[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / IRTranslator.cpp
blobb60b1d311b12a6dd74105cad2a07e6606bd7ec03
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/SwitchLoweringUtils.h"
37 #include "llvm/CodeGen/TargetFrameLowering.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCContext.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <iterator>
81 #include <string>
82 #include <utility>
83 #include <vector>
85 #define DEBUG_TYPE "irtranslator"
87 using namespace llvm;
89 static cl::opt<bool>
90 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
91 cl::desc("Should enable CSE in irtranslator"),
92 cl::Optional, cl::init(false));
93 char IRTranslator::ID = 0;
95 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
96 false, false)
97 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
98 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
99 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
100 INITIALIZE_PASS_DEPENDENCY(StackProtector)
101 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
102 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
103 false, false)
105 static void reportTranslationError(MachineFunction &MF,
106 const TargetPassConfig &TPC,
107 OptimizationRemarkEmitter &ORE,
108 OptimizationRemarkMissed &R) {
109 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
111 // Print the function name explicitly if we don't have a debug location (which
112 // makes the diagnostic less useful) or if we're going to emit a raw error.
113 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
114 R << (" (in function: " + MF.getName() + ")").str();
116 if (TPC.isGlobalISelAbortEnabled())
117 report_fatal_error(R.getMsg());
118 else
119 ORE.emit(R);
122 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
123 : MachineFunctionPass(ID), OptLevel(optlevel) {}
125 #ifndef NDEBUG
126 namespace {
127 /// Verify that every instruction created has the same DILocation as the
128 /// instruction being translated.
129 class DILocationVerifier : public GISelChangeObserver {
130 const Instruction *CurrInst = nullptr;
132 public:
133 DILocationVerifier() = default;
134 ~DILocationVerifier() = default;
136 const Instruction *getCurrentInst() const { return CurrInst; }
137 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
139 void erasingInstr(MachineInstr &MI) override {}
140 void changingInstr(MachineInstr &MI) override {}
141 void changedInstr(MachineInstr &MI) override {}
143 void createdInstr(MachineInstr &MI) override {
144 assert(getCurrentInst() && "Inserted instruction without a current MI");
146 // Only print the check message if we're actually checking it.
147 #ifndef NDEBUG
148 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
149 << " was copied to " << MI);
150 #endif
151 // We allow insts in the entry block to have a debug loc line of 0 because
152 // they could have originated from constants, and we don't want a jumpy
153 // debug experience.
154 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
155 MI.getDebugLoc().getLine() == 0) &&
156 "Line info was not transferred to all instructions");
159 } // namespace
160 #endif // ifndef NDEBUG
163 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
164 AU.addRequired<StackProtector>();
165 AU.addRequired<TargetPassConfig>();
166 AU.addRequired<GISelCSEAnalysisWrapperPass>();
167 if (OptLevel != CodeGenOpt::None)
168 AU.addRequired<BranchProbabilityInfoWrapperPass>();
169 AU.addRequired<TargetLibraryInfoWrapperPass>();
170 AU.addPreserved<TargetLibraryInfoWrapperPass>();
171 getSelectionDAGFallbackAnalysisUsage(AU);
172 MachineFunctionPass::getAnalysisUsage(AU);
175 IRTranslator::ValueToVRegInfo::VRegListT &
176 IRTranslator::allocateVRegs(const Value &Val) {
177 auto VRegsIt = VMap.findVRegs(Val);
178 if (VRegsIt != VMap.vregs_end())
179 return *VRegsIt->second;
180 auto *Regs = VMap.getVRegs(Val);
181 auto *Offsets = VMap.getOffsets(Val);
182 SmallVector<LLT, 4> SplitTys;
183 computeValueLLTs(*DL, *Val.getType(), SplitTys,
184 Offsets->empty() ? Offsets : nullptr);
185 for (unsigned i = 0; i < SplitTys.size(); ++i)
186 Regs->push_back(0);
187 return *Regs;
190 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
191 auto VRegsIt = VMap.findVRegs(Val);
192 if (VRegsIt != VMap.vregs_end())
193 return *VRegsIt->second;
195 if (Val.getType()->isVoidTy())
196 return *VMap.getVRegs(Val);
198 // Create entry for this type.
199 auto *VRegs = VMap.getVRegs(Val);
200 auto *Offsets = VMap.getOffsets(Val);
202 assert(Val.getType()->isSized() &&
203 "Don't know how to create an empty vreg");
205 SmallVector<LLT, 4> SplitTys;
206 computeValueLLTs(*DL, *Val.getType(), SplitTys,
207 Offsets->empty() ? Offsets : nullptr);
209 if (!isa<Constant>(Val)) {
210 for (auto Ty : SplitTys)
211 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
212 return *VRegs;
215 if (Val.getType()->isAggregateType()) {
216 // UndefValue, ConstantAggregateZero
217 auto &C = cast<Constant>(Val);
218 unsigned Idx = 0;
219 while (auto Elt = C.getAggregateElement(Idx++)) {
220 auto EltRegs = getOrCreateVRegs(*Elt);
221 llvm::copy(EltRegs, std::back_inserter(*VRegs));
223 } else {
224 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
225 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
226 bool Success = translate(cast<Constant>(Val), VRegs->front());
227 if (!Success) {
228 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
229 MF->getFunction().getSubprogram(),
230 &MF->getFunction().getEntryBlock());
231 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
232 reportTranslationError(*MF, *TPC, *ORE, R);
233 return *VRegs;
237 return *VRegs;
240 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
241 auto MapEntry = FrameIndices.find(&AI);
242 if (MapEntry != FrameIndices.end())
243 return MapEntry->second;
245 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
246 uint64_t Size =
247 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
249 // Always allocate at least one byte.
250 Size = std::max<uint64_t>(Size, 1u);
252 int &FI = FrameIndices[&AI];
253 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
254 return FI;
257 Align IRTranslator::getMemOpAlign(const Instruction &I) {
258 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
259 return SI->getAlign();
260 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
261 return LI->getAlign();
262 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
263 return AI->getAlign();
264 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
265 return AI->getAlign();
267 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
268 R << "unable to translate memop: " << ore::NV("Opcode", &I);
269 reportTranslationError(*MF, *TPC, *ORE, R);
270 return Align(1);
273 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
274 MachineBasicBlock *&MBB = BBToMBB[&BB];
275 assert(MBB && "BasicBlock was not encountered before");
276 return *MBB;
279 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
280 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
281 MachinePreds[Edge].push_back(NewPred);
284 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
285 MachineIRBuilder &MIRBuilder) {
286 // Get or create a virtual register for each value.
287 // Unless the value is a Constant => loadimm cst?
288 // or inline constant each time?
289 // Creation of a virtual register needs to have a size.
290 Register Op0 = getOrCreateVReg(*U.getOperand(0));
291 Register Op1 = getOrCreateVReg(*U.getOperand(1));
292 Register Res = getOrCreateVReg(U);
293 uint16_t Flags = 0;
294 if (isa<Instruction>(U)) {
295 const Instruction &I = cast<Instruction>(U);
296 Flags = MachineInstr::copyFlagsFromInstruction(I);
299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
300 return true;
303 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
304 MachineIRBuilder &MIRBuilder) {
305 Register Op0 = getOrCreateVReg(*U.getOperand(0));
306 Register Res = getOrCreateVReg(U);
307 uint16_t Flags = 0;
308 if (isa<Instruction>(U)) {
309 const Instruction &I = cast<Instruction>(U);
310 Flags = MachineInstr::copyFlagsFromInstruction(I);
312 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
313 return true;
316 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
317 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
320 bool IRTranslator::translateCompare(const User &U,
321 MachineIRBuilder &MIRBuilder) {
322 auto *CI = dyn_cast<CmpInst>(&U);
323 Register Op0 = getOrCreateVReg(*U.getOperand(0));
324 Register Op1 = getOrCreateVReg(*U.getOperand(1));
325 Register Res = getOrCreateVReg(U);
326 CmpInst::Predicate Pred =
327 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
328 cast<ConstantExpr>(U).getPredicate());
329 if (CmpInst::isIntPredicate(Pred))
330 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
331 else if (Pred == CmpInst::FCMP_FALSE)
332 MIRBuilder.buildCopy(
333 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
334 else if (Pred == CmpInst::FCMP_TRUE)
335 MIRBuilder.buildCopy(
336 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
337 else {
338 assert(CI && "Instruction should be CmpInst");
339 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
340 MachineInstr::copyFlagsFromInstruction(*CI));
343 return true;
346 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
347 const ReturnInst &RI = cast<ReturnInst>(U);
348 const Value *Ret = RI.getReturnValue();
349 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
350 Ret = nullptr;
352 ArrayRef<Register> VRegs;
353 if (Ret)
354 VRegs = getOrCreateVRegs(*Ret);
356 Register SwiftErrorVReg = 0;
357 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
358 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
359 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
362 // The target may mess up with the insertion point, but
363 // this is not important as a return is the last instruction
364 // of the block anyway.
365 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
368 void IRTranslator::emitBranchForMergedCondition(
369 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
370 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
371 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
372 // If the leaf of the tree is a comparison, merge the condition into
373 // the caseblock.
374 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
375 CmpInst::Predicate Condition;
376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
377 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
378 } else {
379 const FCmpInst *FC = cast<FCmpInst>(Cond);
380 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
383 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
384 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
385 CurBuilder->getDebugLoc(), TProb, FProb);
386 SL->SwitchCases.push_back(CB);
387 return;
390 // Create a CaseBlock record representing this branch.
391 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
392 SwitchCG::CaseBlock CB(
393 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
394 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
395 SL->SwitchCases.push_back(CB);
398 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
399 if (const Instruction *I = dyn_cast<Instruction>(V))
400 return I->getParent() == BB;
401 return true;
404 void IRTranslator::findMergedConditions(
405 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
406 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
407 Instruction::BinaryOps Opc, BranchProbability TProb,
408 BranchProbability FProb, bool InvertCond) {
409 using namespace PatternMatch;
410 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
411 "Expected Opc to be AND/OR");
412 // Skip over not part of the tree and remember to invert op and operands at
413 // next level.
414 Value *NotCond;
415 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
416 isValInBlock(NotCond, CurBB->getBasicBlock())) {
417 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
418 !InvertCond);
419 return;
422 const Instruction *BOp = dyn_cast<Instruction>(Cond);
423 const Value *BOpOp0, *BOpOp1;
424 // Compute the effective opcode for Cond, taking into account whether it needs
425 // to be inverted, e.g.
426 // and (not (or A, B)), C
427 // gets lowered as
428 // and (and (not A, not B), C)
429 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
430 if (BOp) {
431 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
432 ? Instruction::And
433 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
434 ? Instruction::Or
435 : (Instruction::BinaryOps)0);
436 if (InvertCond) {
437 if (BOpc == Instruction::And)
438 BOpc = Instruction::Or;
439 else if (BOpc == Instruction::Or)
440 BOpc = Instruction::And;
444 // If this node is not part of the or/and tree, emit it as a branch.
445 // Note that all nodes in the tree should have same opcode.
446 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
447 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
448 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
449 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
450 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
451 InvertCond);
452 return;
455 // Create TmpBB after CurBB.
456 MachineFunction::iterator BBI(CurBB);
457 MachineBasicBlock *TmpBB =
458 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
459 CurBB->getParent()->insert(++BBI, TmpBB);
461 if (Opc == Instruction::Or) {
462 // Codegen X | Y as:
463 // BB1:
464 // jmp_if_X TBB
465 // jmp TmpBB
466 // TmpBB:
467 // jmp_if_Y TBB
468 // jmp FBB
471 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
472 // The requirement is that
473 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
474 // = TrueProb for original BB.
475 // Assuming the original probabilities are A and B, one choice is to set
476 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
477 // A/(1+B) and 2B/(1+B). This choice assumes that
478 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
479 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
480 // TmpBB, but the math is more complicated.
482 auto NewTrueProb = TProb / 2;
483 auto NewFalseProb = TProb / 2 + FProb;
484 // Emit the LHS condition.
485 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
486 NewFalseProb, InvertCond);
488 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
489 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
490 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
491 // Emit the RHS condition into TmpBB.
