1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/StackSafetyAnalysis.h"
29 #include "llvm/Analysis/TypeMetadataUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
61 #define DEBUG_TYPE "module-summary-analysis"
63 // Option to force edges cold which will block importing when the
64 // -import-cold-multiplier is set to 0. Useful for debugging.
65 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
=
66 FunctionSummary::FSHT_None
;
67 cl::opt
<FunctionSummary::ForceSummaryHotnessType
, true> FSEC(
68 "force-summary-edges-cold", cl::Hidden
, cl::location(ForceSummaryEdgesCold
),
69 cl::desc("Force all edges in the function summary to cold"),
70 cl::values(clEnumValN(FunctionSummary::FSHT_None
, "none", "None."),
71 clEnumValN(FunctionSummary::FSHT_AllNonCritical
,
72 "all-non-critical", "All non-critical edges."),
73 clEnumValN(FunctionSummary::FSHT_All
, "all", "All edges.")));
75 cl::opt
<std::string
> ModuleSummaryDotFile(
76 "module-summary-dot-file", cl::init(""), cl::Hidden
,
77 cl::value_desc("filename"),
78 cl::desc("File to emit dot graph of new summary into."));
80 // Walk through the operands of a given User via worklist iteration and populate
81 // the set of GlobalValue references encountered. Invoked either on an
82 // Instruction or a GlobalVariable (which walks its initializer).
83 // Return true if any of the operands contains blockaddress. This is important
84 // to know when computing summary for global var, because if global variable
85 // references basic block address we can't import it separately from function
86 // containing that basic block. For simplicity we currently don't import such
87 // global vars at all. When importing function we aren't interested if any
88 // instruction in it takes an address of any basic block, because instruction
89 // can only take an address of basic block located in the same function.
90 static bool findRefEdges(ModuleSummaryIndex
&Index
, const User
*CurUser
,
91 SetVector
<ValueInfo
> &RefEdges
,
92 SmallPtrSet
<const User
*, 8> &Visited
) {
93 bool HasBlockAddress
= false;
94 SmallVector
<const User
*, 32> Worklist
;
95 if (Visited
.insert(CurUser
).second
)
96 Worklist
.push_back(CurUser
);
98 while (!Worklist
.empty()) {
99 const User
*U
= Worklist
.pop_back_val();
100 const auto *CB
= dyn_cast
<CallBase
>(U
);
102 for (const auto &OI
: U
->operands()) {
103 const User
*Operand
= dyn_cast
<User
>(OI
);
106 if (isa
<BlockAddress
>(Operand
)) {
107 HasBlockAddress
= true;
110 if (auto *GV
= dyn_cast
<GlobalValue
>(Operand
)) {
111 // We have a reference to a global value. This should be added to
112 // the reference set unless it is a callee. Callees are handled
113 // specially by WriteFunction and are added to a separate list.
114 if (!(CB
&& CB
->isCallee(&OI
)))
115 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
118 if (Visited
.insert(Operand
).second
)
119 Worklist
.push_back(Operand
);
122 return HasBlockAddress
;
125 static CalleeInfo::HotnessType
getHotness(uint64_t ProfileCount
,
126 ProfileSummaryInfo
*PSI
) {
128 return CalleeInfo::HotnessType::Unknown
;
129 if (PSI
->isHotCount(ProfileCount
))
130 return CalleeInfo::HotnessType::Hot
;
131 if (PSI
->isColdCount(ProfileCount
))
132 return CalleeInfo::HotnessType::Cold
;
133 return CalleeInfo::HotnessType::None
;
136 static bool isNonRenamableLocal(const GlobalValue
&GV
) {
137 return GV
.hasSection() && GV
.hasLocalLinkage();
140 /// Determine whether this call has all constant integer arguments (excluding
141 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
142 static void addVCallToSet(DevirtCallSite Call
, GlobalValue::GUID Guid
,
143 SetVector
<FunctionSummary::VFuncId
> &VCalls
,
144 SetVector
<FunctionSummary::ConstVCall
> &ConstVCalls
) {
145 std::vector
<uint64_t> Args
;
146 // Start from the second argument to skip the "this" pointer.
147 for (auto &Arg
: drop_begin(Call
.CB
.args())) {
148 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
149 if (!CI
|| CI
->getBitWidth() > 64) {
150 VCalls
.insert({Guid
, Call
.Offset
});
153 Args
.push_back(CI
->getZExtValue());
155 ConstVCalls
.insert({{Guid
, Call
.Offset
}, std::move(Args
)});
158 /// If this intrinsic call requires that we add information to the function
159 /// summary, do so via the non-constant reference arguments.
