[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / ConstantFolding.cpp
blob758c0a01f21015d4c3155ffa927ff549b32836ea
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MathExtras.h"
56 #include <cassert>
57 #include <cerrno>
58 #include <cfenv>
59 #include <cmath>
60 #include <cstddef>
61 #include <cstdint>
63 using namespace llvm;
65 namespace {
66 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
67 ArrayRef<Constant *> Ops,
68 const DataLayout &DL,
69 const TargetLibraryInfo *TLI,
70 bool ForLoadOperand);
72 //===----------------------------------------------------------------------===//
73 // Constant Folding internal helper functions
74 //===----------------------------------------------------------------------===//
76 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
77 Constant *C, Type *SrcEltTy,
78 unsigned NumSrcElts,
79 const DataLayout &DL) {
80 // Now that we know that the input value is a vector of integers, just shift
81 // and insert them into our result.
82 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
83 for (unsigned i = 0; i != NumSrcElts; ++i) {
84 Constant *Element;
85 if (DL.isLittleEndian())
86 Element = C->getAggregateElement(NumSrcElts - i - 1);
87 else
88 Element = C->getAggregateElement(i);
90 if (Element && isa<UndefValue>(Element)) {
91 Result <<= BitShift;
92 continue;
95 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
96 if (!ElementCI)
97 return ConstantExpr::getBitCast(C, DestTy);
99 Result <<= BitShift;
100 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
103 return nullptr;
106 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
107 /// This always returns a non-null constant, but it may be a
108 /// ConstantExpr if unfoldable.
109 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
110 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
111 "Invalid constantexpr bitcast!");
113 // Catch the obvious splat cases.
114 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
115 return Constant::getNullValue(DestTy);
116 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
117 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
118 return Constant::getAllOnesValue(DestTy);
120 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
121 // Handle a vector->scalar integer/fp cast.
122 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
123 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
124 Type *SrcEltTy = VTy->getElementType();
126 // If the vector is a vector of floating point, convert it to vector of int
127 // to simplify things.
128 if (SrcEltTy->isFloatingPointTy()) {
129 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
130 auto *SrcIVTy = FixedVectorType::get(
131 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
132 // Ask IR to do the conversion now that #elts line up.
133 C = ConstantExpr::getBitCast(C, SrcIVTy);
136 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
137 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
138 SrcEltTy, NumSrcElts, DL))
139 return CE;
141 if (isa<IntegerType>(DestTy))
142 return ConstantInt::get(DestTy, Result);
144 APFloat FP(DestTy->getFltSemantics(), Result);
145 return ConstantFP::get(DestTy->getContext(), FP);
149 // The code below only handles casts to vectors currently.
150 auto *DestVTy = dyn_cast<VectorType>(DestTy);
151 if (!DestVTy)
152 return ConstantExpr::getBitCast(C, DestTy);
154 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
155 // vector so the code below can handle it uniformly.
156 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
161 // If this is a bitcast from constant vector -> vector, fold it.
162 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
163 return ConstantExpr::getBitCast(C, DestTy);
165 // If the element types match, IR can fold it.
166 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
167 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
168 if (NumDstElt == NumSrcElt)
169 return ConstantExpr::getBitCast(C, DestTy);
171 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
172 Type *DstEltTy = DestVTy->getElementType();
174 // Otherwise, we're changing the number of elements in a vector, which
175 // requires endianness information to do the right thing. For example,
176 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
177 // folds to (little endian):
178 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
179 // and to (big endian):
180 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
182 // First thing is first. We only want to think about integer here, so if
183 // we have something in FP form, recast it as integer.
184 if (DstEltTy->isFloatingPointTy()) {
185 // Fold to an vector of integers with same size as our FP type.
186 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
187 auto *DestIVTy = FixedVectorType::get(
188 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
189 // Recursively handle this integer conversion, if possible.
190 C = FoldBitCast(C, DestIVTy, DL);
192 // Finally, IR can handle this now that #elts line up.
193 return ConstantExpr::getBitCast(C, DestTy);
196 // Okay, we know the destination is integer, if the input is FP, convert
197 // it to integer first.
198 if (SrcEltTy->isFloatingPointTy()) {
199 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
200 auto *SrcIVTy = FixedVectorType::get(
201 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
202 // Ask IR to do the conversion now that #elts line up.
203 C = ConstantExpr::getBitCast(C, SrcIVTy);
204 // If IR wasn't able to fold it, bail out.
205 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
206 !isa<ConstantDataVector>(C))
207 return C;
210 // Now we know that the input and output vectors are both integer vectors
211 // of the same size, and that their #elements is not the same. Do the
212 // conversion here, which depends on whether the input or output has
213 // more elements.
214 bool isLittleEndian = DL.isLittleEndian();
216 SmallVector<Constant*, 32> Result;
217 if (NumDstElt < NumSrcElt) {
218 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
219 Constant *Zero = Constant::getNullValue(DstEltTy);
220 unsigned Ratio = NumSrcElt/NumDstElt;
221 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
222 unsigned SrcElt = 0;
223 for (unsigned i = 0; i != NumDstElt; ++i) {
224 // Build each element of the result.
225 Constant *Elt = Zero;
226 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
227 for (unsigned j = 0; j != Ratio; ++j) {
228 Constant *Src = C->getAggregateElement(SrcElt++);
229 if (Src && isa<UndefValue>(Src))
230 Src = Constant::getNullValue(
231 cast<VectorType>(C->getType())->getElementType());
232 else
233 Src = dyn_cast_or_null<ConstantInt>(Src);
234 if (!Src) // Reject constantexpr elements.
235 return ConstantExpr::getBitCast(C, DestTy);
237 // Zero extend the element to the right size.
238 Src = ConstantExpr::getZExt(Src, Elt->getType());
240 // Shift it to the right place, depending on endianness.
241 Src = ConstantExpr::getShl(Src,
242 ConstantInt::get(Src->getType(), ShiftAmt));
243 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
245 // Mix it in.
246 Elt = ConstantExpr::getOr(Elt, Src);
248 Result.push_back(Elt);
250 return ConstantVector::get(Result);
253 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
254 unsigned Ratio = NumDstElt/NumSrcElt;
255 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
257 // Loop over each source value, expanding into multiple results.
258 for (unsigned i = 0; i != NumSrcElt; ++i) {
259 auto *Element = C->getAggregateElement(i);
261 if (!Element) // Reject constantexpr elements.
262 return ConstantExpr::getBitCast(C, DestTy);
264 if (isa<UndefValue>(Element)) {
265 // Correctly Propagate undef values.
266 Result.append(Ratio, UndefValue::get(DstEltTy));
267 continue;
270 auto *Src = dyn_cast<ConstantInt>(Element);
271 if (!Src)
272 return ConstantExpr::getBitCast(C, DestTy);
274 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
275 for (unsigned j = 0; j != Ratio; ++j) {
276 // Shift the piece of the value into the right place, depending on
277 // endianness.
278 Constant *Elt = ConstantExpr::getLShr(Src,
279 ConstantInt::get(Src->getType(), ShiftAmt));
280 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
282 // Truncate the element to an integer with the same pointer size and
283 // convert the element back to a pointer using a inttoptr.
284 if (DstEltTy->isPointerTy()) {
285 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
286 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
287 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
288 continue;
291 // Truncate and remember this piece.
292 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
296 return ConstantVector::get(Result);
299 } // end anonymous namespace
301 /// If this constant is a constant offset from a global, return the global and
302 /// the constant. Because of constantexprs, this function is recursive.
303 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
304 APInt &Offset, const DataLayout &DL,
305 DSOLocalEquivalent **DSOEquiv) {
306 if (DSOEquiv)
307 *DSOEquiv = nullptr;
309 // Trivial case, constant is the global.
310 if ((GV = dyn_cast<GlobalValue>(C))) {
311 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
312 Offset = APInt(BitWidth, 0);
313 return true;
316 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
317 if (DSOEquiv)
318 *DSOEquiv = FoundDSOEquiv;
319 GV = FoundDSOEquiv->getGlobalValue();
320 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
321 Offset = APInt(BitWidth, 0);
322 return true;
325 // Otherwise, if this isn't a constant expr, bail out.
326 auto *CE = dyn_cast<ConstantExpr>(C);
327 if (!CE) return false;
329 // Look through ptr->int and ptr->ptr casts.
330 if (CE->getOpcode() == Instruction::PtrToInt ||
331 CE->getOpcode() == Instruction::BitCast)
332 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
333 DSOEquiv);
335 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
336 auto *GEP = dyn_cast<GEPOperator>(CE);
337 if (!GEP)
338 return false;
340 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
341 APInt TmpOffset(BitWidth, 0);
343 // If the base isn't a global+constant, we aren't either.
344 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
345 DSOEquiv))
346 return false;
348 // Otherwise, add any offset that our operands provide.
349 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
350 return false;
352 Offset = TmpOffset;
353 return true;
356 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
357 const DataLayout &DL) {
358 do {
359 Type *SrcTy = C->getType();
360 uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
361 uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
362 if (SrcSize < DestSize)
363 return nullptr;
365 // Catch the obvious splat cases (since all-zeros can coerce non-integral
366 // pointers legally).
367 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
368 return Constant::getNullValue(DestTy);
369 if (C->isAllOnesValue() &&
370 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
371 DestTy->isVectorTy()) &&
372 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
373 !DestTy->isPtrOrPtrVectorTy())
374 // Get ones when the input is trivial, but
375 // only for supported types inside getAllOnesValue.
376 return Constant::getAllOnesValue(DestTy);
378 // If the type sizes are the same and a cast is legal, just directly
379 // cast the constant.
380 // But be careful not to coerce non-integral pointers illegally.
381 if (SrcSize == DestSize &&
382 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
383 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
384 Instruction::CastOps Cast = Instruction::BitCast;
385 // If we are going from a pointer to int or vice versa, we spell the cast
386 // differently.
387 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
388 Cast = Instruction::IntToPtr;
389 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
390 Cast = Instruction::PtrToInt;
392 if (CastInst::castIsValid(Cast, C, DestTy))
393 return ConstantExpr::getCast(Cast, C, DestTy);
396 // If this isn't an aggregate type, there is nothing we can do to drill down
397 // and find a bitcastable constant.
398 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
399 return nullptr;
401 // We're simulating a load through a pointer that was bitcast to point to
402 // a different type, so we can try to walk down through the initial
403 // elements of an aggregate to see if some part of the aggregate is
404 // castable to implement the "load" semantic model.
405 if (SrcTy->isStructTy()) {
406 // Struct types might have leading zero-length elements like [0 x i32],
407 // which are certainly not what we are looking for, so skip them.
408 unsigned Elem = 0;
409 Constant *ElemC;
410 do {
411 ElemC = C->getAggregateElement(Elem++);
412 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
413 C = ElemC;
414 } else {
415 C = C->getAggregateElement(0u);
417 } while (C);
419 return nullptr;
422 namespace {
424 /// Recursive helper to read bits out of global. C is the constant being copied
425 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
426 /// results into and BytesLeft is the number of bytes left in
427 /// the CurPtr buffer. DL is the DataLayout.
428 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
429 unsigned BytesLeft, const DataLayout &DL) {
430 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
431 "Out of range access");
433 // If this element is zero or undefined, we can just return since *CurPtr is
434 // zero initialized.
435 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
436 return true;
438 if (auto *CI = dyn_cast<ConstantInt>(C)) {
439 if (CI->getBitWidth() > 64 ||
440 (CI->getBitWidth() & 7) != 0)
441 return false;
443 uint64_t Val = CI->getZExtValue();
444 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
446 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
447 int n = ByteOffset;
448 if (!DL.isLittleEndian())
449 n = IntBytes - n - 1;
450 CurPtr[i] = (unsigned char)(Val >> (n * 8));
451 ++ByteOffset;
453 return true;
456 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
457 if (CFP->getType()->isDoubleTy()) {
458 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
459 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
461 if (CFP->getType()->isFloatTy()){
462 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
463 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
465 if (CFP->getType()->isHalfTy()){
466 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
467 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
469 return false;
472 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
473 const StructLayout *SL = DL.getStructLayout(CS->getType());
474 unsigned Index = SL->getElementContainingOffset(ByteOffset);
475 uint64_t CurEltOffset = SL->getElementOffset(Index);
476 ByteOffset -= CurEltOffset;
478 while (true) {
479 // If the element access is to the element itself and not to tail padding,
480 // read the bytes from the element.
481 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
483 if (ByteOffset < EltSize &&
484 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
485 BytesLeft, DL))
486 return false;
488 ++Index;
490 // Check to see if we read from the last struct element, if so we're done.
491 if (Index == CS->getType()->getNumElements())
492 return true;
494 // If we read all of the bytes we needed from this element we're done.
495 uint64_t NextEltOffset = SL->getElementOffset(Index);
497 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
498 return true;
500 // Move to the next element of the struct.
501 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
502 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
503 ByteOffset = 0;
504 CurEltOffset = NextEltOffset;
506 // not reached.
