[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / FixupStatepointCallerSaved.cpp
blobec6bf18b27695e8a74575dff181dafea04d25aaf
1 //===-- FixupStatepointCallerSaved.cpp - Fixup caller saved registers ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Statepoint instruction in deopt parameters contains values which are
11 /// meaningful to the runtime and should be able to be read at the moment the
12 /// call returns. So we can say that we need to encode the fact that these
13 /// values are "late read" by runtime. If we could express this notion for
14 /// register allocator it would produce the right form for us.
15 /// The need to fixup (i.e this pass) is specifically handling the fact that
16 /// we cannot describe such a late read for the register allocator.
17 /// Register allocator may put the value on a register clobbered by the call.
18 /// This pass forces the spill of such registers and replaces corresponding
19 /// statepoint operands to added spill slots.
20 ///
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/StackMaps.h"
30 #include "llvm/CodeGen/TargetFrameLowering.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/IR/Statepoint.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/Debug.h"
36 using namespace llvm;
38 #define DEBUG_TYPE "fixup-statepoint-caller-saved"
39 STATISTIC(NumSpilledRegisters, "Number of spilled register");
40 STATISTIC(NumSpillSlotsAllocated, "Number of spill slots allocated");
41 STATISTIC(NumSpillSlotsExtended, "Number of spill slots extended");
43 static cl::opt<bool> FixupSCSExtendSlotSize(
44 "fixup-scs-extend-slot-size", cl::Hidden, cl::init(false),
45 cl::desc("Allow spill in spill slot of greater size than register size"),
46 cl::Hidden);
48 static cl::opt<bool> PassGCPtrInCSR(
49 "fixup-allow-gcptr-in-csr", cl::Hidden, cl::init(false),
50 cl::desc("Allow passing GC Pointer arguments in callee saved registers"));
52 static cl::opt<bool> EnableCopyProp(
53 "fixup-scs-enable-copy-propagation", cl::Hidden, cl::init(true),
54 cl::desc("Enable simple copy propagation during register reloading"));
56 // This is purely debugging option.
57 // It may be handy for investigating statepoint spilling issues.
58 static cl::opt<unsigned> MaxStatepointsWithRegs(
59 "fixup-max-csr-statepoints", cl::Hidden,
60 cl::desc("Max number of statepoints allowed to pass GC Ptrs in registers"));
62 namespace {
64 class FixupStatepointCallerSaved : public MachineFunctionPass {
65 public:
66 static char ID;
68 FixupStatepointCallerSaved() : MachineFunctionPass(ID) {
69 initializeFixupStatepointCallerSavedPass(*PassRegistry::getPassRegistry());
72 void getAnalysisUsage(AnalysisUsage &AU) const override {
73 AU.setPreservesCFG();
74 MachineFunctionPass::getAnalysisUsage(AU);
77 StringRef getPassName() const override {
78 return "Fixup Statepoint Caller Saved";
81 bool runOnMachineFunction(MachineFunction &MF) override;
84 } // End anonymous namespace.
86 char FixupStatepointCallerSaved::ID = 0;
87 char &llvm::FixupStatepointCallerSavedID = FixupStatepointCallerSaved::ID;
89 INITIALIZE_PASS_BEGIN(FixupStatepointCallerSaved, DEBUG_TYPE,
90 "Fixup Statepoint Caller Saved", false, false)
91 INITIALIZE_PASS_END(FixupStatepointCallerSaved, DEBUG_TYPE,
92 "Fixup Statepoint Caller Saved", false, false)
94 // Utility function to get size of the register.
95 static unsigned getRegisterSize(const TargetRegisterInfo &TRI, Register Reg) {
96 const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
97 return TRI.getSpillSize(*RC);
100 // Try to eliminate redundant copy to register which we're going to
101 // spill, i.e. try to change:
102 // X = COPY Y
103 // SPILL X
104 // to
105 // SPILL Y
106 // If there are no uses of X between copy and STATEPOINT, that COPY
107 // may be eliminated.
108 // Reg - register we're about to spill
109 // RI - On entry points to statepoint.
110 // On successful copy propagation set to new spill point.
111 // IsKill - set to true if COPY is Kill (there are no uses of Y)
112 // Returns either found source copy register or original one.
