<Node
*, 4> NewRefEdges
;
915 // First walk the function and handle all called functions. We do this first
916 // because if there is a single call edge, whether there are ref edges is
918 for (Instruction
&I
: instructions(F
)) {
919 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
920 if (Function
*Callee
= CB
->getCalledFunction()) {
921 if (Visited
.insert(Callee
).second
&& !Callee
->isDeclaration()) {
922 Node
*CalleeN
= G
.lookup(*Callee
);
924 "Visited function should already have an associated node");
925 Edge
*E
= N
->lookup(*CalleeN
);
926 assert((E
|| !FunctionPass
) &&
927 "No function transformations should introduce *new* "
928 "call edges! Any new calls should be modeled as "
929 "promoted existing ref edges!");
930 bool Inserted
= RetainedEdges
.insert(CalleeN
).second
;
932 assert(Inserted
&& "We should never visit a function twice.");
934 NewCallEdges
.insert(CalleeN
);
935 else if (!E
->isCall())
936 PromotedRefTargets
.insert(CalleeN
);
939 // We can miss devirtualization if an indirect call is created then
940 // promoted before updateCGAndAnalysisManagerForPass runs.
941 auto *Entry
= UR
.IndirectVHs
.find(CB
);
942 if (Entry
== UR
.IndirectVHs
.end())
943 UR
.IndirectVHs
.insert({CB
, WeakTrackingVH(CB
)});
944 else if (!Entry
->second
)
945 Entry
->second
= WeakTrackingVH(CB
);
950 // Now walk all references.
951 for (Instruction
&I
: instructions(F
))
952 for (Value
*Op
: I
.operand_values())
953 if (auto *OpC
= dyn_cast
<Constant
>(Op
))
954 if (Visited
.insert(OpC
).second
)
955 Worklist
.push_back(OpC
);
957 auto VisitRef
= [&](Function
&Referee
) {
958 Node
*RefereeN
= G
.lookup(Referee
);
960 "Visited function should already have an associated node");
961 Edge
*E
= N
->lookup(*RefereeN
);
962 assert((E
|| !FunctionPass
) &&
963 "No function transformations should introduce *new* ref "
964 "edges! Any new ref edges would require IPO which "
965 "function passes aren't allowed to do!");
966 bool Inserted
= RetainedEdges
.insert(RefereeN
).second
;
968 assert(Inserted
&& "We should never visit a function twice.");
970 NewRefEdges
.insert(RefereeN
);
971 else if (E
->isCall())
972 DemotedCallTargets
.insert(RefereeN
);
974 LazyCallGraph::visitReferences(Worklist
, Visited
, VisitRef
);
976 // Handle new ref edges.
977 for (Node
*RefTarget
: NewRefEdges
) {
978 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
979 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
981 // TODO: This only allows trivial edges to be added for now.
982 #ifdef EXPENSIVE_CHECKS
983 assert((RC
== &TargetRC
||
984 RC
->isAncestorOf(TargetRC
)) && "New ref edge is not trivial!");
986 RC
->insertTrivialRefEdge(N
, *RefTarget
);
989 // Handle new call edges.
990 for (Node
*CallTarget
: NewCallEdges
) {
991 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
992 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
994 // TODO: This only allows trivial edges to be added for now.
995 #ifdef EXPENSIVE_CHECKS
996 assert((RC
== &TargetRC
||
997 RC
->isAncestorOf(TargetRC
)) && "New call edge is not trivial!");
999 // Add a trivial ref edge to be promoted later on alongside
1000 // PromotedRefTargets.
1001 RC
->insertTrivialRefEdge(N
, *CallTarget
);
1004 // Include synthetic reference edges to known, defined lib functions.
1005 for (auto *LibFn
: G
.getLibFunctions())
1006 // While the list of lib functions doesn't have repeats, don't re-visit
1007 // anything handled above.
1008 if (!Visited
.count(LibFn
))
1011 // First remove all of the edges that are no longer present in this function.
1012 // The first step makes these edges uniformly ref edges and accumulates them
1013 // into a separate data structure so removal doesn't invalidate anything.