160 static void addIntrinsicToSummary(
161 const CallInst
*CI
, SetVector
<GlobalValue::GUID
> &TypeTests
,
162 SetVector
<FunctionSummary::VFuncId
> &TypeTestAssumeVCalls
,
163 SetVector
<FunctionSummary::VFuncId
> &TypeCheckedLoadVCalls
,
164 SetVector
<FunctionSummary::ConstVCall
> &TypeTestAssumeConstVCalls
,
165 SetVector
<FunctionSummary::ConstVCall
> &TypeCheckedLoadConstVCalls
,
167 switch (CI
->getCalledFunction()->getIntrinsicID()) {
168 case Intrinsic::type_test
: {
169 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(1));
170 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
173 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
175 // Produce a summary from type.test intrinsics. We only summarize type.test
176 // intrinsics that are used other than by an llvm.assume intrinsic.
177 // Intrinsics that are assumed are relevant only to the devirtualization
178 // pass, not the type test lowering pass.
179 bool HasNonAssumeUses
= llvm::any_of(CI
->uses(), [](const Use
&CIU
) {
180 return !isa
<AssumeInst
>(CIU
.getUser());
182 if (HasNonAssumeUses
)
183 TypeTests
.insert(Guid
);
185 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
186 SmallVector
<CallInst
*, 4> Assumes
;
187 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
188 for (auto &Call
: DevirtCalls
)
189 addVCallToSet(Call
, Guid
, TypeTestAssumeVCalls
,
190 TypeTestAssumeConstVCalls
);
195 case Intrinsic::type_checked_load
: {
196 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(2));
197 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
200 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
202 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
203 SmallVector
<Instruction
*, 4> LoadedPtrs
;
204 SmallVector
<Instruction
*, 4> Preds
;
205 bool HasNonCallUses
= false;
206 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
207 HasNonCallUses
, CI
, DT
);
208 // Any non-call uses of the result of llvm.type.checked.load will
209 // prevent us from optimizing away the llvm.type.test.
211 TypeTests
.insert(Guid
);
212 for (auto &Call
: DevirtCalls
)
213 addVCallToSet(Call
, Guid
, TypeCheckedLoadVCalls
,
214 TypeCheckedLoadConstVCalls
);
223 static bool isNonVolatileLoad(const Instruction
*I
) {
224 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
225 return !LI
->isVolatile();
230 static bool isNonVolatileStore(const Instruction
*I
) {
231 if (const auto *SI
= dyn_cast
<StoreInst
>(I
))
232 return !SI
->isVolatile();
237 static void computeFunctionSummary(
238 ModuleSummaryIndex
&Index
, const Module
&M
, const Function
&F
,
239 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
, DominatorTree
&DT
,
240 bool HasLocalsInUsedOrAsm
, DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
242 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
243 // Summary not currently supported for anonymous functions, they should
247 unsigned NumInsts
= 0;
248 // Map from callee ValueId to profile count. Used to accumulate profile
249 // counts for all static calls to a given callee.
250 MapVector
<ValueInfo
, CalleeInfo
> CallGraphEdges
;
251 SetVector
<ValueInfo
> RefEdges
, LoadRefEdges
, StoreRefEdges
;
252 SetVector
<GlobalValue::GUID
> TypeTests
;
253 SetVector
<FunctionSummary::VFuncId
> TypeTestAssumeVCalls
,
254 TypeCheckedLoadVCalls
;
255 SetVector
<FunctionSummary::ConstVCall
> TypeTestAssumeConstVCalls
,
256 TypeCheckedLoadConstVCalls
;
257 ICallPromotionAnalysis ICallAnalysis
;
258 SmallPtrSet
<const User
*, 8> Visited
;
260 // Add personality function, prefix data and prologue data to function's ref
262 findRefEdges(Index
, &F
, RefEdges
, Visited
);
263 std::vector
<const Instruction
*> NonVolatileLoads
;
264 std::vector
<const Instruction
*> NonVolatileStores
;
266 bool HasInlineAsmMaybeReferencingInternal
= false;
267 bool HasIndirBranchToBlockAddress
= false;
268 for (const BasicBlock
&BB
: F
) {
269 // We don't allow inlining of function with indirect branch to blockaddress.
270 // If the blockaddress escapes the function, e.g., via a global variable,
271 // inlining may lead to an invalid cross-function reference. So we shouldn't
272 // import such function either.
273 if (BB
.hasAddressTaken()) {
274 for (User
*U
: BlockAddress::get(const_cast<BasicBlock
*>(&BB
))->users())
275 if (!isa
<CallBrInst
>(*U
)) {
276 HasIndirBranchToBlockAddress
= true;
281 for (const Instruction
&I
: BB
) {
282 if (isa
<DbgInfoIntrinsic
>(I
))
285 // Regular LTO module doesn't participate in ThinLTO import,
286 // so no reference from it can be read/writeonly, since this
287 // would require importing variable as local copy
289 if (isNonVolatileLoad(&I
)) {
290 // Postpone processing of non-volatile load instructions
291 // See comments below
293 NonVolatileLoads
.push_back(&I
);
295 } else if (isNonVolatileStore(&I
)) {
297 NonVolatileStores
.push_back(&I
);
298 // All references from second operand of store (destination address)
299 // can be considered write-only if they're not referenced by any
300 // non-store instruction. References from first operand of store
301 // (stored value) can't be treated either as read- or as write-only
302 // so we add them to RefEdges as we do with all other instructions
303 // except non-volatile load.