509 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
510 isa<ConstantDataSequential>(C)) {
511 uint64_t NumElts;
512 Type *EltTy;
513 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
514 NumElts = AT->getNumElements();
515 EltTy = AT->getElementType();
516 } else {
517 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
518 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
520 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
521 uint64_t Index = ByteOffset / EltSize;
522 uint64_t Offset = ByteOffset - Index * EltSize;
524 for (; Index != NumElts; ++Index) {
525 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
526 BytesLeft, DL))
527 return false;
529 uint64_t BytesWritten = EltSize - Offset;
530 assert(BytesWritten <= EltSize && "Not indexing into this element?");
531 if (BytesWritten >= BytesLeft)
532 return true;
534 Offset = 0;
535 BytesLeft -= BytesWritten;
536 CurPtr += BytesWritten;
538 return true;
541 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
542 if (CE->getOpcode() == Instruction::IntToPtr &&
543 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
544 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
545 BytesLeft, DL);
549 // Otherwise, unknown initializer type.
550 return false;
553 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
554 const DataLayout &DL) {
555 // Bail out early. Not expect to load from scalable global variable.
556 if (isa<ScalableVectorType>(LoadTy))
557 return nullptr;
559 auto *PTy = cast<PointerType>(C->getType());
560 auto *IntType = dyn_cast<IntegerType>(LoadTy);
562 // If this isn't an integer load we can't fold it directly.
563 if (!IntType) {
564 unsigned AS = PTy->getAddressSpace();
566 // If this is a float/double load, we can try folding it as an int32/64 load
567 // and then bitcast the result. This can be useful for union cases. Note
568 // that address spaces don't matter here since we're not going to result in
569 // an actual new load.
570 Type *MapTy;
571 if (LoadTy->isHalfTy())
572 MapTy = Type::getInt16Ty(C->getContext());
573 else if (LoadTy->isFloatTy())
574 MapTy = Type::getInt32Ty(C->getContext());
575 else if (LoadTy->isDoubleTy())
576 MapTy = Type::getInt64Ty(C->getContext());
577 else if (LoadTy->isVectorTy()) {
578 MapTy = PointerType::getIntNTy(
579 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
580 } else
581 return nullptr;
583 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
584 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
585 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
586 !LoadTy->isX86_AMXTy())
587 // Materializing a zero can be done trivially without a bitcast
588 return Constant::getNullValue(LoadTy);
589 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
590 Res = FoldBitCast(Res, CastTy, DL);
591 if (LoadTy->isPtrOrPtrVectorTy()) {
592 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
593 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
594 !LoadTy->isX86_AMXTy())
595 return Constant::getNullValue(LoadTy);
596 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
597 // Be careful not to replace a load of an addrspace value with an inttoptr here
598 return nullptr;
599 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
601 return Res;
603 return nullptr;
606 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
607 if (BytesLoaded > 32 || BytesLoaded == 0)
608 return nullptr;
610 GlobalValue *GVal;
611 APInt OffsetAI;
612 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
613 return nullptr;
615 auto *GV = dyn_cast<GlobalVariable>(GVal);
616 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
617 !GV->getInitializer()->getType()->isSized())
618 return nullptr;
620 int64_t Offset = OffsetAI.getSExtValue();
621 int64_t InitializerSize =
622 DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
624 // If we're not accessing anything in this constant, the result is undefined.
625 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
626 return UndefValue::get(IntType);
628 // If we're not accessing anything in this constant, the result is undefined.
629 if (Offset >= InitializerSize)
630 return UndefValue::get(IntType);
632 unsigned char RawBytes[32] = {0};
633 unsigned char *CurPtr = RawBytes;
634 unsigned BytesLeft = BytesLoaded;
636 // If we're loading off the beginning of the global, some bytes may be valid.
637 if (Offset < 0) {
638 CurPtr += -Offset;
639 BytesLeft += Offset;
640 Offset = 0;
643 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
644 return nullptr;
646 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
647 if (DL.isLittleEndian()) {
648 ResultVal = RawBytes[BytesLoaded - 1];
649 for (unsigned i = 1; i != BytesLoaded; ++i) {
650 ResultVal <<= 8;
651 ResultVal |= RawBytes[BytesLoaded - 1 - i];
653 } else {
654 ResultVal = RawBytes[0];
655 for (unsigned i = 1; i != BytesLoaded; ++i) {
656 ResultVal <<= 8;
657 ResultVal |= RawBytes[i];
661 return ConstantInt::get(IntType->getContext(), ResultVal);
664 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
665 const DataLayout &DL) {
666 auto *SrcPtr = CE->getOperand(0);
667 if (!SrcPtr->getType()->isPointerTy())
668 return nullptr;
670 return ConstantFoldLoadFromConstPtr(SrcPtr, DestTy, DL);
673 } // end anonymous namespace
675 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
676 const DataLayout &DL) {
677 // First, try the easy cases:
678 if (auto *GV = dyn_cast<GlobalVariable>(C))
679 if (GV->isConstant() && GV->hasDefinitiveInitializer())
680 return ConstantFoldLoadThroughBitcast(GV->getInitializer(), Ty, DL);
682 if (auto *GA = dyn_cast<GlobalAlias>(C))
683 if (GA->getAliasee() && !GA->isInterposable())
684 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
686 // If the loaded value isn't a constant expr, we can't handle it.
687 auto *CE = dyn_cast<ConstantExpr>(C);
688 if (!CE)
689 return nullptr;
691 if (CE->getOpcode() == Instruction::GetElementPtr) {
692 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
693 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
694 if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
695 GV->getInitializer(), CE, Ty, DL))
696 return V;
698 } else {
699 // Try to simplify GEP if the pointer operand wasn't a GlobalVariable.
700 // SymbolicallyEvaluateGEP() with `ForLoadOperand = true` can potentially
701 // simplify the GEP more than it normally would have been, but should only
702 // be used for const folding loads.
703 SmallVector<Constant *> Ops;
704 for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
705 Ops.push_back(cast<Constant>(CE->getOperand(I)));
706 if (auto *Simplified = dyn_cast_or_null<ConstantExpr>(
707 SymbolicallyEvaluateGEP(cast<GEPOperator>(CE), Ops, DL, nullptr,
708 /*ForLoadOperand*/ true))) {
709 // If the symbolically evaluated GEP is another GEP, we can only const
710 // fold it if the resulting pointer operand is a GlobalValue. Otherwise
711 // there is nothing else to simplify since the GEP is already in the
712 // most simplified form.
713 if (isa<GEPOperator>(Simplified)) {
714 if (auto *GV = dyn_cast<GlobalVariable>(Simplified->getOperand(0))) {
715 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
716 if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
717 GV->getInitializer(), Simplified, Ty, DL))
718 return V;
721 } else {
722 return ConstantFoldLoadFromConstPtr(Simplified, Ty, DL);
728 if (CE->getOpcode() == Instruction::BitCast)
729 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
730 return LoadedC;
732 // Instead of loading constant c string, use corresponding integer value
733 // directly if string length is small enough.
734 StringRef Str;
735 if (getConstantStringInfo(CE, Str) && !Str.empty()) {
736 size_t StrLen = Str.size();
737 unsigned NumBits = Ty->getPrimitiveSizeInBits();
738 // Replace load with immediate integer if the result is an integer or fp
739 // value.
740 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
741 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
742 APInt StrVal(NumBits, 0);
743 APInt SingleChar(NumBits, 0);
744 if (DL.isLittleEndian()) {
745 for (unsigned char C : reverse(Str.bytes())) {
746 SingleChar = static_cast<uint64_t>(C);
747 StrVal = (StrVal << 8) | SingleChar;
749 } else {
750 for (unsigned char C : Str.bytes()) {
751 SingleChar = static_cast<uint64_t>(C);
752 StrVal = (StrVal << 8) | SingleChar;
754 // Append NULL at the end.
755 SingleChar = 0;
756 StrVal = (StrVal << 8) | SingleChar;
759 Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
760 if (Ty->isFloatingPointTy())
761 Res = ConstantExpr::getBitCast(Res, Ty);
762 return Res;
766 // If this load comes from anywhere in a constant global, and if the global
767 // is all undef or zero, we know what it loads.
768 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) {
769 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
770 if (GV->getInitializer()->isNullValue())
771 return Constant::getNullValue(Ty);
772 if (isa<UndefValue>(GV->getInitializer()))
773 return UndefValue::get(Ty);
777 // Try hard to fold loads from bitcasted strange and non-type-safe things.
778 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
781 namespace {
783 /// One of Op0/Op1 is a constant expression.
784 /// Attempt to symbolically evaluate the result of a binary operator merging
785 /// these together. If target data info is available, it is provided as DL,
786 /// otherwise DL is null.
787 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
788 const DataLayout &DL) {
789 // SROA
791 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
792 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
793 // bits.
795 if (Opc == Instruction::And) {
796 KnownBits Known0 = computeKnownBits(Op0, DL);
797 KnownBits Known1 = computeKnownBits(Op1, DL);
798 if ((Known1.One | Known0.Zero).isAllOnesValue()) {
799 // All the bits of Op0 that the 'and' could be masking are already zero.
800 return Op0;
802 if ((Known0.One | Known1.Zero).isAllOnesValue()) {
803 // All the bits of Op1 that the 'and' could be masking are already zero.
804 return Op1;
807 Known0 &= Known1;
808 if (Known0.isConstant())
809 return ConstantInt::get(Op0->getType(), Known0.getConstant());
812 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
813 // constant. This happens frequently when iterating over a global array.
814 if (Opc == Instruction::Sub) {
815 GlobalValue *GV1, *GV2;
816 APInt Offs1, Offs2;
818 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
819 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
820 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
822 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
823 // PtrToInt may change the bitwidth so we have convert to the right size
824 // first.
825 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
826 Offs2.zextOrTrunc(OpSize));
830 return nullptr;
833 /// If array indices are not pointer-sized integers, explicitly cast them so
834 /// that they aren't implicitly casted by the getelementptr.
835 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
836 Type *ResultTy, Optional<unsigned> InRangeIndex,
837 const DataLayout &DL, const TargetLibraryInfo *TLI) {
838 Type *IntIdxTy = DL.getIndexType(ResultTy);
839 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
841 bool Any = false;
842 SmallVector<Constant*, 32> NewIdxs;
843 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
844 if ((i == 1 ||
845 !isa<StructType>(GetElementPtrInst::getIndexedType(
846 SrcElemTy, Ops.slice(1, i - 1)))) &&
847 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
848 Any = true;
849 Type *NewType = Ops[i]->getType()->isVectorTy()
850 ? IntIdxTy
851 : IntIdxScalarTy;
852 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
853 true,
854 NewType,
855 true),
856 Ops[i], NewType));
857 } else
858 NewIdxs.push_back(Ops[i]);
861 if (!Any)
862 return nullptr;
864 Constant *C = ConstantExpr::getGetElementPtr(
865 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
866 return ConstantFoldConstant(C, DL, TLI);
869 /// Strip the pointer casts, but preserve the address space information.
870 Constant *StripPtrCastKeepAS(Constant *Ptr, bool ForLoadOperand) {
871 assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
872 auto *OldPtrTy = cast<PointerType>(Ptr->getType());
873 Ptr = cast<Constant>(Ptr->stripPointerCasts());
874 if (ForLoadOperand) {
875 while (isa<GlobalAlias>(Ptr) && !cast<GlobalAlias>(Ptr)->isInterposable() &&
876 !cast<GlobalAlias>(Ptr)->getBaseObject()->isInterposable()) {
877 Ptr = cast<GlobalAlias>(Ptr)->getAliasee();
881 auto *NewPtrTy = cast<PointerType>(Ptr->getType());
883 // Preserve the address space number of the pointer.
884 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
885 Ptr = ConstantExpr::getPointerCast(
886 Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
887 OldPtrTy->getAddressSpace()));
889 return Ptr;
892 /// If we can symbolically evaluate the GEP constant expression, do so.
893 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
894 ArrayRef<Constant *> Ops,
895 const DataLayout &DL,
896 const TargetLibraryInfo *TLI,
897 bool ForLoadOperand) {
898 const GEPOperator *InnermostGEP = GEP;
899 bool InBounds = GEP->isInBounds();
901 Type *SrcElemTy = GEP->getSourceElementType();
902 Type *ResElemTy = GEP->getResultElementType();
903 Type *ResTy = GEP->getType();
904 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
905 return nullptr;
907 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
908 GEP->getInRangeIndex(), DL, TLI))
909 return C;
911 Constant *Ptr = Ops[0];
912 if (!Ptr->getType()->isPointerTy())
913 return nullptr;
915 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
917 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
918 // "inttoptr (sub (ptrtoint Ptr), V)"
919 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
920 auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
921 assert((!CE || CE->getType() == IntIdxTy) &&
922 "CastGEPIndices didn't canonicalize index types!");
923 if (CE && CE->getOpcode() == Instruction::Sub &&
924 CE->getOperand(0)->isNullValue()) {
925 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
926 Res = ConstantExpr::getSub(Res, CE->getOperand(1));
927 Res = ConstantExpr::getIntToPtr(Res, ResTy);
928 return ConstantFoldConstant(Res, DL, TLI);
932 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
933 if (!isa<ConstantInt>(Ops[i]))
934 return nullptr;
936 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
937 APInt Offset =
938 APInt(BitWidth,
939 DL.getIndexedOffsetInType(
940 SrcElemTy,
941 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
942 Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
944 // If this is a GEP of a GEP, fold it all into a single GEP.
