1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
3 // The LLVM Compiler Infrastructure
5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6 // See https://llvm.org/LICENSE.txt for license information.
7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
9 //===----------------------------------------------------------------------===//
12 /// This file defines the implementation for the loop cache analysis.
13 /// The implementation is largely based on the following paper:
15 /// Compiler Optimizations for Improving Data Locality
16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
19 /// The general approach taken to estimate the number of cache lines used by the
20 /// memory references in an inner loop is:
21 /// 1. Partition memory references that exhibit temporal or spacial reuse
22 /// into reference groups.
23 /// 2. For each loop L in the a loop nest LN:
24 /// a. Compute the cost of the reference group
25 /// b. Compute the loop cost by summing up the reference groups costs
26 //===----------------------------------------------------------------------===//
28 #include "llvm/Analysis/LoopCacheAnalysis.h"
29 #include "llvm/ADT/BreadthFirstIterator.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/DependenceAnalysis.h"
34 #include "llvm/Analysis/LoopInfo.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
42 #define DEBUG_TYPE "loop-cache-cost"
44 static cl::opt
<unsigned> DefaultTripCount(
45 "default-trip-count", cl::init(100), cl::Hidden
,
46 cl::desc("Use this to specify the default trip count of a loop"));
48 // In this analysis two array references are considered to exhibit temporal
49 // reuse if they access either the same memory location, or a memory location
50 // with distance smaller than a configurable threshold.
51 static cl::opt
<unsigned> TemporalReuseThreshold(
52 "temporal-reuse-threshold", cl::init(2), cl::Hidden
,
53 cl::desc("Use this to specify the max. distance between array elements "
54 "accessed in a loop so that the elements are classified to have "
57 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
58 /// nullptr if any loops in the loop vector supplied has more than one sibling.
59 /// The loop vector is expected to contain loops collected in breadth-first
61 static Loop
*getInnerMostLoop(const LoopVectorTy
&Loops
) {
62 assert(!Loops
.empty() && "Expecting a non-empy loop vector");
64 Loop
*LastLoop
= Loops
.back();
65 Loop
*ParentLoop
= LastLoop
->getParentLoop();
67 if (ParentLoop
== nullptr) {
68 assert(Loops
.size() == 1 && "Expecting a single loop");
72 return (llvm::is_sorted(Loops
,
73 [](const Loop
*L1
, const Loop
*L2
) {
74 return L1
->getLoopDepth() < L2
->getLoopDepth();
80 static bool isOneDimensionalArray(const SCEV
&AccessFn
, const SCEV
&ElemSize
,
81 const Loop
&L
, ScalarEvolution
&SE
) {
82 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(&AccessFn
);
83 if (!AR
|| !AR
->isAffine())
86 assert(AR
->getLoop() && "AR should have a loop");
88 // Check that start and increment are not add recurrences.
89 const SCEV
*Start
= AR
->getStart();
90 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
91 if (isa
<SCEVAddRecExpr
>(Start
) || isa
<SCEVAddRecExpr
>(Step
))
94 // Check that start and increment are both invariant in the loop.
95 if (!SE
.isLoopInvariant(Start
, &L
) || !SE
.isLoopInvariant(Step
, &L
))
98 const SCEV
*StepRec
= AR
->getStepRecurrence(SE
);
99 if (StepRec
&& SE
.isKnownNegative(StepRec
))
100 StepRec
= SE
.getNegativeSCEV(StepRec
);
102 return StepRec
== &ElemSize
;
105 /// Compute the trip count for the given loop \p L. Return the SCEV expression
106 /// for the trip count or nullptr if it cannot be computed.
