1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Statepoint.h"
79 #include "llvm/IR/Type.h"
80 #include "llvm/IR/User.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/InitializePasses.h"
83 #include "llvm/MC/MCInstrDesc.h"
84 #include "llvm/MC/MCRegisterInfo.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CodeGen.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include "llvm/Support/KnownBits.h"
94 #include "llvm/Support/MachineValueType.h"
95 #include "llvm/Support/Timer.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 using namespace llvm
;
113 #define DEBUG_TYPE "isel"
115 STATISTIC(NumFastIselFailures
, "Number of instructions fast isel failed on");
116 STATISTIC(NumFastIselSuccess
, "Number of instructions fast isel selected");
117 STATISTIC(NumFastIselBlocks
, "Number of blocks selected entirely by fast isel");
118 STATISTIC(NumDAGBlocks
, "Number of blocks selected using DAG");
119 STATISTIC(NumDAGIselRetries
,"Number of times dag isel has to try another path");
120 STATISTIC(NumEntryBlocks
, "Number of entry blocks encountered");
121 STATISTIC(NumFastIselFailLowerArguments
,
122 "Number of entry blocks where fast isel failed to lower arguments");
124 static cl::opt
<int> EnableFastISelAbort(
125 "fast-isel-abort", cl::Hidden
,
126 cl::desc("Enable abort calls when \"fast\" instruction selection "
127 "fails to lower an instruction: 0 disable the abort, 1 will "
128 "abort but for args, calls and terminators, 2 will also "
129 "abort for argument lowering, and 3 will never fallback "
130 "to SelectionDAG."));
132 static cl::opt
<bool> EnableFastISelFallbackReport(
133 "fast-isel-report-on-fallback", cl::Hidden
,
134 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
135 "falls back to SelectionDAG."));
139 cl::desc("use Machine Branch Probability Info"),
140 cl::init(true), cl::Hidden
);
143 static cl::opt
<std::string
>
144 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden
,
145 cl::desc("Only display the basic block whose name "
146 "matches this for all view-*-dags options"));
148 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
149 cl::desc("Pop up a window to show dags before the first "
150 "dag combine pass"));
152 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
153 cl::desc("Pop up a window to show dags before legalize types"));
155 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
156 cl::desc("Pop up a window to show dags before the post "
157 "legalize types dag combine pass"));
159 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
160 cl::desc("Pop up a window to show dags before legalize"));
162 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
163 cl::desc("Pop up a window to show dags before the second "
164 "dag combine pass"));
166 ViewISelDAGs("view-isel-dags", cl::Hidden
,
167 cl::desc("Pop up a window to show isel dags as they are selected"));
169 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
170 cl::desc("Pop up a window to show sched dags as they are processed"));
172 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
173 cl::desc("Pop up a window to show SUnit dags after they are processed"));
175 static const bool ViewDAGCombine1
= false, ViewLegalizeTypesDAGs
= false,
176 ViewDAGCombineLT
= false, ViewLegalizeDAGs
= false,
177 ViewDAGCombine2
= false, ViewISelDAGs
= false,
178 ViewSchedDAGs
= false, ViewSUnitDAGs
= false;
181 //===---------------------------------------------------------------------===//
183 /// RegisterScheduler class - Track the registration of instruction schedulers.
185 //===---------------------------------------------------------------------===//
186 MachinePassRegistry
<RegisterScheduler::FunctionPassCtor
>
187 RegisterScheduler::Registry
;
189 //===---------------------------------------------------------------------===//
191 /// ISHeuristic command line option for instruction schedulers.
193 //===---------------------------------------------------------------------===//
194 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
195 RegisterPassParser
<RegisterScheduler
>>
196 ISHeuristic("pre-RA-sched",
197 cl::init(&createDefaultScheduler
), cl::Hidden
,
198 cl::desc("Instruction schedulers available (before register"
201 static RegisterScheduler
202 defaultListDAGScheduler("default", "Best scheduler for the target",
203 createDefaultScheduler
);
207 //===--------------------------------------------------------------------===//
208 /// This class is used by SelectionDAGISel to temporarily override
209 /// the optimization level on a per-function basis.
210 class OptLevelChanger
{
211 SelectionDAGISel
&IS
;
212 CodeGenOpt::Level SavedOptLevel
;
216 OptLevelChanger(SelectionDAGISel
&ISel
,
217 CodeGenOpt::Level NewOptLevel
) : IS(ISel
) {
218 SavedOptLevel
= IS
.OptLevel
;
219 SavedFastISel
= IS
.TM
.Options
.EnableFastISel
;
220 if (NewOptLevel
== SavedOptLevel
)
222 IS
.OptLevel
= NewOptLevel
;
223 IS
.TM
.setOptLevel(NewOptLevel
);
224 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
225 << IS
.MF
->getFunction().getName() << "\n");
226 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
<< " ; After: -O"
227 << NewOptLevel
<< "\n");
228 if (NewOptLevel
== CodeGenOpt::None
) {
229 IS
.TM
.setFastISel(IS
.TM
.getO0WantsFastISel());
231 dbgs() << "\tFastISel is "
232 << (IS
.TM
.Options
.EnableFastISel
? "enabled" : "disabled")
238 if (IS
.OptLevel
== SavedOptLevel
)
240 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
241 << IS
.MF
->getFunction().getName() << "\n");
242 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS
.OptLevel
<< " ; After: -O"
243 << SavedOptLevel
<< "\n");
244 IS
.OptLevel
= SavedOptLevel
;
245 IS
.TM
.setOptLevel(SavedOptLevel
);
246 IS
.TM
.setFastISel(SavedFastISel
);
250 //===--------------------------------------------------------------------===//
251 /// createDefaultScheduler - This creates an instruction scheduler appropriate
253 ScheduleDAGSDNodes
* createDefaultScheduler(SelectionDAGISel
*IS
,
254 CodeGenOpt::Level OptLevel
) {
255 const TargetLowering
*TLI
= IS
->TLI
;
256 const TargetSubtargetInfo
&ST
= IS
->MF
->getSubtarget();
258 // Try first to see if the Target has its own way of selecting a scheduler
259 if (auto *SchedulerCtor
= ST
.getDAGScheduler(OptLevel
)) {
260 return SchedulerCtor(IS
, OptLevel
);
263 if (OptLevel
== CodeGenOpt::None
||
264 (ST
.enableMachineScheduler() && ST
.enableMachineSchedDefaultSched()) ||
265 TLI
->getSchedulingPreference() == Sched::Source
)
266 return createSourceListDAGScheduler(IS
, OptLevel
);
267 if (TLI
->getSchedulingPreference() == Sched::RegPressure
)
268 return createBURRListDAGScheduler(IS
, OptLevel
);
269 if (TLI
->getSchedulingPreference() == Sched::Hybrid
)
270 return createHybridListDAGScheduler(IS
, OptLevel
);
271 if (TLI
->getSchedulingPreference() == Sched::VLIW
)
272 return createVLIWDAGScheduler(IS
, OptLevel
);
273 if (TLI
->getSchedulingPreference() == Sched::Fast
)
274 return createFastDAGScheduler(IS
, OptLevel
);
275 if (TLI
->getSchedulingPreference() == Sched::Linearize
)
276 return createDAGLinearizer(IS
, OptLevel
);
277 assert(TLI
->getSchedulingPreference() == Sched::ILP
&&
278 "Unknown sched type!");
279 return createILPListDAGScheduler(IS
, OptLevel
);
282 } // end namespace llvm
284 // EmitInstrWithCustomInserter - This method should be implemented by targets
285 // that mark instructions with the 'usesCustomInserter' flag. These
286 // instructions are special in various ways, which require special support to
287 // insert. The specified MachineInstr is created but not inserted into any
288 // basic blocks, and this method is called to expand it into a sequence of
289 // instructions, potentially also creating new basic blocks and control flow.
290 // When new basic blocks are inserted and the edges from MBB to its successors
291 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
294 TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
295 MachineBasicBlock
*MBB
) const {
297 dbgs() << "If a target marks an instruction with "
298 "'usesCustomInserter', it must implement "
299 "TargetLowering::EmitInstrWithCustomInserter!";
301 llvm_unreachable(nullptr);
304 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
305 SDNode
*Node
) const {
306 assert(!MI
.hasPostISelHook() &&
307 "If a target marks an instruction with 'hasPostISelHook', "
308 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
311 //===----------------------------------------------------------------------===//
312 // SelectionDAGISel code
313 //===----------------------------------------------------------------------===//
315 SelectionDAGISel::SelectionDAGISel(TargetMachine
&tm
, CodeGenOpt::Level OL
)
316 : MachineFunctionPass(ID
), TM(tm
), FuncInfo(new FunctionLoweringInfo()),
317 SwiftError(new SwiftErrorValueTracking()),
318 CurDAG(new SelectionDAG(tm
, OL
)),
319 SDB(std::make_unique
<SelectionDAGBuilder
>(*CurDAG
, *FuncInfo
, *SwiftError
,
321 AA(), GFI(), OptLevel(OL
), DAGSize(0) {
322 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
323 initializeBranchProbabilityInfoWrapperPassPass(
324 *PassRegistry::getPassRegistry());
325 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
326 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
329 SelectionDAGISel::~SelectionDAGISel() {
334 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
335 if (OptLevel
!= CodeGenOpt::None
)
336 AU
.addRequired
<AAResultsWrapperPass
>();
337 AU
.addRequired
<GCModuleInfo
>();
338 AU
.addRequired
<StackProtector
>();
339 AU
.addPreserved
<GCModuleInfo
>();
340 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
341 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
342 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
343 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
344 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
345 if (OptLevel
!= CodeGenOpt::None
)
346 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU
);
347 MachineFunctionPass::getAnalysisUsage(AU
);
350 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
351 /// may trap on it. In this case we have to split the edge so that the path
352 /// through the predecessor block that doesn't go to the phi block doesn't
353 /// execute the possibly trapping instruction. If available, we pass domtree
354 /// and loop info to be updated when we split critical edges. This is because
355 /// SelectionDAGISel preserves these analyses.
356 /// This is required for correctness, so it must be done at -O0.
358 static void SplitCriticalSideEffectEdges(Function
&Fn
, DominatorTree
*DT
,
360 // Loop for blocks with phi nodes.
361 for (BasicBlock
&BB
: Fn
) {
362 PHINode
*PN
= dyn_cast
<PHINode
>(BB
.begin());
366 // For each block with a PHI node, check to see if any of the input values
367 // are potentially trapping constant expressions. Constant expressions are
368 // the only potentially trapping value that can occur as the argument to a
370 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
371 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
372 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PN
->getIncomingValue(i
));
373 if (!CE
|| !CE
->canTrap()) continue;
375 // The only case we have to worry about is when the edge is critical.
376 // Since this block has a PHI Node, we assume it has multiple input
377 // edges: check to see if the pred has multiple successors.
378 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
379 if (Pred
->getTerminator()->getNumSuccessors() == 1)
382 // Okay, we have to split this edge.
384 Pred
->getTerminator(), GetSuccessorNumber(Pred
, &BB
),
385 CriticalEdgeSplittingOptions(DT
, LI
).setMergeIdenticalEdges());
391 static void computeUsesMSVCFloatingPoint(const Triple
&TT
, const Function
&F
,
392 MachineModuleInfo
&MMI
) {
393 // Only needed for MSVC
394 if (!TT
.isWindowsMSVCEnvironment())
397 // If it's already set, nothing to do.
398 if (MMI
.usesMSVCFloatingPoint())
401 for (const Instruction
&I
: instructions(F
)) {
402 if (I
.getType()->isFPOrFPVectorTy()) {
403 MMI
.setUsesMSVCFloatingPoint(true);
406 for (const auto &Op
: I
.operands()) {
407 if (Op
->getType()->isFPOrFPVectorTy()) {
408 MMI
.setUsesMSVCFloatingPoint(true);
415 bool SelectionDAGISel::runOnMachineFunction(MachineFunction
&mf
) {
416 // If we already selected that function, we do not need to run SDISel.
417 if (mf
.getProperties().hasProperty(
418 MachineFunctionProperties::Property::Selected
))
420 // Do some sanity-checking on the command-line options.
421 assert((!EnableFastISelAbort
|| TM
.Options
.EnableFastISel
) &&
422 "-fast-isel-abort > 0 requires -fast-isel");
424 const Function
&Fn
= mf
.getFunction();
427 // Reset the target options before resetting the optimization
429 // FIXME: This is a horrible hack and should be processed via
430 // codegen looking at the optimization level explicitly when
431 // it wants to look at it.
432 TM
.resetTargetOptions(Fn
);
433 // Reset OptLevel to None for optnone functions.
434 CodeGenOpt::Level NewOptLevel
= OptLevel
;
435 if (OptLevel
!= CodeGenOpt::None
&& skipFunction(Fn
))
436 NewOptLevel
= CodeGenOpt::None
;
437 OptLevelChanger
OLC(*this, NewOptLevel
);
439 TII
= MF
->getSubtarget().getInstrInfo();
440 TLI
= MF
->getSubtarget().getTargetLowering();
441 RegInfo
= &MF
->getRegInfo();
442 LibInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(Fn
);
443 GFI
= Fn
.hasGC() ? &getAnalysis
<GCModuleInfo
>().getFunctionInfo(Fn
) : nullptr;
444 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(&Fn
);
445 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
446 DominatorTree
*DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
447 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
448 LoopInfo
*LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
449 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
450 BlockFrequencyInfo
*BFI
= nullptr;
451 if (PSI
&& PSI
->hasProfileSummary() && OptLevel
!= CodeGenOpt::None
)
452 BFI
= &getAnalysis
<LazyBlockFrequencyInfoPass
>().getBFI();
454 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn
.getName() << "\n");
456 SplitCriticalSideEffectEdges(const_cast<Function
&>(Fn
), DT
, LI
);
458 CurDAG
->init(*MF
, *ORE
, this, LibInfo
,
459 getAnalysisIfAvailable
<LegacyDivergenceAnalysis
>(), PSI
, BFI
);
460 FuncInfo
->set(Fn
, *MF
, CurDAG
);
461 SwiftError
->setFunction(*MF
);
463 // Now get the optional analyzes if we want to.
464 // This is based on the possibly changed OptLevel (after optnone is taken
465 // into account). That's unfortunate but OK because it just means we won't
466 // ask for passes that have been required anyway.
468 if (UseMBPI
&& OptLevel
!= CodeGenOpt::None
)
469 FuncInfo
->BPI
= &getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
471 FuncInfo
->BPI
= nullptr;
473 if (OptLevel
!= CodeGenOpt::None
)
474 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
478 SDB
->init(GFI
, AA
, LibInfo
);
480 MF
->setHasInlineAsm(false);
482 FuncInfo
->SplitCSR
= false;
484 // We split CSR if the target supports it for the given function
485 // and the function has only return exits.
486 if (OptLevel
!= CodeGenOpt::None
&& TLI
->supportSplitCSR(MF
)) {
487 FuncInfo
->SplitCSR
= true;
489 // Collect all the return blocks.
490 for (const BasicBlock
&BB
: Fn
) {
491 if (!succ_empty(&BB
))
494 const Instruction
*Term
= BB
.getTerminator();
495 if (isa
<UnreachableInst
>(Term
) || isa
<ReturnInst
>(Term
))
498 // Bail out if the exit block is not Return nor Unreachable.
499 FuncInfo
->SplitCSR
= false;
504 MachineBasicBlock
*EntryMBB
= &MF
->front();
505 if (FuncInfo
->SplitCSR
)
506 // This performs initialization so lowering for SplitCSR will be correct.
507 TLI
->initializeSplitCSR(EntryMBB
);
509 SelectAllBasicBlocks(Fn
);
510 if (FastISelFailed
&& EnableFastISelFallbackReport
) {
511 DiagnosticInfoISelFallback
DiagFallback(Fn
);
512 Fn
.getContext().diagnose(DiagFallback
);
515 // Replace forward-declared registers with the registers containing
516 // the desired value.
517 // Note: it is important that this happens **before** the call to
518 // EmitLiveInCopies, since implementations can skip copies of unused
519 // registers. If we don't apply the reg fixups before, some registers may
520 // appear as unused and will be skipped, resulting in bad MI.
521 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
522 for (DenseMap
<Register
, Register
>::iterator I
= FuncInfo
->RegFixups
.begin(),
523 E
= FuncInfo
->RegFixups
.end();
525 Register From
= I
->first
;
526 Register To
= I
->second
;
527 // If To is also scheduled to be replaced, find what its ultimate
530 DenseMap
<Register
, Register
>::iterator J
= FuncInfo
->RegFixups
.find(To
);
535 // Make sure the new register has a sufficiently constrained register class.
536 if (Register::isVirtualRegister(From
) && Register::isVirtualRegister(To
))
537 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
540 // Replacing one register with another won't touch the kill flags.
541 // We need to conservatively clear the kill flags as a kill on the old
542 // register might dominate existing uses of the new register.
543 if (!MRI
.use_empty(To
))
544 MRI
.clearKillFlags(From
);
545 MRI
.replaceRegWith(From
, To
);
548 // If the first basic block in the function has live ins that need to be
549 // copied into vregs, emit the copies into the top of the block before
550 // emitting the code for the block.
