[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
bloba475ce60cca78132ef3cf3fcbca9721bc80d1b6c
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Statepoint.h"
79 #include "llvm/IR/Type.h"
80 #include "llvm/IR/User.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/InitializePasses.h"
83 #include "llvm/MC/MCInstrDesc.h"
84 #include "llvm/MC/MCRegisterInfo.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CodeGen.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include "llvm/Support/KnownBits.h"
94 #include "llvm/Support/MachineValueType.h"
95 #include "llvm/Support/Timer.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cstdint>
104 #include <iterator>
105 #include <limits>
106 #include <memory>
107 #include <string>
108 #include <utility>
109 #include <vector>
111 using namespace llvm;
113 #define DEBUG_TYPE "isel"
115 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
116 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
117 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
118 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
119 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
120 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
121 STATISTIC(NumFastIselFailLowerArguments,
122 "Number of entry blocks where fast isel failed to lower arguments");
124 static cl::opt<int> EnableFastISelAbort(
125 "fast-isel-abort", cl::Hidden,
126 cl::desc("Enable abort calls when \"fast\" instruction selection "
127 "fails to lower an instruction: 0 disable the abort, 1 will "
128 "abort but for args, calls and terminators, 2 will also "
129 "abort for argument lowering, and 3 will never fallback "
130 "to SelectionDAG."));
132 static cl::opt<bool> EnableFastISelFallbackReport(
133 "fast-isel-report-on-fallback", cl::Hidden,
134 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
135 "falls back to SelectionDAG."));
137 static cl::opt<bool>
138 UseMBPI("use-mbpi",
139 cl::desc("use Machine Branch Probability Info"),
140 cl::init(true), cl::Hidden);
142 #ifndef NDEBUG
143 static cl::opt<std::string>
144 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
145 cl::desc("Only display the basic block whose name "
146 "matches this for all view-*-dags options"));
147 static cl::opt<bool>
148 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
149 cl::desc("Pop up a window to show dags before the first "
150 "dag combine pass"));
151 static cl::opt<bool>
152 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
153 cl::desc("Pop up a window to show dags before legalize types"));
154 static cl::opt<bool>
155 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
156 cl::desc("Pop up a window to show dags before the post "
157 "legalize types dag combine pass"));
158 static cl::opt<bool>
159 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
160 cl::desc("Pop up a window to show dags before legalize"));
161 static cl::opt<bool>
162 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
163 cl::desc("Pop up a window to show dags before the second "
164 "dag combine pass"));
165 static cl::opt<bool>
166 ViewISelDAGs("view-isel-dags", cl::Hidden,
167 cl::desc("Pop up a window to show isel dags as they are selected"));
168 static cl::opt<bool>
169 ViewSchedDAGs("view-sched-dags", cl::Hidden,
170 cl::desc("Pop up a window to show sched dags as they are processed"));
171 static cl::opt<bool>
172 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
173 cl::desc("Pop up a window to show SUnit dags after they are processed"));
174 #else
175 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
176 ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
177 ViewDAGCombine2 = false, ViewISelDAGs = false,
178 ViewSchedDAGs = false, ViewSUnitDAGs = false;
179 #endif
181 //===---------------------------------------------------------------------===//
183 /// RegisterScheduler class - Track the registration of instruction schedulers.
185 //===---------------------------------------------------------------------===//
186 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
187 RegisterScheduler::Registry;
189 //===---------------------------------------------------------------------===//
191 /// ISHeuristic command line option for instruction schedulers.
193 //===---------------------------------------------------------------------===//
194 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
195 RegisterPassParser<RegisterScheduler>>
196 ISHeuristic("pre-RA-sched",
197 cl::init(&createDefaultScheduler), cl::Hidden,
198 cl::desc("Instruction schedulers available (before register"
199 " allocation):"));
201 static RegisterScheduler
202 defaultListDAGScheduler("default", "Best scheduler for the target",
203 createDefaultScheduler);
205 namespace llvm {
207 //===--------------------------------------------------------------------===//
208 /// This class is used by SelectionDAGISel to temporarily override
209 /// the optimization level on a per-function basis.
210 class OptLevelChanger {
211 SelectionDAGISel &IS;
212 CodeGenOpt::Level SavedOptLevel;
213 bool SavedFastISel;
215 public:
216 OptLevelChanger(SelectionDAGISel &ISel,
217 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
218 SavedOptLevel = IS.OptLevel;
219 SavedFastISel = IS.TM.Options.EnableFastISel;
220 if (NewOptLevel == SavedOptLevel)
221 return;
222 IS.OptLevel = NewOptLevel;
223 IS.TM.setOptLevel(NewOptLevel);
224 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
225 << IS.MF->getFunction().getName() << "\n");
226 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
227 << NewOptLevel << "\n");
228 if (NewOptLevel == CodeGenOpt::None) {
229 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
230 LLVM_DEBUG(
231 dbgs() << "\tFastISel is "
232 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
233 << "\n");
237 ~OptLevelChanger() {
238 if (IS.OptLevel == SavedOptLevel)
239 return;
240 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
241 << IS.MF->getFunction().getName() << "\n");
242 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
243 << SavedOptLevel << "\n");
244 IS.OptLevel = SavedOptLevel;
245 IS.TM.setOptLevel(SavedOptLevel);
246 IS.TM.setFastISel(SavedFastISel);
250 //===--------------------------------------------------------------------===//
251 /// createDefaultScheduler - This creates an instruction scheduler appropriate
252 /// for the target.
253 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
254 CodeGenOpt::Level OptLevel) {
255 const TargetLowering *TLI = IS->TLI;
256 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
258 // Try first to see if the Target has its own way of selecting a scheduler
259 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
260 return SchedulerCtor(IS, OptLevel);
263 if (OptLevel == CodeGenOpt::None ||
264 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
265 TLI->getSchedulingPreference() == Sched::Source)
266 return createSourceListDAGScheduler(IS, OptLevel);
267 if (TLI->getSchedulingPreference() == Sched::RegPressure)
268 return createBURRListDAGScheduler(IS, OptLevel);
269 if (TLI->getSchedulingPreference() == Sched::Hybrid)
270 return createHybridListDAGScheduler(IS, OptLevel);
271 if (TLI->getSchedulingPreference() == Sched::VLIW)
272 return createVLIWDAGScheduler(IS, OptLevel);
273 if (TLI->getSchedulingPreference() == Sched::Fast)
274 return createFastDAGScheduler(IS, OptLevel);
275 if (TLI->getSchedulingPreference() == Sched::Linearize)
276 return createDAGLinearizer(IS, OptLevel);
277 assert(TLI->getSchedulingPreference() == Sched::ILP &&
278 "Unknown sched type!");
279 return createILPListDAGScheduler(IS, OptLevel);
282 } // end namespace llvm
284 // EmitInstrWithCustomInserter - This method should be implemented by targets
285 // that mark instructions with the 'usesCustomInserter' flag. These
286 // instructions are special in various ways, which require special support to
287 // insert. The specified MachineInstr is created but not inserted into any
288 // basic blocks, and this method is called to expand it into a sequence of
289 // instructions, potentially also creating new basic blocks and control flow.