107 static const SCEV
*computeTripCount(const Loop
&L
, ScalarEvolution
&SE
) {
108 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(&L
);
109 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) ||
110 !isa
<SCEVConstant
>(BackedgeTakenCount
))
112 return SE
.getTripCountFromExitCount(BackedgeTakenCount
);
115 //===----------------------------------------------------------------------===//
116 // IndexedReference implementation
118 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const IndexedReference
&R
) {
120 OS
<< R
.StoreOrLoadInst
;
121 OS
<< ", IsValid=false.";
125 OS
<< *R
.BasePointer
;
126 for (const SCEV
*Subscript
: R
.Subscripts
)
127 OS
<< "[" << *Subscript
<< "]";
130 for (const SCEV
*Size
: R
.Sizes
)
131 OS
<< "[" << *Size
<< "]";
136 IndexedReference::IndexedReference(Instruction
&StoreOrLoadInst
,
137 const LoopInfo
&LI
, ScalarEvolution
&SE
)
138 : StoreOrLoadInst(StoreOrLoadInst
), SE(SE
) {
139 assert((isa
<StoreInst
>(StoreOrLoadInst
) || isa
<LoadInst
>(StoreOrLoadInst
)) &&
140 "Expecting a load or store instruction");
142 IsValid
= delinearize(LI
);
144 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
148 Optional
<bool> IndexedReference::hasSpacialReuse(const IndexedReference
&Other
,
150 AAResults
&AA
) const {
151 assert(IsValid
&& "Expecting a valid reference");
153 if (BasePointer
!= Other
.getBasePointer() && !isAliased(Other
, AA
)) {
154 LLVM_DEBUG(dbgs().indent(2)
155 << "No spacial reuse: different base pointers\n");
159 unsigned NumSubscripts
= getNumSubscripts();
160 if (NumSubscripts
!= Other
.getNumSubscripts()) {
161 LLVM_DEBUG(dbgs().indent(2)
162 << "No spacial reuse: different number of subscripts\n");
166 // all subscripts must be equal, except the leftmost one (the last one).
167 for (auto SubNum
: seq
<unsigned>(0, NumSubscripts
- 1)) {
168 if (getSubscript(SubNum
) != Other
.getSubscript(SubNum
)) {
169 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
170 << "\n\t" << *getSubscript(SubNum
) << "\n\t"
171 << *Other
.getSubscript(SubNum
) << "\n");
176 // the difference between the last subscripts must be less than the cache line
178 const SCEV
*LastSubscript
= getLastSubscript();
179 const SCEV
*OtherLastSubscript
= Other
.getLastSubscript();
180 const SCEVConstant
*Diff
= dyn_cast
<SCEVConstant
>(
181 SE
.getMinusSCEV(LastSubscript
, OtherLastSubscript
));
183 if (Diff
== nullptr) {
184 LLVM_DEBUG(dbgs().indent(2)
185 << "No spacial reuse, difference between subscript:\n\t"
186 << *LastSubscript
<< "\n\t" << OtherLastSubscript
187 << "\nis not constant.\n");
191 bool InSameCacheLine
= (Diff
->getValue()->getSExtValue() < CLS
);
195 dbgs().indent(2) << "Found spacial reuse.\n";
197 dbgs().indent(2) << "No spacial reuse.\n";
200 return InSameCacheLine
;
203 Optional
<bool> IndexedReference::hasTemporalReuse(const IndexedReference
&Other
,
204 unsigned MaxDistance
,
207 AAResults
&AA
) const {
208 assert(IsValid
&& "Expecting a valid reference");
210 if (BasePointer
!= Other
.getBasePointer() && !isAliased(Other
, AA
)) {
211 LLVM_DEBUG(dbgs().indent(2)
212 << "No temporal reuse: different base pointer\n");
216 std::unique_ptr
<Dependence
> D
=
217 DI
.depends(&StoreOrLoadInst
, &Other
.StoreOrLoadInst
, true);
220 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
224 if (D
->isLoopIndependent()) {
225 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
229 // Check the dependence distance at every loop level. There is temporal reuse
230 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
231 // it is zero at every other loop level.