492 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
493 Probs[1], InvertCond);
494 } else {
495 assert(Opc == Instruction::And && "Unknown merge op!");
496 // Codegen X & Y as:
497 // BB1:
498 // jmp_if_X TmpBB
499 // jmp FBB
500 // TmpBB:
501 // jmp_if_Y TBB
502 // jmp FBB
504 // This requires creation of TmpBB after CurBB.
506 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
507 // The requirement is that
508 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
509 // = FalseProb for original BB.
510 // Assuming the original probabilities are A and B, one choice is to set
511 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
512 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
513 // TrueProb for BB1 * FalseProb for TmpBB.
515 auto NewTrueProb = TProb + FProb / 2;
516 auto NewFalseProb = FProb / 2;
517 // Emit the LHS condition.
518 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
519 NewFalseProb, InvertCond);
521 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
522 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
523 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
524 // Emit the RHS condition into TmpBB.
525 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
526 Probs[1], InvertCond);
530 bool IRTranslator::shouldEmitAsBranches(
531 const std::vector<SwitchCG::CaseBlock> &Cases) {
532 // For multiple cases, it's better to emit as branches.
533 if (Cases.size() != 2)
534 return true;
536 // If this is two comparisons of the same values or'd or and'd together, they
537 // will get folded into a single comparison, so don't emit two blocks.
538 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
539 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
540 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
541 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
542 return false;
545 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
546 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
547 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
548 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
549 isa<Constant>(Cases[0].CmpRHS) &&
550 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
551 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
552 Cases[0].TrueBB == Cases[1].ThisBB)
553 return false;
554 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
555 Cases[0].FalseBB == Cases[1].ThisBB)
556 return false;
559 return true;
562 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
563 const BranchInst &BrInst = cast<BranchInst>(U);
564 auto &CurMBB = MIRBuilder.getMBB();
565 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
567 if (BrInst.isUnconditional()) {
568 // If the unconditional target is the layout successor, fallthrough.
569 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
570 MIRBuilder.buildBr(*Succ0MBB);
572 // Link successors.
573 for (const BasicBlock *Succ : successors(&BrInst))
574 CurMBB.addSuccessor(&getMBB(*Succ));
575 return true;
578 // If this condition is one of the special cases we handle, do special stuff
579 // now.
580 const Value *CondVal = BrInst.getCondition();
581 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
583 const auto &TLI = *MF->getSubtarget().getTargetLowering();
585 // If this is a series of conditions that are or'd or and'd together, emit
586 // this as a sequence of branches instead of setcc's with and/or operations.
587 // As long as jumps are not expensive (exceptions for multi-use logic ops,
588 // unpredictable branches, and vector extracts because those jumps are likely
589 // expensive for any target), this should improve performance.
590 // For example, instead of something like:
591 // cmp A, B
592 // C = seteq
593 // cmp D, E
594 // F = setle
595 // or C, F
596 // jnz foo
597 // Emit:
598 // cmp A, B
599 // je foo
600 // cmp D, E
601 // jle foo
602 using namespace PatternMatch;
603 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
604 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
605 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
606 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
607 Value *Vec;
608 const Value *BOp0, *BOp1;
609 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
610 Opcode = Instruction::And;
611 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
612 Opcode = Instruction::Or;
614 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
615 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
616 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
617 getEdgeProbability(&CurMBB, Succ0MBB),
618 getEdgeProbability(&CurMBB, Succ1MBB),
619 /*InvertCond=*/false);
620 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
622 // Allow some cases to be rejected.
623 if (shouldEmitAsBranches(SL->SwitchCases)) {
624 // Emit the branch for this block.
625 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
626 SL->SwitchCases.erase(SL->SwitchCases.begin());
627 return true;
630 // Okay, we decided not to do this, remove any inserted MBB's and clear
631 // SwitchCases.
632 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
633 MF->erase(SL->SwitchCases[I].ThisBB);
635 SL->SwitchCases.clear();
639 // Create a CaseBlock record representing this branch.
640 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
641 ConstantInt::getTrue(MF->getFunction().getContext()),
642 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
643 CurBuilder->getDebugLoc());
645 // Use emitSwitchCase to actually insert the fast branch sequence for this
646 // cond branch.
647 emitSwitchCase(CB, &CurMBB, *CurBuilder);
648 return true;
651 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
652 MachineBasicBlock *Dst,
653 BranchProbability Prob) {
654 if (!FuncInfo.BPI) {
655 Src->addSuccessorWithoutProb(Dst);
656 return;
658 if (Prob.isUnknown())
659 Prob = getEdgeProbability(Src, Dst);
660 Src->addSuccessor(Dst, Prob);
663 BranchProbability
664 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
665 const MachineBasicBlock *Dst) const {
666 const BasicBlock *SrcBB = Src->getBasicBlock();
667 const BasicBlock *DstBB = Dst->getBasicBlock();
668 if (!FuncInfo.BPI) {
669 // If BPI is not available, set the default probability as 1 / N, where N is
670 // the number of successors.
671 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
672 return BranchProbability(1, SuccSize);
674 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
677 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
678 using namespace SwitchCG;
679 // Extract cases from the switch.
680 const SwitchInst &SI = cast<SwitchInst>(U);
681 BranchProbabilityInfo *BPI = FuncInfo.BPI;
682 CaseClusterVector Clusters;
683 Clusters.reserve(SI.getNumCases());
684 for (auto &I : SI.cases()) {
685 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
686 assert(Succ && "Could not find successor mbb in mapping");
687 const ConstantInt *CaseVal = I.getCaseValue();
688 BranchProbability Prob =
689 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
690 : BranchProbability(1, SI.getNumCases() + 1);
691 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
694 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
696 // Cluster adjacent cases with the same destination. We do this at all
697 // optimization levels because it's cheap to do and will make codegen faster
698 // if there are many clusters.
699 sortAndRangeify(Clusters);
701 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
703 // If there is only the default destination, jump there directly.
704 if (Clusters.empty()) {
705 SwitchMBB->addSuccessor(DefaultMBB);
706 if (DefaultMBB != SwitchMBB->getNextNode())
707 MIB.buildBr(*DefaultMBB);
708 return true;
711 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
712 SL->findBitTestClusters(Clusters, &SI);
714 LLVM_DEBUG({
715 dbgs() << "Case clusters: ";
716 for (const CaseCluster &C : Clusters) {
717 if (C.Kind == CC_JumpTable)
718 dbgs() << "JT:";
719 if (C.Kind == CC_BitTests)
720 dbgs() << "BT:";
722 C.Low->getValue().print(dbgs(), true);
723 if (C.Low != C.High) {
724 dbgs() << '-';
725 C.High->getValue().print(dbgs(), true);
727 dbgs() << ' ';
729 dbgs() << '\n';
732 assert(!Clusters.empty());
733 SwitchWorkList WorkList;
734 CaseClusterIt First = Clusters.begin();
735 CaseClusterIt Last = Clusters.end() - 1;
736 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
737 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
739 // FIXME: At the moment we don't do any splitting optimizations here like
740 // SelectionDAG does, so this worklist only has one entry.
741 while (!WorkList.empty()) {
742 SwitchWorkListItem W = WorkList.back();
743 WorkList.pop_back();
744 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
745 return false;
747 return true;
750 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
751 MachineBasicBlock *MBB) {
752 // Emit the code for the jump table
753 assert(JT.Reg != -1U && "Should lower JT Header first!");
754 MachineIRBuilder MIB(*MBB->getParent());
755 MIB.setMBB(*MBB);
756 MIB.setDebugLoc(CurBuilder->getDebugLoc());
758 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
759 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
761 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
762 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
765 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
766 SwitchCG::JumpTableHeader &JTH,
767 MachineBasicBlock *HeaderBB) {
768 MachineIRBuilder MIB(*HeaderBB->getParent());
769 MIB.setMBB(*HeaderBB);
770 MIB.setDebugLoc(CurBuilder->getDebugLoc());
772 const Value &SValue = *JTH.SValue;
773 // Subtract the lowest switch case value from the value being switched on.
774 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
775 Register SwitchOpReg = getOrCreateVReg(SValue);
776 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
777 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
779 // This value may be smaller or larger than the target's pointer type, and
780 // therefore require extension or truncating.
781 Type *PtrIRTy = SValue.getType()->getPointerTo();
782 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
783 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
785 JT.Reg = Sub.getReg(0);
787 if (JTH.OmitRangeCheck) {
788 if (JT.MBB != HeaderBB->getNextNode())
789 MIB.buildBr(*JT.MBB);
790 return true;
793 // Emit the range check for the jump table, and branch to the default block
794 // for the switch statement if the value being switched on exceeds the
795 // largest case in the switch.
796 auto Cst = getOrCreateVReg(
797 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
798 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
799 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
801 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
803 // Avoid emitting unnecessary branches to the next block.
804 if (JT.MBB != HeaderBB->getNextNode())
805 BrCond = MIB.buildBr(*JT.MBB);
806 return true;
809 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
810 MachineBasicBlock *SwitchBB,
811 MachineIRBuilder &MIB) {
812 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
813 Register Cond;
814 DebugLoc OldDbgLoc = MIB.getDebugLoc();
815 MIB.setDebugLoc(CB.DbgLoc);
816 MIB.setMBB(*CB.ThisBB);
818 if (CB.PredInfo.NoCmp) {
819 // Branch or fall through to TrueBB.
820 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
821 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
822 CB.ThisBB);
823 CB.ThisBB->normalizeSuccProbs();
824 if (CB.TrueBB != CB.ThisBB->getNextNode())
825 MIB.buildBr(*CB.TrueBB);
826 MIB.setDebugLoc(OldDbgLoc);
827 return;
830 const LLT i1Ty = LLT::scalar(1);
831 // Build the compare.
832 if (!CB.CmpMHS) {
833 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
834 // For conditional branch lowering, we might try to do something silly like
835 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
836 // just re-use the existing condition vreg.
837 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
838 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
839 Cond = CondLHS;
840 } else {
841 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
842 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
843 Cond =
844 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
845 else
846 Cond =
847 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
849 } else {
850 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
851 "Can only handle SLE ranges");
853 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
854 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
856 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
857 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
858 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
859 Cond =
860 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
861 } else {
862 const LLT CmpTy = MRI->getType(CmpOpReg);
863 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
864 auto Diff = MIB.buildConstant(CmpTy, High - Low);
865 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
869 // Update successor info
870 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
872 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
873 CB.ThisBB);
875 // TrueBB and FalseBB are always different unless the incoming IR is
876 // degenerate. This only happens when running llc on weird IR.
877 if (CB.TrueBB != CB.FalseBB)
878 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
879 CB.ThisBB->normalizeSuccProbs();
881 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
882 CB.ThisBB);
884 MIB.buildBrCond(Cond, *CB.TrueBB);
885 MIB.buildBr(*CB.FalseBB);
886 MIB.setDebugLoc(OldDbgLoc);
889 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
890 MachineBasicBlock *SwitchMBB,
891 MachineBasicBlock *CurMBB,
892 MachineBasicBlock *DefaultMBB,
893 MachineIRBuilder &MIB,
894 MachineFunction::iterator BBI,
895 BranchProbability UnhandledProbs,
896 SwitchCG::CaseClusterIt I,
897 MachineBasicBlock *Fallthrough,
898 bool FallthroughUnreachable) {
899 using namespace SwitchCG;
900 MachineFunction *CurMF = SwitchMBB->getParent();
901 // FIXME: Optimize away range check based on pivot comparisons.
902 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
903 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
904 BranchProbability DefaultProb = W.DefaultProb;
906 // The jump block hasn't been inserted yet; insert it here.
907 MachineBasicBlock *JumpMBB = JT->MBB;
908 CurMF->insert(BBI, JumpMBB);
910 // Since the jump table block is separate from the switch block, we need
911 // to keep track of it as a machine predecessor to the default block,
912 // otherwise we lose the phi edges.
913 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
914 CurMBB);
915 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
916 JumpMBB);
918 auto JumpProb = I->Prob;
919 auto FallthroughProb = UnhandledProbs;
921 // If the default statement is a target of the jump table, we evenly
922 // distribute the default probability to successors of CurMBB. Also
923 // update the probability on the edge from JumpMBB to Fallthrough.