113 static Register performCopyPropagation(Register Reg,
114 MachineBasicBlock::iterator &RI,
115 bool &IsKill, const TargetInstrInfo &TII,
116 const TargetRegisterInfo &TRI) {
117 // First check if statepoint itself uses Reg in non-meta operands.
118 int Idx = RI->findRegisterUseOperandIdx(Reg, false, &TRI);
119 if (Idx >= 0 && (unsigned)Idx < StatepointOpers(&*RI).getNumDeoptArgsIdx()) {
120 IsKill = false;
121 return Reg;
124 if (!EnableCopyProp)
125 return Reg;
127 MachineBasicBlock *MBB = RI->getParent();
128 MachineBasicBlock::reverse_iterator E = MBB->rend();
129 MachineInstr *Def = nullptr, *Use = nullptr;
130 for (auto It = ++(RI.getReverse()); It != E; ++It) {
131 if (It->readsRegister(Reg, &TRI) && !Use)
132 Use = &*It;
133 if (It->modifiesRegister(Reg, &TRI)) {
134 Def = &*It;
135 break;
139 if (!Def)
140 return Reg;
142 auto DestSrc = TII.isCopyInstr(*Def);
143 if (!DestSrc || DestSrc->Destination->getReg() != Reg)
144 return Reg;
146 Register SrcReg = DestSrc->Source->getReg();
148 if (getRegisterSize(TRI, Reg) != getRegisterSize(TRI, SrcReg))
149 return Reg;
151 LLVM_DEBUG(dbgs() << "spillRegisters: perform copy propagation "
152 << printReg(Reg, &TRI) << " -> " << printReg(SrcReg, &TRI)
153 << "\n");
155 // Insert spill immediately after Def
156 RI = ++MachineBasicBlock::iterator(Def);
157 IsKill = DestSrc->Source->isKill();
159 // There are no uses of original register between COPY and STATEPOINT.
160 // There can't be any after STATEPOINT, so we can eliminate Def.
161 if (!Use) {
162 LLVM_DEBUG(dbgs() << "spillRegisters: removing dead copy " << *Def);
163 Def->eraseFromParent();
165 return SrcReg;
168 namespace {
169 // Pair {Register, FrameIndex}
170 using RegSlotPair = std::pair<Register, int>;
172 // Keeps track of what reloads were inserted in MBB.
173 class RegReloadCache {
174 using ReloadSet = SmallSet<RegSlotPair, 8>;
175 DenseMap<const MachineBasicBlock *, ReloadSet> Reloads;
177 public:
178 RegReloadCache() = default;
180 // Record reload of Reg from FI in block MBB
181 void recordReload(Register Reg, int FI, const MachineBasicBlock *MBB) {
182 RegSlotPair RSP(Reg, FI);
183 auto Res = Reloads[MBB].insert(RSP);
184 (void)Res;
185 assert(Res.second && "reload already exists");
188 // Does basic block MBB contains reload of Reg from FI?
189 bool hasReload(Register Reg, int FI, const MachineBasicBlock *MBB) {
190 RegSlotPair RSP(Reg, FI);
191 return Reloads.count(MBB) && Reloads[MBB].count(RSP);
195 // Cache used frame indexes during statepoint re-write to re-use them in
196 // processing next statepoint instruction.
197 // Two strategies. One is to preserve the size of spill slot while another one
198 // extends the size of spill slots to reduce the number of them, causing
199 // the less total frame size. But unspill will have "implicit" any extend.
200 class FrameIndexesCache {
201 private:
202 struct FrameIndexesPerSize {
203 // List of used frame indexes during processing previous statepoints.
204 SmallVector<int, 8> Slots;
205 // Current index of un-used yet frame index.
206 unsigned Index = 0;
208 MachineFrameInfo &MFI;
209 const TargetRegisterInfo &TRI;
210 // Map size to list of frame indexes of this size. If the mode is
211 // FixupSCSExtendSlotSize then the key 0 is used to keep all frame indexes.
212 // If the size of required spill slot is greater than in a cache then the
213 // size will be increased.
214 DenseMap<unsigned, FrameIndexesPerSize> Cache;
216 // Keeps track of slots reserved for the shared landing pad processing.
217 // Initialized from GlobalIndices for the current EHPad.
218 SmallSet<int, 8> ReservedSlots;
220 // Landing pad can be destination of several statepoints. Every register
221 // defined by such statepoints must be spilled to the same stack slot.