232 int LoopDepth
= L
.getLoopDepth();
233 int Levels
= D
->getLevels();
234 for (int Level
= 1; Level
<= Levels
; ++Level
) {
235 const SCEV
*Distance
= D
->getDistance(Level
);
236 const SCEVConstant
*SCEVConst
= dyn_cast_or_null
<SCEVConstant
>(Distance
);
238 if (SCEVConst
== nullptr) {
239 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
243 const ConstantInt
&CI
= *SCEVConst
->getValue();
244 if (Level
!= LoopDepth
&& !CI
.isZero()) {
245 LLVM_DEBUG(dbgs().indent(2)
246 << "No temporal reuse: distance is not zero at depth=" << Level
249 } else if (Level
== LoopDepth
&& CI
.getSExtValue() > MaxDistance
) {
252 << "No temporal reuse: distance is greater than MaxDistance at depth="
258 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
262 CacheCostTy
IndexedReference::computeRefCost(const Loop
&L
,
263 unsigned CLS
) const {
264 assert(IsValid
&& "Expecting a valid reference");
266 dbgs().indent(2) << "Computing cache cost for:\n";
267 dbgs().indent(4) << *this << "\n";
270 // If the indexed reference is loop invariant the cost is one.
271 if (isLoopInvariant(L
)) {
272 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
276 const SCEV
*TripCount
= computeTripCount(L
, SE
);
278 LLVM_DEBUG(dbgs() << "Trip count of loop " << L
.getName()
279 << " could not be computed, using DefaultTripCount\n");
280 const SCEV
*ElemSize
= Sizes
.back();
281 TripCount
= SE
.getConstant(ElemSize
->getType(), DefaultTripCount
);
283 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount
<< "\n");
285 // If the indexed reference is 'consecutive' the cost is
286 // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
287 const SCEV
*RefCost
= TripCount
;
289 if (isConsecutive(L
, CLS
)) {
290 const SCEV
*Coeff
= getLastCoefficient();
291 const SCEV
*ElemSize
= Sizes
.back();
292 const SCEV
*Stride
= SE
.getMulExpr(Coeff
, ElemSize
);
293 Type
*WiderType
= SE
.getWiderType(Stride
->getType(), TripCount
->getType());
294 const SCEV
*CacheLineSize
= SE
.getConstant(WiderType
, CLS
);
295 if (SE
.isKnownNegative(Stride
))
296 Stride
= SE
.getNegativeSCEV(Stride
);
297 Stride
= SE
.getNoopOrAnyExtend(Stride
, WiderType
);
298 TripCount
= SE
.getNoopOrAnyExtend(TripCount
, WiderType
);
299 const SCEV
*Numerator
= SE
.getMulExpr(Stride
, TripCount
);
300 RefCost
= SE
.getUDivExpr(Numerator
, CacheLineSize
);
302 LLVM_DEBUG(dbgs().indent(4)
303 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
304 << *RefCost
<< "\n");
306 LLVM_DEBUG(dbgs().indent(4)
307 << "Access is not consecutive: RefCost=TripCount=" << *RefCost
310 // Attempt to fold RefCost into a constant.
311 if (auto ConstantCost
= dyn_cast
<SCEVConstant
>(RefCost
))
312 return ConstantCost
->getValue()->getSExtValue();
314 LLVM_DEBUG(dbgs().indent(4)
315 << "RefCost is not a constant! Setting to RefCost=InvalidCost "
316 "(invalid value).\n");
318 return CacheCost::InvalidCost
;
321 bool IndexedReference::delinearize(const LoopInfo
&LI
) {
322 assert(Subscripts
.empty() && "Subscripts should be empty");
323 assert(Sizes
.empty() && "Sizes should be empty");
324 assert(!IsValid
&& "Should be called once from the constructor");
325 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst
<< "\n");
327 const SCEV
*ElemSize
= SE
.getElementSize(&StoreOrLoadInst
);
328 const BasicBlock
*BB
= StoreOrLoadInst
.getParent();
330 if (Loop
*L
= LI
.getLoopFor(BB
)) {
331 const SCEV
*AccessFn
=
332 SE
.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst
), L
);
334 BasePointer
= dyn_cast
<SCEVUnknown
>(SE
.getPointerBase(AccessFn
));
335 if (BasePointer
== nullptr) {
338 << "ERROR: failed to delinearize, can't identify base pointer\n");
342 AccessFn
= SE
.getMinusSCEV(AccessFn
, BasePointer
);
344 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L
->getName()
345 << "', AccessFn: " << *AccessFn
<< "\n");
347 SE
.delinearize(AccessFn
, Subscripts
, Sizes
,
348 SE
.getElementSize(&StoreOrLoadInst
));
350 if (Subscripts
.empty() || Sizes
.empty() ||
351 Subscripts
.size() != Sizes
.size()) {
352 // Attempt to determine whether we have a single dimensional array access.
