1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervalCalc.h"
27 #include "llvm/CodeGen/LiveIntervals.h"
28 #include "llvm/CodeGen/LiveRangeEdit.h"
29 #include "llvm/CodeGen/LiveStacks.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineInstrBundle.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/Spiller.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
65 #define DEBUG_TYPE "regalloc"
67 STATISTIC(NumSpilledRanges
, "Number of spilled live ranges");
68 STATISTIC(NumSnippets
, "Number of spilled snippets");
69 STATISTIC(NumSpills
, "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved
, "Number of spills removed");
71 STATISTIC(NumReloads
, "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved
, "Number of reloads removed");
73 STATISTIC(NumFolded
, "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads
, "Number of folded loads");
75 STATISTIC(NumRemats
, "Number of rematerialized defs for spilling");
77 static cl::opt
<bool> DisableHoisting("disable-spill-hoist", cl::Hidden
,
78 cl::desc("Disable inline spill hoisting"));
80 RestrictStatepointRemat("restrict-statepoint-remat",
81 cl::init(false), cl::Hidden
,
82 cl::desc("Restrict remat for statepoint operands"));
86 class HoistSpillHelper
: private LiveRangeEdit::Delegate
{
91 MachineDominatorTree
&MDT
;
92 MachineLoopInfo
&Loops
;
94 MachineRegisterInfo
&MRI
;
95 const TargetInstrInfo
&TII
;
96 const TargetRegisterInfo
&TRI
;
97 const MachineBlockFrequencyInfo
&MBFI
;
99 InsertPointAnalysis IPA
;
101 // Map from StackSlot to the LiveInterval of the original register.
102 // Note the LiveInterval of the original register may have been deleted
103 // after it is spilled. We keep a copy here to track the range where
104 // spills can be moved.
105 DenseMap
<int, std::unique_ptr
<LiveInterval
>> StackSlotToOrigLI
;
107 // Map from pair of (StackSlot and Original VNI) to a set of spills which
108 // have the same stackslot and have equal values defined by Original VNI.
109 // These spills are mergeable and are hoist candiates.
110 using MergeableSpillsMap
=
111 MapVector
<std::pair
<int, VNInfo
*>, SmallPtrSet
<MachineInstr
*, 16>>;
112 MergeableSpillsMap MergeableSpills
;
114 /// This is the map from original register to a set containing all its
115 /// siblings. To hoist a spill to another BB, we need to find out a live
116 /// sibling there and use it as the source of the new spill.
117 DenseMap
<Register
, SmallSetVector
<Register
, 16>> Virt2SiblingsMap
;
119 bool isSpillCandBB(LiveInterval
&OrigLI
, VNInfo
&OrigVNI
,
120 MachineBasicBlock
&BB
, Register
&LiveReg
);
122 void rmRedundantSpills(
123 SmallPtrSet
<MachineInstr
*, 16> &Spills
,
124 SmallVectorImpl
<MachineInstr
*> &SpillsToRm
,
125 DenseMap
<MachineDomTreeNode
*, MachineInstr
*> &SpillBBToSpill
);
128 MachineBasicBlock
*Root
, SmallPtrSet
<MachineInstr
*, 16> &Spills
,
129 SmallVectorImpl
<MachineDomTreeNode
*> &Orders
,
130 SmallVectorImpl
<MachineInstr
*> &SpillsToRm
,
131 DenseMap
<MachineDomTreeNode
*, unsigned> &SpillsToKeep
,
132 DenseMap
<MachineDomTreeNode
*, MachineInstr
*> &SpillBBToSpill
);
134 void runHoistSpills(LiveInterval
&OrigLI
, VNInfo
&OrigVNI
,
135 SmallPtrSet
<MachineInstr
*, 16> &Spills
,
136 SmallVectorImpl
<MachineInstr
*> &SpillsToRm
,
137 DenseMap
<MachineBasicBlock
*, unsigned> &SpillsToIns
);
140 HoistSpillHelper(MachineFunctionPass
&pass
, MachineFunction
&mf
,
142 : MF(mf
), LIS(pass
.getAnalysis
<LiveIntervals
>()),
143 LSS(pass
.getAnalysis
<LiveStacks
>()),
144 AA(&pass
.getAnalysis
<AAResultsWrapperPass
>().getAAResults()),
145 MDT(pass
.getAnalysis
<MachineDominatorTree
>()),
146 Loops(pass
.getAnalysis
<MachineLoopInfo
>()), VRM(vrm
),
147 MRI(mf
.getRegInfo()), TII(*mf
.getSubtarget().getInstrInfo()),
148 TRI(*mf
.getSubtarget().getRegisterInfo()),
149 MBFI(pass
.getAnalysis
<MachineBlockFrequencyInfo
>()),
150 IPA(LIS
, mf
.getNumBlockIDs()) {}
152 void addToMergeableSpills(MachineInstr
&Spill
, int StackSlot
,
154 bool rmFromMergeableSpills(MachineInstr
&Spill
, int StackSlot
);
155 void hoistAllSpills();
156 void LRE_DidCloneVirtReg(Register
, Register
) override
;
159 class InlineSpiller
: public Spiller
{
164 MachineDominatorTree
&MDT
;
165 MachineLoopInfo
&Loops
;
167 MachineRegisterInfo
&MRI
;
168 const TargetInstrInfo
&TII
;
169 const TargetRegisterInfo
&TRI
;
170 const MachineBlockFrequencyInfo
&MBFI
;
172 // Variables that are valid during spill(), but used by multiple methods.
174 LiveInterval
*StackInt
;
178 // All registers to spill to StackSlot, including the main register.
179 SmallVector
<Register
, 8> RegsToSpill
;
181 // All COPY instructions to/from snippets.
182 // They are ignored since both operands refer to the same stack slot.
183 SmallPtrSet
<MachineInstr
*, 8> SnippetCopies
;
185 // Values that failed to remat at some point.
186 SmallPtrSet
<VNInfo
*, 8> UsedValues
;
188 // Dead defs generated during spilling.
189 SmallVector
<MachineInstr
*, 8> DeadDefs
;
191 // Object records spills information and does the hoisting.
192 HoistSpillHelper HSpiller
;
194 // Live range weight calculator.
195 VirtRegAuxInfo
&VRAI
;
197 ~InlineSpiller() override
= default;
200 InlineSpiller(MachineFunctionPass
&Pass
, MachineFunction
&MF
, VirtRegMap
&VRM
,
201 VirtRegAuxInfo
&VRAI
)
202 : MF(MF
), LIS(Pass
.getAnalysis
<LiveIntervals
>()),
203 LSS(Pass
.getAnalysis
<LiveStacks
>()),
204 AA(&Pass
.getAnalysis
<AAResultsWrapperPass
>().getAAResults()),
205 MDT(Pass
.getAnalysis
<MachineDominatorTree
>()),
206 Loops(Pass
.getAnalysis
<MachineLoopInfo
>()), VRM(VRM
),
207 MRI(MF
.getRegInfo()), TII(*MF
.getSubtarget().getInstrInfo()),
208 TRI(*MF
.getSubtarget().getRegisterInfo()),
209 MBFI(Pass
.getAnalysis
<MachineBlockFrequencyInfo
>()),
210 HSpiller(Pass
, MF
, VRM
), VRAI(VRAI
) {}
212 void spill(LiveRangeEdit
&) override
;
213 void postOptimization() override
;
216 bool isSnippet(const LiveInterval
&SnipLI
);
217 void collectRegsToSpill();
219 bool isRegToSpill(Register Reg
) { return is_contained(RegsToSpill
, Reg
); }
221 bool isSibling(Register Reg
);
222 bool hoistSpillInsideBB(LiveInterval
&SpillLI
, MachineInstr
&CopyMI
);
223 void eliminateRedundantSpills(LiveInterval
&LI
, VNInfo
*VNI
);
225 void markValueUsed(LiveInterval
*, VNInfo
*);
226 bool canGuaranteeAssignmentAfterRemat(Register VReg
, MachineInstr
&MI
);
227 bool reMaterializeFor(LiveInterval
&, MachineInstr
&MI
);
228 void reMaterializeAll();
230 bool coalesceStackAccess(MachineInstr
*MI
, Register Reg
);
231 bool foldMemoryOperand(ArrayRef
<std::pair
<MachineInstr
*, unsigned>>,
232 MachineInstr
*LoadMI
= nullptr);
233 void insertReload(Register VReg
, SlotIndex
, MachineBasicBlock::iterator MI
);
234 void insertSpill(Register VReg
, bool isKill
, MachineBasicBlock::iterator MI
);
236 void spillAroundUses(Register Reg
);
240 } // end anonymous namespace
242 Spiller::~Spiller() = default;
244 void Spiller::anchor() {}
246 Spiller
*llvm::createInlineSpiller(MachineFunctionPass
&Pass
,
247 MachineFunction
&MF
, VirtRegMap
&VRM
,
248 VirtRegAuxInfo
&VRAI
) {
249 return new InlineSpiller(Pass
, MF
, VRM
, VRAI
);
252 //===----------------------------------------------------------------------===//
254 //===----------------------------------------------------------------------===//
256 // When spilling a virtual register, we also spill any snippets it is connected
257 // to. The snippets are small live ranges that only have a single real use,
258 // leftovers from live range splitting. Spilling them enables memory operand
259 // folding or tightens the live range around the single use.