924 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
925 SE = JumpMBB->succ_end();
926 SI != SE; ++SI) {
927 if (*SI == DefaultMBB) {
928 JumpProb += DefaultProb / 2;
929 FallthroughProb -= DefaultProb / 2;
930 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
931 JumpMBB->normalizeSuccProbs();
932 } else {
933 // Also record edges from the jump table block to it's successors.
934 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
935 JumpMBB);
939 // Skip the range check if the fallthrough block is unreachable.
940 if (FallthroughUnreachable)
941 JTH->OmitRangeCheck = true;
943 if (!JTH->OmitRangeCheck)
944 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
945 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
946 CurMBB->normalizeSuccProbs();
948 // The jump table header will be inserted in our current block, do the
949 // range check, and fall through to our fallthrough block.
950 JTH->HeaderBB = CurMBB;
951 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
953 // If we're in the right place, emit the jump table header right now.
954 if (CurMBB == SwitchMBB) {
955 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
956 return false;
957 JTH->Emitted = true;
959 return true;
961 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
962 Value *Cond,
963 MachineBasicBlock *Fallthrough,
964 bool FallthroughUnreachable,
965 BranchProbability UnhandledProbs,
966 MachineBasicBlock *CurMBB,
967 MachineIRBuilder &MIB,
968 MachineBasicBlock *SwitchMBB) {
969 using namespace SwitchCG;
970 const Value *RHS, *LHS, *MHS;
971 CmpInst::Predicate Pred;
972 if (I->Low == I->High) {
973 // Check Cond == I->Low.
974 Pred = CmpInst::ICMP_EQ;
975 LHS = Cond;
976 RHS = I->Low;
977 MHS = nullptr;
978 } else {
979 // Check I->Low <= Cond <= I->High.
980 Pred = CmpInst::ICMP_SLE;
981 LHS = I->Low;
982 MHS = Cond;
983 RHS = I->High;
986 // If Fallthrough is unreachable, fold away the comparison.
987 // The false probability is the sum of all unhandled cases.
988 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
989 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
991 emitSwitchCase(CB, SwitchMBB, MIB);
992 return true;
995 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
996 MachineBasicBlock *SwitchBB) {
997 MachineIRBuilder &MIB = *CurBuilder;
998 MIB.setMBB(*SwitchBB);
1000 // Subtract the minimum value.
1001 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1003 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1004 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1005 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1007 // Ensure that the type will fit the mask value.
1008 LLT MaskTy = SwitchOpTy;
1009 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1010 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1011 // Switch table case range are encoded into series of masks.
1012 // Just use pointer type, it's guaranteed to fit.
1013 MaskTy = LLT::scalar(64);
1014 break;
1017 Register SubReg = RangeSub.getReg(0);
1018 if (SwitchOpTy != MaskTy)
1019 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1021 B.RegVT = getMVTForLLT(MaskTy);
1022 B.Reg = SubReg;
1024 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1026 if (!B.OmitRangeCheck)
1027 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1028 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1030 SwitchBB->normalizeSuccProbs();
1032 if (!B.OmitRangeCheck) {
1033 // Conditional branch to the default block.
1034 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1035 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1036 RangeSub, RangeCst);
1037 MIB.buildBrCond(RangeCmp, *B.Default);
1040 // Avoid emitting unnecessary branches to the next block.
1041 if (MBB != SwitchBB->getNextNode())
1042 MIB.buildBr(*MBB);
1045 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1046 MachineBasicBlock *NextMBB,
1047 BranchProbability BranchProbToNext,
1048 Register Reg, SwitchCG::BitTestCase &B,
1049 MachineBasicBlock *SwitchBB) {
1050 MachineIRBuilder &MIB = *CurBuilder;
1051 MIB.setMBB(*SwitchBB);
1053 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1054 Register Cmp;
1055 unsigned PopCount = countPopulation(B.Mask);
1056 if (PopCount == 1) {
1057 // Testing for a single bit; just compare the shift count with what it
1058 // would need to be to shift a 1 bit in that position.
1059 auto MaskTrailingZeros =
1060 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1061 Cmp =
1062 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1063 .getReg(0);
1064 } else if (PopCount == BB.Range) {
1065 // There is only one zero bit in the range, test for it directly.
1066 auto MaskTrailingOnes =
1067 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1068 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1069 .getReg(0);
1070 } else {
1071 // Make desired shift.
1072 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1073 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1075 // Emit bit tests and jumps.
1076 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1077 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1078 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1079 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1080 .getReg(0);
1083 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1084 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1085 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1086 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1087 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1088 // one as they are relative probabilities (and thus work more like weights),
1089 // and hence we need to normalize them to let the sum of them become one.
1090 SwitchBB->normalizeSuccProbs();
1092 // Record the fact that the IR edge from the header to the bit test target
1093 // will go through our new block. Neeeded for PHIs to have nodes added.
1094 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1095 SwitchBB);
1097 MIB.buildBrCond(Cmp, *B.TargetBB);
1099 // Avoid emitting unnecessary branches to the next block.
1100 if (NextMBB != SwitchBB->getNextNode())
1101 MIB.buildBr(*NextMBB);
1104 bool IRTranslator::lowerBitTestWorkItem(
1105 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1106 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1107 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1108 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1109 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1110 bool FallthroughUnreachable) {
1111 using namespace SwitchCG;
1112 MachineFunction *CurMF = SwitchMBB->getParent();
1113 // FIXME: Optimize away range check based on pivot comparisons.
1114 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1115 // The bit test blocks haven't been inserted yet; insert them here.
1116 for (BitTestCase &BTC : BTB->Cases)
1117 CurMF->insert(BBI, BTC.ThisBB);
1119 // Fill in fields of the BitTestBlock.
1120 BTB->Parent = CurMBB;
1121 BTB->Default = Fallthrough;
1123 BTB->DefaultProb = UnhandledProbs;
1124 // If the cases in bit test don't form a contiguous range, we evenly
1125 // distribute the probability on the edge to Fallthrough to two
1126 // successors of CurMBB.
1127 if (!BTB->ContiguousRange) {
1128 BTB->Prob += DefaultProb / 2;
1129 BTB->DefaultProb -= DefaultProb / 2;
1132 if (FallthroughUnreachable) {
1133 // Skip the range check if the fallthrough block is unreachable.
1134 BTB->OmitRangeCheck = true;
1137 // If we're in the right place, emit the bit test header right now.
1138 if (CurMBB == SwitchMBB) {
1139 emitBitTestHeader(*BTB, SwitchMBB);
1140 BTB->Emitted = true;
1142 return true;
1145 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1146 Value *Cond,
1147 MachineBasicBlock *SwitchMBB,
1148 MachineBasicBlock *DefaultMBB,
1149 MachineIRBuilder &MIB) {
1150 using namespace SwitchCG;
1151 MachineFunction *CurMF = FuncInfo.MF;
1152 MachineBasicBlock *NextMBB = nullptr;
1153 MachineFunction::iterator BBI(W.MBB);
1154 if (++BBI != FuncInfo.MF->end())
1155 NextMBB = &*BBI;
1157 if (EnableOpts) {
1158 // Here, we order cases by probability so the most likely case will be
1159 // checked first. However, two clusters can have the same probability in
1160 // which case their relative ordering is non-deterministic. So we use Low
1161 // as a tie-breaker as clusters are guaranteed to never overlap.
1162 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1163 [](const CaseCluster &a, const CaseCluster &b) {
1164 return a.Prob != b.Prob
1165 ? a.Prob > b.Prob
1166 : a.Low->getValue().slt(b.Low->getValue());
1169 // Rearrange the case blocks so that the last one falls through if possible
1170 // without changing the order of probabilities.
1171 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1172 --I;
1173 if (I->Prob > W.LastCluster->Prob)
1174 break;
1175 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1176 std::swap(*I, *W.LastCluster);
1177 break;
1182 // Compute total probability.
1183 BranchProbability DefaultProb = W.DefaultProb;
1184 BranchProbability UnhandledProbs = DefaultProb;
1185 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1186 UnhandledProbs += I->Prob;
1188 MachineBasicBlock *CurMBB = W.MBB;
1189 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1190 bool FallthroughUnreachable = false;
1191 MachineBasicBlock *Fallthrough;
1192 if (I == W.LastCluster) {
1193 // For the last cluster, fall through to the default destination.
1194 Fallthrough = DefaultMBB;
1195 FallthroughUnreachable = isa<UnreachableInst>(
1196 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1197 } else {
1198 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1199 CurMF->insert(BBI, Fallthrough);
1201 UnhandledProbs -= I->Prob;
1203 switch (I->Kind) {
1204 case CC_BitTests: {
1205 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1206 DefaultProb, UnhandledProbs, I, Fallthrough,
1207 FallthroughUnreachable)) {
1208 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1209 return false;
1211 break;
1214 case CC_JumpTable: {
1215 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1216 UnhandledProbs, I, Fallthrough,
1217 FallthroughUnreachable)) {
1218 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1219 return false;
1221 break;
1223 case CC_Range: {
1224 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1225 FallthroughUnreachable, UnhandledProbs,
1226 CurMBB, MIB, SwitchMBB)) {
1227 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1228 return false;
1230 break;
1233 CurMBB = Fallthrough;
1236 return true;
1239 bool IRTranslator::translateIndirectBr(const User &U,
1240 MachineIRBuilder &MIRBuilder) {
1241 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1243 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1244 MIRBuilder.buildBrIndirect(Tgt);
1246 // Link successors.
1247 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1248 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1249 for (const BasicBlock *Succ : successors(&BrInst)) {
1250 // It's legal for indirectbr instructions to have duplicate blocks in the
1251 // destination list. We don't allow this in MIR. Skip anything that's
1252 // already a successor.
1253 if (!AddedSuccessors.insert(Succ).second)
1254 continue;
1255 CurBB.addSuccessor(&getMBB(*Succ));
1258 return true;
1261 static bool isSwiftError(const Value *V) {
1262 if (auto Arg = dyn_cast<Argument>(V))
1263 return Arg->hasSwiftErrorAttr();
1264 if (auto AI = dyn_cast<AllocaInst>(V))
1265 return AI->isSwiftError();
1266 return false;
1269 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1270 const LoadInst &LI = cast<LoadInst>(U);
1271 if (DL->getTypeStoreSize(LI.getType()) == 0)
1272 return true;
1274 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1275 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1276 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1278 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
1279 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1281 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
1282 assert(Regs.size() == 1 && "swifterror should be single pointer");
1283 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
1284 LI.getPointerOperand());
1285 MIRBuilder.buildCopy(Regs[0], VReg);
1286 return true;
1289 auto &TLI = *MF->getSubtarget().getTargetLowering();
1290 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
1292 const MDNode *Ranges =
1293 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1294 for (unsigned i = 0; i < Regs.size(); ++i) {
1295 Register Addr;
1296 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1298 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1299 Align BaseAlign = getMemOpAlign(LI);
1300 AAMDNodes AAMetadata;
1301 LI.getAAMetadata(AAMetadata);
1302 auto MMO = MF->getMachineMemOperand(
1303 Ptr, Flags, MRI->getType(Regs[i]),
1304 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
1305 LI.getSyncScopeID(), LI.getOrdering());
1306 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1309 return true;
1312 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1313 const StoreInst &SI = cast<StoreInst>(U);
1314 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1315 return true;
1317 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1318 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1319 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1321 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1322 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1324 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1325 assert(Vals.size() == 1 && "swifterror should be single pointer");
1327 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1328 SI.getPointerOperand());
1329 MIRBuilder.buildCopy(VReg, Vals[0]);
1330 return true;
1333 auto &TLI = *MF->getSubtarget().getTargetLowering();
1334 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1336 for (unsigned i = 0; i < Vals.size(); ++i) {
1337 Register Addr;
1338 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1340 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1341 Align BaseAlign = getMemOpAlign(SI);
1342 AAMDNodes AAMetadata;
1343 SI.getAAMetadata(AAMetadata);
1344 auto MMO = MF->getMachineMemOperand(
1345 Ptr, Flags, MRI->getType(Vals[i]),
1346 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
1347 SI.getSyncScopeID(), SI.getOrdering());
1348 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1350 return true;
1353 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1354 const Value *Src = U.getOperand(0);
1355 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1357 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1358 // usual array element rather than looking into the actual aggregate.