945 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
946 InnermostGEP = GEP;
947 InBounds &= GEP->isInBounds();
949 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
951 // Do not try the incorporate the sub-GEP if some index is not a number.
952 bool AllConstantInt = true;
953 for (Value *NestedOp : NestedOps)
954 if (!isa<ConstantInt>(NestedOp)) {
955 AllConstantInt = false;
956 break;
958 if (!AllConstantInt)
959 break;
961 Ptr = cast<Constant>(GEP->getOperand(0));
962 SrcElemTy = GEP->getSourceElementType();
963 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
964 Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
967 // If the base value for this address is a literal integer value, fold the
968 // getelementptr to the resulting integer value casted to the pointer type.
969 APInt BasePtr(BitWidth, 0);
970 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
971 if (CE->getOpcode() == Instruction::IntToPtr) {
972 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
973 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
977 auto *PTy = cast<PointerType>(Ptr->getType());
978 if ((Ptr->isNullValue() || BasePtr != 0) &&
979 !DL.isNonIntegralPointerType(PTy)) {
980 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
981 return ConstantExpr::getIntToPtr(C, ResTy);
984 // Otherwise form a regular getelementptr. Recompute the indices so that
985 // we eliminate over-indexing of the notional static type array bounds.
986 // This makes it easy to determine if the getelementptr is "inbounds".
987 // Also, this helps GlobalOpt do SROA on GlobalVariables.
988 SmallVector<Constant *, 32> NewIdxs;
989 Type *Ty = PTy;
990 SrcElemTy = PTy->getElementType();
992 do {
993 if (!Ty->isStructTy()) {
994 if (Ty->isPointerTy()) {
995 // The only pointer indexing we'll do is on the first index of the GEP.
996 if (!NewIdxs.empty())
997 break;
999 Ty = SrcElemTy;
1001 // Only handle pointers to sized types, not pointers to functions.
1002 if (!Ty->isSized())
1003 return nullptr;
1004 } else {
1005 Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1006 if (!NextTy)
1007 break;
1008 Ty = NextTy;
1011 // Determine which element of the array the offset points into.
1012 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
1013 if (ElemSize == 0) {
1014 // The element size is 0. This may be [0 x Ty]*, so just use a zero
1015 // index for this level and proceed to the next level to see if it can
1016 // accommodate the offset.
1017 NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
1018 } else {
1019 // The element size is non-zero divide the offset by the element
1020 // size (rounding down), to compute the index at this level.
1021 bool Overflow;
1022 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
1023 if (Overflow)
1024 break;
1025 Offset -= NewIdx * ElemSize;
1026 NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
1028 } else {
1029 auto *STy = cast<StructType>(Ty);
1030 // If we end up with an offset that isn't valid for this struct type, we
1031 // can't re-form this GEP in a regular form, so bail out. The pointer
1032 // operand likely went through casts that are necessary to make the GEP
1033 // sensible.
1034 const StructLayout &SL = *DL.getStructLayout(STy);
1035 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
1036 break;
1038 // Determine which field of the struct the offset points into. The
1039 // getZExtValue is fine as we've already ensured that the offset is
1040 // within the range representable by the StructLayout API.
1041 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
1042 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1043 ElIdx));
1044 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
1045 Ty = STy->getTypeAtIndex(ElIdx);
1047 } while (Ty != ResElemTy);
1049 // If we haven't used up the entire offset by descending the static
1050 // type, then the offset is pointing into the middle of an indivisible
1051 // member, so we can't simplify it.
1052 if (Offset != 0)
1053 return nullptr;
1055 // Preserve the inrange index from the innermost GEP if possible. We must
1056 // have calculated the same indices up to and including the inrange index.
1057 Optional<unsigned> InRangeIndex;
1058 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
1059 if (SrcElemTy == InnermostGEP->getSourceElementType() &&
1060 NewIdxs.size() > *LastIRIndex) {
1061 InRangeIndex = LastIRIndex;
1062 for (unsigned I = 0; I <= *LastIRIndex; ++I)
1063 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1064 return nullptr;
1067 // Create a GEP.
1068 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1069 InBounds, InRangeIndex);
1070 assert(C->getType()->getPointerElementType() == Ty &&
1071 "Computed GetElementPtr has unexpected type!");
1073 // If we ended up indexing a member with a type that doesn't match
1074 // the type of what the original indices indexed, add a cast.
1075 if (C->getType() != ResTy)
1076 C = FoldBitCast(C, ResTy, DL);
1078 return C;
1081 /// Attempt to constant fold an instruction with the
1082 /// specified opcode and operands. If successful, the constant result is
1083 /// returned, if not, null is returned. Note that this function can fail when
1084 /// attempting to fold instructions like loads and stores, which have no
1085 /// constant expression form.
1086 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1087 ArrayRef<Constant *> Ops,
1088 const DataLayout &DL,
1089 const TargetLibraryInfo *TLI) {
1090 Type *DestTy = InstOrCE->getType();
1092 if (Instruction::isUnaryOp(Opcode))
1093 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1095 if (Instruction::isBinaryOp(Opcode))
1096 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1098 if (Instruction::isCast(Opcode))
1099 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1101 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1102 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI,
1103 /*ForLoadOperand*/ false))
1104 return C;
1106 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1107 Ops.slice(1), GEP->isInBounds(),
1108 GEP->getInRangeIndex());
1111 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1112 return CE->getWithOperands(Ops);
1114 switch (Opcode) {
1115 default: return nullptr;
1116 case Instruction::ICmp:
1117 case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1118 case Instruction::Freeze:
1119 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1120 case Instruction::Call:
1121 if (auto *F = dyn_cast<Function>(Ops.back())) {
1122 const auto *Call = cast<CallBase>(InstOrCE);
1123 if (canConstantFoldCallTo(Call, F))
1124 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1126 return nullptr;
1127 case Instruction::Select:
1128 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1129 case Instruction::ExtractElement:
1130 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1131 case Instruction::ExtractValue:
1132 return ConstantExpr::getExtractValue(
1133 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1134 case Instruction::InsertElement:
1135 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1136 case Instruction::ShuffleVector:
1137 return ConstantExpr::getShuffleVector(
1138 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1142 } // end anonymous namespace
1144 //===----------------------------------------------------------------------===//
1145 // Constant Folding public APIs
1146 //===----------------------------------------------------------------------===//
1148 namespace {
1150 Constant *
1151 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1152 const TargetLibraryInfo *TLI,
1153 SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1154 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1155 return const_cast<Constant *>(C);
1157 SmallVector<Constant *, 8> Ops;
1158 for (const Use &OldU : C->operands()) {
1159 Constant *OldC = cast<Constant>(&OldU);
1160 Constant *NewC = OldC;
1161 // Recursively fold the ConstantExpr's operands. If we have already folded
1162 // a ConstantExpr, we don't have to process it again.
1163 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1164 auto It = FoldedOps.find(OldC);
1165 if (It == FoldedOps.end()) {
1166 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1167 FoldedOps.insert({OldC, NewC});
1168 } else {
1169 NewC = It->second;
1172 Ops.push_back(NewC);
1175 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1176 if (CE->isCompare())
1177 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1178 DL, TLI);
1180 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1183 assert(isa<ConstantVector>(C));
1184 return ConstantVector::get(Ops);
1187 } // end anonymous namespace
1189 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1190 const TargetLibraryInfo *TLI) {
1191 // Handle PHI nodes quickly here...
1192 if (auto *PN = dyn_cast<PHINode>(I)) {
1193 Constant *CommonValue = nullptr;
1195 SmallDenseMap<Constant *, Constant *> FoldedOps;
1196 for (Value *Incoming : PN->incoming_values()) {
1197 // If the incoming value is undef then skip it. Note that while we could
1198 // skip the value if it is equal to the phi node itself we choose not to
1199 // because that would break the rule that constant folding only applies if
1200 // all operands are constants.
1201 if (isa<UndefValue>(Incoming))
1202 continue;
1203 // If the incoming value is not a constant, then give up.
1204 auto *C = dyn_cast<Constant>(Incoming);
1205 if (!C)
1206 return nullptr;
1207 // Fold the PHI's operands.
1208 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1209 // If the incoming value is a different constant to
1210 // the one we saw previously, then give up.
1211 if (CommonValue && C != CommonValue)
1212 return nullptr;
1213 CommonValue = C;
1216 // If we reach here, all incoming values are the same constant or undef.
1217 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1220 // Scan the operand list, checking to see if they are all constants, if so,
1221 // hand off to ConstantFoldInstOperandsImpl.
1222 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1223 return nullptr;
1225 SmallDenseMap<Constant *, Constant *> FoldedOps;
1226 SmallVector<Constant *, 8> Ops;
1227 for (const Use &OpU : I->operands()) {
1228 auto *Op = cast<Constant>(&OpU);
1229 // Fold the Instruction's operands.
1230 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1231 Ops.push_back(Op);
1234 if (const auto *CI = dyn_cast<CmpInst>(I))
1235 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1236 DL, TLI);
1238 if (const auto *LI = dyn_cast<LoadInst>(I)) {
1239 if (LI->isVolatile())
1240 return nullptr;
1241 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1244 if (auto *IVI = dyn_cast<InsertValueInst>(I))
1245 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
1247 if (auto *EVI = dyn_cast<ExtractValueInst>(I))
1248 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
1250 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1253 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1254 const TargetLibraryInfo *TLI) {
1255 SmallDenseMap<Constant *, Constant *> FoldedOps;
1256 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1259 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1260 ArrayRef<Constant *> Ops,
1261 const DataLayout &DL,
1262 const TargetLibraryInfo *TLI) {
1263 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1266 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1267 Constant *Ops0, Constant *Ops1,
1268 const DataLayout &DL,
1269 const TargetLibraryInfo *TLI) {
1270 // fold: icmp (inttoptr x), null -> icmp x, 0
1271 // fold: icmp null, (inttoptr x) -> icmp 0, x
1272 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1273 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1274 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1275 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1277 // FIXME: The following comment is out of data and the DataLayout is here now.
1278 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1279 // around to know if bit truncation is happening.
1280 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1281 if (Ops1->isNullValue()) {
1282 if (CE0->getOpcode() == Instruction::IntToPtr) {
1283 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1284 // Convert the integer value to the right size to ensure we get the
1285 // proper extension or truncation.
1286 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1287 IntPtrTy, false);
1288 Constant *Null = Constant::getNullValue(C->getType());
1289 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1292 // Only do this transformation if the int is intptrty in size, otherwise
1293 // there is a truncation or extension that we aren't modeling.
1294 if (CE0->getOpcode() == Instruction::PtrToInt) {
1295 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1296 if (CE0->getType() == IntPtrTy) {
1297 Constant *C = CE0->getOperand(0);
1298 Constant *Null = Constant::getNullValue(C->getType());
1299 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1304 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1305 if (CE0->getOpcode() == CE1->getOpcode()) {
1306 if (CE0->getOpcode() == Instruction::IntToPtr) {
1307 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1309 // Convert the integer value to the right size to ensure we get the
1310 // proper extension or truncation.
1311 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1312 IntPtrTy, false);
1313 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1314 IntPtrTy, false);
1315 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1318 // Only do this transformation if the int is intptrty in size, otherwise
1319 // there is a truncation or extension that we aren't modeling.
1320 if (CE0->getOpcode() == Instruction::PtrToInt) {
1321 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1322 if (CE0->getType() == IntPtrTy &&
1323 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1324 return ConstantFoldCompareInstOperands(
1325 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1331 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1332 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1333 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1334 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1335 Constant *LHS = ConstantFoldCompareInstOperands(
1336 Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1337 Constant *RHS = ConstantFoldCompareInstOperands(
1338 Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1339 unsigned OpC =
1340 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1341 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1343 } else if (isa<ConstantExpr>(Ops1)) {
1344 // If RHS is a constant expression, but the left side isn't, swap the
1345 // operands and try again.
1346 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1347 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1350 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1353 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1354 const DataLayout &DL) {
1355 assert(Instruction::isUnaryOp(Opcode));
1357 return ConstantExpr::get(Opcode, Op);
1360 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1361 Constant *RHS,
1362 const DataLayout &DL) {
1363 assert(Instruction::isBinaryOp(Opcode));
1364 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1365 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1366 return C;
1368 return ConstantExpr::get(Opcode, LHS, RHS);
1371 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1372 Type *DestTy, const DataLayout &DL) {
1373 assert(Instruction::isCast(Opcode));
1374 switch (Opcode) {
1375 default:
1376 llvm_unreachable("Missing case");
1377 case Instruction::PtrToInt:
1378 // If the input is a inttoptr, eliminate the pair. This requires knowing
1379 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1380 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1381 if (CE->getOpcode() == Instruction::IntToPtr) {
1382 Constant *Input = CE->getOperand(0);
1383 unsigned InWidth = Input->getType()->getScalarSizeInBits();
1384 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1385 if (PtrWidth < InWidth) {
1386 Constant *Mask =
1387 ConstantInt::get(CE->getContext(),
1388 APInt::getLowBitsSet(InWidth, PtrWidth));
1389 Input = ConstantExpr::getAnd(Input, Mask);
1391 // Do a zext or trunc to get to the dest size.
