[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / TypeBasedAliasAnalysis.cpp
blob20d718f4fad34240c50e4109fb087fc580752df2
1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
21 // can be dropped.
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 // !0 = !{ !"an example type tree" }
26 // !1 = !{ !"int", !0 }
27 // !2 = !{ !"float", !0 }
28 // !3 = !{ !"const float", !2, i64 1 }
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
50 // The path tag node has 4 fields with the last field being optional.
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
63 // Given an example
64 // typedef struct {
65 // short s;
66 // } A;
67 // typedef struct {
68 // uint16_t s;
69 // A a;
70 // } B;
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1} // Scalar type node
79 // !3 = !{!"A", !2, i64 0} // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 // // Struct type node
82 // !5 = !{!4, !2, i64 4} // Path tag node
84 // The struct type nodes and the scalar type nodes form a type DAG.
85 // Root (!0)
86 // char (!1) -- edge to Root
87 // short (!2) -- edge to char
88 // A (!3) -- edge with offset 0 to short
89 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
94 // node.
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
97 // otherwise.
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
106 //===----------------------------------------------------------------------===//
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/InstrTypes.h"
115 #include "llvm/IR/Instruction.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/InitializePasses.h"
119 #include "llvm/Pass.h"
120 #include "llvm/Support/Casting.h"
121 #include "llvm/Support/CommandLine.h"
122 #include "llvm/Support/ErrorHandling.h"
123 #include <cassert>
124 #include <cstdint>
126 using namespace llvm;
128 // A handy option for disabling TBAA functionality. The same effect can also be
129 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
130 // more convenient.
131 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
133 namespace {
135 /// isNewFormatTypeNode - Return true iff the given type node is in the new
136 /// size-aware format.
137 static bool isNewFormatTypeNode(const MDNode *N) {
138 if (N->getNumOperands() < 3)
139 return false;
140 // In the old format the first operand is a string.
141 if (!isa<MDNode>(N->getOperand(0)))
142 return false;
143 return true;
146 /// This is a simple wrapper around an MDNode which provides a higher-level
147 /// interface by hiding the details of how alias analysis information is encoded
148 /// in its operands.
149 template<typename MDNodeTy>
150 class TBAANodeImpl {
151 MDNodeTy *Node = nullptr;
153 public:
154 TBAANodeImpl() = default;
155 explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
157 /// getNode - Get the MDNode for this TBAANode.
158 MDNodeTy *getNode() const { return Node; }
160 /// isNewFormat - Return true iff the wrapped type node is in the new
161 /// size-aware format.
162 bool isNewFormat() const { return isNewFormatTypeNode(Node); }
164 /// getParent - Get this TBAANode's Alias tree parent.
165 TBAANodeImpl<MDNodeTy> getParent() const {
166 if (isNewFormat())
167 return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
169 if (Node->getNumOperands() < 2)
170 return TBAANodeImpl<MDNodeTy>();
171 MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
172 if (!P)
173 return TBAANodeImpl<MDNodeTy>();
174 // Ok, this node has a valid parent. Return it.
175 return TBAANodeImpl<MDNodeTy>(P);
178 /// Test if this TBAANode represents a type for objects which are
179 /// not modified (by any means) in the context where this
180 /// AliasAnalysis is relevant.
181 bool isTypeImmutable() const {
182 if (Node->getNumOperands() < 3)
183 return false;
184 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
185 if (!CI)
186 return false;
187 return CI->getValue()[0];
191 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
192 /// \c MDNode.
193 /// @{
194 using TBAANode = TBAANodeImpl<const MDNode>;
195 using MutableTBAANode = TBAANodeImpl<MDNode>;
196 /// @}
198 /// This is a simple wrapper around an MDNode which provides a
199 /// higher-level interface by hiding the details of how alias analysis
200 /// information is encoded in its operands.
201 template<typename MDNodeTy>
202 class TBAAStructTagNodeImpl {
203 /// This node should be created with createTBAAAccessTag().
204 MDNodeTy *Node;
206 public:
207 explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
209 /// Get the MDNode for this TBAAStructTagNode.
