1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
81 static const MachineFunction
*getMFIfAvailable(const MachineInstr
&MI
) {
82 if (const MachineBasicBlock
*MBB
= MI
.getParent())
83 if (const MachineFunction
*MF
= MBB
->getParent())
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
90 static void tryToGetTargetInfo(const MachineInstr
&MI
,
91 const TargetRegisterInfo
*&TRI
,
92 const MachineRegisterInfo
*&MRI
,
93 const TargetIntrinsicInfo
*&IntrinsicInfo
,
94 const TargetInstrInfo
*&TII
) {
96 if (const MachineFunction
*MF
= getMFIfAvailable(MI
)) {
97 TRI
= MF
->getSubtarget().getRegisterInfo();
98 MRI
= &MF
->getRegInfo();
99 IntrinsicInfo
= MF
->getTarget().getIntrinsicInfo();
100 TII
= MF
->getSubtarget().getInstrInfo();
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction
&MF
) {
105 if (MCID
->ImplicitDefs
)
106 for (const MCPhysReg
*ImpDefs
= MCID
->getImplicitDefs(); *ImpDefs
;
108 addOperand(MF
, MachineOperand::CreateReg(*ImpDefs
, true, true));
109 if (MCID
->ImplicitUses
)
110 for (const MCPhysReg
*ImpUses
= MCID
->getImplicitUses(); *ImpUses
;
112 addOperand(MF
, MachineOperand::CreateReg(*ImpUses
, false, true));
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
118 MachineInstr::MachineInstr(MachineFunction
&MF
, const MCInstrDesc
&tid
,
119 DebugLoc dl
, bool NoImp
)
120 : MCID(&tid
), debugLoc(std::move(dl
)), DebugInstrNum(0) {
121 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
123 // Reserve space for the expected number of operands.
124 if (unsigned NumOps
= MCID
->getNumOperands() +
125 MCID
->getNumImplicitDefs() + MCID
->getNumImplicitUses()) {
126 CapOperands
= OperandCapacity::get(NumOps
);
127 Operands
= MF
.allocateOperandArray(CapOperands
);
131 addImplicitDefUseOperands(MF
);
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
137 MachineInstr::MachineInstr(MachineFunction
&MF
, const MachineInstr
&MI
)
138 : MCID(&MI
.getDesc()), Info(MI
.Info
), debugLoc(MI
.getDebugLoc()),
140 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
142 CapOperands
= OperandCapacity::get(MI
.getNumOperands());
143 Operands
= MF
.allocateOperandArray(CapOperands
);
146 for (const MachineOperand
&MO
: MI
.operands())
149 // Copy all the sensible flags.
153 void MachineInstr::moveBefore(MachineInstr
*MovePos
) {
154 MovePos
->getParent()->splice(MovePos
, getParent(), getIterator());
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
160 MachineRegisterInfo
*MachineInstr::getRegInfo() {
161 if (MachineBasicBlock
*MBB
= getParent())
162 return &MBB
->getParent()->getRegInfo();
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists. This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo
&MRI
) {
170 for (MachineOperand
&MO
: operands())
172 MRI
.removeRegOperandFromUseList(&MO
);
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists. This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo
&MRI
) {
179 for (MachineOperand
&MO
: operands())
181 MRI
.addRegOperandToUseList(&MO
);
184 void MachineInstr::addOperand(const MachineOperand
&Op
) {
185 MachineBasicBlock
*MBB
= getParent();
186 assert(MBB
&& "Use MachineInstrBuilder to add operands to dangling instrs");
187 MachineFunction
*MF
= MBB
->getParent();
188 assert(MF
&& "Use MachineInstrBuilder to add operands to dangling instrs");
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand
*Dst
, MachineOperand
*Src
,
195 unsigned NumOps
, MachineRegisterInfo
*MRI
) {
197 return MRI
->moveOperands(Dst
, Src
, NumOps
);
198 // MachineOperand is a trivially copyable type so we can just use memmove.
199 assert(Dst
&& Src
&& "Unknown operands");
200 std::memmove(Dst
, Src
, NumOps
* sizeof(MachineOperand
));
203 /// addOperand - Add the specified operand to the instruction. If it is an
204 /// implicit operand, it is added to the end of the operand list. If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction
&MF
, const MachineOperand
&Op
) {
208 assert(MCID
&& "Cannot add operands before providing an instr descriptor");
210 // Check if we're adding one of our existing operands.
211 if (&Op
>= Operands
&& &Op
< Operands
+ NumOperands
) {
212 // This is unusual: MI->addOperand(MI->getOperand(i)).
213 // If adding Op requires reallocating or moving existing operands around,
214 // the Op reference could go stale. Support it by copying Op.
215 MachineOperand
CopyOp(Op
);
216 return addOperand(MF
, CopyOp
);
219 // Find the insert location for the new operand. Implicit registers go at
220 // the end, everything else goes before the implicit regs.
222 // FIXME: Allow mixed explicit and implicit operands on inline asm.
223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224 // implicit-defs, but they must not be moved around. See the FIXME in
226 unsigned OpNo
= getNumOperands();
227 bool isImpReg
= Op
.isReg() && Op
.isImplicit();
228 if (!isImpReg
&& !isInlineAsm()) {
229 while (OpNo
&& Operands
[OpNo
-1].isReg() && Operands
[OpNo
-1].isImplicit()) {
231 assert(!Operands
[OpNo
].isTied() && "Cannot move tied operands");
236 bool isDebugOp
= Op
.getType() == MachineOperand::MO_Metadata
||
237 Op
.getType() == MachineOperand::MO_MCSymbol
;
238 // OpNo now points as the desired insertion point. Unless this is a variadic
239 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240 // RegMask operands go between the explicit and implicit operands.
241 assert((isImpReg
|| Op
.isRegMask() || MCID
->isVariadic() ||
242 OpNo
< MCID
->getNumOperands() || isDebugOp
) &&
243 "Trying to add an operand to a machine instr that is already done!");
246 MachineRegisterInfo
*MRI
= getRegInfo();
248 // Determine if the Operands array needs to be reallocated.
249 // Save the old capacity and operand array.
250 OperandCapacity OldCap
= CapOperands
;
251 MachineOperand
*OldOperands
= Operands
;
252 if (!OldOperands
|| OldCap
.getSize() == getNumOperands()) {
253 CapOperands
= OldOperands
? OldCap
.getNext() : OldCap
.get(1);
254 Operands
= MF
.allocateOperandArray(CapOperands
);
255 // Move the operands before the insertion point.
257 moveOperands(Operands
, OldOperands
, OpNo
, MRI
);
260 // Move the operands following the insertion point.
261 if (OpNo
!= NumOperands
)
262 moveOperands(Operands
+ OpNo
+ 1, OldOperands
+ OpNo
, NumOperands
- OpNo
,
266 // Deallocate the old operand array.
267 if (OldOperands
!= Operands
&& OldOperands
)
268 MF
.deallocateOperandArray(OldCap
, OldOperands
);
270 // Copy Op into place. It still needs to be inserted into the MRI use lists.
271 MachineOperand
*NewMO
= new (Operands
+ OpNo
) MachineOperand(Op
);
272 NewMO
->ParentMI
= this;
274 // When adding a register operand, tell MRI about it.
275 if (NewMO
->isReg()) {
276 // Ensure isOnRegUseList() returns false, regardless of Op's status.
277 NewMO
->Contents
.Reg
.Prev
= nullptr;
278 // Ignore existing ties. This is not a property that can be copied.
280 // Add the new operand to MRI, but only for instructions in an MBB.
282 MRI
->addRegOperandToUseList(NewMO
);
283 // The MCID operand information isn't accurate until we start adding
284 // explicit operands. The implicit operands are added first, then the
285 // explicits are inserted before them.
287 // Tie uses to defs as indicated in MCInstrDesc.
288 if (NewMO
->isUse()) {
289 int DefIdx
= MCID
->getOperandConstraint(OpNo
, MCOI::TIED_TO
);
291 tieOperands(DefIdx
, OpNo
);
293 // If the register operand is flagged as early, mark the operand as such.
294 if (MCID
->getOperandConstraint(OpNo
, MCOI::EARLY_CLOBBER
) != -1)
295 NewMO
->setIsEarlyClobber(true);
300 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
301 /// fewer operand than it started with.
303 void MachineInstr::RemoveOperand(unsigned OpNo
) {
304 assert(OpNo
< getNumOperands() && "Invalid operand number");
305 untieRegOperand(OpNo
);
308 // Moving tied operands would break the ties.
309 for (unsigned i
= OpNo
+ 1, e
= getNumOperands(); i
!= e
; ++i
)
310 if (Operands
[i
].isReg())
311 assert(!Operands
[i
].isTied() && "Cannot move tied operands");
314 MachineRegisterInfo
*MRI
= getRegInfo();
315 if (MRI
&& Operands
[OpNo
].isReg())
316 MRI
->removeRegOperandFromUseList(Operands
+ OpNo
);
318 // Don't call the MachineOperand destructor. A lot of this code depends on
319 // MachineOperand having a trivial destructor anyway, and adding a call here
320 // wouldn't make it 'destructor-correct'.
322 if (unsigned N
= NumOperands
- 1 - OpNo
)
323 moveOperands(Operands
+ OpNo
, Operands
+ OpNo
+ 1, N
, MRI
);
327 void MachineInstr::setExtraInfo(MachineFunction
&MF
,
328 ArrayRef
<MachineMemOperand
*> MMOs
,
329 MCSymbol
*PreInstrSymbol
,
330 MCSymbol
*PostInstrSymbol
,
331 MDNode
*HeapAllocMarker
) {
332 bool HasPreInstrSymbol
= PreInstrSymbol
!= nullptr;
333 bool HasPostInstrSymbol
= PostInstrSymbol
!= nullptr;
334 bool HasHeapAllocMarker
= HeapAllocMarker
!= nullptr;
336 MMOs
.size() + HasPreInstrSymbol
+ HasPostInstrSymbol
+ HasHeapAllocMarker
;
338 // Drop all extra info if there is none.