1392 return ConstantExpr::getIntegerCast(Input, DestTy, false);
1395 return ConstantExpr::getCast(Opcode, C, DestTy);
1396 case Instruction::IntToPtr:
1397 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1398 // the int size is >= the ptr size and the address spaces are the same.
1399 // This requires knowing the width of a pointer, so it can't be done in
1400 // ConstantExpr::getCast.
1401 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1402 if (CE->getOpcode() == Instruction::PtrToInt) {
1403 Constant *SrcPtr = CE->getOperand(0);
1404 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1405 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1407 if (MidIntSize >= SrcPtrSize) {
1408 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1409 if (SrcAS == DestTy->getPointerAddressSpace())
1410 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1415 return ConstantExpr::getCast(Opcode, C, DestTy);
1416 case Instruction::Trunc:
1417 case Instruction::ZExt:
1418 case Instruction::SExt:
1419 case Instruction::FPTrunc:
1420 case Instruction::FPExt:
1421 case Instruction::UIToFP:
1422 case Instruction::SIToFP:
1423 case Instruction::FPToUI:
1424 case Instruction::FPToSI:
1425 case Instruction::AddrSpaceCast:
1426 return ConstantExpr::getCast(Opcode, C, DestTy);
1427 case Instruction::BitCast:
1428 return FoldBitCast(C, DestTy, DL);
1432 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1433 ConstantExpr *CE,
1434 Type *Ty,
1435 const DataLayout &DL) {
1436 if (!CE->getOperand(1)->isNullValue())
1437 return nullptr; // Do not allow stepping over the value!
1439 // Loop over all of the operands, tracking down which value we are
1440 // addressing.
1441 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1442 C = C->getAggregateElement(CE->getOperand(i));
1443 if (!C)
1444 return nullptr;
1446 return ConstantFoldLoadThroughBitcast(C, Ty, DL);
1449 Constant *
1450 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1451 ArrayRef<Constant *> Indices) {
1452 // Loop over all of the operands, tracking down which value we are
1453 // addressing.
1454 for (Constant *Index : Indices) {
1455 C = C->getAggregateElement(Index);
1456 if (!C)
1457 return nullptr;
1459 return C;
1462 //===----------------------------------------------------------------------===//
1463 // Constant Folding for Calls
1466 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1467 if (Call->isNoBuiltin())
1468 return false;
1469 switch (F->getIntrinsicID()) {
1470 // Operations that do not operate floating-point numbers and do not depend on
1471 // FP environment can be folded even in strictfp functions.
1472 case Intrinsic::bswap:
1473 case Intrinsic::ctpop:
1474 case Intrinsic::ctlz:
1475 case Intrinsic::cttz:
1476 case Intrinsic::fshl:
1477 case Intrinsic::fshr:
1478 case Intrinsic::launder_invariant_group:
1479 case Intrinsic::strip_invariant_group:
1480 case Intrinsic::masked_load:
1481 case Intrinsic::get_active_lane_mask:
1482 case Intrinsic::abs:
1483 case Intrinsic::smax:
1484 case Intrinsic::smin:
1485 case Intrinsic::umax:
1486 case Intrinsic::umin:
1487 case Intrinsic::sadd_with_overflow:
1488 case Intrinsic::uadd_with_overflow:
1489 case Intrinsic::ssub_with_overflow:
1490 case Intrinsic::usub_with_overflow:
1491 case Intrinsic::smul_with_overflow:
1492 case Intrinsic::umul_with_overflow:
1493 case Intrinsic::sadd_sat:
1494 case Intrinsic::uadd_sat:
1495 case Intrinsic::ssub_sat:
1496 case Intrinsic::usub_sat:
1497 case Intrinsic::smul_fix:
1498 case Intrinsic::smul_fix_sat:
1499 case Intrinsic::bitreverse:
1500 case Intrinsic::is_constant:
1501 case Intrinsic::vector_reduce_add:
1502 case Intrinsic::vector_reduce_mul:
1503 case Intrinsic::vector_reduce_and:
1504 case Intrinsic::vector_reduce_or:
1505 case Intrinsic::vector_reduce_xor:
1506 case Intrinsic::vector_reduce_smin:
1507 case Intrinsic::vector_reduce_smax:
1508 case Intrinsic::vector_reduce_umin:
1509 case Intrinsic::vector_reduce_umax:
1510 // Target intrinsics
1511 case Intrinsic::amdgcn_perm:
1512 case Intrinsic::arm_mve_vctp8:
1513 case Intrinsic::arm_mve_vctp16:
1514 case Intrinsic::arm_mve_vctp32:
1515 case Intrinsic::arm_mve_vctp64:
1516 case Intrinsic::aarch64_sve_convert_from_svbool:
1517 // WebAssembly float semantics are always known
1518 case Intrinsic::wasm_trunc_signed:
1519 case Intrinsic::wasm_trunc_unsigned:
1520 return true;
1522 // Floating point operations cannot be folded in strictfp functions in
1523 // general case. They can be folded if FP environment is known to compiler.
1524 case Intrinsic::minnum:
1525 case Intrinsic::maxnum:
1526 case Intrinsic::minimum:
1527 case Intrinsic::maximum:
1528 case Intrinsic::log:
1529 case Intrinsic::log2:
1530 case Intrinsic::log10:
1531 case Intrinsic::exp:
1532 case Intrinsic::exp2:
1533 case Intrinsic::sqrt:
1534 case Intrinsic::sin:
1535 case Intrinsic::cos:
1536 case Intrinsic::pow:
1537 case Intrinsic::powi:
1538 case Intrinsic::fma:
1539 case Intrinsic::fmuladd:
1540 case Intrinsic::fptoui_sat:
1541 case Intrinsic::fptosi_sat:
1542 case Intrinsic::convert_from_fp16:
1543 case Intrinsic::convert_to_fp16:
1544 case Intrinsic::amdgcn_cos:
1545 case Intrinsic::amdgcn_cubeid:
1546 case Intrinsic::amdgcn_cubema:
1547 case Intrinsic::amdgcn_cubesc:
1548 case Intrinsic::amdgcn_cubetc:
1549 case Intrinsic::amdgcn_fmul_legacy:
1550 case Intrinsic::amdgcn_fma_legacy:
1551 case Intrinsic::amdgcn_fract:
1552 case Intrinsic::amdgcn_ldexp:
1553 case Intrinsic::amdgcn_sin:
1554 // The intrinsics below depend on rounding mode in MXCSR.
1555 case Intrinsic::x86_sse_cvtss2si:
1556 case Intrinsic::x86_sse_cvtss2si64:
1557 case Intrinsic::x86_sse_cvttss2si:
1558 case Intrinsic::x86_sse_cvttss2si64:
1559 case Intrinsic::x86_sse2_cvtsd2si:
1560 case Intrinsic::x86_sse2_cvtsd2si64:
1561 case Intrinsic::x86_sse2_cvttsd2si:
1562 case Intrinsic::x86_sse2_cvttsd2si64:
1563 case Intrinsic::x86_avx512_vcvtss2si32:
1564 case Intrinsic::x86_avx512_vcvtss2si64:
1565 case Intrinsic::x86_avx512_cvttss2si:
1566 case Intrinsic::x86_avx512_cvttss2si64:
1567 case Intrinsic::x86_avx512_vcvtsd2si32:
1568 case Intrinsic::x86_avx512_vcvtsd2si64:
1569 case Intrinsic::x86_avx512_cvttsd2si:
1570 case Intrinsic::x86_avx512_cvttsd2si64:
1571 case Intrinsic::x86_avx512_vcvtss2usi32:
1572 case Intrinsic::x86_avx512_vcvtss2usi64:
1573 case Intrinsic::x86_avx512_cvttss2usi:
1574 case Intrinsic::x86_avx512_cvttss2usi64:
1575 case Intrinsic::x86_avx512_vcvtsd2usi32:
1576 case Intrinsic::x86_avx512_vcvtsd2usi64:
1577 case Intrinsic::x86_avx512_cvttsd2usi:
1578 case Intrinsic::x86_avx512_cvttsd2usi64:
1579 return !Call->isStrictFP();
1581 // Sign operations are actually bitwise operations, they do not raise
1582 // exceptions even for SNANs. The same applies to classification functions.
1583 case Intrinsic::fabs:
1584 case Intrinsic::copysign:
1585 case Intrinsic::isnan:
1586 // Non-constrained variants of rounding operations means default FP
1587 // environment, they can be folded in any case.
1588 case Intrinsic::ceil:
1589 case Intrinsic::floor:
1590 case Intrinsic::round:
1591 case Intrinsic::roundeven:
1592 case Intrinsic::trunc:
1593 case Intrinsic::nearbyint:
1594 case Intrinsic::rint:
1595 // Constrained intrinsics can be folded if FP environment is known
1596 // to compiler.
1597 case Intrinsic::experimental_constrained_fma:
1598 case Intrinsic::experimental_constrained_fmuladd:
1599 case Intrinsic::experimental_constrained_fadd:
1600 case Intrinsic::experimental_constrained_fsub:
1601 case Intrinsic::experimental_constrained_fmul:
1602 case Intrinsic::experimental_constrained_fdiv:
1603 case Intrinsic::experimental_constrained_frem:
1604 case Intrinsic::experimental_constrained_ceil:
1605 case Intrinsic::experimental_constrained_floor:
1606 case Intrinsic::experimental_constrained_round:
1607 case Intrinsic::experimental_constrained_roundeven:
1608 case Intrinsic::experimental_constrained_trunc:
1609 case Intrinsic::experimental_constrained_nearbyint:
1610 case Intrinsic::experimental_constrained_rint:
1611 return true;
1612 default:
1613 return false;
1614 case Intrinsic::not_intrinsic: break;
1617 if (!F->hasName() || Call->isStrictFP())
1618 return false;
1620 // In these cases, the check of the length is required. We don't want to
1621 // return true for a name like "cos\0blah" which strcmp would return equal to
1622 // "cos", but has length 8.
1623 StringRef Name = F->getName();
1624 switch (Name[0]) {
1625 default:
1626 return false;
1627 case 'a':
1628 return Name == "acos" || Name == "acosf" ||
1629 Name == "asin" || Name == "asinf" ||
1630 Name == "atan" || Name == "atanf" ||
1631 Name == "atan2" || Name == "atan2f";
1632 case 'c':
1633 return Name == "ceil" || Name == "ceilf" ||
1634 Name == "cos" || Name == "cosf" ||
1635 Name == "cosh" || Name == "coshf";
1636 case 'e':
1637 return Name == "exp" || Name == "expf" ||
1638 Name == "exp2" || Name == "exp2f";
1639 case 'f':
1640 return Name == "fabs" || Name == "fabsf" ||
1641 Name == "floor" || Name == "floorf" ||
1642 Name == "fmod" || Name == "fmodf";
1643 case 'l':
1644 return Name == "log" || Name == "logf" ||
1645 Name == "log2" || Name == "log2f" ||
1646 Name == "log10" || Name == "log10f";
1647 case 'n':
1648 return Name == "nearbyint" || Name == "nearbyintf";
1649 case 'p':
1650 return Name == "pow" || Name == "powf";
1651 case 'r':
1652 return Name == "remainder" || Name == "remainderf" ||
1653 Name == "rint" || Name == "rintf" ||
1654 Name == "round" || Name == "roundf";
1655 case 's':
1656 return Name == "sin" || Name == "sinf" ||
1657 Name == "sinh" || Name == "sinhf" ||
1658 Name == "sqrt" || Name == "sqrtf";
1659 case 't':
1660 return Name == "tan" || Name == "tanf" ||
1661 Name == "tanh" || Name == "tanhf" ||
1662 Name == "trunc" || Name == "truncf";
1663 case '_':
1664 // Check for various function names that get used for the math functions
1665 // when the header files are preprocessed with the macro
1666 // __FINITE_MATH_ONLY__ enabled.
1667 // The '12' here is the length of the shortest name that can match.
1668 // We need to check the size before looking at Name[1] and Name[2]
1669 // so we may as well check a limit that will eliminate mismatches.
1670 if (Name.size() < 12 || Name[1] != '_')
1671 return false;
1672 switch (Name[2]) {
1673 default:
1674 return false;
1675 case 'a':
1676 return Name == "__acos_finite" || Name == "__acosf_finite" ||
1677 Name == "__asin_finite" || Name == "__asinf_finite" ||
1678 Name == "__atan2_finite" || Name == "__atan2f_finite";
1679 case 'c':
1680 return Name == "__cosh_finite" || Name == "__coshf_finite";
1681 case 'e':
1682 return Name == "__exp_finite" || Name == "__expf_finite" ||
1683 Name == "__exp2_finite" || Name == "__exp2f_finite";
1684 case 'l':
1685 return Name == "__log_finite" || Name == "__logf_finite" ||
1686 Name == "__log10_finite" || Name == "__log10f_finite";
1687 case 'p':
1688 return Name == "__pow_finite" || Name == "__powf_finite";
1689 case 's':
1690 return Name == "__sinh_finite" || Name == "__sinhf_finite";
1695 namespace {
1697 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1698 if (Ty->isHalfTy() || Ty->isFloatTy()) {
1699 APFloat APF(V);
1700 bool unused;
1701 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1702 return ConstantFP::get(Ty->getContext(), APF);
1704 if (Ty->isDoubleTy())
1705 return ConstantFP::get(Ty->getContext(), APFloat(V));
1706 llvm_unreachable("Can only constant fold half/float/double");
1709 /// Clear the floating-point exception state.