551 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
552 RegInfo
->EmitLiveInCopies(EntryMBB
, TRI
, *TII
);
554 // Insert copies in the entry block and the return blocks.
555 if (FuncInfo
->SplitCSR
) {
556 SmallVector
<MachineBasicBlock
*, 4> Returns
;
557 // Collect all the return blocks.
558 for (MachineBasicBlock
&MBB
: mf
) {
559 if (!MBB
.succ_empty())
562 MachineBasicBlock::iterator Term
= MBB
.getFirstTerminator();
563 if (Term
!= MBB
.end() && Term
->isReturn()) {
564 Returns
.push_back(&MBB
);
568 TLI
->insertCopiesSplitCSR(EntryMBB
, Returns
);
571 DenseMap
<unsigned, unsigned> LiveInMap
;
572 if (!FuncInfo
->ArgDbgValues
.empty())
573 for (std::pair
<unsigned, unsigned> LI
: RegInfo
->liveins())
575 LiveInMap
.insert(LI
);
577 // Insert DBG_VALUE instructions for function arguments to the entry block.
578 bool InstrRef
= TM
.Options
.ValueTrackingVariableLocations
;
579 for (unsigned i
= 0, e
= FuncInfo
->ArgDbgValues
.size(); i
!= e
; ++i
) {
580 MachineInstr
*MI
= FuncInfo
->ArgDbgValues
[e
- i
- 1];
581 assert(MI
->getOpcode() != TargetOpcode::DBG_VALUE_LIST
&&
582 "Function parameters should not be described by DBG_VALUE_LIST.");
583 bool hasFI
= MI
->getOperand(0).isFI();
585 hasFI
? TRI
.getFrameRegister(*MF
) : MI
->getOperand(0).getReg();
586 if (Register::isPhysicalRegister(Reg
))
587 EntryMBB
->insert(EntryMBB
->begin(), MI
);
589 MachineInstr
*Def
= RegInfo
->getVRegDef(Reg
);
591 MachineBasicBlock::iterator InsertPos
= Def
;
592 // FIXME: VR def may not be in entry block.
593 Def
->getParent()->insert(std::next(InsertPos
), MI
);
595 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
596 << Register::virtReg2Index(Reg
) << "\n");
599 // Don't try and extend through copies in instruction referencing mode.
603 // If Reg is live-in then update debug info to track its copy in a vreg.
604 DenseMap
<unsigned, unsigned>::iterator LDI
= LiveInMap
.find(Reg
);
605 if (LDI
!= LiveInMap
.end()) {
606 assert(!hasFI
&& "There's no handling of frame pointer updating here yet "
608 MachineInstr
*Def
= RegInfo
->getVRegDef(LDI
->second
);
609 MachineBasicBlock::iterator InsertPos
= Def
;
610 const MDNode
*Variable
= MI
->getDebugVariable();
611 const MDNode
*Expr
= MI
->getDebugExpression();
612 DebugLoc DL
= MI
->getDebugLoc();
613 bool IsIndirect
= MI
->isIndirectDebugValue();
615 assert(MI
->getOperand(1).getImm() == 0 &&
616 "DBG_VALUE with nonzero offset");
617 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
618 "Expected inlined-at fields to agree");
619 assert(MI
->getOpcode() != TargetOpcode::DBG_VALUE_LIST
&&
620 "Didn't expect to see a DBG_VALUE_LIST here");
621 // Def is never a terminator here, so it is ok to increment InsertPos.
622 BuildMI(*EntryMBB
, ++InsertPos
, DL
, TII
->get(TargetOpcode::DBG_VALUE
),
623 IsIndirect
, LDI
->second
, Variable
, Expr
);
625 // If this vreg is directly copied into an exported register then
626 // that COPY instructions also need DBG_VALUE, if it is the only
627 // user of LDI->second.
628 MachineInstr
*CopyUseMI
= nullptr;
629 for (MachineRegisterInfo::use_instr_iterator
630 UI
= RegInfo
->use_instr_begin(LDI
->second
),
631 E
= RegInfo
->use_instr_end(); UI
!= E
; ) {
632 MachineInstr
*UseMI
= &*(UI
++);
633 if (UseMI
->isDebugValue()) continue;
634 if (UseMI
->isCopy() && !CopyUseMI
&& UseMI
->getParent() == EntryMBB
) {
635 CopyUseMI
= UseMI
; continue;
637 // Otherwise this is another use or second copy use.
638 CopyUseMI
= nullptr; break;
641 TRI
.getRegSizeInBits(LDI
->second
, MRI
) ==
642 TRI
.getRegSizeInBits(CopyUseMI
->getOperand(0).getReg(), MRI
)) {
643 // Use MI's debug location, which describes where Variable was
644 // declared, rather than whatever is attached to CopyUseMI.
645 MachineInstr
*NewMI
=
646 BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
647 CopyUseMI
->getOperand(0).getReg(), Variable
, Expr
);
648 MachineBasicBlock::iterator Pos
= CopyUseMI
;
649 EntryMBB
->insertAfter(Pos
, NewMI
);
654 // For debug-info, in instruction referencing mode, we need to perform some
655 // post-isel maintenence.
656 MF
->finalizeDebugInstrRefs();
658 // Determine if there are any calls in this machine function.
659 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
660 for (const auto &MBB
: *MF
) {
661 if (MFI
.hasCalls() && MF
->hasInlineAsm())
664 for (const auto &MI
: MBB
) {
665 const MCInstrDesc
&MCID
= TII
->get(MI
.getOpcode());
666 if ((MCID
.isCall() && !MCID
.isReturn()) ||
667 MI
.isStackAligningInlineAsm()) {
668 MFI
.setHasCalls(true);
670 if (MI
.isInlineAsm()) {
671 MF
->setHasInlineAsm(true);
676 // Determine if there is a call to setjmp in the machine function.
677 MF
->setExposesReturnsTwice(Fn
.callsFunctionThatReturnsTwice());
679 // Determine if floating point is used for msvc
680 computeUsesMSVCFloatingPoint(TM
.getTargetTriple(), Fn
, MF
->getMMI());
682 // Release function-specific state. SDB and CurDAG are already cleared
686 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
687 LLVM_DEBUG(MF
->print(dbgs()));
692 static void reportFastISelFailure(MachineFunction
&MF
,
693 OptimizationRemarkEmitter
&ORE
,
694 OptimizationRemarkMissed
&R
,
696 // Print the function name explicitly if we don't have a debug location (which
697 // makes the diagnostic less useful) or if we're going to emit a raw error.
698 if (!R
.getLocation().isValid() || ShouldAbort
)
699 R
<< (" (in function: " + MF
.getName() + ")").str();
702 report_fatal_error(R
.getMsg());
707 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin
,
708 BasicBlock::const_iterator End
,
710 // Allow creating illegal types during DAG building for the basic block.
711 CurDAG
->NewNodesMustHaveLegalTypes
= false;
713 // Lower the instructions. If a call is emitted as a tail call, cease emitting
714 // nodes for this block.
715 for (BasicBlock::const_iterator I
= Begin
; I
!= End
&& !SDB
->HasTailCall
; ++I
) {
716 if (!ElidedArgCopyInstrs
.count(&*I
))
720 // Make sure the root of the DAG is up-to-date.
721 CurDAG
->setRoot(SDB
->getControlRoot());
722 HadTailCall
= SDB
->HasTailCall
;
723 SDB
->resolveOrClearDbgInfo();
726 // Final step, emit the lowered DAG as machine code.
730 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
731 SmallPtrSet
<SDNode
*, 16> Added
;
732 SmallVector
<SDNode
*, 128> Worklist
;
734 Worklist
.push_back(CurDAG
->getRoot().getNode());
735 Added
.insert(CurDAG
->getRoot().getNode());
740 SDNode
*N
= Worklist
.pop_back_val();
742 // Otherwise, add all chain operands to the worklist.
743 for (const SDValue
&Op
: N
->op_values())
744 if (Op
.getValueType() == MVT::Other
&& Added
.insert(Op
.getNode()).second
)
745 Worklist
.push_back(Op
.getNode());
747 // If this is a CopyToReg with a vreg dest, process it.
748 if (N
->getOpcode() != ISD::CopyToReg
)
751 unsigned DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
752 if (!Register::isVirtualRegister(DestReg
))
755 // Ignore non-integer values.
756 SDValue Src
= N
->getOperand(2);
757 EVT SrcVT
= Src
.getValueType();
758 if (!SrcVT
.isInteger())
761 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
762 Known
= CurDAG
->computeKnownBits(Src
);
763 FuncInfo
->AddLiveOutRegInfo(DestReg
, NumSignBits
, Known
);
764 } while (!Worklist
.empty());
767 void SelectionDAGISel::CodeGenAndEmitDAG() {
768 StringRef GroupName
= "sdag";
769 StringRef GroupDescription
= "Instruction Selection and Scheduling";
770 std::string BlockName
;
771 bool MatchFilterBB
= false; (void)MatchFilterBB
;
773 TargetTransformInfo
&TTI
=
774 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(*FuncInfo
->Fn
);
777 // Pre-type legalization allow creation of any node types.
778 CurDAG
->NewNodesMustHaveLegalTypes
= false;
781 MatchFilterBB
= (FilterDAGBasicBlockName
.empty() ||
782 FilterDAGBasicBlockName
==
783 FuncInfo
->MBB
->getBasicBlock()->getName());
786 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewDAGCombineLT
||
787 ViewLegalizeDAGs
|| ViewDAGCombine2
|| ViewISelDAGs
|| ViewSchedDAGs
||
792 (MF
->getName() + ":" + FuncInfo
->MBB
->getBasicBlock()->getName()).str();
794 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
795 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
800 if (TTI
.hasBranchDivergence())
801 CurDAG
->VerifyDAGDiverence();
804 if (ViewDAGCombine1
&& MatchFilterBB
)
805 CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
807 // Run the DAG combiner in pre-legalize mode.
809 NamedRegionTimer
T("combine1", "DAG Combining 1", GroupName
,
810 GroupDescription
, TimePassesIsEnabled
);
811 CurDAG
->Combine(BeforeLegalizeTypes
, AA
, OptLevel
);
814 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
815 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
820 if (TTI
.hasBranchDivergence())
821 CurDAG
->VerifyDAGDiverence();
824 // Second step, hack on the DAG until it only uses operations and types that
825 // the target supports.
826 if (ViewLegalizeTypesDAGs
&& MatchFilterBB
)
827 CurDAG
->viewGraph("legalize-types input for " + BlockName
);
831 NamedRegionTimer
T("legalize_types", "Type Legalization", GroupName
,
832 GroupDescription
, TimePassesIsEnabled
);
833 Changed
= CurDAG
->LegalizeTypes();
836 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
837 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
842 if (TTI
.hasBranchDivergence())
843 CurDAG
->VerifyDAGDiverence();
846 // Only allow creation of legal node types.
847 CurDAG
->NewNodesMustHaveLegalTypes
= true;
850 if (ViewDAGCombineLT
&& MatchFilterBB
)
851 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
853 // Run the DAG combiner in post-type-legalize mode.
855 NamedRegionTimer
T("combine_lt", "DAG Combining after legalize types",
856 GroupName
, GroupDescription
, TimePassesIsEnabled
);
857 CurDAG
->Combine(AfterLegalizeTypes
, AA
, OptLevel
);
860 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
861 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
866 if (TTI
.hasBranchDivergence())
867 CurDAG
->VerifyDAGDiverence();
872 NamedRegionTimer
T("legalize_vec", "Vector Legalization", GroupName
,
873 GroupDescription
, TimePassesIsEnabled
);
874 Changed
= CurDAG
->LegalizeVectors();
878 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
879 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
884 if (TTI
.hasBranchDivergence())
885 CurDAG
->VerifyDAGDiverence();
889 NamedRegionTimer
T("legalize_types2", "Type Legalization 2", GroupName
,
890 GroupDescription
, TimePassesIsEnabled
);
891 CurDAG
->LegalizeTypes();
894 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
895 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
900 if (TTI
.hasBranchDivergence())
901 CurDAG
->VerifyDAGDiverence();
904 if (ViewDAGCombineLT
&& MatchFilterBB
)
905 CurDAG
->viewGraph("dag-combine-lv input for " + BlockName
);
907 // Run the DAG combiner in post-type-legalize mode.
909 NamedRegionTimer
T("combine_lv", "DAG Combining after legalize vectors",
910 GroupName
, GroupDescription
, TimePassesIsEnabled
);
911 CurDAG
->Combine(AfterLegalizeVectorOps
, AA
, OptLevel
);
914 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
915 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
920 if (TTI
.hasBranchDivergence())
921 CurDAG
->VerifyDAGDiverence();
925 if (ViewLegalizeDAGs
&& MatchFilterBB
)
926 CurDAG
->viewGraph("legalize input for " + BlockName
);
929 NamedRegionTimer
T("legalize", "DAG Legalization", GroupName
,
930 GroupDescription
, TimePassesIsEnabled
);
934 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
935 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
940 if (TTI
.hasBranchDivergence())
941 CurDAG
->VerifyDAGDiverence();
944 if (ViewDAGCombine2
&& MatchFilterBB
)
945 CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
947 // Run the DAG combiner in post-legalize mode.
949 NamedRegionTimer
T("combine2", "DAG Combining 2", GroupName
,
950 GroupDescription
, TimePassesIsEnabled
);
951 CurDAG
->Combine(AfterLegalizeDAG
, AA
, OptLevel
);
954 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
955 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
960 if (TTI
.hasBranchDivergence())
961 CurDAG
->VerifyDAGDiverence();
964 if (OptLevel
!= CodeGenOpt::None
)
965 ComputeLiveOutVRegInfo();
967 if (ViewISelDAGs
&& MatchFilterBB
)
968 CurDAG
->viewGraph("isel input for " + BlockName
);
970 // Third, instruction select all of the operations to machine code, adding the
971 // code to the MachineBasicBlock.
973 NamedRegionTimer
T("isel", "Instruction Selection", GroupName
,
974 GroupDescription
, TimePassesIsEnabled
);
975 DoInstructionSelection();
978 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
979 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
983 if (ViewSchedDAGs
&& MatchFilterBB
)
984 CurDAG
->viewGraph("scheduler input for " + BlockName
);
986 // Schedule machine code.
987 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
989 NamedRegionTimer
T("sched", "Instruction Scheduling", GroupName
,
990 GroupDescription
, TimePassesIsEnabled
);
991 Scheduler
->Run(CurDAG
, FuncInfo
->MBB
);
994 if (ViewSUnitDAGs
&& MatchFilterBB
)
995 Scheduler
->viewGraph();
997 // Emit machine code to BB. This can change 'BB' to the last block being
999 MachineBasicBlock
*FirstMBB
= FuncInfo
->MBB
, *LastMBB
;
1001 NamedRegionTimer
T("emit", "Instruction Creation", GroupName
,
1002 GroupDescription
, TimePassesIsEnabled
);
1004 // FuncInfo->InsertPt is passed by reference and set to the end of the
1005 // scheduled instructions.
1006 LastMBB
= FuncInfo
->MBB
= Scheduler
->EmitSchedule(FuncInfo
->InsertPt
);
1009 // If the block was split, make sure we update any references that are used to
1010 // update PHI nodes later on.
1011 if (FirstMBB
!= LastMBB
)
1012 SDB
->UpdateSplitBlock(FirstMBB
, LastMBB
);
1014 // Free the scheduler state.
1016 NamedRegionTimer
T("cleanup", "Instruction Scheduling Cleanup", GroupName
,
1017 GroupDescription
, TimePassesIsEnabled
);
1021 // Free the SelectionDAG state, now that we're finished with it.
1027 /// ISelUpdater - helper class to handle updates of the instruction selection
1029 class ISelUpdater
: public SelectionDAG::DAGUpdateListener
{
1030 SelectionDAG::allnodes_iterator
&ISelPosition
;
1033 ISelUpdater(SelectionDAG
&DAG
, SelectionDAG::allnodes_iterator
&isp
)
1034 : SelectionDAG::DAGUpdateListener(DAG
), ISelPosition(isp
) {}
1036 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1037 /// deleted is the current ISelPosition node, update ISelPosition.
1039 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
1040 if (ISelPosition
== SelectionDAG::allnodes_iterator(N
))
1045 } // end anonymous namespace
1047 // This function is used to enforce the topological node id property
1048 // leveraged during instruction selection. Before the selection process all
1049 // nodes are given a non-negative id such that all nodes have a greater id than
1050 // their operands. As this holds transitively we can prune checks that a node N
1051 // is a predecessor of M another by not recursively checking through M's
1052 // operands if N's ID is larger than M's ID. This significantly improves
1053 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1055 // However, when we fuse multiple nodes into a single node during the
1056 // selection we may induce a predecessor relationship between inputs and
1057 // outputs of distinct nodes being merged, violating the topological property.