222 // This map keeps that information.
223 DenseMap<const MachineBasicBlock *, SmallVector<RegSlotPair, 8>>
224 GlobalIndices;
226 FrameIndexesPerSize &getCacheBucket(unsigned Size) {
227 // In FixupSCSExtendSlotSize mode the bucket with 0 index is used
228 // for all sizes.
229 return Cache[FixupSCSExtendSlotSize ? 0 : Size];
232 public:
233 FrameIndexesCache(MachineFrameInfo &MFI, const TargetRegisterInfo &TRI)
234 : MFI(MFI), TRI(TRI) {}
235 // Reset the current state of used frame indexes. After invocation of
236 // this function all frame indexes are available for allocation with
237 // the exception of slots reserved for landing pad processing (if any).
238 void reset(const MachineBasicBlock *EHPad) {
239 for (auto &It : Cache)
240 It.second.Index = 0;
242 ReservedSlots.clear();
243 if (EHPad && GlobalIndices.count(EHPad))
244 for (auto &RSP : GlobalIndices[EHPad])
245 ReservedSlots.insert(RSP.second);
248 // Get frame index to spill the register.
249 int getFrameIndex(Register Reg, MachineBasicBlock *EHPad) {
250 // Check if slot for Reg is already reserved at EHPad.
251 auto It = GlobalIndices.find(EHPad);
252 if (It != GlobalIndices.end()) {
253 auto &Vec = It->second;
254 auto Idx = llvm::find_if(
255 Vec, [Reg](RegSlotPair &RSP) { return Reg == RSP.first; });
256 if (Idx != Vec.end()) {
257 int FI = Idx->second;
258 LLVM_DEBUG(dbgs() << "Found global FI " << FI << " for register "
259 << printReg(Reg, &TRI) << " at "
260 << printMBBReference(*EHPad) << "\n");
261 assert(ReservedSlots.count(FI) && "using unreserved slot");
262 return FI;
266 unsigned Size = getRegisterSize(TRI, Reg);
267 FrameIndexesPerSize &Line = getCacheBucket(Size);
268 while (Line.Index < Line.Slots.size()) {
269 int FI = Line.Slots[Line.Index++];
270 if (ReservedSlots.count(FI))
271 continue;
272 // If all sizes are kept together we probably need to extend the
273 // spill slot size.
274 if (MFI.getObjectSize(FI) < Size) {
275 MFI.setObjectSize(FI, Size);
276 MFI.setObjectAlignment(FI, Align(Size));
277 NumSpillSlotsExtended++;
279 return FI;
281 int FI = MFI.CreateSpillStackObject(Size, Align(Size));
282 NumSpillSlotsAllocated++;
283 Line.Slots.push_back(FI);
284 ++Line.Index;
286 // Remember assignment {Reg, FI} for EHPad
287 if (EHPad) {
288 GlobalIndices[EHPad].push_back(std::make_pair(Reg, FI));
289 LLVM_DEBUG(dbgs() << "Reserved FI " << FI << " for spilling reg "
290 << printReg(Reg, &TRI) << " at landing pad "
291 << printMBBReference(*EHPad) << "\n");
294 return FI;
297 // Sort all registers to spill in descendent order. In the
298 // FixupSCSExtendSlotSize mode it will minimize the total frame size.
299 // In non FixupSCSExtendSlotSize mode we can skip this step.
300 void sortRegisters(SmallVectorImpl<Register> &Regs) {
301 if (!FixupSCSExtendSlotSize)
302 return;
303 llvm::sort(Regs, [&](Register &A, Register &B) {
304 return getRegisterSize(TRI, A) > getRegisterSize(TRI, B);
309 // Describes the state of the current processing statepoint instruction.
310 class StatepointState {
311 private:
312 // statepoint instruction.
313 MachineInstr &MI;
314 MachineFunction &MF;
315 // If non-null then statepoint is invoke, and this points to the landing pad.
316 MachineBasicBlock *EHPad;
317 const TargetRegisterInfo &TRI;
318 const TargetInstrInfo &TII;
319 MachineFrameInfo &MFI;
320 // Mask with callee saved registers.
321 const uint32_t *Mask;
322 // Cache of frame indexes used on previous instruction processing.