290 // When new basic blocks are inserted and the edges from MBB to its successors
291 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
292 // DenseMap.
293 MachineBasicBlock *
294 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
295 MachineBasicBlock *MBB) const {
296 #ifndef NDEBUG
297 dbgs() << "If a target marks an instruction with "
298 "'usesCustomInserter', it must implement "
299 "TargetLowering::EmitInstrWithCustomInserter!";
300 #endif
301 llvm_unreachable(nullptr);
304 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
305 SDNode *Node) const {
306 assert(!MI.hasPostISelHook() &&
307 "If a target marks an instruction with 'hasPostISelHook', "
308 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
311 //===----------------------------------------------------------------------===//
312 // SelectionDAGISel code
313 //===----------------------------------------------------------------------===//
315 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
316 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
317 SwiftError(new SwiftErrorValueTracking()),
318 CurDAG(new SelectionDAG(tm, OL)),
319 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
320 OL)),
321 AA(), GFI(), OptLevel(OL), DAGSize(0) {
322 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
323 initializeBranchProbabilityInfoWrapperPassPass(
324 *PassRegistry::getPassRegistry());
325 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
326 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
329 SelectionDAGISel::~SelectionDAGISel() {
330 delete CurDAG;
331 delete SwiftError;
334 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
335 if (OptLevel != CodeGenOpt::None)
336 AU.addRequired<AAResultsWrapperPass>();
337 AU.addRequired<GCModuleInfo>();
338 AU.addRequired<StackProtector>();
339 AU.addPreserved<GCModuleInfo>();
340 AU.addRequired<TargetLibraryInfoWrapperPass>();
341 AU.addRequired<TargetTransformInfoWrapperPass>();
342 if (UseMBPI && OptLevel != CodeGenOpt::None)
343 AU.addRequired<BranchProbabilityInfoWrapperPass>();
344 AU.addRequired<ProfileSummaryInfoWrapperPass>();
345 if (OptLevel != CodeGenOpt::None)
346 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
347 MachineFunctionPass::getAnalysisUsage(AU);
350 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
351 /// may trap on it. In this case we have to split the edge so that the path
352 /// through the predecessor block that doesn't go to the phi block doesn't
353 /// execute the possibly trapping instruction. If available, we pass domtree
354 /// and loop info to be updated when we split critical edges. This is because
355 /// SelectionDAGISel preserves these analyses.
356 /// This is required for correctness, so it must be done at -O0.
358 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
359 LoopInfo *LI) {
360 // Loop for blocks with phi nodes.
361 for (BasicBlock &BB : Fn) {
362 PHINode *PN = dyn_cast<PHINode>(BB.begin());
363 if (!PN) continue;
365 ReprocessBlock:
366 // For each block with a PHI node, check to see if any of the input values
367 // are potentially trapping constant expressions. Constant expressions are
368 // the only potentially trapping value that can occur as the argument to a
369 // PHI.
370 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
371 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
372 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
373 if (!CE || !CE->canTrap()) continue;
375 // The only case we have to worry about is when the edge is critical.
376 // Since this block has a PHI Node, we assume it has multiple input
377 // edges: check to see if the pred has multiple successors.
378 BasicBlock *Pred = PN->getIncomingBlock(i);
379 if (Pred->getTerminator()->getNumSuccessors() == 1)
380 continue;
382 // Okay, we have to split this edge.
383 SplitCriticalEdge(
384 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
385 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
386 goto ReprocessBlock;
391 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
392 MachineModuleInfo &MMI) {
393 // Only needed for MSVC
394 if (!TT.isWindowsMSVCEnvironment())
395 return;
397 // If it's already set, nothing to do.
398 if (MMI.usesMSVCFloatingPoint())
399 return;
401 for (const Instruction &I : instructions(F)) {
402 if (I.getType()->isFPOrFPVectorTy()) {
403 MMI.setUsesMSVCFloatingPoint(true);
404 return;
406 for (const auto &Op : I.operands()) {
407 if (Op->getType()->isFPOrFPVectorTy()) {
408 MMI.setUsesMSVCFloatingPoint(true);
409 return;
415 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
416 // If we already selected that function, we do not need to run SDISel.
417 if (mf.getProperties().hasProperty(
418 MachineFunctionProperties::Property::Selected))
419 return false;
420 // Do some sanity-checking on the command-line options.
421 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
422 "-fast-isel-abort > 0 requires -fast-isel");
424 const Function &Fn = mf.getFunction();
425 MF = &mf;
427 // Reset the target options before resetting the optimization
428 // level below.
429 // FIXME: This is a horrible hack and should be processed via
430 // codegen looking at the optimization level explicitly when
431 // it wants to look at it.
432 TM.resetTargetOptions(Fn);
433 // Reset OptLevel to None for optnone functions.
434 CodeGenOpt::Level NewOptLevel = OptLevel;
435 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
436 NewOptLevel = CodeGenOpt::None;
437 OptLevelChanger OLC(*this, NewOptLevel);
439 TII = MF->getSubtarget().getInstrInfo();
440 TLI = MF->getSubtarget().getTargetLowering();
441 RegInfo = &MF->getRegInfo();
442 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
443 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
444 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
445 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
446 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
447 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
448 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
449 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
450 BlockFrequencyInfo *BFI = nullptr;
451 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
452 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
454 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
456 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
458 CurDAG->init(*MF, *ORE, this, LibInfo,
459 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
460 FuncInfo->set(Fn, *MF, CurDAG);
461 SwiftError->setFunction(*MF);
463 // Now get the optional analyzes if we want to.
464 // This is based on the possibly changed OptLevel (after optnone is taken
465 // into account). That's unfortunate but OK because it just means we won't
466 // ask for passes that have been required anyway.
468 if (UseMBPI && OptLevel != CodeGenOpt::None)
469 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
470 else
471 FuncInfo->BPI = nullptr;
473 if (OptLevel != CodeGenOpt::None)
474 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
475 else
476 AA = nullptr;
478 SDB->init(GFI, AA, LibInfo);
480 MF->setHasInlineAsm(false);
482 FuncInfo->SplitCSR = false;
484 // We split CSR if the target supports it for the given function
485 // and the function has only return exits.