1359 SmallVector<Value *, 1> Indices;
1360 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1362 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1363 for (auto Idx : EVI->indices())
1364 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1365 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1366 for (auto Idx : IVI->indices())
1367 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1368 } else {
1369 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1370 Indices.push_back(U.getOperand(i));
1373 return 8 * static_cast<uint64_t>(
1374 DL.getIndexedOffsetInType(Src->getType(), Indices));
1377 bool IRTranslator::translateExtractValue(const User &U,
1378 MachineIRBuilder &MIRBuilder) {
1379 const Value *Src = U.getOperand(0);
1380 uint64_t Offset = getOffsetFromIndices(U, *DL);
1381 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1382 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1383 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1384 auto &DstRegs = allocateVRegs(U);
1386 for (unsigned i = 0; i < DstRegs.size(); ++i)
1387 DstRegs[i] = SrcRegs[Idx++];
1389 return true;
1392 bool IRTranslator::translateInsertValue(const User &U,
1393 MachineIRBuilder &MIRBuilder) {
1394 const Value *Src = U.getOperand(0);
1395 uint64_t Offset = getOffsetFromIndices(U, *DL);
1396 auto &DstRegs = allocateVRegs(U);
1397 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1398 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1399 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1400 auto InsertedIt = InsertedRegs.begin();
1402 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1403 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1404 DstRegs[i] = *InsertedIt++;
1405 else
1406 DstRegs[i] = SrcRegs[i];
1409 return true;
1412 bool IRTranslator::translateSelect(const User &U,
1413 MachineIRBuilder &MIRBuilder) {
1414 Register Tst = getOrCreateVReg(*U.getOperand(0));
1415 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1416 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1417 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1419 uint16_t Flags = 0;
1420 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1421 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1423 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1424 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1427 return true;
1430 bool IRTranslator::translateCopy(const User &U, const Value &V,
1431 MachineIRBuilder &MIRBuilder) {
1432 Register Src = getOrCreateVReg(V);
1433 auto &Regs = *VMap.getVRegs(U);
1434 if (Regs.empty()) {
1435 Regs.push_back(Src);
1436 VMap.getOffsets(U)->push_back(0);
1437 } else {
1438 // If we already assigned a vreg for this instruction, we can't change that.
1439 // Emit a copy to satisfy the users we already emitted.
1440 MIRBuilder.buildCopy(Regs[0], Src);
1442 return true;
1445 bool IRTranslator::translateBitCast(const User &U,
1446 MachineIRBuilder &MIRBuilder) {
1447 // If we're bitcasting to the source type, we can reuse the source vreg.
1448 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1449 getLLTForType(*U.getType(), *DL))
1450 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1452 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1455 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1456 MachineIRBuilder &MIRBuilder) {
1457 Register Op = getOrCreateVReg(*U.getOperand(0));
1458 Register Res = getOrCreateVReg(U);
1459 MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1460 return true;
1463 bool IRTranslator::translateGetElementPtr(const User &U,
1464 MachineIRBuilder &MIRBuilder) {
1465 Value &Op0 = *U.getOperand(0);
1466 Register BaseReg = getOrCreateVReg(Op0);
1467 Type *PtrIRTy = Op0.getType();
1468 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1469 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1470 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1472 // Normalize Vector GEP - all scalar operands should be converted to the
1473 // splat vector.
1474 unsigned VectorWidth = 0;
1476 // True if we should use a splat vector; using VectorWidth alone is not
1477 // sufficient.
1478 bool WantSplatVector = false;
1479 if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1480 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1481 // We don't produce 1 x N vectors; those are treated as scalars.
1482 WantSplatVector = VectorWidth > 1;
1485 // We might need to splat the base pointer into a vector if the offsets
1486 // are vectors.
1487 if (WantSplatVector && !PtrTy.isVector()) {
1488 BaseReg =
1489 MIRBuilder
1490 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1491 .getReg(0);
1492 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1493 PtrTy = getLLTForType(*PtrIRTy, *DL);
1494 OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1495 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1498 int64_t Offset = 0;
1499 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1500 GTI != E; ++GTI) {
1501 const Value *Idx = GTI.getOperand();
1502 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1503 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1504 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1505 continue;
1506 } else {
1507 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1509 // If this is a scalar constant or a splat vector of constants,
1510 // handle it quickly.
1511 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1512 Offset += ElementSize * CI->getSExtValue();
1513 continue;
1516 if (Offset != 0) {
1517 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1518 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1519 .getReg(0);
1520 Offset = 0;
1523 Register IdxReg = getOrCreateVReg(*Idx);
1524 LLT IdxTy = MRI->getType(IdxReg);
1525 if (IdxTy != OffsetTy) {
1526 if (!IdxTy.isVector() && WantSplatVector) {
1527 IdxReg = MIRBuilder.buildSplatVector(
1528 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1531 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1534 // N = N + Idx * ElementSize;
1535 // Avoid doing it for ElementSize of 1.
1536 Register GepOffsetReg;
1537 if (ElementSize != 1) {
1538 auto ElementSizeMIB = MIRBuilder.buildConstant(
1539 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1540 GepOffsetReg =
1541 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1542 } else
1543 GepOffsetReg = IdxReg;
1545 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1549 if (Offset != 0) {
1550 auto OffsetMIB =
1551 MIRBuilder.buildConstant(OffsetTy, Offset);
1552 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1553 return true;
1556 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1557 return true;
1560 bool IRTranslator::translateMemFunc(const CallInst &CI,
1561 MachineIRBuilder &MIRBuilder,
1562 unsigned Opcode) {
1564 // If the source is undef, then just emit a nop.
1565 if (isa<UndefValue>(CI.getArgOperand(1)))
1566 return true;
1568 SmallVector<Register, 3> SrcRegs;
1570 unsigned MinPtrSize = UINT_MAX;
1571 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1572 Register SrcReg = getOrCreateVReg(**AI);
1573 LLT SrcTy = MRI->getType(SrcReg);
1574 if (SrcTy.isPointer())
1575 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1576 SrcRegs.push_back(SrcReg);
1579 LLT SizeTy = LLT::scalar(MinPtrSize);
1581 // The size operand should be the minimum of the pointer sizes.
1582 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1583 if (MRI->getType(SizeOpReg) != SizeTy)
1584 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1586 auto ICall = MIRBuilder.buildInstr(Opcode);
1587 for (Register SrcReg : SrcRegs)
1588 ICall.addUse(SrcReg);
1590 Align DstAlign;
1591 Align SrcAlign;
1592 unsigned IsVol =
1593 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1594 ->getZExtValue();
1596 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1597 DstAlign = MCI->getDestAlign().valueOrOne();
1598 SrcAlign = MCI->getSourceAlign().valueOrOne();
1599 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1600 DstAlign = MCI->getDestAlign().valueOrOne();
1601 SrcAlign = MCI->getSourceAlign().valueOrOne();
1602 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1603 DstAlign = MMI->getDestAlign().valueOrOne();
1604 SrcAlign = MMI->getSourceAlign().valueOrOne();
1605 } else {
1606 auto *MSI = cast<MemSetInst>(&CI);
1607 DstAlign = MSI->getDestAlign().valueOrOne();
1610 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1611 // We need to propagate the tail call flag from the IR inst as an argument.
1612 // Otherwise, we have to pessimize and assume later that we cannot tail call
1613 // any memory intrinsics.
1614 ICall.addImm(CI.isTailCall() ? 1 : 0);
1617 // Create mem operands to store the alignment and volatile info.
1618 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1619 ICall.addMemOperand(MF->getMachineMemOperand(
1620 MachinePointerInfo(CI.getArgOperand(0)),
1621 MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1622 if (Opcode != TargetOpcode::G_MEMSET)
1623 ICall.addMemOperand(MF->getMachineMemOperand(
1624 MachinePointerInfo(CI.getArgOperand(1)),
1625 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1627 return true;
1630 void IRTranslator::getStackGuard(Register DstReg,
1631 MachineIRBuilder &MIRBuilder) {
1632 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1633 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1634 auto MIB =
1635 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1637 auto &TLI = *MF->getSubtarget().getTargetLowering();
1638 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1639 if (!Global)
1640 return;
1642 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1643 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1645 MachinePointerInfo MPInfo(Global);
1646 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1647 MachineMemOperand::MODereferenceable;
1648 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1649 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1650 MIB.setMemRefs({MemRef});
1653 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1654 MachineIRBuilder &MIRBuilder) {
1655 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1656 MIRBuilder.buildInstr(
1657 Op, {ResRegs[0], ResRegs[1]},
1658 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1660 return true;
1663 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1664 MachineIRBuilder &MIRBuilder) {
1665 Register Dst = getOrCreateVReg(CI);
1666 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1667 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1668 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1669 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1670 return true;
1673 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1674 switch (ID) {
1675 default:
1676 break;
1677 case Intrinsic::bswap:
1678 return TargetOpcode::G_BSWAP;
1679 case Intrinsic::bitreverse:
1680 return TargetOpcode::G_BITREVERSE;
1681 case Intrinsic::fshl:
1682 return TargetOpcode::G_FSHL;
1683 case Intrinsic::fshr:
1684 return TargetOpcode::G_FSHR;
1685 case Intrinsic::ceil:
1686 return TargetOpcode::G_FCEIL;
1687 case Intrinsic::cos:
1688 return TargetOpcode::G_FCOS;
1689 case Intrinsic::ctpop:
1690 return TargetOpcode::G_CTPOP;
1691 case Intrinsic::exp:
1692 return TargetOpcode::G_FEXP;
1693 case Intrinsic::exp2:
1694 return TargetOpcode::G_FEXP2;
1695 case Intrinsic::fabs:
1696 return TargetOpcode::G_FABS;
1697 case Intrinsic::copysign:
1698 return TargetOpcode::G_FCOPYSIGN;
1699 case Intrinsic::minnum:
1700 return TargetOpcode::G_FMINNUM;
1701 case Intrinsic::maxnum:
1702 return TargetOpcode::G_FMAXNUM;
1703 case Intrinsic::minimum:
1704 return TargetOpcode::G_FMINIMUM;
1705 case Intrinsic::maximum:
1706 return TargetOpcode::G_FMAXIMUM;
1707 case Intrinsic::canonicalize:
1708 return TargetOpcode::G_FCANONICALIZE;
1709 case Intrinsic::floor:
1710 return TargetOpcode::G_FFLOOR;
1711 case Intrinsic::fma:
1712 return TargetOpcode::G_FMA;
1713 case Intrinsic::log:
1714 return TargetOpcode::G_FLOG;
1715 case Intrinsic::log2:
1716 return TargetOpcode::G_FLOG2;
1717 case Intrinsic::log10:
1718 return TargetOpcode::G_FLOG10;
1719 case Intrinsic::nearbyint:
1720 return TargetOpcode::G_FNEARBYINT;
1721 case Intrinsic::pow:
1722 return TargetOpcode::G_FPOW;
1723 case Intrinsic::powi:
1724 return TargetOpcode::G_FPOWI;
1725 case Intrinsic::rint:
1726 return TargetOpcode::G_FRINT;
1727 case Intrinsic::round:
1728 return TargetOpcode::G_INTRINSIC_ROUND;
1729 case Intrinsic::roundeven:
1730 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1731 case Intrinsic::sin:
1732 return TargetOpcode::G_FSIN;
1733 case Intrinsic::sqrt:
1734 return TargetOpcode::G_FSQRT;
1735 case Intrinsic::trunc:
1736 return TargetOpcode::G_INTRINSIC_TRUNC;
1737 case Intrinsic::readcyclecounter:
1738 return TargetOpcode::G_READCYCLECOUNTER;
1739 case Intrinsic::ptrmask:
1740 return TargetOpcode::G_PTRMASK;
1741 case Intrinsic::lrint:
1742 return TargetOpcode::G_INTRINSIC_LRINT;
1743 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1744 case Intrinsic::vector_reduce_fmin:
1745 return TargetOpcode::G_VECREDUCE_FMIN;
1746 case Intrinsic::vector_reduce_fmax:
1747 return TargetOpcode::G_VECREDUCE_FMAX;
1748 case Intrinsic::vector_reduce_add:
1749 return TargetOpcode::G_VECREDUCE_ADD;
1750 case Intrinsic::vector_reduce_mul:
1751 return TargetOpcode::G_VECREDUCE_MUL;
1752 case Intrinsic::vector_reduce_and:
1753 return TargetOpcode::G_VECREDUCE_AND;
1754 case Intrinsic::vector_reduce_or:
1755 return TargetOpcode::G_VECREDUCE_OR;
1756 case Intrinsic::vector_reduce_xor:
1757 return TargetOpcode::G_VECREDUCE_XOR;
1758 case Intrinsic::vector_reduce_smax:
1759 return TargetOpcode::G_VECREDUCE_SMAX;
1760 case Intrinsic::vector_reduce_smin:
1761 return TargetOpcode::G_VECREDUCE_SMIN;
1762 case Intrinsic::vector_reduce_umax:
1763 return TargetOpcode::G_VECREDUCE_UMAX;
1764 case Intrinsic::vector_reduce_umin:
1765 return TargetOpcode::G_VECREDUCE_UMIN;
1766 case Intrinsic::lround:
1767 return TargetOpcode::G_LROUND;
1769 return Intrinsic::not_intrinsic;
1772 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1773 Intrinsic::ID ID,
1774 MachineIRBuilder &MIRBuilder) {
1776 unsigned Op = getSimpleIntrinsicOpcode(ID);
1778 // Is this a simple intrinsic?
