1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PassManager.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
41 #define DEBUG_TYPE "lcg"
43 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node
&TargetN
,
45 EdgeIndexMap
.insert({&TargetN
, Edges
.size()});
46 Edges
.emplace_back(TargetN
, EK
);
49 void LazyCallGraph::EdgeSequence::setEdgeKind(Node
&TargetN
, Edge::Kind EK
) {
50 Edges
[EdgeIndexMap
.find(&TargetN
)->second
].setKind(EK
);
53 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node
&TargetN
) {
54 auto IndexMapI
= EdgeIndexMap
.find(&TargetN
);
55 if (IndexMapI
== EdgeIndexMap
.end())
58 Edges
[IndexMapI
->second
] = Edge();
59 EdgeIndexMap
.erase(IndexMapI
);
63 static void addEdge(SmallVectorImpl
<LazyCallGraph::Edge
> &Edges
,
64 DenseMap
<LazyCallGraph::Node
*, int> &EdgeIndexMap
,
65 LazyCallGraph::Node
&N
, LazyCallGraph::Edge::Kind EK
) {
66 if (!EdgeIndexMap
.insert({&N
, Edges
.size()}).second
)
69 LLVM_DEBUG(dbgs() << " Added callable function: " << N
.getName() << "\n");
70 Edges
.emplace_back(LazyCallGraph::Edge(N
, EK
));
73 LazyCallGraph::EdgeSequence
&LazyCallGraph::Node::populateSlow() {
74 assert(!Edges
&& "Must not have already populated the edges for this node!");
76 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
77 << "' to the graph.\n");
79 Edges
= EdgeSequence();
81 SmallVector
<Constant
*, 16> Worklist
;
82 SmallPtrSet
<Function
*, 4> Callees
;
83 SmallPtrSet
<Constant
*, 16> Visited
;
85 // Find all the potential call graph edges in this function. We track both
86 // actual call edges and indirect references to functions. The direct calls
87 // are trivially added, but to accumulate the latter we walk the instructions
88 // and add every operand which is a constant to the worklist to process
91 // Note that we consider *any* function with a definition to be a viable
92 // edge. Even if the function's definition is subject to replacement by
93 // some other module (say, a weak definition) there may still be
94 // optimizations which essentially speculate based on the definition and
95 // a way to check that the specific definition is in fact the one being
96 // used. For example, this could be done by moving the weak definition to
97 // a strong (internal) definition and making the weak definition be an
98 // alias. Then a test of the address of the weak function against the new
99 // strong definition's address would be an effective way to determine the
100 // safety of optimizing a direct call edge.
101 for (BasicBlock
&BB
: *F
)
102 for (Instruction
&I
: BB
) {
103 if (auto *CB
= dyn_cast
<CallBase
>(&I
))
104 if (Function
*Callee
= CB
->getCalledFunction())
105 if (!Callee
->isDeclaration())
106 if (Callees
.insert(Callee
).second
) {
107 Visited
.insert(Callee
);
108 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*Callee
),
109 LazyCallGraph::Edge::Call
);
112 for (Value
*Op
: I
.operand_values())
113 if (Constant
*C
= dyn_cast
<Constant
>(Op
))
114 if (Visited
.insert(C
).second
)
115 Worklist
.push_back(C
);
118 // We've collected all the constant (and thus potentially function or
119 // function containing) operands to all of the instructions in the function.
120 // Process them (recursively) collecting every function found.
121 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
122 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(F
),
123 LazyCallGraph::Edge::Ref
);
126 // Add implicit reference edges to any defined libcall functions (if we
127 // haven't found an explicit edge).
128 for (auto *F
: G
->LibFunctions
)
129 if (!Visited
.count(F
))
130 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*F
),
131 LazyCallGraph::Edge::Ref
);
136 void LazyCallGraph::Node::replaceFunction(Function
&NewF
) {
137 assert(F
!= &NewF
&& "Must not replace a function with itself!");
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
142 LLVM_DUMP_METHOD
void LazyCallGraph::Node::dump() const {
143 dbgs() << *this << '\n';
147 static bool isKnownLibFunction(Function
&F
, TargetLibraryInfo
&TLI
) {
150 // Either this is a normal library function or a "vectorizable"
151 // function. Not using the VFDatabase here because this query
152 // is related only to libraries handled via the TLI.
153 return TLI
.getLibFunc(F
, LF
) ||
154 TLI
.isKnownVectorFunctionInLibrary(F
.getName());
157 LazyCallGraph::LazyCallGraph(
158 Module
&M
, function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
159 LLVM_DEBUG(dbgs() << "Building CG for module: " << M
.getModuleIdentifier()
161 for (Function
&F
: M
) {
162 if (F
.isDeclaration())
164 // If this function is a known lib function to LLVM then we want to
165 // synthesize reference edges to it to model the fact that LLVM can turn
166 // arbitrary code into a library function call.
167 if (isKnownLibFunction(F
, GetTLI(F
)))
168 LibFunctions
.insert(&F
);
170 if (F
.hasLocalLinkage())
173 // External linkage defined functions have edges to them from other
175 LLVM_DEBUG(dbgs() << " Adding '" << F
.getName()
176 << "' to entry set of the graph.\n");
177 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
), Edge::Ref
);
180 // Externally visible aliases of internal functions are also viable entry
181 // edges to the module.
182 for (auto &A
: M
.aliases()) {
183 if (A
.hasLocalLinkage())
185 if (Function
* F
= dyn_cast
<Function
>(A
.getAliasee())) {
186 LLVM_DEBUG(dbgs() << " Adding '" << F
->getName()
187 << "' with alias '" << A
.getName()
188 << "' to entry set of the graph.\n");
189 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(*F
), Edge::Ref
);
193 // Now add entry nodes for functions reachable via initializers to globals.
194 SmallVector
<Constant
*, 16> Worklist
;
195 SmallPtrSet
<Constant
*, 16> Visited
;
196 for (GlobalVariable
&GV
: M
.globals())
197 if (GV
.hasInitializer())
198 if (Visited
.insert(GV
.getInitializer()).second
)
199 Worklist
.push_back(GV
.getInitializer());
202 dbgs() << " Adding functions referenced by global initializers to the "
204 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
205 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
),
206 LazyCallGraph::Edge::Ref
);
210 LazyCallGraph::LazyCallGraph(LazyCallGraph
&&G
)
211 : BPA(std::move(G
.BPA
)), NodeMap(std::move(G
.NodeMap
)),
212 EntryEdges(std::move(G
.EntryEdges
)), SCCBPA(std::move(G
.SCCBPA
)),
213 SCCMap(std::move(G
.SCCMap
)),
214 LibFunctions(std::move(G
.LibFunctions
)) {
218 bool LazyCallGraph::invalidate(Module
&, const PreservedAnalyses
&PA
,
219 ModuleAnalysisManager::Invalidator
&) {
220 // Check whether the analysis, all analyses on functions, or the function's
221 // CFG have been preserved.
222 auto PAC
= PA
.getChecker
<llvm::LazyCallGraphAnalysis
>();
223 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Module
>>() ||
224 PAC
.preservedSet
<CFGAnalyses
>());
227 LazyCallGraph
&LazyCallGraph::operator=(LazyCallGraph
&&G
) {
228 BPA
= std::move(G
.BPA
);
229 NodeMap
= std::move(G
.NodeMap
);
230 EntryEdges
= std::move(G
.EntryEdges
);
231 SCCBPA
= std::move(G
.SCCBPA
);
232 SCCMap
= std::move(G
.SCCMap
);
233 LibFunctions
= std::move(G
.LibFunctions
);
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD
void LazyCallGraph::SCC::dump() const {
240 dbgs() << *this << '\n';
244 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
245 void LazyCallGraph::SCC::verify() {
246 assert(OuterRefSCC
&& "Can't have a null RefSCC!");
247 assert(!Nodes
.empty() && "Can't have an empty SCC!");
249 for (Node
*N
: Nodes
) {
250 assert(N
&& "Can't have a null node!");
251 assert(OuterRefSCC
->G
->lookupSCC(*N
) == this &&
252 "Node does not map to this SCC!");
253 assert(N
->DFSNumber
== -1 &&
254 "Must set DFS numbers to -1 when adding a node to an SCC!");
255 assert(N
->LowLink
== -1 &&
256 "Must set low link to -1 when adding a node to an SCC!");
258 assert(E
.getNode().isPopulated() && "Can't have an unpopulated node!");
260 #ifdef EXPENSIVE_CHECKS
261 // Verify that all nodes in this SCC can reach all other nodes.
262 SmallVector
<Node
*, 4> Worklist
;
263 SmallPtrSet
<Node
*, 4> Visited
;
264 Worklist
.push_back(N
);
265 while (!Worklist
.empty()) {
266 Node
*VisitingNode
= Worklist
.pop_back_val();
267 if (!Visited
.insert(VisitingNode
).second
)
269 for (Edge
&E
: (*VisitingNode
)->calls())
270 Worklist
.push_back(&E
.getNode());
272 for (Node
*NodeToVisit
: Nodes
) {
273 assert(Visited
.contains(NodeToVisit
) &&
274 "Cannot reach all nodes within SCC");
281 bool LazyCallGraph::SCC::isParentOf(const SCC
&C
) const {
285 for (Node
&N
: *this)
286 for (Edge
&E
: N
->calls())
287 if (OuterRefSCC
->G
->lookupSCC(E
.getNode()) == &C
)
294 bool LazyCallGraph::SCC::isAncestorOf(const SCC
&TargetC
) const {
295 if (this == &TargetC
)
298 LazyCallGraph
&G
= *OuterRefSCC
->G
;
300 // Start with this SCC.