1710 inline void llvm_fenv_clearexcept() {
1711 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1712 feclearexcept(FE_ALL_EXCEPT);
1713 #endif
1714 errno = 0;
1717 /// Test if a floating-point exception was raised.
1718 inline bool llvm_fenv_testexcept() {
1719 int errno_val = errno;
1720 if (errno_val == ERANGE || errno_val == EDOM)
1721 return true;
1722 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1723 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1724 return true;
1725 #endif
1726 return false;
1729 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1730 Type *Ty) {
1731 llvm_fenv_clearexcept();
1732 double Result = NativeFP(V.convertToDouble());
1733 if (llvm_fenv_testexcept()) {
1734 llvm_fenv_clearexcept();
1735 return nullptr;
1738 return GetConstantFoldFPValue(Result, Ty);
1741 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1742 const APFloat &V, const APFloat &W, Type *Ty) {
1743 llvm_fenv_clearexcept();
1744 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1745 if (llvm_fenv_testexcept()) {
1746 llvm_fenv_clearexcept();
1747 return nullptr;
1750 return GetConstantFoldFPValue(Result, Ty);
1753 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1754 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1755 if (!VT)
1756 return nullptr;
1758 // This isn't strictly necessary, but handle the special/common case of zero:
1759 // all integer reductions of a zero input produce zero.
1760 if (isa<ConstantAggregateZero>(Op))
1761 return ConstantInt::get(VT->getElementType(), 0);
1763 // This is the same as the underlying binops - poison propagates.
1764 if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1765 return PoisonValue::get(VT->getElementType());
1767 // TODO: Handle undef.
1768 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1769 return nullptr;
1771 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1772 if (!EltC)
1773 return nullptr;
1775 APInt Acc = EltC->getValue();
1776 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1777 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1778 return nullptr;
1779 const APInt &X = EltC->getValue();
1780 switch (IID) {
1781 case Intrinsic::vector_reduce_add:
1782 Acc = Acc + X;
1783 break;
1784 case Intrinsic::vector_reduce_mul:
1785 Acc = Acc * X;
1786 break;
1787 case Intrinsic::vector_reduce_and:
1788 Acc = Acc & X;
1789 break;
1790 case Intrinsic::vector_reduce_or:
1791 Acc = Acc | X;
1792 break;
1793 case Intrinsic::vector_reduce_xor:
1794 Acc = Acc ^ X;
1795 break;
1796 case Intrinsic::vector_reduce_smin:
1797 Acc = APIntOps::smin(Acc, X);
1798 break;
1799 case Intrinsic::vector_reduce_smax:
1800 Acc = APIntOps::smax(Acc, X);
1801 break;
1802 case Intrinsic::vector_reduce_umin:
1803 Acc = APIntOps::umin(Acc, X);
1804 break;
1805 case Intrinsic::vector_reduce_umax:
1806 Acc = APIntOps::umax(Acc, X);
1807 break;
1811 return ConstantInt::get(Op->getContext(), Acc);
1814 /// Attempt to fold an SSE floating point to integer conversion of a constant
1815 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1816 /// used (toward nearest, ties to even). This matches the behavior of the
1817 /// non-truncating SSE instructions in the default rounding mode. The desired
1818 /// integer type Ty is used to select how many bits are available for the
1819 /// result. Returns null if the conversion cannot be performed, otherwise
1820 /// returns the Constant value resulting from the conversion.
1821 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1822 Type *Ty, bool IsSigned) {
1823 // All of these conversion intrinsics form an integer of at most 64bits.
1824 unsigned ResultWidth = Ty->getIntegerBitWidth();
1825 assert(ResultWidth <= 64 &&
1826 "Can only constant fold conversions to 64 and 32 bit ints");
1828 uint64_t UIntVal;
1829 bool isExact = false;
1830 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1831 : APFloat::rmNearestTiesToEven;
1832 APFloat::opStatus status =
1833 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1834 IsSigned, mode, &isExact);
1835 if (status != APFloat::opOK &&
1836 (!roundTowardZero || status != APFloat::opInexact))
1837 return nullptr;
1838 return ConstantInt::get(Ty, UIntVal, IsSigned);
1841 double getValueAsDouble(ConstantFP *Op) {
1842 Type *Ty = Op->getType();
1844 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1845 return Op->getValueAPF().convertToDouble();
1847 bool unused;
1848 APFloat APF = Op->getValueAPF();
1849 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1850 return APF.convertToDouble();
1853 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1854 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1855 C = &CI->getValue();
1856 return true;
1858 if (isa<UndefValue>(Op)) {
1859 C = nullptr;
1860 return true;
1862 return false;
1865 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1866 /// to be folded.
1868 /// \param CI Constrained intrinsic call.
1869 /// \param St Exception flags raised during constant evaluation.
1870 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1871 APFloat::opStatus St) {
1872 Optional<RoundingMode> ORM = CI->getRoundingMode();
1873 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1875 // If the operation does not change exception status flags, it is safe
1876 // to fold.
1877 if (St == APFloat::opStatus::opOK) {
1878 // When FP exceptions are not ignored, intrinsic call will not be
1879 // eliminated, because it is considered as having side effect. But we
1880 // know that its evaluation does not raise exceptions, so side effect
1881 // is absent. To allow removing the call, mark it as not accessing memory.
1882 if (EB && *EB != fp::ExceptionBehavior::ebIgnore)
1883 CI->addFnAttr(Attribute::ReadNone);
1884 return true;
1887 // If evaluation raised FP exception, the result can depend on rounding
1888 // mode. If the latter is unknown, folding is not possible.
1889 if (!ORM || *ORM == RoundingMode::Dynamic)
1890 return false;
1892 // If FP exceptions are ignored, fold the call, even if such exception is
1893 // raised.
1894 if (!EB || *EB != fp::ExceptionBehavior::ebStrict)
1895 return true;
1897 // Leave the calculation for runtime so that exception flags be correctly set
1898 // in hardware.
1899 return false;
1902 /// Returns the rounding mode that should be used for constant evaluation.
1903 static RoundingMode
1904 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1905 Optional<RoundingMode> ORM = CI->getRoundingMode();
1906 if (!ORM || *ORM == RoundingMode::Dynamic)
1907 // Even if the rounding mode is unknown, try evaluating the operation.
1908 // If it does not raise inexact exception, rounding was not applied,
1909 // so the result is exact and does not depend on rounding mode. Whether
1910 // other FP exceptions are raised, it does not depend on rounding mode.
1911 return RoundingMode::NearestTiesToEven;
1912 return *ORM;
1915 static Constant *ConstantFoldScalarCall1(StringRef Name,
1916 Intrinsic::ID IntrinsicID,
1917 Type *Ty,
1918 ArrayRef<Constant *> Operands,
1919 const TargetLibraryInfo *TLI,
1920 const CallBase *Call) {
1921 assert(Operands.size() == 1 && "Wrong number of operands.");
1923 if (IntrinsicID == Intrinsic::is_constant) {
1924 // We know we have a "Constant" argument. But we want to only
1925 // return true for manifest constants, not those that depend on
1926 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1927 if (Operands[0]->isManifestConstant())
1928 return ConstantInt::getTrue(Ty->getContext());
1929 return nullptr;
1931 if (isa<UndefValue>(Operands[0])) {
1932 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1933 // ctpop() is between 0 and bitwidth, pick 0 for undef.
1934 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1935 if (IntrinsicID == Intrinsic::cos ||
1936 IntrinsicID == Intrinsic::ctpop ||
1937 IntrinsicID == Intrinsic::fptoui_sat ||
1938 IntrinsicID == Intrinsic::fptosi_sat)
1939 return Constant::getNullValue(Ty);
1940 if (IntrinsicID == Intrinsic::bswap ||
1941 IntrinsicID == Intrinsic::bitreverse ||
1942 IntrinsicID == Intrinsic::launder_invariant_group ||
1943 IntrinsicID == Intrinsic::strip_invariant_group)
1944 return Operands[0];
1947 if (isa<ConstantPointerNull>(Operands[0])) {
1948 // launder(null) == null == strip(null) iff in addrspace 0
1949 if (IntrinsicID == Intrinsic::launder_invariant_group ||
1950 IntrinsicID == Intrinsic::strip_invariant_group) {
1951 // If instruction is not yet put in a basic block (e.g. when cloning
1952 // a function during inlining), Call's caller may not be available.
1953 // So check Call's BB first before querying Call->getCaller.
1954 const Function *Caller =
1955 Call->getParent() ? Call->getCaller() : nullptr;
1956 if (Caller &&
1957 !NullPointerIsDefined(
1958 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1959 return Operands[0];
1961 return nullptr;
1965 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1966 if (IntrinsicID == Intrinsic::convert_to_fp16) {
1967 APFloat Val(Op->getValueAPF());
1969 bool lost = false;
1970 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1972 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1975 APFloat U = Op->getValueAPF();
1977 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1978 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
1979 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
1981 if (U.isNaN())
1982 return nullptr;
1984 unsigned Width = Ty->getIntegerBitWidth();
1985 APSInt Int(Width, !Signed);
1986 bool IsExact = false;
1987 APFloat::opStatus Status =
1988 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1990 if (Status == APFloat::opOK || Status == APFloat::opInexact)
1991 return ConstantInt::get(Ty, Int);
1993 return nullptr;
1996 if (IntrinsicID == Intrinsic::fptoui_sat ||
1997 IntrinsicID == Intrinsic::fptosi_sat) {
1998 // convertToInteger() already has the desired saturation semantics.
1999 APSInt Int(Ty->getIntegerBitWidth(),
2000 IntrinsicID == Intrinsic::fptoui_sat);
2001 bool IsExact;
2002 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2003 return ConstantInt::get(Ty, Int);
2006 if (IntrinsicID == Intrinsic::isnan)
2007 return ConstantInt::get(Ty, U.isNaN());
2009 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2010 return nullptr;
2012 // Use internal versions of these intrinsics.
2014 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2015 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2016 return ConstantFP::get(Ty->getContext(), U);
2019 if (IntrinsicID == Intrinsic::round) {
2020 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2021 return ConstantFP::get(Ty->getContext(), U);
2024 if (IntrinsicID == Intrinsic::roundeven) {
2025 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2026 return ConstantFP::get(Ty->getContext(), U);
2029 if (IntrinsicID == Intrinsic::ceil) {
2030 U.roundToIntegral(APFloat::rmTowardPositive);
2031 return ConstantFP::get(Ty->getContext(), U);
2034 if (IntrinsicID == Intrinsic::floor) {
2035 U.roundToIntegral(APFloat::rmTowardNegative);
2036 return ConstantFP::get(Ty->getContext(), U);
2039 if (IntrinsicID == Intrinsic::trunc) {
2040 U.roundToIntegral(APFloat::rmTowardZero);
2041 return ConstantFP::get(Ty->getContext(), U);
2044 if (IntrinsicID == Intrinsic::fabs) {
2045 U.clearSign();
2046 return ConstantFP::get(Ty->getContext(), U);
2049 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2050 // The v_fract instruction behaves like the OpenCL spec, which defines
2051 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2052 // there to prevent fract(-small) from returning 1.0. It returns the
2053 // largest positive floating-point number less than 1.0."
2054 APFloat FloorU(U);
2055 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2056 APFloat FractU(U - FloorU);
2057 APFloat AlmostOne(U.getSemantics(), 1);
2058 AlmostOne.next(/*nextDown*/ true);
2059 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2062 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2063 // raise FP exceptions, unless the argument is signaling NaN.
2065 Optional<APFloat::roundingMode> RM;
2066 switch (IntrinsicID) {
2067 default:
2068 break;
2069 case Intrinsic::experimental_constrained_nearbyint:
2070 case Intrinsic::experimental_constrained_rint: {
2071 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2072 RM = CI->getRoundingMode();
2073 if (!RM || RM.getValue() == RoundingMode::Dynamic)
2074 return nullptr;
2075 break;
2077 case Intrinsic::experimental_constrained_round:
2078 RM = APFloat::rmNearestTiesToAway;
2079 break;
2080 case Intrinsic::experimental_constrained_ceil:
2081 RM = APFloat::rmTowardPositive;
2082 break;
2083 case Intrinsic::experimental_constrained_floor:
2084 RM = APFloat::rmTowardNegative;
2085 break;
2086 case Intrinsic::experimental_constrained_trunc:
2087 RM = APFloat::rmTowardZero;
2088 break;
2090 if (RM) {
2091 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2092 if (U.isFinite()) {
2093 APFloat::opStatus St = U.roundToIntegral(*RM);
2094 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2095 St == APFloat::opInexact) {
2096 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2097 if (EB && *EB == fp::ebStrict)
2098 return nullptr;
2100 } else if (U.isSignaling()) {
2101 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2102 if (EB && *EB != fp::ebIgnore)
2103 return nullptr;
2104 U = APFloat::getQNaN(U.getSemantics());
2106 return ConstantFP::get(Ty->getContext(), U);
2109 /// We only fold functions with finite arguments. Folding NaN and inf is
2110 /// likely to be aborted with an exception anyway, and some host libms
2111 /// have known errors raising exceptions.