339 if (NumPointers
<= 0) {
344 // If more than one pointer, then store out of line. Store heap alloc markers
345 // out of line because PointerSumType cannot hold more than 4 tag types with
347 // FIXME: Maybe we should make the symbols in the extra info mutable?
348 else if (NumPointers
> 1 || HasHeapAllocMarker
) {
349 Info
.set
<EIIK_OutOfLine
>(MF
.createMIExtraInfo(
350 MMOs
, PreInstrSymbol
, PostInstrSymbol
, HeapAllocMarker
));
354 // Otherwise store the single pointer inline.
355 if (HasPreInstrSymbol
)
356 Info
.set
<EIIK_PreInstrSymbol
>(PreInstrSymbol
);
357 else if (HasPostInstrSymbol
)
358 Info
.set
<EIIK_PostInstrSymbol
>(PostInstrSymbol
);
360 Info
.set
<EIIK_MMO
>(MMOs
[0]);
363 void MachineInstr::dropMemRefs(MachineFunction
&MF
) {
364 if (memoperands_empty())
367 setExtraInfo(MF
, {}, getPreInstrSymbol(), getPostInstrSymbol(),
368 getHeapAllocMarker());
371 void MachineInstr::setMemRefs(MachineFunction
&MF
,
372 ArrayRef
<MachineMemOperand
*> MMOs
) {
378 setExtraInfo(MF
, MMOs
, getPreInstrSymbol(), getPostInstrSymbol(),
379 getHeapAllocMarker());
382 void MachineInstr::addMemOperand(MachineFunction
&MF
,
383 MachineMemOperand
*MO
) {
384 SmallVector
<MachineMemOperand
*, 2> MMOs
;
385 MMOs
.append(memoperands_begin(), memoperands_end());
387 setMemRefs(MF
, MMOs
);
390 void MachineInstr::cloneMemRefs(MachineFunction
&MF
, const MachineInstr
&MI
) {
392 // Nothing to do for a self-clone!
395 assert(&MF
== MI
.getMF() &&
396 "Invalid machine functions when cloning memory refrences!");
397 // See if we can just steal the extra info already allocated for the
398 // instruction. We can do this whenever the pre- and post-instruction symbols
399 // are the same (including null).
400 if (getPreInstrSymbol() == MI
.getPreInstrSymbol() &&
401 getPostInstrSymbol() == MI
.getPostInstrSymbol() &&
402 getHeapAllocMarker() == MI
.getHeapAllocMarker()) {
407 // Otherwise, fall back on a copy-based clone.
408 setMemRefs(MF
, MI
.memoperands());
411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
413 static bool hasIdenticalMMOs(ArrayRef
<MachineMemOperand
*> LHS
,
414 ArrayRef
<MachineMemOperand
*> RHS
) {
415 if (LHS
.size() != RHS
.size())
418 auto LHSPointees
= make_pointee_range(LHS
);
419 auto RHSPointees
= make_pointee_range(RHS
);
420 return std::equal(LHSPointees
.begin(), LHSPointees
.end(),
421 RHSPointees
.begin());
424 void MachineInstr::cloneMergedMemRefs(MachineFunction
&MF
,
425 ArrayRef
<const MachineInstr
*> MIs
) {
426 // Try handling easy numbers of MIs with simpler mechanisms.
431 if (MIs
.size() == 1) {
432 cloneMemRefs(MF
, *MIs
[0]);
435 // Because an empty memoperands list provides *no* information and must be
436 // handled conservatively (assuming the instruction can do anything), the only
437 // way to merge with it is to drop all other memoperands.
438 if (MIs
[0]->memoperands_empty()) {
443 // Handle the general case.
444 SmallVector
<MachineMemOperand
*, 2> MergedMMOs
;
445 // Start with the first instruction.
446 assert(&MF
== MIs
[0]->getMF() &&
447 "Invalid machine functions when cloning memory references!");
448 MergedMMOs
.append(MIs
[0]->memoperands_begin(), MIs
[0]->memoperands_end());
449 // Now walk all the other instructions and accumulate any different MMOs.
450 for (const MachineInstr
&MI
: make_pointee_range(MIs
.slice(1))) {
451 assert(&MF
== MI
.getMF() &&
452 "Invalid machine functions when cloning memory references!");
454 // Skip MIs with identical operands to the first. This is a somewhat
455 // arbitrary hack but will catch common cases without being quadratic.
456 // TODO: We could fully implement merge semantics here if needed.
457 if (hasIdenticalMMOs(MIs
[0]->memoperands(), MI
.memoperands()))
460 // Because an empty memoperands list provides *no* information and must be
461 // handled conservatively (assuming the instruction can do anything), the
462 // only way to merge with it is to drop all other memoperands.
463 if (MI
.memoperands_empty()) {
468 // Otherwise accumulate these into our temporary buffer of the merged state.
469 MergedMMOs
.append(MI
.memoperands_begin(), MI
.memoperands_end());
472 setMemRefs(MF
, MergedMMOs
);
475 void MachineInstr::setPreInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
476 // Do nothing if old and new symbols are the same.
477 if (Symbol
== getPreInstrSymbol())
480 // If there was only one symbol and we're removing it, just clear info.
481 if (!Symbol
&& Info
.is
<EIIK_PreInstrSymbol
>()) {
486 setExtraInfo(MF
, memoperands(), Symbol
, getPostInstrSymbol(),
487 getHeapAllocMarker());
490 void MachineInstr::setPostInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
491 // Do nothing if old and new symbols are the same.
492 if (Symbol
== getPostInstrSymbol())
495 // If there was only one symbol and we're removing it, just clear info.
496 if (!Symbol
&& Info
.is
<EIIK_PostInstrSymbol
>()) {
501 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), Symbol
,
502 getHeapAllocMarker());
505 void MachineInstr::setHeapAllocMarker(MachineFunction
&MF
, MDNode
*Marker
) {
506 // Do nothing if old and new symbols are the same.
507 if (Marker
== getHeapAllocMarker())
510 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
514 void MachineInstr::cloneInstrSymbols(MachineFunction
&MF
,
515 const MachineInstr
&MI
) {
517 // Nothing to do for a self-clone!
520 assert(&MF
== MI
.getMF() &&
521 "Invalid machine functions when cloning instruction symbols!");
523 setPreInstrSymbol(MF
, MI
.getPreInstrSymbol());
524 setPostInstrSymbol(MF
, MI
.getPostInstrSymbol());
525 setHeapAllocMarker(MF
, MI
.getHeapAllocMarker());
528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr
&Other
) const {
529 // For now, the just return the union of the flags. If the flags get more
530 // complicated over time, we might need more logic here.
531 return getFlags() | Other
.getFlags();
534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction
&I
) {
535 uint16_t MIFlags
= 0;
536 // Copy the wrapping flags.
537 if (const OverflowingBinaryOperator
*OB
=
538 dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
539 if (OB
->hasNoSignedWrap())
540 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
541 if (OB
->hasNoUnsignedWrap())
542 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
545 // Copy the exact flag.
546 if (const PossiblyExactOperator
*PE
= dyn_cast
<PossiblyExactOperator
>(&I
))
548 MIFlags
|= MachineInstr::MIFlag::IsExact
;
550 // Copy the fast-math flags.
551 if (const FPMathOperator
*FP
= dyn_cast
<FPMathOperator
>(&I
)) {
552 const FastMathFlags Flags
= FP
->getFastMathFlags();
554 MIFlags
|= MachineInstr::MIFlag::FmNoNans
;
556 MIFlags
|= MachineInstr::MIFlag::FmNoInfs
;
557 if (Flags
.noSignedZeros())
558 MIFlags
|= MachineInstr::MIFlag::FmNsz
;
559 if (Flags
.allowReciprocal())
560 MIFlags
|= MachineInstr::MIFlag::FmArcp
;
561 if (Flags
.allowContract())
562 MIFlags
|= MachineInstr::MIFlag::FmContract
;
563 if (Flags
.approxFunc())
564 MIFlags
|= MachineInstr::MIFlag::FmAfn
;
565 if (Flags
.allowReassoc())
566 MIFlags
|= MachineInstr::MIFlag::FmReassoc
;
572 void MachineInstr::copyIRFlags(const Instruction
&I
) {
573 Flags
= copyFlagsFromInstruction(I
);
576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask
, QueryType Type
) const {
577 assert(!isBundledWithPred() && "Must be called on bundle header");
578 for (MachineBasicBlock::const_instr_iterator MII
= getIterator();; ++MII
) {
579 if (MII
->getDesc().getFlags() & Mask
) {
580 if (Type
== AnyInBundle
)
583 if (Type
== AllInBundle
&& !MII
->isBundle())
586 // This was the last instruction in the bundle.
587 if (!MII
->isBundledWithSucc())
588 return Type
== AllInBundle
;
592 bool MachineInstr::isIdenticalTo(const MachineInstr
&Other
,
593 MICheckType Check
) const {
594 // If opcodes or number of operands are not the same then the two
595 // instructions are obviously not identical.
596 if (Other
.getOpcode() != getOpcode() ||
597 Other
.getNumOperands() != getNumOperands())
601 // We have passed the test above that both instructions have the same
602 // opcode, so we know that both instructions are bundles here. Let's compare
603 // MIs inside the bundle.
604 assert(Other
.isBundle() && "Expected that both instructions are bundles.");
605 MachineBasicBlock::const_instr_iterator I1
= getIterator();
606 MachineBasicBlock::const_instr_iterator I2
= Other
.getIterator();
607 // Loop until we analysed the last intruction inside at least one of the
609 while (I1
->isBundledWithSucc() && I2
->isBundledWithSucc()) {
612 if (!I1
->isIdenticalTo(*I2
, Check
))
615 // If we've reached the end of just one of the two bundles, but not both,
616 // the instructions are not identical.
617 if (I1
->isBundledWithSucc() || I2
->isBundledWithSucc())
621 // Check operands to make sure they match.