261 // This minimizes register pressure and maximizes the store-to-load distance for
262 // spill slots which can be important in tight loops.
264 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
265 /// otherwise return 0.
266 static Register
isFullCopyOf(const MachineInstr
&MI
, Register Reg
) {
267 if (!MI
.isFullCopy())
269 if (MI
.getOperand(0).getReg() == Reg
)
270 return MI
.getOperand(1).getReg();
271 if (MI
.getOperand(1).getReg() == Reg
)
272 return MI
.getOperand(0).getReg();
276 static void getVDefInterval(const MachineInstr
&MI
, LiveIntervals
&LIS
) {
277 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
!= E
; ++I
) {
278 const MachineOperand
&MO
= MI
.getOperand(I
);
279 if (MO
.isReg() && MO
.isDef() && Register::isVirtualRegister(MO
.getReg()))
280 LIS
.getInterval(MO
.getReg());
284 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
285 /// It is assumed that SnipLI is a virtual register with the same original as
287 bool InlineSpiller::isSnippet(const LiveInterval
&SnipLI
) {
288 Register Reg
= Edit
->getReg();
290 // A snippet is a tiny live range with only a single instruction using it
291 // besides copies to/from Reg or spills/fills. We accept:
293 // %snip = COPY %Reg / FILL fi#
295 // %Reg = COPY %snip / SPILL %snip, fi#
297 if (SnipLI
.getNumValNums() > 2 || !LIS
.intervalIsInOneMBB(SnipLI
))
300 MachineInstr
*UseMI
= nullptr;
302 // Check that all uses satisfy our criteria.
303 for (MachineRegisterInfo::reg_instr_nodbg_iterator
304 RI
= MRI
.reg_instr_nodbg_begin(SnipLI
.reg()),
305 E
= MRI
.reg_instr_nodbg_end();
307 MachineInstr
&MI
= *RI
++;
309 // Allow copies to/from Reg.
310 if (isFullCopyOf(MI
, Reg
))
313 // Allow stack slot loads.
315 if (SnipLI
.reg() == TII
.isLoadFromStackSlot(MI
, FI
) && FI
== StackSlot
)
318 // Allow stack slot stores.
319 if (SnipLI
.reg() == TII
.isStoreToStackSlot(MI
, FI
) && FI
== StackSlot
)
322 // Allow a single additional instruction.
323 if (UseMI
&& &MI
!= UseMI
)
330 /// collectRegsToSpill - Collect live range snippets that only have a single
332 void InlineSpiller::collectRegsToSpill() {
333 Register Reg
= Edit
->getReg();
335 // Main register always spills.
336 RegsToSpill
.assign(1, Reg
);
337 SnippetCopies
.clear();
339 // Snippets all have the same original, so there can't be any for an original
344 for (MachineRegisterInfo::reg_instr_iterator
345 RI
= MRI
.reg_instr_begin(Reg
), E
= MRI
.reg_instr_end(); RI
!= E
; ) {
346 MachineInstr
&MI
= *RI
++;
347 Register SnipReg
= isFullCopyOf(MI
, Reg
);
348 if (!isSibling(SnipReg
))
350 LiveInterval
&SnipLI
= LIS
.getInterval(SnipReg
);
351 if (!isSnippet(SnipLI
))
353 SnippetCopies
.insert(&MI
);
354 if (isRegToSpill(SnipReg
))
356 RegsToSpill
.push_back(SnipReg
);
357 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI
<< '\n');
362 bool InlineSpiller::isSibling(Register Reg
) {
363 return Reg
.isVirtual() && VRM
.getOriginal(Reg
) == Original
;
366 /// It is beneficial to spill to earlier place in the same BB in case
368 /// There is an alternative def earlier in the same MBB.
369 /// Hoist the spill as far as possible in SpillMBB. This can ease
370 /// register pressure:
376 /// Hoisting the spill of s to immediately after the def removes the
377 /// interference between x and y:
383 /// This hoist only helps when the copy kills its source.
385 bool InlineSpiller::hoistSpillInsideBB(LiveInterval
&SpillLI
,
386 MachineInstr
&CopyMI
) {
387 SlotIndex Idx
= LIS
.getInstructionIndex(CopyMI
);
389 VNInfo
*VNI
= SpillLI
.getVNInfoAt(Idx
.getRegSlot());
390 assert(VNI
&& VNI
->def
== Idx
.getRegSlot() && "Not defined by copy");
393 Register SrcReg
= CopyMI
.getOperand(1).getReg();
394 LiveInterval
&SrcLI
= LIS
.getInterval(SrcReg
);
395 VNInfo
*SrcVNI
= SrcLI
.getVNInfoAt(Idx
);
396 LiveQueryResult SrcQ
= SrcLI
.Query(Idx
);
397 MachineBasicBlock
*DefMBB
= LIS
.getMBBFromIndex(SrcVNI
->def
);
398 if (DefMBB
!= CopyMI
.getParent() || !SrcQ
.isKill())
401 // Conservatively extend the stack slot range to the range of the original
402 // value. We may be able to do better with stack slot coloring by being more
404 assert(StackInt
&& "No stack slot assigned yet.");
405 LiveInterval
&OrigLI
= LIS
.getInterval(Original
);
406 VNInfo
*OrigVNI
= OrigLI
.getVNInfoAt(Idx
);
407 StackInt
->MergeValueInAsValue(OrigLI
, OrigVNI
, StackInt
->getValNumInfo(0));
408 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI
->id
<< ": "
409 << *StackInt
<< '\n');
411 // We are going to spill SrcVNI immediately after its def, so clear out
412 // any later spills of the same value.
413 eliminateRedundantSpills(SrcLI
, SrcVNI
);
415 MachineBasicBlock
*MBB
= LIS
.getMBBFromIndex(SrcVNI
->def
);
416 MachineBasicBlock::iterator MII
;
417 if (SrcVNI
->isPHIDef())
418 MII
= MBB
->SkipPHIsLabelsAndDebug(MBB
->begin());
420 MachineInstr
*DefMI
= LIS
.getInstructionFromIndex(SrcVNI
->def
);
421 assert(DefMI
&& "Defining instruction disappeared");
425 MachineInstrSpan
MIS(MII
, MBB
);
426 // Insert spill without kill flag immediately after def.
427 TII
.storeRegToStackSlot(*MBB
, MII
, SrcReg
, false, StackSlot
,
428 MRI
.getRegClass(SrcReg
), &TRI
);
429 LIS
.InsertMachineInstrRangeInMaps(MIS
.begin(), MII
);
430 for (const MachineInstr
&MI
: make_range(MIS
.begin(), MII
))
431 getVDefInterval(MI
, LIS
);
432 --MII
; // Point to store instruction.
433 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI
->def
<< '\t' << *MII
);
435 // If there is only 1 store instruction is required for spill, add it
436 // to mergeable list. In X86 AMX, 2 intructions are required to store.
437 // We disable the merge for this case.
438 if (MIS
.begin() == MII
)
439 HSpiller
.addToMergeableSpills(*MII
, StackSlot
, Original
);
444 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
445 /// redundant spills of this value in SLI.reg and sibling copies.