210 MDNodeTy *getNode() const { return Node; }
212 /// isNewFormat - Return true iff the wrapped access tag is in the new
213 /// size-aware format.
214 bool isNewFormat() const {
215 if (Node->getNumOperands() < 4)
216 return false;
217 if (MDNodeTy *AccessType = getAccessType())
218 if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
219 return false;
220 return true;
223 MDNodeTy *getBaseType() const {
224 return dyn_cast_or_null<MDNode>(Node->getOperand(0));
227 MDNodeTy *getAccessType() const {
228 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
231 uint64_t getOffset() const {
232 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
235 uint64_t getSize() const {
236 if (!isNewFormat())
237 return UINT64_MAX;
238 return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
241 /// Test if this TBAAStructTagNode represents a type for objects
242 /// which are not modified (by any means) in the context where this
243 /// AliasAnalysis is relevant.
244 bool isTypeImmutable() const {
245 unsigned OpNo = isNewFormat() ? 4 : 3;
246 if (Node->getNumOperands() < OpNo + 1)
247 return false;
248 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
249 if (!CI)
250 return false;
251 return CI->getValue()[0];
255 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
256 /// qualified \c MDNods.
257 /// @{
258 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
259 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
260 /// @}
262 /// This is a simple wrapper around an MDNode which provides a
263 /// higher-level interface by hiding the details of how alias analysis
264 /// information is encoded in its operands.
265 class TBAAStructTypeNode {
266 /// This node should be created with createTBAATypeNode().
267 const MDNode *Node = nullptr;
269 public:
270 TBAAStructTypeNode() = default;
271 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
273 /// Get the MDNode for this TBAAStructTypeNode.
274 const MDNode *getNode() const { return Node; }
276 /// isNewFormat - Return true iff the wrapped type node is in the new
277 /// size-aware format.
278 bool isNewFormat() const { return isNewFormatTypeNode(Node); }
280 bool operator==(const TBAAStructTypeNode &Other) const {
281 return getNode() == Other.getNode();
284 /// getId - Return type identifier.
285 Metadata *getId() const {
286 return Node->getOperand(isNewFormat() ? 2 : 0);
289 unsigned getNumFields() const {
290 unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
291 unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
292 return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
295 TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
296 unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
297 unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
298 unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
299 auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
300 return TBAAStructTypeNode(TypeNode);
303 /// Get this TBAAStructTypeNode's field in the type DAG with
304 /// given offset. Update the offset to be relative to the field type.
305 TBAAStructTypeNode getField(uint64_t &Offset) const {
306 bool NewFormat = isNewFormat();
307 if (NewFormat) {
308 // New-format root and scalar type nodes have no fields.
309 if (Node->getNumOperands() < 6)
310 return TBAAStructTypeNode();
311 } else {
312 // Parent can be omitted for the root node.
313 if (Node->getNumOperands() < 2)
314 return TBAAStructTypeNode();
316 // Fast path for a scalar type node and a struct type node with a single
317 // field.
318 if (Node->getNumOperands() <= 3) {
319 uint64_t Cur = Node->getNumOperands() == 2
321 : mdconst::extract<ConstantInt>(Node->getOperand(2))
322 ->getZExtValue();
323 Offset -= Cur;
324 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
325 if (!P)
326 return TBAAStructTypeNode();
327 return TBAAStructTypeNode(P);
331 // Assume the offsets are in order. We return the previous field if
332 // the current offset is bigger than the given offset.
333 unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
334 unsigned NumOpsPerField = NewFormat ? 3 : 2;
335 unsigned TheIdx = 0;
336 for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
337 Idx += NumOpsPerField) {
338 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
339 ->getZExtValue();
340 if (Cur > Offset) {
341 assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
342 "TBAAStructTypeNode::getField should have an offset match!");
343 TheIdx = Idx - NumOpsPerField;
344 break;
347 // Move along the last field.
348 if (TheIdx == 0)
349 TheIdx = Node->getNumOperands() - NumOpsPerField;
350 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
351 ->getZExtValue();
352 Offset -= Cur;
353 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
354 if (!P)
355 return TBAAStructTypeNode();
356 return TBAAStructTypeNode(P);
360 } // end anonymous namespace
362 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
363 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
364 /// format.