354 if (!isOneDimensionalArray(*AccessFn
, *ElemSize
, *L
, SE
)) {
355 LLVM_DEBUG(dbgs().indent(2)
356 << "ERROR: failed to delinearize reference\n");
362 // The array may be accessed in reverse, for example:
363 // for (i = N; i > 0; i--)
365 // In this case, reconstruct the access function using the absolute value
366 // of the step recurrence.
367 const SCEVAddRecExpr
*AccessFnAR
= dyn_cast
<SCEVAddRecExpr
>(AccessFn
);
368 const SCEV
*StepRec
= AccessFnAR
? AccessFnAR
->getStepRecurrence(SE
) : nullptr;
370 if (StepRec
&& SE
.isKnownNegative(StepRec
))
371 AccessFn
= SE
.getAddRecExpr(AccessFnAR
->getStart(),
372 SE
.getNegativeSCEV(StepRec
),
373 AccessFnAR
->getLoop(),
374 AccessFnAR
->getNoWrapFlags());
375 const SCEV
*Div
= SE
.getUDivExactExpr(AccessFn
, ElemSize
);
376 Subscripts
.push_back(Div
);
377 Sizes
.push_back(ElemSize
);
380 return all_of(Subscripts
, [&](const SCEV
*Subscript
) {
381 return isSimpleAddRecurrence(*Subscript
, *L
);
388 bool IndexedReference::isLoopInvariant(const Loop
&L
) const {
389 Value
*Addr
= getPointerOperand(&StoreOrLoadInst
);
390 assert(Addr
!= nullptr && "Expecting either a load or a store instruction");
391 assert(SE
.isSCEVable(Addr
->getType()) && "Addr should be SCEVable");
393 if (SE
.isLoopInvariant(SE
.getSCEV(Addr
), &L
))
396 // The indexed reference is loop invariant if none of the coefficients use
397 // the loop induction variable.
398 bool allCoeffForLoopAreZero
= all_of(Subscripts
, [&](const SCEV
*Subscript
) {
399 return isCoeffForLoopZeroOrInvariant(*Subscript
, L
);
402 return allCoeffForLoopAreZero
;
405 bool IndexedReference::isConsecutive(const Loop
&L
, unsigned CLS
) const {
406 // The indexed reference is 'consecutive' if the only coefficient that uses
407 // the loop induction variable is the last one...
408 const SCEV
*LastSubscript
= Subscripts
.back();
409 for (const SCEV
*Subscript
: Subscripts
) {
410 if (Subscript
== LastSubscript
)
412 if (!isCoeffForLoopZeroOrInvariant(*Subscript
, L
))
416 // ...and the access stride is less than the cache line size.