622 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
623 const MachineOperand
&MO
= getOperand(i
);
624 const MachineOperand
&OMO
= Other
.getOperand(i
);
626 if (!MO
.isIdenticalTo(OMO
))
631 // Clients may or may not want to ignore defs when testing for equality.
632 // For example, machine CSE pass only cares about finding common
633 // subexpressions, so it's safe to ignore virtual register defs.
635 if (Check
== IgnoreDefs
)
637 else if (Check
== IgnoreVRegDefs
) {
638 if (!Register::isVirtualRegister(MO
.getReg()) ||
639 !Register::isVirtualRegister(OMO
.getReg()))
640 if (!MO
.isIdenticalTo(OMO
))
643 if (!MO
.isIdenticalTo(OMO
))
645 if (Check
== CheckKillDead
&& MO
.isDead() != OMO
.isDead())
649 if (!MO
.isIdenticalTo(OMO
))
651 if (Check
== CheckKillDead
&& MO
.isKill() != OMO
.isKill())
655 // If DebugLoc does not match then two debug instructions are not identical.
657 if (getDebugLoc() && Other
.getDebugLoc() &&
658 getDebugLoc() != Other
.getDebugLoc())
663 const MachineFunction
*MachineInstr::getMF() const {
664 return getParent()->getParent();
667 MachineInstr
*MachineInstr::removeFromParent() {
668 assert(getParent() && "Not embedded in a basic block!");
669 return getParent()->remove(this);
672 MachineInstr
*MachineInstr::removeFromBundle() {
673 assert(getParent() && "Not embedded in a basic block!");
674 return getParent()->remove_instr(this);
677 void MachineInstr::eraseFromParent() {
678 assert(getParent() && "Not embedded in a basic block!");
679 getParent()->erase(this);
682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
683 assert(getParent() && "Not embedded in a basic block!");
684 MachineBasicBlock
*MBB
= getParent();
685 MachineFunction
*MF
= MBB
->getParent();
686 assert(MF
&& "Not embedded in a function!");
688 MachineInstr
*MI
= (MachineInstr
*)this;
689 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
691 for (const MachineOperand
&MO
: MI
->operands()) {
692 if (!MO
.isReg() || !MO
.isDef())
694 Register Reg
= MO
.getReg();
695 if (!Reg
.isVirtual())
697 MRI
.markUsesInDebugValueAsUndef(Reg
);
699 MI
->eraseFromParent();
702 void MachineInstr::eraseFromBundle() {
703 assert(getParent() && "Not embedded in a basic block!");
704 getParent()->erase_instr(this);
707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type
) const {
710 switch (getOpcode()) {
711 case TargetOpcode::PATCHPOINT
:
712 case TargetOpcode::STACKMAP
:
713 case TargetOpcode::STATEPOINT
:
714 case TargetOpcode::FENTRY_CALL
:
720 bool MachineInstr::shouldUpdateCallSiteInfo() const {
722 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle
);
723 return isCandidateForCallSiteEntry();
726 unsigned MachineInstr::getNumExplicitOperands() const {
727 unsigned NumOperands
= MCID
->getNumOperands();
728 if (!MCID
->isVariadic())
731 for (unsigned I
= NumOperands
, E
= getNumOperands(); I
!= E
; ++I
) {
732 const MachineOperand
&MO
= getOperand(I
);
733 // The operands must always be in the following order:
734 // - explicit reg defs,
735 // - other explicit operands (reg uses, immediates, etc.),
736 // - implicit reg defs
737 // - implicit reg uses
738 if (MO
.isReg() && MO
.isImplicit())
745 unsigned MachineInstr::getNumExplicitDefs() const {
746 unsigned NumDefs
= MCID
->getNumDefs();
747 if (!MCID
->isVariadic())
750 for (unsigned I
= NumDefs
, E
= getNumOperands(); I
!= E
; ++I
) {
751 const MachineOperand
&MO
= getOperand(I
);
752 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
759 void MachineInstr::bundleWithPred() {
760 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
761 setFlag(BundledPred
);
762 MachineBasicBlock::instr_iterator Pred
= getIterator();
764 assert(!Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
765 Pred
->setFlag(BundledSucc
);
768 void MachineInstr::bundleWithSucc() {
769 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
770 setFlag(BundledSucc
);
771 MachineBasicBlock::instr_iterator Succ
= getIterator();
773 assert(!Succ
->isBundledWithPred() && "Inconsistent bundle flags");
774 Succ
->setFlag(BundledPred
);
777 void MachineInstr::unbundleFromPred() {
778 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
779 clearFlag(BundledPred
);
780 MachineBasicBlock::instr_iterator Pred
= getIterator();
782 assert(Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
783 Pred
->clearFlag(BundledSucc
);
786 void MachineInstr::unbundleFromSucc() {
787 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
788 clearFlag(BundledSucc
);
789 MachineBasicBlock::instr_iterator Succ
= getIterator();
791 assert(Succ
->isBundledWithPred() && "Inconsistent bundle flags");
792 Succ
->clearFlag(BundledPred
);
795 bool MachineInstr::isStackAligningInlineAsm() const {
797 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
798 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
804 InlineAsm::AsmDialect
MachineInstr::getInlineAsmDialect() const {
805 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
806 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
807 return InlineAsm::AsmDialect((ExtraInfo
& InlineAsm::Extra_AsmDialect
) != 0);
810 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx
,
811 unsigned *GroupNo
) const {
812 assert(isInlineAsm() && "Expected an inline asm instruction");
813 assert(OpIdx
< getNumOperands() && "OpIdx out of range");
815 // Ignore queries about the initial operands.
816 if (OpIdx
< InlineAsm::MIOp_FirstOperand
)
821 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
823 const MachineOperand
&FlagMO
= getOperand(i
);
824 // If we reach the implicit register operands, stop looking.
827 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
828 if (i
+ NumOps
> OpIdx
) {
838 const DILabel
*MachineInstr::getDebugLabel() const {
839 assert(isDebugLabel() && "not a DBG_LABEL");
840 return cast
<DILabel
>(getOperand(0).getMetadata());
843 const MachineOperand
&MachineInstr::getDebugVariableOp() const {
844 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
845 unsigned VariableOp
= isDebugValueList() ? 0 : 2;
846 return getOperand(VariableOp
);
849 MachineOperand
&MachineInstr::getDebugVariableOp() {
850 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
851 unsigned VariableOp
= isDebugValueList() ? 0 : 2;
852 return getOperand(VariableOp
);
855 const DILocalVariable
*MachineInstr::getDebugVariable() const {
856 return cast
<DILocalVariable
>(getDebugVariableOp().getMetadata());
859 const MachineOperand
&MachineInstr::getDebugExpressionOp() const {
860 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
861 unsigned ExpressionOp
= isDebugValueList() ? 1 : 3;
862 return getOperand(ExpressionOp
);
865 MachineOperand
&MachineInstr::getDebugExpressionOp() {
866 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
867 unsigned ExpressionOp
= isDebugValueList() ? 1 : 3;
868 return getOperand(ExpressionOp
);
871 const DIExpression
*MachineInstr::getDebugExpression() const {
872 return cast
<DIExpression
>(getDebugExpressionOp().getMetadata());
875 bool MachineInstr::isDebugEntryValue() const {
876 return isDebugValue() && getDebugExpression()->isEntryValue();
879 const TargetRegisterClass
*
880 MachineInstr::getRegClassConstraint(unsigned OpIdx
,
881 const TargetInstrInfo
*TII
,
882 const TargetRegisterInfo
*TRI
) const {
883 assert(getParent() && "Can't have an MBB reference here!");
884 assert(getMF() && "Can't have an MF reference here!");
885 const MachineFunction
&MF
= *getMF();
887 // Most opcodes have fixed constraints in their MCInstrDesc.
889 return TII
->getRegClass(getDesc(), OpIdx
, TRI
, MF
);
891 if (!getOperand(OpIdx
).isReg())
894 // For tied uses on inline asm, get the constraint from the def.
896 if (getOperand(OpIdx
).isUse() && isRegTiedToDefOperand(OpIdx
, &DefIdx
))
899 // Inline asm stores register class constraints in the flag word.
900 int FlagIdx
= findInlineAsmFlagIdx(OpIdx
);
904 unsigned Flag
= getOperand(FlagIdx
).getImm();
906 if ((InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegUse
||
907 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDef
||
908 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDefEarlyClobber
) &&
909 InlineAsm::hasRegClassConstraint(Flag
, RCID
))
910 return TRI
->getRegClass(RCID
);
912 // Assume that all registers in a memory operand are pointers.
913 if (InlineAsm::getKind(Flag
) == InlineAsm::Kind_Mem
)
914 return TRI
->getPointerRegClass(MF
);
919 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVReg(
920 Register Reg
, const TargetRegisterClass
*CurRC
, const TargetInstrInfo
*TII
,
921 const TargetRegisterInfo
*TRI
, bool ExploreBundle
) const {
922 // Check every operands inside the bundle if we have
925 for (ConstMIBundleOperands
OpndIt(*this); OpndIt
.isValid() && CurRC
;
927 CurRC
= OpndIt
->getParent()->getRegClassConstraintEffectForVRegImpl(
928 OpndIt
.getOperandNo(), Reg
, CurRC
, TII
, TRI
);
930 // Otherwise, just check the current operands.
931 for (unsigned i
= 0, e
= NumOperands
; i
< e
&& CurRC
; ++i
)
932 CurRC
= getRegClassConstraintEffectForVRegImpl(i
, Reg
, CurRC
, TII
, TRI
);
936 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVRegImpl(
937 unsigned OpIdx
, Register Reg
, const TargetRegisterClass
*CurRC
,
938 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
939 assert(CurRC
&& "Invalid initial register class");
940 // Check if Reg is constrained by some of its use/def from MI.
941 const MachineOperand
&MO
= getOperand(OpIdx
);
942 if (!MO
.isReg() || MO
.getReg() != Reg
)
944 // If yes, accumulate the constraints through the operand.