301 SmallPtrSet
<const SCC
*, 16> Visited
= {this};
302 SmallVector
<const SCC
*, 16> Worklist
= {this};
304 // Walk down the graph until we run out of edges or find a path to TargetC.
306 const SCC
&C
= *Worklist
.pop_back_val();
308 for (Edge
&E
: N
->calls()) {
309 SCC
*CalleeC
= G
.lookupSCC(E
.getNode());
313 // If the callee's SCC is the TargetC, we're done.
314 if (CalleeC
== &TargetC
)
317 // If this is the first time we've reached this SCC, put it on the
318 // worklist to recurse through.
319 if (Visited
.insert(CalleeC
).second
)
320 Worklist
.push_back(CalleeC
);
322 } while (!Worklist
.empty());
328 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph
&G
) : G(&G
) {}
330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
331 LLVM_DUMP_METHOD
void LazyCallGraph::RefSCC::dump() const {
332 dbgs() << *this << '\n';
336 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
337 void LazyCallGraph::RefSCC::verify() {
338 assert(G
&& "Can't have a null graph!");
339 assert(!SCCs
.empty() && "Can't have an empty SCC!");
341 // Verify basic properties of the SCCs.
342 SmallPtrSet
<SCC
*, 4> SCCSet
;
343 for (SCC
*C
: SCCs
) {
344 assert(C
&& "Can't have a null SCC!");
346 assert(&C
->getOuterRefSCC() == this &&
347 "SCC doesn't think it is inside this RefSCC!");
348 bool Inserted
= SCCSet
.insert(C
).second
;
349 assert(Inserted
&& "Found a duplicate SCC!");
350 auto IndexIt
= SCCIndices
.find(C
);
351 assert(IndexIt
!= SCCIndices
.end() &&
352 "Found an SCC that doesn't have an index!");
355 // Check that our indices map correctly.
356 for (auto &SCCIndexPair
: SCCIndices
) {
357 SCC
*C
= SCCIndexPair
.first
;
358 int i
= SCCIndexPair
.second
;
359 assert(C
&& "Can't have a null SCC in the indices!");
360 assert(SCCSet
.count(C
) && "Found an index for an SCC not in the RefSCC!");
361 assert(SCCs
[i
] == C
&& "Index doesn't point to SCC!");
364 // Check that the SCCs are in fact in post-order.
365 for (int i
= 0, Size
= SCCs
.size(); i
< Size
; ++i
) {
366 SCC
&SourceSCC
= *SCCs
[i
];
367 for (Node
&N
: SourceSCC
)
371 SCC
&TargetSCC
= *G
->lookupSCC(E
.getNode());
372 if (&TargetSCC
.getOuterRefSCC() == this) {
373 assert(SCCIndices
.find(&TargetSCC
)->second
<= i
&&
374 "Edge between SCCs violates post-order relationship.");
380 #ifdef EXPENSIVE_CHECKS
381 // Verify that all nodes in this RefSCC can reach all other nodes.
382 SmallVector
<Node
*> Nodes
;
383 for (SCC
*C
: SCCs
) {
387 for (Node
*N
: Nodes
) {
388 SmallVector
<Node
*, 4> Worklist
;
389 SmallPtrSet
<Node
*, 4> Visited
;
390 Worklist
.push_back(N
);
391 while (!Worklist
.empty()) {
392 Node
*VisitingNode
= Worklist
.pop_back_val();
393 if (!Visited
.insert(VisitingNode
).second
)
395 for (Edge
&E
: **VisitingNode
)
396 Worklist
.push_back(&E
.getNode());
398 for (Node
*NodeToVisit
: Nodes
) {
399 assert(Visited
.contains(NodeToVisit
) &&
400 "Cannot reach all nodes within RefSCC");
407 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC
&RC
) const {
411 // Search all edges to see if this is a parent.
415 if (G
->lookupRefSCC(E
.getNode()) == &RC
)
421 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC
&RC
) const {
425 // For each descendant of this RefSCC, see if one of its children is the
426 // argument. If not, add that descendant to the worklist and continue
428 SmallVector
<const RefSCC
*, 4> Worklist
;
429 SmallPtrSet
<const RefSCC
*, 4> Visited
;
430 Worklist
.push_back(this);
431 Visited
.insert(this);
433 const RefSCC
&DescendantRC
= *Worklist
.pop_back_val();
434 for (SCC
&C
: DescendantRC
)
437 auto *ChildRC
= G
->lookupRefSCC(E
.getNode());
440 if (!ChildRC
|| !Visited
.insert(ChildRC
).second
)
442 Worklist
.push_back(ChildRC
);
444 } while (!Worklist
.empty());
449 /// Generic helper that updates a postorder sequence of SCCs for a potentially
450 /// cycle-introducing edge insertion.
452 /// A postorder sequence of SCCs of a directed graph has one fundamental
453 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
454 /// all edges in the SCC DAG point to prior SCCs in the sequence.
456 /// This routine both updates a postorder sequence and uses that sequence to
457 /// compute the set of SCCs connected into a cycle. It should only be called to
458 /// insert a "downward" edge which will require changing the sequence to
459 /// restore it to a postorder.
461 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
462 /// sequence, all of the SCCs which may be impacted are in the closed range of
463 /// those two within the postorder sequence. The algorithm used here to restore
464 /// the state is as follows:
466 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
467 /// source SCC consisting of just the source SCC. Then scan toward the
468 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
469 /// in the set, add it to the set. Otherwise, the source SCC is not
470 /// a successor, move it in the postorder sequence to immediately before
471 /// the source SCC, shifting the source SCC and all SCCs in the set one
472 /// position toward the target SCC. Stop scanning after processing the
474 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
475 /// and thus the new edge will flow toward the start, we are done.
476 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
477 /// SCC between the source and the target, and add them to the set of
478 /// connected SCCs, then recurse through them. Once a complete set of the
479 /// SCCs the target connects to is known, hoist the remaining SCCs between
480 /// the source and the target to be above the target. Note that there is no
481 /// need to process the source SCC, it is already known to connect.
482 /// 4) At this point, all of the SCCs in the closed range between the source
483 /// SCC and the target SCC in the postorder sequence are connected,
484 /// including the target SCC and the source SCC. Inserting the edge from
485 /// the source SCC to the target SCC will form a cycle out of precisely
486 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
489 /// This process has various important properties:
490 /// - Only mutates the SCCs when adding the edge actually changes the SCC
492 /// - Never mutates SCCs which are unaffected by the change.
493 /// - Updates the postorder sequence to correctly satisfy the postorder
494 /// constraint after the edge is inserted.
495 /// - Only reorders SCCs in the closed postorder sequence from the source to
496 /// the target, so easy to bound how much has changed even in the ordering.
497 /// - Big-O is the number of edges in the closed postorder range of SCCs from
498 /// source to target.
500 /// This helper routine, in addition to updating the postorder sequence itself
501 /// will also update a map from SCCs to indices within that sequence.
503 /// The sequence and the map must operate on pointers to the SCC type.
505 /// Two callbacks must be provided. The first computes the subset of SCCs in
506 /// the postorder closed range from the source to the target which connect to
507 /// the source SCC via some (transitive) set of edges. The second computes the
508 /// subset of the same range which the target SCC connects to via some
509 /// (transitive) set of edges. Both callbacks should populate the set argument
511 template <typename SCCT
, typename PostorderSequenceT
, typename SCCIndexMapT
,
512 typename ComputeSourceConnectedSetCallableT
,
513 typename ComputeTargetConnectedSetCallableT
>
514 static iterator_range
<typename
PostorderSequenceT::iterator
>
515 updatePostorderSequenceForEdgeInsertion(
516 SCCT
&SourceSCC
, SCCT
&TargetSCC
, PostorderSequenceT
&SCCs
,
517 SCCIndexMapT
&SCCIndices
,
518 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet
,
519 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet
) {
520 int SourceIdx
= SCCIndices
[&SourceSCC
];
521 int TargetIdx
= SCCIndices
[&TargetSCC
];
522 assert(SourceIdx
< TargetIdx
&& "Cannot have equal indices here!");
524 SmallPtrSet
<SCCT
*, 4> ConnectedSet
;
526 // Compute the SCCs which (transitively) reach the source.
527 ComputeSourceConnectedSet(ConnectedSet
);
529 // Partition the SCCs in this part of the port-order sequence so only SCCs
530 // connecting to the source remain between it and the target. This is
531 // a benign partition as it preserves postorder.
532 auto SourceI
= std::stable_partition(
533 SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
+ 1,
534 [&ConnectedSet
](SCCT
*C
) { return !ConnectedSet
.count(C
); });
535 for (int i
= SourceIdx
, e
= TargetIdx
+ 1; i
< e
; ++i
)
536 SCCIndices
.find(SCCs
[i
])->second
= i
;
538 // If the target doesn't connect to the source, then we've corrected the
539 // post-order and there are no cycles formed.