417 const SCEV
*Coeff
= getLastCoefficient();
418 const SCEV
*ElemSize
= Sizes
.back();
419 const SCEV
*Stride
= SE
.getMulExpr(Coeff
, ElemSize
);
420 const SCEV
*CacheLineSize
= SE
.getConstant(Stride
->getType(), CLS
);
422 Stride
= SE
.isKnownNegative(Stride
) ? SE
.getNegativeSCEV(Stride
) : Stride
;
423 return SE
.isKnownPredicate(ICmpInst::ICMP_ULT
, Stride
, CacheLineSize
);
426 const SCEV
*IndexedReference::getLastCoefficient() const {
427 const SCEV
*LastSubscript
= getLastSubscript();
428 assert(isa
<SCEVAddRecExpr
>(LastSubscript
) &&
429 "Expecting a SCEV add recurrence expression");
430 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LastSubscript
);
431 return AR
->getStepRecurrence(SE
);
434 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV
&Subscript
,
435 const Loop
&L
) const {
436 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(&Subscript
);
437 return (AR
!= nullptr) ? AR
->getLoop() != &L
438 : SE
.isLoopInvariant(&Subscript
, &L
);
441 bool IndexedReference::isSimpleAddRecurrence(const SCEV
&Subscript
,
442 const Loop
&L
) const {
443 if (!isa
<SCEVAddRecExpr
>(Subscript
))
446 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(&Subscript
);
447 assert(AR
->getLoop() && "AR should have a loop");
452 const SCEV
*Start
= AR
->getStart();
453 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
455 if (!SE
.isLoopInvariant(Start
, &L
) || !SE
.isLoopInvariant(Step
, &L
))
461 bool IndexedReference::isAliased(const IndexedReference
&Other
,
462 AAResults
&AA
) const {
463 const auto &Loc1
= MemoryLocation::get(&StoreOrLoadInst
);
464 const auto &Loc2
= MemoryLocation::get(&Other
.StoreOrLoadInst
);
465 return AA
.isMustAlias(Loc1
, Loc2
);
468 //===----------------------------------------------------------------------===//
469 // CacheCost implementation
471 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const CacheCost
&CC
) {
472 for (const auto &LC
: CC
.LoopCosts
) {
473 const Loop
*L
= LC
.first
;
474 OS
<< "Loop '" << L
->getName() << "' has cost = " << LC
.second
<< "\n";
479 CacheCost::CacheCost(const LoopVectorTy
&Loops
, const LoopInfo
&LI
,
480 ScalarEvolution
&SE
, TargetTransformInfo
&TTI
,
481 AAResults
&AA
, DependenceInfo
&DI
,
482 Optional
<unsigned> TRT
)
483 : Loops(Loops
), TripCounts(), LoopCosts(),
484 TRT((TRT
== None
) ? Optional
<unsigned>(TemporalReuseThreshold
) : TRT
),
485 LI(LI
), SE(SE
), TTI(TTI
), AA(AA
), DI(DI
) {
486 assert(!Loops
.empty() && "Expecting a non-empty loop vector.");
488 for (const Loop
*L
: Loops
) {
489 unsigned TripCount
= SE
.getSmallConstantTripCount(L
);
490 TripCount
= (TripCount
== 0) ? DefaultTripCount
: TripCount
;
491 TripCounts
.push_back({L
, TripCount
});
494 calculateCacheFootprint();
497 std::unique_ptr
<CacheCost
>
498 CacheCost::getCacheCost(Loop
&Root
, LoopStandardAnalysisResults
&AR
,
499 DependenceInfo
&DI
, Optional
<unsigned> TRT
) {
500 if (!Root
.isOutermost()) {
501 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
506 append_range(Loops
, breadth_first(&Root
));
508 if (!getInnerMostLoop(Loops
)) {
509 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
510 "than one innermost loop\n");
514 return std::make_unique
<CacheCost
>(Loops
, AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AA
, DI
, TRT
);
517 void CacheCost::calculateCacheFootprint() {
518 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
519 ReferenceGroupsTy RefGroups
;
520 if (!populateReferenceGroups(RefGroups
))
523 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
524 for (const Loop
*L
: Loops
) {
525 assert((std::find_if(LoopCosts
.begin(), LoopCosts
.end(),
526 [L
](const LoopCacheCostTy
&LCC
) {
527 return LCC
.first