323 FrameIndexesCache &CacheFI;
324 bool AllowGCPtrInCSR;
325 // Operands with physical registers requiring spilling.
326 SmallVector<unsigned, 8> OpsToSpill;
327 // Set of register to spill.
328 SmallVector<Register, 8> RegsToSpill;
329 // Set of registers to reload after statepoint.
330 SmallVector<Register, 8> RegsToReload;
331 // Map Register to Frame Slot index.
332 DenseMap<Register, int> RegToSlotIdx;
334 public:
335 StatepointState(MachineInstr &MI, const uint32_t *Mask,
336 FrameIndexesCache &CacheFI, bool AllowGCPtrInCSR)
337 : MI(MI), MF(*MI.getMF()), TRI(*MF.getSubtarget().getRegisterInfo()),
338 TII(*MF.getSubtarget().getInstrInfo()), MFI(MF.getFrameInfo()),
339 Mask(Mask), CacheFI(CacheFI), AllowGCPtrInCSR(AllowGCPtrInCSR) {
341 // Find statepoint's landing pad, if any.
342 EHPad = nullptr;
343 MachineBasicBlock *MBB = MI.getParent();
344 // Invoke statepoint must be last one in block.
345 bool Last = std::none_of(++MI.getIterator(), MBB->end().getInstrIterator(),
346 [](MachineInstr &I) {
347 return I.getOpcode() == TargetOpcode::STATEPOINT;
350 if (!Last)
351 return;
353 auto IsEHPad = [](MachineBasicBlock *B) { return B->isEHPad(); };
355 assert(llvm::count_if(MBB->successors(), IsEHPad) < 2 && "multiple EHPads");
357 auto It = llvm::find_if(MBB->successors(), IsEHPad);
358 if (It != MBB->succ_end())
359 EHPad = *It;
362 MachineBasicBlock *getEHPad() const { return EHPad; }
364 // Return true if register is callee saved.
365 bool isCalleeSaved(Register Reg) { return (Mask[Reg / 32] >> Reg % 32) & 1; }
367 // Iterates over statepoint meta args to find caller saver registers.
368 // Also cache the size of found registers.
369 // Returns true if caller save registers found.
370 bool findRegistersToSpill() {
371 SmallSet<Register, 8> GCRegs;
372 // All GC pointer operands assigned to registers produce new value.
373 // Since they're tied to their defs, it is enough to collect def registers.
374 for (const auto &Def : MI.defs())
375 GCRegs.insert(Def.getReg());
377 SmallSet<Register, 8> VisitedRegs;
378 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
379 EndIdx = MI.getNumOperands();
380 Idx < EndIdx; ++Idx) {
381 MachineOperand &MO = MI.getOperand(Idx);
382 // Leave `undef` operands as is, StackMaps will rewrite them
383 // into a constant.
384 if (!MO.isReg() || MO.isImplicit() || MO.isUndef())
385 continue;
386 Register Reg = MO.getReg();
387 assert(Reg.isPhysical() && "Only physical regs are expected");
389 if (isCalleeSaved(Reg) && (AllowGCPtrInCSR || !is_contained(GCRegs, Reg)))
390 continue;
392 LLVM_DEBUG(dbgs() << "Will spill " << printReg(Reg, &TRI) << " at index "
393 << Idx << "\n");
395 if (VisitedRegs.insert(Reg).second)
396 RegsToSpill.push_back(Reg);
397 OpsToSpill.push_back(Idx);
399 CacheFI.sortRegisters(RegsToSpill);
400 return !RegsToSpill.empty();
403 // Spill all caller saved registers right before statepoint instruction.
404 // Remember frame index where register is spilled.
405 void spillRegisters() {
406 for (Register Reg : RegsToSpill) {
407 int FI = CacheFI.getFrameIndex(Reg, EHPad);
408 const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
410 NumSpilledRegisters++;
411 RegToSlotIdx[Reg] = FI;
413 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, &TRI) << " to FI " << FI
414 << "\n");
416 // Perform trivial copy propagation
417 bool IsKill = true;
418 MachineBasicBlock::iterator InsertBefore(MI);
419 Reg = performCopyPropagation(Reg, InsertBefore, IsKill, TII, TRI);
421 LLVM_DEBUG(dbgs() << "Insert spill before " << *InsertBefore);
422 TII.storeRegToStackSlot(*MI.getParent(), InsertBefore, Reg, IsKill, FI,
423 RC, &TRI);
427 void insertReloadBefore(unsigned Reg, MachineBasicBlock::iterator It,
428 MachineBasicBlock *MBB) {
429 const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
430 int FI = RegToSlotIdx[Reg];
431 if (It != MBB->end()) {
432 TII.loadRegFromStackSlot(*MBB, It, Reg, FI, RC, &TRI);
433 return;
436 // To insert reload at the end of MBB, insert it before last instruction
437 // and then swap them.