540 if (!ConnectedSet
.count(&TargetSCC
)) {
541 assert(SourceI
> (SCCs
.begin() + SourceIdx
) &&
542 "Must have moved the source to fix the post-order.");
543 assert(*std::prev(SourceI
) == &TargetSCC
&&
544 "Last SCC to move should have bene the target.");
546 // Return an empty range at the target SCC indicating there is nothing to
548 return make_range(std::prev(SourceI
), std::prev(SourceI
));
551 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
552 "Should not have moved target if connected!");
553 SourceIdx
= SourceI
- SCCs
.begin();
554 assert(SCCs
[SourceIdx
] == &SourceSCC
&&
555 "Bad updated index computation for the source SCC!");
558 // See whether there are any remaining intervening SCCs between the source
559 // and target. If so we need to make sure they all are reachable form the
561 if (SourceIdx
+ 1 < TargetIdx
) {
562 ConnectedSet
.clear();
563 ComputeTargetConnectedSet(ConnectedSet
);
565 // Partition SCCs so that only SCCs reached from the target remain between
566 // the source and the target. This preserves postorder.
567 auto TargetI
= std::stable_partition(
568 SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1,
569 [&ConnectedSet
](SCCT
*C
) { return ConnectedSet
.count(C
); });
570 for (int i
= SourceIdx
+ 1, e
= TargetIdx
+ 1; i
< e
; ++i
)
571 SCCIndices
.find(SCCs
[i
])->second
= i
;
572 TargetIdx
= std::prev(TargetI
) - SCCs
.begin();
573 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
574 "Should always end with the target!");
577 // At this point, we know that connecting source to target forms a cycle
578 // because target connects back to source, and we know that all of the SCCs
579 // between the source and target in the postorder sequence participate in that
581 return make_range(SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
);
585 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
586 Node
&SourceN
, Node
&TargetN
,
587 function_ref
<void(ArrayRef
<SCC
*> MergeSCCs
)> MergeCB
) {
588 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
589 SmallVector
<SCC
*, 1> DeletedSCCs
;
591 #ifdef EXPENSIVE_CHECKS
593 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
596 SCC
&SourceSCC
= *G
->lookupSCC(SourceN
);
597 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
599 // If the two nodes are already part of the same SCC, we're also done as
600 // we've just added more connectivity.
601 if (&SourceSCC
== &TargetSCC
) {
602 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
603 return false; // No new cycle.
606 // At this point we leverage the postorder list of SCCs to detect when the
607 // insertion of an edge changes the SCC structure in any way.
609 // First and foremost, we can eliminate the need for any changes when the
610 // edge is toward the beginning of the postorder sequence because all edges
611 // flow in that direction already. Thus adding a new one cannot form a cycle.
612 int SourceIdx
= SCCIndices
[&SourceSCC
];
613 int TargetIdx
= SCCIndices
[&TargetSCC
];
614 if (TargetIdx
< SourceIdx
) {
615 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
616 return false; // No new cycle.
619 // Compute the SCCs which (transitively) reach the source.
620 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
621 #ifdef EXPENSIVE_CHECKS
622 // Check that the RefSCC is still valid before computing this as the
623 // results will be nonsensical of we've broken its invariants.
626 ConnectedSet
.insert(&SourceSCC
);
627 auto IsConnected
= [&](SCC
&C
) {
629 for (Edge
&E
: N
->calls())
630 if (ConnectedSet
.count(G
->lookupSCC(E
.getNode())))
637 make_range(SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1))
639 ConnectedSet
.insert(C
);
642 // Use a normal worklist to find which SCCs the target connects to. We still
643 // bound the search based on the range in the postorder list we care about,
644 // but because this is forward connectivity we just "recurse" through the
646 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
647 #ifdef EXPENSIVE_CHECKS
648 // Check that the RefSCC is still valid before computing this as the
649 // results will be nonsensical of we've broken its invariants.
652 ConnectedSet
.insert(&TargetSCC
);
653 SmallVector
<SCC
*, 4> Worklist
;
654 Worklist
.push_back(&TargetSCC
);
656 SCC
&C
= *Worklist
.pop_back_val();
661 SCC
&EdgeC
= *G
->lookupSCC(E
.getNode());
662 if (&EdgeC
.getOuterRefSCC() != this)
663 // Not in this RefSCC...
665 if (SCCIndices
.find(&EdgeC
)->second
<= SourceIdx
)
666 // Not in the postorder sequence between source and target.
669 if (ConnectedSet
.insert(&EdgeC
).second
)
670 Worklist
.push_back(&EdgeC
);
672 } while (!Worklist
.empty());
675 // Use a generic helper to update the postorder sequence of SCCs and return
676 // a range of any SCCs connected into a cycle by inserting this edge. This
677 // routine will also take care of updating the indices into the postorder
679 auto MergeRange
= updatePostorderSequenceForEdgeInsertion(
680 SourceSCC
, TargetSCC
, SCCs
, SCCIndices
, ComputeSourceConnectedSet
,
681 ComputeTargetConnectedSet
);
683 // Run the user's callback on the merged SCCs before we actually merge them.
685 MergeCB(makeArrayRef(MergeRange
.begin(), MergeRange
.end()));
687 // If the merge range is empty, then adding the edge didn't actually form any
688 // new cycles. We're done.
689 if (MergeRange
.empty()) {
690 // Now that the SCC structure is finalized, flip the kind to call.
691 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
692 return false; // No new cycle.
695 #ifdef EXPENSIVE_CHECKS
696 // Before merging, check that the RefSCC remains valid after all the
697 // postorder updates.
701 // Otherwise we need to merge all of the SCCs in the cycle into a single
704 // NB: We merge into the target because all of these functions were already
705 // reachable from the target, meaning any SCC-wide properties deduced about it
706 // other than the set of functions within it will not have changed.
707 for (SCC
*C
: MergeRange
) {
708 assert(C
!= &TargetSCC
&&
709 "We merge *into* the target and shouldn't process it here!");
711 TargetSCC
.Nodes
.append(C
->Nodes
.begin(), C
->Nodes
.end());
712 for (Node
*N
: C
->Nodes
)
713 G
->SCCMap
[N
] = &TargetSCC
;
715 DeletedSCCs
.push_back(C
);
718 // Erase the merged SCCs from the list and update the indices of the
720 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
721 auto EraseEnd
= SCCs
.erase(MergeRange
.begin(), MergeRange
.end());
722 for (SCC
*C
: make_range(EraseEnd
, SCCs
.end()))
723 SCCIndices
[C
] -= IndexOffset
;
725 // Now that the SCC structure is finalized, flip the kind to call.
726 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
728 // And we're done, but we did form a new cycle.
732 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node
&SourceN
,
734 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
736 #ifdef EXPENSIVE_CHECKS
738 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
741 assert(G
->lookupRefSCC(SourceN
) == this &&
742 "Source must be in this RefSCC.");
743 assert(G
->lookupRefSCC(TargetN
) == this &&
744 "Target must be in this RefSCC.");
745 assert(G
->lookupSCC(SourceN
) != G
->lookupSCC(TargetN
) &&
746 "Source and Target must be in separate SCCs for this to be trivial!");
748 // Set the edge kind.
749 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
752 iterator_range
<LazyCallGraph::RefSCC::iterator
>
753 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node
&SourceN
, Node
&TargetN
) {
754 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
756 #ifdef EXPENSIVE_CHECKS
758 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
761 assert(G
->lookupRefSCC(SourceN
) == this &&
762 "Source must be in this RefSCC.");
763 assert(G
->lookupRefSCC(TargetN
) == this &&
764 "Target must be in this RefSCC.");
766 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
767 assert(G
->lookupSCC(SourceN
) == &TargetSCC
&& "Source and Target must be in "
768 "the same SCC to require the "
771 // Set the edge kind.
772 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
774 // Otherwise we are removing a call edge from a single SCC. This may break
775 // the cycle. In order to compute the new set of SCCs, we need to do a small
776 // DFS over the nodes within the SCC to form any sub-cycles that remain as
777 // distinct SCCs and compute a postorder over the resulting SCCs.
779 // However, we specially handle the target node. The target node is known to
780 // reach all other nodes in the original SCC by definition. This means that
781 // we want the old SCC to be replaced with an SCC containing that node as it
782 // will be the root of whatever SCC DAG results from the DFS. Assumptions
783 // about an SCC such as the set of functions called will continue to hold,
786 SCC
&OldSCC
= TargetSCC
;
787 SmallVector
<std::pair
<Node
*, EdgeSequence::call_iterator
>, 16> DFSStack
;
788 SmallVector
<Node
*, 16> PendingSCCStack
;
789 SmallVector
<SCC
*, 4> NewSCCs
;
791 // Prepare the nodes for a fresh DFS.
792 SmallVector
<Node
*, 16> Worklist
;
793 Worklist
.swap(OldSCC
.Nodes
);
794 for (Node
*N
: Worklist
) {
795 N
->DFSNumber
= N
->LowLink
= 0;
799 // Force the target node to be in the old SCC. This also enables us to take
800 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
801 // below: whenever we build an edge that reaches the target node, we know
802 // that the target node eventually connects back to all other nodes in our
803 // walk. As a consequence, we can detect and handle participants in that
804 // cycle without walking all the edges that form this connection, and instead
805 // by relying on the fundamental guarantee coming into this operation (all
806 // nodes are reachable from the target due to previously forming an SCC).