304 Value
*Stored
= I
.getOperand(0);
305 if (auto *GV
= dyn_cast
<GlobalValue
>(Stored
))
306 // findRefEdges will try to examine GV operands, so instead
307 // of calling it we should add GV to RefEdges directly.
308 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
309 else if (auto *U
= dyn_cast
<User
>(Stored
))
310 findRefEdges(Index
, U
, RefEdges
, Visited
);
314 findRefEdges(Index
, &I
, RefEdges
, Visited
);
315 const auto *CB
= dyn_cast
<CallBase
>(&I
);
319 const auto *CI
= dyn_cast
<CallInst
>(&I
);
320 // Since we don't know exactly which local values are referenced in inline
321 // assembly, conservatively mark the function as possibly referencing
322 // a local value from inline assembly to ensure we don't export a
323 // reference (which would require renaming and promotion of the
324 // referenced value).
325 if (HasLocalsInUsedOrAsm
&& CI
&& CI
->isInlineAsm())
326 HasInlineAsmMaybeReferencingInternal
= true;
328 auto *CalledValue
= CB
->getCalledOperand();
329 auto *CalledFunction
= CB
->getCalledFunction();
330 if (CalledValue
&& !CalledFunction
) {
331 CalledValue
= CalledValue
->stripPointerCasts();
332 // Stripping pointer casts can reveal a called function.
333 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
335 // Check if this is an alias to a function. If so, get the
336 // called aliasee for the checks below.
337 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
338 assert(!CalledFunction
&& "Expected null called function in callsite for alias");
339 CalledFunction
= dyn_cast
<Function
>(GA
->getBaseObject());
341 // Check if this is a direct call to a known function or a known
342 // intrinsic, or an indirect call with profile data.
343 if (CalledFunction
) {
344 if (CI
&& CalledFunction
->isIntrinsic()) {
345 addIntrinsicToSummary(
346 CI
, TypeTests
, TypeTestAssumeVCalls
, TypeCheckedLoadVCalls
,
347 TypeTestAssumeConstVCalls
, TypeCheckedLoadConstVCalls
, DT
);
350 // We should have named any anonymous globals
351 assert(CalledFunction
->hasName());
352 auto ScaledCount
= PSI
->getProfileCount(*CB
, BFI
);
353 auto Hotness
= ScaledCount
? getHotness(ScaledCount
.getValue(), PSI
)
354 : CalleeInfo::HotnessType::Unknown
;
355 if (ForceSummaryEdgesCold
!= FunctionSummary::FSHT_None
)
356 Hotness
= CalleeInfo::HotnessType::Cold
;
358 // Use the original CalledValue, in case it was an alias. We want
359 // to record the call edge to the alias in that case. Eventually
360 // an alias summary will be created to associate the alias and
362 auto &ValueInfo
= CallGraphEdges
[Index
.getOrInsertValueInfo(
363 cast
<GlobalValue
>(CalledValue
))];
364 ValueInfo
.updateHotness(Hotness
);
365 // Add the relative block frequency to CalleeInfo if there is no profile
367 if (BFI
!= nullptr && Hotness
== CalleeInfo::HotnessType::Unknown
) {
368 uint64_t BBFreq
= BFI
->getBlockFreq(&BB
).getFrequency();
369 uint64_t EntryFreq
= BFI
->getEntryFreq();
370 ValueInfo
.updateRelBlockFreq(BBFreq
, EntryFreq
);
373 // Skip inline assembly calls.
374 if (CI
&& CI
->isInlineAsm())
376 // Skip direct calls.