438 assert(!MBB->empty() && "Empty block");
439 --It;
440 TII.loadRegFromStackSlot(*MBB, It, Reg, FI, RC, &TRI);
441 MachineInstr *Reload = It->getPrevNode();
442 int Dummy = 0;
443 (void)Dummy;
444 assert(TII.isLoadFromStackSlot(*Reload, Dummy) == Reg);
445 assert(Dummy == FI);
446 MBB->remove(Reload);
447 MBB->insertAfter(It, Reload);
450 // Insert reloads of (relocated) registers spilled in statepoint.
451 void insertReloads(MachineInstr *NewStatepoint, RegReloadCache &RC) {
452 MachineBasicBlock *MBB = NewStatepoint->getParent();
453 auto InsertPoint = std::next(NewStatepoint->getIterator());
455 for (auto Reg : RegsToReload) {
456 insertReloadBefore(Reg, InsertPoint, MBB);
457 LLVM_DEBUG(dbgs() << "Reloading " << printReg(Reg, &TRI) << " from FI "
458 << RegToSlotIdx[Reg] << " after statepoint\n");
460 if (EHPad && !RC.hasReload(Reg, RegToSlotIdx[Reg], EHPad)) {
461 RC.recordReload(Reg, RegToSlotIdx[Reg], EHPad);
462 auto EHPadInsertPoint = EHPad->SkipPHIsLabelsAndDebug(EHPad->begin());
463 insertReloadBefore(Reg, EHPadInsertPoint, EHPad);
464 LLVM_DEBUG(dbgs() << "...also reload at EHPad "
465 << printMBBReference(*EHPad) << "\n");
470 // Re-write statepoint machine instruction to replace caller saved operands
471 // with indirect memory location (frame index).
472 MachineInstr *rewriteStatepoint() {
473 MachineInstr *NewMI =
474 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
475 MachineInstrBuilder MIB(MF, NewMI);
477 unsigned NumOps = MI.getNumOperands();
479 // New indices for the remaining defs.
480 SmallVector<unsigned, 8> NewIndices;
481 unsigned NumDefs = MI.getNumDefs();
482 for (unsigned I = 0; I < NumDefs; ++I) {
483 MachineOperand &DefMO = MI.getOperand(I);
484 assert(DefMO.isReg() && DefMO.isDef() && "Expected Reg Def operand");
485 Register Reg = DefMO.getReg();
486 assert(DefMO.isTied() && "Def is expected to be tied");
487 // We skipped undef uses and did not spill them, so we should not
488 // proceed with defs here.
489 if (MI.getOperand(MI.findTiedOperandIdx(I)).isUndef()) {
490 if (AllowGCPtrInCSR) {
491 NewIndices.push_back(NewMI->getNumOperands());
492 MIB.addReg(Reg, RegState::Define);
494 continue;
496 if (!AllowGCPtrInCSR) {
497 assert(is_contained(RegsToSpill, Reg));
498 RegsToReload.push_back(Reg);
499 } else {
500 if (isCalleeSaved(Reg)) {
501 NewIndices.push_back(NewMI->getNumOperands());
502 MIB.addReg(Reg, RegState::Define);
503 } else {
504 NewIndices.push_back(NumOps);
505 RegsToReload.push_back(Reg);
510 // Add End marker.