446 void InlineSpiller::eliminateRedundantSpills(LiveInterval
&SLI
, VNInfo
*VNI
) {
447 assert(VNI
&& "Missing value");
448 SmallVector
<std::pair
<LiveInterval
*, VNInfo
*>, 8> WorkList
;
449 WorkList
.push_back(std::make_pair(&SLI
, VNI
));
450 assert(StackInt
&& "No stack slot assigned yet.");
454 std::tie(LI
, VNI
) = WorkList
.pop_back_val();
455 Register Reg
= LI
->reg();
456 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI
->id
<< '@'
457 << VNI
->def
<< " in " << *LI
<< '\n');
459 // Regs to spill are taken care of.
460 if (isRegToSpill(Reg
))
463 // Add all of VNI's live range to StackInt.
464 StackInt
->MergeValueInAsValue(*LI
, VNI
, StackInt
->getValNumInfo(0));
465 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt
<< '\n');
467 // Find all spills and copies of VNI.
468 for (MachineRegisterInfo::use_instr_nodbg_iterator
469 UI
= MRI
.use_instr_nodbg_begin(Reg
), E
= MRI
.use_instr_nodbg_end();
471 MachineInstr
&MI
= *UI
++;
472 if (!MI
.isCopy() && !MI
.mayStore())
474 SlotIndex Idx
= LIS
.getInstructionIndex(MI
);
475 if (LI
->getVNInfoAt(Idx
) != VNI
)
478 // Follow sibling copies down the dominator tree.
479 if (Register DstReg
= isFullCopyOf(MI
, Reg
)) {
480 if (isSibling(DstReg
)) {
481 LiveInterval
&DstLI
= LIS
.getInterval(DstReg
);
482 VNInfo
*DstVNI
= DstLI
.getVNInfoAt(Idx
.getRegSlot());
483 assert(DstVNI
&& "Missing defined value");
484 assert(DstVNI
->def
== Idx
.getRegSlot() && "Wrong copy def slot");
485 WorkList
.push_back(std::make_pair(&DstLI
, DstVNI
));
492 if (Reg
== TII
.isStoreToStackSlot(MI
, FI
) && FI
== StackSlot
) {
493 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx
<< '\t' << MI
);
494 // eliminateDeadDefs won't normally remove stores, so switch opcode.
495 MI
.setDesc(TII
.get(TargetOpcode::KILL
));
496 DeadDefs
.push_back(&MI
);
498 if (HSpiller
.rmFromMergeableSpills(MI
, StackSlot
))
502 } while (!WorkList
.empty());
505 //===----------------------------------------------------------------------===//
507 //===----------------------------------------------------------------------===//
509 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
510 /// instruction cannot be eliminated. See through snippet copies
511 void InlineSpiller::markValueUsed(LiveInterval
*LI
, VNInfo
*VNI
) {
512 SmallVector
<std::pair
<LiveInterval
*, VNInfo
*>, 8> WorkList
;
513 WorkList
.push_back(std::make_pair(LI
, VNI
));
515 std::tie(LI
, VNI
) = WorkList
.pop_back_val();
516 if (!UsedValues
.insert(VNI
).second
)
519 if (VNI
->isPHIDef()) {
520 MachineBasicBlock
*MBB
= LIS
.getMBBFromIndex(VNI
->def
);
521 for (MachineBasicBlock
*P
: MBB
->predecessors()) {
522 VNInfo
*PVNI
= LI
->getVNInfoBefore(LIS
.getMBBEndIdx(P
));
524 WorkList
.push_back(std::make_pair(LI
, PVNI
));
529 // Follow snippet copies.
530 MachineInstr
*MI
= LIS
.getInstructionFromIndex(VNI
->def
);
531 if (!SnippetCopies
.count(MI
))
533 LiveInterval
&SnipLI
= LIS
.getInterval(MI
->getOperand(1).getReg());
534 assert(isRegToSpill(SnipLI
.reg()) && "Unexpected register in copy");
535 VNInfo
*SnipVNI
= SnipLI
.getVNInfoAt(VNI
->def
.getRegSlot(true));
536 assert(SnipVNI
&& "Snippet undefined before copy");
537 WorkList
.push_back(std::make_pair(&SnipLI
, SnipVNI
));
538 } while (!WorkList
.empty());
541 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg
,
543 if (!RestrictStatepointRemat
)
545 // Here's a quick explanation of the problem we're trying to handle here:
546 // * There are some pseudo instructions with more vreg uses than there are
547 // physical registers on the machine.
548 // * This is normally handled by spilling the vreg, and folding the reload
549 // into the user instruction. (Thus decreasing the number of used vregs
550 // until the remainder can be assigned to physregs.)
551 // * However, since we may try to spill vregs in any order, we can end up
552 // trying to spill each operand to the instruction, and then rematting it
553 // instead. When that happens, the new live intervals (for the remats) are
554 // expected to be trivially assignable (i.e. RS_Done). However, since we
555 // may have more remats than physregs, we're guaranteed to fail to assign
557 // At the moment, we only handle this for STATEPOINTs since they're the only
558 // pseudo op where we've seen this. If we start seeing other instructions
559 // with the same problem, we need to revisit this.
560 if (MI
.getOpcode() != TargetOpcode::STATEPOINT
)
562 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
563 // that number of physical registers is enough to cover all fixed arguments.
564 // If it is not true we need to revisit it.
565 for (unsigned Idx
= StatepointOpers(&MI
).getVarIdx(),
566 EndIdx
= MI
.getNumOperands();
567 Idx
< EndIdx
; ++Idx
) {
568 MachineOperand
&MO
= MI
.getOperand(Idx
);
569 if (MO
.isReg() && MO
.getReg() == VReg
)
575 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
576 bool InlineSpiller::reMaterializeFor(LiveInterval
&VirtReg
, MachineInstr
&MI
) {
577 // Analyze instruction
578 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8> Ops
;
579 VirtRegInfo RI
= AnalyzeVirtRegInBundle(MI
, VirtReg
.reg(), &Ops
);
584 SlotIndex UseIdx
= LIS
.getInstructionIndex(MI
).getRegSlot(true);
585 VNInfo
*ParentVNI
= VirtReg
.getVNInfoAt(UseIdx
.getBaseIndex());
588 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
589 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
590 MachineOperand
&MO
= MI
.getOperand(i
);
591 if (MO
.isReg() && MO
.isUse() && MO
.getReg() == VirtReg
.reg())
594 LLVM_DEBUG(dbgs() << UseIdx
<< '\t' << MI
);
598 if (SnippetCopies
.count(&MI
))
601 LiveInterval
&OrigLI
= LIS
.getInterval(Original
);
602 VNInfo
*OrigVNI
= OrigLI
.getVNInfoAt(UseIdx
);
603 LiveRangeEdit::Remat
RM(ParentVNI
);
604 RM
.OrigMI
= LIS
.getInstructionFromIndex(OrigVNI
->def
);
606 if (!Edit
->canRematerializeAt(RM
, OrigVNI
, UseIdx
, false)) {
607 markValueUsed(&VirtReg
, ParentVNI
);
608 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx
<< '\t' << MI
);
612 // If the instruction also writes VirtReg.reg, it had better not require the
613 // same register for uses and defs.
615 markValueUsed(&VirtReg
, ParentVNI
);
616 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx
<< '\t' << MI
);
620 // Before rematerializing into a register for a single instruction, try to
621 // fold a load into the instruction. That avoids allocating a new register.
622 if (RM
.OrigMI
->canFoldAsLoad() &&
623 foldMemoryOperand(Ops
, RM
.OrigMI
)) {
624 Edit
->markRematerialized(RM
.ParentVNI
);
629 // If we can't guarantee that we'll be able to actually assign the new vreg,
631 if (!canGuaranteeAssignmentAfterRemat(VirtReg
.reg(), MI
)) {
632 markValueUsed(&VirtReg
, ParentVNI
);
633 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx
<< '\t' << MI
);
637 // Allocate a new register for the remat.
638 Register NewVReg
= Edit
->createFrom(Original
);
640 // Finally we can rematerialize OrigMI before MI.
642 Edit
->rematerializeAt(*MI
.getParent(), MI
, NewVReg
, RM
, TRI
);
644 // We take the DebugLoc from MI, since OrigMI may be attributed to a
645 // different source location.
646 auto *NewMI
= LIS
.getInstructionFromIndex(DefIdx
);
647 NewMI
->setDebugLoc(MI
.getDebugLoc());
650 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx
<< '\t'
651 << *LIS
.getInstructionFromIndex(DefIdx
));
654 for (const auto &OpPair
: Ops
) {
655 MachineOperand
&MO
= OpPair
.first
->getOperand(OpPair
.second
);
656 if (MO
.isReg() && MO
.isUse() && MO
.getReg() == VirtReg
.reg()) {
661 LLVM_DEBUG(dbgs() << "\t " << UseIdx
<< '\t' << MI
<< '\n');
667 /// reMaterializeAll - Try to rematerialize as many uses as possible,
668 /// and trim the live ranges after.