945 return getRegClassConstraintEffect(OpIdx
, CurRC
, TII
, TRI
);
948 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffect(
949 unsigned OpIdx
, const TargetRegisterClass
*CurRC
,
950 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
951 const TargetRegisterClass
*OpRC
= getRegClassConstraint(OpIdx
, TII
, TRI
);
952 const MachineOperand
&MO
= getOperand(OpIdx
);
954 "Cannot get register constraints for non-register operand");
955 assert(CurRC
&& "Invalid initial register class");
956 if (unsigned SubIdx
= MO
.getSubReg()) {
958 CurRC
= TRI
->getMatchingSuperRegClass(CurRC
, OpRC
, SubIdx
);
960 CurRC
= TRI
->getSubClassWithSubReg(CurRC
, SubIdx
);
962 CurRC
= TRI
->getCommonSubClass(CurRC
, OpRC
);
966 /// Return the number of instructions inside the MI bundle, not counting the
967 /// header instruction.
968 unsigned MachineInstr::getBundleSize() const {
969 MachineBasicBlock::const_instr_iterator I
= getIterator();
971 while (I
->isBundledWithSucc()) {
978 /// Returns true if the MachineInstr has an implicit-use operand of exactly
979 /// the given register (not considering sub/super-registers).
980 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg
) const {
981 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
982 const MachineOperand
&MO
= getOperand(i
);
983 if (MO
.isReg() && MO
.isUse() && MO
.isImplicit() && MO
.getReg() == Reg
)
989 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
990 /// the specific register or -1 if it is not found. It further tightens
991 /// the search criteria to a use that kills the register if isKill is true.
992 int MachineInstr::findRegisterUseOperandIdx(
993 Register Reg
, bool isKill
, const TargetRegisterInfo
*TRI
) const {
994 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
995 const MachineOperand
&MO
= getOperand(i
);
996 if (!MO
.isReg() || !MO
.isUse())
998 Register MOReg
= MO
.getReg();
1001 if (MOReg
== Reg
|| (TRI
&& Reg
&& MOReg
&& TRI
->regsOverlap(MOReg
, Reg
)))
1002 if (!isKill
|| MO
.isKill())
1008 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1009 /// indicating if this instruction reads or writes Reg. This also considers
1010 /// partial defines.
1011 std::pair
<bool,bool>
1012 MachineInstr::readsWritesVirtualRegister(Register Reg
,
1013 SmallVectorImpl
<unsigned> *Ops
) const {
1014 bool PartDef
= false; // Partial redefine.
1015 bool FullDef
= false; // Full define.
1018 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1019 const MachineOperand
&MO
= getOperand(i
);
1020 if (!MO
.isReg() || MO
.getReg() != Reg
)
1025 Use
|= !MO
.isUndef();
1026 else if (MO
.getSubReg() && !MO
.isUndef())
1027 // A partial def undef doesn't count as reading the register.
1032 // A partial redefine uses Reg unless there is also a full define.
1033 return std::make_pair(Use
|| (PartDef
&& !FullDef
), PartDef
|| FullDef
);
1036 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1037 /// the specified register or -1 if it is not found. If isDead is true, defs
1038 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1039 /// also checks if there is a def of a super-register.
1041 MachineInstr::findRegisterDefOperandIdx(Register Reg
, bool isDead
, bool Overlap
,
1042 const TargetRegisterInfo
*TRI
) const {
1043 bool isPhys
= Register::isPhysicalRegister(Reg
);
1044 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1045 const MachineOperand
&MO
= getOperand(i
);
1046 // Accept regmask operands when Overlap is set.
1047 // Ignore them when looking for a specific def operand (Overlap == false).
1048 if (isPhys
&& Overlap
&& MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
1050 if (!MO
.isReg() || !MO
.isDef())
1052 Register MOReg
= MO
.getReg();
1053 bool Found
= (MOReg
== Reg
);
1054 if (!Found
&& TRI
&& isPhys
&& Register::isPhysicalRegister(MOReg
)) {
1056 Found
= TRI
->regsOverlap(MOReg
, Reg
);
1058 Found
= TRI
->isSubRegister(MOReg
, Reg
);
1060 if (Found
&& (!isDead
|| MO
.isDead()))
1066 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1067 /// operand list that is used to represent the predicate. It returns -1 if
1069 int MachineInstr::findFirstPredOperandIdx() const {
1070 // Don't call MCID.findFirstPredOperandIdx() because this variant
1071 // is sometimes called on an instruction that's not yet complete, and
1072 // so the number of operands is less than the MCID indicates. In
1073 // particular, the PTX target does this.
1074 const MCInstrDesc
&MCID
= getDesc();
1075 if (MCID
.isPredicable()) {
1076 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1077 if (MCID
.OpInfo
[i
].isPredicate())
1084 // MachineOperand::TiedTo is 4 bits wide.
1085 const unsigned TiedMax
= 15;
1087 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1089 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1090 /// field. TiedTo can have these values:
1092 /// 0: Operand is not tied to anything.
1093 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1094 /// TiedMax: Tied to an operand >= TiedMax-1.
1096 /// The tied def must be one of the first TiedMax operands on a normal
1097 /// instruction. INLINEASM instructions allow more tied defs.
1099 void MachineInstr::tieOperands(unsigned DefIdx
, unsigned UseIdx
) {
1100 MachineOperand
&DefMO
= getOperand(DefIdx
);
1101 MachineOperand
&UseMO
= getOperand(UseIdx
);
1102 assert(DefMO
.isDef() && "DefIdx must be a def operand");
1103 assert(UseMO
.isUse() && "UseIdx must be a use operand");
1104 assert(!DefMO
.isTied() && "Def is already tied to another use");
1105 assert(!UseMO
.isTied() && "Use is already tied to another def");
1107 if (DefIdx
< TiedMax
)
1108 UseMO
.TiedTo
= DefIdx
+ 1;
1110 // Inline asm can use the group descriptors to find tied operands,
1111 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1112 // but on normal instruction, the tied def must be within the first TiedMax
1114 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT
) &&
1115 "DefIdx out of range");
1116 UseMO
.TiedTo
= TiedMax
;
1119 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1120 DefMO
.TiedTo
= std::min(UseIdx
+ 1, TiedMax
);
1123 /// Given the index of a tied register operand, find the operand it is tied to.
1124 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1125 /// which must exist.
1126 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx
) const {
1127 const MachineOperand
&MO
= getOperand(OpIdx
);
1128 assert(MO
.isTied() && "Operand isn't tied");
1130 // Normally TiedTo is in range.
1131 if (MO
.TiedTo
< TiedMax
)
1132 return MO
.TiedTo
- 1;
1134 // Uses on normal instructions can be out of range.
1135 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT
) {
1136 // Normal tied defs must be in the 0..TiedMax-1 range.
1139 // MO is a def. Search for the tied use.
1140 for (unsigned i
= TiedMax
- 1, e
= getNumOperands(); i
!= e
; ++i
) {
1141 const MachineOperand
&UseMO
= getOperand(i
);
1142 if (UseMO
.isReg() && UseMO
.isUse() && UseMO
.TiedTo
== OpIdx
+ 1)
1145 llvm_unreachable("Can't find tied use");
1148 if (getOpcode() == TargetOpcode::STATEPOINT
) {
1149 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1151 StatepointOpers
SO(this);
1152 unsigned CurUseIdx
= SO
.getFirstGCPtrIdx();
1153 assert(CurUseIdx
!= -1U && "only gc pointer statepoint operands can be tied");
1154 unsigned NumDefs
= getNumDefs();
1155 for (unsigned CurDefIdx
= 0; CurDefIdx
< NumDefs
; ++CurDefIdx
) {
1156 while (!getOperand(CurUseIdx
).isReg())
1157 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1158 if (OpIdx
== CurDefIdx
)
1160 if (OpIdx
== CurUseIdx
)
1162 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1164 llvm_unreachable("Can't find tied use");
1167 // Now deal with inline asm by parsing the operand group descriptor flags.
1168 // Find the beginning of each operand group.
1169 SmallVector
<unsigned, 8> GroupIdx
;
1170 unsigned OpIdxGroup
= ~0u;
1172 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
1174 const MachineOperand
&FlagMO
= getOperand(i
);
1175 assert(FlagMO
.isImm() && "Invalid tied operand on inline asm");
1176 unsigned CurGroup
= GroupIdx
.size();
1177 GroupIdx
.push_back(i
);
1178 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
1179 // OpIdx belongs to this operand group.
1180 if (OpIdx
> i
&& OpIdx
< i
+ NumOps
)
1181 OpIdxGroup
= CurGroup
;
1183 if (!InlineAsm::isUseOperandTiedToDef(FlagMO
.getImm(), TiedGroup
))
1185 // Operands in this group are tied to operands in TiedGroup which must be
1186 // earlier. Find the number of operands between the two groups.
1187 unsigned Delta
= i
- GroupIdx
[TiedGroup
];
1189 // OpIdx is a use tied to TiedGroup.
1190 if (OpIdxGroup
== CurGroup
)
1191 return OpIdx
- Delta
;
1193 // OpIdx is a def tied to this use group.
1194 if (OpIdxGroup
== TiedGroup
)
1195 return OpIdx
+ Delta
;
1197 llvm_unreachable("Invalid tied operand on inline asm");
1200 /// clearKillInfo - Clears kill flags on all operands.
1202 void MachineInstr::clearKillInfo() {
1203 for (MachineOperand
&MO
: operands()) {
1204 if (MO
.isReg() && MO
.isUse())
1205 MO
.setIsKill(false);
1209 void MachineInstr::substituteRegister(Register FromReg
, Register ToReg
,
1211 const TargetRegisterInfo
&RegInfo
) {
1212 if (Register::isPhysicalRegister(ToReg
)) {
1214 ToReg
= RegInfo
.getSubReg(ToReg
, SubIdx
);
1215 for (MachineOperand
&MO
: operands()) {
1216 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1218 MO
.substPhysReg(ToReg
, RegInfo
);
1221 for (MachineOperand
&MO
: operands()) {
1222 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1224 MO
.substVirtReg(ToReg
, SubIdx
, RegInfo
);
1229 /// isSafeToMove - Return true if it is safe to move this instruction. If
1230 /// SawStore is set to true, it means that there is a store (or call) between
1231 /// the instruction's location and its intended destination.