511 OpsToSpill.push_back(MI.getNumOperands());
512 unsigned CurOpIdx = 0;
514 for (unsigned I = NumDefs; I < MI.getNumOperands(); ++I) {
515 MachineOperand &MO = MI.getOperand(I);
516 if (I == OpsToSpill[CurOpIdx]) {
517 int FI = RegToSlotIdx[MO.getReg()];
518 MIB.addImm(StackMaps::IndirectMemRefOp);
519 MIB.addImm(getRegisterSize(TRI, MO.getReg()));
520 assert(MO.isReg() && "Should be register");
521 assert(MO.getReg().isPhysical() && "Should be physical register");
522 MIB.addFrameIndex(FI);
523 MIB.addImm(0);
524 ++CurOpIdx;
525 } else {
526 MIB.add(MO);
527 unsigned OldDef;
528 if (AllowGCPtrInCSR && MI.isRegTiedToDefOperand(I, &OldDef)) {
529 assert(OldDef < NumDefs);
530 assert(NewIndices[OldDef] < NumOps);
531 MIB->tieOperands(NewIndices[OldDef], MIB->getNumOperands() - 1);
535 assert(CurOpIdx == (OpsToSpill.size() - 1) && "Not all operands processed");
536 // Add mem operands.
537 NewMI->setMemRefs(MF, MI.memoperands());
538 for (auto It : RegToSlotIdx) {
539 Register R = It.first;
540 int FrameIndex = It.second;
541 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
542 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
543 if (is_contained(RegsToReload, R))
544 Flags |= MachineMemOperand::MOStore;
545 auto *MMO =
546 MF.getMachineMemOperand(PtrInfo, Flags, getRegisterSize(TRI, R),
547 MFI.getObjectAlign(FrameIndex));
548 NewMI->addMemOperand(MF, MMO);
551 // Insert new statepoint and erase old one.
552 MI.getParent()->insert(MI, NewMI);
554 LLVM_DEBUG(dbgs() << "rewritten statepoint to : " << *NewMI << "\n");
555 MI.eraseFromParent();
556 return NewMI;
560 class StatepointProcessor {
561 private:
562 MachineFunction &MF;
563 const TargetRegisterInfo &TRI;
564 FrameIndexesCache CacheFI;
565 RegReloadCache ReloadCache;
567 public:
568 StatepointProcessor(MachineFunction &MF)
569 : MF(MF), TRI(*MF.getSubtarget().getRegisterInfo()),
570 CacheFI(MF.getFrameInfo(), TRI) {}
572 bool process(MachineInstr &MI, bool AllowGCPtrInCSR) {
573 StatepointOpers SO(&MI);
574 uint64_t Flags = SO.getFlags();
575 // Do nothing for LiveIn, it supports all registers.
576 if (Flags & (uint64_t)StatepointFlags::DeoptLiveIn)
577 return false;
578 LLVM_DEBUG(dbgs() << "\nMBB " << MI.getParent()->getNumber() << " "
579 << MI.getParent()->getName() << " : process statepoint "
580 << MI);
581 CallingConv::ID CC = SO.getCallingConv();
582 const uint32_t *Mask = TRI.getCallPreservedMask(MF, CC);
583 StatepointState SS(MI, Mask, CacheFI, AllowGCPtrInCSR);
584 CacheFI.reset(SS.getEHPad());
586 if (!SS.findRegistersToSpill())
587 return false;
589 SS.spillRegisters();
590 auto *NewStatepoint = SS.rewriteStatepoint();
591 SS.insertReloads(NewStatepoint, ReloadCache);
592 return true;
595 } // namespace
597 bool FixupStatepointCallerSaved::runOnMachineFunction(MachineFunction &MF) {
598 if (skipFunction(MF.getFunction()))
599 return false;
601 const Function &F = MF.getFunction();
602 if (!F.hasGC())
603 return false;
605 SmallVector<MachineInstr *, 16> Statepoints;
606 for (MachineBasicBlock &BB : MF)
607 for (MachineInstr &I : BB)
608 if (I.getOpcode() == TargetOpcode::STATEPOINT)
609 Statepoints.push_back(&I);
611 if (Statepoints.empty())
612 return false;
614 bool Changed = false;
615 StatepointProcessor SPP(MF);
616 unsigned NumStatepoints = 0;
617 bool AllowGCPtrInCSR = PassGCPtrInCSR;
618 for (MachineInstr *I : Statepoints) {
619 ++NumStatepoints;
620 if (MaxStatepointsWithRegs.getNumOccurrences() &&
621 NumStatepoints >= MaxStatepointsWithRegs)
622 AllowGCPtrInCSR = false;
623 Changed |= SPP.process(*I, AllowGCPtrInCSR);
625 return Changed;