669 void InlineSpiller::reMaterializeAll() {
670 if (!Edit
->anyRematerializable(AA
))
675 // Try to remat before all uses of snippets.
676 bool anyRemat
= false;
677 for (Register Reg
: RegsToSpill
) {
678 LiveInterval
&LI
= LIS
.getInterval(Reg
);
679 for (MachineRegisterInfo::reg_bundle_iterator
680 RegI
= MRI
.reg_bundle_begin(Reg
), E
= MRI
.reg_bundle_end();
682 MachineInstr
&MI
= *RegI
++;
684 // Debug values are not allowed to affect codegen.
685 if (MI
.isDebugValue())
688 assert(!MI
.isDebugInstr() && "Did not expect to find a use in debug "
689 "instruction that isn't a DBG_VALUE");
691 anyRemat
|= reMaterializeFor(LI
, MI
);
697 // Remove any values that were completely rematted.
698 for (Register Reg
: RegsToSpill
) {
699 LiveInterval
&LI
= LIS
.getInterval(Reg
);
700 for (LiveInterval::vni_iterator I
= LI
.vni_begin(), E
= LI
.vni_end();
703 if (VNI
->isUnused() || VNI
->isPHIDef() || UsedValues
.count(VNI
))
705 MachineInstr
*MI
= LIS
.getInstructionFromIndex(VNI
->def
);
706 MI
->addRegisterDead(Reg
, &TRI
);
707 if (!MI
->allDefsAreDead())
709 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI
);
710 DeadDefs
.push_back(MI
);
714 // Eliminate dead code after remat. Note that some snippet copies may be
716 if (DeadDefs
.empty())
718 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs
.size() << " dead defs.\n");
719 Edit
->eliminateDeadDefs(DeadDefs
, RegsToSpill
, AA
);
721 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
722 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
723 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
724 // removed, PHI VNI are still left in the LiveInterval.
725 // So to get rid of unused reg, we need to check whether it has non-dbg
726 // reference instead of whether it has non-empty interval.
727 unsigned ResultPos
= 0;
728 for (Register Reg
: RegsToSpill
) {
729 if (MRI
.reg_nodbg_empty(Reg
)) {
730 Edit
->eraseVirtReg(Reg
);
734 assert(LIS
.hasInterval(Reg
) &&
735 (!LIS
.getInterval(Reg
).empty() || !MRI
.reg_nodbg_empty(Reg
)) &&
736 "Empty and not used live-range?!");
738 RegsToSpill
[ResultPos
++] = Reg
;
740 RegsToSpill
.erase(RegsToSpill
.begin() + ResultPos
, RegsToSpill
.end());
741 LLVM_DEBUG(dbgs() << RegsToSpill
.size()
742 << " registers to spill after remat.\n");
745 //===----------------------------------------------------------------------===//
747 //===----------------------------------------------------------------------===//
749 /// If MI is a load or store of StackSlot, it can be removed.
750 bool InlineSpiller::coalesceStackAccess(MachineInstr
*MI
, Register Reg
) {
752 Register InstrReg
= TII
.isLoadFromStackSlot(*MI
, FI
);
753 bool IsLoad
= InstrReg
;
755 InstrReg
= TII
.isStoreToStackSlot(*MI
, FI
);
757 // We have a stack access. Is it the right register and slot?
758 if (InstrReg
!= Reg
|| FI
!= StackSlot
)
762 HSpiller
.rmFromMergeableSpills(*MI
, StackSlot
);
764 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI
);
765 LIS
.RemoveMachineInstrFromMaps(*MI
);
766 MI
->eraseFromParent();
779 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
781 // Dump the range of instructions from B to E with their slot indexes.
782 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B
,
783 MachineBasicBlock::iterator E
,
784 LiveIntervals
const &LIS
,
785 const char *const header
,
786 Register VReg
= Register()) {
787 char NextLine
= '\n';
788 char SlotIndent
= '\t';
790 if (std::next(B
) == E
) {
795 dbgs() << '\t' << header
<< ": " << NextLine
;
797 for (MachineBasicBlock::iterator I
= B
; I
!= E
; ++I
) {
798 SlotIndex Idx
= LIS
.getInstructionIndex(*I
).getRegSlot();
800 // If a register was passed in and this instruction has it as a
801 // destination that is marked as an early clobber, print the
802 // early-clobber slot index.
804 MachineOperand
*MO
= I
->findRegisterDefOperand(VReg
);
805 if (MO
&& MO
->isEarlyClobber())
806 Idx
= Idx
.getRegSlot(true);
809 dbgs() << SlotIndent
<< Idx
<< '\t' << *I
;
814 /// foldMemoryOperand - Try folding stack slot references in Ops into their
817 /// @param Ops Operand indices from AnalyzeVirtRegInBundle().
818 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
819 /// @return True on success.
821 foldMemoryOperand(ArrayRef
<std::pair
<MachineInstr
*, unsigned>> Ops
,
822 MachineInstr
*LoadMI
) {
825 // Don't attempt folding in bundles.
826 MachineInstr
*MI
= Ops
.front().first
;
827 if (Ops
.back().first
!= MI
|| MI
->isBundled())
830 bool WasCopy
= MI
->isCopy();
833 // TII::foldMemoryOperand will do what we need here for statepoint
834 // (fold load into use and remove corresponding def). We will replace
835 // uses of removed def with loads (spillAroundUses).
836 // For that to work we need to untie def and use to pass it through
837 // foldMemoryOperand and signal foldPatchpoint that it is allowed to
839 bool UntieRegs
= MI
->getOpcode() == TargetOpcode::STATEPOINT
;
841 // Spill subregs if the target allows it.
842 // We always want to spill subregs for stackmap/patchpoint pseudos.
843 bool SpillSubRegs
= TII
.isSubregFoldable() ||
844 MI
->getOpcode() == TargetOpcode::STATEPOINT
||
845 MI
->getOpcode() == TargetOpcode::PATCHPOINT
||
846 MI
->getOpcode() == TargetOpcode::STACKMAP
;
848 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
850 SmallVector
<unsigned, 8> FoldOps
;
851 for (const auto &OpPair
: Ops
) {
852 unsigned Idx
= OpPair
.second
;
853 assert(MI
== OpPair
.first
&& "Instruction conflict during operand folding");
854 MachineOperand
&MO
= MI
->getOperand(Idx
);
855 if (MO
.isImplicit()) {
856 ImpReg
= MO
.getReg();
860 if (!SpillSubRegs
&& MO
.getSubReg())
862 // We cannot fold a load instruction into a def.
863 if (LoadMI
&& MO
.isDef())
865 // Tied use operands should not be passed to foldMemoryOperand.
866 if (UntieRegs
|| !MI
->isRegTiedToDefOperand(Idx
))
867 FoldOps
.push_back(Idx
);
870 // If we only have implicit uses, we won't be able to fold that.
871 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
875 MachineInstrSpan
MIS(MI
, MI
->getParent());
877 SmallVector
<std::pair
<unsigned, unsigned> > TiedOps
;
879 for (unsigned Idx
: FoldOps
) {
880 MachineOperand
&MO
= MI
->getOperand(Idx
);
883 unsigned Tied
= MI
->findTiedOperandIdx(Idx
);
885 TiedOps
.emplace_back(Tied
, Idx
);
887 assert(MO
.isDef() && "Tied to not use and def?");
888 TiedOps
.emplace_back(Idx
, Tied
);
890 MI
->untieRegOperand(Idx
);
893 MachineInstr
*FoldMI
=
894 LoadMI
? TII
.foldMemoryOperand(*MI
, FoldOps
, *LoadMI
, &LIS
)
895 : TII
.foldMemoryOperand(*MI
, FoldOps
, StackSlot
, &LIS
, &VRM
);
898 for (auto Tied
: TiedOps
)
899 MI
->tieOperands(Tied
.first
, Tied
.second
);
903 // Remove LIS for any dead defs in the original MI not in FoldMI.
904 for (MIBundleOperands
MO(*MI
); MO
.isValid(); ++MO
) {
907 Register Reg
= MO
->getReg();
908 if (!Reg
|| Register::isVirtualRegister(Reg
) || MRI
.isReserved(Reg
)) {
911 // Skip non-Defs, including undef uses and internal reads.