365 static bool isStructPathTBAA(const MDNode *MD) {
366 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
367 // a TBAA tag.
368 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
371 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
372 const MemoryLocation &LocB,
373 AAQueryInfo &AAQI) {
374 if (!EnableTBAA)
375 return AAResultBase::alias(LocA, LocB, AAQI);
377 // If accesses may alias, chain to the next AliasAnalysis.
378 if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
379 return AAResultBase::alias(LocA, LocB, AAQI);
381 // Otherwise return a definitive result.
382 return AliasResult::NoAlias;
385 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
386 AAQueryInfo &AAQI,
387 bool OrLocal) {
388 if (!EnableTBAA)
389 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
391 const MDNode *M = Loc.AATags.TBAA;
392 if (!M)
393 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
395 // If this is an "immutable" type, we can assume the pointer is pointing
396 // to constant memory.
397 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
398 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
399 return true;
401 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
404 FunctionModRefBehavior
405 TypeBasedAAResult::getModRefBehavior(const CallBase *Call) {
406 if (!EnableTBAA)
407 return AAResultBase::getModRefBehavior(Call);
409 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
411 // If this is an "immutable" type, we can assume the call doesn't write
412 // to memory.
413 if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
414 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
415 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
416 Min = FMRB_OnlyReadsMemory;
418 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
421 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
422 // Functions don't have metadata. Just chain to the next implementation.
423 return AAResultBase::getModRefBehavior(F);
426 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
427 const MemoryLocation &Loc,
428 AAQueryInfo &AAQI) {
429 if (!EnableTBAA)
430 return AAResultBase::getModRefInfo(Call, Loc, AAQI);
432 if (const MDNode *L = Loc.AATags.TBAA)
433 if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
434 if (!Aliases(L, M))
435 return ModRefInfo::NoModRef;
437 return AAResultBase::getModRefInfo(Call, Loc, AAQI);
440 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
441 const CallBase *Call2,
442 AAQueryInfo &AAQI) {
443 if (!EnableTBAA)
444 return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
446 if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
447 if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
448 if (!Aliases(M1, M2))
449 return ModRefInfo::NoModRef;
451 return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
454 bool MDNode::isTBAAVtableAccess() const {
455 if (!isStructPathTBAA(this)) {
456 if (getNumOperands() < 1)
457 return false;
458 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
459 if (Tag1->getString() == "vtable pointer")
460 return true;
462 return false;
465 // For struct-path aware TBAA, we use the access type of the tag.
466 TBAAStructTagNode Tag(this);
467 TBAAStructTypeNode AccessType(Tag.getAccessType());
468 if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
469 if (Id->getString() == "vtable pointer")
470 return true;
471 return false;
474 static bool matchAccessTags(const MDNode *A, const MDNode *B,
475 const MDNode **GenericTag = nullptr);
477 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
478 const MDNode *GenericTag;
479 matchAccessTags(A, B, &GenericTag);
480 return const_cast<MDNode*>(GenericTag);
483 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
484 if (!A || !B)
485 return nullptr;
487 if (A == B)
488 return A;
490 SmallSetVector<const MDNode *, 4> PathA;
491 TBAANode TA(A);
492 while (TA.getNode()) {
493 if (PathA.count(TA.getNode()))
494 report_fatal_error("Cycle found in TBAA metadata.");
495 PathA.insert(TA.getNode());
496 TA = TA.getParent();
499 SmallSetVector<const MDNode *, 4> PathB;
500 TBAANode TB(B);
501 while (TB.getNode()) {
502 if (PathB.count(TB.getNode()))
503 report_fatal_error("Cycle found in TBAA metadata.");
504 PathB.insert(TB.getNode());
505 TB = TB.getParent();
508 int IA = PathA.size() - 1;
509 int IB = PathB.size() - 1;
511 const MDNode *Ret = nullptr;
512 while (IA >= 0 && IB >= 0) {
513 if (PathA[IA] == PathB[IB])
514 Ret = PathA[IA];
515 else
516 break;
517 --IA;
518 --IB;
521 return Ret;
524 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
525 if (Merge) {
526 N.TBAA =
527 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
528 N.TBAAStruct = nullptr;
529 N.Scope = MDNode::getMostGenericAliasScope(
530 N.Scope, getMetadata(LLVMContext::MD_alias_scope));
531 N.NoAlias =
532 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
533 } else {
534 N.TBAA = getMetadata(LLVMContext::MD_tbaa);
535 N.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct);
536 N.Scope = getMetadata(LLVMContext::MD_alias_scope);
537 N.NoAlias = getMetadata(LLVMContext::MD_noalias);
541 static const MDNode *createAccessTag(const MDNode *AccessType) {
542 // If there is no access type or the access type is the root node, then
543 // we don't have any useful access tag to return.