377 if (!CalledValue
|| isa
<Constant
>(CalledValue
))
380 // Check if the instruction has a callees metadata. If so, add callees
381 // to CallGraphEdges to reflect the references from the metadata, and
382 // to enable importing for subsequent indirect call promotion and
384 if (auto *MD
= I
.getMetadata(LLVMContext::MD_callees
)) {
385 for (auto &Op
: MD
->operands()) {
386 Function
*Callee
= mdconst::extract_or_null
<Function
>(Op
);
388 CallGraphEdges
[Index
.getOrInsertValueInfo(Callee
)];
392 uint32_t NumVals
, NumCandidates
;
394 auto CandidateProfileData
=
395 ICallAnalysis
.getPromotionCandidatesForInstruction(
396 &I
, NumVals
, TotalCount
, NumCandidates
);
397 for (auto &Candidate
: CandidateProfileData
)
398 CallGraphEdges
[Index
.getOrInsertValueInfo(Candidate
.Value
)]
399 .updateHotness(getHotness(Candidate
.Count
, PSI
));
403 Index
.addBlockCount(F
.size());
405 std::vector
<ValueInfo
> Refs
;
407 auto AddRefEdges
= [&](const std::vector
<const Instruction
*> &Instrs
,
408 SetVector
<ValueInfo
> &Edges
,
409 SmallPtrSet
<const User
*, 8> &Cache
) {
410 for (const auto *I
: Instrs
) {
412 findRefEdges(Index
, I
, Edges
, Cache
);
416 // By now we processed all instructions in a function, except
417 // non-volatile loads and non-volatile value stores. Let's find
418 // ref edges for both of instruction sets
419 AddRefEdges(NonVolatileLoads
, LoadRefEdges
, Visited
);
420 // We can add some values to the Visited set when processing load
421 // instructions which are also used by stores in NonVolatileStores.
422 // For example this can happen if we have following code:
424 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
425 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
427 // After processing loads we'll add bitcast to the Visited set, and if
428 // we use the same set while processing stores, we'll never see store
429 // to @bar and @bar will be mistakenly treated as readonly.
430 SmallPtrSet
<const llvm::User
*, 8> StoreCache
;
431 AddRefEdges(NonVolatileStores
, StoreRefEdges
, StoreCache
);
433 // If both load and store instruction reference the same variable
434 // we won't be able to optimize it. Add all such reference edges
436 for (auto &VI
: StoreRefEdges
)
437 if (LoadRefEdges
.remove(VI
))
440 unsigned RefCnt
= RefEdges
.size();
441 // All new reference edges inserted in two loops below are either
442 // read or write only. They will be grouped in the end of RefEdges
443 // vector, so we can use a single integer value to identify them.
444 for (auto &VI
: LoadRefEdges
)
447 unsigned FirstWORef
= RefEdges
.size();
448 for (auto &VI
: StoreRefEdges
)
451 Refs
= RefEdges
.takeVector();
452 for (; RefCnt
< FirstWORef
; ++RefCnt
)
453 Refs
[RefCnt
].setReadOnly();
455 for (; RefCnt
< Refs
.size(); ++RefCnt
)
456 Refs
[RefCnt
].setWriteOnly();
458 Refs
= RefEdges
.takeVector();
460 // Explicit add hot edges to enforce importing for designated GUIDs for
461 // sample PGO, to enable the same inlines as the profiled optimized binary.
462 for (auto &I
: F
.getImportGUIDs())
463 CallGraphEdges
[Index
.getOrInsertValueInfo(I
)].updateHotness(
464 ForceSummaryEdgesCold
== FunctionSummary::FSHT_All
465 ? CalleeInfo::HotnessType::Cold
466 : CalleeInfo::HotnessType::Critical
);
468 bool NonRenamableLocal
= isNonRenamableLocal(F
);
469 bool NotEligibleForImport
= NonRenamableLocal
||
470 HasInlineAsmMaybeReferencingInternal
||
471 HasIndirBranchToBlockAddress
;
472 GlobalValueSummary::GVFlags
Flags(
473 F
.getLinkage(), F
.getVisibility(), NotEligibleForImport
,
474 /* Live = */ false, F
.isDSOLocal(),
475 F
.hasLinkOnceODRLinkage() && F
.hasGlobalUnnamedAddr());
476 FunctionSummary::FFlags FunFlags
{
477 F
.hasFnAttribute(Attribute::ReadNone
),
478 F
.hasFnAttribute(Attribute::ReadOnly
),
479 F
.hasFnAttribute(Attribute::NoRecurse
), F
.returnDoesNotAlias(),
480 // FIXME: refactor this to use the same code that inliner is using.
481 // Don't try to import functions with noinline attribute.
482 F
.getAttributes().hasFnAttr(Attribute::NoInline
),
483 F
.hasFnAttribute(Attribute::AlwaysInline
)};
484 std::vector
<FunctionSummary::ParamAccess
> ParamAccesses
;
485 if (auto *SSI
= GetSSICallback(F
))
486 ParamAccesses
= SSI
->getParamAccesses(Index
);
487 auto FuncSummary
= std::make_unique
<FunctionSummary
>(
488 Flags
, NumInsts
, FunFlags
, /*EntryCount=*/0, std::move(Refs
),
489 CallGraphEdges
.takeVector(), TypeTests
.takeVector(),
490 TypeTestAssumeVCalls
.takeVector(), TypeCheckedLoadVCalls
.takeVector(),
491 TypeTestAssumeConstVCalls
.takeVector(),
492 TypeCheckedLoadConstVCalls
.takeVector(), std::move(ParamAccesses
));
493 if (NonRenamableLocal
)
494 CantBePromoted
.insert(F
.getGUID());
495 Index
.addGlobalValueSummary(F
, std::move(FuncSummary
));
498 /// Find function pointers referenced within the given vtable initializer
499 /// (or subset of an initializer) \p I. The starting offset of \p I within
500 /// the vtable initializer is \p StartingOffset. Any discovered function
501 /// pointers are added to \p VTableFuncs along with their cumulative offset
502 /// within the initializer.