1058 // Should a fused node have a successor which has yet to be selected,
1059 // our legality checks would be incorrect. To avoid this we mark all unselected
1060 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1061 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1062 // We use bit-negation to more clearly enforce that node id -1 can only be
1063 // achieved by selected nodes. As the conversion is reversable to the original
1064 // Id, topological pruning can still be leveraged when looking for unselected
1065 // nodes. This method is called internally in all ISel replacement related
1067 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode
*Node
) {
1068 SmallVector
<SDNode
*, 4> Nodes
;
1069 Nodes
.push_back(Node
);
1071 while (!Nodes
.empty()) {
1072 SDNode
*N
= Nodes
.pop_back_val();
1073 for (auto *U
: N
->uses()) {
1074 auto UId
= U
->getNodeId();
1076 InvalidateNodeId(U
);
1083 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1084 // NodeId with the equivalent node id which is invalid for topological
1086 void SelectionDAGISel::InvalidateNodeId(SDNode
*N
) {
1087 int InvalidId
= -(N
->getNodeId() + 1);
1088 N
->setNodeId(InvalidId
);
1091 // getUninvalidatedNodeId - get original uninvalidated node id.
1092 int SelectionDAGISel::getUninvalidatedNodeId(SDNode
*N
) {
1093 int Id
= N
->getNodeId();
1099 void SelectionDAGISel::DoInstructionSelection() {
1100 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1101 << printMBBReference(*FuncInfo
->MBB
) << " '"
1102 << FuncInfo
->MBB
->getName() << "'\n");
1104 PreprocessISelDAG();
1106 // Select target instructions for the DAG.
1108 // Number all nodes with a topological order and set DAGSize.
1109 DAGSize
= CurDAG
->AssignTopologicalOrder();
1111 // Create a dummy node (which is not added to allnodes), that adds
1112 // a reference to the root node, preventing it from being deleted,
1113 // and tracking any changes of the root.
1114 HandleSDNode
Dummy(CurDAG
->getRoot());
1115 SelectionDAG::allnodes_iterator
ISelPosition (CurDAG
->getRoot().getNode());
1118 // Make sure that ISelPosition gets properly updated when nodes are deleted
1119 // in calls made from this function.
1120 ISelUpdater
ISU(*CurDAG
, ISelPosition
);
1122 // The AllNodes list is now topological-sorted. Visit the
1123 // nodes by starting at the end of the list (the root of the
1124 // graph) and preceding back toward the beginning (the entry
1126 while (ISelPosition
!= CurDAG
->allnodes_begin()) {
1127 SDNode
*Node
= &*--ISelPosition
;
1128 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1129 // but there are currently some corner cases that it misses. Also, this
1130 // makes it theoretically possible to disable the DAGCombiner.
1131 if (Node
->use_empty())
1135 SmallVector
<SDNode
*, 4> Nodes
;
1136 Nodes
.push_back(Node
);
1138 while (!Nodes
.empty()) {
1139 auto N
= Nodes
.pop_back_val();
1140 if (N
->getOpcode() == ISD::TokenFactor
|| N
->getNodeId() < 0)
1142 for (const SDValue
&Op
: N
->op_values()) {
1143 if (Op
->getOpcode() == ISD::TokenFactor
)
1144 Nodes
.push_back(Op
.getNode());
1146 // We rely on topological ordering of node ids for checking for
1147 // cycles when fusing nodes during selection. All unselected nodes
1148 // successors of an already selected node should have a negative id.
1149 // This assertion will catch such cases. If this assertion triggers
1150 // it is likely you using DAG-level Value/Node replacement functions
1151 // (versus equivalent ISEL replacement) in backend-specific
1152 // selections. See comment in EnforceNodeIdInvariant for more
1154 assert(Op
->getNodeId() != -1 &&
1155 "Node has already selected predecessor node");
1161 // When we are using non-default rounding modes or FP exception behavior
1162 // FP operations are represented by StrictFP pseudo-operations. For
1163 // targets that do not (yet) understand strict FP operations directly,
1164 // we convert them to normal FP opcodes instead at this point. This
1165 // will allow them to be handled by existing target-specific instruction
1167 if (!TLI
->isStrictFPEnabled() && Node
->isStrictFPOpcode()) {
1168 // For some opcodes, we need to call TLI->getOperationAction using
1169 // the first operand type instead of the result type. Note that this
1170 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1172 switch (Node
->getOpcode()) {
1173 case ISD::STRICT_SINT_TO_FP
:
1174 case ISD::STRICT_UINT_TO_FP
:
1175 case ISD::STRICT_LRINT
:
1176 case ISD::STRICT_LLRINT
:
1177 case ISD::STRICT_LROUND
:
1178 case ISD::STRICT_LLROUND
:
1179 case ISD::STRICT_FSETCC
:
1180 case ISD::STRICT_FSETCCS
:
1181 ActionVT
= Node
->getOperand(1).getValueType();
1184 ActionVT
= Node
->getValueType(0);
1187 if (TLI
->getOperationAction(Node
->getOpcode(), ActionVT
)
1188 == TargetLowering::Expand
)
1189 Node
= CurDAG
->mutateStrictFPToFP(Node
);
1192 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1193 Node
->dump(CurDAG
));
1198 CurDAG
->setRoot(Dummy
.getValue());
1201 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1203 PostprocessISelDAG();
1206 static bool hasExceptionPointerOrCodeUser(const CatchPadInst
*CPI
) {
1207 for (const User
*U
: CPI
->users()) {
1208 if (const IntrinsicInst
*EHPtrCall
= dyn_cast
<IntrinsicInst
>(U
)) {
1209 Intrinsic::ID IID
= EHPtrCall
->getIntrinsicID();
1210 if (IID
== Intrinsic::eh_exceptionpointer
||
1211 IID
== Intrinsic::eh_exceptioncode
)
1218 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1219 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1220 // and store the mapping in the function.
1221 static void mapWasmLandingPadIndex(MachineBasicBlock
*MBB
,
1222 const CatchPadInst
*CPI
) {
1223 MachineFunction
*MF
= MBB
->getParent();
1224 // In case of single catch (...), we don't emit LSDA, so we don't need
1225 // this information.
1226 bool IsSingleCatchAllClause
=
1227 CPI
->getNumArgOperands() == 1 &&
1228 cast
<Constant
>(CPI
->getArgOperand(0))->isNullValue();
1229 if (!IsSingleCatchAllClause
) {
1230 // Create a mapping from landing pad label to landing pad index.
1231 bool IntrFound
= false;
1232 for (const User
*U
: CPI
->users()) {
1233 if (const auto *Call
= dyn_cast
<IntrinsicInst
>(U
)) {
1234 Intrinsic::ID IID
= Call
->getIntrinsicID();
1235 if (IID
== Intrinsic::wasm_landingpad_index
) {
1236 Value
*IndexArg
= Call
->getArgOperand(1);
1237 int Index
= cast
<ConstantInt
>(IndexArg
)->getZExtValue();
1238 MF
->setWasmLandingPadIndex(MBB
, Index
);
1244 assert(IntrFound
&& "wasm.landingpad.index intrinsic not found!");
1249 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1250 /// do other setup for EH landing-pad blocks.
1251 bool SelectionDAGISel::PrepareEHLandingPad() {
1252 MachineBasicBlock
*MBB
= FuncInfo
->MBB
;
1253 const Constant
*PersonalityFn
= FuncInfo
->Fn
->getPersonalityFn();
1254 const BasicBlock
*LLVMBB
= MBB
->getBasicBlock();
1255 const TargetRegisterClass
*PtrRC
=
1256 TLI
->getRegClassFor(TLI
->getPointerTy(CurDAG
->getDataLayout()));
1258 auto Pers
= classifyEHPersonality(PersonalityFn
);
1260 // Catchpads have one live-in register, which typically holds the exception
1262 if (isFuncletEHPersonality(Pers
)) {
1263 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI())) {
1264 if (hasExceptionPointerOrCodeUser(CPI
)) {
1265 // Get or create the virtual register to hold the pointer or code. Mark
1266 // the live in physreg and copy into the vreg.
1267 MCPhysReg EHPhysReg
= TLI
->getExceptionPointerRegister(PersonalityFn
);
1268 assert(EHPhysReg
&& "target lacks exception pointer register");
1269 MBB
->addLiveIn(EHPhysReg
);
1270 unsigned VReg
= FuncInfo
->getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
1271 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(),
1272 TII
->get(TargetOpcode::COPY
), VReg
)
1273 .addReg(EHPhysReg
, RegState::Kill
);
1279 // Add a label to mark the beginning of the landing pad. Deletion of the
1280 // landing pad can thus be detected via the MachineModuleInfo.
1281 MCSymbol
*Label
= MF
->addLandingPad(MBB
);
1283 const MCInstrDesc
&II
= TII
->get(TargetOpcode::EH_LABEL
);
1284 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(), II
)
1287 // If the unwinder does not preserve all registers, ensure that the
1288 // function marks the clobbered registers as used.
1289 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
1290 if (auto *RegMask
= TRI
.getCustomEHPadPreservedMask(*MF
))
1291 MF
->getRegInfo().addPhysRegsUsedFromRegMask(RegMask
);
1293 if (Pers
== EHPersonality::Wasm_CXX
) {
1294 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI()))
1295 mapWasmLandingPadIndex(MBB
, CPI
);
1297 // Assign the call site to the landing pad's begin label.
1298 MF
->setCallSiteLandingPad(Label
, SDB
->LPadToCallSiteMap
[MBB
]);
1299 // Mark exception register as live in.
1300 if (unsigned Reg
= TLI
->getExceptionPointerRegister(PersonalityFn
))
1301 FuncInfo
->ExceptionPointerVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1302 // Mark exception selector register as live in.
1303 if (unsigned Reg
= TLI
->getExceptionSelectorRegister(PersonalityFn
))
1304 FuncInfo
->ExceptionSelectorVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1310 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1311 /// side-effect free and is either dead or folded into a generated instruction.
1312 /// Return false if it needs to be emitted.
1313 static bool isFoldedOrDeadInstruction(const Instruction
*I
,
1314 const FunctionLoweringInfo
&FuncInfo
) {
1315 return !I
->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1316 !I
->isTerminator() && // Terminators aren't folded.
1317 !isa
<DbgInfoIntrinsic
>(I
) && // Debug instructions aren't folded.
1318 !I
->isEHPad() && // EH pad instructions aren't folded.
1319 !FuncInfo
.isExportedInst(I
); // Exported instrs must be computed.
1322 /// Collect llvm.dbg.declare information. This is done after argument lowering
1323 /// in case the declarations refer to arguments.
1324 static void processDbgDeclares(FunctionLoweringInfo
&FuncInfo
) {
1325 MachineFunction
*MF
= FuncInfo
.MF
;
1326 const DataLayout
&DL
= MF
->getDataLayout();
1327 for (const BasicBlock
&BB
: *FuncInfo
.Fn
) {
1328 for (const Instruction
&I
: BB
) {
1329 const DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(&I
);
1333 assert(DI
->getVariable() && "Missing variable");
1334 assert(DI
->getDebugLoc() && "Missing location");
1335 const Value
*Address
= DI
->getAddress();
1337 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1338 << " (bad address)\n");
1342 // Look through casts and constant offset GEPs. These mostly come from
1344 APInt
Offset(DL
.getTypeSizeInBits(Address
->getType()), 0);
1345 Address
= Address
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
);
1347 // Check if the variable is a static alloca or a byval or inalloca
1348 // argument passed in memory. If it is not, then we will ignore this
1349 // intrinsic and handle this during isel like dbg.value.
1350 int FI
= std::numeric_limits
<int>::max();
1351 if (const auto *AI
= dyn_cast
<AllocaInst
>(Address
)) {
1352 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1353 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1355 } else if (const auto *Arg
= dyn_cast
<Argument
>(Address
))
1356 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
1358 if (FI
== std::numeric_limits
<int>::max())
1361 DIExpression
*Expr
= DI
->getExpression();
1362 if (Offset
.getBoolValue())
1363 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
,
1364 Offset
.getZExtValue());
1365 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1366 << ", " << *DI
<< "\n");
1367 MF
->setVariableDbgInfo(DI
->getVariable(), Expr
, FI
, DI
->getDebugLoc());
1372 void SelectionDAGISel::SelectAllBasicBlocks(const Function
&Fn
) {
1373 FastISelFailed
= false;
1374 // Initialize the Fast-ISel state, if needed.
1375 FastISel
*FastIS
= nullptr;
1376 if (TM
.Options
.EnableFastISel
) {
1377 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1378 FastIS
= TLI
->createFastISel(*FuncInfo
, LibInfo
);
1381 ReversePostOrderTraversal
<const Function
*> RPOT(&Fn
);
1383 // Lower arguments up front. An RPO iteration always visits the entry block
1385 assert(*RPOT
.begin() == &Fn
.getEntryBlock());
1388 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1389 FuncInfo
->MBB
= FuncInfo
->MBBMap
[&Fn
.getEntryBlock()];
1390 FuncInfo
->InsertPt
= FuncInfo
->MBB
->begin();
1392 CurDAG
->setFunctionLoweringInfo(FuncInfo
.get());
1397 // See if fast isel can lower the arguments.
1398 FastIS
->startNewBlock();
1399 if (!FastIS
->lowerArguments()) {
1400 FastISelFailed
= true;
1401 // Fast isel failed to lower these arguments
1402 ++NumFastIselFailLowerArguments
;
1404 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1406 &Fn
.getEntryBlock());
1407 R
<< "FastISel didn't lower all arguments: "
1408 << ore::NV("Prototype", Fn
.getType());
1409 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 1);
1411 // Use SelectionDAG argument lowering
1413 CurDAG
->setRoot(SDB
->getControlRoot());
1415 CodeGenAndEmitDAG();
1418 // If we inserted any instructions at the beginning, make a note of
1419 // where they are, so we can be sure to emit subsequent instructions
1421 if (FuncInfo
->InsertPt
!= FuncInfo
->MBB
->begin())
1422 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1424 FastIS
->setLastLocalValue(nullptr);
1427 bool Inserted
= SwiftError
->createEntriesInEntryBlock(SDB
->getCurDebugLoc());
1429 if (FastIS
&& Inserted
)
1430 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1432 processDbgDeclares(*FuncInfo
);
1434 // Iterate over all basic blocks in the function.
1435 StackProtector
&SP
= getAnalysis
<StackProtector
>();
1436 for (const BasicBlock
*LLVMBB
: RPOT
) {
1437 if (OptLevel
!= CodeGenOpt::None
) {
1438 bool AllPredsVisited
= true;
1439 for (const BasicBlock
*Pred
: predecessors(LLVMBB
)) {
1440 if (!FuncInfo
->VisitedBBs
.count(Pred
)) {
1441 AllPredsVisited
= false;
1446 if (AllPredsVisited
) {
1447 for (const PHINode
&PN
: LLVMBB
->phis())
1448 FuncInfo
->ComputePHILiveOutRegInfo(&PN
);
1450 for (const PHINode
&PN
: LLVMBB
->phis())
1451 FuncInfo
->InvalidatePHILiveOutRegInfo(&PN
);
1454 FuncInfo
->VisitedBBs
.insert(LLVMBB
);
1457 BasicBlock::const_iterator
const Begin
=
1458 LLVMBB
->getFirstNonPHI()->getIterator();
1459 BasicBlock::const_iterator
const End
= LLVMBB
->end();
1460 BasicBlock::const_iterator BI
= End
;
1462 FuncInfo
->MBB
= FuncInfo
->MBBMap
[LLVMBB
];
1464 continue; // Some blocks like catchpads have no code or MBB.
1466 // Insert new instructions after any phi or argument setup code.
1467 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1469 // Setup an EH landing-pad block.
1470 FuncInfo
->ExceptionPointerVirtReg
= 0;
1471 FuncInfo
->ExceptionSelectorVirtReg
= 0;
1472 if (LLVMBB
->isEHPad())
1473 if (!PrepareEHLandingPad())
1476 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1478 if (LLVMBB
!= &Fn
.getEntryBlock())
1479 FastIS
->startNewBlock();
1481 unsigned NumFastIselRemaining
= std::distance(Begin
, End
);
1483 // Pre-assign swifterror vregs.
1484 SwiftError
->preassignVRegs(FuncInfo
->MBB
, Begin
, End
);
1486 // Do FastISel on as many instructions as possible.
1487 for (; BI
!= Begin
; --BI
) {
1488 const Instruction
*Inst
= &*std::prev(BI
);
1490 // If we no longer require this instruction, skip it.
1491 if (isFoldedOrDeadInstruction(Inst
, *FuncInfo
) ||
1492 ElidedArgCopyInstrs
.count(Inst
)) {
1493 --NumFastIselRemaining
;
1497 // Bottom-up: reset the insert pos at the top, after any local-value
1499 FastIS
->recomputeInsertPt();
1501 // Try to select the instruction with FastISel.
1502 if (FastIS
->selectInstruction(Inst
)) {
1503 --NumFastIselRemaining
;
1504 ++NumFastIselSuccess
;
1505 // If fast isel succeeded, skip over all the folded instructions, and
1506 // then see if there is a load right before the selected instructions.
1507 // Try to fold the load if so.