807 TargetN
.DFSNumber
= TargetN
.LowLink
= -1;
808 OldSCC
.Nodes
.push_back(&TargetN
);
809 G
->SCCMap
[&TargetN
] = &OldSCC
;
811 // Scan down the stack and DFS across the call edges.
812 for (Node
*RootN
: Worklist
) {
813 assert(DFSStack
.empty() &&
814 "Cannot begin a new root with a non-empty DFS stack!");
815 assert(PendingSCCStack
.empty() &&
816 "Cannot begin a new root with pending nodes for an SCC!");
818 // Skip any nodes we've already reached in the DFS.
819 if (RootN
->DFSNumber
!= 0) {
820 assert(RootN
->DFSNumber
== -1 &&
821 "Shouldn't have any mid-DFS root nodes!");
825 RootN
->DFSNumber
= RootN
->LowLink
= 1;
826 int NextDFSNumber
= 2;
828 DFSStack
.push_back({RootN
, (*RootN
)->call_begin()});
831 EdgeSequence::call_iterator I
;
832 std::tie(N
, I
) = DFSStack
.pop_back_val();
833 auto E
= (*N
)->call_end();
835 Node
&ChildN
= I
->getNode();
836 if (ChildN
.DFSNumber
== 0) {
837 // We haven't yet visited this child, so descend, pushing the current
838 // node onto the stack.
839 DFSStack
.push_back({N
, I
});
841 assert(!G
->SCCMap
.count(&ChildN
) &&
842 "Found a node with 0 DFS number but already in an SCC!");
843 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
845 I
= (*N
)->call_begin();
846 E
= (*N
)->call_end();
850 // Check for the child already being part of some component.
851 if (ChildN
.DFSNumber
== -1) {
852 if (G
->lookupSCC(ChildN
) == &OldSCC
) {
853 // If the child is part of the old SCC, we know that it can reach
854 // every other node, so we have formed a cycle. Pull the entire DFS
855 // and pending stacks into it. See the comment above about setting
856 // up the old SCC for why we do this.
857 int OldSize
= OldSCC
.size();
858 OldSCC
.Nodes
.push_back(N
);
859 OldSCC
.Nodes
.append(PendingSCCStack
.begin(), PendingSCCStack
.end());
860 PendingSCCStack
.clear();
861 while (!DFSStack
.empty())
862 OldSCC
.Nodes
.push_back(DFSStack
.pop_back_val().first
);
863 for (Node
&N
: drop_begin(OldSCC
, OldSize
)) {
864 N
.DFSNumber
= N
.LowLink
= -1;
865 G
->SCCMap
[&N
] = &OldSCC
;
871 // If the child has already been added to some child component, it
872 // couldn't impact the low-link of this parent because it isn't
873 // connected, and thus its low-link isn't relevant so skip it.
878 // Track the lowest linked child as the lowest link for this node.
879 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
880 if (ChildN
.LowLink
< N
->LowLink
)
881 N
->LowLink
= ChildN
.LowLink
;
883 // Move to the next edge.
887 // Cleared the DFS early, start another round.
890 // We've finished processing N and its descendants, put it on our pending
891 // SCC stack to eventually get merged into an SCC of nodes.
892 PendingSCCStack
.push_back(N
);
894 // If this node is linked to some lower entry, continue walking up the
896 if (N
->LowLink
!= N
->DFSNumber
)
899 // Otherwise, we've completed an SCC. Append it to our post order list of
901 int RootDFSNumber
= N
->DFSNumber
;
902 // Find the range of the node stack by walking down until we pass the
904 auto SCCNodes
= make_range(
905 PendingSCCStack
.rbegin(),
906 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
907 return N
->DFSNumber
< RootDFSNumber
;
910 // Form a new SCC out of these nodes and then clear them off our pending
912 NewSCCs
.push_back(G
->createSCC(*this, SCCNodes
));
913 for (Node
&N
: *NewSCCs
.back()) {
914 N
.DFSNumber
= N
.LowLink
= -1;
915 G
->SCCMap
[&N
] = NewSCCs
.back();
917 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
918 } while (!DFSStack
.empty());
921 // Insert the remaining SCCs before the old one. The old SCC can reach all
922 // other SCCs we form because it contains the target node of the removed edge
923 // of the old SCC. This means that we will have edges into all of the new
924 // SCCs, which means the old one must come last for postorder.
925 int OldIdx
= SCCIndices
[&OldSCC
];
926 SCCs
.insert(SCCs
.begin() + OldIdx
, NewSCCs
.begin(), NewSCCs
.end());
928 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
929 // old SCC from the mapping.
930 for (int Idx
= OldIdx
, Size
= SCCs
.size(); Idx
< Size
; ++Idx
)
931 SCCIndices
[SCCs
[Idx
]] = Idx
;
933 return make_range(SCCs
.begin() + OldIdx
,
934 SCCs
.begin() + OldIdx
+ NewSCCs
.size());
937 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node
&SourceN
,
939 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
941 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
942 assert(G
->lookupRefSCC(TargetN
) != this &&
943 "Target must not be in this RefSCC.");
944 #ifdef EXPENSIVE_CHECKS
945 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
946 "Target must be a descendant of the Source.");
949 // Edges between RefSCCs are the same regardless of call or ref, so we can
950 // just flip the edge here.
951 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
953 #ifdef EXPENSIVE_CHECKS
958 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node
&SourceN
,
960 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
962 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
963 assert(G
->lookupRefSCC(TargetN
) != this &&
964 "Target must not be in this RefSCC.");
965 #ifdef EXPENSIVE_CHECKS
966 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
967 "Target must be a descendant of the Source.");
970 // Edges between RefSCCs are the same regardless of call or ref, so we can
971 // just flip the edge here.
972 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
974 #ifdef EXPENSIVE_CHECKS
979 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node
&SourceN
,
981 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
982 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
984 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
986 #ifdef EXPENSIVE_CHECKS
991 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node
&SourceN
, Node
&TargetN
,
993 // First insert it into the caller.
994 SourceN
->insertEdgeInternal(TargetN
, EK
);
996 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
998 assert(G
->lookupRefSCC(TargetN
) != this &&
999 "Target must not be in this RefSCC.");
1000 #ifdef EXPENSIVE_CHECKS
1001 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
1002 "Target must be a descendant of the Source.");
1005 #ifdef EXPENSIVE_CHECKS
1010 SmallVector
<LazyCallGraph::RefSCC
*, 1>
1011 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node
&SourceN
, Node
&TargetN
) {
1012 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
1013 RefSCC
&SourceC
= *G
->lookupRefSCC(SourceN
);
1014 assert(&SourceC
!= this && "Source must not be in this RefSCC.");
1015 #ifdef EXPENSIVE_CHECKS
1016 assert(SourceC
.isDescendantOf(*this) &&
1017 "Source must be a descendant of the Target.");
1020 SmallVector
<RefSCC
*, 1> DeletedRefSCCs
;
1022 #ifdef EXPENSIVE_CHECKS
1024 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
1027 int SourceIdx
= G
->RefSCCIndices
[&SourceC
];
1028 int TargetIdx
= G
->RefSCCIndices
[this];
1029 assert(SourceIdx
< TargetIdx
&&
1030 "Postorder list doesn't see edge as incoming!");
1032 // Compute the RefSCCs which (transitively) reach the source. We do this by
1033 // working backwards from the source using the parent set in each RefSCC,
1034 // skipping any RefSCCs that don't fall in the postorder range. This has the
1035 // advantage of walking the sparser parent edge (in high fan-out graphs) but
1036 // more importantly this removes examining all forward edges in all RefSCCs
1037 // within the postorder range which aren't in fact connected. Only connected
1038 // RefSCCs (and their edges) are visited here.
1039 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
1040 Set
.insert(&SourceC
);
1041 auto IsConnected
= [&](RefSCC
&RC
) {
1045 if (Set
.count(G
->lookupRefSCC(E
.getNode())))
1051 for (RefSCC
*C
: make_range(G
->PostOrderRefSCCs
.begin() + SourceIdx
+ 1,
1052 G
->PostOrderRefSCCs
.begin() + TargetIdx
+ 1))
1053 if (IsConnected(*C
))
1057 // Use a normal worklist to find which SCCs the target connects to. We still
1058 // bound the search based on the range in the postorder list we care about,
1059 // but because this is forward connectivity we just "recurse" through the
1061 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
1063 SmallVector
<RefSCC
*, 4> Worklist
;
1064 Worklist
.push_back(this);
1066 RefSCC
&RC
= *Worklist
.pop_back_val();
1069 for (Edge
&E
: *N
) {
1070 RefSCC
&EdgeRC
= *G
->lookupRefSCC(E
.getNode());
1071 if (G
->getRefSCCIndex(EdgeRC
) <= SourceIdx
)
1072 // Not in the postorder sequence between source and target.