544 if (!AccessType || AccessType->getNumOperands() < 2)
545 return nullptr;
547 Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
548 auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
550 if (TBAAStructTypeNode(AccessType).isNewFormat()) {
551 // TODO: Take access ranges into account when matching access tags and
552 // fix this code to generate actual access sizes for generic tags.
553 uint64_t AccessSize = UINT64_MAX;
554 auto *SizeNode =
555 ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
556 Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
557 const_cast<MDNode*>(AccessType),
558 OffsetNode, SizeNode};
559 return MDNode::get(AccessType->getContext(), Ops);
562 Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
563 const_cast<MDNode*>(AccessType),
564 OffsetNode};
565 return MDNode::get(AccessType->getContext(), Ops);
568 static bool hasField(TBAAStructTypeNode BaseType,
569 TBAAStructTypeNode FieldType) {
570 for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
571 TBAAStructTypeNode T = BaseType.getFieldType(I);
572 if (T == FieldType || hasField(T, FieldType))
573 return true;
575 return false;
578 /// Return true if for two given accesses, one of the accessed objects may be a
579 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
580 /// describe the accesses to the base object and the subobject respectively.
581 /// \p CommonType must be the metadata node describing the common type of the
582 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
583 /// may alias and \p Generic, if not null, points to the most generic access
584 /// tag for the given two.
585 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
586 TBAAStructTagNode SubobjectTag,
587 const MDNode *CommonType,
588 const MDNode **GenericTag,
589 bool &MayAlias) {
590 // If the base object is of the least common type, then this may be an access
591 // to its subobject.
592 if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
593 BaseTag.getAccessType() == CommonType) {
594 if (GenericTag)
595 *GenericTag = createAccessTag(CommonType);
596 MayAlias = true;
597 return true;
600 // If the access to the base object is through a field of the subobject's
601 // type, then this may be an access to that field. To check for that we start
602 // from the base type, follow the edge with the correct offset in the type DAG
603 // and adjust the offset until we reach the field type or until we reach the
604 // access type.
605 bool NewFormat = BaseTag.isNewFormat();
606 TBAAStructTypeNode BaseType(BaseTag.getBaseType());
607 uint64_t OffsetInBase = BaseTag.getOffset();
609 for (;;) {
610 // In the old format there is no distinction between fields and parent
611 // types, so in this case we consider all nodes up to the root.
612 if (!BaseType.getNode()) {
613 assert(!NewFormat && "Did not see access type in access path!");
614 break;
617 if (BaseType.getNode() == SubobjectTag.getBaseType()) {
618 bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
619 if (GenericTag) {
620 *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
621 createAccessTag(CommonType);
623 MayAlias = SameMemberAccess;
624 return true;
627 // With new-format nodes we stop at the access type.
628 if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
629 break;
631 // Follow the edge with the correct offset. Offset will be adjusted to
632 // be relative to the field type.
633 BaseType = BaseType.getField(OffsetInBase);
636 // If the base object has a direct or indirect field of the subobject's type,
637 // then this may be an access to that field. We need this to check now that
638 // we support aggregates as access types.
639 if (NewFormat) {
640 // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
641 TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
642 if (hasField(BaseType, FieldType)) {
643 if (GenericTag)
644 *GenericTag = createAccessTag(CommonType);
645 MayAlias = true;
646 return true;
650 return false;
653 /// matchTags - Return true if the given couple of accesses are allowed to
654 /// overlap. If \arg GenericTag is not null, then on return it points to the
655 /// most generic access descriptor for the given two.