486 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
487 FuncInfo->SplitCSR = true;
489 // Collect all the return blocks.
490 for (const BasicBlock &BB : Fn) {
491 if (!succ_empty(&BB))
492 continue;
494 const Instruction *Term = BB.getTerminator();
495 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
496 continue;
498 // Bail out if the exit block is not Return nor Unreachable.
499 FuncInfo->SplitCSR = false;
500 break;
504 MachineBasicBlock *EntryMBB = &MF->front();
505 if (FuncInfo->SplitCSR)
506 // This performs initialization so lowering for SplitCSR will be correct.
507 TLI->initializeSplitCSR(EntryMBB);
509 SelectAllBasicBlocks(Fn);
510 if (FastISelFailed && EnableFastISelFallbackReport) {
511 DiagnosticInfoISelFallback DiagFallback(Fn);
512 Fn.getContext().diagnose(DiagFallback);
515 // Replace forward-declared registers with the registers containing
516 // the desired value.
517 // Note: it is important that this happens **before** the call to
518 // EmitLiveInCopies, since implementations can skip copies of unused
519 // registers. If we don't apply the reg fixups before, some registers may
520 // appear as unused and will be skipped, resulting in bad MI.
521 MachineRegisterInfo &MRI = MF->getRegInfo();
522 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
523 E = FuncInfo->RegFixups.end();
524 I != E; ++I) {
525 Register From = I->first;
526 Register To = I->second;
527 // If To is also scheduled to be replaced, find what its ultimate
528 // replacement is.
529 while (true) {
530 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
531 if (J == E)
532 break;
533 To = J->second;
535 // Make sure the new register has a sufficiently constrained register class.
536 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
537 MRI.constrainRegClass(To, MRI.getRegClass(From));
538 // Replace it.
540 // Replacing one register with another won't touch the kill flags.
541 // We need to conservatively clear the kill flags as a kill on the old
542 // register might dominate existing uses of the new register.
543 if (!MRI.use_empty(To))
544 MRI.clearKillFlags(From);
545 MRI.replaceRegWith(From, To);
548 // If the first basic block in the function has live ins that need to be
549 // copied into vregs, emit the copies into the top of the block before
550 // emitting the code for the block.
551 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
552 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
554 // Insert copies in the entry block and the return blocks.
555 if (FuncInfo->SplitCSR) {
556 SmallVector<MachineBasicBlock*, 4> Returns;
557 // Collect all the return blocks.
558 for (MachineBasicBlock &MBB : mf) {
559 if (!MBB.succ_empty())
560 continue;
562 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
563 if (Term != MBB.end() && Term->isReturn()) {
564 Returns.push_back(&MBB);
565 continue;
568 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
571 DenseMap<unsigned, unsigned> LiveInMap;
572 if (!FuncInfo->ArgDbgValues.empty())
573 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
574 if (LI.second)
575 LiveInMap.insert(LI);
577 // Insert DBG_VALUE instructions for function arguments to the entry block.
578 bool InstrRef = TM.Options.ValueTrackingVariableLocations;
579 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
580 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
581 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
582 "Function parameters should not be described by DBG_VALUE_LIST.");
583 bool hasFI = MI->getOperand(0).isFI();
584 Register Reg =
585 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
586 if (Register::isPhysicalRegister(Reg))
587 EntryMBB->insert(EntryMBB->begin(), MI);
588 else {
589 MachineInstr *Def = RegInfo->getVRegDef(Reg);
590 if (Def) {
591 MachineBasicBlock::iterator InsertPos = Def;
592 // FIXME: VR def may not be in entry block.
593 Def->getParent()->insert(std::next(InsertPos), MI);
594 } else
595 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
596 << Register::virtReg2Index(Reg) << "\n");
599 // Don't try and extend through copies in instruction referencing mode.
600 if (InstrRef)
601 continue;
603 // If Reg is live-in then update debug info to track its copy in a vreg.
604 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
605 if (LDI != LiveInMap.end()) {
606 assert(!hasFI && "There's no handling of frame pointer updating here yet "
607 "- add if needed");
608 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
609 MachineBasicBlock::iterator InsertPos = Def;
610 const MDNode *Variable = MI->getDebugVariable();
611 const MDNode *Expr = MI->getDebugExpression();
612 DebugLoc DL = MI->getDebugLoc();
613 bool IsIndirect = MI->isIndirectDebugValue();
614 if (IsIndirect)
615 assert(MI->getOperand(1).getImm() == 0 &&
616 "DBG_VALUE with nonzero offset");
617 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
618 "Expected inlined-at fields to agree");
619 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
620 "Didn't expect to see a DBG_VALUE_LIST here");
621 // Def is never a terminator here, so it is ok to increment InsertPos.
622 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
623 IsIndirect, LDI->second, Variable, Expr);
625 // If this vreg is directly copied into an exported register then
626 // that COPY instructions also need DBG_VALUE, if it is the only
627 // user of LDI->second.
628 MachineInstr *CopyUseMI = nullptr;
629 for (MachineRegisterInfo::use_instr_iterator
630 UI = RegInfo->use_instr_begin(LDI->second),
631 E = RegInfo->use_instr_end(); UI != E; ) {
632 MachineInstr *UseMI = &*(UI++);
633 if (UseMI->isDebugValue()) continue;
634 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
635 CopyUseMI = UseMI; continue;
637 // Otherwise this is another use or second copy use.
638 CopyUseMI = nullptr; break;
640 if (CopyUseMI &&
641 TRI.getRegSizeInBits(LDI->second, MRI) ==
642 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
643 // Use MI's debug location, which describes where Variable was
644 // declared, rather than whatever is attached to CopyUseMI.
645 MachineInstr *NewMI =
646 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
647 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
648 MachineBasicBlock::iterator Pos = CopyUseMI;
649 EntryMBB->insertAfter(Pos, NewMI);
654 // For debug-info, in instruction referencing mode, we need to perform some
655 // post-isel maintenence.
656 MF->finalizeDebugInstrRefs();
658 // Determine if there are any calls in this machine function.
659 MachineFrameInfo &MFI = MF->getFrameInfo();
660 for (const auto &MBB : *MF) {
661 if (MFI.hasCalls() && MF->hasInlineAsm())
662 break;
664 for (const auto &MI : MBB) {
665 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
666 if ((MCID.isCall() && !MCID.isReturn()) ||
667 MI.isStackAligningInlineAsm()) {
668 MFI.setHasCalls(true);
670 if (MI.isInlineAsm()) {
671 MF->setHasInlineAsm(true);
676 // Determine if there is a call to setjmp in the machine function.