1508 const Instruction
*BeforeInst
= Inst
;
1509 while (BeforeInst
!= &*Begin
) {
1510 BeforeInst
= &*std::prev(BasicBlock::const_iterator(BeforeInst
));
1511 if (!isFoldedOrDeadInstruction(BeforeInst
, *FuncInfo
))
1514 if (BeforeInst
!= Inst
&& isa
<LoadInst
>(BeforeInst
) &&
1515 BeforeInst
->hasOneUse() &&
1516 FastIS
->tryToFoldLoad(cast
<LoadInst
>(BeforeInst
), Inst
)) {
1517 // If we succeeded, don't re-select the load.
1518 BI
= std::next(BasicBlock::const_iterator(BeforeInst
));
1519 --NumFastIselRemaining
;
1520 ++NumFastIselSuccess
;
1525 FastISelFailed
= true;
1527 // Then handle certain instructions as single-LLVM-Instruction blocks.
1528 // We cannot separate out GCrelocates to their own blocks since we need
1529 // to keep track of gc-relocates for a particular gc-statepoint. This is
1530 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1532 if (isa
<CallInst
>(Inst
) && !isa
<GCStatepointInst
>(Inst
) &&
1533 !isa
<GCRelocateInst
>(Inst
) && !isa
<GCResultInst
>(Inst
)) {
1534 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1535 Inst
->getDebugLoc(), LLVMBB
);
1537 R
<< "FastISel missed call";
1539 if (R
.isEnabled() || EnableFastISelAbort
) {
1540 std::string InstStrStorage
;
1541 raw_string_ostream
InstStr(InstStrStorage
);
1544 R
<< ": " << InstStr
.str();
1547 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 2);
1549 if (!Inst
->getType()->isVoidTy() && !Inst
->getType()->isTokenTy() &&
1550 !Inst
->use_empty()) {
1551 Register
&R
= FuncInfo
->ValueMap
[Inst
];
1553 R
= FuncInfo
->CreateRegs(Inst
);
1556 bool HadTailCall
= false;
1557 MachineBasicBlock::iterator SavedInsertPt
= FuncInfo
->InsertPt
;
1558 SelectBasicBlock(Inst
->getIterator(), BI
, HadTailCall
);
1560 // If the call was emitted as a tail call, we're done with the block.
1561 // We also need to delete any previously emitted instructions.
1563 FastIS
->removeDeadCode(SavedInsertPt
, FuncInfo
->MBB
->end());
1568 // Recompute NumFastIselRemaining as Selection DAG instruction
1569 // selection may have handled the call, input args, etc.
1570 unsigned RemainingNow
= std::distance(Begin
, BI
);
1571 NumFastIselFailures
+= NumFastIselRemaining
- RemainingNow
;
1572 NumFastIselRemaining
= RemainingNow
;
1576 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1577 Inst
->getDebugLoc(), LLVMBB
);
1579 bool ShouldAbort
= EnableFastISelAbort
;
1580 if (Inst
->isTerminator()) {
1581 // Use a different message for terminator misses.
1582 R
<< "FastISel missed terminator";
1583 // Don't abort for terminator unless the level is really high
1584 ShouldAbort
= (EnableFastISelAbort
> 2);
1586 R
<< "FastISel missed";
1589 if (R
.isEnabled() || EnableFastISelAbort
) {
1590 std::string InstStrStorage
;
1591 raw_string_ostream
InstStr(InstStrStorage
);
1593 R
<< ": " << InstStr
.str();
1596 reportFastISelFailure(*MF
, *ORE
, R
, ShouldAbort
);
1598 NumFastIselFailures
+= NumFastIselRemaining
;
1602 FastIS
->recomputeInsertPt();
1605 if (SP
.shouldEmitSDCheck(*LLVMBB
)) {
1606 bool FunctionBasedInstrumentation
=
1607 TLI
->getSSPStackGuardCheck(*Fn
.getParent());
1608 SDB
->SPDescriptor
.initialize(LLVMBB
, FuncInfo
->MBBMap
[LLVMBB
],
1609 FunctionBasedInstrumentation
);
1615 ++NumFastIselBlocks
;
1618 // Run SelectionDAG instruction selection on the remainder of the block
1619 // not handled by FastISel. If FastISel is not run, this is the entire
1622 SelectBasicBlock(Begin
, BI
, HadTailCall
);
1624 // But if FastISel was run, we already selected some of the block.
1625 // If we emitted a tail-call, we need to delete any previously emitted
1626 // instruction that follows it.
1627 if (FastIS
&& HadTailCall
&& FuncInfo
->InsertPt
!= FuncInfo
->MBB
->end())
1628 FastIS
->removeDeadCode(FuncInfo
->InsertPt
, FuncInfo
->MBB
->end());
1632 FastIS
->finishBasicBlock();
1634 FuncInfo
->PHINodesToUpdate
.clear();
1635 ElidedArgCopyInstrs
.clear();
1638 SP
.copyToMachineFrameInfo(MF
->getFrameInfo());
1640 SwiftError
->propagateVRegs();
1643 SDB
->clearDanglingDebugInfo();
1644 SDB
->SPDescriptor
.resetPerFunctionState();
1647 /// Given that the input MI is before a partial terminator sequence TSeq, return
1648 /// true if M + TSeq also a partial terminator sequence.
1650 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1651 /// lowering copy vregs into physical registers, which are then passed into
1652 /// terminator instructors so we can satisfy ABI constraints. A partial
1653 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1654 /// may be the whole terminator sequence).
1655 static bool MIIsInTerminatorSequence(const MachineInstr
&MI
) {
1656 // If we do not have a copy or an implicit def, we return true if and only if
1657 // MI is a debug value.
1658 if (!MI
.isCopy() && !MI
.isImplicitDef())
1659 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1660 // physical registers if there is debug info associated with the terminator
1661 // of our mbb. We want to include said debug info in our terminator
1662 // sequence, so we return true in that case.
1663 return MI
.isDebugInstr();
1665 // We have left the terminator sequence if we are not doing one of the
1668 // 1. Copying a vreg into a physical register.
1669 // 2. Copying a vreg into a vreg.
1670 // 3. Defining a register via an implicit def.
1672 // OPI should always be a register definition...
1673 MachineInstr::const_mop_iterator OPI
= MI
.operands_begin();
1674 if (!OPI
->isReg() || !OPI
->isDef())
1677 // Defining any register via an implicit def is always ok.
1678 if (MI
.isImplicitDef())
1681 // Grab the copy source...
1682 MachineInstr::const_mop_iterator OPI2
= OPI
;
1684 assert(OPI2
!= MI
.operands_end()
1685 && "Should have a copy implying we should have 2 arguments.");
1687 // Make sure that the copy dest is not a vreg when the copy source is a
1688 // physical register.
1689 if (!OPI2
->isReg() || (!Register::isPhysicalRegister(OPI
->getReg()) &&
1690 Register::isPhysicalRegister(OPI2
->getReg())))
1696 /// Find the split point at which to splice the end of BB into its success stack
1697 /// protector check machine basic block.
1699 /// On many platforms, due to ABI constraints, terminators, even before register
1700 /// allocation, use physical registers. This creates an issue for us since
1701 /// physical registers at this point can not travel across basic
1702 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1703 /// when they enter functions and moves them through a sequence of copies back
1704 /// into the physical registers right before the terminator creating a
1705 /// ``Terminator Sequence''. This function is searching for the beginning of the
1706 /// terminator sequence so that we can ensure that we splice off not just the
1707 /// terminator, but additionally the copies that move the vregs into the
1708 /// physical registers.
1709 static MachineBasicBlock::iterator
1710 FindSplitPointForStackProtector(MachineBasicBlock
*BB
,
1711 const TargetInstrInfo
&TII
) {
1712 MachineBasicBlock::iterator SplitPoint
= BB
->getFirstTerminator();
1713 if (SplitPoint
== BB
->begin())
1716 MachineBasicBlock::iterator Start
= BB
->begin();
1717 MachineBasicBlock::iterator Previous
= SplitPoint
;
1720 if (TII
.isTailCall(*SplitPoint
) &&
1721 Previous
->getOpcode() == TII
.getCallFrameDestroyOpcode()) {
1722 // call itself, then we must insert before the sequence even starts. For
1725 // ADJCALLSTACKDOWN ...
1727 // ADJCALLSTACKUP ...
1728 // TAILJMP somewhere
1729 // On the other hand, it could be an unrelated call in which case this tail call
1730 // has to register moves of its own and should be the split point. For example:
1732 // CALL something_else
1735 // TAILJMP somewhere
1738 if (Previous
->isCall())
1740 } while(Previous
->getOpcode() != TII
.getCallFrameSetupOpcode());
1745 while (MIIsInTerminatorSequence(*Previous
)) {
1746 SplitPoint
= Previous
;
1747 if (Previous
== Start
)
1756 SelectionDAGISel::FinishBasicBlock() {
1757 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1758 << FuncInfo
->PHINodesToUpdate
.size() << "\n";
1759 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
;
1761 << "Node " << i
<< " : (" << FuncInfo
->PHINodesToUpdate
[i
].first
1762 << ", " << FuncInfo
->PHINodesToUpdate
[i
].second
<< ")\n");
1764 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1765 // PHI nodes in successors.
1766 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1767 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[i
].first
);
1768 assert(PHI
->isPHI() &&
1769 "This is not a machine PHI node that we are updating!");
1770 if (!FuncInfo
->MBB
->isSuccessor(PHI
->getParent()))
1772 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[i
].second
).addMBB(FuncInfo
->MBB
);
1775 // Handle stack protector.
1776 if (SDB
->SPDescriptor
.shouldEmitFunctionBasedCheckStackProtector()) {
1777 // The target provides a guard check function. There is no need to
1778 // generate error handling code or to split current basic block.
1779 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1781 // Add load and check to the basicblock.
1782 FuncInfo
->MBB
= ParentMBB
;
1783 FuncInfo
->InsertPt
=
1784 FindSplitPointForStackProtector(ParentMBB
, *TII
);
1785 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1786 CurDAG
->setRoot(SDB
->getRoot());
1788 CodeGenAndEmitDAG();
1790 // Clear the Per-BB State.
1791 SDB
->SPDescriptor
.resetPerBBState();
1792 } else if (SDB
->SPDescriptor
.shouldEmitStackProtector()) {
1793 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1794 MachineBasicBlock
*SuccessMBB
= SDB
->SPDescriptor
.getSuccessMBB();
1796 // Find the split point to split the parent mbb. At the same time copy all
1797 // physical registers used in the tail of parent mbb into virtual registers
1798 // before the split point and back into physical registers after the split
1799 // point. This prevents us needing to deal with Live-ins and many other
1800 // register allocation issues caused by us splitting the parent mbb. The
1801 // register allocator will clean up said virtual copies later on.
1802 MachineBasicBlock::iterator SplitPoint
=
1803 FindSplitPointForStackProtector(ParentMBB
, *TII
);
1805 // Splice the terminator of ParentMBB into SuccessMBB.
1806 SuccessMBB
->splice(SuccessMBB
->end(), ParentMBB
,
1810 // Add compare/jump on neq/jump to the parent BB.
1811 FuncInfo
->MBB
= ParentMBB
;
1812 FuncInfo
->InsertPt
= ParentMBB
->end();
1813 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1814 CurDAG
->setRoot(SDB
->getRoot());
1816 CodeGenAndEmitDAG();
1818 // CodeGen Failure MBB if we have not codegened it yet.
1819 MachineBasicBlock
*FailureMBB
= SDB
->SPDescriptor
.getFailureMBB();
1820 if (FailureMBB
->empty()) {
1821 FuncInfo
->MBB
= FailureMBB
;
1822 FuncInfo
->InsertPt
= FailureMBB
->end();
1823 SDB
->visitSPDescriptorFailure(SDB
->SPDescriptor
);
1824 CurDAG
->setRoot(SDB
->getRoot());
1826 CodeGenAndEmitDAG();
1829 // Clear the Per-BB State.
1830 SDB
->SPDescriptor
.resetPerBBState();
1833 // Lower each BitTestBlock.
1834 for (auto &BTB
: SDB
->SL
->BitTestCases
) {
1835 // Lower header first, if it wasn't already lowered
1837 // Set the current basic block to the mbb we wish to insert the code into
1838 FuncInfo
->MBB
= BTB
.Parent
;
1839 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1841 SDB
->visitBitTestHeader(BTB
, FuncInfo
->MBB
);
1842 CurDAG
->setRoot(SDB
->getRoot());
1844 CodeGenAndEmitDAG();
1847 BranchProbability UnhandledProb
= BTB
.Prob
;
1848 for (unsigned j
= 0, ej
= BTB
.Cases
.size(); j
!= ej
; ++j
) {
1849 UnhandledProb
-= BTB
.Cases
[j
].ExtraProb
;
1850 // Set the current basic block to the mbb we wish to insert the code into
1851 FuncInfo
->MBB
= BTB
.Cases
[j
].ThisBB
;
1852 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1855 // If all cases cover a contiguous range, it is not necessary to jump to
1856 // the default block after the last bit test fails. This is because the
1857 // range check during bit test header creation has guaranteed that every
1858 // case here doesn't go outside the range. In this case, there is no need
1859 // to perform the last bit test, as it will always be true. Instead, make
1860 // the second-to-last bit-test fall through to the target of the last bit
1861 // test, and delete the last bit test.
1863 MachineBasicBlock
*NextMBB
;
1864 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
1865 // Second-to-last bit-test with contiguous range: fall through to the
1866 // target of the final bit test.
1867 NextMBB
= BTB
.Cases
[j
+ 1].TargetBB
;
1868 } else if (j
+ 1 == ej
) {
1869 // For the last bit test, fall through to Default.
1870 NextMBB
= BTB
.Default
;
1872 // Otherwise, fall through to the next bit test.
1873 NextMBB
= BTB
.Cases
[j
+ 1].ThisBB
;
1876 SDB
->visitBitTestCase(BTB
, NextMBB
, UnhandledProb
, BTB
.Reg
, BTB
.Cases
[j
],
1879 CurDAG
->setRoot(SDB
->getRoot());
1881 CodeGenAndEmitDAG();
1883 if (BTB
.ContiguousRange
&& j
+ 2 == ej
) {
1884 // Since we're not going to use the final bit test, remove it.
1885 BTB
.Cases
.pop_back();
1891 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1893 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
1894 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1895 assert(PHI
->isPHI() &&
1896 "This is not a machine PHI node that we are updating!");
1897 // This is "default" BB. We have two jumps to it. From "header" BB and
1898 // from last "case" BB, unless the latter was skipped.
1899 if (PHIBB
== BTB
.Default
) {
1900 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(BTB
.Parent
);
1901 if (!BTB
.ContiguousRange
) {
1902 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
1903 .addMBB(BTB
.Cases
.back().ThisBB
);
1906 // One of "cases" BB.
1907 for (unsigned j
= 0, ej
= BTB
.Cases
.size();
1909 MachineBasicBlock
* cBB
= BTB
.Cases
[j
].ThisBB
;
1910 if (cBB
->isSuccessor(PHIBB
))
1911 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(cBB
);
1915 SDB
->SL
->BitTestCases
.clear();
1917 // If the JumpTable record is filled in, then we need to emit a jump table.
1918 // Updating the PHI nodes is tricky in this case, since we need to determine
1919 // whether the PHI is a successor of the range check MBB or the jump table MBB
1920 for (unsigned i
= 0, e
= SDB
->SL
->JTCases
.size(); i
!= e
; ++i
) {
1921 // Lower header first, if it wasn't already lowered
1922 if (!SDB
->SL
->JTCases
[i
].first
.Emitted
) {
1923 // Set the current basic block to the mbb we wish to insert the code into
1924 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].first
.HeaderBB
;
1925 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1927 SDB
->visitJumpTableHeader(SDB
->SL
->JTCases
[i
].second
,
1928 SDB
->SL
->JTCases
[i
].first
, FuncInfo
->MBB
);
1929 CurDAG
->setRoot(SDB
->getRoot());
1931 CodeGenAndEmitDAG();
1934 // Set the current basic block to the mbb we wish to insert the code into
1935 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].second
.MBB
;
1936 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1938 SDB
->visitJumpTable(SDB
->SL
->JTCases
[i
].second
);
1939 CurDAG
->setRoot(SDB
->getRoot());
1941 CodeGenAndEmitDAG();
1944 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1946 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
1947 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1948 assert(PHI
->isPHI() &&
1949 "This is not a machine PHI node that we are updating!");
1950 // "default" BB. We can go there only from header BB.
1951 if (PHIBB
== SDB
->SL
->JTCases
[i
].second
.Default
)
1952 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
1953 .addMBB(SDB
->SL
->JTCases
[i
].first
.HeaderBB
);
1954 // JT BB. Just iterate over successors here
1955 if (FuncInfo
->MBB
->isSuccessor(PHIBB
))
1956 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(FuncInfo
->MBB
);
1959 SDB
->SL
->JTCases
.clear();
1961 // If we generated any switch lowering information, build and codegen any
1962 // additional DAGs necessary.
1963 for (unsigned i
= 0, e
= SDB
->SL
->SwitchCases
.size(); i
!= e
; ++i
) {
1964 // Set the current basic block to the mbb we wish to insert the code into
1965 FuncInfo
->MBB
= SDB
->SL
->SwitchCases
[i
].ThisBB
;
1966 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1968 // Determine the unique successors.