1075 if (Set
.insert(&EdgeRC
).second
)
1076 Worklist
.push_back(&EdgeRC
);
1078 } while (!Worklist
.empty());
1081 // Use a generic helper to update the postorder sequence of RefSCCs and return
1082 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1083 // routine will also take care of updating the indices into the postorder
1085 iterator_range
<SmallVectorImpl
<RefSCC
*>::iterator
> MergeRange
=
1086 updatePostorderSequenceForEdgeInsertion(
1087 SourceC
, *this, G
->PostOrderRefSCCs
, G
->RefSCCIndices
,
1088 ComputeSourceConnectedSet
, ComputeTargetConnectedSet
);
1090 // Build a set so we can do fast tests for whether a RefSCC will end up as
1091 // part of the merged RefSCC.
1092 SmallPtrSet
<RefSCC
*, 16> MergeSet(MergeRange
.begin(), MergeRange
.end());
1094 // This RefSCC will always be part of that set, so just insert it here.
1095 MergeSet
.insert(this);
1097 // Now that we have identified all of the SCCs which need to be merged into
1098 // a connected set with the inserted edge, merge all of them into this SCC.
1099 SmallVector
<SCC
*, 16> MergedSCCs
;
1101 for (RefSCC
*RC
: MergeRange
) {
1102 assert(RC
!= this && "We're merging into the target RefSCC, so it "
1103 "shouldn't be in the range.");
1105 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1106 // update any parent sets.
1107 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1108 // walk by updating the parent sets in some other manner.
1109 for (SCC
&InnerC
: *RC
) {
1110 InnerC
.OuterRefSCC
= this;
1111 SCCIndices
[&InnerC
] = SCCIndex
++;
1112 for (Node
&N
: InnerC
)
1113 G
->SCCMap
[&N
] = &InnerC
;
1116 // Now merge in the SCCs. We can actually move here so try to reuse storage
1117 // the first time through.
1118 if (MergedSCCs
.empty())
1119 MergedSCCs
= std::move(RC
->SCCs
);
1121 MergedSCCs
.append(RC
->SCCs
.begin(), RC
->SCCs
.end());
1123 DeletedRefSCCs
.push_back(RC
);
1126 // Append our original SCCs to the merged list and move it into place.
1127 for (SCC
&InnerC
: *this)
1128 SCCIndices
[&InnerC
] = SCCIndex
++;
1129 MergedSCCs
.append(SCCs
.begin(), SCCs
.end());
1130 SCCs
= std::move(MergedSCCs
);
1132 // Remove the merged away RefSCCs from the post order sequence.
1133 for (RefSCC
*RC
: MergeRange
)
1134 G
->RefSCCIndices
.erase(RC
);
1135 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
1137 G
->PostOrderRefSCCs
.erase(MergeRange
.begin(), MergeRange
.end());
1138 for (RefSCC
*RC
: make_range(EraseEnd
, G
->PostOrderRefSCCs
.end()))
1139 G
->RefSCCIndices
[RC
] -= IndexOffset
;
1141 // At this point we have a merged RefSCC with a post-order SCCs list, just
1142 // connect the nodes to form the new edge.
1143 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
1145 // We return the list of SCCs which were merged so that callers can
1146 // invalidate any data they have associated with those SCCs. Note that these
1147 // SCCs are no longer in an interesting state (they are totally empty) but
1148 // the pointers will remain stable for the life of the graph itself.
1149 return DeletedRefSCCs
;
1152 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node
&SourceN
, Node
&TargetN
) {
1153 assert(G
->lookupRefSCC(SourceN
) == this &&
1154 "The source must be a member of this RefSCC.");
1155 assert(G
->lookupRefSCC(TargetN
) != this &&
1156 "The target must not be a member of this RefSCC");
1158 #ifdef EXPENSIVE_CHECKS
1160 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
1163 // First remove it from the node.
1164 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1166 assert(Removed
&& "Target not in the edge set for this caller?");
1169 SmallVector
<LazyCallGraph::RefSCC
*, 1>
1170 LazyCallGraph::RefSCC::removeInternalRefEdge(Node
&SourceN
,
1171 ArrayRef
<Node
*> TargetNs
) {
1172 // We return a list of the resulting *new* RefSCCs in post-order.
1173 SmallVector
<RefSCC
*, 1> Result
;
1175 #ifdef EXPENSIVE_CHECKS
1176 // Verify the RefSCC is valid to start with and that either we return an empty
1177 // list of result RefSCCs and this RefSCC remains valid, or we return new
1178 // RefSCCs and this RefSCC is dead.
1180 auto VerifyOnExit
= make_scope_exit([&]() {
1181 // If we didn't replace our RefSCC with new ones, check that this one
1188 // First remove the actual edges.
1189 for (Node
*TargetN
: TargetNs
) {
1190 assert(!(*SourceN
)[*TargetN
].isCall() &&
1191 "Cannot remove a call edge, it must first be made a ref edge");
1193 bool Removed
= SourceN
->removeEdgeInternal(*TargetN
);
1195 assert(Removed
&& "Target not in the edge set for this caller?");
1198 // Direct self references don't impact the ref graph at all.
1199 if (llvm::all_of(TargetNs
,
1200 [&](Node
*TargetN
) { return &SourceN
== TargetN
; }))
1203 // If all targets are in the same SCC as the source, because no call edges
1204 // were removed there is no RefSCC structure change.
1205 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1206 if (llvm::all_of(TargetNs
, [&](Node
*TargetN
) {
1207 return G
->lookupSCC(*TargetN
) == &SourceC
;
1211 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1212 // for each inner SCC. We store these inside the low-link field of the nodes
1213 // rather than associated with SCCs because this saves a round-trip through
1214 // the node->SCC map and in the common case, SCCs are small. We will verify
1215 // that we always give the same number to every node in the SCC such that
1216 // these are equivalent.
1217 int PostOrderNumber
= 0;
1219 // Reset all the other nodes to prepare for a DFS over them, and add them to
1221 SmallVector
<Node
*, 8> Worklist
;
1222 for (SCC
*C
: SCCs
) {
1224 N
.DFSNumber
= N
.LowLink
= 0;
1226 Worklist
.append(C
->Nodes
.begin(), C
->Nodes
.end());
1229 // Track the number of nodes in this RefSCC so that we can quickly recognize
1230 // an important special case of the edge removal not breaking the cycle of
1232 const int NumRefSCCNodes
= Worklist
.size();
1234 SmallVector
<std::pair
<Node
*, EdgeSequence::iterator
>, 4> DFSStack
;
1235 SmallVector
<Node
*, 4> PendingRefSCCStack
;
1237 assert(DFSStack
.empty() &&
1238 "Cannot begin a new root with a non-empty DFS stack!");
1239 assert(PendingRefSCCStack
.empty() &&
1240 "Cannot begin a new root with pending nodes for an SCC!");
1242 Node
*RootN
= Worklist
.pop_back_val();
1243 // Skip any nodes we've already reached in the DFS.
1244 if (RootN
->DFSNumber
!= 0) {
1245 assert(RootN
->DFSNumber
== -1 &&
1246 "Shouldn't have any mid-DFS root nodes!");
1250 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1251 int NextDFSNumber
= 2;
1253 DFSStack
.push_back({RootN
, (*RootN
)->begin()});
1256 EdgeSequence::iterator I
;
1257 std::tie(N
, I
) = DFSStack
.pop_back_val();
1258 auto E
= (*N
)->end();
1260 assert(N
->DFSNumber
!= 0 && "We should always assign a DFS number "
1261 "before processing a node.");
1264 Node
&ChildN
= I
->getNode();
1265 if (ChildN
.DFSNumber
== 0) {
1266 // Mark that we should start at this child when next this node is the
1267 // top of the stack. We don't start at the next child to ensure this
1268 // child's lowlink is reflected.
1269 DFSStack
.push_back({N
, I
});
1271 // Continue, resetting to the child node.
1272 ChildN
.LowLink
= ChildN
.DFSNumber
= NextDFSNumber
++;
1274 I
= ChildN
->begin();
1278 if (ChildN
.DFSNumber
== -1) {
1279 // If this child isn't currently in this RefSCC, no need to process
1285 // Track the lowest link of the children, if any are still in the stack.
1286 // Any child not on the stack will have a LowLink of -1.
1287 assert(ChildN
.LowLink
!= 0 &&
1288 "Low-link must not be zero with a non-zero DFS number.");
1289 if (ChildN
.LowLink
>= 0 && ChildN
.LowLink
< N
->LowLink
)
1290 N
->LowLink
= ChildN
.LowLink
;
1294 // We've finished processing N and its descendants, put it on our pending
1295 // stack to eventually get merged into a RefSCC.
1296 PendingRefSCCStack
.push_back(N
);
1298 // If this node is linked to some lower entry, continue walking up the
1300 if (N
->LowLink
!= N
->DFSNumber
) {
1301 assert(!DFSStack
.empty() &&
1302 "We never found a viable root for a RefSCC to pop off!");
1306 // Otherwise, form a new RefSCC from the top of the pending node stack.
1307 int RefSCCNumber
= PostOrderNumber
++;
1308 int RootDFSNumber
= N
->DFSNumber
;
1310 // Find the range of the node stack by walking down until we pass the
1311 // root DFS number. Update the DFS numbers and low link numbers in the
1312 // process to avoid re-walking this list where possible.