1014 SmallVector
<Node
*, 4> DeadTargets
;
1015 for (Edge
&E
: *N
) {
1016 if (RetainedEdges
.count(&E
.getNode()))
1019 SCC
&TargetC
= *G
.lookupSCC(E
.getNode());
1020 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1021 if (&TargetRC
== RC
&& E
.isCall()) {
1022 if (C
!= &TargetC
) {
1023 // For separate SCCs this is trivial.
1024 RC
->switchTrivialInternalEdgeToRef(N
, E
.getNode());
1026 // Now update the call graph.
1027 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, E
.getNode()),
1032 // Now that this is ready for actual removal, put it into our list.
1033 DeadTargets
.push_back(&E
.getNode());
1035 // Remove the easy cases quickly and actually pull them out of our list.
1036 llvm::erase_if(DeadTargets
, [&](Node
*TargetN
) {
1037 SCC
&TargetC
= *G
.lookupSCC(*TargetN
);
1038 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1040 // We can't trivially remove internal targets, so skip
1042 if (&TargetRC
== RC
)
1045 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N
<< "' to '"
1046 << *TargetN
<< "'\n");
1047 RC
->removeOutgoingEdge(N
, *TargetN
);
1051 // Now do a batch removal of the internal ref edges left.
1052 auto NewRefSCCs
= RC
->removeInternalRefEdge(N
, DeadTargets
);
1053 if (!NewRefSCCs
.empty()) {
1054 // The old RefSCC is dead, mark it as such.
1055 UR
.InvalidatedRefSCCs
.insert(RC
);
1057 // Note that we don't bother to invalidate analyses as ref-edge
1058 // connectivity is not really observable in any way and is intended
1059 // exclusively to be used for ordering of transforms rather than for
1060 // analysis conclusions.
1062 // Update RC to the "bottom".
1063 assert(G
.lookupSCC(N
) == C
&& "Changed the SCC when splitting RefSCCs!");
1064 RC
= &C
->getOuterRefSCC();
1065 assert(G
.lookupRefSCC(N
) == RC
&& "Failed to update current RefSCC!");
1067 // The RC worklist is in reverse postorder, so we enqueue the new ones in
1068 // RPO except for the one which contains the source node as that is the
1069 // "bottom" we will continue processing in the bottom-up walk.
1070 assert(NewRefSCCs
.front() == RC
&&
1071 "New current RefSCC not first in the returned list!");
1072 for (RefSCC
*NewRC
: llvm::reverse(llvm::drop_begin(NewRefSCCs
))) {
1073 assert(NewRC
!= RC
&& "Should not encounter the current RefSCC further "
1074 "in the postorder list of new RefSCCs.");
1075 UR
.RCWorklist
.insert(NewRC
);
1076 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1081 // Next demote all the call edges that are now ref edges. This helps make
1082 // the SCCs small which should minimize the work below as we don't want to
1083 // form cycles that this would break.
1084 for (Node
*RefTarget
: DemotedCallTargets
) {
1085 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
1086 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1088 // The easy case is when the target RefSCC is not this RefSCC. This is
1089 // only supported when the target RefSCC is a child of this RefSCC.
1090 if (&TargetRC
!= RC
) {
1091 #ifdef EXPENSIVE_CHECKS
1092 assert(RC
->isAncestorOf(TargetRC
) &&
1093 "Cannot potentially form RefSCC cycles here!");
1095 RC
->switchOutgoingEdgeToRef(N
, *RefTarget
);
1096 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1097 << "' to '" << *RefTarget
<< "'\n");
1101 // We are switching an internal call edge to a ref edge. This may split up
1103 if (C
!= &TargetC
) {
1104 // For separate SCCs this is trivial.
1105 RC
->switchTrivialInternalEdgeToRef(N
, *RefTarget
);
1109 // Now update the call graph.
1110 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, *RefTarget
), G
, N
,
1114 // We added a ref edge earlier for new call edges, promote those to call edges
1115 // alongside PromotedRefTargets.
1116 for (Node
*E
: NewCallEdges
)
1117 PromotedRefTargets
.insert(E
);
1119 // Now promote ref edges into call edges.
1120 for (Node
*CallTarget
: PromotedRefTargets
) {
1121 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
1122 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1124 // The easy case is when the target RefSCC is not this RefSCC. This is
1125 // only supported when the target RefSCC is a child of this RefSCC.