== L
;
528 }) == LoopCosts
.end()) &&
529 "Should not add duplicate element");
530 CacheCostTy LoopCost
= computeLoopCacheCost(*L
, RefGroups
);
531 LoopCosts
.push_back(std::make_pair(L
, LoopCost
));
538 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy
&RefGroups
) const {
539 assert(RefGroups
.empty() && "Reference groups should be empty");
541 unsigned CLS
= TTI
.getCacheLineSize();
542 Loop
*InnerMostLoop
= getInnerMostLoop(Loops
);
543 assert(InnerMostLoop
!= nullptr && "Expecting a valid innermost loop");
545 for (BasicBlock
*BB
: InnerMostLoop
->getBlocks()) {
546 for (Instruction
&I
: *BB
) {
547 if (!isa
<StoreInst
>(I
) && !isa
<LoadInst
>(I
))
550 std::unique_ptr
<IndexedReference
> R(new IndexedReference(I
, LI
, SE
));
555 for (ReferenceGroupTy
&RefGroup
: RefGroups
) {
556 const IndexedReference
&Representative
= *RefGroup
.front().get();
558 dbgs() << "References:\n";
559 dbgs().indent(2) << *R
<< "\n";
560 dbgs().indent(2) << Representative
<< "\n";
564 // FIXME: Both positive and negative access functions will be placed
565 // into the same reference group, resulting in a bi-directional array
567 // for (i = N; i > 0; i--)
569 // having the same cost calculation as a single dimention access pattern
570 // for (i = 0; i < N; i++)
572 // when in actuality, depending on the array size, the first example
573 // should have a cost closer to 2x the second due to the two cache
574 // access per iteration from opposite ends of the array
575 Optional
<bool> HasTemporalReuse
=
576 R
->hasTemporalReuse(Representative
, *TRT
, *InnerMostLoop
, DI
, AA
);
577 Optional
<bool> HasSpacialReuse
=
578 R
->hasSpacialReuse(Representative
, CLS
, AA
);
580 if ((HasTemporalReuse
.hasValue() && *HasTemporalReuse
) ||
581 (HasSpacialReuse
.hasValue() && *HasSpacialReuse
)) {
582 RefGroup
.push_back(std::move(R
));
590 RG
.push_back(std::move(R
));
591 RefGroups
.push_back(std::move(RG
));
596 if (RefGroups
.empty())
600 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
602 for (const ReferenceGroupTy
&RG
: RefGroups
) {
603 dbgs().indent(2) << "RefGroup " << n
<< ":\n";
604 for (const auto &IR
: RG
)
605 dbgs().indent(4) << *IR
<< "\n";
615 CacheCost::computeLoopCacheCost(const Loop
&L
,
616 const ReferenceGroupsTy
&RefGroups
) const {
617 if (!L
.isLoopSimplifyForm())
620 LLVM_DEBUG(dbgs() << "Considering loop '" << L
.getName()
621 << "' as innermost loop.\n");
623 // Compute the product of the trip counts of each other loop in the nest.
624 CacheCostTy TripCountsProduct
= 1;
625 for (const auto &TC
: TripCounts
) {
628 TripCountsProduct
*= TC
.second
;
631 CacheCostTy LoopCost
= 0;
632 for (const ReferenceGroupTy
&RG
: RefGroups
) {
633 CacheCostTy RefGroupCost
= computeRefGroupCacheCost(RG
, L
);
634 LoopCost
+= RefGroupCost
* TripCountsProduct
;
637 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L
.getName()
638 << "' has cost=" << LoopCost
<< "\n");
643 CacheCostTy
CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy
&RG
,
644 const Loop
&L
) const {
645 assert(!RG
.empty() && "Reference group should have at least one member.");
647 const IndexedReference
*Representative
= RG
.front().get();
648 return Representative
->computeRefCost(L
, TTI
.getCacheLineSize());
651 //===----------------------------------------------------------------------===//
652 // LoopCachePrinterPass implementation
654 PreservedAnalyses
LoopCachePrinterPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
655 LoopStandardAnalysisResults
&AR
,
657 Function
*F
= L
.getHeader()->getParent();
658 DependenceInfo
DI(F
, &AR
.AA
, &AR
.SE
, &AR
.LI
);
660 if (auto CC
= CacheCost::getCacheCost(L
, AR
, DI
))
663 return PreservedAnalyses::all();