2112 if (!U.isFinite())
2113 return nullptr;
2115 /// Currently APFloat versions of these functions do not exist, so we use
2116 /// the host native double versions. Float versions are not called
2117 /// directly but for all these it is true (float)(f((double)arg)) ==
2118 /// f(arg). Long double not supported yet.
2119 APFloat APF = Op->getValueAPF();
2121 switch (IntrinsicID) {
2122 default: break;
2123 case Intrinsic::log:
2124 return ConstantFoldFP(log, APF, Ty);
2125 case Intrinsic::log2:
2126 // TODO: What about hosts that lack a C99 library?
2127 return ConstantFoldFP(Log2, APF, Ty);
2128 case Intrinsic::log10:
2129 // TODO: What about hosts that lack a C99 library?
2130 return ConstantFoldFP(log10, APF, Ty);
2131 case Intrinsic::exp:
2132 return ConstantFoldFP(exp, APF, Ty);
2133 case Intrinsic::exp2:
2134 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2135 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2136 case Intrinsic::sin:
2137 return ConstantFoldFP(sin, APF, Ty);
2138 case Intrinsic::cos:
2139 return ConstantFoldFP(cos, APF, Ty);
2140 case Intrinsic::sqrt:
2141 return ConstantFoldFP(sqrt, APF, Ty);
2142 case Intrinsic::amdgcn_cos:
2143 case Intrinsic::amdgcn_sin: {
2144 double V = getValueAsDouble(Op);
2145 if (V < -256.0 || V > 256.0)
2146 // The gfx8 and gfx9 architectures handle arguments outside the range
2147 // [-256, 256] differently. This should be a rare case so bail out
2148 // rather than trying to handle the difference.
2149 return nullptr;
2150 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2151 double V4 = V * 4.0;
2152 if (V4 == floor(V4)) {
2153 // Force exact results for quarter-integer inputs.
2154 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2155 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2156 } else {
2157 if (IsCos)
2158 V = cos(V * 2.0 * numbers::pi);
2159 else
2160 V = sin(V * 2.0 * numbers::pi);
2162 return GetConstantFoldFPValue(V, Ty);
2166 if (!TLI)
2167 return nullptr;
2169 LibFunc Func = NotLibFunc;
2170 TLI->getLibFunc(Name, Func);
2171 switch (Func) {
2172 default:
2173 break;
2174 case LibFunc_acos:
2175 case LibFunc_acosf:
2176 case LibFunc_acos_finite:
2177 case LibFunc_acosf_finite:
2178 if (TLI->has(Func))
2179 return ConstantFoldFP(acos, APF, Ty);
2180 break;
2181 case LibFunc_asin:
2182 case LibFunc_asinf:
2183 case LibFunc_asin_finite:
2184 case LibFunc_asinf_finite:
2185 if (TLI->has(Func))
2186 return ConstantFoldFP(asin, APF, Ty);
2187 break;
2188 case LibFunc_atan:
2189 case LibFunc_atanf:
2190 if (TLI->has(Func))
2191 return ConstantFoldFP(atan, APF, Ty);
2192 break;
2193 case LibFunc_ceil:
2194 case LibFunc_ceilf:
2195 if (TLI->has(Func)) {
2196 U.roundToIntegral(APFloat::rmTowardPositive);
2197 return ConstantFP::get(Ty->getContext(), U);
2199 break;
2200 case LibFunc_cos:
2201 case LibFunc_cosf:
2202 if (TLI->has(Func))
2203 return ConstantFoldFP(cos, APF, Ty);
2204 break;
2205 case LibFunc_cosh:
2206 case LibFunc_coshf:
2207 case LibFunc_cosh_finite:
2208 case LibFunc_coshf_finite:
2209 if (TLI->has(Func))
2210 return ConstantFoldFP(cosh, APF, Ty);
2211 break;
2212 case LibFunc_exp:
2213 case LibFunc_expf:
2214 case LibFunc_exp_finite:
2215 case LibFunc_expf_finite:
2216 if (TLI->has(Func))
2217 return ConstantFoldFP(exp, APF, Ty);
2218 break;
2219 case LibFunc_exp2:
2220 case LibFunc_exp2f:
2221 case LibFunc_exp2_finite:
2222 case LibFunc_exp2f_finite:
2223 if (TLI->has(Func))
2224 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2225 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2226 break;
2227 case LibFunc_fabs:
2228 case LibFunc_fabsf:
2229 if (TLI->has(Func)) {
2230 U.clearSign();
2231 return ConstantFP::get(Ty->getContext(), U);
2233 break;
2234 case LibFunc_floor:
2235 case LibFunc_floorf:
2236 if (TLI->has(Func)) {
2237 U.roundToIntegral(APFloat::rmTowardNegative);
2238 return ConstantFP::get(Ty->getContext(), U);
2240 break;
2241 case LibFunc_log:
2242 case LibFunc_logf:
2243 case LibFunc_log_finite:
2244 case LibFunc_logf_finite:
2245 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2246 return ConstantFoldFP(log, APF, Ty);
2247 break;
2248 case LibFunc_log2:
2249 case LibFunc_log2f:
2250 case LibFunc_log2_finite:
2251 case LibFunc_log2f_finite:
2252 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2253 // TODO: What about hosts that lack a C99 library?
2254 return ConstantFoldFP(Log2, APF, Ty);
2255 break;
2256 case LibFunc_log10:
2257 case LibFunc_log10f:
2258 case LibFunc_log10_finite:
2259 case LibFunc_log10f_finite:
2260 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2261 // TODO: What about hosts that lack a C99 library?
2262 return ConstantFoldFP(log10, APF, Ty);
2263 break;
2264 case LibFunc_nearbyint:
2265 case LibFunc_nearbyintf:
2266 case LibFunc_rint:
2267 case LibFunc_rintf:
2268 if (TLI->has(Func)) {
2269 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2270 return ConstantFP::get(Ty->getContext(), U);
2272 break;
2273 case LibFunc_round:
2274 case LibFunc_roundf:
2275 if (TLI->has(Func)) {
2276 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2277 return ConstantFP::get(Ty->getContext(), U);
2279 break;
2280 case LibFunc_sin:
2281 case LibFunc_sinf:
2282 if (TLI->has(Func))
2283 return ConstantFoldFP(sin, APF, Ty);
2284 break;
2285 case LibFunc_sinh:
2286 case LibFunc_sinhf:
2287 case LibFunc_sinh_finite:
2288 case LibFunc_sinhf_finite:
2289 if (TLI->has(Func))
2290 return ConstantFoldFP(sinh, APF, Ty);
2291 break;
2292 case LibFunc_sqrt:
2293 case LibFunc_sqrtf:
2294 if (!APF.isNegative() && TLI->has(Func))
2295 return ConstantFoldFP(sqrt, APF, Ty);
2296 break;
2297 case LibFunc_tan:
2298 case LibFunc_tanf:
2299 if (TLI->has(Func))
2300 return ConstantFoldFP(tan, APF, Ty);
2301 break;
2302 case LibFunc_tanh:
2303 case LibFunc_tanhf:
2304 if (TLI->has(Func))
2305 return ConstantFoldFP(tanh, APF, Ty);
2306 break;
2307 case LibFunc_trunc:
2308 case LibFunc_truncf:
2309 if (TLI->has(Func)) {
2310 U.roundToIntegral(APFloat::rmTowardZero);
2311 return ConstantFP::get(Ty->getContext(), U);
2313 break;
2315 return nullptr;
2318 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2319 switch (IntrinsicID) {
2320 case Intrinsic::bswap:
2321 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2322 case Intrinsic::ctpop:
2323 return ConstantInt::get(Ty, Op->getValue().countPopulation());
2324 case Intrinsic::bitreverse:
2325 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2326 case Intrinsic::convert_from_fp16: {
2327 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2329 bool lost = false;
2330 APFloat::opStatus status = Val.convert(
2331 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2333 // Conversion is always precise.
2334 (void)status;
2335 assert(status == APFloat::opOK && !lost &&
2336 "Precision lost during fp16 constfolding");
2338 return ConstantFP::get(Ty->getContext(), Val);
2340 default:
2341 return nullptr;
2345 switch (IntrinsicID) {
2346 default: break;
2347 case Intrinsic::vector_reduce_add:
2348 case Intrinsic::vector_reduce_mul:
2349 case Intrinsic::vector_reduce_and:
2350 case Intrinsic::vector_reduce_or:
2351 case Intrinsic::vector_reduce_xor:
2352 case Intrinsic::vector_reduce_smin:
2353 case Intrinsic::vector_reduce_smax:
2354 case Intrinsic::vector_reduce_umin:
2355 case Intrinsic::vector_reduce_umax:
2356 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2357 return C;
2358 break;
2361 // Support ConstantVector in case we have an Undef in the top.
2362 if (isa<ConstantVector>(Operands[0]) ||
2363 isa<ConstantDataVector>(Operands[0])) {
2364 auto *Op = cast<Constant>(Operands[0]);
2365 switch (IntrinsicID) {
2366 default: break;
2367 case Intrinsic::x86_sse_cvtss2si:
2368 case Intrinsic::x86_sse_cvtss2si64:
2369 case Intrinsic::x86_sse2_cvtsd2si:
2370 case Intrinsic::x86_sse2_cvtsd2si64:
2371 if (ConstantFP *FPOp =
2372 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2373 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2374 /*roundTowardZero=*/false, Ty,
2375 /*IsSigned*/true);
2376 break;
2377 case Intrinsic::x86_sse_cvttss2si:
2378 case Intrinsic::x86_sse_cvttss2si64:
2379 case Intrinsic::x86_sse2_cvttsd2si:
2380 case Intrinsic::x86_sse2_cvttsd2si64:
2381 if (ConstantFP *FPOp =
2382 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2383 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2384 /*roundTowardZero=*/true, Ty,
2385 /*IsSigned*/true);
2386 break;
2390 return nullptr;
2393 static Constant *ConstantFoldScalarCall2(StringRef Name,
2394 Intrinsic::ID IntrinsicID,
2395 Type *Ty,
2396 ArrayRef<Constant *> Operands,
2397 const TargetLibraryInfo *TLI,
2398 const CallBase *Call) {
2399 assert(Operands.size() == 2 && "Wrong number of operands.");
2401 if (Ty->isFloatingPointTy()) {
2402 // TODO: We should have undef handling for all of the FP intrinsics that
2403 // are attempted to be folded in this function.
2404 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2405 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2406 switch (IntrinsicID) {
2407 case Intrinsic::maxnum:
2408 case Intrinsic::minnum:
2409 case Intrinsic::maximum:
2410 case Intrinsic::minimum:
2411 // If one argument is undef, return the other argument.
2412 if (IsOp0Undef)
2413 return Operands[1];
2414 if (IsOp1Undef)
2415 return Operands[0];
2416 break;
2420 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2421 if (!Ty->isFloatingPointTy())
2422 return nullptr;
2423 APFloat Op1V = Op1->getValueAPF();
2425 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2426 if (Op2->getType() != Op1->getType())
2427 return nullptr;
2428 APFloat Op2V = Op2->getValueAPF();
2430 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2431 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2432 APFloat Res = Op1V;
2433 APFloat::opStatus St;
2434 switch (IntrinsicID) {
2435 default:
2436 return nullptr;
2437 case Intrinsic::experimental_constrained_fadd:
2438 St = Res.add(Op2V, RM);
2439 break;
2440 case Intrinsic::experimental_constrained_fsub:
2441 St = Res.subtract(Op2V, RM);
2442 break;
2443 case Intrinsic::experimental_constrained_fmul:
2444 St = Res.multiply(Op2V, RM);
2445 break;
2446 case Intrinsic::experimental_constrained_fdiv:
2447 St = Res.divide(Op2V, RM);
2448 break;
2449 case Intrinsic::experimental_constrained_frem:
2450 St = Res.mod(Op2V);
2451 break;
2453 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2454 St))
2455 return ConstantFP::get(Ty->getContext(), Res);
2456 return nullptr;
2459 switch (IntrinsicID) {
2460 default:
2461 break;
2462 case Intrinsic::copysign:
2463 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2464 case Intrinsic::minnum:
2465 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2466 case Intrinsic::maxnum:
2467 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2468 case Intrinsic::minimum:
2469 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2470 case Intrinsic::maximum:
2471 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2474 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2475 return nullptr;
2477 switch (IntrinsicID) {
2478 default:
2479 break;
2480 case Intrinsic::pow:
2481 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2482 case Intrinsic::amdgcn_fmul_legacy:
2483 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2484 // NaN or infinity, gives +0.0.