1232 bool MachineInstr::isSafeToMove(AAResults
*AA
, bool &SawStore
) const {
1233 // Ignore stuff that we obviously can't move.
1235 // Treat volatile loads as stores. This is not strictly necessary for
1236 // volatiles, but it is required for atomic loads. It is not allowed to move
1237 // a load across an atomic load with Ordering > Monotonic.
1238 if (mayStore() || isCall() || isPHI() ||
1239 (mayLoad() && hasOrderedMemoryRef())) {
1244 if (isPosition() || isDebugInstr() || isTerminator() ||
1245 mayRaiseFPException() || hasUnmodeledSideEffects())
1248 // See if this instruction does a load. If so, we have to guarantee that the
1249 // loaded value doesn't change between the load and the its intended
1250 // destination. The check for isInvariantLoad gives the target the chance to
1251 // classify the load as always returning a constant, e.g. a constant pool
1253 if (mayLoad() && !isDereferenceableInvariantLoad(AA
))
1254 // Otherwise, this is a real load. If there is a store between the load and
1255 // end of block, we can't move it.
1261 static bool MemOperandsHaveAlias(const MachineFrameInfo
&MFI
, AAResults
*AA
,
1262 bool UseTBAA
, const MachineMemOperand
*MMOa
,
1263 const MachineMemOperand
*MMOb
) {
1264 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1265 // operates with MachineMemOperand offset with some important assumptions:
1266 // - LLVM fundamentally assumes flat address spaces.
1267 // - MachineOperand offset can *only* result from legalization and cannot
1268 // affect queries other than the trivial case of overlap checking.
1269 // - These offsets never wrap and never step outside of allocated objects.
1270 // - There should never be any negative offsets here.
1272 // FIXME: Modify API to hide this math from "user"
1273 // Even before we go to AA we can reason locally about some memory objects. It
1274 // can save compile time, and possibly catch some corner cases not currently
1277 int64_t OffsetA
= MMOa
->getOffset();
1278 int64_t OffsetB
= MMOb
->getOffset();
1279 int64_t MinOffset
= std::min(OffsetA
, OffsetB
);
1281 uint64_t WidthA
= MMOa
->getSize();
1282 uint64_t WidthB
= MMOb
->getSize();
1283 bool KnownWidthA
= WidthA
!= MemoryLocation::UnknownSize
;
1284 bool KnownWidthB
= WidthB
!= MemoryLocation::UnknownSize
;
1286 const Value
*ValA
= MMOa
->getValue();
1287 const Value
*ValB
= MMOb
->getValue();
1288 bool SameVal
= (ValA
&& ValB
&& (ValA
== ValB
));
1290 const PseudoSourceValue
*PSVa
= MMOa
->getPseudoValue();
1291 const PseudoSourceValue
*PSVb
= MMOb
->getPseudoValue();
1292 if (PSVa
&& ValB
&& !PSVa
->mayAlias(&MFI
))
1294 if (PSVb
&& ValA
&& !PSVb
->mayAlias(&MFI
))
1296 if (PSVa
&& PSVb
&& (PSVa
== PSVb
))
1301 if (!KnownWidthA
|| !KnownWidthB
)
1303 int64_t MaxOffset
= std::max(OffsetA
, OffsetB
);
1304 int64_t LowWidth
= (MinOffset
== OffsetA
) ? WidthA
: WidthB
;
1305 return (MinOffset
+ LowWidth
> MaxOffset
);
1314 assert((OffsetA
>= 0) && "Negative MachineMemOperand offset");
1315 assert((OffsetB
>= 0) && "Negative MachineMemOperand offset");
1318 KnownWidthA
? WidthA
+ OffsetA
- MinOffset
: MemoryLocation::UnknownSize
;
1320 KnownWidthB
? WidthB
+ OffsetB
- MinOffset
: MemoryLocation::UnknownSize
;
1322 return !AA
->isNoAlias(
1323 MemoryLocation(ValA
, OverlapA
, UseTBAA
? MMOa
->getAAInfo() : AAMDNodes()),
1324 MemoryLocation(ValB
, OverlapB
,
1325 UseTBAA
? MMOb
->getAAInfo() : AAMDNodes()));
1328 bool MachineInstr::mayAlias(AAResults
*AA
, const MachineInstr
&Other
,
1329 bool UseTBAA
) const {
1330 const MachineFunction
*MF
= getMF();
1331 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1332 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1334 // Exclude call instruction which may alter the memory but can not be handled
1335 // by this function.
1336 if (isCall() || Other
.isCall())
1339 // If neither instruction stores to memory, they can't alias in any
1340 // meaningful way, even if they read from the same address.
1341 if (!mayStore() && !Other
.mayStore())
1344 // Both instructions must be memory operations to be able to alias.
1345 if (!mayLoadOrStore() || !Other
.mayLoadOrStore())
1348 // Let the target decide if memory accesses cannot possibly overlap.
1349 if (TII
->areMemAccessesTriviallyDisjoint(*this, Other
))
1352 // Memory operations without memory operands may access anything. Be
1353 // conservative and assume `MayAlias`.
1354 if (memoperands_empty() || Other
.memoperands_empty())
1357 // Skip if there are too many memory operands.
1358 auto NumChecks
= getNumMemOperands() * Other
.getNumMemOperands();
1359 if (NumChecks
> TII
->getMemOperandAACheckLimit())
1362 // Check each pair of memory operands from both instructions, which can't
1363 // alias only if all pairs won't alias.
1364 for (auto *MMOa
: memoperands())
1365 for (auto *MMOb
: Other
.memoperands())
1366 if (MemOperandsHaveAlias(MFI
, AA
, UseTBAA
, MMOa
, MMOb
))
1372 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1373 /// or volatile memory reference, or if the information describing the memory
1374 /// reference is not available. Return false if it is known to have no ordered
1375 /// memory references.
1376 bool MachineInstr::hasOrderedMemoryRef() const {
1377 // An instruction known never to access memory won't have a volatile access.
1381 !hasUnmodeledSideEffects())
1384 // Otherwise, if the instruction has no memory reference information,
1385 // conservatively assume it wasn't preserved.
1386 if (memoperands_empty())
1389 // Check if any of our memory operands are ordered.
1390 return llvm::any_of(memoperands(), [](const MachineMemOperand
*MMO
) {
1391 return !MMO
->isUnordered();
1395 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1396 /// trap and is loading from a location whose value is invariant across a run of
1398 bool MachineInstr::isDereferenceableInvariantLoad(AAResults
*AA
) const {
1399 // If the instruction doesn't load at all, it isn't an invariant load.
1403 // If the instruction has lost its memoperands, conservatively assume that
1404 // it may not be an invariant load.
1405 if (memoperands_empty())
1408 const MachineFrameInfo
&MFI
= getParent()->getParent()->getFrameInfo();
1410 for (MachineMemOperand
*MMO
: memoperands()) {
1411 if (!MMO
->isUnordered())
1412 // If the memory operand has ordering side effects, we can't move the
1413 // instruction. Such an instruction is technically an invariant load,
1414 // but the caller code would need updated to expect that.
1416 if (MMO
->isStore()) return false;
1417 if (MMO
->isInvariant() && MMO
->isDereferenceable())
1420 // A load from a constant PseudoSourceValue is invariant.
1421 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue())
1422 if (PSV
->isConstant(&MFI
))
1425 if (const Value
*V
= MMO
->getValue()) {
1426 // If we have an AliasAnalysis, ask it whether the memory is constant.
1428 AA
->pointsToConstantMemory(
1429 MemoryLocation(V
, MMO
->getSize(), MMO
->getAAInfo())))
1433 // Otherwise assume conservatively.
1437 // Everything checks out.
1441 /// isConstantValuePHI - If the specified instruction is a PHI that always
1442 /// merges together the same virtual register, return the register, otherwise
1444 unsigned MachineInstr::isConstantValuePHI() const {
1447 assert(getNumOperands() >= 3 &&
1448 "It's illegal to have a PHI without source operands");
1450 Register Reg
= getOperand(1).getReg();
1451 for (unsigned i
= 3, e
= getNumOperands(); i
< e
; i
+= 2)
1452 if (getOperand(i
).getReg() != Reg
)
1457 bool MachineInstr::hasUnmodeledSideEffects() const {
1458 if (hasProperty(MCID::UnmodeledSideEffects
))
1460 if (isInlineAsm()) {
1461 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1462 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1469 bool MachineInstr::isLoadFoldBarrier() const {
1470 return mayStore() || isCall() ||
1471 (hasUnmodeledSideEffects() && !isPseudoProbe());
1474 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1476 bool MachineInstr::allDefsAreDead() const {
1477 for (const MachineOperand
&MO
: operands()) {
1478 if (!MO
.isReg() || MO
.isUse())
1486 /// copyImplicitOps - Copy implicit register operands from specified
1487 /// instruction to this instruction.
1488 void MachineInstr::copyImplicitOps(MachineFunction
&MF
,
1489 const MachineInstr
&MI
) {
1490 for (unsigned i
= MI
.getDesc().getNumOperands(), e
= MI
.getNumOperands();
1492 const MachineOperand
&MO
= MI
.getOperand(i
);
1493 if ((MO
.isReg() && MO
.isImplicit()) || MO
.isRegMask())
1498 bool MachineInstr::hasComplexRegisterTies() const {
1499 const MCInstrDesc
&MCID
= getDesc();
1500 if (MCID
.Opcode
== TargetOpcode::STATEPOINT
)
1502 for (unsigned I
= 0, E
= getNumOperands(); I
< E
; ++I
) {
1503 const auto &Operand
= getOperand(I
);
1504 if (!Operand
.isReg() || Operand
.isDef())
1505 // Ignore the defined registers as MCID marks only the uses as tied.