1779 if (Op == Intrinsic::not_intrinsic)
1780 return false;
1782 // Yes. Let's translate it.
1783 SmallVector<llvm::SrcOp, 4> VRegs;
1784 for (auto &Arg : CI.arg_operands())
1785 VRegs.push_back(getOrCreateVReg(*Arg));
1787 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1788 MachineInstr::copyFlagsFromInstruction(CI));
1789 return true;
1792 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1793 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1794 switch (ID) {
1795 case Intrinsic::experimental_constrained_fadd:
1796 return TargetOpcode::G_STRICT_FADD;
1797 case Intrinsic::experimental_constrained_fsub:
1798 return TargetOpcode::G_STRICT_FSUB;
1799 case Intrinsic::experimental_constrained_fmul:
1800 return TargetOpcode::G_STRICT_FMUL;
1801 case Intrinsic::experimental_constrained_fdiv:
1802 return TargetOpcode::G_STRICT_FDIV;
1803 case Intrinsic::experimental_constrained_frem:
1804 return TargetOpcode::G_STRICT_FREM;
1805 case Intrinsic::experimental_constrained_fma:
1806 return TargetOpcode::G_STRICT_FMA;
1807 case Intrinsic::experimental_constrained_sqrt:
1808 return TargetOpcode::G_STRICT_FSQRT;
1809 default:
1810 return 0;
1814 bool IRTranslator::translateConstrainedFPIntrinsic(
1815 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1816 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1818 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1819 if (!Opcode)
1820 return false;
1822 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1823 if (EB == fp::ExceptionBehavior::ebIgnore)
1824 Flags |= MachineInstr::NoFPExcept;
1826 SmallVector<llvm::SrcOp, 4> VRegs;
1827 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1828 if (!FPI.isUnaryOp())
1829 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1830 if (FPI.isTernaryOp())
1831 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1833 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1834 return true;
1837 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1838 MachineIRBuilder &MIRBuilder) {
1839 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1840 if (ORE->enabled()) {
1841 const Function &F = *MI->getParent()->getParent();
1842 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1843 if (MemoryOpRemark::canHandle(MI, TLI)) {
1844 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
1845 R.visit(MI);
1850 // If this is a simple intrinsic (that is, we just need to add a def of
1851 // a vreg, and uses for each arg operand, then translate it.
1852 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1853 return true;
1855 switch (ID) {
1856 default:
1857 break;
1858 case Intrinsic::lifetime_start:
1859 case Intrinsic::lifetime_end: {
1860 // No stack colouring in O0, discard region information.
1861 if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1862 return true;
1864 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1865 : TargetOpcode::LIFETIME_END;
1867 // Get the underlying objects for the location passed on the lifetime
1868 // marker.
1869 SmallVector<const Value *, 4> Allocas;
1870 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1872 // Iterate over each underlying object, creating lifetime markers for each
1873 // static alloca. Quit if we find a non-static alloca.
1874 for (const Value *V : Allocas) {
1875 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1876 if (!AI)
1877 continue;
1879 if (!AI->isStaticAlloca())
1880 return true;
1882 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1884 return true;
1886 case Intrinsic::dbg_declare: {
1887 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1888 assert(DI.getVariable() && "Missing variable");
1890 const Value *Address = DI.getAddress();
1891 if (!Address || isa<UndefValue>(Address)) {
1892 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1893 return true;
1896 assert(DI.getVariable()->isValidLocationForIntrinsic(
1897 MIRBuilder.getDebugLoc()) &&
1898 "Expected inlined-at fields to agree");
1899 auto AI = dyn_cast<AllocaInst>(Address);
1900 if (AI && AI->isStaticAlloca()) {
1901 // Static allocas are tracked at the MF level, no need for DBG_VALUE
1902 // instructions (in fact, they get ignored if they *do* exist).
1903 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1904 getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1905 } else {
1906 // A dbg.declare describes the address of a source variable, so lower it
1907 // into an indirect DBG_VALUE.
1908 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1909 DI.getVariable(), DI.getExpression());
1911 return true;
1913 case Intrinsic::dbg_label: {
1914 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1915 assert(DI.getLabel() && "Missing label");
1917 assert(DI.getLabel()->isValidLocationForIntrinsic(
1918 MIRBuilder.getDebugLoc()) &&
1919 "Expected inlined-at fields to agree");
1921 MIRBuilder.buildDbgLabel(DI.getLabel());
1922 return true;
1924 case Intrinsic::vaend:
1925 // No target I know of cares about va_end. Certainly no in-tree target
1926 // does. Simplest intrinsic ever!
1927 return true;
1928 case Intrinsic::vastart: {
1929 auto &TLI = *MF->getSubtarget().getTargetLowering();
1930 Value *Ptr = CI.getArgOperand(0);
1931 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1933 // FIXME: Get alignment
1934 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1935 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1936 MachineMemOperand::MOStore,
1937 ListSize, Align(1)));
1938 return true;
1940 case Intrinsic::dbg_value: {
1941 // This form of DBG_VALUE is target-independent.
1942 const DbgValueInst &DI = cast<DbgValueInst>(CI);
1943 const Value *V = DI.getValue();
1944 assert(DI.getVariable()->isValidLocationForIntrinsic(
1945 MIRBuilder.getDebugLoc()) &&
1946 "Expected inlined-at fields to agree");
1947 if (!V || DI.hasArgList()) {
1948 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1949 // terminate any prior location.
1950 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1951 } else if (const auto *CI = dyn_cast<Constant>(V)) {
1952 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1953 } else {
1954 for (Register Reg : getOrCreateVRegs(*V)) {
1955 // FIXME: This does not handle register-indirect values at offset 0. The
1956 // direct/indirect thing shouldn't really be handled by something as
1957 // implicit as reg+noreg vs reg+imm in the first place, but it seems
1958 // pretty baked in right now.
1959 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1962 return true;
1964 case Intrinsic::uadd_with_overflow:
1965 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1966 case Intrinsic::sadd_with_overflow:
1967 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1968 case Intrinsic::usub_with_overflow:
1969 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1970 case Intrinsic::ssub_with_overflow:
1971 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1972 case Intrinsic::umul_with_overflow:
1973 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1974 case Intrinsic::smul_with_overflow:
1975 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1976 case Intrinsic::uadd_sat:
1977 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1978 case Intrinsic::sadd_sat:
1979 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1980 case Intrinsic::usub_sat:
1981 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1982 case Intrinsic::ssub_sat:
1983 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1984 case Intrinsic::ushl_sat:
1985 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1986 case Intrinsic::sshl_sat:
1987 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1988 case Intrinsic::umin:
1989 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1990 case Intrinsic::umax:
1991 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1992 case Intrinsic::smin:
1993 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1994 case Intrinsic::smax:
1995 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1996 case Intrinsic::abs:
1997 // TODO: Preserve "int min is poison" arg in GMIR?
1998 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
1999 case Intrinsic::smul_fix:
2000 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2001 case Intrinsic::umul_fix:
2002 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2003 case Intrinsic::smul_fix_sat:
2004 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2005 case Intrinsic::umul_fix_sat:
2006 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2007 case Intrinsic::sdiv_fix:
2008 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2009 case Intrinsic::udiv_fix:
2010 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2011 case Intrinsic::sdiv_fix_sat:
2012 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2013 case Intrinsic::udiv_fix_sat:
2014 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2015 case Intrinsic::fmuladd: {
2016 const TargetMachine &TM = MF->getTarget();
2017 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2018 Register Dst = getOrCreateVReg(CI);
2019 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2020 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2021 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2022 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2023 TLI.isFMAFasterThanFMulAndFAdd(*MF,
2024 TLI.getValueType(*DL, CI.getType()))) {
2025 // TODO: Revisit this to see if we should move this part of the
2026 // lowering to the combiner.
2027 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2028 MachineInstr::copyFlagsFromInstruction(CI));
2029 } else {
2030 LLT Ty = getLLTForType(*CI.getType(), *DL);
2031 auto FMul = MIRBuilder.buildFMul(
2032 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2033 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2034 MachineInstr::copyFlagsFromInstruction(CI));
2036 return true;
2038 case Intrinsic::convert_from_fp16:
2039 // FIXME: This intrinsic should probably be removed from the IR.
2040 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2041 getOrCreateVReg(*CI.getArgOperand(0)),
2042 MachineInstr::copyFlagsFromInstruction(CI));
2043 return true;
2044 case Intrinsic::convert_to_fp16:
2045 // FIXME: This intrinsic should probably be removed from the IR.
2046 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2047 getOrCreateVReg(*CI.getArgOperand(0)),
2048 MachineInstr::copyFlagsFromInstruction(CI));
2049 return true;
2050 case Intrinsic::memcpy_inline:
2051 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2052 case Intrinsic::memcpy:
2053 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2054 case Intrinsic::memmove:
2055 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2056 case Intrinsic::memset:
2057 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2058 case Intrinsic::eh_typeid_for: {
2059 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2060 Register Reg = getOrCreateVReg(CI);
2061 unsigned TypeID = MF->getTypeIDFor(GV);
2062 MIRBuilder.buildConstant(Reg, TypeID);
2063 return true;
2065 case Intrinsic::objectsize:
2066 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2068 case Intrinsic::is_constant:
2069 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2071 case Intrinsic::stackguard:
2072 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2073 return true;
2074 case Intrinsic::stackprotector: {
2075 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2076 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2077 getStackGuard(GuardVal, MIRBuilder);
2079 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2080 int FI = getOrCreateFrameIndex(*Slot);
2081 MF->getFrameInfo().setStackProtectorIndex(FI);
2083 MIRBuilder.buildStore(
2084 GuardVal, getOrCreateVReg(*Slot),
2085 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2086 MachineMemOperand::MOStore |
2087 MachineMemOperand::MOVolatile,
2088 PtrTy, Align(8)));
2089 return true;
2091 case Intrinsic::stacksave: {
2092 // Save the stack pointer to the location provided by the intrinsic.
2093 Register Reg = getOrCreateVReg(CI);
2094 Register StackPtr = MF->getSubtarget()
2095 .getTargetLowering()
2096 ->getStackPointerRegisterToSaveRestore();
2098 // If the target doesn't specify a stack pointer, then fall back.
2099 if (!StackPtr)
2100 return false;
2102 MIRBuilder.buildCopy(Reg, StackPtr);
2103 return true;
2105 case Intrinsic::stackrestore: {
2106 // Restore the stack pointer from the location provided by the intrinsic.
2107 Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2108 Register StackPtr = MF->getSubtarget()
2109 .getTargetLowering()
2110 ->getStackPointerRegisterToSaveRestore();
2112 // If the target doesn't specify a stack pointer, then fall back.