503 static void findFuncPointers(const Constant
*I
, uint64_t StartingOffset
,
504 const Module
&M
, ModuleSummaryIndex
&Index
,
505 VTableFuncList
&VTableFuncs
) {
506 // First check if this is a function pointer.
507 if (I
->getType()->isPointerTy()) {
508 auto Fn
= dyn_cast
<Function
>(I
->stripPointerCasts());
509 // We can disregard __cxa_pure_virtual as a possible call target, as
510 // calls to pure virtuals are UB.
511 if (Fn
&& Fn
->getName() != "__cxa_pure_virtual")
512 VTableFuncs
.push_back({Index
.getOrInsertValueInfo(Fn
), StartingOffset
});
516 // Walk through the elements in the constant struct or array and recursively
517 // look for virtual function pointers.
518 const DataLayout
&DL
= M
.getDataLayout();
519 if (auto *C
= dyn_cast
<ConstantStruct
>(I
)) {
520 StructType
*STy
= dyn_cast
<StructType
>(C
->getType());
522 const StructLayout
*SL
= DL
.getStructLayout(C
->getType());
524 for (auto EI
: llvm::enumerate(STy
->elements())) {
525 auto Offset
= SL
->getElementOffset(EI
.index());
526 unsigned Op
= SL
->getElementContainingOffset(Offset
);
527 findFuncPointers(cast
<Constant
>(I
->getOperand(Op
)),
528 StartingOffset
+ Offset
, M
, Index
, VTableFuncs
);
530 } else if (auto *C
= dyn_cast
<ConstantArray
>(I
)) {
531 ArrayType
*ATy
= C
->getType();
532 Type
*EltTy
= ATy
->getElementType();
533 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
534 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
535 findFuncPointers(cast
<Constant
>(I
->getOperand(i
)),
536 StartingOffset
+ i
* EltSize
, M
, Index
, VTableFuncs
);
541 // Identify the function pointers referenced by vtable definition \p V.
542 static void computeVTableFuncs(ModuleSummaryIndex
&Index
,
543 const GlobalVariable
&V
, const Module
&M
,
544 VTableFuncList
&VTableFuncs
) {
548 findFuncPointers(V
.getInitializer(), /*StartingOffset=*/0, M
, Index
,
552 // Validate that the VTableFuncs list is ordered by offset.
553 uint64_t PrevOffset
= 0;
554 for (auto &P
: VTableFuncs
) {
555 // The findVFuncPointers traversal should have encountered the
556 // functions in offset order. We need to use ">=" since PrevOffset
558 assert(P
.VTableOffset
>= PrevOffset
);
559 PrevOffset
= P
.VTableOffset
;
564 /// Record vtable definition \p V for each type metadata it references.
566 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex
&Index
,
567 const GlobalVariable
&V
,
568 SmallVectorImpl
<MDNode
*> &Types
) {
569 for (MDNode
*Type
: Types
) {
570 auto TypeID
= Type
->getOperand(1).get();
574 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
577 if (auto *TypeId
= dyn_cast
<MDString
>(TypeID
))
578 Index
.getOrInsertTypeIdCompatibleVtableSummary(TypeId
->getString())
579 .push_back({Offset
, Index
.getOrInsertValueInfo(&V
)});
583 static void computeVariableSummary(ModuleSummaryIndex
&Index
,
584 const GlobalVariable
&V
,
585 DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
587 SmallVectorImpl
<MDNode
*> &Types
) {
588 SetVector
<ValueInfo
> RefEdges
;
589 SmallPtrSet
<const User
*, 8> Visited
;
590 bool HasBlockAddress
= findRefEdges(Index
, &V
, RefEdges
, Visited
);
591 bool NonRenamableLocal
= isNonRenamableLocal(V
);
592 GlobalValueSummary::GVFlags
Flags(
593 V
.getLinkage(), V
.getVisibility(), NonRenamableLocal
,
594 /* Live = */ false, V
.isDSOLocal(),
595 V
.hasLinkOnceODRLinkage() && V
.hasGlobalUnnamedAddr());
597 VTableFuncList VTableFuncs
;
598 // If splitting is not enabled, then we compute the summary information
599 // necessary for index-based whole program devirtualization.