1126 if (&TargetRC
!= RC
) {
1127 #ifdef EXPENSIVE_CHECKS
1128 assert(RC
->isAncestorOf(TargetRC
) &&
1129 "Cannot potentially form RefSCC cycles here!");
1131 RC
->switchOutgoingEdgeToCall(N
, *CallTarget
);
1132 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1133 << "' to '" << *CallTarget
<< "'\n");
1136 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1137 << N
<< "' to '" << *CallTarget
<< "'\n");
1139 // Otherwise we are switching an internal ref edge to a call edge. This
1140 // may merge away some SCCs, and we add those to the UpdateResult. We also
1141 // need to make sure to update the worklist in the event SCCs have moved
1142 // before the current one in the post-order sequence
1143 bool HasFunctionAnalysisProxy
= false;
1144 auto InitialSCCIndex
= RC
->find(*C
) - RC
->begin();
1145 bool FormedCycle
= RC
->switchInternalEdgeToCall(
1146 N
, *CallTarget
, [&](ArrayRef
<SCC
*> MergedSCCs
) {
1147 for (SCC
*MergedC
: MergedSCCs
) {
1148 assert(MergedC
!= &TargetC
&& "Cannot merge away the target SCC!");
1150 HasFunctionAnalysisProxy
|=
1151 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(
1152 *MergedC
) != nullptr;
1154 // Mark that this SCC will no longer be valid.
1155 UR
.InvalidatedSCCs
.insert(MergedC
);
1157 // FIXME: We should really do a 'clear' here to forcibly release
1158 // memory, but we don't have a good way of doing that and
1159 // preserving the function analyses.
1160 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1161 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1162 AM
.invalidate(*MergedC
, PA
);
1166 // If we formed a cycle by creating this call, we need to update more data
1170 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
1172 // If one of the invalidated SCCs had a cached proxy to a function
1173 // analysis manager, we need to create a proxy in the new current SCC as
1174 // the invalidated SCCs had their functions moved.
1175 if (HasFunctionAnalysisProxy
)
1176 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
).updateFAM(FAM
);
1178 // Any analyses cached for this SCC are no longer precise as the shape
1179 // has changed by introducing this cycle. However, we have taken care to
1180 // update the proxies so it remains valide.
1181 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1182 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1183 AM
.invalidate(*C
, PA
);
1185 auto NewSCCIndex
= RC
->find(*C
) - RC
->begin();
1186 // If we have actually moved an SCC to be topologically "below" the current
1187 // one due to merging, we will need to revisit the current SCC after
1188 // visiting those moved SCCs.
1190 // It is critical that we *do not* revisit the current SCC unless we
1191 // actually move SCCs in the process of merging because otherwise we may
1192 // form a cycle where an SCC is split apart, merged, split, merged and so
1194 if (InitialSCCIndex
< NewSCCIndex
) {
1195 // Put our current SCC back onto the worklist as we'll visit other SCCs
1196 // that are now definitively ordered prior to the current one in the
1197 // post-order sequence, and may end up observing more precise context to
1198 // optimize the current SCC.
1199 UR
.CWorklist
.insert(C
);
1200 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1202 // Enqueue in reverse order as we pop off the back of the worklist.
1203 for (SCC
&MovedC
: llvm::reverse(make_range(RC
->begin() + InitialSCCIndex
,
1204 RC
->begin() + NewSCCIndex
))) {
1205 UR
.CWorklist
.insert(&MovedC
);
1206 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1212 assert(!UR
.InvalidatedSCCs
.count(C
) && "Invalidated the current SCC!");
1213 assert(!UR
.InvalidatedRefSCCs
.count(RC
) && "Invalidated the current RefSCC!");
1214 assert(&C
->getOuterRefSCC() == RC
&& "Current SCC not in current RefSCC!");
1216 // Record the current RefSCC and SCC for higher layers of the CGSCC pass
1217 // manager now that all the updates have been applied.
1218 if (RC
!= &InitialRC
)
1226 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForFunctionPass(
1227 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1228 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1229 FunctionAnalysisManager
&FAM
) {
1230 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1231 /* FunctionPass */ true);
1233 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForCGSCCPass(
1234 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1235 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1236 FunctionAnalysisManager
&FAM
) {
1237 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1238 /* FunctionPass */ false);