677 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
679 // Determine if floating point is used for msvc
680 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
682 // Release function-specific state. SDB and CurDAG are already cleared
683 // at this point.
684 FuncInfo->clear();
686 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
687 LLVM_DEBUG(MF->print(dbgs()));
689 return true;
692 static void reportFastISelFailure(MachineFunction &MF,
693 OptimizationRemarkEmitter &ORE,
694 OptimizationRemarkMissed &R,
695 bool ShouldAbort) {
696 // Print the function name explicitly if we don't have a debug location (which
697 // makes the diagnostic less useful) or if we're going to emit a raw error.
698 if (!R.getLocation().isValid() || ShouldAbort)
699 R << (" (in function: " + MF.getName() + ")").str();
701 if (ShouldAbort)
702 report_fatal_error(R.getMsg());
704 ORE.emit(R);
707 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
708 BasicBlock::const_iterator End,
709 bool &HadTailCall) {
710 // Allow creating illegal types during DAG building for the basic block.
711 CurDAG->NewNodesMustHaveLegalTypes = false;
713 // Lower the instructions. If a call is emitted as a tail call, cease emitting
714 // nodes for this block.
715 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
716 if (!ElidedArgCopyInstrs.count(&*I))
717 SDB->visit(*I);
720 // Make sure the root of the DAG is up-to-date.
721 CurDAG->setRoot(SDB->getControlRoot());
722 HadTailCall = SDB->HasTailCall;
723 SDB->resolveOrClearDbgInfo();
724 SDB->clear();
726 // Final step, emit the lowered DAG as machine code.
727 CodeGenAndEmitDAG();
730 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
731 SmallPtrSet<SDNode *, 16> Added;
732 SmallVector<SDNode*, 128> Worklist;
734 Worklist.push_back(CurDAG->getRoot().getNode());
735 Added.insert(CurDAG->getRoot().getNode());
737 KnownBits Known;
739 do {
740 SDNode *N = Worklist.pop_back_val();
742 // Otherwise, add all chain operands to the worklist.
743 for (const SDValue &Op : N->op_values())
744 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
745 Worklist.push_back(Op.getNode());
747 // If this is a CopyToReg with a vreg dest, process it.
748 if (N->getOpcode() != ISD::CopyToReg)
749 continue;
751 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
752 if (!Register::isVirtualRegister(DestReg))
753 continue;
755 // Ignore non-integer values.
756 SDValue Src = N->getOperand(2);
757 EVT SrcVT = Src.getValueType();
758 if (!SrcVT.isInteger())
759 continue;
761 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
762 Known = CurDAG->computeKnownBits(Src);
763 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
764 } while (!Worklist.empty());
767 void SelectionDAGISel::CodeGenAndEmitDAG() {
768 StringRef GroupName = "sdag";
769 StringRef GroupDescription = "Instruction Selection and Scheduling";
770 std::string BlockName;
771 bool MatchFilterBB = false; (void)MatchFilterBB;
772 #ifndef NDEBUG
773 TargetTransformInfo &TTI =
774 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
775 #endif
777 // Pre-type legalization allow creation of any node types.
778 CurDAG->NewNodesMustHaveLegalTypes = false;
780 #ifndef NDEBUG
781 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
782 FilterDAGBasicBlockName ==
783 FuncInfo->MBB->getBasicBlock()->getName());
784 #endif
785 #ifdef NDEBUG
786 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
787 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
788 ViewSUnitDAGs)
789 #endif
791 BlockName =
792 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
794 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
795 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
796 << "'\n";
797 CurDAG->dump());
799 #ifndef NDEBUG
800 if (TTI.hasBranchDivergence())
801 CurDAG->VerifyDAGDiverence();
802 #endif
804 if (ViewDAGCombine1 && MatchFilterBB)
805 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
807 // Run the DAG combiner in pre-legalize mode.
809 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
810 GroupDescription, TimePassesIsEnabled);
811 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
814 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
815 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
816 << "'\n";
817 CurDAG->dump());
819 #ifndef NDEBUG
820 if (TTI.hasBranchDivergence())
821 CurDAG->VerifyDAGDiverence();
822 #endif
824 // Second step, hack on the DAG until it only uses operations and types that
825 // the target supports.
826 if (ViewLegalizeTypesDAGs && MatchFilterBB)
827 CurDAG->viewGraph("legalize-types input for " + BlockName);
829 bool Changed;
831 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
832 GroupDescription, TimePassesIsEnabled);
833 Changed = CurDAG->LegalizeTypes();
836 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
837 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
838 << "'\n";
839 CurDAG->dump());
841 #ifndef NDEBUG
842 if (TTI.hasBranchDivergence())
843 CurDAG->VerifyDAGDiverence();
844 #endif
846 // Only allow creation of legal node types.
847 CurDAG->NewNodesMustHaveLegalTypes = true;
849 if (Changed) {
850 if (ViewDAGCombineLT && MatchFilterBB)
851 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
853 // Run the DAG combiner in post-type-legalize mode.
855 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
856 GroupName, GroupDescription, TimePassesIsEnabled);
857 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
860 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
861 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
862 << "'\n";
863 CurDAG->dump());
865 #ifndef NDEBUG
866 if (TTI.hasBranchDivergence())
867 CurDAG->VerifyDAGDiverence();
868 #endif
872 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
873 GroupDescription, TimePassesIsEnabled);
874 Changed = CurDAG->LegalizeVectors();
877 if (Changed) {
878 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
879 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
880 << "'\n";
881 CurDAG->dump());
883 #ifndef NDEBUG
884 if (TTI.hasBranchDivergence())
885 CurDAG->VerifyDAGDiverence();
886 #endif
889 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
890 GroupDescription, TimePassesIsEnabled);
891 CurDAG->LegalizeTypes();
894 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
895 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
896 << "'\n";
897 CurDAG->dump());
899 #ifndef NDEBUG
900 if (TTI.hasBranchDivergence())
901 CurDAG->VerifyDAGDiverence();
902 #endif
904 if (ViewDAGCombineLT && MatchFilterBB)
905 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
907 // Run the DAG combiner in post-type-legalize mode.
909 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
910 GroupName, GroupDescription, TimePassesIsEnabled);
911 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
914 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
915 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
916 << "'\n";
917 CurDAG->dump());
919 #ifndef NDEBUG
920 if (TTI.hasBranchDivergence())
921 CurDAG->VerifyDAGDiverence();
922 #endif
925 if (ViewLegalizeDAGs && MatchFilterBB)
926 CurDAG->viewGraph("legalize input for " + BlockName);
929 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
930 GroupDescription, TimePassesIsEnabled);
931 CurDAG->Legalize();
934 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
935 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
936 << "'\n";
937 CurDAG->dump());
939 #ifndef NDEBUG
940 if (TTI.hasBranchDivergence())
941 CurDAG->VerifyDAGDiverence();
942 #endif
944 if (ViewDAGCombine2 && MatchFilterBB)
945 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
947 // Run the DAG combiner in post-legalize mode.