2485 if (Op1V.isZero() || Op2V.isZero())
2486 return ConstantFP::getNullValue(Ty);
2487 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2490 if (!TLI)
2491 return nullptr;
2493 LibFunc Func = NotLibFunc;
2494 TLI->getLibFunc(Name, Func);
2495 switch (Func) {
2496 default:
2497 break;
2498 case LibFunc_pow:
2499 case LibFunc_powf:
2500 case LibFunc_pow_finite:
2501 case LibFunc_powf_finite:
2502 if (TLI->has(Func))
2503 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2504 break;
2505 case LibFunc_fmod:
2506 case LibFunc_fmodf:
2507 if (TLI->has(Func)) {
2508 APFloat V = Op1->getValueAPF();
2509 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2510 return ConstantFP::get(Ty->getContext(), V);
2512 break;
2513 case LibFunc_remainder:
2514 case LibFunc_remainderf:
2515 if (TLI->has(Func)) {
2516 APFloat V = Op1->getValueAPF();
2517 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2518 return ConstantFP::get(Ty->getContext(), V);
2520 break;
2521 case LibFunc_atan2:
2522 case LibFunc_atan2f:
2523 case LibFunc_atan2_finite:
2524 case LibFunc_atan2f_finite:
2525 if (TLI->has(Func))
2526 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2527 break;
2529 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2530 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2531 return nullptr;
2532 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2533 return ConstantFP::get(
2534 Ty->getContext(),
2535 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2536 (int)Op2C->getZExtValue())));
2537 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2538 return ConstantFP::get(
2539 Ty->getContext(),
2540 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2541 (int)Op2C->getZExtValue())));
2542 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2543 return ConstantFP::get(
2544 Ty->getContext(),
2545 APFloat((double)std::pow(Op1V.convertToDouble(),
2546 (int)Op2C->getZExtValue())));
2548 if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2549 // FIXME: Should flush denorms depending on FP mode, but that's ignored
2550 // everywhere else.
2552 // scalbn is equivalent to ldexp with float radix 2
2553 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2554 APFloat::rmNearestTiesToEven);
2555 return ConstantFP::get(Ty->getContext(), Result);
2558 return nullptr;
2561 if (Operands[0]->getType()->isIntegerTy() &&
2562 Operands[1]->getType()->isIntegerTy()) {
2563 const APInt *C0, *C1;
2564 if (!getConstIntOrUndef(Operands[0], C0) ||
2565 !getConstIntOrUndef(Operands[1], C1))
2566 return nullptr;
2568 unsigned BitWidth = Ty->getScalarSizeInBits();
2569 switch (IntrinsicID) {
2570 default: break;
2571 case Intrinsic::smax:
2572 if (!C0 && !C1)
2573 return UndefValue::get(Ty);
2574 if (!C0 || !C1)
2575 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
2576 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
2578 case Intrinsic::smin:
2579 if (!C0 && !C1)
2580 return UndefValue::get(Ty);
2581 if (!C0 || !C1)
2582 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
2583 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
2585 case Intrinsic::umax:
2586 if (!C0 && !C1)
2587 return UndefValue::get(Ty);
2588 if (!C0 || !C1)
2589 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
2590 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
2592 case Intrinsic::umin:
2593 if (!C0 && !C1)
2594 return UndefValue::get(Ty);
2595 if (!C0 || !C1)
2596 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
2597 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
2599 case Intrinsic::usub_with_overflow:
2600 case Intrinsic::ssub_with_overflow:
2601 // X - undef -> { 0, false }
2602 // undef - X -> { 0, false }
2603 if (!C0 || !C1)
2604 return Constant::getNullValue(Ty);
2605 LLVM_FALLTHROUGH;
2606 case Intrinsic::uadd_with_overflow:
2607 case Intrinsic::sadd_with_overflow:
2608 // X + undef -> { -1, false }
2609 // undef + x -> { -1, false }
2610 if (!C0 || !C1) {
2611 return ConstantStruct::get(
2612 cast<StructType>(Ty),
2613 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2614 Constant::getNullValue(Ty->getStructElementType(1))});
2616 LLVM_FALLTHROUGH;
2617 case Intrinsic::smul_with_overflow:
2618 case Intrinsic::umul_with_overflow: {
2619 // undef * X -> { 0, false }
2620 // X * undef -> { 0, false }
2621 if (!C0 || !C1)
2622 return Constant::getNullValue(Ty);
2624 APInt Res;
2625 bool Overflow;
2626 switch (IntrinsicID) {
2627 default: llvm_unreachable("Invalid case");
2628 case Intrinsic::sadd_with_overflow:
2629 Res = C0->sadd_ov(*C1, Overflow);
2630 break;
2631 case Intrinsic::uadd_with_overflow:
2632 Res = C0->uadd_ov(*C1, Overflow);
2633 break;
2634 case Intrinsic::ssub_with_overflow:
2635 Res = C0->ssub_ov(*C1, Overflow);
2636 break;
2637 case Intrinsic::usub_with_overflow:
2638 Res = C0->usub_ov(*C1, Overflow);
2639 break;
2640 case Intrinsic::smul_with_overflow:
2641 Res = C0->smul_ov(*C1, Overflow);
2642 break;
2643 case Intrinsic::umul_with_overflow:
2644 Res = C0->umul_ov(*C1, Overflow);
2645 break;
2647 Constant *Ops[] = {
2648 ConstantInt::get(Ty->getContext(), Res),
2649 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2651 return ConstantStruct::get(cast<StructType>(Ty), Ops);
2653 case Intrinsic::uadd_sat:
2654 case Intrinsic::sadd_sat:
2655 if (!C0 && !C1)
2656 return UndefValue::get(Ty);
2657 if (!C0 || !C1)
2658 return Constant::getAllOnesValue(Ty);
2659 if (IntrinsicID == Intrinsic::uadd_sat)
2660 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2661 else
2662 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2663 case Intrinsic::usub_sat:
2664 case Intrinsic::ssub_sat:
2665 if (!C0 && !C1)
2666 return UndefValue::get(Ty);
2667 if (!C0 || !C1)
2668 return Constant::getNullValue(Ty);
2669 if (IntrinsicID == Intrinsic::usub_sat)
2670 return ConstantInt::get(Ty, C0->usub_sat(*C1));
2671 else
2672 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2673 case Intrinsic::cttz:
2674 case Intrinsic::ctlz:
2675 assert(C1 && "Must be constant int");
2677 // cttz(0, 1) and ctlz(0, 1) are undef.
2678 if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2679 return UndefValue::get(Ty);
2680 if (!C0)
2681 return Constant::getNullValue(Ty);
2682 if (IntrinsicID == Intrinsic::cttz)
2683 return ConstantInt::get(Ty, C0->countTrailingZeros());
2684 else
2685 return ConstantInt::get(Ty, C0->countLeadingZeros());
2687 case Intrinsic::abs:
2688 // Undef or minimum val operand with poison min --> undef
2689 assert(C1 && "Must be constant int");
2690 if (C1->isOneValue() && (!C0 || C0->isMinSignedValue()))
2691 return UndefValue::get(Ty);
2693 // Undef operand with no poison min --> 0 (sign bit must be clear)
2694 if (C1->isNullValue() && !C0)
2695 return Constant::getNullValue(Ty);
2697 return ConstantInt::get(Ty, C0->abs());
2700 return nullptr;
2703 // Support ConstantVector in case we have an Undef in the top.
2704 if ((isa<ConstantVector>(Operands[0]) ||
2705 isa<ConstantDataVector>(Operands[0])) &&
2706 // Check for default rounding mode.
2707 // FIXME: Support other rounding modes?
2708 isa<ConstantInt>(Operands[1]) &&
2709 cast<ConstantInt>(Operands[1])->getValue() == 4) {
2710 auto *Op = cast<Constant>(Operands[0]);
2711 switch (IntrinsicID) {
2712 default: break;
2713 case Intrinsic::x86_avx512_vcvtss2si32:
2714 case Intrinsic::x86_avx512_vcvtss2si64:
2715 case Intrinsic::x86_avx512_vcvtsd2si32:
2716 case Intrinsic::x86_avx512_vcvtsd2si64:
2717 if (ConstantFP *FPOp =
2718 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2719 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2720 /*roundTowardZero=*/false, Ty,
2721 /*IsSigned*/true);
2722 break;
2723 case Intrinsic::x86_avx512_vcvtss2usi32:
2724 case Intrinsic::x86_avx512_vcvtss2usi64:
2725 case Intrinsic::x86_avx512_vcvtsd2usi32:
2726 case Intrinsic::x86_avx512_vcvtsd2usi64:
2727 if (ConstantFP *FPOp =
2728 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2729 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2730 /*roundTowardZero=*/false, Ty,
2731 /*IsSigned*/false);
2732 break;
2733 case Intrinsic::x86_avx512_cvttss2si:
2734 case Intrinsic::x86_avx512_cvttss2si64:
2735 case Intrinsic::x86_avx512_cvttsd2si:
2736 case Intrinsic::x86_avx512_cvttsd2si64:
2737 if (ConstantFP *FPOp =
2738 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2739 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2740 /*roundTowardZero=*/true, Ty,
2741 /*IsSigned*/true);
2742 break;
2743 case Intrinsic::x86_avx512_cvttss2usi:
2744 case Intrinsic::x86_avx512_cvttss2usi64:
2745 case Intrinsic::x86_avx512_cvttsd2usi:
2746 case Intrinsic::x86_avx512_cvttsd2usi64:
2747 if (ConstantFP *FPOp =
2748 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2749 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2750 /*roundTowardZero=*/true, Ty,
2751 /*IsSigned*/false);
2752 break;
2755 return nullptr;
2758 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2759 const APFloat &S0,
2760 const APFloat &S1,
2761 const APFloat &S2) {
2762 unsigned ID;
2763 const fltSemantics &Sem = S0.getSemantics();
2764 APFloat MA(Sem), SC(Sem), TC(Sem);
2765 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2766 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2767 // S2 < 0
2768 ID = 5;
2769 SC = -S0;
2770 } else {
2771 ID = 4;
2772 SC = S0;
2774 MA = S2;
2775 TC = -S1;
2776 } else if (abs(S1) >= abs(S0)) {
2777 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2778 // S1 < 0
2779 ID = 3;
2780 TC = -S2;
2781 } else {
2782 ID = 2;
2783 TC = S2;
2785 MA = S1;
2786 SC = S0;
2787 } else {
2788 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2789 // S0 < 0
2790 ID = 1;
2791 SC = S2;
2792 } else {
2793 ID = 0;
2794 SC = -S2;
2796 MA = S0;
2797 TC = -S1;
2799 switch (IntrinsicID) {
2800 default:
2801 llvm_unreachable("unhandled amdgcn cube intrinsic");
2802 case Intrinsic::amdgcn_cubeid:
2803 return APFloat(Sem, ID);
2804 case Intrinsic::amdgcn_cubema:
2805 return MA + MA;
2806 case Intrinsic::amdgcn_cubesc:
2807 return SC;
2808 case Intrinsic::amdgcn_cubetc:
2809 return TC;
2813 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2814 Type *Ty) {
2815 const APInt *C0, *C1, *C2;
2816 if (!getConstIntOrUndef(Operands[0], C0) ||
2817 !getConstIntOrUndef(Operands[1], C1) ||
2818 !getConstIntOrUndef(Operands[2], C2))
2819 return nullptr;
2821 if (!C2)
2822 return UndefValue::get(Ty);
2824 APInt Val(32, 0);
2825 unsigned NumUndefBytes = 0;
2826 for (unsigned I = 0; I < 32; I += 8) {
2827 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2828 unsigned B = 0;
2830 if (Sel >= 13)
2831 B = 0xff;
2832 else if (Sel == 12)
2833 B = 0x00;
2834 else {
2835 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2836 if (!Src)
2837 ++NumUndefBytes;
2838 else if (Sel < 8)
2839 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2840 else
2841 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2844 Val.insertBits(B, I, 8);
2847 if (NumUndefBytes == 4)
2848 return UndefValue::get(Ty);
2850 return ConstantInt::get(Ty, Val);
2853 static Constant *ConstantFoldScalarCall3(StringRef Name,
2854 Intrinsic::ID IntrinsicID,
2855 Type *Ty,
2856 ArrayRef<Constant *> Operands,
2857 const TargetLibraryInfo *TLI,
2858 const CallBase *Call) {
2859 assert(Operands.size() == 3 && "Wrong number of operands.");
2861 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2862 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2863 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2864 const APFloat &C1 = Op1->getValueAPF();
2865 const APFloat &C2 = Op2->getValueAPF();
2866 const APFloat &C3 = Op3->getValueAPF();
2868 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2869 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2870 APFloat Res = C1;
2871 APFloat::opStatus St;
2872 switch (IntrinsicID) {
2873 default:
2874 return nullptr;
2875 case Intrinsic::experimental_constrained_fma:
2876 case Intrinsic::experimental_constrained_fmuladd:
2877 St = Res.fusedMultiplyAdd(C2, C3, RM);
2878 break;
2880 if (mayFoldConstrained(
2881 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2882 return ConstantFP::get(Ty->getContext(), Res);
2883 return nullptr;
2886 switch (IntrinsicID) {
2887 default: break;
2888 case Intrinsic::amdgcn_fma_legacy: {
2889 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2890 // NaN or infinity, gives +0.0.
2891 if (C1.isZero() || C2.isZero()) {
2892 // It's tempting to just return C3 here, but that would give the
2893 // wrong result if C3 was -0.0.