2113 if (!StackPtr)
2114 return false;
2116 MIRBuilder.buildCopy(StackPtr, Reg);
2117 return true;
2119 case Intrinsic::cttz:
2120 case Intrinsic::ctlz: {
2121 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2122 bool isTrailing = ID == Intrinsic::cttz;
2123 unsigned Opcode = isTrailing
2124 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2125 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2126 : Cst->isZero() ? TargetOpcode::G_CTLZ
2127 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2128 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2129 {getOrCreateVReg(*CI.getArgOperand(0))});
2130 return true;
2132 case Intrinsic::invariant_start: {
2133 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2134 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2135 MIRBuilder.buildUndef(Undef);
2136 return true;
2138 case Intrinsic::invariant_end:
2139 return true;
2140 case Intrinsic::expect:
2141 case Intrinsic::annotation:
2142 case Intrinsic::ptr_annotation:
2143 case Intrinsic::launder_invariant_group:
2144 case Intrinsic::strip_invariant_group: {
2145 // Drop the intrinsic, but forward the value.
2146 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2147 getOrCreateVReg(*CI.getArgOperand(0)));
2148 return true;
2150 case Intrinsic::assume:
2151 case Intrinsic::experimental_noalias_scope_decl:
2152 case Intrinsic::var_annotation:
2153 case Intrinsic::sideeffect:
2154 // Discard annotate attributes, assumptions, and artificial side-effects.
2155 return true;
2156 case Intrinsic::read_volatile_register:
2157 case Intrinsic::read_register: {
2158 Value *Arg = CI.getArgOperand(0);
2159 MIRBuilder
2160 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2161 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2162 return true;
2164 case Intrinsic::write_register: {
2165 Value *Arg = CI.getArgOperand(0);
2166 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2167 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2168 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2169 return true;
2171 case Intrinsic::localescape: {
2172 MachineBasicBlock &EntryMBB = MF->front();
2173 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2175 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2176 // is the same on all targets.
2177 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
2178 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2179 if (isa<ConstantPointerNull>(Arg))
2180 continue; // Skip null pointers. They represent a hole in index space.
2182 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2183 MCSymbol *FrameAllocSym =
2184 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2185 Idx);
2187 // This should be inserted at the start of the entry block.
2188 auto LocalEscape =
2189 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2190 .addSym(FrameAllocSym)
2191 .addFrameIndex(FI);
2193 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2196 return true;
2198 case Intrinsic::vector_reduce_fadd:
2199 case Intrinsic::vector_reduce_fmul: {
2200 // Need to check for the reassoc flag to decide whether we want a
2201 // sequential reduction opcode or not.
2202 Register Dst = getOrCreateVReg(CI);
2203 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2204 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2205 unsigned Opc = 0;
2206 if (!CI.hasAllowReassoc()) {
2207 // The sequential ordering case.
2208 Opc = ID == Intrinsic::vector_reduce_fadd
2209 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2210 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2211 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2212 MachineInstr::copyFlagsFromInstruction(CI));
2213 return true;
2215 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2216 // since the associativity doesn't matter.
2217 unsigned ScalarOpc;
2218 if (ID == Intrinsic::vector_reduce_fadd) {
2219 Opc = TargetOpcode::G_VECREDUCE_FADD;
2220 ScalarOpc = TargetOpcode::G_FADD;
2221 } else {
2222 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2223 ScalarOpc = TargetOpcode::G_FMUL;
2225 LLT DstTy = MRI->getType(Dst);
2226 auto Rdx = MIRBuilder.buildInstr(
2227 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2228 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2229 MachineInstr::copyFlagsFromInstruction(CI));
2231 return true;
2233 case Intrinsic::isnan: {
2234 Register Src = getOrCreateVReg(*CI.getArgOperand(0));
2235 unsigned Flags = MachineInstr::copyFlagsFromInstruction(CI);
2236 if (!CI.getFunction()->getAttributes().hasFnAttr(llvm::Attribute::StrictFP))
2237 Flags |= MachineInstr::NoFPExcept;
2238 MIRBuilder.buildIsNaN(getOrCreateVReg(CI), Src, Flags);
2239 return true;
2241 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2242 case Intrinsic::INTRINSIC:
2243 #include "llvm/IR/ConstrainedOps.def"
2244 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2245 MIRBuilder);
2248 return false;
2251 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2252 MachineIRBuilder &MIRBuilder) {
2254 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2256 if (!ALI) {
2257 LLVM_DEBUG(
2258 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2259 return false;
2262 return ALI->lowerInlineAsm(
2263 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2266 bool IRTranslator::translateCallBase(const CallBase &CB,
2267 MachineIRBuilder &MIRBuilder) {
2268 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2270 SmallVector<ArrayRef<Register>, 8> Args;
2271 Register SwiftInVReg = 0;
2272 Register SwiftErrorVReg = 0;
2273 for (auto &Arg : CB.args()) {
2274 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2275 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2276 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2277 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2278 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2279 &CB, &MIRBuilder.getMBB(), Arg));
2280 Args.emplace_back(makeArrayRef(SwiftInVReg));
2281 SwiftErrorVReg =
2282 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2283 continue;
2285 Args.push_back(getOrCreateVRegs(*Arg));
2288 if (auto *CI = dyn_cast<CallInst>(&CB)) {
2289 if (ORE->enabled()) {
2290 const Function &F = *CI->getParent()->getParent();
2291 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2292 if (MemoryOpRemark::canHandle(CI, TLI)) {
2293 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
2294 R.visit(CI);
2299 // We don't set HasCalls on MFI here yet because call lowering may decide to
2300 // optimize into tail calls. Instead, we defer that to selection where a final
2301 // scan is done to check if any instructions are calls.
2302 bool Success =
2303 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2304 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2306 // Check if we just inserted a tail call.
2307 if (Success) {
2308 assert(!HasTailCall && "Can't tail call return twice from block?");
2309 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2310 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2313 return Success;
2316 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2317 const CallInst &CI = cast<CallInst>(U);
2318 auto TII = MF->getTarget().getIntrinsicInfo();
2319 const Function *F = CI.getCalledFunction();
2321 // FIXME: support Windows dllimport function calls.
2322 if (F && (F->hasDLLImportStorageClass() ||
2323 (MF->getTarget().getTargetTriple().isOSWindows() &&
2324 F->hasExternalWeakLinkage())))
2325 return false;
2327 // FIXME: support control flow guard targets.
2328 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2329 return false;
2331 if (CI.isInlineAsm())
2332 return translateInlineAsm(CI, MIRBuilder);
2334 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2335 if (F && F->isIntrinsic()) {
2336 ID = F->getIntrinsicID();
2337 if (TII && ID == Intrinsic::not_intrinsic)
2338 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2341 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2342 return translateCallBase(CI, MIRBuilder);
2344 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2346 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2347 return true;
2349 ArrayRef<Register> ResultRegs;
2350 if (!CI.getType()->isVoidTy())
2351 ResultRegs = getOrCreateVRegs(CI);
2353 // Ignore the callsite attributes. Backend code is most likely not expecting
2354 // an intrinsic to sometimes have side effects and sometimes not.
2355 MachineInstrBuilder MIB =
2356 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2357 if (isa<FPMathOperator>(CI))
2358 MIB->copyIRFlags(CI);
2360 for (auto &Arg : enumerate(CI.arg_operands())) {
2361 // If this is required to be an immediate, don't materialize it in a
2362 // register.
2363 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2364 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2365 // imm arguments are more convenient than cimm (and realistically
2366 // probably sufficient), so use them.
2367 assert(CI->getBitWidth() <= 64 &&
2368 "large intrinsic immediates not handled");
2369 MIB.addImm(CI->getSExtValue());
2370 } else {
2371 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2373 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
2374 auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
2375 if (!MDN) // This was probably an MDString.
2376 return false;
2377 MIB.addMetadata(MDN);
2378 } else {
2379 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2380 if (VRegs.size() > 1)
2381 return false;
2382 MIB.addUse(VRegs[0]);
2386 // Add a MachineMemOperand if it is a target mem intrinsic.
2387 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2388 TargetLowering::IntrinsicInfo Info;
2389 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2390 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2391 Align Alignment = Info.align.getValueOr(
2392 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2393 LLT MemTy = Info.memVT.isSimple()
2394 ? getLLTForMVT(Info.memVT.getSimpleVT())
2395 : LLT::scalar(Info.memVT.getStoreSizeInBits());
2396 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
2397 Info.flags, MemTy, Alignment));
2400 return true;
2403 bool IRTranslator::findUnwindDestinations(
2404 const BasicBlock *EHPadBB,
2405 BranchProbability Prob,
2406 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2407 &UnwindDests) {
2408 EHPersonality Personality = classifyEHPersonality(
2409 EHPadBB->getParent()->getFunction().getPersonalityFn());
2410 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2411 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2412 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2413 bool IsSEH = isAsynchronousEHPersonality(Personality);
2415 if (IsWasmCXX) {
2416 // Ignore this for now.
2417 return false;
2420 while (EHPadBB) {
2421 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2422 BasicBlock *NewEHPadBB = nullptr;
2423 if (isa<LandingPadInst>(Pad)) {
2424 // Stop on landingpads. They are not funclets.
2425 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2426 break;
2428 if (isa<CleanupPadInst>(Pad)) {
2429 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2430 // personalities.
2431 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2432 UnwindDests.back().first->setIsEHScopeEntry();
2433 UnwindDests.back().first->setIsEHFuncletEntry();
2434 break;
2436 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2437 // Add the catchpad handlers to the possible destinations.
2438 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2439 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2440 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2441 if (IsMSVCCXX || IsCoreCLR)
2442 UnwindDests.back().first->setIsEHFuncletEntry();
2443 if (!IsSEH)
2444 UnwindDests.back().first->setIsEHScopeEntry();
2446 NewEHPadBB = CatchSwitch->getUnwindDest();
2447 } else {
2448 continue;
2451 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2452 if (BPI && NewEHPadBB)
2453 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2454 EHPadBB = NewEHPadBB;
2456 return true;
2459 bool IRTranslator::translateInvoke(const User &U,
2460 MachineIRBuilder &MIRBuilder) {
2461 const InvokeInst &I = cast<InvokeInst>(U);
2462 MCContext &Context = MF->getContext();
2464 const BasicBlock *ReturnBB = I.getSuccessor(0);
2465 const BasicBlock *EHPadBB = I.getSuccessor(1);
2467 const Function *Fn = I.getCalledFunction();
2469 // FIXME: support invoking patchpoint and statepoint intrinsics.
2470 if (Fn && Fn->isIntrinsic())
2471 return false;
2473 // FIXME: support whatever these are.
2474 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2475 return false;
2477 // FIXME: support control flow guard targets.
2478 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2479 return false;
2481 // FIXME: support Windows exception handling.
2482 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2483 return false;
2485 bool LowerInlineAsm = false;
2486 if (I.isInlineAsm()) {
2487 const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand());
2488 if (!IA->canThrow()) {
2489 // Fast path without emitting EH_LABELs.
2491 if (!translateInlineAsm(I, MIRBuilder))
2492 return false;
2494 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(),
2495 *ReturnMBB = &getMBB(*ReturnBB);
2497 // Update successor info.
2498 addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne());
2500 MIRBuilder.buildBr(*ReturnMBB);
2501 return true;
2502 } else {
2503 LowerInlineAsm = true;
2507 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2508 // the region covered by the try.
2509 MCSymbol *BeginSymbol = Context.createTempSymbol();
2510 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2512 if (LowerInlineAsm) {
2513 if (!translateInlineAsm(I, MIRBuilder))
2514 return false;
2515 } else if (!translateCallBase(I, MIRBuilder))
2516 return false;
2518 MCSymbol *EndSymbol = Context.createTempSymbol();
2519 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2521 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2522 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2523 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2524 BranchProbability EHPadBBProb =
2525 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2526 : BranchProbability::getZero();
2528 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2529 return false;
2531 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2532 &ReturnMBB = getMBB(*ReturnBB);
2533 // Update successor info.
2534 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2535 for (auto &UnwindDest : UnwindDests) {
2536 UnwindDest.first->setIsEHPad();
2537 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2539 InvokeMBB->normalizeSuccProbs();
2541 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2542 MIRBuilder.buildBr(ReturnMBB);
2543 return true;
2546 bool IRTranslator::translateCallBr(const User &U,
2547 MachineIRBuilder &MIRBuilder) {
2548 // FIXME: Implement this.