949 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
950 GroupDescription, TimePassesIsEnabled);
951 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
954 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
955 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
956 << "'\n";
957 CurDAG->dump());
959 #ifndef NDEBUG
960 if (TTI.hasBranchDivergence())
961 CurDAG->VerifyDAGDiverence();
962 #endif
964 if (OptLevel != CodeGenOpt::None)
965 ComputeLiveOutVRegInfo();
967 if (ViewISelDAGs && MatchFilterBB)
968 CurDAG->viewGraph("isel input for " + BlockName);
970 // Third, instruction select all of the operations to machine code, adding the
971 // code to the MachineBasicBlock.
973 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
974 GroupDescription, TimePassesIsEnabled);
975 DoInstructionSelection();
978 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
979 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
980 << "'\n";
981 CurDAG->dump());
983 if (ViewSchedDAGs && MatchFilterBB)
984 CurDAG->viewGraph("scheduler input for " + BlockName);
986 // Schedule machine code.
987 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
989 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
990 GroupDescription, TimePassesIsEnabled);
991 Scheduler->Run(CurDAG, FuncInfo->MBB);
994 if (ViewSUnitDAGs && MatchFilterBB)
995 Scheduler->viewGraph();
997 // Emit machine code to BB. This can change 'BB' to the last block being
998 // inserted into.
999 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
1001 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
1002 GroupDescription, TimePassesIsEnabled);
1004 // FuncInfo->InsertPt is passed by reference and set to the end of the
1005 // scheduled instructions.
1006 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1009 // If the block was split, make sure we update any references that are used to
1010 // update PHI nodes later on.
1011 if (FirstMBB != LastMBB)
1012 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1014 // Free the scheduler state.
1016 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1017 GroupDescription, TimePassesIsEnabled);
1018 delete Scheduler;
1021 // Free the SelectionDAG state, now that we're finished with it.
1022 CurDAG->clear();
1025 namespace {
1027 /// ISelUpdater - helper class to handle updates of the instruction selection
1028 /// graph.
1029 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1030 SelectionDAG::allnodes_iterator &ISelPosition;
1032 public:
1033 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1034 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1036 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1037 /// deleted is the current ISelPosition node, update ISelPosition.
1039 void NodeDeleted(SDNode *N, SDNode *E) override {
1040 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1041 ++ISelPosition;
1045 } // end anonymous namespace
1047 // This function is used to enforce the topological node id property
1048 // leveraged during instruction selection. Before the selection process all
1049 // nodes are given a non-negative id such that all nodes have a greater id than
1050 // their operands. As this holds transitively we can prune checks that a node N
1051 // is a predecessor of M another by not recursively checking through M's
1052 // operands if N's ID is larger than M's ID. This significantly improves
1053 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1055 // However, when we fuse multiple nodes into a single node during the
1056 // selection we may induce a predecessor relationship between inputs and
1057 // outputs of distinct nodes being merged, violating the topological property.
1058 // Should a fused node have a successor which has yet to be selected,
1059 // our legality checks would be incorrect. To avoid this we mark all unselected
1060 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1061 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1062 // We use bit-negation to more clearly enforce that node id -1 can only be
1063 // achieved by selected nodes. As the conversion is reversable to the original
1064 // Id, topological pruning can still be leveraged when looking for unselected
1065 // nodes. This method is called internally in all ISel replacement related
1066 // functions.
1067 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1068 SmallVector<SDNode *, 4> Nodes;
1069 Nodes.push_back(Node);
1071 while (!Nodes.empty()) {
1072 SDNode *N = Nodes.pop_back_val();
1073 for (auto *U : N->uses()) {
1074 auto UId = U->getNodeId();
1075 if (UId > 0) {
1076 InvalidateNodeId(U);
1077 Nodes.push_back(U);
1083 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1084 // NodeId with the equivalent node id which is invalid for topological
1085 // pruning.
1086 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1087 int InvalidId = -(N->getNodeId() + 1);
1088 N->setNodeId(InvalidId);
1091 // getUninvalidatedNodeId - get original uninvalidated node id.
1092 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1093 int Id = N->getNodeId();
1094 if (Id < -1)
1095 return -(Id + 1);
1096 return Id;
1099 void SelectionDAGISel::DoInstructionSelection() {
1100 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1101 << printMBBReference(*FuncInfo->MBB) << " '"
1102 << FuncInfo->MBB->getName() << "'\n");
1104 PreprocessISelDAG();
1106 // Select target instructions for the DAG.
1108 // Number all nodes with a topological order and set DAGSize.
1109 DAGSize = CurDAG->AssignTopologicalOrder();
1111 // Create a dummy node (which is not added to allnodes), that adds
1112 // a reference to the root node, preventing it from being deleted,
1113 // and tracking any changes of the root.
1114 HandleSDNode Dummy(CurDAG->getRoot());
1115 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1116 ++ISelPosition;
1118 // Make sure that ISelPosition gets properly updated when nodes are deleted
1119 // in calls made from this function.
1120 ISelUpdater ISU(*CurDAG, ISelPosition);
1122 // The AllNodes list is now topological-sorted. Visit the
1123 // nodes by starting at the end of the list (the root of the
1124 // graph) and preceding back toward the beginning (the entry
1125 // node).
1126 while (ISelPosition != CurDAG->allnodes_begin()) {
1127 SDNode *Node = &*--ISelPosition;
1128 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1129 // but there are currently some corner cases that it misses. Also, this
1130 // makes it theoretically possible to disable the DAGCombiner.
1131 if (Node->use_empty())
1132 continue;
1134 #ifndef NDEBUG
1135 SmallVector<SDNode *, 4> Nodes;
1136 Nodes.push_back(Node);
1138 while (!Nodes.empty()) {
1139 auto N = Nodes.pop_back_val();
1140 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1141 continue;
1142 for (const SDValue &Op : N->op_values()) {
1143 if (Op->getOpcode() == ISD::TokenFactor)
1144 Nodes.push_back(Op.getNode());
1145 else {
1146 // We rely on topological ordering of node ids for checking for
1147 // cycles when fusing nodes during selection. All unselected nodes
1148 // successors of an already selected node should have a negative id.
1149 // This assertion will catch such cases. If this assertion triggers
1150 // it is likely you using DAG-level Value/Node replacement functions
1151 // (versus equivalent ISEL replacement) in backend-specific
1152 // selections. See comment in EnforceNodeIdInvariant for more
1153 // details.