1313 auto StackRI
= find_if(reverse(PendingRefSCCStack
), [&](Node
*N
) {
1314 if (N
->DFSNumber
< RootDFSNumber
)
1315 // We've found the bottom.
1318 // Update this node and keep scanning.
1320 // Save the post-order number in the lowlink field so that we can use
1321 // it to map SCCs into new RefSCCs after we finish the DFS.
1322 N
->LowLink
= RefSCCNumber
;
1325 auto RefSCCNodes
= make_range(StackRI
.base(), PendingRefSCCStack
.end());
1327 // If we find a cycle containing all nodes originally in this RefSCC then
1328 // the removal hasn't changed the structure at all. This is an important
1329 // special case and we can directly exit the entire routine more
1330 // efficiently as soon as we discover it.
1331 if (llvm::size(RefSCCNodes
) == NumRefSCCNodes
) {
1332 // Clear out the low link field as we won't need it.
1333 for (Node
*N
: RefSCCNodes
)
1335 // Return the empty result immediately.
1339 // We've already marked the nodes internally with the RefSCC number so
1340 // just clear them off the stack and continue.
1341 PendingRefSCCStack
.erase(RefSCCNodes
.begin(), PendingRefSCCStack
.end());
1342 } while (!DFSStack
.empty());
1344 assert(DFSStack
.empty() && "Didn't flush the entire DFS stack!");
1345 assert(PendingRefSCCStack
.empty() && "Didn't flush all pending nodes!");
1346 } while (!Worklist
.empty());
1348 assert(PostOrderNumber
> 1 &&
1349 "Should never finish the DFS when the existing RefSCC remains valid!");
1351 // Otherwise we create a collection of new RefSCC nodes and build
1352 // a radix-sort style map from postorder number to these new RefSCCs. We then
1353 // append SCCs to each of these RefSCCs in the order they occurred in the
1354 // original SCCs container.
1355 for (int i
= 0; i
< PostOrderNumber
; ++i
)
1356 Result
.push_back(G
->createRefSCC(*G
));
1358 // Insert the resulting postorder sequence into the global graph postorder
1359 // sequence before the current RefSCC in that sequence, and then remove the
1362 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1363 // range over the global postorder sequence and generally use that sequence
1364 // rather than building a separate result vector here.
1365 int Idx
= G
->getRefSCCIndex(*this);
1366 G
->PostOrderRefSCCs
.erase(G
->PostOrderRefSCCs
.begin() + Idx
);
1367 G
->PostOrderRefSCCs
.insert(G
->PostOrderRefSCCs
.begin() + Idx
, Result
.begin(),
1369 for (int i
: seq
<int>(Idx
, G
->PostOrderRefSCCs
.size()))
1370 G
->RefSCCIndices
[G
->PostOrderRefSCCs
[i
]] = i
;
1372 for (SCC
*C
: SCCs
) {
1373 // We store the SCC number in the node's low-link field above.
1374 int SCCNumber
= C
->begin()->LowLink
;
1375 // Clear out all of the SCC's node's low-link fields now that we're done
1376 // using them as side-storage.
1377 for (Node
&N
: *C
) {
1378 assert(N
.LowLink
== SCCNumber
&&
1379 "Cannot have different numbers for nodes in the same SCC!");
1383 RefSCC
&RC
= *Result
[SCCNumber
];
1384 int SCCIndex
= RC
.SCCs
.size();
1385 RC
.SCCs
.push_back(C
);
1386 RC
.SCCIndices
[C
] = SCCIndex
;
1387 C
->OuterRefSCC
= &RC
;
1390 // Now that we've moved things into the new RefSCCs, clear out our current
1396 #ifdef EXPENSIVE_CHECKS
1397 // Verify the new RefSCCs we've built.
1398 for (RefSCC
*RC
: Result
)
1402 // Return the new list of SCCs.
1406 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node
&SourceN
,
1408 #ifdef EXPENSIVE_CHECKS
1409 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1411 // Check that we aren't breaking some invariants of the SCC graph. Note that
1412 // this is quadratic in the number of edges in the call graph!
1413 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1414 SCC
&TargetC
= *G
->lookupSCC(TargetN
);
1415 if (&SourceC
!= &TargetC
)
1416 assert(SourceC
.isAncestorOf(TargetC
) &&
1417 "Call edge is not trivial in the SCC graph!");
1420 // First insert it into the source or find the existing edge.
1422 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1423 if (!InsertResult
.second
) {
1424 // Already an edge, just update it.
1425 Edge
&E
= SourceN
->Edges
[InsertResult
.first
->second
];
1427 return; // Nothing to do!
1428 E
.setKind(Edge::Call
);
1430 // Create the new edge.
1431 SourceN
->Edges
.emplace_back(TargetN
, Edge::Call
);
1435 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node
&SourceN
, Node
&TargetN
) {
1436 #ifdef EXPENSIVE_CHECKS
1437 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1439 // Check that we aren't breaking some invariants of the RefSCC graph.
1440 RefSCC
&SourceRC
= *G
->lookupRefSCC(SourceN
);
1441 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1442 if (&SourceRC
!= &TargetRC
)
1443 assert(SourceRC
.isAncestorOf(TargetRC
) &&
1444 "Ref edge is not trivial in the RefSCC graph!");
1447 // First insert it into the source or find the existing edge.
1449 SourceN
->EdgeIndexMap
.insert({&TargetN
, SourceN
->Edges
.size()});
1450 if (!InsertResult
.second
)
1451 // Already an edge, we're done.
1454 // Create the new edge.
1455 SourceN
->Edges
.emplace_back(TargetN
, Edge::Ref
);
1458 void LazyCallGraph::RefSCC::replaceNodeFunction(Node
&N
, Function
&NewF
) {
1459 Function
&OldF
= N
.getFunction();
1461 #ifdef EXPENSIVE_CHECKS
1462 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1464 assert(G
->lookupRefSCC(N
) == this &&
1465 "Cannot replace the function of a node outside this RefSCC.");
1467 assert(G
->NodeMap
.find(&NewF
) == G
->NodeMap
.end() &&
1468 "Must not have already walked the new function!'");
1470 // It is important that this replacement not introduce graph changes so we
1471 // insist that the caller has already removed every use of the original
1472 // function and that all uses of the new function correspond to existing
1473 // edges in the graph. The common and expected way to use this is when
1474 // replacing the function itself in the IR without changing the call graph
1475 // shape and just updating the analysis based on that.
1476 assert(&OldF
!= &NewF
&& "Cannot replace a function with itself!");
1477 assert(OldF
.use_empty() &&
1478 "Must have moved all uses from the old function to the new!");
1481 N
.replaceFunction(NewF
);
1483 // Update various call graph maps.
1484 G
->NodeMap
.erase(&OldF
);
1485 G
->NodeMap
[&NewF
] = &N
;
1488 void LazyCallGraph::insertEdge(Node
&SourceN
, Node
&TargetN
, Edge::Kind EK
) {
1489 assert(SCCMap
.empty() &&
1490 "This method cannot be called after SCCs have been formed!");
1492 return SourceN
->insertEdgeInternal(TargetN
, EK
);
1495 void LazyCallGraph::removeEdge(Node
&SourceN
, Node
&TargetN
) {
1496 assert(SCCMap
.empty() &&
1497 "This method cannot be called after SCCs have been formed!");
1499 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1501 assert(Removed
&& "Target not in the edge set for this caller?");
1504 void LazyCallGraph::removeDeadFunction(Function
&F
) {
1505 // FIXME: This is unnecessarily restrictive. We should be able to remove
1506 // functions which recursively call themselves.
1507 assert(F
.use_empty() &&
1508 "This routine should only be called on trivially dead functions!");
1510 // We shouldn't remove library functions as they are never really dead while
1511 // the call graph is in use -- every function definition refers to them.
1512 assert(!isLibFunction(F
) &&
1513 "Must not remove lib functions from the call graph!");
1515 auto NI
= NodeMap
.find(&F
);
1516 if (NI
== NodeMap
.end())
1517 // Not in the graph at all!
1520 Node
&N
= *NI
->second
;
1523 // Remove this from the entry edges if present.
1524 EntryEdges
.removeEdgeInternal(N
);
1526 if (SCCMap
.empty()) {
1527 // No SCCs have been formed, so removing this is fine and there is nothing
1528 // else necessary at this point but clearing out the node.
1533 // Cannot remove a function which has yet to be visited in the DFS walk, so
1534 // if we have a node at all then we must have an SCC and RefSCC.
1535 auto CI
= SCCMap
.find(&N
);
1536 assert(CI
!= SCCMap
.end() &&
1537 "Tried to remove a node without an SCC after DFS walk started!");
1538 SCC
&C
= *CI
->second
;
1540 RefSCC
&RC
= C
.getOuterRefSCC();
1542 // This node must be the only member of its SCC as it has no callers, and
1543 // that SCC must be the only member of a RefSCC as it has no references.
1544 // Validate these properties first.