914 PhysRegInfo RI
= AnalyzePhysRegInBundle(*FoldMI
, Reg
, &TRI
);
917 // FoldMI does not define this physreg. Remove the LI segment.
918 assert(MO
->isDead() && "Cannot fold physreg def");
919 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
).getRegSlot();
920 LIS
.removePhysRegDefAt(Reg
.asMCReg(), Idx
);
924 if (TII
.isStoreToStackSlot(*MI
, FI
) &&
925 HSpiller
.rmFromMergeableSpills(*MI
, FI
))
927 LIS
.ReplaceMachineInstrInMaps(*MI
, *FoldMI
);
928 // Update the call site info.
929 if (MI
->isCandidateForCallSiteEntry())
930 MI
->getMF()->moveCallSiteInfo(MI
, FoldMI
);
931 MI
->eraseFromParent();
933 // Insert any new instructions other than FoldMI into the LIS maps.
934 assert(!MIS
.empty() && "Unexpected empty span of instructions!");
935 for (MachineInstr
&MI
: MIS
)
937 LIS
.InsertMachineInstrInMaps(MI
);
939 // TII.foldMemoryOperand may have left some implicit operands on the
940 // instruction. Strip them.
942 for (unsigned i
= FoldMI
->getNumOperands(); i
; --i
) {
943 MachineOperand
&MO
= FoldMI
->getOperand(i
- 1);
944 if (!MO
.isReg() || !MO
.isImplicit())
946 if (MO
.getReg() == ImpReg
)
947 FoldMI
->RemoveOperand(i
- 1);
950 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS
.begin(), MIS
.end(), LIS
,
955 else if (Ops
.front().second
== 0) {
957 // If there is only 1 store instruction is required for spill, add it
958 // to mergeable list. In X86 AMX, 2 intructions are required to store.
959 // We disable the merge for this case.
960 if (std::distance(MIS
.begin(), MIS
.end()) <= 1)
961 HSpiller
.addToMergeableSpills(*FoldMI
, StackSlot
, Original
);
967 void InlineSpiller::insertReload(Register NewVReg
,
969 MachineBasicBlock::iterator MI
) {
970 MachineBasicBlock
&MBB
= *MI
->getParent();
972 MachineInstrSpan
MIS(MI
, &MBB
);
973 TII
.loadRegFromStackSlot(MBB
, MI
, NewVReg
, StackSlot
,
974 MRI
.getRegClass(NewVReg
), &TRI
);
976 LIS
.InsertMachineInstrRangeInMaps(MIS
.begin(), MI
);
978 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS
.begin(), MI
, LIS
, "reload",
983 /// Check if \p Def fully defines a VReg with an undefined value.
984 /// If that's the case, that means the value of VReg is actually
986 static bool isRealSpill(const MachineInstr
&Def
) {
987 if (!Def
.isImplicitDef())
989 assert(Def
.getNumOperands() == 1 &&
990 "Implicit def with more than one definition");
991 // We can say that the VReg defined by Def is undef, only if it is
992 // fully defined by Def. Otherwise, some of the lanes may not be
993 // undef and the value of the VReg matters.
994 return Def
.getOperand(0).getSubReg();
997 /// insertSpill - Insert a spill of NewVReg after MI.
998 void InlineSpiller::insertSpill(Register NewVReg
, bool isKill
,
999 MachineBasicBlock::iterator MI
) {
1000 // Spill are not terminators, so inserting spills after terminators will
1001 // violate invariants in MachineVerifier.
1002 assert(!MI
->isTerminator() && "Inserting a spill after a terminator");
1003 MachineBasicBlock
&MBB
= *MI
->getParent();
1005 MachineInstrSpan
MIS(MI
, &MBB
);
1006 MachineBasicBlock::iterator SpillBefore
= std::next(MI
);
1007 bool IsRealSpill
= isRealSpill(*MI
);
1010 TII
.storeRegToStackSlot(MBB
, SpillBefore
, NewVReg
, isKill
, StackSlot
,
1011 MRI
.getRegClass(NewVReg
), &TRI
);
1013 // Don't spill undef value.
1014 // Anything works for undef, in particular keeping the memory
1015 // uninitialized is a viable option and it saves code size and
1017 BuildMI(MBB
, SpillBefore
, MI
->getDebugLoc(), TII
.get(TargetOpcode::KILL
))
1018 .addReg(NewVReg
, getKillRegState(isKill
));
1020 MachineBasicBlock::iterator Spill
= std::next(MI
);
1021 LIS
.InsertMachineInstrRangeInMaps(Spill
, MIS
.end());
1022 for (const MachineInstr
&MI
: make_range(Spill
, MIS
.end()))
1023 getVDefInterval(MI
, LIS
);
1026 dumpMachineInstrRangeWithSlotIndex(Spill
, MIS
.end(), LIS
, "spill"));
1028 // If there is only 1 store instruction is required for spill, add it
1029 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1030 // We disable the merge for this case.
1031 if (IsRealSpill
&& std::distance(Spill
, MIS
.end()) <= 1)
1032 HSpiller
.addToMergeableSpills(*Spill
, StackSlot
, Original
);
1035 /// spillAroundUses - insert spill code around each use of Reg.
1036 void InlineSpiller::spillAroundUses(Register Reg
) {
1037 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg
) << '\n');
1038 LiveInterval
&OldLI
= LIS
.getInterval(Reg
);
1040 // Iterate over instructions using Reg.
1041 for (MachineRegisterInfo::reg_bundle_iterator
1042 RegI
= MRI
.reg_bundle_begin(Reg
), E
= MRI
.reg_bundle_end();
1044 MachineInstr
*MI
= &*(RegI
++);
1046 // Debug values are not allowed to affect codegen.
1047 if (MI
->isDebugValue()) {
1048 // Modify DBG_VALUE now that the value is in a spill slot.
1049 MachineBasicBlock
*MBB
= MI
->getParent();
1050 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI
);
1051 buildDbgValueForSpill(*MBB
, MI
, *MI
, StackSlot
, Reg
);
1056 assert(!MI
->isDebugInstr() && "Did not expect to find a use in debug "
1057 "instruction that isn't a DBG_VALUE");
1059 // Ignore copies to/from snippets. We'll delete them.
1060 if (SnippetCopies
.count(MI
))
1063 // Stack slot accesses may coalesce away.
1064 if (coalesceStackAccess(MI
, Reg
))
1067 // Analyze instruction.
1068 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8> Ops
;
1069 VirtRegInfo RI
= AnalyzeVirtRegInBundle(*MI
, Reg
, &Ops
);
1071 // Find the slot index where this instruction reads and writes OldLI.
1072 // This is usually the def slot, except for tied early clobbers.
1073 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
).getRegSlot();
1074 if (VNInfo
*VNI
= OldLI
.getVNInfoAt(Idx
.getRegSlot(true)))
1075 if (SlotIndex::isSameInstr(Idx
, VNI
->def
))
1078 // Check for a sibling copy.
1079 Register SibReg
= isFullCopyOf(*MI
, Reg
);
1080 if (SibReg
&& isSibling(SibReg
)) {
1081 // This may actually be a copy between snippets.
1082 if (isRegToSpill(SibReg
)) {
1083 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI
);
1084 SnippetCopies
.insert(MI
);
1088 if (hoistSpillInsideBB(OldLI
, *MI
)) {
1089 // This COPY is now dead, the value is already in the stack slot.
1090 MI
->getOperand(0).setIsDead();
1091 DeadDefs
.push_back(MI
);
1095 // This is a reload for a sib-reg copy. Drop spills downstream.
1096 LiveInterval
&SibLI
= LIS
.getInterval(SibReg
);
1097 eliminateRedundantSpills(SibLI
, SibLI
.getVNInfoAt(Idx
));
1098 // The COPY will fold to a reload below.
1102 // Attempt to fold memory ops.
1103 if (foldMemoryOperand(Ops
))
1106 // Create a new virtual register for spill/fill.
1107 // FIXME: Infer regclass from instruction alone.
1108 Register NewVReg
= Edit
->createFrom(Reg
);
1111 insertReload(NewVReg
, Idx
, MI
);
1113 // Rewrite instruction operands.