2894 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2896 LLVM_FALLTHROUGH;
2898 case Intrinsic::fma:
2899 case Intrinsic::fmuladd: {
2900 APFloat V = C1;
2901 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2902 return ConstantFP::get(Ty->getContext(), V);
2904 case Intrinsic::amdgcn_cubeid:
2905 case Intrinsic::amdgcn_cubema:
2906 case Intrinsic::amdgcn_cubesc:
2907 case Intrinsic::amdgcn_cubetc: {
2908 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2909 return ConstantFP::get(Ty->getContext(), V);
2916 if (IntrinsicID == Intrinsic::smul_fix ||
2917 IntrinsicID == Intrinsic::smul_fix_sat) {
2918 // poison * C -> poison
2919 // C * poison -> poison
2920 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2921 return PoisonValue::get(Ty);
2923 const APInt *C0, *C1;
2924 if (!getConstIntOrUndef(Operands[0], C0) ||
2925 !getConstIntOrUndef(Operands[1], C1))
2926 return nullptr;
2928 // undef * C -> 0
2929 // C * undef -> 0
2930 if (!C0 || !C1)
2931 return Constant::getNullValue(Ty);
2933 // This code performs rounding towards negative infinity in case the result
2934 // cannot be represented exactly for the given scale. Targets that do care
2935 // about rounding should use a target hook for specifying how rounding
2936 // should be done, and provide their own folding to be consistent with
2937 // rounding. This is the same approach as used by
2938 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2939 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2940 unsigned Width = C0->getBitWidth();
2941 assert(Scale < Width && "Illegal scale.");
2942 unsigned ExtendedWidth = Width * 2;
2943 APInt Product = (C0->sextOrSelf(ExtendedWidth) *
2944 C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
2945 if (IntrinsicID == Intrinsic::smul_fix_sat) {
2946 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2947 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2948 Product = APIntOps::smin(Product, Max);
2949 Product = APIntOps::smax(Product, Min);
2951 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2954 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2955 const APInt *C0, *C1, *C2;
2956 if (!getConstIntOrUndef(Operands[0], C0) ||
2957 !getConstIntOrUndef(Operands[1], C1) ||
2958 !getConstIntOrUndef(Operands[2], C2))
2959 return nullptr;
2961 bool IsRight = IntrinsicID == Intrinsic::fshr;
2962 if (!C2)
2963 return Operands[IsRight ? 1 : 0];
2964 if (!C0 && !C1)
2965 return UndefValue::get(Ty);
2967 // The shift amount is interpreted as modulo the bitwidth. If the shift
2968 // amount is effectively 0, avoid UB due to oversized inverse shift below.
2969 unsigned BitWidth = C2->getBitWidth();
2970 unsigned ShAmt = C2->urem(BitWidth);
2971 if (!ShAmt)
2972 return Operands[IsRight ? 1 : 0];
2974 // (C0 << ShlAmt) | (C1 >> LshrAmt)
2975 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2976 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2977 if (!C0)
2978 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2979 if (!C1)
2980 return ConstantInt::get(Ty, C0->shl(ShlAmt));
2981 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2984 if (IntrinsicID == Intrinsic::amdgcn_perm)
2985 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
2987 return nullptr;
2990 static Constant *ConstantFoldScalarCall(StringRef Name,
2991 Intrinsic::ID IntrinsicID,
2992 Type *Ty,
2993 ArrayRef<Constant *> Operands,
2994 const TargetLibraryInfo *TLI,
2995 const CallBase *Call) {
2996 if (Operands.size() == 1)
2997 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2999 if (Operands.size() == 2)
3000 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3002 if (Operands.size() == 3)
3003 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3005 return nullptr;
3008 static Constant *ConstantFoldFixedVectorCall(
3009 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3010 ArrayRef<Constant *> Operands, const DataLayout &DL,
3011 const TargetLibraryInfo *TLI, const CallBase *Call) {
3012 SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3013 SmallVector<Constant *, 4> Lane(Operands.size());
3014 Type *Ty = FVTy->getElementType();
3016 switch (IntrinsicID) {
3017 case Intrinsic::masked_load: {
3018 auto *SrcPtr = Operands[0];
3019 auto *Mask = Operands[2];
3020 auto *Passthru = Operands[3];
3022 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3024 SmallVector<Constant *, 32> NewElements;
3025 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3026 auto *MaskElt = Mask->getAggregateElement(I);
3027 if (!MaskElt)
3028 break;
3029 auto *PassthruElt = Passthru->getAggregateElement(I);
3030 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3031 if (isa<UndefValue>(MaskElt)) {
3032 if (PassthruElt)
3033 NewElements.push_back(PassthruElt);
3034 else if (VecElt)
3035 NewElements.push_back(VecElt);
3036 else
3037 return nullptr;
3039 if (MaskElt->isNullValue()) {
3040 if (!PassthruElt)
3041 return nullptr;
3042 NewElements.push_back(PassthruElt);
3043 } else if (MaskElt->isOneValue()) {
3044 if (!VecElt)
3045 return nullptr;
3046 NewElements.push_back(VecElt);
3047 } else {
3048 return nullptr;
3051 if (NewElements.size() != FVTy->getNumElements())
3052 return nullptr;
3053 return ConstantVector::get(NewElements);
3055 case Intrinsic::arm_mve_vctp8:
3056 case Intrinsic::arm_mve_vctp16:
3057 case Intrinsic::arm_mve_vctp32:
3058 case Intrinsic::arm_mve_vctp64: {
3059 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3060 unsigned Lanes = FVTy->getNumElements();
3061 uint64_t Limit = Op->getZExtValue();
3062 // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
3063 // sure we get the limit right in that case and set all relevant lanes.
3064 if (IntrinsicID == Intrinsic::arm_mve_vctp64)
3065 Limit *= 2;
3067 SmallVector<Constant *, 16> NCs;
3068 for (unsigned i = 0; i < Lanes; i++) {
3069 if (i < Limit)
3070 NCs.push_back(ConstantInt::getTrue(Ty));
3071 else
3072 NCs.push_back(ConstantInt::getFalse(Ty));
3074 return ConstantVector::get(NCs);
3076 break;
3078 case Intrinsic::get_active_lane_mask: {
3079 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3080 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3081 if (Op0 && Op1) {
3082 unsigned Lanes = FVTy->getNumElements();
3083 uint64_t Base = Op0->getZExtValue();
3084 uint64_t Limit = Op1->getZExtValue();
3086 SmallVector<Constant *, 16> NCs;
3087 for (unsigned i = 0; i < Lanes; i++) {
3088 if (Base + i < Limit)
3089 NCs.push_back(ConstantInt::getTrue(Ty));
3090 else
3091 NCs.push_back(ConstantInt::getFalse(Ty));
3093 return ConstantVector::get(NCs);
3095 break;
3097 default:
3098 break;
3101 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3102 // Gather a column of constants.
3103 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3104 // Some intrinsics use a scalar type for certain arguments.
3105 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
3106 Lane[J] = Operands[J];
3107 continue;
3110 Constant *Agg = Operands[J]->getAggregateElement(I);
3111 if (!Agg)
3112 return nullptr;
3114 Lane[J] = Agg;
3117 // Use the regular scalar folding to simplify this column.
3118 Constant *Folded =
3119 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3120 if (!Folded)
3121 return nullptr;
3122 Result[I] = Folded;
3125 return ConstantVector::get(Result);
3128 static Constant *ConstantFoldScalableVectorCall(
3129 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3130 ArrayRef<Constant *> Operands, const DataLayout &DL,
3131 const TargetLibraryInfo *TLI, const CallBase *Call) {
3132 switch (IntrinsicID) {
3133 case Intrinsic::aarch64_sve_convert_from_svbool: {
3134 auto *Src = dyn_cast<Constant>(Operands[0]);
3135 if (!Src || !Src->isNullValue())
3136 break;
3138 return ConstantInt::getFalse(SVTy);
3140 default:
3141 break;
3143 return nullptr;
3146 } // end anonymous namespace
3148 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3149 ArrayRef<Constant *> Operands,
3150 const TargetLibraryInfo *TLI) {
3151 if (Call->isNoBuiltin())
3152 return nullptr;
3153 if (!F->hasName())
3154 return nullptr;
3156 // If this is not an intrinsic and not recognized as a library call, bail out.
3157 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3158 if (!TLI)
3159 return nullptr;
3160 LibFunc LibF;
3161 if (!TLI->getLibFunc(*F, LibF))
3162 return nullptr;
3165 StringRef Name = F->getName();
3166 Type *Ty = F->getReturnType();
3167 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3168 return ConstantFoldFixedVectorCall(
3169 Name, F->getIntrinsicID(), FVTy, Operands,
3170 F->getParent()->getDataLayout(), TLI, Call);
3172 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3173 return ConstantFoldScalableVectorCall(
3174 Name, F->getIntrinsicID(), SVTy, Operands,
3175 F->getParent()->getDataLayout(), TLI, Call);
3177 // TODO: If this is a library function, we already discovered that above,
3178 // so we should pass the LibFunc, not the name (and it might be better
3179 // still to separate intrinsic handling from libcalls).
3180 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3181 Call);
3184 bool llvm::isMathLibCallNoop(const CallBase *Call,
3185 const TargetLibraryInfo *TLI) {
3186 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3187 // (and to some extent ConstantFoldScalarCall).
3188 if (Call->isNoBuiltin() || Call->isStrictFP())
3189 return false;
3190 Function *F = Call->getCalledFunction();
3191 if (!F)
3192 return false;
3194 LibFunc Func;
3195 if (!TLI || !TLI->getLibFunc(*F, Func))
3196 return false;
3198 if (Call->getNumArgOperands() == 1) {
3199 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3200 const APFloat &Op = OpC->getValueAPF();
3201 switch (Func) {
3202 case LibFunc_logl:
3203 case LibFunc_log:
3204 case LibFunc_logf:
3205 case LibFunc_log2l:
3206 case LibFunc_log2:
3207 case LibFunc_log2f:
3208 case LibFunc_log10l:
3209 case LibFunc_log10:
3210 case LibFunc_log10f:
3211 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3213 case LibFunc_expl:
3214 case LibFunc_exp:
3215 case LibFunc_expf:
3216 // FIXME: These boundaries are slightly conservative.
3217 if (OpC->getType()->isDoubleTy())
3218 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3219 if (OpC->getType()->isFloatTy())
3220 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3221 break;
3223 case LibFunc_exp2l:
3224 case LibFunc_exp2:
3225 case LibFunc_exp2f:
3226 // FIXME: These boundaries are slightly conservative.
3227 if (OpC->getType()->isDoubleTy())
3228 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3229 if (OpC->getType()->isFloatTy())
3230 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3231 break;
3233 case LibFunc_sinl:
3234 case LibFunc_sin:
3235 case LibFunc_sinf:
3236 case LibFunc_cosl:
3237 case LibFunc_cos:
3238 case LibFunc_cosf:
3239 return !Op.isInfinity();
3241 case LibFunc_tanl:
3242 case LibFunc_tan:
3243 case LibFunc_tanf: {
3244 // FIXME: Stop using the host math library.
3245 // FIXME: The computation isn't done in the right precision.
3246 Type *Ty = OpC->getType();
3247 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3248 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3249 break;
3252 case LibFunc_asinl:
3253 case LibFunc_asin:
3254 case LibFunc_asinf:
3255 case LibFunc_acosl:
3256 case LibFunc_acos:
3257 case LibFunc_acosf:
3258 return !(Op < APFloat(Op.getSemantics(), "-1") ||
3259 Op > APFloat(Op.getSemantics(), "1"));
3261 case LibFunc_sinh:
3262 case LibFunc_cosh:
3263 case LibFunc_sinhf:
3264 case LibFunc_coshf:
3265 case LibFunc_sinhl:
3266 case LibFunc_coshl:
3267 // FIXME: These boundaries are slightly conservative.
3268 if (OpC->getType()->isDoubleTy())
3269 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3270 if (OpC->getType()->isFloatTy())
3271 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3272 break;
3274 case LibFunc_sqrtl:
3275 case LibFunc_sqrt:
3276 case LibFunc_sqrtf:
3277 return Op.isNaN() || Op.isZero() || !Op.isNegative();
3279 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3280 // maybe others?
3281 default:
3282 break;
3287 if (Call->getNumArgOperands() == 2) {
3288 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3289 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3290 if (Op0C && Op1C) {
3291 const APFloat &Op0 = Op0C->getValueAPF();
3292 const APFloat &Op1 = Op1C->getValueAPF();
3294 switch (Func) {
3295 case LibFunc_powl:
3296 case LibFunc_pow:
3297 case LibFunc_powf: {
3298 // FIXME: Stop using the host math library.
3299 // FIXME: The computation isn't done in the right precision.
3300 Type *Ty = Op0C->getType();
3301 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3302 if (Ty == Op1C->getType())
3303 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3305 break;
3308 case LibFunc_fmodl:
3309 case LibFunc_fmod:
3310 case LibFunc_fmodf:
3311 case LibFunc_remainderl:
3312 case LibFunc_remainder:
3313 case LibFunc_remainderf:
3314 return Op0.isNaN() || Op1.isNaN() ||
3315 (!Op0.isInfinity() && !Op1.isZero());
3317 default:
3318 break;
3323 return false;
3326 void TargetFolder::anchor() {}