1507 int ExpectedTiedIdx
= MCID
.getOperandConstraint(I
, MCOI::TIED_TO
);
1508 int TiedIdx
= Operand
.isTied() ? int(findTiedOperandIdx(I
)) : -1;
1509 if (ExpectedTiedIdx
!= TiedIdx
)
1515 LLT
MachineInstr::getTypeToPrint(unsigned OpIdx
, SmallBitVector
&PrintedTypes
,
1516 const MachineRegisterInfo
&MRI
) const {
1517 const MachineOperand
&Op
= getOperand(OpIdx
);
1521 if (isVariadic() || OpIdx
>= getNumExplicitOperands())
1522 return MRI
.getType(Op
.getReg());
1524 auto &OpInfo
= getDesc().OpInfo
[OpIdx
];
1525 if (!OpInfo
.isGenericType())
1526 return MRI
.getType(Op
.getReg());
1528 if (PrintedTypes
[OpInfo
.getGenericTypeIndex()])
1531 LLT TypeToPrint
= MRI
.getType(Op
.getReg());
1532 // Don't mark the type index printed if it wasn't actually printed: maybe
1533 // another operand with the same type index has an actual type attached:
1534 if (TypeToPrint
.isValid())
1535 PrintedTypes
.set(OpInfo
.getGenericTypeIndex());
1539 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1540 LLVM_DUMP_METHOD
void MachineInstr::dump() const {
1545 LLVM_DUMP_METHOD
void MachineInstr::dumprImpl(
1546 const MachineRegisterInfo
&MRI
, unsigned Depth
, unsigned MaxDepth
,
1547 SmallPtrSetImpl
<const MachineInstr
*> &AlreadySeenInstrs
) const {
1548 if (Depth
>= MaxDepth
)
1550 if (!AlreadySeenInstrs
.insert(this).second
)
1552 // PadToColumn always inserts at least one space.
1553 // Don't mess up the alignment if we don't want any space.
1555 fdbgs().PadToColumn(Depth
* 2);
1557 for (const MachineOperand
&MO
: operands()) {
1558 if (!MO
.isReg() || MO
.isDef())
1560 Register Reg
= MO
.getReg();
1561 if (Reg
.isPhysical())
1563 const MachineInstr
*NewMI
= MRI
.getUniqueVRegDef(Reg
);
1564 if (NewMI
== nullptr)
1566 NewMI
->dumprImpl(MRI
, Depth
+ 1, MaxDepth
, AlreadySeenInstrs
);
1570 LLVM_DUMP_METHOD
void MachineInstr::dumpr(const MachineRegisterInfo
&MRI
,
1571 unsigned MaxDepth
) const {
1572 SmallPtrSet
<const MachineInstr
*, 16> AlreadySeenInstrs
;
1573 dumprImpl(MRI
, 0, MaxDepth
, AlreadySeenInstrs
);
1577 void MachineInstr::print(raw_ostream
&OS
, bool IsStandalone
, bool SkipOpers
,
1578 bool SkipDebugLoc
, bool AddNewLine
,
1579 const TargetInstrInfo
*TII
) const {
1580 const Module
*M
= nullptr;
1581 const Function
*F
= nullptr;
1582 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1583 F
= &MF
->getFunction();
1586 TII
= MF
->getSubtarget().getInstrInfo();
1589 ModuleSlotTracker
MST(M
);
1591 MST
.incorporateFunction(*F
);
1592 print(OS
, MST
, IsStandalone
, SkipOpers
, SkipDebugLoc
, AddNewLine
, TII
);
1595 void MachineInstr::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
1596 bool IsStandalone
, bool SkipOpers
, bool SkipDebugLoc
,
1597 bool AddNewLine
, const TargetInstrInfo
*TII
) const {
1598 // We can be a bit tidier if we know the MachineFunction.
1599 const TargetRegisterInfo
*TRI
= nullptr;
1600 const MachineRegisterInfo
*MRI
= nullptr;
1601 const TargetIntrinsicInfo
*IntrinsicInfo
= nullptr;
1602 tryToGetTargetInfo(*this, TRI
, MRI
, IntrinsicInfo
, TII
);
1604 if (isCFIInstruction())
1605 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1607 SmallBitVector
PrintedTypes(8);
1608 bool ShouldPrintRegisterTies
= IsStandalone
|| hasComplexRegisterTies();
1609 auto getTiedOperandIdx
= [&](unsigned OpIdx
) {
1610 if (!ShouldPrintRegisterTies
)
1612 const MachineOperand
&MO
= getOperand(OpIdx
);
1613 if (MO
.isReg() && MO
.isTied() && !MO
.isDef())
1614 return findTiedOperandIdx(OpIdx
);
1617 unsigned StartOp
= 0;
1618 unsigned e
= getNumOperands();
1620 // Print explicitly defined operands on the left of an assignment syntax.
1621 while (StartOp
< e
) {
1622 const MachineOperand
&MO
= getOperand(StartOp
);
1623 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
1629 LLT TypeToPrint
= MRI
? getTypeToPrint(StartOp
, PrintedTypes
, *MRI
) : LLT
{};
1630 unsigned TiedOperandIdx
= getTiedOperandIdx(StartOp
);
1631 MO
.print(OS
, MST
, TypeToPrint
, StartOp
, /*PrintDef=*/false, IsStandalone
,
1632 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1639 if (getFlag(MachineInstr::FrameSetup
))
1640 OS
<< "frame-setup ";
1641 if (getFlag(MachineInstr::FrameDestroy
))
1642 OS
<< "frame-destroy ";
1643 if (getFlag(MachineInstr::FmNoNans
))
1645 if (getFlag(MachineInstr::FmNoInfs
))
1647 if (getFlag(MachineInstr::FmNsz
))
1649 if (getFlag(MachineInstr::FmArcp
))
1651 if (getFlag(MachineInstr::FmContract
))
1653 if (getFlag(MachineInstr::FmAfn
))
1655 if (getFlag(MachineInstr::FmReassoc
))
1657 if (getFlag(MachineInstr::NoUWrap
))
1659 if (getFlag(MachineInstr::NoSWrap
))
1661 if (getFlag(MachineInstr::IsExact
))
1663 if (getFlag(MachineInstr::NoFPExcept
))
1664 OS
<< "nofpexcept ";
1665 if (getFlag(MachineInstr::NoMerge
))
1668 // Print the opcode name.
1670 OS
<< TII
->getName(getOpcode());
1677 // Print the rest of the operands.
1678 bool FirstOp
= true;
1679 unsigned AsmDescOp
= ~0u;
1680 unsigned AsmOpCount
= 0;
1682 if (isInlineAsm() && e
>= InlineAsm::MIOp_FirstOperand
) {
1683 // Print asm string.
1685 const unsigned OpIdx
= InlineAsm::MIOp_AsmString
;
1686 LLT TypeToPrint
= MRI
? getTypeToPrint(OpIdx
, PrintedTypes
, *MRI
) : LLT
{};
1687 unsigned TiedOperandIdx
= getTiedOperandIdx(OpIdx
);
1688 getOperand(OpIdx
).print(OS
, MST
, TypeToPrint
, OpIdx
, /*PrintDef=*/true, IsStandalone
,
1689 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
,
1692 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1693 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1694 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1695 OS
<< " [sideeffect]";
1696 if (ExtraInfo
& InlineAsm::Extra_MayLoad
)
1698 if (ExtraInfo
& InlineAsm::Extra_MayStore
)
1699 OS
<< " [maystore]";
1700 if (ExtraInfo
& InlineAsm::Extra_IsConvergent
)
1701 OS
<< " [isconvergent]";
1702 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
1703 OS
<< " [alignstack]";
1704 if (getInlineAsmDialect() == InlineAsm::AD_ATT
)
1705 OS
<< " [attdialect]";
1706 if (getInlineAsmDialect() == InlineAsm::AD_Intel
)
1707 OS
<< " [inteldialect]";
1709 StartOp
= AsmDescOp
= InlineAsm::MIOp_FirstOperand
;
1713 for (unsigned i
= StartOp
, e
= getNumOperands(); i
!= e
; ++i
) {
1714 const MachineOperand
&MO
= getOperand(i
);
1716 if (FirstOp
) FirstOp
= false; else OS
<< ",";
1719 if (isDebugValue() && MO
.isMetadata()) {
1720 // Pretty print DBG_VALUE* instructions.
1721 auto *DIV
= dyn_cast
<DILocalVariable
>(MO
.getMetadata());
1722 if (DIV
&& !DIV
->getName().empty())
1723 OS
<< "!\"" << DIV
->getName() << '\"';
1725 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1726 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1727 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1728 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1730 } else if (isDebugLabel() && MO
.isMetadata()) {
1731 // Pretty print DBG_LABEL instructions.
1732 auto *DIL
= dyn_cast
<DILabel
>(MO
.getMetadata());
1733 if (DIL
&& !DIL
->getName().empty())
1734 OS
<< "\"" << DIL
->getName() << '\"';
1736 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1737 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1738 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1739 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1741 } else if (i
== AsmDescOp
&& MO
.isImm()) {
1742 // Pretty print the inline asm operand descriptor.
1743 OS
<< '$' << AsmOpCount
++;
1744 unsigned Flag
= MO
.getImm();
1746 OS
<< InlineAsm::getKindName(InlineAsm::getKind(Flag
));
1749 if (!InlineAsm::isImmKind(Flag
) && !InlineAsm::isMemKind(Flag
) &&
1750 InlineAsm::hasRegClassConstraint(Flag
, RCID
)) {
1752 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1754 OS
<< ":RC" << RCID
;
1757 if (InlineAsm::isMemKind(Flag
)) {
1758 unsigned MCID
= InlineAsm::getMemoryConstraintID(Flag
);
1759 OS
<< ":" << InlineAsm::getMemConstraintName(MCID
);
1762 unsigned TiedTo
= 0;
1763 if (InlineAsm::isUseOperandTiedToDef(Flag
, TiedTo
))
1764 OS
<< " tiedto:$" << TiedTo
;
1768 // Compute the index of the next operand descriptor.