1114 bool hasLiveDef
= false;
1115 for (const auto &OpPair
: Ops
) {
1116 MachineOperand
&MO
= OpPair
.first
->getOperand(OpPair
.second
);
1119 if (!OpPair
.first
->isRegTiedToDefOperand(OpPair
.second
))
1126 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx
<< '\t' << *MI
<< '\n');
1128 // FIXME: Use a second vreg if instruction has no tied ops.
1131 insertSpill(NewVReg
, true, MI
);
1135 /// spillAll - Spill all registers remaining after rematerialization.
1136 void InlineSpiller::spillAll() {
1137 // Update LiveStacks now that we are committed to spilling.
1138 if (StackSlot
== VirtRegMap::NO_STACK_SLOT
) {
1139 StackSlot
= VRM
.assignVirt2StackSlot(Original
);
1140 StackInt
= &LSS
.getOrCreateInterval(StackSlot
, MRI
.getRegClass(Original
));
1141 StackInt
->getNextValue(SlotIndex(), LSS
.getVNInfoAllocator());
1143 StackInt
= &LSS
.getInterval(StackSlot
);
1145 if (Original
!= Edit
->getReg())
1146 VRM
.assignVirt2StackSlot(Edit
->getReg(), StackSlot
);
1148 assert(StackInt
->getNumValNums() == 1 && "Bad stack interval values");
1149 for (Register Reg
: RegsToSpill
)
1150 StackInt
->MergeSegmentsInAsValue(LIS
.getInterval(Reg
),
1151 StackInt
->getValNumInfo(0));
1152 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt
<< '\n');
1154 // Spill around uses of all RegsToSpill.
1155 for (Register Reg
: RegsToSpill
)
1156 spillAroundUses(Reg
);
1158 // Hoisted spills may cause dead code.
1159 if (!DeadDefs
.empty()) {
1160 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs
.size() << " dead defs\n");
1161 Edit
->eliminateDeadDefs(DeadDefs
, RegsToSpill
, AA
);
1164 // Finally delete the SnippetCopies.
1165 for (Register Reg
: RegsToSpill
) {
1166 for (MachineRegisterInfo::reg_instr_iterator
1167 RI
= MRI
.reg_instr_begin(Reg
), E
= MRI
.reg_instr_end();
1169 MachineInstr
&MI
= *(RI
++);
1170 assert(SnippetCopies
.count(&MI
) && "Remaining use wasn't a snippet copy");
1171 // FIXME: Do this with a LiveRangeEdit callback.
1172 LIS
.RemoveMachineInstrFromMaps(MI
);
1173 MI
.eraseFromParent();
1177 // Delete all spilled registers.
1178 for (Register Reg
: RegsToSpill
)
1179 Edit
->eraseVirtReg(Reg
);
1182 void InlineSpiller::spill(LiveRangeEdit
&edit
) {
1185 assert(!Register::isStackSlot(edit
.getReg()) &&
1186 "Trying to spill a stack slot.");
1187 // Share a stack slot among all descendants of Original.
1188 Original
= VRM
.getOriginal(edit
.getReg());
1189 StackSlot
= VRM
.getStackSlot(Original
);
1192 LLVM_DEBUG(dbgs() << "Inline spilling "
1193 << TRI
.getRegClassName(MRI
.getRegClass(edit
.getReg()))
1194 << ':' << edit
.getParent() << "\nFrom original "
1195 << printReg(Original
) << '\n');
1196 assert(edit
.getParent().isSpillable() &&
1197 "Attempting to spill already spilled value.");
1198 assert(DeadDefs
.empty() && "Previous spill didn't remove dead defs");
1200 collectRegsToSpill();
1203 // Remat may handle everything.
1204 if (!RegsToSpill
.empty())
1207 Edit
->calculateRegClassAndHint(MF
, VRAI
);
1210 /// Optimizations after all the reg selections and spills are done.
1211 void InlineSpiller::postOptimization() { HSpiller
.hoistAllSpills(); }
1213 /// When a spill is inserted, add the spill to MergeableSpills map.
1214 void HoistSpillHelper::addToMergeableSpills(MachineInstr
&Spill
, int StackSlot
,
1215 unsigned Original
) {
1216 BumpPtrAllocator
&Allocator
= LIS
.getVNInfoAllocator();
1217 LiveInterval
&OrigLI
= LIS
.getInterval(Original
);
1218 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1219 // LiveInterval may be cleared after all its references are spilled.
1220 if (StackSlotToOrigLI
.find(StackSlot
) == StackSlotToOrigLI
.end()) {
1221 auto LI
= std::make_unique
<LiveInterval
>(OrigLI
.reg(), OrigLI
.weight());
1222 LI
->assign(OrigLI
, Allocator
);
1223 StackSlotToOrigLI
[StackSlot
] = std::move(LI
);
1225 SlotIndex Idx
= LIS
.getInstructionIndex(Spill
);
1226 VNInfo
*OrigVNI
= StackSlotToOrigLI
[StackSlot
]->getVNInfoAt(Idx
.getRegSlot());
1227 std::pair
<int, VNInfo
*> MIdx
= std::make_pair(StackSlot
, OrigVNI
);
1228 MergeableSpills
[MIdx
].insert(&Spill
);
1231 /// When a spill is removed, remove the spill from MergeableSpills map.
1232 /// Return true if the spill is removed successfully.
1233 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr
&Spill
,
1235 auto It
= StackSlotToOrigLI
.find(StackSlot
);
1236 if (It
== StackSlotToOrigLI
.end())
1238 SlotIndex Idx
= LIS
.getInstructionIndex(Spill
);
1239 VNInfo
*OrigVNI
= It
->second
->getVNInfoAt(Idx
.getRegSlot());
1240 std::pair
<int, VNInfo
*> MIdx
= std::make_pair(StackSlot
, OrigVNI
);
1241 return MergeableSpills
[MIdx
].erase(&Spill
);
1244 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1245 /// i.e., there should be a living sibling of OrigReg at the insert point.
1246 bool HoistSpillHelper::isSpillCandBB(LiveInterval
&OrigLI
, VNInfo
&OrigVNI
,
1247 MachineBasicBlock
&BB
, Register
&LiveReg
) {
1248 SlotIndex Idx
= IPA
.getLastInsertPoint(OrigLI
, BB
);
1249 // The original def could be after the last insert point in the root block,
1250 // we can't hoist to here.
1251 if (Idx
< OrigVNI
.def
) {
1252 // TODO: We could be better here. If LI is not alive in landing pad
1253 // we could hoist spill after LIP.
1254 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1257 Register OrigReg
= OrigLI
.reg();
1258 SmallSetVector
<Register
, 16> &Siblings
= Virt2SiblingsMap
[OrigReg
];
1259 assert(OrigLI
.getVNInfoAt(Idx
) == &OrigVNI
&& "Unexpected VNI");
1261 for (const Register
&SibReg
: Siblings
) {
1262 LiveInterval
&LI
= LIS
.getInterval(SibReg
);
1263 VNInfo
*VNI
= LI
.getVNInfoAt(Idx
);
1272 /// Remove redundant spills in the same BB. Save those redundant spills in
1273 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1274 void HoistSpillHelper::rmRedundantSpills(
1275 SmallPtrSet
<MachineInstr
*, 16> &Spills
,
1276 SmallVectorImpl
<MachineInstr
*> &SpillsToRm
,
1277 DenseMap
<MachineDomTreeNode
*, MachineInstr
*> &SpillBBToSpill
) {
1278 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1279 // another spill inside. If a BB contains more than one spill, only keep the
1280 // earlier spill with smaller SlotIndex.
1281 for (const auto CurrentSpill
: Spills
) {
1282 MachineBasicBlock
*Block
= CurrentSpill
->getParent();
1283 MachineDomTreeNode
*Node
= MDT
.getBase().getNode(Block
);
1284 MachineInstr
*PrevSpill
= SpillBBToSpill
[Node
];
1286 SlotIndex PIdx
= LIS
.getInstructionIndex(*PrevSpill
);
1287 SlotIndex CIdx
= LIS
.getInstructionIndex(*CurrentSpill
);
1288 MachineInstr
*SpillToRm
= (CIdx
> PIdx
) ? CurrentSpill
: PrevSpill
;
1289 MachineInstr
*SpillToKeep
= (CIdx
> PIdx
) ? PrevSpill
: CurrentSpill
;
1290 SpillsToRm
.push_back(SpillToRm
);
1291 SpillBBToSpill
[MDT
.getBase().getNode(Block
)] = SpillToKeep
;
1293 SpillBBToSpill
[MDT
.getBase().getNode(Block
)] = CurrentSpill
;
1296 for (const auto SpillToRm
: SpillsToRm
)
1297 Spills
.erase(SpillToRm
);
1300 /// Starting from \p Root find a top-down traversal order of the dominator
1301 /// tree to visit all basic blocks containing the elements of \p Spills.