1154 assert(Op->getNodeId() != -1 &&
1155 "Node has already selected predecessor node");
1159 #endif
1161 // When we are using non-default rounding modes or FP exception behavior
1162 // FP operations are represented by StrictFP pseudo-operations. For
1163 // targets that do not (yet) understand strict FP operations directly,
1164 // we convert them to normal FP opcodes instead at this point. This
1165 // will allow them to be handled by existing target-specific instruction
1166 // selectors.
1167 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1168 // For some opcodes, we need to call TLI->getOperationAction using
1169 // the first operand type instead of the result type. Note that this
1170 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1171 EVT ActionVT;
1172 switch (Node->getOpcode()) {
1173 case ISD::STRICT_SINT_TO_FP:
1174 case ISD::STRICT_UINT_TO_FP:
1175 case ISD::STRICT_LRINT:
1176 case ISD::STRICT_LLRINT:
1177 case ISD::STRICT_LROUND:
1178 case ISD::STRICT_LLROUND:
1179 case ISD::STRICT_FSETCC:
1180 case ISD::STRICT_FSETCCS:
1181 ActionVT = Node->getOperand(1).getValueType();
1182 break;
1183 default:
1184 ActionVT = Node->getValueType(0);
1185 break;
1187 if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1188 == TargetLowering::Expand)
1189 Node = CurDAG->mutateStrictFPToFP(Node);
1192 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1193 Node->dump(CurDAG));
1195 Select(Node);
1198 CurDAG->setRoot(Dummy.getValue());
1201 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1203 PostprocessISelDAG();
1206 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1207 for (const User *U : CPI->users()) {
1208 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1209 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1210 if (IID == Intrinsic::eh_exceptionpointer ||
1211 IID == Intrinsic::eh_exceptioncode)
1212 return true;
1215 return false;
1218 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1219 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1220 // and store the mapping in the function.
1221 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1222 const CatchPadInst *CPI) {
1223 MachineFunction *MF = MBB->getParent();
1224 // In case of single catch (...), we don't emit LSDA, so we don't need
1225 // this information.
1226 bool IsSingleCatchAllClause =
1227 CPI->getNumArgOperands() == 1 &&
1228 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1229 if (!IsSingleCatchAllClause) {
1230 // Create a mapping from landing pad label to landing pad index.
1231 bool IntrFound = false;
1232 for (const User *U : CPI->users()) {
1233 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1234 Intrinsic::ID IID = Call->getIntrinsicID();
1235 if (IID == Intrinsic::wasm_landingpad_index) {
1236 Value *IndexArg = Call->getArgOperand(1);
1237 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1238 MF->setWasmLandingPadIndex(MBB, Index);
1239 IntrFound = true;
1240 break;
1244 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1245 (void)IntrFound;
1249 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1250 /// do other setup for EH landing-pad blocks.
1251 bool SelectionDAGISel::PrepareEHLandingPad() {
1252 MachineBasicBlock *MBB = FuncInfo->MBB;
1253 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1254 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1255 const TargetRegisterClass *PtrRC =
1256 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1258 auto Pers = classifyEHPersonality(PersonalityFn);
1260 // Catchpads have one live-in register, which typically holds the exception
1261 // pointer or code.
1262 if (isFuncletEHPersonality(Pers)) {
1263 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1264 if (hasExceptionPointerOrCodeUser(CPI)) {
1265 // Get or create the virtual register to hold the pointer or code. Mark
1266 // the live in physreg and copy into the vreg.
1267 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1268 assert(EHPhysReg && "target lacks exception pointer register");
1269 MBB->addLiveIn(EHPhysReg);
1270 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1271 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1272 TII->get(TargetOpcode::COPY), VReg)
1273 .addReg(EHPhysReg, RegState::Kill);
1276 return true;
1279 // Add a label to mark the beginning of the landing pad. Deletion of the
1280 // landing pad can thus be detected via the MachineModuleInfo.
1281 MCSymbol *Label = MF->addLandingPad(MBB);
1283 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1284 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1285 .addSym(Label);
1287 // If the unwinder does not preserve all registers, ensure that the
1288 // function marks the clobbered registers as used.
1289 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1290 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1291 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1293 if (Pers == EHPersonality::Wasm_CXX) {
1294 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1295 mapWasmLandingPadIndex(MBB, CPI);
1296 } else {
1297 // Assign the call site to the landing pad's begin label.
1298 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1299 // Mark exception register as live in.
1300 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1301 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1302 // Mark exception selector register as live in.
1303 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1304 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1307 return true;
1310 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1311 /// side-effect free and is either dead or folded into a generated instruction.
1312 /// Return false if it needs to be emitted.
1313 static bool isFoldedOrDeadInstruction(const Instruction *I,
1314 const FunctionLoweringInfo &FuncInfo) {
1315 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1316 !I->isTerminator() && // Terminators aren't folded.
1317 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1318 !I->isEHPad() && // EH pad instructions aren't folded.
1319 !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1322 /// Collect llvm.dbg.declare information. This is done after argument lowering
1323 /// in case the declarations refer to arguments.
1324 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1325 MachineFunction *MF = FuncInfo.MF;
1326 const DataLayout &DL = MF->getDataLayout();
1327 for (const BasicBlock &BB : *FuncInfo.Fn) {
1328 for (const Instruction &I : BB) {
1329 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1330 if (!DI)
1331 continue;
1333 assert(DI->getVariable() && "Missing variable");
1334 assert(DI->getDebugLoc() && "Missing location");
1335 const Value *Address = DI->getAddress();
1336 if (!Address) {
1337 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1338 << " (bad address)\n");
1339 continue;
1342 // Look through casts and constant offset GEPs. These mostly come from
1343 // inalloca.
1344 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1345 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1347 // Check if the variable is a static alloca or a byval or inalloca
1348 // argument passed in memory. If it is not, then we will ignore this
1349 // intrinsic and handle this during isel like dbg.value.
1350 int FI = std::numeric_limits<int>::max();
1351 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1352 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1353 if (SI != FuncInfo.StaticAllocaMap.end())
1354 FI = SI->second;
1355 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1356 FI = FuncInfo.getArgumentFrameIndex(Arg);
1358 if (FI == std::numeric_limits<int>::max())
1359 continue;
1361 DIExpression *Expr = DI->getExpression();
1362 if (Offset.getBoolValue())
1363 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1364 Offset.getZExtValue());
1365 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1366 << ", " << *DI << "\n");
1367 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1372 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1373 FastISelFailed = false;
1374 // Initialize the Fast-ISel state, if needed.