1769 AsmDescOp
+= 1 + InlineAsm::getNumOperandRegisters(Flag
);
1771 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1772 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1773 if (MO
.isImm() && isOperandSubregIdx(i
))
1774 MachineOperand::printSubRegIdx(OS
, MO
.getImm(), TRI
);
1776 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1777 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1781 // Print any optional symbols attached to this instruction as-if they were
1783 if (MCSymbol
*PreInstrSymbol
= getPreInstrSymbol()) {
1788 OS
<< " pre-instr-symbol ";
1789 MachineOperand::printSymbol(OS
, *PreInstrSymbol
);
1791 if (MCSymbol
*PostInstrSymbol
= getPostInstrSymbol()) {
1796 OS
<< " post-instr-symbol ";
1797 MachineOperand::printSymbol(OS
, *PostInstrSymbol
);
1799 if (MDNode
*HeapAllocMarker
= getHeapAllocMarker()) {
1804 OS
<< " heap-alloc-marker ";
1805 HeapAllocMarker
->printAsOperand(OS
, MST
);
1808 if (DebugInstrNum
) {
1811 OS
<< " debug-instr-number " << DebugInstrNum
;
1814 if (!SkipDebugLoc
) {
1815 if (const DebugLoc
&DL
= getDebugLoc()) {
1818 OS
<< " debug-location ";
1819 DL
->printAsOperand(OS
, MST
);
1823 if (!memoperands_empty()) {
1824 SmallVector
<StringRef
, 0> SSNs
;
1825 const LLVMContext
*Context
= nullptr;
1826 std::unique_ptr
<LLVMContext
> CtxPtr
;
1827 const MachineFrameInfo
*MFI
= nullptr;
1828 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1829 MFI
= &MF
->getFrameInfo();
1830 Context
= &MF
->getFunction().getContext();
1832 CtxPtr
= std::make_unique
<LLVMContext
>();
1833 Context
= CtxPtr
.get();
1837 bool NeedComma
= false;
1838 for (const MachineMemOperand
*Op
: memoperands()) {
1841 Op
->print(OS
, MST
, SSNs
, *Context
, MFI
, TII
);
1849 bool HaveSemi
= false;
1851 // Print debug location information.
1852 if (const DebugLoc
&DL
= getDebugLoc()) {
1861 // Print extra comments for DEBUG_VALUE.
1862 if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1867 auto *DV
= getDebugVariable();
1868 OS
<< " line no:" << DV
->getLine();
1869 if (isIndirectDebugValue())
1878 bool MachineInstr::addRegisterKilled(Register IncomingReg
,
1879 const TargetRegisterInfo
*RegInfo
,
1880 bool AddIfNotFound
) {
1881 bool isPhysReg
= Register::isPhysicalRegister(IncomingReg
);
1882 bool hasAliases
= isPhysReg
&&
1883 MCRegAliasIterator(IncomingReg
, RegInfo
, false).isValid();
1885 SmallVector
<unsigned,4> DeadOps
;
1886 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1887 MachineOperand
&MO
= getOperand(i
);
1888 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
1891 // DEBUG_VALUE nodes do not contribute to code generation and should
1892 // always be ignored. Failure to do so may result in trying to modify
1893 // KILL flags on DEBUG_VALUE nodes.
1897 Register Reg
= MO
.getReg();
1901 if (Reg
== IncomingReg
) {
1904 // The register is already marked kill.
1906 if (isPhysReg
&& isRegTiedToDefOperand(i
))
1907 // Two-address uses of physregs must not be marked kill.
1912 } else if (hasAliases
&& MO
.isKill() && Register::isPhysicalRegister(Reg
)) {
1913 // A super-register kill already exists.
1914 if (RegInfo
->isSuperRegister(IncomingReg
, Reg
))
1916 if (RegInfo
->isSubRegister(IncomingReg
, Reg
))
1917 DeadOps
.push_back(i
);
1921 // Trim unneeded kill operands.
1922 while (!DeadOps
.empty()) {
1923 unsigned OpIdx
= DeadOps
.back();
1924 if (getOperand(OpIdx
).isImplicit() &&
1925 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1926 RemoveOperand(OpIdx
);
1928 getOperand(OpIdx
).setIsKill(false);
1932 // If not found, this means an alias of one of the operands is killed. Add a
1933 // new implicit operand if required.
1934 if (!Found
&& AddIfNotFound
) {
1935 addOperand(MachineOperand::CreateReg(IncomingReg
,
1944 void MachineInstr::clearRegisterKills(Register Reg
,
1945 const TargetRegisterInfo
*RegInfo
) {
1946 if (!Register::isPhysicalRegister(Reg
))
1948 for (MachineOperand
&MO
: operands()) {
1949 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
1951 Register OpReg
= MO
.getReg();
1952 if ((RegInfo
&& RegInfo
->regsOverlap(Reg
, OpReg
)) || Reg
== OpReg
)
1953 MO
.setIsKill(false);
1957 bool MachineInstr::addRegisterDead(Register Reg
,
1958 const TargetRegisterInfo
*RegInfo
,
1959 bool AddIfNotFound
) {
1960 bool isPhysReg
= Register::isPhysicalRegister(Reg
);
1961 bool hasAliases
= isPhysReg
&&
1962 MCRegAliasIterator(Reg
, RegInfo
, false).isValid();
1964 SmallVector
<unsigned,4> DeadOps
;
1965 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1966 MachineOperand
&MO
= getOperand(i
);
1967 if (!MO
.isReg() || !MO
.isDef())
1969 Register MOReg
= MO
.getReg();
1976 } else if (hasAliases
&& MO
.isDead() &&
1977 Register::isPhysicalRegister(MOReg
)) {
1978 // There exists a super-register that's marked dead.
1979 if (RegInfo
->isSuperRegister(Reg
, MOReg
))
1981 if (RegInfo
->isSubRegister(Reg
, MOReg
))
1982 DeadOps
.push_back(i
);
1986 // Trim unneeded dead operands.
1987 while (!DeadOps
.empty()) {
1988 unsigned OpIdx
= DeadOps
.back();
1989 if (getOperand(OpIdx
).isImplicit() &&
1990 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1991 RemoveOperand(OpIdx
);
1993 getOperand(OpIdx
).setIsDead(false);
1997 // If not found, this means an alias of one of the operands is dead. Add a
1998 // new implicit operand if required.
1999 if (Found
|| !AddIfNotFound
)
2002 addOperand(MachineOperand::CreateReg(Reg
,
2010 void MachineInstr::clearRegisterDeads(Register Reg
) {
2011 for (MachineOperand
&MO
: operands()) {
2012 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
)
2014 MO
.setIsDead(false);
2018 void MachineInstr::setRegisterDefReadUndef(Register Reg
, bool IsUndef
) {
2019 for (MachineOperand
&MO
: operands()) {
2020 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
|| MO
.getSubReg() == 0)
2022 MO
.setIsUndef(IsUndef
);
2026 void MachineInstr::addRegisterDefined(Register Reg
,
2027 const TargetRegisterInfo
*RegInfo
) {
2028 if (Register::isPhysicalRegister(Reg
)) {
2029 MachineOperand
*MO
= findRegisterDefOperand(Reg
, false, false, RegInfo
);
2033 for (const MachineOperand
&MO
: operands()) {
2034 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isDef() &&
2035 MO
.getSubReg() == 0)
2039 addOperand(MachineOperand::CreateReg(Reg
,
2044 void MachineInstr::setPhysRegsDeadExcept(ArrayRef
<Register
> UsedRegs
,
2045 const TargetRegisterInfo
&TRI
) {
2046 bool HasRegMask
= false;
2047 for (MachineOperand
&MO
: operands()) {
2048 if (MO
.isRegMask()) {
2052 if (!MO
.isReg() || !MO
.isDef()) continue;
2053 Register Reg
= MO
.getReg();
2054 if (!Reg
.isPhysical())
2056 // If there are no uses, including partial uses, the def is dead.
2057 if (llvm::none_of(UsedRegs
,
2058 [&](MCRegister Use
) { return TRI
.regsOverlap(Use
, Reg
); }))
2062 // This is a call with a register mask operand.
2063 // Mask clobbers are always dead, so add defs for the non-dead defines.
2065 for (const Register
&UsedReg
: UsedRegs
)
2066 addRegisterDefined(UsedReg
, &TRI
);
2070 MachineInstrExpressionTrait::getHashValue(const MachineInstr
* const &MI
) {
2071 // Build up a buffer of hash code components.
2072 SmallVector
<size_t, 16> HashComponents
;
2073 HashComponents
.reserve(MI
->getNumOperands() + 1);
2074 HashComponents
.push_back(MI
->getOpcode());
2075 for (const MachineOperand
&MO
: MI
->operands()) {
2076 if (MO
.isReg() && MO
.isDef() && Register::isVirtualRegister(MO
.getReg()))
2077 continue; // Skip virtual register defs.
2079 HashComponents
.push_back(hash_value(MO
));
2081 return hash_combine_range(HashComponents
.begin(), HashComponents
.end());
2084 void MachineInstr::emitError(StringRef Msg
) const {
2085 // Find the source location cookie.