1969 SmallVector
<MachineBasicBlock
*, 2> Succs
;
1970 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].TrueBB
);
1971 if (SDB
->SL
->SwitchCases
[i
].TrueBB
!= SDB
->SL
->SwitchCases
[i
].FalseBB
)
1972 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].FalseBB
);
1974 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1975 SDB
->visitSwitchCase(SDB
->SL
->SwitchCases
[i
], FuncInfo
->MBB
);
1976 CurDAG
->setRoot(SDB
->getRoot());
1978 CodeGenAndEmitDAG();
1980 // Remember the last block, now that any splitting is done, for use in
1981 // populating PHI nodes in successors.
1982 MachineBasicBlock
*ThisBB
= FuncInfo
->MBB
;
1984 // Handle any PHI nodes in successors of this chunk, as if we were coming
1985 // from the original BB before switch expansion. Note that PHI nodes can
1986 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1987 // handle them the right number of times.
1988 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
) {
1989 FuncInfo
->MBB
= Succs
[i
];
1990 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1991 // FuncInfo->MBB may have been removed from the CFG if a branch was
1993 if (ThisBB
->isSuccessor(FuncInfo
->MBB
)) {
1994 for (MachineBasicBlock::iterator
1995 MBBI
= FuncInfo
->MBB
->begin(), MBBE
= FuncInfo
->MBB
->end();
1996 MBBI
!= MBBE
&& MBBI
->isPHI(); ++MBBI
) {
1997 MachineInstrBuilder
PHI(*MF
, MBBI
);
1998 // This value for this PHI node is recorded in PHINodesToUpdate.
1999 for (unsigned pn
= 0; ; ++pn
) {
2000 assert(pn
!= FuncInfo
->PHINodesToUpdate
.size() &&
2001 "Didn't find PHI entry!");
2002 if (FuncInfo
->PHINodesToUpdate
[pn
].first
== PHI
) {
2003 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pn
].second
).addMBB(ThisBB
);
2011 SDB
->SL
->SwitchCases
.clear();
2014 /// Create the scheduler. If a specific scheduler was specified
2015 /// via the SchedulerRegistry, use it, otherwise select the
2016 /// one preferred by the target.
2018 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
2019 return ISHeuristic(this, OptLevel
);
2022 //===----------------------------------------------------------------------===//
2023 // Helper functions used by the generated instruction selector.
2024 //===----------------------------------------------------------------------===//
2025 // Calls to these methods are generated by tblgen.
2027 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2028 /// the dag combiner simplified the 255, we still want to match. RHS is the
2029 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2030 /// specified in the .td file (e.g. 255).
2031 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
2032 int64_t DesiredMaskS
) const {
2033 const APInt
&ActualMask
= RHS
->getAPIntValue();
2034 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
2036 // If the actual mask exactly matches, success!
2037 if (ActualMask
== DesiredMask
)
2040 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2041 if (!ActualMask
.isSubsetOf(DesiredMask
))
2044 // Otherwise, the DAG Combiner may have proven that the value coming in is
2045 // either already zero or is not demanded. Check for known zero input bits.
2046 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2047 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
2050 // TODO: check to see if missing bits are just not demanded.
2052 // Otherwise, this pattern doesn't match.
2056 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2057 /// the dag combiner simplified the 255, we still want to match. RHS is the
2058 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2059 /// specified in the .td file (e.g. 255).
2060 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
2061 int64_t DesiredMaskS
) const {
2062 const APInt
&ActualMask
= RHS
->getAPIntValue();
2063 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
2065 // If the actual mask exactly matches, success!
2066 if (ActualMask
== DesiredMask
)
2069 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2070 if (!ActualMask
.isSubsetOf(DesiredMask
))
2073 // Otherwise, the DAG Combiner may have proven that the value coming in is
2074 // either already zero or is not demanded. Check for known zero input bits.
2075 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2076 KnownBits Known
= CurDAG
->computeKnownBits(LHS
);
2078 // If all the missing bits in the or are already known to be set, match!
2079 if (NeededMask
.isSubsetOf(Known
.One
))
2082 // TODO: check to see if missing bits are just not demanded.
2084 // Otherwise, this pattern doesn't match.
2088 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2089 /// by tblgen. Others should not call it.
2090 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
,
2092 std::vector
<SDValue
> InOps
;
2093 std::swap(InOps
, Ops
);
2095 Ops
.push_back(InOps
[InlineAsm::Op_InputChain
]); // 0
2096 Ops
.push_back(InOps
[InlineAsm::Op_AsmString
]); // 1
2097 Ops
.push_back(InOps
[InlineAsm::Op_MDNode
]); // 2, !srcloc
2098 Ops
.push_back(InOps
[InlineAsm::Op_ExtraInfo
]); // 3 (SideEffect, AlignStack)
2100 unsigned i
= InlineAsm::Op_FirstOperand
, e
= InOps
.size();
2101 if (InOps
[e
-1].getValueType() == MVT::Glue
)
2102 --e
; // Don't process a glue operand if it is here.
2105 unsigned Flags
= cast
<ConstantSDNode
>(InOps
[i
])->getZExtValue();
2106 if (!InlineAsm::isMemKind(Flags
)) {
2107 // Just skip over this operand, copying the operands verbatim.
2108 Ops
.insert(Ops
.end(), InOps
.begin()+i
,
2109 InOps
.begin()+i
+InlineAsm::getNumOperandRegisters(Flags
) + 1);
2110 i
+= InlineAsm::getNumOperandRegisters(Flags
) + 1;
2112 assert(InlineAsm::getNumOperandRegisters(Flags
) == 1 &&
2113 "Memory operand with multiple values?");
2115 unsigned TiedToOperand
;
2116 if (InlineAsm::isUseOperandTiedToDef(Flags
, TiedToOperand
)) {
2117 // We need the constraint ID from the operand this is tied to.
2118 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
2119 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2120 for (; TiedToOperand
; --TiedToOperand
) {
2121 CurOp
+= InlineAsm::getNumOperandRegisters(Flags
)+1;
2122 Flags
= cast
<ConstantSDNode
>(InOps
[CurOp
])->getZExtValue();
2126 // Otherwise, this is a memory operand. Ask the target to select it.
2127 std::vector
<SDValue
> SelOps
;
2128 unsigned ConstraintID
= InlineAsm::getMemoryConstraintID(Flags
);
2129 if (SelectInlineAsmMemoryOperand(InOps
[i
+1], ConstraintID
, SelOps
))
2130 report_fatal_error("Could not match memory address. Inline asm"
2133 // Add this to the output node.
2135 InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, SelOps
.size());
2136 NewFlags
= InlineAsm::getFlagWordForMem(NewFlags
, ConstraintID
);
2137 Ops
.push_back(CurDAG
->getTargetConstant(NewFlags
, DL
, MVT::i32
));
2138 llvm::append_range(Ops
, SelOps
);
2143 // Add the glue input back if present.
2144 if (e
!= InOps
.size())
2145 Ops
.push_back(InOps
.back());
2148 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2151 static SDNode
*findGlueUse(SDNode
*N
) {
2152 unsigned FlagResNo
= N
->getNumValues()-1;
2153 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
2154 SDUse
&Use
= I
.getUse();
2155 if (Use
.getResNo() == FlagResNo
)
2156 return Use
.getUser();
2161 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2162 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2163 static bool findNonImmUse(SDNode
*Root
, SDNode
*Def
, SDNode
*ImmedUse
,
2164 bool IgnoreChains
) {
2165 SmallPtrSet
<const SDNode
*, 16> Visited
;
2166 SmallVector
<const SDNode
*, 16> WorkList
;
2167 // Only check if we have non-immediate uses of Def.
2168 if (ImmedUse
->isOnlyUserOf(Def
))
2171 // We don't care about paths to Def that go through ImmedUse so mark it
2172 // visited and mark non-def operands as used.
2173 Visited
.insert(ImmedUse
);
2174 for (const SDValue
&Op
: ImmedUse
->op_values()) {
2175 SDNode
*N
= Op
.getNode();
2176 // Ignore chain deps (they are validated by
2177 // HandleMergeInputChains) and immediate uses
2178 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2180 if (!Visited
.insert(N
).second
)
2182 WorkList
.push_back(N
);
2185 // Initialize worklist to operands of Root.
2186 if (Root
!= ImmedUse
) {
2187 for (const SDValue
&Op
: Root
->op_values()) {
2188 SDNode
*N
= Op
.getNode();
2189 // Ignore chains (they are validated by HandleMergeInputChains)
2190 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2192 if (!Visited
.insert(N
).second
)
2194 WorkList
.push_back(N
);
2198 return SDNode::hasPredecessorHelper(Def
, Visited
, WorkList
, 0, true);
2201 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2202 /// operand node N of U during instruction selection that starts at Root.
2203 bool SelectionDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
2204 SDNode
*Root
) const {
2205 if (OptLevel
== CodeGenOpt::None
) return false;
2206 return N
.hasOneUse();
2209 /// IsLegalToFold - Returns true if the specific operand node N of
2210 /// U can be folded during instruction selection that starts at Root.
2211 bool SelectionDAGISel::IsLegalToFold(SDValue N
, SDNode
*U
, SDNode
*Root
,
2212 CodeGenOpt::Level OptLevel
,
2213 bool IgnoreChains
) {
2214 if (OptLevel
== CodeGenOpt::None
) return false;
2216 // If Root use can somehow reach N through a path that that doesn't contain
2217 // U then folding N would create a cycle. e.g. In the following
2218 // diagram, Root can reach N through X. If N is folded into Root, then
2219 // X is both a predecessor and a successor of U.
2230 // * indicates nodes to be folded together.
2232 // If Root produces glue, then it gets (even more) interesting. Since it
2233 // will be "glued" together with its glue use in the scheduler, we need to
2234 // check if it might reach N.
2253 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2254 // (call it Fold), then X is a predecessor of GU and a successor of
2255 // Fold. But since Fold and GU are glued together, this will create
2256 // a cycle in the scheduling graph.
2258 // If the node has glue, walk down the graph to the "lowest" node in the
2260 EVT VT
= Root
->getValueType(Root
->getNumValues()-1);
2261 while (VT
== MVT::Glue
) {
2262 SDNode
*GU
= findGlueUse(Root
);
2266 VT
= Root
->getValueType(Root
->getNumValues()-1);
2268 // If our query node has a glue result with a use, we've walked up it. If
2269 // the user (which has already been selected) has a chain or indirectly uses
2270 // the chain, HandleMergeInputChains will not consider it. Because of
2271 // this, we cannot ignore chains in this predicate.
2272 IgnoreChains
= false;
2275 return !findNonImmUse(Root
, N
.getNode(), U
, IgnoreChains
);
2278 void SelectionDAGISel::Select_INLINEASM(SDNode
*N
) {
2281 std::vector
<SDValue
> Ops(N
->op_begin(), N
->op_end());
2282 SelectInlineAsmMemoryOperands(Ops
, DL
);
2284 const EVT VTs
[] = {MVT::Other
, MVT::Glue
};
2285 SDValue New
= CurDAG
->getNode(N
->getOpcode(), DL
, VTs
, Ops
);
2287 ReplaceUses(N
, New
.getNode());
2288 CurDAG
->RemoveDeadNode(N
);
2291 void SelectionDAGISel::Select_READ_REGISTER(SDNode
*Op
) {
2293 MDNodeSDNode
*MD
= cast
<MDNodeSDNode
>(Op
->getOperand(1));
2294 const MDString
*RegStr
= cast
<MDString
>(MD
->getMD()->getOperand(0));
2296 EVT VT
= Op
->getValueType(0);
2297 LLT Ty
= VT
.isSimple() ? getLLTForMVT(VT
.getSimpleVT()) : LLT();
2299 TLI
->getRegisterByName(RegStr
->getString().data(), Ty
,
2300 CurDAG
->getMachineFunction());
2301 SDValue New
= CurDAG
->getCopyFromReg(
2302 Op
->getOperand(0), dl
, Reg
, Op
->getValueType(0));
2304 ReplaceUses(Op
, New
.getNode());
2305 CurDAG
->RemoveDeadNode(Op
);
2308 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode
*Op
) {
2310 MDNodeSDNode
*MD
= cast
<MDNodeSDNode
>(Op
->getOperand(1));
2311 const MDString
*RegStr
= cast
<MDString
>(MD
->getMD()->getOperand(0));
2313 EVT VT
= Op
->getOperand(2).getValueType();
2314 LLT Ty
= VT
.isSimple() ? getLLTForMVT(VT
.getSimpleVT()) : LLT();
2316 Register Reg
= TLI
->getRegisterByName(RegStr
->getString().data(), Ty
,
2317 CurDAG
->getMachineFunction());
2318 SDValue New
= CurDAG
->getCopyToReg(
2319 Op
->getOperand(0), dl
, Reg
, Op
->getOperand(2));
2321 ReplaceUses(Op
, New
.getNode());
2322 CurDAG
->RemoveDeadNode(Op
);
2325 void SelectionDAGISel::Select_UNDEF(SDNode
*N
) {
2326 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2329 void SelectionDAGISel::Select_FREEZE(SDNode
*N
) {
2330 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2331 // If FREEZE instruction is added later, the code below must be changed as
2333 CurDAG
->SelectNodeTo(N
, TargetOpcode::COPY
, N
->getValueType(0),
2337 void SelectionDAGISel::Select_ARITH_FENCE(SDNode
*N
) {
2338 CurDAG
->SelectNodeTo(N
, TargetOpcode::ARITH_FENCE
, N
->getValueType(0),
2342 /// GetVBR - decode a vbr encoding whose top bit is set.
2343 LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t
2344 GetVBR(uint64_t Val
, const unsigned char *MatcherTable
, unsigned &Idx
) {
2345 assert(Val
>= 128 && "Not a VBR");
2346 Val
&= 127; // Remove first vbr bit.
2351 NextBits
= MatcherTable
[Idx
++];
2352 Val
|= (NextBits
&127) << Shift
;
2354 } while (NextBits
& 128);
2359 /// When a match is complete, this method updates uses of interior chain results
2360 /// to use the new results.
2361 void SelectionDAGISel::UpdateChains(
2362 SDNode
*NodeToMatch
, SDValue InputChain
,
2363 SmallVectorImpl
<SDNode
*> &ChainNodesMatched
, bool isMorphNodeTo
) {
2364 SmallVector
<SDNode
*, 4> NowDeadNodes
;
2366 // Now that all the normal results are replaced, we replace the chain and
2367 // glue results if present.
2368 if (!ChainNodesMatched
.empty()) {
2369 assert(InputChain
.getNode() &&
2370 "Matched input chains but didn't produce a chain");
2371 // Loop over all of the nodes we matched that produced a chain result.
2372 // Replace all the chain results with the final chain we ended up with.
2373 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
2374 SDNode
*ChainNode
= ChainNodesMatched
[i
];
2375 // If ChainNode is null, it's because we replaced it on a previous
2376 // iteration and we cleared it out of the map. Just skip it.
2380 assert(ChainNode
->getOpcode() != ISD::DELETED_NODE
&&
2381 "Deleted node left in chain");
2383 // Don't replace the results of the root node if we're doing a
2385 if (ChainNode
== NodeToMatch
&& isMorphNodeTo
)
2388 SDValue ChainVal
= SDValue(ChainNode
, ChainNode
->getNumValues()-1);
2389 if (ChainVal
.getValueType() == MVT::Glue
)
2390 ChainVal
= ChainVal
.getValue(ChainVal
->getNumValues()-2);
2391 assert(ChainVal
.getValueType() == MVT::Other
&& "Not a chain?");
2392 SelectionDAG::DAGNodeDeletedListener
NDL(
2393 *CurDAG
, [&](SDNode
*N
, SDNode
*E
) {
2394 std::replace(ChainNodesMatched
.begin(), ChainNodesMatched
.end(), N
,
2395 static_cast<SDNode
*>(nullptr));
2397 if (ChainNode
->getOpcode() != ISD::TokenFactor
)
2398 ReplaceUses(ChainVal
, InputChain
);
2400 // If the node became dead and we haven't already seen it, delete it.
2401 if (ChainNode
!= NodeToMatch
&& ChainNode
->use_empty() &&
2402 !llvm::is_contained(NowDeadNodes
, ChainNode
))
2403 NowDeadNodes
.push_back(ChainNode
);
2407 if (!NowDeadNodes
.empty())
2408 CurDAG
->RemoveDeadNodes(NowDeadNodes
);
2410 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2413 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2414 /// operation for when the pattern matched at least one node with a chains. The
2415 /// input vector contains a list of all of the chained nodes that we match. We
2416 /// must determine if this is a valid thing to cover (i.e. matching it won't
2417 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2418 /// be used as the input node chain for the generated nodes.
2420 HandleMergeInputChains(SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
2421 SelectionDAG
*CurDAG
) {
2423 SmallPtrSet
<const SDNode
*, 16> Visited
;
2424 SmallVector
<const SDNode
*, 8> Worklist
;
2425 SmallVector
<SDValue
, 3> InputChains
;
2426 unsigned int Max
= 8192;
2428 // Quick exit on trivial merge.