1545 assert(C
.size() == 1 && "Dead functions must be in a singular SCC");
1546 assert(RC
.size() == 1 && "Dead functions must be in a singular RefSCC");
1548 auto RCIndexI
= RefSCCIndices
.find(&RC
);
1549 int RCIndex
= RCIndexI
->second
;
1550 PostOrderRefSCCs
.erase(PostOrderRefSCCs
.begin() + RCIndex
);
1551 RefSCCIndices
.erase(RCIndexI
);
1552 for (int i
= RCIndex
, Size
= PostOrderRefSCCs
.size(); i
< Size
; ++i
)
1553 RefSCCIndices
[PostOrderRefSCCs
[i
]] = i
;
1555 // Finally clear out all the data structures from the node down through the
1564 // Nothing to delete as all the objects are allocated in stable bump pointer
1568 // Gets the Edge::Kind from one function to another by looking at the function's
1569 // instructions. Asserts if there is no edge.
1570 // Useful for determining what type of edge should exist between functions when
1571 // the edge hasn't been created yet.
1572 static LazyCallGraph::Edge::Kind
getEdgeKind(Function
&OriginalFunction
,
1573 Function
&NewFunction
) {
1574 // In release builds, assume that if there are no direct calls to the new
1575 // function, then there is a ref edge. In debug builds, keep track of
1576 // references to assert that there is actually a ref edge if there is no call
1579 SmallVector
<Constant
*, 16> Worklist
;
1580 SmallPtrSet
<Constant
*, 16> Visited
;
1583 for (Instruction
&I
: instructions(OriginalFunction
)) {
1584 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
1585 if (Function
*Callee
= CB
->getCalledFunction()) {
1586 if (Callee
== &NewFunction
)
1587 return LazyCallGraph::Edge::Kind::Call
;
1591 for (Value
*Op
: I
.operand_values()) {
1592 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
1593 if (Visited
.insert(C
).second
)
1594 Worklist
.push_back(C
);
1601 bool FoundNewFunction
= false;
1602 LazyCallGraph::visitReferences(Worklist
, Visited
, [&](Function
&F
) {
1603 if (&F
== &NewFunction
)
1604 FoundNewFunction
= true;
1606 assert(FoundNewFunction
&& "No edge from original function to new function");
1609 return LazyCallGraph::Edge::Kind::Ref
;
1612 void LazyCallGraph::addSplitFunction(Function
&OriginalFunction
,
1613 Function
&NewFunction
) {
1614 assert(lookup(OriginalFunction
) &&
1615 "Original function's node should already exist");
1616 Node
&OriginalN
= get(OriginalFunction
);
1617 SCC
*OriginalC
= lookupSCC(OriginalN
);
1618 RefSCC
*OriginalRC
= lookupRefSCC(OriginalN
);
1620 #ifdef EXPENSIVE_CHECKS
1621 OriginalRC
->verify();
1622 auto VerifyOnExit
= make_scope_exit([&]() { OriginalRC
->verify(); });
1625 assert(!lookup(NewFunction
) &&
1626 "New function's node should not already exist");
1627 Node
&NewN
= initNode(NewFunction
);
1629 Edge::Kind EK
= getEdgeKind(OriginalFunction
, NewFunction
);
1631 SCC
*NewC
= nullptr;
1632 for (Edge
&E
: *NewN
) {
1633 Node
&EN
= E
.getNode();
1634 if (EK
== Edge::Kind::Call
&& E
.isCall() && lookupSCC(EN
) == OriginalC
) {
1635 // If the edge to the new function is a call edge and there is a call edge
1636 // from the new function to any function in the original function's SCC,
1637 // it is in the same SCC (and RefSCC) as the original function.
1639 NewC
->Nodes
.push_back(&NewN
);
1645 for (Edge
&E
: *NewN
) {
1646 Node
&EN
= E
.getNode();
1647 if (lookupRefSCC(EN
) == OriginalRC
) {
1648 // If there is any edge from the new function to any function in the
1649 // original function's RefSCC, it is in the same RefSCC as the original
1650 // function but a new SCC.
1651 RefSCC
*NewRC
= OriginalRC
;
1652 NewC
= createSCC(*NewRC
, SmallVector
<Node
*, 1>({&NewN
}));
1654 // The new function's SCC is not the same as the original function's
1655 // SCC, since that case was handled earlier. If the edge from the
1656 // original function to the new function was a call edge, then we need
1657 // to insert the newly created function's SCC before the original
1658 // function's SCC. Otherwise either the new SCC comes after the original
1659 // function's SCC, or it doesn't matter, and in both cases we can add it
1661 int InsertIndex
= EK
== Edge::Kind::Call
? NewRC
->SCCIndices
[OriginalC
]
1662 : NewRC
->SCCIndices
.size();
1663 NewRC
->SCCs
.insert(NewRC
->SCCs
.begin() + InsertIndex
, NewC
);
1664 for (int I
= InsertIndex
, Size
= NewRC
->SCCs
.size(); I
< Size
; ++I
)
1665 NewRC
->SCCIndices
[NewRC
->SCCs
[I
]] = I
;
1673 // We didn't find any edges back to the original function's RefSCC, so the
1674 // new function belongs in a new RefSCC. The new RefSCC goes before the
1675 // original function's RefSCC.
1676 RefSCC
*NewRC
= createRefSCC(*this);
1677 NewC
= createSCC(*NewRC
, SmallVector
<Node
*, 1>({&NewN
}));
1678 NewRC
->SCCIndices
[NewC
] = 0;
1679 NewRC
->SCCs
.push_back(NewC
);
1680 auto OriginalRCIndex
= RefSCCIndices
.find(OriginalRC
)->second
;
1681 PostOrderRefSCCs
.insert(PostOrderRefSCCs
.begin() + OriginalRCIndex
, NewRC
);
1682 for (int I
= OriginalRCIndex
, Size
= PostOrderRefSCCs
.size(); I
< Size
; ++I
)
1683 RefSCCIndices
[PostOrderRefSCCs
[I
]] = I
;
1686 SCCMap
[&NewN
] = NewC
;
1688 OriginalN
->insertEdgeInternal(NewN
, EK
);
1691 void LazyCallGraph::addSplitRefRecursiveFunctions(
1692 Function
&OriginalFunction
, ArrayRef
<Function
*> NewFunctions
) {
1693 assert(!NewFunctions
.empty() && "Can't add zero functions");
1694 assert(lookup(OriginalFunction
) &&
1695 "Original function's node should already exist");
1696 Node
&OriginalN
= get(OriginalFunction
);
1697 RefSCC
*OriginalRC
= lookupRefSCC(OriginalN
);
1699 #ifdef EXPENSIVE_CHECKS
1700 OriginalRC
->verify();
1701 auto VerifyOnExit
= make_scope_exit([&]() {
1702 OriginalRC
->verify();
1703 for (Function
*NewFunction
: NewFunctions
)
1704 lookupRefSCC(get(*NewFunction
))->verify();
1708 bool ExistsRefToOriginalRefSCC
= false;
1710 for (Function
*NewFunction
: NewFunctions
) {
1711 Node
&NewN
= initNode(*NewFunction
);
1713 OriginalN
->insertEdgeInternal(NewN
, Edge::Kind::Ref
);
1715 // Check if there is any edge from any new function back to any function in
1716 // the original function's RefSCC.
1717 for (Edge
&E
: *NewN
) {
1718 if (lookupRefSCC(E
.getNode()) == OriginalRC
) {
1719 ExistsRefToOriginalRefSCC
= true;
1726 if (ExistsRefToOriginalRefSCC
) {
1727 // If there is any edge from any new function to any function in the
1728 // original function's RefSCC, all new functions will be in the same RefSCC
1729 // as the original function.
1732 // Otherwise the new functions are in their own RefSCC.
1733 NewRC
= createRefSCC(*this);
1734 // The new RefSCC goes before the original function's RefSCC in postorder
1735 // since there are only edges from the original function's RefSCC to the new
1737 auto OriginalRCIndex
= RefSCCIndices
.find(OriginalRC
)->second
;
1738 PostOrderRefSCCs
.insert(PostOrderRefSCCs
.begin() + OriginalRCIndex
, NewRC
);
1739 for (int I
= OriginalRCIndex
, Size
= PostOrderRefSCCs
.size(); I
< Size
; ++I
)
1740 RefSCCIndices
[PostOrderRefSCCs
[I
]] = I
;
1743 for (Function
*NewFunction
: NewFunctions
) {
1744 Node
&NewN
= get(*NewFunction
);
1745 // Each new function is in its own new SCC. The original function can only
1746 // have a ref edge to new functions, and no other existing functions can
1747 // have references to new functions. Each new function only has a ref edge
1748 // to the other new functions.
1749 SCC
*NewC
= createSCC(*NewRC
, SmallVector
<Node
*, 1>({&NewN
}));
1750 // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1751 // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1753 auto Index
= NewRC
->SCCIndices
.size();
1754 NewRC
->SCCIndices
[NewC
] = Index
;
1755 NewRC
->SCCs
.push_back(NewC
);
1756 SCCMap
[&NewN
] = NewC
;
1760 for (Function
*F1
: NewFunctions
) {
1761 assert(getEdgeKind(OriginalFunction
, *F1
) == Edge::Kind::Ref
&&
1762 "Expected ref edges from original function to every new function");
1763 Node
&N1
= get(*F1
);
1764 for (Function
*F2
: NewFunctions
) {
1767 Node
&N2
= get(*F2
);
1768 assert(!N1
->lookup(N2
)->isCall() &&
1769 "Edges between new functions must be ref edges");
1775 LazyCallGraph::Node
&LazyCallGraph::insertInto(Function
&F
, Node
*&MappedN
) {
1776 return *new (MappedN
= BPA
.Allocate()) Node(*this, F
);
1779 void LazyCallGraph::updateGraphPtrs() {
1780 // Walk the node map to update their graph pointers. While this iterates in
1781 // an unstable order, the order has no effect so it remains correct.