600 if (!Index
.enableSplitLTOUnit()) {
602 V
.getMetadata(LLVMContext::MD_type
, Types
);
603 if (!Types
.empty()) {
604 // Identify the function pointers referenced by this vtable definition.
605 computeVTableFuncs(Index
, V
, M
, VTableFuncs
);
607 // Record this vtable definition for each type metadata it references.
608 recordTypeIdCompatibleVtableReferences(Index
, V
, Types
);
612 // Don't mark variables we won't be able to internalize as read/write-only.
613 bool CanBeInternalized
=
614 !V
.hasComdat() && !V
.hasAppendingLinkage() && !V
.isInterposable() &&
615 !V
.hasAvailableExternallyLinkage() && !V
.hasDLLExportStorageClass();
616 bool Constant
= V
.isConstant();
617 GlobalVarSummary::GVarFlags
VarFlags(CanBeInternalized
,
618 Constant
? false : CanBeInternalized
,
619 Constant
, V
.getVCallVisibility());
620 auto GVarSummary
= std::make_unique
<GlobalVarSummary
>(Flags
, VarFlags
,
621 RefEdges
.takeVector());
622 if (NonRenamableLocal
)
623 CantBePromoted
.insert(V
.getGUID());
625 GVarSummary
->setNotEligibleToImport();
626 if (!VTableFuncs
.empty())
627 GVarSummary
->setVTableFuncs(VTableFuncs
);
628 Index
.addGlobalValueSummary(V
, std::move(GVarSummary
));
632 computeAliasSummary(ModuleSummaryIndex
&Index
, const GlobalAlias
&A
,
633 DenseSet
<GlobalValue::GUID
> &CantBePromoted
) {
634 bool NonRenamableLocal
= isNonRenamableLocal(A
);
635 GlobalValueSummary::GVFlags
Flags(
636 A
.getLinkage(), A
.getVisibility(), NonRenamableLocal
,
637 /* Live = */ false, A
.isDSOLocal(),
638 A
.hasLinkOnceODRLinkage() && A
.hasGlobalUnnamedAddr());
639 auto AS
= std::make_unique
<AliasSummary
>(Flags
);
640 auto *Aliasee
= A
.getBaseObject();
641 auto AliaseeVI
= Index
.getValueInfo(Aliasee
->getGUID());
642 assert(AliaseeVI
&& "Alias expects aliasee summary to be available");
643 assert(AliaseeVI
.getSummaryList().size() == 1 &&
644 "Expected a single entry per aliasee in per-module index");
645 AS
->setAliasee(AliaseeVI
, AliaseeVI
.getSummaryList()[0].get());
646 if (NonRenamableLocal
)
647 CantBePromoted
.insert(A
.getGUID());
648 Index
.addGlobalValueSummary(A
, std::move(AS
));
651 // Set LiveRoot flag on entries matching the given value name.
652 static void setLiveRoot(ModuleSummaryIndex
&Index
, StringRef Name
) {
653 if (ValueInfo VI
= Index
.getValueInfo(GlobalValue::getGUID(Name
)))
654 for (auto &Summary
: VI
.getSummaryList())
655 Summary
->setLive(true);
658 ModuleSummaryIndex
llvm::buildModuleSummaryIndex(
660 std::function
<BlockFrequencyInfo
*(const Function
&F
)> GetBFICallback
,
661 ProfileSummaryInfo
*PSI
,
662 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
664 bool EnableSplitLTOUnit
= false;
665 if (auto *MD
= mdconst::extract_or_null
<ConstantInt
>(
666 M
.getModuleFlag("EnableSplitLTOUnit")))
667 EnableSplitLTOUnit
= MD
->getZExtValue();
668 ModuleSummaryIndex
Index(/*HaveGVs=*/true, EnableSplitLTOUnit
);
670 // Identify the local values in the llvm.used and llvm.compiler.used sets,
671 // which should not be exported as they would then require renaming and
672 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
673 // here because we use this information to mark functions containing inline
674 // assembly calls as not importable.
675 SmallPtrSet
<GlobalValue
*, 4> LocalsUsed
;
676 SmallVector
<GlobalValue
*, 4> Used
;
677 // First collect those in the llvm.used set.
678 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/false);
679 // Next collect those in the llvm.compiler.used set.
680 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/true);
681 DenseSet
<GlobalValue::GUID
> CantBePromoted
;
682 for (auto *V
: Used
) {
683 if (V
->hasLocalLinkage()) {
684 LocalsUsed
.insert(V
);
685 CantBePromoted
.insert(V
->getGUID());
689 bool HasLocalInlineAsmSymbol
= false;
690 if (!M
.getModuleInlineAsm().empty()) {
691 // Collect the local values defined by module level asm, and set up
692 // summaries for these symbols so that they can be marked as NoRename,
693 // to prevent export of any use of them in regular IR that would require
694 // renaming within the module level asm. Note we don't need to create a
695 // summary for weak or global defs, as they don't need to be flagged as
696 // NoRename, and defs in module level asm can't be imported anyway.