2549 return false;
2552 bool IRTranslator::translateLandingPad(const User &U,
2553 MachineIRBuilder &MIRBuilder) {
2554 const LandingPadInst &LP = cast<LandingPadInst>(U);
2556 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2558 MBB.setIsEHPad();
2560 // If there aren't registers to copy the values into (e.g., during SjLj
2561 // exceptions), then don't bother.
2562 auto &TLI = *MF->getSubtarget().getTargetLowering();
2563 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2564 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2565 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2566 return true;
2568 // If landingpad's return type is token type, we don't create DAG nodes
2569 // for its exception pointer and selector value. The extraction of exception
2570 // pointer or selector value from token type landingpads is not currently
2571 // supported.
2572 if (LP.getType()->isTokenTy())
2573 return true;
2575 // Add a label to mark the beginning of the landing pad. Deletion of the
2576 // landing pad can thus be detected via the MachineModuleInfo.
2577 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2578 .addSym(MF->addLandingPad(&MBB));
2580 // If the unwinder does not preserve all registers, ensure that the
2581 // function marks the clobbered registers as used.
2582 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2583 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2584 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2586 LLT Ty = getLLTForType(*LP.getType(), *DL);
2587 Register Undef = MRI->createGenericVirtualRegister(Ty);
2588 MIRBuilder.buildUndef(Undef);
2590 SmallVector<LLT, 2> Tys;
2591 for (Type *Ty : cast<StructType>(LP.getType())->elements())
2592 Tys.push_back(getLLTForType(*Ty, *DL));
2593 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2595 // Mark exception register as live in.
2596 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2597 if (!ExceptionReg)
2598 return false;
2600 MBB.addLiveIn(ExceptionReg);
2601 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2602 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2604 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2605 if (!SelectorReg)
2606 return false;
2608 MBB.addLiveIn(SelectorReg);
2609 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2610 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2611 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2613 return true;
2616 bool IRTranslator::translateAlloca(const User &U,
2617 MachineIRBuilder &MIRBuilder) {
2618 auto &AI = cast<AllocaInst>(U);
2620 if (AI.isSwiftError())
2621 return true;
2623 if (AI.isStaticAlloca()) {
2624 Register Res = getOrCreateVReg(AI);
2625 int FI = getOrCreateFrameIndex(AI);
2626 MIRBuilder.buildFrameIndex(Res, FI);
2627 return true;
2630 // FIXME: support stack probing for Windows.
2631 if (MF->getTarget().getTargetTriple().isOSWindows())
2632 return false;
2634 // Now we're in the harder dynamic case.
2635 Register NumElts = getOrCreateVReg(*AI.getArraySize());
2636 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2637 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2638 if (MRI->getType(NumElts) != IntPtrTy) {
2639 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2640 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2641 NumElts = ExtElts;
2644 Type *Ty = AI.getAllocatedType();
2646 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2647 Register TySize =
2648 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2649 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2651 // Round the size of the allocation up to the stack alignment size
2652 // by add SA-1 to the size. This doesn't overflow because we're computing
2653 // an address inside an alloca.
2654 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2655 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2656 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2657 MachineInstr::NoUWrap);
2658 auto AlignCst =
2659 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2660 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2662 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2663 if (Alignment <= StackAlign)
2664 Alignment = Align(1);
2665 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2667 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2668 assert(MF->getFrameInfo().hasVarSizedObjects());
2669 return true;
2672 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2673 // FIXME: We may need more info about the type. Because of how LLT works,
2674 // we're completely discarding the i64/double distinction here (amongst
2675 // others). Fortunately the ABIs I know of where that matters don't use va_arg
2676 // anyway but that's not guaranteed.
2677 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2678 {getOrCreateVReg(*U.getOperand(0)),
2679 DL->getABITypeAlign(U.getType()).value()});
2680 return true;
2683 bool IRTranslator::translateInsertElement(const User &U,
2684 MachineIRBuilder &MIRBuilder) {
2685 // If it is a <1 x Ty> vector, use the scalar as it is
2686 // not a legal vector type in LLT.
2687 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2688 return translateCopy(U, *U.getOperand(1), MIRBuilder);
2690 Register Res = getOrCreateVReg(U);
2691 Register Val = getOrCreateVReg(*U.getOperand(0));
2692 Register Elt = getOrCreateVReg(*U.getOperand(1));
2693 Register Idx = getOrCreateVReg(*U.getOperand(2));
2694 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2695 return true;
2698 bool IRTranslator::translateExtractElement(const User &U,
2699 MachineIRBuilder &MIRBuilder) {
2700 // If it is a <1 x Ty> vector, use the scalar as it is
2701 // not a legal vector type in LLT.
2702 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2703 return translateCopy(U, *U.getOperand(0), MIRBuilder);
2705 Register Res = getOrCreateVReg(U);
2706 Register Val = getOrCreateVReg(*U.getOperand(0));
2707 const auto &TLI = *MF->getSubtarget().getTargetLowering();
2708 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2709 Register Idx;
2710 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2711 if (CI->getBitWidth() != PreferredVecIdxWidth) {
2712 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2713 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2714 Idx = getOrCreateVReg(*NewIdxCI);
2717 if (!Idx)
2718 Idx = getOrCreateVReg(*U.getOperand(1));
2719 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2720 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2721 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2723 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2724 return true;
2727 bool IRTranslator::translateShuffleVector(const User &U,
2728 MachineIRBuilder &MIRBuilder) {
2729 ArrayRef<int> Mask;
2730 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2731 Mask = SVI->getShuffleMask();
2732 else
2733 Mask = cast<ConstantExpr>(U).getShuffleMask();
2734 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2735 MIRBuilder
2736 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2737 {getOrCreateVReg(*U.getOperand(0)),
2738 getOrCreateVReg(*U.getOperand(1))})
2739 .addShuffleMask(MaskAlloc);
2740 return true;
2743 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2744 const PHINode &PI = cast<PHINode>(U);
2746 SmallVector<MachineInstr *, 4> Insts;
2747 for (auto Reg : getOrCreateVRegs(PI)) {
2748 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2749 Insts.push_back(MIB.getInstr());
2752 PendingPHIs.emplace_back(&PI, std::move(Insts));
2753 return true;
2756 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2757 MachineIRBuilder &MIRBuilder) {
2758 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2760 auto &TLI = *MF->getSubtarget().getTargetLowering();
2761 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2763 auto Res = getOrCreateVRegs(I);
2764 Register OldValRes = Res[0];
2765 Register SuccessRes = Res[1];
2766 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2767 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2768 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2770 AAMDNodes AAMetadata;
2771 I.getAAMetadata(AAMetadata);
2773 MIRBuilder.buildAtomicCmpXchgWithSuccess(
2774 OldValRes, SuccessRes, Addr, Cmp, NewVal,
2775 *MF->getMachineMemOperand(
2776 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2777 getMemOpAlign(I), AAMetadata, nullptr, I.getSyncScopeID(),
2778 I.getSuccessOrdering(), I.getFailureOrdering()));
2779 return true;
2782 bool IRTranslator::translateAtomicRMW(const User &U,
2783 MachineIRBuilder &MIRBuilder) {
2784 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2785 auto &TLI = *MF->getSubtarget().getTargetLowering();
2786 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2788 Register Res = getOrCreateVReg(I);
2789 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2790 Register Val = getOrCreateVReg(*I.getValOperand());
2792 unsigned Opcode = 0;
2793 switch (I.getOperation()) {
2794 default:
2795 return false;
2796 case AtomicRMWInst::Xchg:
2797 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2798 break;
2799 case AtomicRMWInst::Add:
2800 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2801 break;
2802 case AtomicRMWInst::Sub:
2803 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2804 break;
2805 case AtomicRMWInst::And:
2806 Opcode = TargetOpcode::G_ATOMICRMW_AND;
2807 break;
2808 case AtomicRMWInst::Nand:
2809 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2810 break;
2811 case AtomicRMWInst::Or:
2812 Opcode = TargetOpcode::G_ATOMICRMW_OR;
2813 break;
2814 case AtomicRMWInst::Xor:
2815 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2816 break;
2817 case AtomicRMWInst::Max:
2818 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2819 break;
2820 case AtomicRMWInst::Min:
2821 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2822 break;
2823 case AtomicRMWInst::UMax:
2824 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2825 break;
2826 case AtomicRMWInst::UMin:
2827 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2828 break;
2829 case AtomicRMWInst::FAdd:
2830 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2831 break;
2832 case AtomicRMWInst::FSub:
2833 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2834 break;
2837 AAMDNodes AAMetadata;
2838 I.getAAMetadata(AAMetadata);
2840 MIRBuilder.buildAtomicRMW(
2841 Opcode, Res, Addr, Val,
2842 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2843 Flags, MRI->getType(Val), getMemOpAlign(I),
2844 AAMetadata, nullptr, I.getSyncScopeID(),
2845 I.getOrdering()));
2846 return true;
2849 bool IRTranslator::translateFence(const User &U,
2850 MachineIRBuilder &MIRBuilder) {
2851 const FenceInst &Fence = cast<FenceInst>(U);
2852 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2853 Fence.getSyncScopeID());
2854 return true;
2857 bool IRTranslator::translateFreeze(const User &U,
2858 MachineIRBuilder &MIRBuilder) {
2859 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2860 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2862 assert(DstRegs.size() == SrcRegs.size() &&
2863 "Freeze with different source and destination type?");
2865 for (unsigned I = 0; I < DstRegs.size(); ++I) {
2866 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2869 return true;
2872 void IRTranslator::finishPendingPhis() {
2873 #ifndef NDEBUG
2874 DILocationVerifier Verifier;
2875 GISelObserverWrapper WrapperObserver(&Verifier);
2876 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2877 #endif // ifndef NDEBUG
2878 for (auto &Phi : PendingPHIs) {
2879 const PHINode *PI = Phi.first;
2880 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2881 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2882 EntryBuilder->setDebugLoc(PI->getDebugLoc());
2883 #ifndef NDEBUG
2884 Verifier.setCurrentInst(PI);
2885 #endif // ifndef NDEBUG
2887 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2888 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2889 auto IRPred = PI->getIncomingBlock(i);
2890 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2891 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2892 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2893 continue;
2894 SeenPreds.insert(Pred);
2895 for (unsigned j = 0; j < ValRegs.size(); ++j) {
2896 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2897 MIB.addUse(ValRegs[j]);
2898 MIB.addMBB(Pred);
2905 bool IRTranslator::valueIsSplit(const Value &V,
2906 SmallVectorImpl<uint64_t> *Offsets) {
2907 SmallVector<LLT, 4> SplitTys;
2908 if (Offsets && !Offsets->empty())
2909 Offsets->clear();
2910 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2911 return SplitTys.size() > 1;
2914 bool IRTranslator::translate(const Instruction &Inst) {
2915 CurBuilder->setDebugLoc(Inst.getDebugLoc());
2917 auto &TLI = *MF->getSubtarget().getTargetLowering();
2918 if (TLI.fallBackToDAGISel(Inst))
2919 return false;
2921 switch (Inst.getOpcode()) {
2922 #define HANDLE_INST(NUM, OPCODE, CLASS) \
2923 case Instruction::OPCODE: \
2924 return translate##OPCODE(Inst, *CurBuilder.get());
2925 #include "llvm/IR/Instruction.def"
2926 default:
2927 return false;
2931 bool IRTranslator::translate(const Constant &C, Register Reg) {
2932 // We only emit constants into the entry block from here. To prevent jumpy
2933 // debug behaviour set the line to 0.
2934 if (auto CurrInstDL = CurBuilder->getDL())
2935 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0,
2936 CurrInstDL.getScope(),
2937 CurrInstDL.getInlinedAt()));
2939 if (auto CI = dyn_cast<ConstantInt>(&C))
2940 EntryBuilder->buildConstant(Reg, *CI);
2941 else if (auto CF = dyn_cast<ConstantFP>(&C))
2942 EntryBuilder->buildFConstant(Reg, *CF);
2943 else if (isa<UndefValue>(C))
2944 EntryBuilder->buildUndef(Reg);
2945 else if (isa<ConstantPointerNull>(C))
2946 EntryBuilder->buildConstant(Reg, 0);
2947 else if (auto GV = dyn_cast<GlobalValue>(&C))
2948 EntryBuilder->buildGlobalValue(Reg, GV);
2949 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2950 if (!isa<FixedVectorType>(CAZ->getType()))
2951 return false;
2952 // Return the scalar if it is a <1 x Ty> vector.