2429 if (ChainNodesMatched
.size() == 1)
2430 return ChainNodesMatched
[0]->getOperand(0);
2432 // Add chains that aren't already added (internal). Peek through
2434 std::function
<void(const SDValue
)> AddChains
= [&](const SDValue V
) {
2435 if (V
.getValueType() != MVT::Other
)
2437 if (V
->getOpcode() == ISD::EntryToken
)
2439 if (!Visited
.insert(V
.getNode()).second
)
2441 if (V
->getOpcode() == ISD::TokenFactor
) {
2442 for (const SDValue
&Op
: V
->op_values())
2445 InputChains
.push_back(V
);
2448 for (auto *N
: ChainNodesMatched
) {
2449 Worklist
.push_back(N
);
2453 while (!Worklist
.empty())
2454 AddChains(Worklist
.pop_back_val()->getOperand(0));
2456 // Skip the search if there are no chain dependencies.
2457 if (InputChains
.size() == 0)
2458 return CurDAG
->getEntryNode();
2460 // If one of these chains is a successor of input, we must have a
2461 // node that is both the predecessor and successor of the
2462 // to-be-merged nodes. Fail.
2464 for (SDValue V
: InputChains
)
2465 Worklist
.push_back(V
.getNode());
2467 for (auto *N
: ChainNodesMatched
)
2468 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
, Max
, true))
2471 // Return merged chain.
2472 if (InputChains
.size() == 1)
2473 return InputChains
[0];
2474 return CurDAG
->getNode(ISD::TokenFactor
, SDLoc(ChainNodesMatched
[0]),
2475 MVT::Other
, InputChains
);
2478 /// MorphNode - Handle morphing a node in place for the selector.
2479 SDNode
*SelectionDAGISel::
2480 MorphNode(SDNode
*Node
, unsigned TargetOpc
, SDVTList VTList
,
2481 ArrayRef
<SDValue
> Ops
, unsigned EmitNodeInfo
) {
2482 // It is possible we're using MorphNodeTo to replace a node with no
2483 // normal results with one that has a normal result (or we could be
2484 // adding a chain) and the input could have glue and chains as well.
2485 // In this case we need to shift the operands down.
2486 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2487 // than the old isel though.
2488 int OldGlueResultNo
= -1, OldChainResultNo
= -1;
2490 unsigned NTMNumResults
= Node
->getNumValues();
2491 if (Node
->getValueType(NTMNumResults
-1) == MVT::Glue
) {
2492 OldGlueResultNo
= NTMNumResults
-1;
2493 if (NTMNumResults
!= 1 &&
2494 Node
->getValueType(NTMNumResults
-2) == MVT::Other
)
2495 OldChainResultNo
= NTMNumResults
-2;
2496 } else if (Node
->getValueType(NTMNumResults
-1) == MVT::Other
)
2497 OldChainResultNo
= NTMNumResults
-1;
2499 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2500 // that this deletes operands of the old node that become dead.
2501 SDNode
*Res
= CurDAG
->MorphNodeTo(Node
, ~TargetOpc
, VTList
, Ops
);
2503 // MorphNodeTo can operate in two ways: if an existing node with the
2504 // specified operands exists, it can just return it. Otherwise, it
2505 // updates the node in place to have the requested operands.
2507 // If we updated the node in place, reset the node ID. To the isel,
2508 // this should be just like a newly allocated machine node.
2512 unsigned ResNumResults
= Res
->getNumValues();
2513 // Move the glue if needed.
2514 if ((EmitNodeInfo
& OPFL_GlueOutput
) && OldGlueResultNo
!= -1 &&
2515 (unsigned)OldGlueResultNo
!= ResNumResults
-1)
2516 ReplaceUses(SDValue(Node
, OldGlueResultNo
),
2517 SDValue(Res
, ResNumResults
- 1));
2519 if ((EmitNodeInfo
& OPFL_GlueOutput
) != 0)
2522 // Move the chain reference if needed.
2523 if ((EmitNodeInfo
& OPFL_Chain
) && OldChainResultNo
!= -1 &&
2524 (unsigned)OldChainResultNo
!= ResNumResults
-1)
2525 ReplaceUses(SDValue(Node
, OldChainResultNo
),
2526 SDValue(Res
, ResNumResults
- 1));
2528 // Otherwise, no replacement happened because the node already exists. Replace
2529 // Uses of the old node with the new one.
2531 ReplaceNode(Node
, Res
);
2533 EnforceNodeIdInvariant(Res
);
2539 /// CheckSame - Implements OP_CheckSame.
2540 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2541 CheckSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2542 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2543 // Accept if it is exactly the same as a previously recorded node.
2544 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2545 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2546 return N
== RecordedNodes
[RecNo
].first
;
2549 /// CheckChildSame - Implements OP_CheckChildXSame.
2550 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool CheckChildSame(
2551 const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2552 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
,
2554 if (ChildNo
>= N
.getNumOperands())
2555 return false; // Match fails if out of range child #.
2556 return ::CheckSame(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
),
2560 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2561 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2562 CheckPatternPredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2563 const SelectionDAGISel
&SDISel
) {
2564 return SDISel
.CheckPatternPredicate(MatcherTable
[MatcherIndex
++]);
2567 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2568 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2569 CheckNodePredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2570 const SelectionDAGISel
&SDISel
, SDNode
*N
) {
2571 return SDISel
.CheckNodePredicate(N
, MatcherTable
[MatcherIndex
++]);
2574 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2575 CheckOpcode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2577 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
2578 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
2579 return N
->getOpcode() == Opc
;
2582 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2583 CheckType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2584 const TargetLowering
*TLI
, const DataLayout
&DL
) {
2585 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2586 if (N
.getValueType() == VT
) return true;
2588 // Handle the case when VT is iPTR.
2589 return VT
== MVT::iPTR
&& N
.getValueType() == TLI
->getPointerTy(DL
);
2592 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2593 CheckChildType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2594 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
,
2596 if (ChildNo
>= N
.getNumOperands())
2597 return false; // Match fails if out of range child #.
2598 return ::CheckType(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
), TLI
,
2602 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2603 CheckCondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2605 return cast
<CondCodeSDNode
>(N
)->get() ==
2606 (ISD::CondCode
)MatcherTable
[MatcherIndex
++];
2609 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2610 CheckChild2CondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2612 if (2 >= N
.getNumOperands())
2614 return ::CheckCondCode(MatcherTable
, MatcherIndex
, N
.getOperand(2));
2617 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2618 CheckValueType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2619 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
) {
2620 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2621 if (cast
<VTSDNode
>(N
)->getVT() == VT
)
2624 // Handle the case when VT is iPTR.
2625 return VT
== MVT::iPTR
&& cast
<VTSDNode
>(N
)->getVT() == TLI
->getPointerTy(DL
);
2628 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2629 // shifted left by 1.
2630 static uint64_t decodeSignRotatedValue(uint64_t V
) {
2635 // There is no such thing as -0 with integers. "-0" really means MININT.
2639 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2640 CheckInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2642 int64_t Val
= MatcherTable
[MatcherIndex
++];
2644 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2646 Val
= decodeSignRotatedValue(Val
);
2648 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
);
2649 return C
&& C
->getSExtValue() == Val
;
2652 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2653 CheckChildInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2654 SDValue N
, unsigned ChildNo
) {
2655 if (ChildNo
>= N
.getNumOperands())
2656 return false; // Match fails if out of range child #.
2657 return ::CheckInteger(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
));
2660 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2661 CheckAndImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2662 SDValue N
, const SelectionDAGISel
&SDISel
) {
2663 int64_t Val
= MatcherTable
[MatcherIndex
++];
2665 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2667 if (N
->getOpcode() != ISD::AND
) return false;
2669 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2670 return C
&& SDISel
.CheckAndMask(N
.getOperand(0), C
, Val
);
2673 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2674 CheckOrImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2675 const SelectionDAGISel
&SDISel
) {
2676 int64_t Val
= MatcherTable
[MatcherIndex
++];
2678 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2680 if (N
->getOpcode() != ISD::OR
) return false;
2682 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2683 return C
&& SDISel
.CheckOrMask(N
.getOperand(0), C
, Val
);
2686 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2687 /// scope, evaluate the current node. If the current predicate is known to
2688 /// fail, set Result=true and return anything. If the current predicate is
2689 /// known to pass, set Result=false and return the MatcherIndex to continue
2690 /// with. If the current predicate is unknown, set Result=false and return the
2691 /// MatcherIndex to continue with.
2692 static unsigned IsPredicateKnownToFail(const unsigned char *Table
,
2693 unsigned Index
, SDValue N
,
2695 const SelectionDAGISel
&SDISel
,
2696 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2697 switch (Table
[Index
++]) {
2700 return Index
-1; // Could not evaluate this predicate.
2701 case SelectionDAGISel::OPC_CheckSame
:
2702 Result
= !::CheckSame(Table
, Index
, N
, RecordedNodes
);
2704 case SelectionDAGISel::OPC_CheckChild0Same
:
2705 case SelectionDAGISel::OPC_CheckChild1Same
:
2706 case SelectionDAGISel::OPC_CheckChild2Same
:
2707 case SelectionDAGISel::OPC_CheckChild3Same
:
2708 Result
= !::CheckChildSame(Table
, Index
, N
, RecordedNodes
,
2709 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Same
);
2711 case SelectionDAGISel::OPC_CheckPatternPredicate
:
2712 Result
= !::CheckPatternPredicate(Table
, Index
, SDISel
);
2714 case SelectionDAGISel::OPC_CheckPredicate
:
2715 Result
= !::CheckNodePredicate(Table
, Index
, SDISel
, N
.getNode());
2717 case SelectionDAGISel::OPC_CheckOpcode
:
2718 Result
= !::CheckOpcode(Table
, Index
, N
.getNode());
2720 case SelectionDAGISel::OPC_CheckType
:
2721 Result
= !::CheckType(Table
, Index
, N
, SDISel
.TLI
,
2722 SDISel
.CurDAG
->getDataLayout());
2724 case SelectionDAGISel::OPC_CheckTypeRes
: {
2725 unsigned Res
= Table
[Index
++];
2726 Result
= !::CheckType(Table
, Index
, N
.getValue(Res
), SDISel
.TLI
,
2727 SDISel
.CurDAG
->getDataLayout());
2730 case SelectionDAGISel::OPC_CheckChild0Type
:
2731 case SelectionDAGISel::OPC_CheckChild1Type
:
2732 case SelectionDAGISel::OPC_CheckChild2Type
:
2733 case SelectionDAGISel::OPC_CheckChild3Type
:
2734 case SelectionDAGISel::OPC_CheckChild4Type
:
2735 case SelectionDAGISel::OPC_CheckChild5Type
:
2736 case SelectionDAGISel::OPC_CheckChild6Type
:
2737 case SelectionDAGISel::OPC_CheckChild7Type
:
2738 Result
= !::CheckChildType(
2739 Table
, Index
, N
, SDISel
.TLI
, SDISel
.CurDAG
->getDataLayout(),
2740 Table
[Index
- 1] - SelectionDAGISel::OPC_CheckChild0Type
);
2742 case SelectionDAGISel::OPC_CheckCondCode
:
2743 Result
= !::CheckCondCode(Table
, Index
, N
);
2745 case SelectionDAGISel::OPC_CheckChild2CondCode
:
2746 Result
= !::CheckChild2CondCode(Table
, Index
, N
);
2748 case SelectionDAGISel::OPC_CheckValueType
:
2749 Result
= !::CheckValueType(Table
, Index
, N
, SDISel
.TLI
,
2750 SDISel
.CurDAG
->getDataLayout());
2752 case SelectionDAGISel::OPC_CheckInteger
:
2753 Result
= !::CheckInteger(Table
, Index
, N
);
2755 case SelectionDAGISel::OPC_CheckChild0Integer
:
2756 case SelectionDAGISel::OPC_CheckChild1Integer
:
2757 case SelectionDAGISel::OPC_CheckChild2Integer
:
2758 case SelectionDAGISel::OPC_CheckChild3Integer
:
2759 case SelectionDAGISel::OPC_CheckChild4Integer
:
2760 Result
= !::CheckChildInteger(Table
, Index
, N
,
2761 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Integer
);
2763 case SelectionDAGISel::OPC_CheckAndImm
:
2764 Result
= !::CheckAndImm(Table
, Index
, N
, SDISel
);
2766 case SelectionDAGISel::OPC_CheckOrImm
:
2767 Result
= !::CheckOrImm(Table
, Index
, N
, SDISel
);
2775 /// FailIndex - If this match fails, this is the index to continue with.
2778 /// NodeStack - The node stack when the scope was formed.
2779 SmallVector
<SDValue
, 4> NodeStack
;
2781 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2782 unsigned NumRecordedNodes
;
2784 /// NumMatchedMemRefs - The number of matched memref entries.
2785 unsigned NumMatchedMemRefs
;
2787 /// InputChain/InputGlue - The current chain/glue
2788 SDValue InputChain
, InputGlue
;
2790 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2791 bool HasChainNodesMatched
;
2794 /// \A DAG update listener to keep the matching state
2795 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2796 /// change the DAG while matching. X86 addressing mode matcher is an example
2798 class MatchStateUpdater
: public SelectionDAG::DAGUpdateListener
2800 SDNode
**NodeToMatch
;
2801 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
;
2802 SmallVectorImpl
<MatchScope
> &MatchScopes
;
2805 MatchStateUpdater(SelectionDAG
&DAG
, SDNode
**NodeToMatch
,
2806 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RN
,
2807 SmallVectorImpl
<MatchScope
> &MS
)
2808 : SelectionDAG::DAGUpdateListener(DAG
), NodeToMatch(NodeToMatch
),
2809 RecordedNodes(RN
), MatchScopes(MS
) {}
2811 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
2812 // Some early-returns here to avoid the search if we deleted the node or
2813 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2814 // do, so it's unnecessary to update matching state at that point).
2815 // Neither of these can occur currently because we only install this
2816 // update listener during matching a complex patterns.
2817 if (!E
|| E
->isMachineOpcode())
2819 // Check if NodeToMatch was updated.
2820 if (N
== *NodeToMatch
)
2822 // Performing linear search here does not matter because we almost never
2823 // run this code. You'd have to have a CSE during complex pattern
2825 for (auto &I
: RecordedNodes
)
2826 if (I
.first
.getNode() == N
)
2829 for (auto &I
: MatchScopes
)
2830 for (auto &J
: I
.NodeStack
)
2831 if (J
.getNode() == N
)
2836 } // end anonymous namespace
2838 void SelectionDAGISel::SelectCodeCommon(SDNode
*NodeToMatch
,
2839 const unsigned char *MatcherTable
,
2840 unsigned TableSize
) {
2841 // FIXME: Should these even be selected? Handle these cases in the caller?
2842 switch (NodeToMatch
->getOpcode()) {
2845 case ISD::EntryToken
: // These nodes remain the same.
2846 case ISD::BasicBlock
:
2848 case ISD::RegisterMask
:
2849 case ISD::HANDLENODE
:
2850 case ISD::MDNODE_SDNODE
:
2851 case ISD::TargetConstant
:
2852 case ISD::TargetConstantFP
:
2853 case ISD::TargetConstantPool
:
2854 case ISD::TargetFrameIndex
:
2855 case ISD::TargetExternalSymbol
:
2857 case ISD::TargetBlockAddress
:
2858 case ISD::TargetJumpTable
:
2859 case ISD::TargetGlobalTLSAddress
:
2860 case ISD::TargetGlobalAddress
:
2861 case ISD::TokenFactor
:
2862 case ISD::CopyFromReg
:
2863 case ISD::CopyToReg
:
2865 case ISD::ANNOTATION_LABEL
:
2866 case ISD::LIFETIME_START
:
2867 case ISD::LIFETIME_END
:
2868 case ISD::PSEUDO_PROBE
:
2869 NodeToMatch
->setNodeId(-1); // Mark selected.
2871 case ISD::AssertSext
:
2872 case ISD::AssertZext
:
2873 case ISD::AssertAlign
:
2874 ReplaceUses(SDValue(NodeToMatch
, 0), NodeToMatch
->getOperand(0));
2875 CurDAG
->RemoveDeadNode(NodeToMatch
);
2877 case ISD::INLINEASM
:
2878 case ISD::INLINEASM_BR
:
2879 Select_INLINEASM(NodeToMatch
);
2881 case ISD::READ_REGISTER
:
2882 Select_READ_REGISTER(NodeToMatch
);
2884 case ISD::WRITE_REGISTER
:
2885 Select_WRITE_REGISTER(NodeToMatch
);
2888 Select_UNDEF(NodeToMatch
);
2891 Select_FREEZE(NodeToMatch
);
2893 case ISD::ARITH_FENCE
:
2894 Select_ARITH_FENCE(NodeToMatch
);
2898 assert(!NodeToMatch
->isMachineOpcode() && "Node already selected!");
2900 // Set up the node stack with NodeToMatch as the only node on the stack.
2901 SmallVector
<SDValue
, 8> NodeStack
;
2902 SDValue N
= SDValue(NodeToMatch
, 0);
2903 NodeStack
.push_back(N
);
2905 // MatchScopes - Scopes used when matching, if a match failure happens, this
2906 // indicates where to continue checking.