2086 uint64_t LocCookie
= 0;
2087 const MDNode
*LocMD
= nullptr;
2088 for (unsigned i
= getNumOperands(); i
!= 0; --i
) {
2089 if (getOperand(i
-1).isMetadata() &&
2090 (LocMD
= getOperand(i
-1).getMetadata()) &&
2091 LocMD
->getNumOperands() != 0) {
2092 if (const ConstantInt
*CI
=
2093 mdconst::dyn_extract
<ConstantInt
>(LocMD
->getOperand(0))) {
2094 LocCookie
= CI
->getZExtValue();
2100 if (const MachineBasicBlock
*MBB
= getParent())
2101 if (const MachineFunction
*MF
= MBB
->getParent())
2102 return MF
->getMMI().getModule()->getContext().emitError(LocCookie
, Msg
);
2103 report_fatal_error(Msg
);
2106 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2107 const MCInstrDesc
&MCID
, bool IsIndirect
,
2108 Register Reg
, const MDNode
*Variable
,
2109 const MDNode
*Expr
) {
2110 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2111 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2112 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2113 "Expected inlined-at fields to agree");
2114 auto MIB
= BuildMI(MF
, DL
, MCID
).addReg(Reg
, RegState::Debug
);
2118 MIB
.addReg(0U, RegState::Debug
);
2119 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2122 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2123 const MCInstrDesc
&MCID
, bool IsIndirect
,
2124 const MachineOperand
&MO
,
2125 const MDNode
*Variable
, const MDNode
*Expr
) {
2126 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2127 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2128 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2129 "Expected inlined-at fields to agree");
2131 return BuildMI(MF
, DL
, MCID
, IsIndirect
, MO
.getReg(), Variable
, Expr
);
2133 auto MIB
= BuildMI(MF
, DL
, MCID
).add(MO
);
2137 MIB
.addReg(0U, RegState::Debug
);
2138 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2141 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2142 const MCInstrDesc
&MCID
, bool IsIndirect
,
2143 ArrayRef
<MachineOperand
> MOs
,
2144 const MDNode
*Variable
, const MDNode
*Expr
) {
2145 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2146 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2147 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2148 "Expected inlined-at fields to agree");
2149 if (MCID
.Opcode
== TargetOpcode::DBG_VALUE
)
2150 return BuildMI(MF
, DL
, MCID
, IsIndirect
, MOs
[0], Variable
, Expr
);
2152 auto MIB
= BuildMI(MF
, DL
, MCID
);
2153 MIB
.addMetadata(Variable
).addMetadata(Expr
);
2154 for (const MachineOperand
&MO
: MOs
)
2156 MIB
.addReg(MO
.getReg(), RegState::Debug
);
2162 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2163 MachineBasicBlock::iterator I
,
2164 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2165 bool IsIndirect
, Register Reg
,
2166 const MDNode
*Variable
, const MDNode
*Expr
) {
2167 MachineFunction
&MF
= *BB
.getParent();
2168 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, Reg
, Variable
, Expr
);
2170 return MachineInstrBuilder(MF
, MI
);
2173 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2174 MachineBasicBlock::iterator I
,
2175 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2176 bool IsIndirect
, MachineOperand
&MO
,
2177 const MDNode
*Variable
, const MDNode
*Expr
) {
2178 MachineFunction
&MF
= *BB
.getParent();
2179 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, MO
, Variable
, Expr
);
2181 return MachineInstrBuilder(MF
, *MI
);
2184 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2185 MachineBasicBlock::iterator I
,
2186 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2187 bool IsIndirect
, ArrayRef
<MachineOperand
> MOs
,
2188 const MDNode
*Variable
, const MDNode
*Expr
) {
2189 MachineFunction
&MF
= *BB
.getParent();
2190 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, MOs
, Variable
, Expr
);
2192 return MachineInstrBuilder(MF
, *MI
);
2195 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2196 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2197 static const DIExpression
*
2198 computeExprForSpill(const MachineInstr
&MI
,
2199 SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2200 assert(MI
.getDebugVariable()->isValidLocationForIntrinsic(MI
.getDebugLoc()) &&
2201 "Expected inlined-at fields to agree");
2203 const DIExpression
*Expr
= MI
.getDebugExpression();
2204 if (MI
.isIndirectDebugValue()) {
2205 assert(MI
.getDebugOffset().getImm() == 0 &&
2206 "DBG_VALUE with nonzero offset");
2207 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefBefore
);
2208 } else if (MI
.isDebugValueList()) {
2209 // We will replace the spilled register with a frame index, so
2210 // immediately deref all references to the spilled register.
2211 std::array
<uint64_t, 1> Ops
{{dwarf::DW_OP_deref
}};
2212 for (const MachineOperand
*Op
: SpilledOperands
) {
2213 unsigned OpIdx
= MI
.getDebugOperandIndex(Op
);
2214 Expr
= DIExpression::appendOpsToArg(Expr
, Ops
, OpIdx
);
2219 static const DIExpression
*computeExprForSpill(const MachineInstr
&MI
,
2220 Register SpillReg
) {
2221 assert(MI
.hasDebugOperandForReg(SpillReg
) && "Spill Reg is not used in MI.");
2222 SmallVector
<const MachineOperand
*> SpillOperands
;
2223 for (const MachineOperand
&Op
: MI
.getDebugOperandsForReg(SpillReg
))
2224 SpillOperands
.push_back(&Op
);
2225 return computeExprForSpill(MI
, SpillOperands
);
2228 MachineInstr
*llvm::buildDbgValueForSpill(MachineBasicBlock
&BB
,
2229 MachineBasicBlock::iterator I
,
2230 const MachineInstr
&Orig
,
2231 int FrameIndex
, Register SpillReg
) {
2232 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpillReg
);
2233 MachineInstrBuilder NewMI
=
2234 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2235 // Non-Variadic Operands: Location, Offset, Variable, Expression
2236 // Variadic Operands: Variable, Expression, Locations...
2237 if (Orig
.isNonListDebugValue())
2238 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2239 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2240 if (Orig
.isDebugValueList()) {
2241 for (const MachineOperand
&Op
: Orig
.debug_operands())
2242 if (Op
.isReg() && Op
.getReg() == SpillReg
)
2243 NewMI
.addFrameIndex(FrameIndex
);
2245 NewMI
.add(MachineOperand(Op
));
2249 MachineInstr
*llvm::buildDbgValueForSpill(
2250 MachineBasicBlock
&BB
, MachineBasicBlock::iterator I
,
2251 const MachineInstr
&Orig
, int FrameIndex
,
2252 SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2253 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpilledOperands
);
2254 MachineInstrBuilder NewMI
=
2255 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2256 // Non-Variadic Operands: Location, Offset, Variable, Expression
2257 // Variadic Operands: Variable, Expression, Locations...
2258 if (Orig
.isNonListDebugValue())
2259 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2260 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2261 if (Orig
.isDebugValueList()) {
2262 for (const MachineOperand
&Op
: Orig
.debug_operands())
2263 if (is_contained(SpilledOperands
, &Op
))
2264 NewMI
.addFrameIndex(FrameIndex
);
2266 NewMI
.add(MachineOperand(Op
));
2271 void llvm::updateDbgValueForSpill(MachineInstr
&Orig
, int FrameIndex
,
2273 const DIExpression
*Expr
= computeExprForSpill(Orig
, Reg
);
2274 if (Orig
.isNonListDebugValue())
2275 Orig
.getDebugOffset().ChangeToImmediate(0U);
2276 for (MachineOperand
&Op
: Orig
.getDebugOperandsForReg(Reg
))
2277 Op
.ChangeToFrameIndex(FrameIndex
);
2278 Orig
.getDebugExpressionOp().setMetadata(Expr
);
2281 void MachineInstr::collectDebugValues(
2282 SmallVectorImpl
<MachineInstr
*> &DbgValues
) {
2283 MachineInstr
&MI
= *this;
2284 if (!MI
.getOperand(0).isReg())
2287 MachineBasicBlock::iterator DI
= MI
; ++DI
;
2288 for (MachineBasicBlock::iterator DE
= MI
.getParent()->end();
2290 if (!DI
->isDebugValue())
2292 if (DI
->hasDebugOperandForReg(MI
.getOperand(0).getReg()))
2293 DbgValues
.push_back(&*DI
);
2297 void MachineInstr::changeDebugValuesDefReg(Register Reg
) {
2298 // Collect matching debug values.
2299 SmallVector
<MachineInstr
*, 2> DbgValues
;
2301 if (!getOperand(0).isReg())
2304 Register DefReg
= getOperand(0).getReg();
2305 auto *MRI
= getRegInfo();
2306 for (auto &MO
: MRI
->use_operands(DefReg
)) {
2307 auto *DI
= MO
.getParent();
2308 if (!DI
->isDebugValue())
2310 if (DI
->hasDebugOperandForReg(DefReg
)) {
2311 DbgValues
.push_back(DI
);
2315 // Propagate Reg to debug value instructions.
2316 for (auto *DBI
: DbgValues
)
2317 for (MachineOperand
&Op
: DBI
->getDebugOperandsForReg(DefReg
))
2321 using MMOList
= SmallVector
<const MachineMemOperand
*, 2>;
2323 static unsigned getSpillSlotSize(const MMOList
&Accesses
,
2324 const MachineFrameInfo
&MFI
) {
2326 for (auto A
: Accesses
)
2327 if (MFI
.isSpillSlotObjectIndex(
2328 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
2330 Size
+= A
->getSize();
2335 MachineInstr::getSpillSize(const TargetInstrInfo
*TII
) const {
2337 if (TII
->isStoreToStackSlotPostFE(*this, FI
)) {
2338 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2339 if (MFI
.isSpillSlotObjectIndex(FI
))
2340 return (*memoperands_begin())->getSize();
2346 MachineInstr::getFoldedSpillSize(const TargetInstrInfo
*TII
) const {
2348 if (TII
->hasStoreToStackSlot(*this, Accesses
))
2349 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2354 MachineInstr::getRestoreSize(const TargetInstrInfo
*TII
) const {
2356 if (TII
->isLoadFromStackSlotPostFE(*this, FI
)) {
2357 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2358 if (MFI
.isSpillSlotObjectIndex(FI
))
2359 return (*memoperands_begin())->getSize();
2365 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo
*TII
) const {
2367 if (TII
->hasLoadFromStackSlot(*this, Accesses
))
2368 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2372 unsigned MachineInstr::getDebugInstrNum() {
2373 if (DebugInstrNum
== 0)
2374 DebugInstrNum
= getParent()->getParent()->getNewDebugInstrNum();
2375 return DebugInstrNum
;
2378 unsigned MachineInstr::getDebugInstrNum(MachineFunction
&MF
) {
2379 if (DebugInstrNum
== 0)
2380 DebugInstrNum
= MF
.getNewDebugInstrNum();
2381 return DebugInstrNum
;