2953 unsigned NumElts = CAZ->getElementCount().getFixedValue();
2954 if (NumElts == 1)
2955 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2956 SmallVector<Register, 4> Ops;
2957 for (unsigned I = 0; I < NumElts; ++I) {
2958 Constant &Elt = *CAZ->getElementValue(I);
2959 Ops.push_back(getOrCreateVReg(Elt));
2961 EntryBuilder->buildBuildVector(Reg, Ops);
2962 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2963 // Return the scalar if it is a <1 x Ty> vector.
2964 if (CV->getNumElements() == 1)
2965 return translateCopy(C, *CV->getElementAsConstant(0),
2966 *EntryBuilder.get());
2967 SmallVector<Register, 4> Ops;
2968 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2969 Constant &Elt = *CV->getElementAsConstant(i);
2970 Ops.push_back(getOrCreateVReg(Elt));
2972 EntryBuilder->buildBuildVector(Reg, Ops);
2973 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2974 switch(CE->getOpcode()) {
2975 #define HANDLE_INST(NUM, OPCODE, CLASS) \
2976 case Instruction::OPCODE: \
2977 return translate##OPCODE(*CE, *EntryBuilder.get());
2978 #include "llvm/IR/Instruction.def"
2979 default:
2980 return false;
2982 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2983 if (CV->getNumOperands() == 1)
2984 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2985 SmallVector<Register, 4> Ops;
2986 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2987 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2989 EntryBuilder->buildBuildVector(Reg, Ops);
2990 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2991 EntryBuilder->buildBlockAddress(Reg, BA);
2992 } else
2993 return false;
2995 return true;
2998 void IRTranslator::finalizeBasicBlock() {
2999 for (auto &BTB : SL->BitTestCases) {
3000 // Emit header first, if it wasn't already emitted.
3001 if (!BTB.Emitted)
3002 emitBitTestHeader(BTB, BTB.Parent);
3004 BranchProbability UnhandledProb = BTB.Prob;
3005 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3006 UnhandledProb -= BTB.Cases[j].ExtraProb;
3007 // Set the current basic block to the mbb we wish to insert the code into
3008 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3009 // If all cases cover a contiguous range, it is not necessary to jump to
3010 // the default block after the last bit test fails. This is because the
3011 // range check during bit test header creation has guaranteed that every
3012 // case here doesn't go outside the range. In this case, there is no need
3013 // to perform the last bit test, as it will always be true. Instead, make
3014 // the second-to-last bit-test fall through to the target of the last bit
3015 // test, and delete the last bit test.
3017 MachineBasicBlock *NextMBB;
3018 if (BTB.ContiguousRange && j + 2 == ej) {
3019 // Second-to-last bit-test with contiguous range: fall through to the
3020 // target of the final bit test.
3021 NextMBB = BTB.Cases[j + 1].TargetBB;
3022 } else if (j + 1 == ej) {
3023 // For the last bit test, fall through to Default.
3024 NextMBB = BTB.Default;
3025 } else {
3026 // Otherwise, fall through to the next bit test.
3027 NextMBB = BTB.Cases[j + 1].ThisBB;
3030 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3032 if (BTB.ContiguousRange && j + 2 == ej) {
3033 // We need to record the replacement phi edge here that normally
3034 // happens in emitBitTestCase before we delete the case, otherwise the
3035 // phi edge will be lost.
3036 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3037 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3038 MBB);
3039 // Since we're not going to use the final bit test, remove it.
3040 BTB.Cases.pop_back();
3041 break;
3044 // This is "default" BB. We have two jumps to it. From "header" BB and from
3045 // last "case" BB, unless the latter was skipped.
3046 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3047 BTB.Default->getBasicBlock()};
3048 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3049 if (!BTB.ContiguousRange) {
3050 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3053 SL->BitTestCases.clear();
3055 for (auto &JTCase : SL->JTCases) {
3056 // Emit header first, if it wasn't already emitted.
3057 if (!JTCase.first.Emitted)
3058 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3060 emitJumpTable(JTCase.second, JTCase.second.MBB);
3062 SL->JTCases.clear();
3064 for (auto &SwCase : SL->SwitchCases)
3065 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3066 SL->SwitchCases.clear();
3069 void IRTranslator::finalizeFunction() {
3070 // Release the memory used by the different maps we
3071 // needed during the translation.
3072 PendingPHIs.clear();
3073 VMap.reset();
3074 FrameIndices.clear();
3075 MachinePreds.clear();
3076 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3077 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3078 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3079 EntryBuilder.reset();
3080 CurBuilder.reset();
3081 FuncInfo.clear();
3084 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3085 /// variadic musttail call.
3086 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3087 if (!IsVarArg)
3088 return false;
3090 // Walk the block backwards, because tail calls usually only appear at the end
3091 // of a block.
3092 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
3093 const auto *CI = dyn_cast<CallInst>(&I);
3094 return CI && CI->isMustTailCall();
3098 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3099 MF = &CurMF;
3100 const Function &F = MF->getFunction();
3101 if (F.empty())
3102 return false;
3103 GISelCSEAnalysisWrapper &Wrapper =
3104 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3105 // Set the CSEConfig and run the analysis.
3106 GISelCSEInfo *CSEInfo = nullptr;
3107 TPC = &getAnalysis<TargetPassConfig>();
3108 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3109 ? EnableCSEInIRTranslator
3110 : TPC->isGISelCSEEnabled();
3112 if (EnableCSE) {
3113 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3114 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3115 EntryBuilder->setCSEInfo(CSEInfo);
3116 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3117 CurBuilder->setCSEInfo(CSEInfo);
3118 } else {
3119 EntryBuilder = std::make_unique<MachineIRBuilder>();
3120 CurBuilder = std::make_unique<MachineIRBuilder>();
3122 CLI = MF->getSubtarget().getCallLowering();
3123 CurBuilder->setMF(*MF);
3124 EntryBuilder->setMF(*MF);
3125 MRI = &MF->getRegInfo();
3126 DL = &F.getParent()->getDataLayout();
3127 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3128 const TargetMachine &TM = MF->getTarget();
3129 TM.resetTargetOptions(F);
3130 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3131 FuncInfo.MF = MF;
3132 if (EnableOpts)
3133 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3134 else
3135 FuncInfo.BPI = nullptr;
3137 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3139 const auto &TLI = *MF->getSubtarget().getTargetLowering();
3141 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3142 SL->init(TLI, TM, *DL);
3146 assert(PendingPHIs.empty() && "stale PHIs");
3148 // Targets which want to use big endian can enable it using
3149 // enableBigEndian()
3150 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3151 // Currently we don't properly handle big endian code.
3152 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3153 F.getSubprogram(), &F.getEntryBlock());
3154 R << "unable to translate in big endian mode";
3155 reportTranslationError(*MF, *TPC, *ORE, R);
3158 // Release the per-function state when we return, whether we succeeded or not.
3159 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3161 // Setup a separate basic-block for the arguments and constants
3162 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3163 MF->push_back(EntryBB);
3164 EntryBuilder->setMBB(*EntryBB);
3166 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3167 SwiftError.setFunction(CurMF);
3168 SwiftError.createEntriesInEntryBlock(DbgLoc);
3170 bool IsVarArg = F.isVarArg();
3171 bool HasMustTailInVarArgFn = false;
3173 // Create all blocks, in IR order, to preserve the layout.
3174 for (const BasicBlock &BB: F) {
3175 auto *&MBB = BBToMBB[&BB];
3177 MBB = MF->CreateMachineBasicBlock(&BB);
3178 MF->push_back(MBB);
3180 if (BB.hasAddressTaken())
3181 MBB->setHasAddressTaken();
3183 if (!HasMustTailInVarArgFn)
3184 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3187 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3189 // Make our arguments/constants entry block fallthrough to the IR entry block.
3190 EntryBB->addSuccessor(&getMBB(F.front()));
3192 if (CLI->fallBackToDAGISel(*MF)) {
3193 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3194 F.getSubprogram(), &F.getEntryBlock());
3195 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3196 reportTranslationError(*MF, *TPC, *ORE, R);
3197 return false;
3200 // Lower the actual args into this basic block.
3201 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3202 for (const Argument &Arg: F.args()) {
3203 if (DL->getTypeStoreSize(Arg.getType()).isZero())
3204 continue; // Don't handle zero sized types.
3205 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3206 VRegArgs.push_back(VRegs);
3208 if (Arg.hasSwiftErrorAttr()) {
3209 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3210 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3214 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
3215 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3216 F.getSubprogram(), &F.getEntryBlock());
3217 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3218 reportTranslationError(*MF, *TPC, *ORE, R);
3219 return false;
3222 // Need to visit defs before uses when translating instructions.
3223 GISelObserverWrapper WrapperObserver;
3224 if (EnableCSE && CSEInfo)
3225 WrapperObserver.addObserver(CSEInfo);
3227 ReversePostOrderTraversal<const Function *> RPOT(&F);
3228 #ifndef NDEBUG
3229 DILocationVerifier Verifier;
3230 WrapperObserver.addObserver(&Verifier);
3231 #endif // ifndef NDEBUG
3232 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3233 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3234 for (const BasicBlock *BB : RPOT) {
3235 MachineBasicBlock &MBB = getMBB(*BB);
3236 // Set the insertion point of all the following translations to
3237 // the end of this basic block.
3238 CurBuilder->setMBB(MBB);
3239 HasTailCall = false;
3240 for (const Instruction &Inst : *BB) {
3241 // If we translated a tail call in the last step, then we know
3242 // everything after the call is either a return, or something that is
3243 // handled by the call itself. (E.g. a lifetime marker or assume
3244 // intrinsic.) In this case, we should stop translating the block and
3245 // move on.
3246 if (HasTailCall)
3247 break;
3248 #ifndef NDEBUG
3249 Verifier.setCurrentInst(&Inst);
3250 #endif // ifndef NDEBUG
3251 if (translate(Inst))
3252 continue;
3254 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3255 Inst.getDebugLoc(), BB);
3256 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3258 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3259 std::string InstStrStorage;
3260 raw_string_ostream InstStr(InstStrStorage);
3261 InstStr << Inst;
3263 R << ": '" << InstStr.str() << "'";
3266 reportTranslationError(*MF, *TPC, *ORE, R);
3267 return false;
3270 finalizeBasicBlock();
3272 #ifndef NDEBUG
3273 WrapperObserver.removeObserver(&Verifier);
3274 #endif
3277 finishPendingPhis();
3279 SwiftError.propagateVRegs();
3281 // Merge the argument lowering and constants block with its single
3282 // successor, the LLVM-IR entry block. We want the basic block to
3283 // be maximal.
3284 assert(EntryBB->succ_size() == 1 &&
3285 "Custom BB used for lowering should have only one successor");
3286 // Get the successor of the current entry block.
3287 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3288 assert(NewEntryBB.pred_size() == 1 &&
3289 "LLVM-IR entry block has a predecessor!?");
3290 // Move all the instruction from the current entry block to the
3291 // new entry block.
3292 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3293 EntryBB->end());
3295 // Update the live-in information for the new entry block.
3296 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3297 NewEntryBB.addLiveIn(LiveIn);
3298 NewEntryBB.sortUniqueLiveIns();
3300 // Get rid of the now empty basic block.
3301 EntryBB->removeSuccessor(&NewEntryBB);
3302 MF->remove(EntryBB);
3303 MF->DeleteMachineBasicBlock(EntryBB);
3305 assert(&MF->front() == &NewEntryBB &&
3306 "New entry wasn't next in the list of basic block!");
3308 // Initialize stack protector information.
3309 StackProtector &SP = getAnalysis<StackProtector>();
3310 SP.copyToMachineFrameInfo(MF->getFrameInfo());
3312 return false;