1375 FastISel *FastIS = nullptr;
1376 if (TM.Options.EnableFastISel) {
1377 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1378 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1381 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1383 // Lower arguments up front. An RPO iteration always visits the entry block
1384 // first.
1385 assert(*RPOT.begin() == &Fn.getEntryBlock());
1386 ++NumEntryBlocks;
1388 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1389 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1390 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1392 CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1394 if (!FastIS) {
1395 LowerArguments(Fn);
1396 } else {
1397 // See if fast isel can lower the arguments.
1398 FastIS->startNewBlock();
1399 if (!FastIS->lowerArguments()) {
1400 FastISelFailed = true;
1401 // Fast isel failed to lower these arguments
1402 ++NumFastIselFailLowerArguments;
1404 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1405 Fn.getSubprogram(),
1406 &Fn.getEntryBlock());
1407 R << "FastISel didn't lower all arguments: "
1408 << ore::NV("Prototype", Fn.getType());
1409 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1411 // Use SelectionDAG argument lowering
1412 LowerArguments(Fn);
1413 CurDAG->setRoot(SDB->getControlRoot());
1414 SDB->clear();
1415 CodeGenAndEmitDAG();
1418 // If we inserted any instructions at the beginning, make a note of
1419 // where they are, so we can be sure to emit subsequent instructions
1420 // after them.
1421 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1422 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1423 else
1424 FastIS->setLastLocalValue(nullptr);
1427 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1429 if (FastIS && Inserted)
1430 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1432 processDbgDeclares(*FuncInfo);
1434 // Iterate over all basic blocks in the function.
1435 StackProtector &SP = getAnalysis<StackProtector>();
1436 for (const BasicBlock *LLVMBB : RPOT) {
1437 if (OptLevel != CodeGenOpt::None) {
1438 bool AllPredsVisited = true;
1439 for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1440 if (!FuncInfo->VisitedBBs.count(Pred)) {
1441 AllPredsVisited = false;
1442 break;
1446 if (AllPredsVisited) {
1447 for (const PHINode &PN : LLVMBB->phis())
1448 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1449 } else {
1450 for (const PHINode &PN : LLVMBB->phis())
1451 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1454 FuncInfo->VisitedBBs.insert(LLVMBB);
1457 BasicBlock::const_iterator const Begin =
1458 LLVMBB->getFirstNonPHI()->getIterator();
1459 BasicBlock::const_iterator const End = LLVMBB->end();
1460 BasicBlock::const_iterator BI = End;
1462 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1463 if (!FuncInfo->MBB)
1464 continue; // Some blocks like catchpads have no code or MBB.
1466 // Insert new instructions after any phi or argument setup code.
1467 FuncInfo->InsertPt = FuncInfo->MBB->end();
1469 // Setup an EH landing-pad block.
1470 FuncInfo->ExceptionPointerVirtReg = 0;
1471 FuncInfo->ExceptionSelectorVirtReg = 0;
1472 if (LLVMBB->isEHPad())
1473 if (!PrepareEHLandingPad())
1474 continue;
1476 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1477 if (FastIS) {
1478 if (LLVMBB != &Fn.getEntryBlock())
1479 FastIS->startNewBlock();
1481 unsigned NumFastIselRemaining = std::distance(Begin, End);
1483 // Pre-assign swifterror vregs.
1484 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1486 // Do FastISel on as many instructions as possible.
1487 for (; BI != Begin; --BI) {
1488 const Instruction *Inst = &*std::prev(BI);
1490 // If we no longer require this instruction, skip it.
1491 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1492 ElidedArgCopyInstrs.count(Inst)) {
1493 --NumFastIselRemaining;
1494 continue;
1497 // Bottom-up: reset the insert pos at the top, after any local-value
1498 // instructions.
1499 FastIS->recomputeInsertPt();
1501 // Try to select the instruction with FastISel.
1502 if (FastIS->selectInstruction(Inst)) {
1503 --NumFastIselRemaining;
1504 ++NumFastIselSuccess;
1505 // If fast isel succeeded, skip over all the folded instructions, and
1506 // then see if there is a load right before the selected instructions.
1507 // Try to fold the load if so.
1508 const Instruction *BeforeInst = Inst;
1509 while (BeforeInst != &*Begin) {
1510 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1511 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1512 break;
1514 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1515 BeforeInst->hasOneUse() &&
1516 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1517 // If we succeeded, don't re-select the load.
1518 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1519 --NumFastIselRemaining;
1520 ++NumFastIselSuccess;
1522 continue;
1525 FastISelFailed = true;
1527 // Then handle certain instructions as single-LLVM-Instruction blocks.
1528 // We cannot separate out GCrelocates to their own blocks since we need
1529 // to keep track of gc-relocates for a particular gc-statepoint. This is
1530 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1531 // visitGCRelocate.
1532 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1533 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1534 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1535 Inst->getDebugLoc(), LLVMBB);
1537 R << "FastISel missed call";
1539 if (R.isEnabled() || EnableFastISelAbort) {
1540 std::string InstStrStorage;
1541 raw_string_ostream InstStr(InstStrStorage);
1542 InstStr << *Inst;
1544 R << ": " << InstStr.str();
1547 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1549 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1550 !Inst->use_empty()) {
1551 Register &R = FuncInfo->ValueMap[Inst];
1552 if (!R)
1553 R = FuncInfo->CreateRegs(Inst);
1556 bool HadTailCall = false;
1557 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1558 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1560 // If the call was emitted as a tail call, we're done with the block.
1561 // We also need to delete any previously emitted instructions.
1562 if (HadTailCall) {
1563 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1564 --BI;
1565 break;
1568 // Recompute NumFastIselRemaining as Selection DAG instruction
1569 // selection may have handled the call, input args, etc.
1570 unsigned RemainingNow = std::distance(Begin, BI);
1571 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1572 NumFastIselRemaining = RemainingNow;
1573 continue;
1576 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1577 Inst->getDebugLoc(), LLVMBB);
1579 bool ShouldAbort = EnableFastISelAbort;
1580 if (Inst->isTerminator()) {
1581 // Use a different message for terminator misses.
1582 R << "FastISel missed terminator";
1583 // Don't abort for terminator unless the level is really high
1584 ShouldAbort = (EnableFastISelAbort > 2);
1585 } else {
1586 R << "FastISel missed";
1589 if (R.isEnabled() || EnableFastISelAbort) {
1590 std::string InstStrStorage;
1591 raw_string_ostream InstStr(InstStrStorage);
1592 InstStr << *Inst;
1593 R << ": " << InstStr.str();
1596 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1598 NumFastIselFailures += NumFastIselRemaining;
1599 break;
1602 FastIS->recomputeInsertPt();
1605 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1606 bool FunctionBasedInstrumentation =
1607 TLI->getSSPStackGuardCheck(*Fn.getParent());
1608 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1609 FunctionBasedInstrumentation);
1612 if (Begin != BI)
1613 ++NumDAGBlocks;
1614 else
1615 ++NumFastIselBlocks;
1617 if (Begin != BI) {
1618 // Run SelectionDAG instruction selection on the remainder of the block
1619 // not handled by FastISel. If FastISel is not run, this is the entire
1620 // block.