697 // Also, any values used but not defined within module level asm should
698 // be listed on the llvm.used or llvm.compiler.used global and marked as
699 // referenced from there.
700 ModuleSymbolTable::CollectAsmSymbols(
701 M
, [&](StringRef Name
, object::BasicSymbolRef::Flags Flags
) {
702 // Symbols not marked as Weak or Global are local definitions.
703 if (Flags
& (object::BasicSymbolRef::SF_Weak
|
704 object::BasicSymbolRef::SF_Global
))
706 HasLocalInlineAsmSymbol
= true;
707 GlobalValue
*GV
= M
.getNamedValue(Name
);
710 assert(GV
->isDeclaration() && "Def in module asm already has definition");
711 GlobalValueSummary::GVFlags
GVFlags(
712 GlobalValue::InternalLinkage
, GlobalValue::DefaultVisibility
,
713 /* NotEligibleToImport = */ true,
715 /* Local */ GV
->isDSOLocal(),
716 GV
->hasLinkOnceODRLinkage() && GV
->hasGlobalUnnamedAddr());
717 CantBePromoted
.insert(GV
->getGUID());
718 // Create the appropriate summary type.
719 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
720 std::unique_ptr
<FunctionSummary
> Summary
=
721 std::make_unique
<FunctionSummary
>(
722 GVFlags
, /*InstCount=*/0,
723 FunctionSummary::FFlags
{
724 F
->hasFnAttribute(Attribute::ReadNone
),
725 F
->hasFnAttribute(Attribute::ReadOnly
),
726 F
->hasFnAttribute(Attribute::NoRecurse
),
727 F
->returnDoesNotAlias(),
728 /* NoInline = */ false,
729 F
->hasFnAttribute(Attribute::AlwaysInline
)},
730 /*EntryCount=*/0, ArrayRef
<ValueInfo
>{},
731 ArrayRef
<FunctionSummary::EdgeTy
>{},
732 ArrayRef
<GlobalValue::GUID
>{},
733 ArrayRef
<FunctionSummary::VFuncId
>{},
734 ArrayRef
<FunctionSummary::VFuncId
>{},
735 ArrayRef
<FunctionSummary::ConstVCall
>{},
736 ArrayRef
<FunctionSummary::ConstVCall
>{},
737 ArrayRef
<FunctionSummary::ParamAccess
>{});
738 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
740 std::unique_ptr
<GlobalVarSummary
> Summary
=
741 std::make_unique
<GlobalVarSummary
>(
743 GlobalVarSummary::GVarFlags(
744 false, false, cast
<GlobalVariable
>(GV
)->isConstant(),
745 GlobalObject::VCallVisibilityPublic
),
746 ArrayRef
<ValueInfo
>{});
747 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
752 bool IsThinLTO
= true;
754 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
755 IsThinLTO
= MD
->getZExtValue();
757 // Compute summaries for all functions defined in module, and save in the
760 if (F
.isDeclaration())
763 DominatorTree
DT(const_cast<Function
&>(F
));
764 BlockFrequencyInfo
*BFI
= nullptr;
765 std::unique_ptr
<BlockFrequencyInfo
> BFIPtr
;
767 BFI
= GetBFICallback(F
);
768 else if (F
.hasProfileData()) {
770 BranchProbabilityInfo BPI
{F
, LI
};
771 BFIPtr
= std::make_unique
<BlockFrequencyInfo
>(F
, BPI
, LI
);
775 computeFunctionSummary(Index
, M
, F
, BFI
, PSI
, DT
,
776 !LocalsUsed
.empty() || HasLocalInlineAsmSymbol
,
777 CantBePromoted
, IsThinLTO
, GetSSICallback
);
780 // Compute summaries for all variables defined in module, and save in the
782 SmallVector
<MDNode
*, 2> Types
;
783 for (const GlobalVariable
&G
: M
.globals()) {
784 if (G
.isDeclaration())
786 computeVariableSummary(Index
, G
, CantBePromoted
, M
, Types
);
789 // Compute summaries for all aliases defined in module, and save in the
791 for (const GlobalAlias
&A
: M
.aliases())
792 computeAliasSummary(Index
, A
, CantBePromoted
);
794 for (auto *V
: LocalsUsed
) {
795 auto *Summary
= Index
.getGlobalValueSummary(*V
);
796 assert(Summary
&& "Missing summary for global value");
797 Summary
->setNotEligibleToImport();
800 // The linker doesn't know about these LLVM produced values, so we need
801 // to flag them as live in the index to ensure index-based dead value
802 // analysis treats them as live roots of the analysis.