1302 /// Redundant spills will be found and put into \p SpillsToRm at the same
1303 /// time. \p SpillBBToSpill will be populated as part of the process and
1304 /// maps a basic block to the first store occurring in the basic block.
1305 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1306 void HoistSpillHelper::getVisitOrders(
1307 MachineBasicBlock
*Root
, SmallPtrSet
<MachineInstr
*, 16> &Spills
,
1308 SmallVectorImpl
<MachineDomTreeNode
*> &Orders
,
1309 SmallVectorImpl
<MachineInstr
*> &SpillsToRm
,
1310 DenseMap
<MachineDomTreeNode
*, unsigned> &SpillsToKeep
,
1311 DenseMap
<MachineDomTreeNode
*, MachineInstr
*> &SpillBBToSpill
) {
1312 // The set contains all the possible BB nodes to which we may hoist
1314 SmallPtrSet
<MachineDomTreeNode
*, 8> WorkSet
;
1315 // Save the BB nodes on the path from the first BB node containing
1316 // non-redundant spill to the Root node.
1317 SmallPtrSet
<MachineDomTreeNode
*, 8> NodesOnPath
;
1318 // All the spills to be hoisted must originate from a single def instruction
1319 // to the OrigReg. It means the def instruction should dominate all the spills
1320 // to be hoisted. We choose the BB where the def instruction is located as
1322 MachineDomTreeNode
*RootIDomNode
= MDT
[Root
]->getIDom();
1323 // For every node on the dominator tree with spill, walk up on the dominator
1324 // tree towards the Root node until it is reached. If there is other node
1325 // containing spill in the middle of the path, the previous spill saw will
1326 // be redundant and the node containing it will be removed. All the nodes on
1327 // the path starting from the first node with non-redundant spill to the Root
1328 // node will be added to the WorkSet, which will contain all the possible
1329 // locations where spills may be hoisted to after the loop below is done.
1330 for (const auto Spill
: Spills
) {
1331 MachineBasicBlock
*Block
= Spill
->getParent();
1332 MachineDomTreeNode
*Node
= MDT
[Block
];
1333 MachineInstr
*SpillToRm
= nullptr;
1334 while (Node
!= RootIDomNode
) {
1335 // If Node dominates Block, and it already contains a spill, the spill in
1336 // Block will be redundant.
1337 if (Node
!= MDT
[Block
] && SpillBBToSpill
[Node
]) {
1338 SpillToRm
= SpillBBToSpill
[MDT
[Block
]];
1340 /// If we see the Node already in WorkSet, the path from the Node to
1341 /// the Root node must already be traversed by another spill.
1342 /// Then no need to repeat.
1343 } else if (WorkSet
.count(Node
)) {
1346 NodesOnPath
.insert(Node
);
1348 Node
= Node
->getIDom();
1351 SpillsToRm
.push_back(SpillToRm
);
1353 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1354 // set the initial status before hoisting start. The value of BBs
1355 // containing original spills is set to 0, in order to descriminate
1356 // with BBs containing hoisted spills which will be inserted to
1357 // SpillsToKeep later during hoisting.
1358 SpillsToKeep
[MDT
[Block
]] = 0;
1359 WorkSet
.insert(NodesOnPath
.begin(), NodesOnPath
.end());
1361 NodesOnPath
.clear();
1364 // Sort the nodes in WorkSet in top-down order and save the nodes
1365 // in Orders. Orders will be used for hoisting in runHoistSpills.
1367 Orders
.push_back(MDT
.getBase().getNode(Root
));
1369 MachineDomTreeNode
*Node
= Orders
[idx
++];
1370 for (MachineDomTreeNode
*Child
: Node
->children()) {
1371 if (WorkSet
.count(Child
))
1372 Orders
.push_back(Child
);
1374 } while (idx
!= Orders
.size());
1375 assert(Orders
.size() == WorkSet
.size() &&
1376 "Orders have different size with WorkSet");
1379 LLVM_DEBUG(dbgs() << "Orders size is " << Orders
.size() << "\n");
1380 SmallVector
<MachineDomTreeNode
*, 32>::reverse_iterator RIt
= Orders
.rbegin();
1381 for (; RIt
!= Orders
.rend(); RIt
++)
1382 LLVM_DEBUG(dbgs() << "BB" << (*RIt
)->getBlock()->getNumber() << ",");
1383 LLVM_DEBUG(dbgs() << "\n");
1387 /// Try to hoist spills according to BB hotness. The spills to removed will
1388 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1390 void HoistSpillHelper::runHoistSpills(
1391 LiveInterval
&OrigLI
, VNInfo
&OrigVNI
,
1392 SmallPtrSet
<MachineInstr
*, 16> &Spills
,
1393 SmallVectorImpl
<MachineInstr
*> &SpillsToRm
,
1394 DenseMap
<MachineBasicBlock
*, unsigned> &SpillsToIns
) {
1395 // Visit order of dominator tree nodes.
1396 SmallVector
<MachineDomTreeNode
*, 32> Orders
;
1397 // SpillsToKeep contains all the nodes where spills are to be inserted
1398 // during hoisting. If the spill to be inserted is an original spill
1399 // (not a hoisted one), the value of the map entry is 0. If the spill
1400 // is a hoisted spill, the value of the map entry is the VReg to be used
1401 // as the source of the spill.
1402 DenseMap
<MachineDomTreeNode
*, unsigned> SpillsToKeep
;
1403 // Map from BB to the first spill inside of it.
1404 DenseMap
<MachineDomTreeNode
*, MachineInstr
*> SpillBBToSpill
;
1406 rmRedundantSpills(Spills
, SpillsToRm
, SpillBBToSpill
);
1408 MachineBasicBlock
*Root
= LIS
.getMBBFromIndex(OrigVNI
.def
);
1409 getVisitOrders(Root
, Spills
, Orders
, SpillsToRm
, SpillsToKeep
,
1412 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1413 // nodes set and the cost of all the spills inside those nodes.
1414 // The nodes set are the locations where spills are to be inserted
1415 // in the subtree of current node.
1416 using NodesCostPair
=
1417 std::pair
<SmallPtrSet
<MachineDomTreeNode
*, 16>, BlockFrequency
>;
1418 DenseMap
<MachineDomTreeNode
*, NodesCostPair
> SpillsInSubTreeMap
;
1420 // Iterate Orders set in reverse order, which will be a bottom-up order
1421 // in the dominator tree. Once we visit a dom tree node, we know its
1422 // children have already been visited and the spill locations in the
1423 // subtrees of all the children have been determined.
1424 SmallVector
<MachineDomTreeNode
*, 32>::reverse_iterator RIt
= Orders
.rbegin();
1425 for (; RIt
!= Orders
.rend(); RIt
++) {
1426 MachineBasicBlock
*Block
= (*RIt
)->getBlock();
1428 // If Block contains an original spill, simply continue.
1429 if (SpillsToKeep
.find(*RIt
) != SpillsToKeep
.end() && !SpillsToKeep
[*RIt
]) {
1430 SpillsInSubTreeMap
[*RIt
].first
.insert(*RIt
);
1431 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1432 SpillsInSubTreeMap
[*RIt
].second
= MBFI
.getBlockFreq(Block
);
1436 // Collect spills in subtree of current node (*RIt) to
1437 // SpillsInSubTreeMap[*RIt].first.
1438 for (MachineDomTreeNode
*Child
: (*RIt
)->children()) {
1439 if (SpillsInSubTreeMap
.find(Child
) == SpillsInSubTreeMap
.end())
1441 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1442 // should be placed before getting the begin and end iterators of
1443 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1444 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1445 // and the map grows and then the original buckets in the map are moved.