2907 SmallVector
<MatchScope
, 8> MatchScopes
;
2909 // RecordedNodes - This is the set of nodes that have been recorded by the
2910 // state machine. The second value is the parent of the node, or null if the
2911 // root is recorded.
2912 SmallVector
<std::pair
<SDValue
, SDNode
*>, 8> RecordedNodes
;
2914 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2916 SmallVector
<MachineMemOperand
*, 2> MatchedMemRefs
;
2918 // These are the current input chain and glue for use when generating nodes.
2919 // Various Emit operations change these. For example, emitting a copytoreg
2920 // uses and updates these.
2921 SDValue InputChain
, InputGlue
;
2923 // ChainNodesMatched - If a pattern matches nodes that have input/output
2924 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2925 // which ones they are. The result is captured into this list so that we can
2926 // update the chain results when the pattern is complete.
2927 SmallVector
<SDNode
*, 3> ChainNodesMatched
;
2929 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2931 // Determine where to start the interpreter. Normally we start at opcode #0,
2932 // but if the state machine starts with an OPC_SwitchOpcode, then we
2933 // accelerate the first lookup (which is guaranteed to be hot) with the
2934 // OpcodeOffset table.
2935 unsigned MatcherIndex
= 0;
2937 if (!OpcodeOffset
.empty()) {
2938 // Already computed the OpcodeOffset table, just index into it.
2939 if (N
.getOpcode() < OpcodeOffset
.size())
2940 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2941 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex
<< "\n");
2943 } else if (MatcherTable
[0] == OPC_SwitchOpcode
) {
2944 // Otherwise, the table isn't computed, but the state machine does start
2945 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2946 // is the first time we're selecting an instruction.
2949 // Get the size of this case.
2950 unsigned CaseSize
= MatcherTable
[Idx
++];
2952 CaseSize
= GetVBR(CaseSize
, MatcherTable
, Idx
);
2953 if (CaseSize
== 0) break;
2955 // Get the opcode, add the index to the table.
2956 uint16_t Opc
= MatcherTable
[Idx
++];
2957 Opc
|= (unsigned short)MatcherTable
[Idx
++] << 8;
2958 if (Opc
>= OpcodeOffset
.size())
2959 OpcodeOffset
.resize((Opc
+1)*2);
2960 OpcodeOffset
[Opc
] = Idx
;
2964 // Okay, do the lookup for the first opcode.
2965 if (N
.getOpcode() < OpcodeOffset
.size())
2966 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2970 assert(MatcherIndex
< TableSize
&& "Invalid index");
2972 unsigned CurrentOpcodeIndex
= MatcherIndex
;
2974 BuiltinOpcodes Opcode
= (BuiltinOpcodes
)MatcherTable
[MatcherIndex
++];
2977 // Okay, the semantics of this operation are that we should push a scope
2978 // then evaluate the first child. However, pushing a scope only to have
2979 // the first check fail (which then pops it) is inefficient. If we can
2980 // determine immediately that the first check (or first several) will
2981 // immediately fail, don't even bother pushing a scope for them.
2985 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
2986 if (NumToSkip
& 128)
2987 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
2988 // Found the end of the scope with no match.
2989 if (NumToSkip
== 0) {
2994 FailIndex
= MatcherIndex
+NumToSkip
;
2996 unsigned MatcherIndexOfPredicate
= MatcherIndex
;
2997 (void)MatcherIndexOfPredicate
; // silence warning.
2999 // If we can't evaluate this predicate without pushing a scope (e.g. if
3000 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3001 // push the scope and evaluate the full predicate chain.
3003 MatcherIndex
= IsPredicateKnownToFail(MatcherTable
, MatcherIndex
, N
,
3004 Result
, *this, RecordedNodes
);
3009 dbgs() << " Skipped scope entry (due to false predicate) at "
3010 << "index " << MatcherIndexOfPredicate
<< ", continuing at "
3011 << FailIndex
<< "\n");
3012 ++NumDAGIselRetries
;
3014 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3015 // move to the next case.
3016 MatcherIndex
= FailIndex
;
3019 // If the whole scope failed to match, bail.
3020 if (FailIndex
== 0) break;
3022 // Push a MatchScope which indicates where to go if the first child fails
3024 MatchScope NewEntry
;
3025 NewEntry
.FailIndex
= FailIndex
;
3026 NewEntry
.NodeStack
.append(NodeStack
.begin(), NodeStack
.end());
3027 NewEntry
.NumRecordedNodes
= RecordedNodes
.size();
3028 NewEntry
.NumMatchedMemRefs
= MatchedMemRefs
.size();
3029 NewEntry
.InputChain
= InputChain
;
3030 NewEntry
.InputGlue
= InputGlue
;
3031 NewEntry
.HasChainNodesMatched
= !ChainNodesMatched
.empty();
3032 MatchScopes
.push_back(NewEntry
);
3035 case OPC_RecordNode
: {
3036 // Remember this node, it may end up being an operand in the pattern.
3037 SDNode
*Parent
= nullptr;
3038 if (NodeStack
.size() > 1)
3039 Parent
= NodeStack
[NodeStack
.size()-2].getNode();
3040 RecordedNodes
.push_back(std::make_pair(N
, Parent
));
3044 case OPC_RecordChild0
: case OPC_RecordChild1
:
3045 case OPC_RecordChild2
: case OPC_RecordChild3
:
3046 case OPC_RecordChild4
: case OPC_RecordChild5
:
3047 case OPC_RecordChild6
: case OPC_RecordChild7
: {
3048 unsigned ChildNo
= Opcode
-OPC_RecordChild0
;
3049 if (ChildNo
>= N
.getNumOperands())
3050 break; // Match fails if out of range child #.
3052 RecordedNodes
.push_back(std::make_pair(N
->getOperand(ChildNo
),
3056 case OPC_RecordMemRef
:
3057 if (auto *MN
= dyn_cast
<MemSDNode
>(N
))
3058 MatchedMemRefs
.push_back(MN
->getMemOperand());
3060 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N
->dump(CurDAG
);
3066 case OPC_CaptureGlueInput
:
3067 // If the current node has an input glue, capture it in InputGlue.
3068 if (N
->getNumOperands() != 0 &&
3069 N
->getOperand(N
->getNumOperands()-1).getValueType() == MVT::Glue
)
3070 InputGlue
= N
->getOperand(N
->getNumOperands()-1);
3073 case OPC_MoveChild
: {
3074 unsigned ChildNo
= MatcherTable
[MatcherIndex
++];
3075 if (ChildNo
>= N
.getNumOperands())
3076 break; // Match fails if out of range child #.
3077 N
= N
.getOperand(ChildNo
);
3078 NodeStack
.push_back(N
);
3082 case OPC_MoveChild0
: case OPC_MoveChild1
:
3083 case OPC_MoveChild2
: case OPC_MoveChild3
:
3084 case OPC_MoveChild4
: case OPC_MoveChild5
:
3085 case OPC_MoveChild6
: case OPC_MoveChild7
: {
3086 unsigned ChildNo
= Opcode
-OPC_MoveChild0
;
3087 if (ChildNo
>= N
.getNumOperands())
3088 break; // Match fails if out of range child #.
3089 N
= N
.getOperand(ChildNo
);
3090 NodeStack
.push_back(N
);
3094 case OPC_MoveParent
:
3095 // Pop the current node off the NodeStack.
3096 NodeStack
.pop_back();
3097 assert(!NodeStack
.empty() && "Node stack imbalance!");
3098 N
= NodeStack
.back();
3102 if (!::CheckSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
)) break;
3105 case OPC_CheckChild0Same
: case OPC_CheckChild1Same
:
3106 case OPC_CheckChild2Same
: case OPC_CheckChild3Same
:
3107 if (!::CheckChildSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
,
3108 Opcode
-OPC_CheckChild0Same
))
3112 case OPC_CheckPatternPredicate
:
3113 if (!::CheckPatternPredicate(MatcherTable
, MatcherIndex
, *this)) break;
3115 case OPC_CheckPredicate
:
3116 if (!::CheckNodePredicate(MatcherTable
, MatcherIndex
, *this,
3120 case OPC_CheckPredicateWithOperands
: {
3121 unsigned OpNum
= MatcherTable
[MatcherIndex
++];
3122 SmallVector
<SDValue
, 8> Operands
;
3124 for (unsigned i
= 0; i
< OpNum
; ++i
)
3125 Operands
.push_back(RecordedNodes
[MatcherTable
[MatcherIndex
++]].first
);
3127 unsigned PredNo
= MatcherTable
[MatcherIndex
++];
3128 if (!CheckNodePredicateWithOperands(N
.getNode(), PredNo
, Operands
))
3132 case OPC_CheckComplexPat
: {
3133 unsigned CPNum
= MatcherTable
[MatcherIndex
++];
3134 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3135 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckComplexPat");
3137 // If target can modify DAG during matching, keep the matching state
3139 std::unique_ptr
<MatchStateUpdater
> MSU
;
3140 if (ComplexPatternFuncMutatesDAG())
3141 MSU
.reset(new MatchStateUpdater(*CurDAG
, &NodeToMatch
, RecordedNodes
,
3144 if (!CheckComplexPattern(NodeToMatch
, RecordedNodes
[RecNo
].second
,
3145 RecordedNodes
[RecNo
].first
, CPNum
,
3150 case OPC_CheckOpcode
:
3151 if (!::CheckOpcode(MatcherTable
, MatcherIndex
, N
.getNode())) break;
3155 if (!::CheckType(MatcherTable
, MatcherIndex
, N
, TLI
,
3156 CurDAG
->getDataLayout()))
3160 case OPC_CheckTypeRes
: {
3161 unsigned Res
= MatcherTable
[MatcherIndex
++];
3162 if (!::CheckType(MatcherTable
, MatcherIndex
, N
.getValue(Res
), TLI
,
3163 CurDAG
->getDataLayout()))
3168 case OPC_SwitchOpcode
: {
3169 unsigned CurNodeOpcode
= N
.getOpcode();
3170 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3173 // Get the size of this case.
3174 CaseSize
= MatcherTable
[MatcherIndex
++];
3176 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3177 if (CaseSize
== 0) break;
3179 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
3180 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3182 // If the opcode matches, then we will execute this case.
3183 if (CurNodeOpcode
== Opc
)
3186 // Otherwise, skip over this case.
3187 MatcherIndex
+= CaseSize
;
3190 // If no cases matched, bail out.
3191 if (CaseSize
== 0) break;
3193 // Otherwise, execute the case we found.
3194 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
<< " to "
3195 << MatcherIndex
<< "\n");
3199 case OPC_SwitchType
: {
3200 MVT CurNodeVT
= N
.getSimpleValueType();
3201 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3204 // Get the size of this case.
3205 CaseSize
= MatcherTable
[MatcherIndex
++];
3207 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3208 if (CaseSize
== 0) break;
3210 MVT CaseVT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3211 if (CaseVT
== MVT::iPTR
)
3212 CaseVT
= TLI
->getPointerTy(CurDAG
->getDataLayout());
3214 // If the VT matches, then we will execute this case.
3215 if (CurNodeVT
== CaseVT
)
3218 // Otherwise, skip over this case.
3219 MatcherIndex
+= CaseSize
;
3222 // If no cases matched, bail out.
3223 if (CaseSize
== 0) break;
3225 // Otherwise, execute the case we found.
3226 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT
).getEVTString()
3227 << "] from " << SwitchStart
<< " to " << MatcherIndex
3231 case OPC_CheckChild0Type
: case OPC_CheckChild1Type
:
3232 case OPC_CheckChild2Type
: case OPC_CheckChild3Type
:
3233 case OPC_CheckChild4Type
: case OPC_CheckChild5Type
:
3234 case OPC_CheckChild6Type
: case OPC_CheckChild7Type
:
3235 if (!::CheckChildType(MatcherTable
, MatcherIndex
, N
, TLI
,
3236 CurDAG
->getDataLayout(),
3237 Opcode
- OPC_CheckChild0Type
))
3240 case OPC_CheckCondCode
:
3241 if (!::CheckCondCode(MatcherTable
, MatcherIndex
, N
)) break;
3243 case OPC_CheckChild2CondCode
:
3244 if (!::CheckChild2CondCode(MatcherTable
, MatcherIndex
, N
)) break;
3246 case OPC_CheckValueType
:
3247 if (!::CheckValueType(MatcherTable
, MatcherIndex
, N
, TLI
,
3248 CurDAG
->getDataLayout()))
3251 case OPC_CheckInteger
:
3252 if (!::CheckInteger(MatcherTable
, MatcherIndex
, N
)) break;
3254 case OPC_CheckChild0Integer
: case OPC_CheckChild1Integer
:
3255 case OPC_CheckChild2Integer
: case OPC_CheckChild3Integer
:
3256 case OPC_CheckChild4Integer
:
3257 if (!::CheckChildInteger(MatcherTable
, MatcherIndex
, N
,
3258 Opcode
-OPC_CheckChild0Integer
)) break;
3260 case OPC_CheckAndImm
:
3261 if (!::CheckAndImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3263 case OPC_CheckOrImm
:
3264 if (!::CheckOrImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3266 case OPC_CheckImmAllOnesV
:
3267 if (!ISD::isConstantSplatVectorAllOnes(N
.getNode()))
3270 case OPC_CheckImmAllZerosV
:
3271 if (!ISD::isConstantSplatVectorAllZeros(N
.getNode()))
3275 case OPC_CheckFoldableChainNode
: {
3276 assert(NodeStack
.size() != 1 && "No parent node");
3277 // Verify that all intermediate nodes between the root and this one have
3278 // a single use (ignoring chains, which are handled in UpdateChains).
3279 bool HasMultipleUses
= false;
3280 for (unsigned i
= 1, e
= NodeStack
.size()-1; i
!= e
; ++i
) {
3281 unsigned NNonChainUses
= 0;
3282 SDNode
*NS
= NodeStack
[i
].getNode();
3283 for (auto UI
= NS
->use_begin(), UE
= NS
->use_end(); UI
!= UE
; ++UI
)
3284 if (UI
.getUse().getValueType() != MVT::Other
)
3285 if (++NNonChainUses
> 1) {
3286 HasMultipleUses
= true;
3289 if (HasMultipleUses
) break;
3291 if (HasMultipleUses
) break;
3293 // Check to see that the target thinks this is profitable to fold and that
3294 // we can fold it without inducing cycles in the graph.
3295 if (!IsProfitableToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3297 !IsLegalToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3298 NodeToMatch
, OptLevel
,
3299 true/*We validate our own chains*/))
3304 case OPC_EmitInteger
:
3305 case OPC_EmitStringInteger
: {
3306 MVT::SimpleValueType VT
=
3307 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3308 int64_t Val
= MatcherTable
[MatcherIndex
++];
3310 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
3311 if (Opcode
== OPC_EmitInteger
)
3312 Val
= decodeSignRotatedValue(Val
);
3313 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3314 CurDAG
->getTargetConstant(Val
, SDLoc(NodeToMatch
),
3318 case OPC_EmitRegister
: {
3319 MVT::SimpleValueType VT
=
3320 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3321 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3322 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3323 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3326 case OPC_EmitRegister2
: {
3327 // For targets w/ more than 256 register names, the register enum
3328 // values are stored in two bytes in the matcher table (just like
3330 MVT::SimpleValueType VT
=
3331 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3332 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3333 RegNo
|= MatcherTable
[MatcherIndex
++] << 8;
3334 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3335 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3339 case OPC_EmitConvertToTarget
: {
3340 // Convert from IMM/FPIMM to target version.
3341 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3342 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitConvertToTarget");
3343 SDValue Imm
= RecordedNodes
[RecNo
].first
;
3345 if (Imm
->getOpcode() == ISD::Constant
) {
3346 const ConstantInt
*Val
=cast
<ConstantSDNode
>(Imm
)->getConstantIntValue();
3347 Imm
= CurDAG
->getTargetConstant(*Val
, SDLoc(NodeToMatch
),
3348 Imm
.getValueType());
3349 } else if (Imm
->getOpcode() == ISD::ConstantFP
) {
3350 const ConstantFP
*Val
=cast
<ConstantFPSDNode
>(Imm
)->getConstantFPValue();
3351 Imm
= CurDAG
->getTargetConstantFP(*Val
, SDLoc(NodeToMatch
),
3352 Imm
.getValueType());
3355 RecordedNodes
.push_back(std::make_pair(Imm
, RecordedNodes
[RecNo
].second
));
3359 case OPC_EmitMergeInputChains1_0
: // OPC_EmitMergeInputChains, 1, 0
3360 case OPC_EmitMergeInputChains1_1
: // OPC_EmitMergeInputChains, 1, 1
3361 case OPC_EmitMergeInputChains1_2
: { // OPC_EmitMergeInputChains, 1, 2
3362 // These are space-optimized forms of OPC_EmitMergeInputChains.
3363 assert(!InputChain
.getNode() &&
3364 "EmitMergeInputChains should be the first chain producing node");
3365 assert(ChainNodesMatched
.empty() &&
3366 "Should only have one EmitMergeInputChains per match");
3368 // Read all of the chained nodes.