1782 for (auto &FunctionNodePair
: NodeMap
)
1783 FunctionNodePair
.second
->G
= this;
1785 for (auto *RC
: PostOrderRefSCCs
)
1789 LazyCallGraph::Node
&LazyCallGraph::initNode(Function
&F
) {
1791 N
.DFSNumber
= N
.LowLink
= -1;
1797 template <typename RootsT
, typename GetBeginT
, typename GetEndT
,
1798 typename GetNodeT
, typename FormSCCCallbackT
>
1799 void LazyCallGraph::buildGenericSCCs(RootsT
&&Roots
, GetBeginT
&&GetBegin
,
1800 GetEndT
&&GetEnd
, GetNodeT
&&GetNode
,
1801 FormSCCCallbackT
&&FormSCC
) {
1802 using EdgeItT
= decltype(GetBegin(std::declval
<Node
&>()));
1804 SmallVector
<std::pair
<Node
*, EdgeItT
>, 16> DFSStack
;
1805 SmallVector
<Node
*, 16> PendingSCCStack
;
1807 // Scan down the stack and DFS across the call edges.
1808 for (Node
*RootN
: Roots
) {
1809 assert(DFSStack
.empty() &&
1810 "Cannot begin a new root with a non-empty DFS stack!");
1811 assert(PendingSCCStack
.empty() &&
1812 "Cannot begin a new root with pending nodes for an SCC!");
1814 // Skip any nodes we've already reached in the DFS.
1815 if (RootN
->DFSNumber
!= 0) {
1816 assert(RootN
->DFSNumber
== -1 &&
1817 "Shouldn't have any mid-DFS root nodes!");
1821 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1822 int NextDFSNumber
= 2;
1824 DFSStack
.push_back({RootN
, GetBegin(*RootN
)});
1828 std::tie(N
, I
) = DFSStack
.pop_back_val();
1829 auto E
= GetEnd(*N
);
1831 Node
&ChildN
= GetNode(I
);
1832 if (ChildN
.DFSNumber
== 0) {
1833 // We haven't yet visited this child, so descend, pushing the current
1834 // node onto the stack.
1835 DFSStack
.push_back({N
, I
});
1837 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
1844 // If the child has already been added to some child component, it
1845 // couldn't impact the low-link of this parent because it isn't
1846 // connected, and thus its low-link isn't relevant so skip it.
1847 if (ChildN
.DFSNumber
== -1) {
1852 // Track the lowest linked child as the lowest link for this node.
1853 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
1854 if (ChildN
.LowLink
< N
->LowLink
)
1855 N
->LowLink
= ChildN
.LowLink
;
1857 // Move to the next edge.
1861 // We've finished processing N and its descendants, put it on our pending
1862 // SCC stack to eventually get merged into an SCC of nodes.
1863 PendingSCCStack
.push_back(N
);
1865 // If this node is linked to some lower entry, continue walking up the
1867 if (N
->LowLink
!= N
->DFSNumber
)
1870 // Otherwise, we've completed an SCC. Append it to our post order list of
1872 int RootDFSNumber
= N
->DFSNumber
;
1873 // Find the range of the node stack by walking down until we pass the
1875 auto SCCNodes
= make_range(
1876 PendingSCCStack
.rbegin(),
1877 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
1878 return N
->DFSNumber
< RootDFSNumber
;
1880 // Form a new SCC out of these nodes and then clear them off our pending
1883 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
1884 } while (!DFSStack
.empty());
1888 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1890 /// Appends the SCCs to the provided vector and updates the map with their
1891 /// indices. Both the vector and map must be empty when passed into this
1893 void LazyCallGraph::buildSCCs(RefSCC
&RC
, node_stack_range Nodes
) {
1894 assert(RC
.SCCs
.empty() && "Already built SCCs!");
1895 assert(RC
.SCCIndices
.empty() && "Already mapped SCC indices!");
1897 for (Node
*N
: Nodes
) {
1898 assert(N
->LowLink
>= (*Nodes
.begin())->LowLink
&&
1899 "We cannot have a low link in an SCC lower than its root on the "
1902 // This node will go into the next RefSCC, clear out its DFS and low link
1904 N
->DFSNumber
= N
->LowLink
= 0;
1907 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1908 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1909 // internal storage as we won't need it for the outer graph's DFS any longer.
1911 Nodes
, [](Node
&N
) { return N
->call_begin(); },
1912 [](Node
&N
) { return N
->call_end(); },
1913 [](EdgeSequence::call_iterator I
) -> Node
& { return I
->getNode(); },
1914 [this, &RC
](node_stack_range Nodes
) {
1915 RC
.SCCs
.push_back(createSCC(RC
, Nodes
));
1916 for (Node
&N
: *RC
.SCCs
.back()) {
1917 N
.DFSNumber
= N
.LowLink
= -1;
1918 SCCMap
[&N
] = RC
.SCCs
.back();
1922 // Wire up the SCC indices.
1923 for (int i
= 0, Size
= RC
.SCCs
.size(); i
< Size
; ++i
)
1924 RC
.SCCIndices
[RC
.SCCs
[i
]] = i
;
1927 void LazyCallGraph::buildRefSCCs() {
1928 if (EntryEdges
.empty() || !PostOrderRefSCCs
.empty())
1929 // RefSCCs are either non-existent or already built!
1932 assert(RefSCCIndices
.empty() && "Already mapped RefSCC indices!");
1934 SmallVector
<Node
*, 16> Roots
;
1935 for (Edge
&E
: *this)
1936 Roots
.push_back(&E
.getNode());
1938 // The roots will be iterated in order.
1942 // We need to populate each node as we begin to walk its edges.
1946 [](Node
&N
) { return N
->end(); },
1947 [](EdgeSequence::iterator I
) -> Node
& { return I
->getNode(); },
1948 [this](node_stack_range Nodes
) {
1949 RefSCC
*NewRC
= createRefSCC(*this);
1950 buildSCCs(*NewRC
, Nodes
);
1952 // Push the new node into the postorder list and remember its position
1953 // in the index map.
1955 RefSCCIndices
.insert({NewRC
, PostOrderRefSCCs
.size()}).second
;
1957 assert(Inserted
&& "Cannot already have this RefSCC in the index map!");
1958 PostOrderRefSCCs
.push_back(NewRC
);
1959 #ifdef EXPENSIVE_CHECKS
1965 AnalysisKey
LazyCallGraphAnalysis::Key
;
1967 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream
&OS
) : OS(OS
) {}
1969 static void printNode(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
1970 OS
<< " Edges in function: " << N
.getFunction().getName() << "\n";
1971 for (LazyCallGraph::Edge
&E
: N
.populate())
1972 OS
<< " " << (E
.isCall() ? "call" : "ref ") << " -> "
1973 << E
.getFunction().getName() << "\n";
1978 static void printSCC(raw_ostream
&OS
, LazyCallGraph::SCC
&C
) {
1979 OS
<< " SCC with " << C
.size() << " functions:\n";
1981 for (LazyCallGraph::Node
&N
: C
)
1982 OS
<< " " << N
.getFunction().getName() << "\n";
1985 static void printRefSCC(raw_ostream
&OS
, LazyCallGraph::RefSCC
&C
) {
1986 OS
<< " RefSCC with " << C
.size() << " call SCCs:\n";
1988 for (LazyCallGraph::SCC
&InnerC
: C
)
1989 printSCC(OS
, InnerC
);
1994 PreservedAnalyses
LazyCallGraphPrinterPass::run(Module
&M
,
1995 ModuleAnalysisManager
&AM
) {
1996 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
1998 OS
<< "Printing the call graph for module: " << M
.getModuleIdentifier()
2001 for (Function
&F
: M
)
2002 printNode(OS
, G
.get(F
));
2005 for (LazyCallGraph::RefSCC
&C
: G
.postorder_ref_sccs())
2008 return PreservedAnalyses::all();
2011 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream
&OS
)
2014 static void printNodeDOT(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
2016 "\"" + DOT::EscapeString(std::string(N
.getFunction().getName())) + "\"";
2018 for (LazyCallGraph::Edge
&E
: N
.populate()) {
2019 OS
<< " " << Name
<< " -> \""
2020 << DOT::EscapeString(std::string(E
.getFunction().getName())) << "\"";
2021 if (!E
.isCall()) // It is a ref edge.
2022 OS
<< " [style=dashed,label=\"ref\"]";
2029 PreservedAnalyses
LazyCallGraphDOTPrinterPass::run(Module
&M
,
2030 ModuleAnalysisManager
&AM
) {
2031 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
2033 OS
<< "digraph \"" << DOT::EscapeString(M
.getModuleIdentifier()) << "\" {\n";
2035 for (Function
&F
: M
)
2036 printNodeDOT(OS
, G
.get(F
));
2040 return PreservedAnalyses::all();