656 static bool matchAccessTags(const MDNode *A, const MDNode *B,
657 const MDNode **GenericTag) {
658 if (A == B) {
659 if (GenericTag)
660 *GenericTag = A;
661 return true;
664 // Accesses with no TBAA information may alias with any other accesses.
665 if (!A || !B) {
666 if (GenericTag)
667 *GenericTag = nullptr;
668 return true;
671 // Verify that both input nodes are struct-path aware. Auto-upgrade should
672 // have taken care of this.
673 assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
674 assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
676 TBAAStructTagNode TagA(A), TagB(B);
677 const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
678 TagB.getAccessType());
680 // If the final access types have different roots, they're part of different
681 // potentially unrelated type systems, so we must be conservative.
682 if (!CommonType) {
683 if (GenericTag)
684 *GenericTag = nullptr;
685 return true;
688 // If one of the accessed objects may be a subobject of the other, then such
689 // accesses may alias.
690 bool MayAlias;
691 if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
692 CommonType, GenericTag, MayAlias) ||
693 mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
694 CommonType, GenericTag, MayAlias))
695 return MayAlias;
697 // Otherwise, we've proved there's no alias.
698 if (GenericTag)
699 *GenericTag = createAccessTag(CommonType);
700 return false;
703 /// Aliases - Test whether the access represented by tag A may alias the
704 /// access represented by tag B.
705 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
706 return matchAccessTags(A, B);
709 AnalysisKey TypeBasedAA::Key;
711 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
712 return TypeBasedAAResult();
715 char TypeBasedAAWrapperPass::ID = 0;
716 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
717 false, true)
719 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
720 return new TypeBasedAAWrapperPass();
723 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
724 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
727 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
728 Result.reset(new TypeBasedAAResult());
729 return false;
732 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
733 Result.reset();
734 return false;
737 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
738 AU.setPreservesAll();
741 MDNode *AAMDNodes::shiftTBAA(MDNode *MD, size_t Offset) {
742 // Fast path if there's no offset
743 if (Offset == 0)
744 return MD;
745 // Fast path if there's no path tbaa node (and thus scalar)
746 if (!isStructPathTBAA(MD))
747 return MD;
749 // The correct behavior here is to add the offset into the TBAA
750 // struct node offset. The base type, however may not have defined
751 // a type at this additional offset, resulting in errors. Since
752 // this method is only used within a given load/store access
753 // the offset provided is only used to subdivide the previous load
754 // maintaining the validity of the previous TBAA.
756 // This, however, should be revisited in the future.
757 return MD;
760 MDNode *AAMDNodes::shiftTBAAStruct(MDNode *MD, size_t Offset) {
761 // Fast path if there's no offset
762 if (Offset == 0)
763 return MD;
764 SmallVector<Metadata *, 3> Sub;
765 for (size_t i = 0, size = MD->getNumOperands(); i < size; i += 3) {
766 ConstantInt *InnerOffset = mdconst::extract<ConstantInt>(MD->getOperand(i));
767 ConstantInt *InnerSize =
768 mdconst::extract<ConstantInt>(MD->getOperand(i + 1));
769 // Don't include any triples that aren't in bounds
770 if (InnerOffset->getZExtValue() + InnerSize->getZExtValue() <= Offset)
771 continue;
773 uint64_t NewSize = InnerSize->getZExtValue();
774 uint64_t NewOffset = InnerOffset->getZExtValue() - Offset;
775 if (InnerOffset->getZExtValue() < Offset) {
776 NewOffset = 0;
777 NewSize -= Offset - InnerOffset->getZExtValue();
780 // Shift the offset of the triple
781 Sub.push_back(ConstantAsMetadata::get(
782 ConstantInt::get(InnerOffset->getType(), NewOffset)));
783 Sub.push_back(ConstantAsMetadata::get(
784 ConstantInt::get(InnerSize->getType(), NewSize)));
785 Sub.push_back(MD->getOperand(i + 2));
787 return MDNode::get(MD->getContext(), Sub);