1446 SmallPtrSet
<MachineDomTreeNode
*, 16> &SpillsInSubTree
=
1447 SpillsInSubTreeMap
[*RIt
].first
;
1448 BlockFrequency
&SubTreeCost
= SpillsInSubTreeMap
[*RIt
].second
;
1449 SubTreeCost
+= SpillsInSubTreeMap
[Child
].second
;
1450 auto BI
= SpillsInSubTreeMap
[Child
].first
.begin();
1451 auto EI
= SpillsInSubTreeMap
[Child
].first
.end();
1452 SpillsInSubTree
.insert(BI
, EI
);
1453 SpillsInSubTreeMap
.erase(Child
);
1456 SmallPtrSet
<MachineDomTreeNode
*, 16> &SpillsInSubTree
=
1457 SpillsInSubTreeMap
[*RIt
].first
;
1458 BlockFrequency
&SubTreeCost
= SpillsInSubTreeMap
[*RIt
].second
;
1459 // No spills in subtree, simply continue.
1460 if (SpillsInSubTree
.empty())
1463 // Check whether Block is a possible candidate to insert spill.
1465 if (!isSpillCandBB(OrigLI
, OrigVNI
, *Block
, LiveReg
))
1468 // If there are multiple spills that could be merged, bias a little
1469 // to hoist the spill.
1470 BranchProbability MarginProb
= (SpillsInSubTree
.size() > 1)
1471 ? BranchProbability(9, 10)
1472 : BranchProbability(1, 1);
1473 if (SubTreeCost
> MBFI
.getBlockFreq(Block
) * MarginProb
) {
1474 // Hoist: Move spills to current Block.
1475 for (const auto SpillBB
: SpillsInSubTree
) {
1476 // When SpillBB is a BB contains original spill, insert the spill
1478 if (SpillsToKeep
.find(SpillBB
) != SpillsToKeep
.end() &&
1479 !SpillsToKeep
[SpillBB
]) {
1480 MachineInstr
*SpillToRm
= SpillBBToSpill
[SpillBB
];
1481 SpillsToRm
.push_back(SpillToRm
);
1483 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1484 SpillsToKeep
.erase(SpillBB
);
1486 // Current Block is the BB containing the new hoisted spill. Add it to
1487 // SpillsToKeep. LiveReg is the source of the new spill.
1488 SpillsToKeep
[*RIt
] = LiveReg
;
1490 dbgs() << "spills in BB: ";
1491 for (const auto Rspill
: SpillsInSubTree
)
1492 dbgs() << Rspill
->getBlock()->getNumber() << " ";
1493 dbgs() << "were promoted to BB" << (*RIt
)->getBlock()->getNumber()
1496 SpillsInSubTree
.clear();
1497 SpillsInSubTree
.insert(*RIt
);
1498 SubTreeCost
= MBFI
.getBlockFreq(Block
);
1501 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1502 // save them to SpillsToIns.
1503 for (const auto &Ent
: SpillsToKeep
) {
1505 SpillsToIns
[Ent
.first
->getBlock()] = Ent
.second
;
1509 /// For spills with equal values, remove redundant spills and hoist those left
1510 /// to less hot spots.
1512 /// Spills with equal values will be collected into the same set in
1513 /// MergeableSpills when spill is inserted. These equal spills are originated
1514 /// from the same defining instruction and are dominated by the instruction.
1515 /// Before hoisting all the equal spills, redundant spills inside in the same
1516 /// BB are first marked to be deleted. Then starting from the spills left, walk
1517 /// up on the dominator tree towards the Root node where the define instruction
1518 /// is located, mark the dominated spills to be deleted along the way and
1519 /// collect the BB nodes on the path from non-dominated spills to the define
1520 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1521 /// where we are considering to hoist the spills. We iterate the WorkSet in
1522 /// bottom-up order, and for each node, we will decide whether to hoist spills
1523 /// inside its subtree to that node. In this way, we can get benefit locally
1524 /// even if hoisting all the equal spills to one cold place is impossible.
1525 void HoistSpillHelper::hoistAllSpills() {
1526 SmallVector
<Register
, 4> NewVRegs
;
1527 LiveRangeEdit
Edit(nullptr, NewVRegs
, MF
, LIS
, &VRM
, this);
1529 for (unsigned i
= 0, e
= MRI
.getNumVirtRegs(); i
!= e
; ++i
) {
1530 Register Reg
= Register::index2VirtReg(i
);
1531 Register Original
= VRM
.getPreSplitReg(Reg
);
1532 if (!MRI
.def_empty(Reg
))
1533 Virt2SiblingsMap
[Original
].insert(Reg
);
1536 // Each entry in MergeableSpills contains a spill set with equal values.
1537 for (auto &Ent
: MergeableSpills
) {
1538 int Slot
= Ent
.first
.first
;
1539 LiveInterval
&OrigLI
= *StackSlotToOrigLI
[Slot
];
1540 VNInfo
*OrigVNI
= Ent
.first
.second
;
1541 SmallPtrSet
<MachineInstr
*, 16> &EqValSpills
= Ent
.second
;
1542 if (Ent
.second
.empty())
1546 dbgs() << "\nFor Slot" << Slot
<< " and VN" << OrigVNI
->id
<< ":\n"
1547 << "Equal spills in BB: ";
1548 for (const auto spill
: EqValSpills
)
1549 dbgs() << spill
->getParent()->getNumber() << " ";
1553 // SpillsToRm is the spill set to be removed from EqValSpills.
1554 SmallVector
<MachineInstr
*, 16> SpillsToRm
;
1555 // SpillsToIns is the spill set to be newly inserted after hoisting.
1556 DenseMap
<MachineBasicBlock
*, unsigned> SpillsToIns
;
1558 runHoistSpills(OrigLI
, *OrigVNI
, EqValSpills
, SpillsToRm
, SpillsToIns
);
1561 dbgs() << "Finally inserted spills in BB: ";
1562 for (const auto &Ispill
: SpillsToIns
)
1563 dbgs() << Ispill
.first
->getNumber() << " ";
1564 dbgs() << "\nFinally removed spills in BB: ";
1565 for (const auto Rspill
: SpillsToRm
)
1566 dbgs() << Rspill
->getParent()->getNumber() << " ";
1570 // Stack live range update.
1571 LiveInterval
&StackIntvl
= LSS
.getInterval(Slot
);
1572 if (!SpillsToIns
.empty() || !SpillsToRm
.empty())
1573 StackIntvl
.MergeValueInAsValue(OrigLI
, OrigVNI
,
1574 StackIntvl
.getValNumInfo(0));
1576 // Insert hoisted spills.
1577 for (auto const &Insert
: SpillsToIns
) {
1578 MachineBasicBlock
*BB
= Insert
.first
;
1579 Register LiveReg
= Insert
.second
;
1580 MachineBasicBlock::iterator MII
= IPA
.getLastInsertPointIter(OrigLI
, *BB
);
1581 MachineInstrSpan
MIS(MII
, BB
);
1582 TII
.storeRegToStackSlot(*BB
, MII
, LiveReg
, false, Slot
,
1583 MRI
.getRegClass(LiveReg
), &TRI
);
1584 LIS
.InsertMachineInstrRangeInMaps(MIS
.begin(), MII
);
1585 for (const MachineInstr
&MI
: make_range(MIS
.begin(), MII
))
1586 getVDefInterval(MI
, LIS
);
1590 // Remove redundant spills or change them to dead instructions.
1591 NumSpills
-= SpillsToRm
.size();
1592 for (auto const RMEnt
: SpillsToRm
) {
1593 RMEnt
->setDesc(TII
.get(TargetOpcode::KILL
));
1594 for (unsigned i
= RMEnt
->getNumOperands(); i
; --i
) {
1595 MachineOperand
&MO
= RMEnt
->getOperand(i
- 1);
1596 if (MO
.isReg() && MO
.isImplicit() && MO
.isDef() && !MO
.isDead())
1597 RMEnt
->RemoveOperand(i
- 1);
1600 Edit
.eliminateDeadDefs(SpillsToRm
, None
, AA
);
1604 /// For VirtReg clone, the \p New register should have the same physreg or
1605 /// stackslot as the \p old register.
1606 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New
, Register Old
) {
1607 if (VRM
.hasPhys(Old
))
1608 VRM
.assignVirt2Phys(New
, VRM
.getPhys(Old
));
1609 else if (VRM
.getStackSlot(Old
) != VirtRegMap::NO_STACK_SLOT
)
1610 VRM
.assignVirt2StackSlot(New
, VRM
.getStackSlot(Old
));
1612 llvm_unreachable("VReg should be assigned either physreg or stackslot");
1613 if (VRM
.hasShape(Old
))
1614 VRM
.assignVirt2Shape(New
, VRM
.getShape(Old
));