803 setLiveRoot(Index
, "llvm.used");
804 setLiveRoot(Index
, "llvm.compiler.used");
805 setLiveRoot(Index
, "llvm.global_ctors");
806 setLiveRoot(Index
, "llvm.global_dtors");
807 setLiveRoot(Index
, "llvm.global.annotations");
809 for (auto &GlobalList
: Index
) {
810 // Ignore entries for references that are undefined in the current module.
811 if (GlobalList
.second
.SummaryList
.empty())
814 assert(GlobalList
.second
.SummaryList
.size() == 1 &&
815 "Expected module's index to have one summary per GUID");
816 auto &Summary
= GlobalList
.second
.SummaryList
[0];
818 Summary
->setNotEligibleToImport();
822 bool AllRefsCanBeExternallyReferenced
=
823 llvm::all_of(Summary
->refs(), [&](const ValueInfo
&VI
) {
824 return !CantBePromoted
.count(VI
.getGUID());
826 if (!AllRefsCanBeExternallyReferenced
) {
827 Summary
->setNotEligibleToImport();
831 if (auto *FuncSummary
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
832 bool AllCallsCanBeExternallyReferenced
= llvm::all_of(
833 FuncSummary
->calls(), [&](const FunctionSummary::EdgeTy
&Edge
) {
834 return !CantBePromoted
.count(Edge
.first
.getGUID());
836 if (!AllCallsCanBeExternallyReferenced
)
837 Summary
->setNotEligibleToImport();
841 if (!ModuleSummaryDotFile
.empty()) {
843 raw_fd_ostream
OSDot(ModuleSummaryDotFile
, EC
, sys::fs::OpenFlags::OF_None
);
845 report_fatal_error(Twine("Failed to open dot file ") +
846 ModuleSummaryDotFile
+ ": " + EC
.message() + "\n");
847 Index
.exportToDot(OSDot
, {});
853 AnalysisKey
ModuleSummaryIndexAnalysis::Key
;
856 ModuleSummaryIndexAnalysis::run(Module
&M
, ModuleAnalysisManager
&AM
) {
857 ProfileSummaryInfo
&PSI
= AM
.getResult
<ProfileSummaryAnalysis
>(M
);
858 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
859 bool NeedSSI
= needsParamAccessSummary(M
);
860 return buildModuleSummaryIndex(
862 [&FAM
](const Function
&F
) {
863 return &FAM
.getResult
<BlockFrequencyAnalysis
>(
864 *const_cast<Function
*>(&F
));
867 [&FAM
, NeedSSI
](const Function
&F
) -> const StackSafetyInfo
* {
868 return NeedSSI
? &FAM
.getResult
<StackSafetyAnalysis
>(
869 const_cast<Function
&>(F
))
874 char ModuleSummaryIndexWrapperPass::ID
= 0;
876 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
877 "Module Summary Analysis", false, true)
878 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
879 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
880 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass
)
881 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
882 "Module Summary Analysis", false, true)
884 ModulePass
*llvm::createModuleSummaryIndexWrapperPass() {
885 return new ModuleSummaryIndexWrapperPass();
888 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
890 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
893 bool ModuleSummaryIndexWrapperPass::runOnModule(Module
&M
) {
894 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
895 bool NeedSSI
= needsParamAccessSummary(M
);
896 Index
.emplace(buildModuleSummaryIndex(
898 [this](const Function
&F
) {
899 return &(this->getAnalysis
<BlockFrequencyInfoWrapperPass
>(
900 *const_cast<Function
*>(&F
))
904 [&](const Function
&F
) -> const StackSafetyInfo
* {
905 return NeedSSI
? &getAnalysis
<StackSafetyInfoWrapperPass
>(
906 const_cast<Function
&>(F
))
913 bool ModuleSummaryIndexWrapperPass::doFinalization(Module
&M
) {
918 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
919 AU
.setPreservesAll();
920 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
921 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
922 AU
.addRequired
<StackSafetyInfoWrapperPass
>();
925 char ImmutableModuleSummaryIndexWrapperPass::ID
= 0;
927 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
928 const ModuleSummaryIndex
*Index
)
929 : ImmutablePass(ID
), Index(Index
) {
930 initializeImmutableModuleSummaryIndexWrapperPassPass(
931 *PassRegistry::getPassRegistry());
934 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
935 AnalysisUsage
&AU
) const {
936 AU
.setPreservesAll();
939 ImmutablePass
*llvm::createImmutableModuleSummaryIndexWrapperPass(
940 const ModuleSummaryIndex
*Index
) {
941 return new ImmutableModuleSummaryIndexWrapperPass(Index
);
944 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass
, "module-summary-info",
945 "Module summary info", false, true)