3369 unsigned RecNo
= Opcode
- OPC_EmitMergeInputChains1_0
;
3370 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3371 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3373 // FIXME: What if other value results of the node have uses not matched
3375 if (ChainNodesMatched
.back() != NodeToMatch
&&
3376 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3377 ChainNodesMatched
.clear();
3381 // Merge the input chains if they are not intra-pattern references.
3382 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3384 if (!InputChain
.getNode())
3385 break; // Failed to merge.
3389 case OPC_EmitMergeInputChains
: {
3390 assert(!InputChain
.getNode() &&
3391 "EmitMergeInputChains should be the first chain producing node");
3392 // This node gets a list of nodes we matched in the input that have
3393 // chains. We want to token factor all of the input chains to these nodes
3394 // together. However, if any of the input chains is actually one of the
3395 // nodes matched in this pattern, then we have an intra-match reference.
3396 // Ignore these because the newly token factored chain should not refer to
3398 unsigned NumChains
= MatcherTable
[MatcherIndex
++];
3399 assert(NumChains
!= 0 && "Can't TF zero chains");
3401 assert(ChainNodesMatched
.empty() &&
3402 "Should only have one EmitMergeInputChains per match");
3404 // Read all of the chained nodes.
3405 for (unsigned i
= 0; i
!= NumChains
; ++i
) {
3406 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3407 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3408 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3410 // FIXME: What if other value results of the node have uses not matched
3412 if (ChainNodesMatched
.back() != NodeToMatch
&&
3413 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3414 ChainNodesMatched
.clear();
3419 // If the inner loop broke out, the match fails.
3420 if (ChainNodesMatched
.empty())
3423 // Merge the input chains if they are not intra-pattern references.
3424 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3426 if (!InputChain
.getNode())
3427 break; // Failed to merge.
3432 case OPC_EmitCopyToReg
:
3433 case OPC_EmitCopyToReg2
: {
3434 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3435 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitCopyToReg");
3436 unsigned DestPhysReg
= MatcherTable
[MatcherIndex
++];
3437 if (Opcode
== OPC_EmitCopyToReg2
)
3438 DestPhysReg
|= MatcherTable
[MatcherIndex
++] << 8;
3440 if (!InputChain
.getNode())
3441 InputChain
= CurDAG
->getEntryNode();
3443 InputChain
= CurDAG
->getCopyToReg(InputChain
, SDLoc(NodeToMatch
),
3444 DestPhysReg
, RecordedNodes
[RecNo
].first
,
3447 InputGlue
= InputChain
.getValue(1);
3451 case OPC_EmitNodeXForm
: {
3452 unsigned XFormNo
= MatcherTable
[MatcherIndex
++];
3453 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3454 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNodeXForm");
3455 SDValue Res
= RunSDNodeXForm(RecordedNodes
[RecNo
].first
, XFormNo
);
3456 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(Res
, nullptr));
3459 case OPC_Coverage
: {
3460 // This is emitted right before MorphNode/EmitNode.
3461 // So it should be safe to assume that this node has been selected
3462 unsigned index
= MatcherTable
[MatcherIndex
++];
3463 index
|= (MatcherTable
[MatcherIndex
++] << 8);
3464 dbgs() << "COVERED: " << getPatternForIndex(index
) << "\n";
3465 dbgs() << "INCLUDED: " << getIncludePathForIndex(index
) << "\n";
3469 case OPC_EmitNode
: case OPC_MorphNodeTo
:
3470 case OPC_EmitNode0
: case OPC_EmitNode1
: case OPC_EmitNode2
:
3471 case OPC_MorphNodeTo0
: case OPC_MorphNodeTo1
: case OPC_MorphNodeTo2
: {
3472 uint16_t TargetOpc
= MatcherTable
[MatcherIndex
++];
3473 TargetOpc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
3474 unsigned EmitNodeInfo
= MatcherTable
[MatcherIndex
++];
3475 // Get the result VT list.
3477 // If this is one of the compressed forms, get the number of VTs based
3478 // on the Opcode. Otherwise read the next byte from the table.
3479 if (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
)
3480 NumVTs
= Opcode
- OPC_MorphNodeTo0
;
3481 else if (Opcode
>= OPC_EmitNode0
&& Opcode
<= OPC_EmitNode2
)
3482 NumVTs
= Opcode
- OPC_EmitNode0
;
3484 NumVTs
= MatcherTable
[MatcherIndex
++];
3485 SmallVector
<EVT
, 4> VTs
;
3486 for (unsigned i
= 0; i
!= NumVTs
; ++i
) {
3487 MVT::SimpleValueType VT
=
3488 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
3489 if (VT
== MVT::iPTR
)
3490 VT
= TLI
->getPointerTy(CurDAG
->getDataLayout()).SimpleTy
;
3494 if (EmitNodeInfo
& OPFL_Chain
)
3495 VTs
.push_back(MVT::Other
);
3496 if (EmitNodeInfo
& OPFL_GlueOutput
)
3497 VTs
.push_back(MVT::Glue
);
3499 // This is hot code, so optimize the two most common cases of 1 and 2
3502 if (VTs
.size() == 1)
3503 VTList
= CurDAG
->getVTList(VTs
[0]);
3504 else if (VTs
.size() == 2)
3505 VTList
= CurDAG
->getVTList(VTs
[0], VTs
[1]);
3507 VTList
= CurDAG
->getVTList(VTs
);
3509 // Get the operand list.
3510 unsigned NumOps
= MatcherTable
[MatcherIndex
++];
3511 SmallVector
<SDValue
, 8> Ops
;
3512 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3513 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3515 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
3517 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNode");
3518 Ops
.push_back(RecordedNodes
[RecNo
].first
);
3521 // If there are variadic operands to add, handle them now.
3522 if (EmitNodeInfo
& OPFL_VariadicInfo
) {
3523 // Determine the start index to copy from.
3524 unsigned FirstOpToCopy
= getNumFixedFromVariadicInfo(EmitNodeInfo
);
3525 FirstOpToCopy
+= (EmitNodeInfo
& OPFL_Chain
) ? 1 : 0;
3526 assert(NodeToMatch
->getNumOperands() >= FirstOpToCopy
&&
3527 "Invalid variadic node");
3528 // Copy all of the variadic operands, not including a potential glue
3530 for (unsigned i
= FirstOpToCopy
, e
= NodeToMatch
->getNumOperands();
3532 SDValue V
= NodeToMatch
->getOperand(i
);
3533 if (V
.getValueType() == MVT::Glue
) break;
3538 // If this has chain/glue inputs, add them.
3539 if (EmitNodeInfo
& OPFL_Chain
)
3540 Ops
.push_back(InputChain
);
3541 if ((EmitNodeInfo
& OPFL_GlueInput
) && InputGlue
.getNode() != nullptr)
3542 Ops
.push_back(InputGlue
);
3544 // Check whether any matched node could raise an FP exception. Since all
3545 // such nodes must have a chain, it suffices to check ChainNodesMatched.
3546 // We need to perform this check before potentially modifying one of the
3547 // nodes via MorphNode.
3548 bool MayRaiseFPException
= false;
3549 for (auto *N
: ChainNodesMatched
)
3550 if (mayRaiseFPException(N
) && !N
->getFlags().hasNoFPExcept()) {
3551 MayRaiseFPException
= true;
3556 MachineSDNode
*Res
= nullptr;
3557 bool IsMorphNodeTo
= Opcode
== OPC_MorphNodeTo
||
3558 (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
);
3559 if (!IsMorphNodeTo
) {
3560 // If this is a normal EmitNode command, just create the new node and
3561 // add the results to the RecordedNodes list.
3562 Res
= CurDAG
->getMachineNode(TargetOpc
, SDLoc(NodeToMatch
),
3565 // Add all the non-glue/non-chain results to the RecordedNodes list.
3566 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
3567 if (VTs
[i
] == MVT::Other
|| VTs
[i
] == MVT::Glue
) break;
3568 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(SDValue(Res
, i
),
3572 assert(NodeToMatch
->getOpcode() != ISD::DELETED_NODE
&&
3573 "NodeToMatch was removed partway through selection");
3574 SelectionDAG::DAGNodeDeletedListener
NDL(*CurDAG
, [&](SDNode
*N
,
3576 CurDAG
->salvageDebugInfo(*N
);
3577 auto &Chain
= ChainNodesMatched
;
3578 assert((!E
|| !is_contained(Chain
, N
)) &&
3579 "Chain node replaced during MorphNode");
3580 llvm::erase_value(Chain
, N
);
3582 Res
= cast
<MachineSDNode
>(MorphNode(NodeToMatch
, TargetOpc
, VTList
,
3583 Ops
, EmitNodeInfo
));
3586 // Set the NoFPExcept flag when no original matched node could
3587 // raise an FP exception, but the new node potentially might.
3588 if (!MayRaiseFPException
&& mayRaiseFPException(Res
)) {
3589 SDNodeFlags Flags
= Res
->getFlags();
3590 Flags
.setNoFPExcept(true);
3591 Res
->setFlags(Flags
);
3594 // If the node had chain/glue results, update our notion of the current
3596 if (EmitNodeInfo
& OPFL_GlueOutput
) {
3597 InputGlue
= SDValue(Res
, VTs
.size()-1);
3598 if (EmitNodeInfo
& OPFL_Chain
)
3599 InputChain
= SDValue(Res
, VTs
.size()-2);
3600 } else if (EmitNodeInfo
& OPFL_Chain
)
3601 InputChain
= SDValue(Res
, VTs
.size()-1);
3603 // If the OPFL_MemRefs glue is set on this node, slap all of the
3604 // accumulated memrefs onto it.
3606 // FIXME: This is vastly incorrect for patterns with multiple outputs
3607 // instructions that access memory and for ComplexPatterns that match
3609 if (EmitNodeInfo
& OPFL_MemRefs
) {
3610 // Only attach load or store memory operands if the generated
3611 // instruction may load or store.
3612 const MCInstrDesc
&MCID
= TII
->get(TargetOpc
);
3613 bool mayLoad
= MCID
.mayLoad();
3614 bool mayStore
= MCID
.mayStore();
3616 // We expect to have relatively few of these so just filter them into a
3617 // temporary buffer so that we can easily add them to the instruction.
3618 SmallVector
<MachineMemOperand
*, 4> FilteredMemRefs
;
3619 for (MachineMemOperand
*MMO
: MatchedMemRefs
) {
3620 if (MMO
->isLoad()) {
3622 FilteredMemRefs
.push_back(MMO
);
3623 } else if (MMO
->isStore()) {
3625 FilteredMemRefs
.push_back(MMO
);
3627 FilteredMemRefs
.push_back(MMO
);
3631 CurDAG
->setNodeMemRefs(Res
, FilteredMemRefs
);
3634 LLVM_DEBUG(if (!MatchedMemRefs
.empty() && Res
->memoperands_empty()) dbgs()
3635 << " Dropping mem operands\n";
3636 dbgs() << " " << (IsMorphNodeTo
? "Morphed" : "Created")
3638 Res
->dump(CurDAG
););
3640 // If this was a MorphNodeTo then we're completely done!
3641 if (IsMorphNodeTo
) {
3642 // Update chain uses.
3643 UpdateChains(Res
, InputChain
, ChainNodesMatched
, true);
3649 case OPC_CompleteMatch
: {
3650 // The match has been completed, and any new nodes (if any) have been
3651 // created. Patch up references to the matched dag to use the newly
3653 unsigned NumResults
= MatcherTable
[MatcherIndex
++];
3655 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3656 unsigned ResSlot
= MatcherTable
[MatcherIndex
++];
3658 ResSlot
= GetVBR(ResSlot
, MatcherTable
, MatcherIndex
);
3660 assert(ResSlot
< RecordedNodes
.size() && "Invalid CompleteMatch");
3661 SDValue Res
= RecordedNodes
[ResSlot
].first
;
3663 assert(i
< NodeToMatch
->getNumValues() &&
3664 NodeToMatch
->getValueType(i
) != MVT::Other
&&
3665 NodeToMatch
->getValueType(i
) != MVT::Glue
&&
3666 "Invalid number of results to complete!");
3667 assert((NodeToMatch
->getValueType(i
) == Res
.getValueType() ||
3668 NodeToMatch
->getValueType(i
) == MVT::iPTR
||
3669 Res
.getValueType() == MVT::iPTR
||
3670 NodeToMatch
->getValueType(i
).getSizeInBits() ==
3671 Res
.getValueSizeInBits()) &&
3672 "invalid replacement");
3673 ReplaceUses(SDValue(NodeToMatch
, i
), Res
);
3676 // Update chain uses.
3677 UpdateChains(NodeToMatch
, InputChain
, ChainNodesMatched
, false);
3679 // If the root node defines glue, we need to update it to the glue result.
3680 // TODO: This never happens in our tests and I think it can be removed /
3681 // replaced with an assert, but if we do it this the way the change is
3683 if (NodeToMatch
->getValueType(NodeToMatch
->getNumValues() - 1) ==
3685 InputGlue
.getNode())
3686 ReplaceUses(SDValue(NodeToMatch
, NodeToMatch
->getNumValues() - 1),
3689 assert(NodeToMatch
->use_empty() &&
3690 "Didn't replace all uses of the node?");
3691 CurDAG
->RemoveDeadNode(NodeToMatch
);
3697 // If the code reached this point, then the match failed. See if there is
3698 // another child to try in the current 'Scope', otherwise pop it until we
3699 // find a case to check.
3700 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3702 ++NumDAGIselRetries
;
3704 if (MatchScopes
.empty()) {
3705 CannotYetSelect(NodeToMatch
);
3709 // Restore the interpreter state back to the point where the scope was
3711 MatchScope
&LastScope
= MatchScopes
.back();
3712 RecordedNodes
.resize(LastScope
.NumRecordedNodes
);
3714 NodeStack
.append(LastScope
.NodeStack
.begin(), LastScope
.NodeStack
.end());
3715 N
= NodeStack
.back();
3717 if (LastScope
.NumMatchedMemRefs
!= MatchedMemRefs
.size())
3718 MatchedMemRefs
.resize(LastScope
.NumMatchedMemRefs
);
3719 MatcherIndex
= LastScope
.FailIndex
;
3721 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex
<< "\n");
3723 InputChain
= LastScope
.InputChain
;
3724 InputGlue
= LastScope
.InputGlue
;
3725 if (!LastScope
.HasChainNodesMatched
)
3726 ChainNodesMatched
.clear();
3728 // Check to see what the offset is at the new MatcherIndex. If it is zero
3729 // we have reached the end of this scope, otherwise we have another child
3730 // in the current scope to try.
3731 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
3732 if (NumToSkip
& 128)
3733 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
3735 // If we have another child in this scope to match, update FailIndex and
3737 if (NumToSkip
!= 0) {
3738 LastScope
.FailIndex
= MatcherIndex
+NumToSkip
;
3742 // End of this scope, pop it and try the next child in the containing
3744 MatchScopes
.pop_back();
3749 /// Return whether the node may raise an FP exception.
3750 bool SelectionDAGISel::mayRaiseFPException(SDNode
*N
) const {
3751 // For machine opcodes, consult the MCID flag.
3752 if (N
->isMachineOpcode()) {
3753 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
3754 return MCID
.mayRaiseFPException();
3757 // For ISD opcodes, only StrictFP opcodes may raise an FP
3759 if (N
->isTargetOpcode())
3760 return N
->isTargetStrictFPOpcode();
3761 return N
->isStrictFPOpcode();
3764 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode
*N
) const {
3765 assert(N
->getOpcode() == ISD::OR
&& "Unexpected opcode");
3766 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3770 // Detect when "or" is used to add an offset to a stack object.
3771 if (auto *FN
= dyn_cast
<FrameIndexSDNode
>(N
->getOperand(0))) {
3772 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3773 Align A
= MFI
.getObjectAlign(FN
->getIndex());
3774 int32_t Off
= C
->getSExtValue();
3775 // If the alleged offset fits in the zero bits guaranteed by
3776 // the alignment, then this or is really an add.
3777 return (Off
>= 0) && (((A
.value() - 1) & Off
) == unsigned(Off
));
3782 void SelectionDAGISel::CannotYetSelect(SDNode
*N
) {
3784 raw_string_ostream
Msg(msg
);
3785 Msg
<< "Cannot select: ";
3787 if (N
->getOpcode() != ISD::INTRINSIC_W_CHAIN
&&
3788 N
->getOpcode() != ISD::INTRINSIC_WO_CHAIN
&&
3789 N
->getOpcode() != ISD::INTRINSIC_VOID
) {
3790 N
->printrFull(Msg
, CurDAG
);
3791 Msg
<< "\nIn function: " << MF
->getName();
3793 bool HasInputChain
= N
->getOperand(0).getValueType() == MVT::Other
;
3795 cast
<ConstantSDNode
>(N
->getOperand(HasInputChain
))->getZExtValue();
3796 if (iid
< Intrinsic::num_intrinsics
)
3797 Msg
<< "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID
)iid
);
3798 else if (const TargetIntrinsicInfo
*TII
= TM
.getIntrinsicInfo())
3799 Msg
<< "target intrinsic %" << TII
->getName(iid
);
3801 Msg
<< "unknown intrinsic #" << iid
;
3803 report_fatal_error(Msg
.str());
3806 char SelectionDAGISel::ID
= 0;