1621 bool HadTailCall;
1622 SelectBasicBlock(Begin, BI, HadTailCall);
1624 // But if FastISel was run, we already selected some of the block.
1625 // If we emitted a tail-call, we need to delete any previously emitted
1626 // instruction that follows it.
1627 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1628 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1631 if (FastIS)
1632 FastIS->finishBasicBlock();
1633 FinishBasicBlock();
1634 FuncInfo->PHINodesToUpdate.clear();
1635 ElidedArgCopyInstrs.clear();
1638 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1640 SwiftError->propagateVRegs();
1642 delete FastIS;
1643 SDB->clearDanglingDebugInfo();
1644 SDB->SPDescriptor.resetPerFunctionState();
1647 /// Given that the input MI is before a partial terminator sequence TSeq, return
1648 /// true if M + TSeq also a partial terminator sequence.
1650 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1651 /// lowering copy vregs into physical registers, which are then passed into
1652 /// terminator instructors so we can satisfy ABI constraints. A partial
1653 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1654 /// may be the whole terminator sequence).
1655 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1656 // If we do not have a copy or an implicit def, we return true if and only if
1657 // MI is a debug value.
1658 if (!MI.isCopy() && !MI.isImplicitDef())
1659 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1660 // physical registers if there is debug info associated with the terminator
1661 // of our mbb. We want to include said debug info in our terminator
1662 // sequence, so we return true in that case.
1663 return MI.isDebugInstr();
1665 // We have left the terminator sequence if we are not doing one of the
1666 // following:
1668 // 1. Copying a vreg into a physical register.
1669 // 2. Copying a vreg into a vreg.
1670 // 3. Defining a register via an implicit def.
1672 // OPI should always be a register definition...
1673 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1674 if (!OPI->isReg() || !OPI->isDef())
1675 return false;
1677 // Defining any register via an implicit def is always ok.
1678 if (MI.isImplicitDef())
1679 return true;
1681 // Grab the copy source...
1682 MachineInstr::const_mop_iterator OPI2 = OPI;
1683 ++OPI2;
1684 assert(OPI2 != MI.operands_end()
1685 && "Should have a copy implying we should have 2 arguments.");
1687 // Make sure that the copy dest is not a vreg when the copy source is a
1688 // physical register.
1689 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1690 Register::isPhysicalRegister(OPI2->getReg())))
1691 return false;
1693 return true;
1696 /// Find the split point at which to splice the end of BB into its success stack
1697 /// protector check machine basic block.
1699 /// On many platforms, due to ABI constraints, terminators, even before register
1700 /// allocation, use physical registers. This creates an issue for us since
1701 /// physical registers at this point can not travel across basic
1702 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1703 /// when they enter functions and moves them through a sequence of copies back
1704 /// into the physical registers right before the terminator creating a
1705 /// ``Terminator Sequence''. This function is searching for the beginning of the
1706 /// terminator sequence so that we can ensure that we splice off not just the
1707 /// terminator, but additionally the copies that move the vregs into the
1708 /// physical registers.
1709 static MachineBasicBlock::iterator
1710 FindSplitPointForStackProtector(MachineBasicBlock *BB,
1711 const TargetInstrInfo &TII) {
1712 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1713 if (SplitPoint == BB->begin())
1714 return SplitPoint;
1716 MachineBasicBlock::iterator Start = BB->begin();
1717 MachineBasicBlock::iterator Previous = SplitPoint;
1718 --Previous;
1720 if (TII.isTailCall(*SplitPoint) &&
1721 Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) {
1722 // call itself, then we must insert before the sequence even starts. For
1723 // example:
1724 // <split point>
1725 // ADJCALLSTACKDOWN ...
1726 // <Moves>
1727 // ADJCALLSTACKUP ...
1728 // TAILJMP somewhere
1729 // On the other hand, it could be an unrelated call in which case this tail call
1730 // has to register moves of its own and should be the split point. For example:
1731 // ADJCALLSTACKDOWN
1732 // CALL something_else
1733 // ADJCALLSTACKUP
1734 // <split point>
1735 // TAILJMP somewhere
1736 do {
1737 --Previous;
1738 if (Previous->isCall())
1739 return SplitPoint;
1740 } while(Previous->getOpcode() != TII.getCallFrameSetupOpcode());
1742 return Previous;
1745 while (MIIsInTerminatorSequence(*Previous)) {
1746 SplitPoint = Previous;
1747 if (Previous == Start)
1748 break;
1749 --Previous;
1752 return SplitPoint;
1755 void
1756 SelectionDAGISel::FinishBasicBlock() {
1757 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1758 << FuncInfo->PHINodesToUpdate.size() << "\n";
1759 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1760 ++i) dbgs()
1761 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1762 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1764 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1765 // PHI nodes in successors.
1766 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1767 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1768 assert(PHI->isPHI() &&
1769 "This is not a machine PHI node that we are updating!");
1770 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1771 continue;
1772 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1775 // Handle stack protector.
1776 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1777 // The target provides a guard check function. There is no need to
1778 // generate error handling code or to split current basic block.
1779 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1781 // Add load and check to the basicblock.
1782 FuncInfo->MBB = ParentMBB;
1783 FuncInfo->InsertPt =
1784 FindSplitPointForStackProtector(ParentMBB, *TII);
1785 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1786 CurDAG->setRoot(SDB->getRoot());
1787 SDB->clear();
1788 CodeGenAndEmitDAG();
1790 // Clear the Per-BB State.
1791 SDB->SPDescriptor.resetPerBBState();
1792 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1793 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1794 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1796 // Find the split point to split the parent mbb. At the same time copy all
1797 // physical registers used in the tail of parent mbb into virtual registers
1798 // before the split point and back into physical registers after the split
1799 // point. This prevents us needing to deal with Live-ins and many other
1800 // register allocation issues caused by us splitting the parent mbb. The
1801 // register allocator will clean up said virtual copies later on.
1802 MachineBasicBlock::iterator SplitPoint =
1803 FindSplitPointForStackProtector(ParentMBB, *TII);
1805 // Splice the terminator of ParentMBB into SuccessMBB.
1806 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1807 SplitPoint,
1808 ParentMBB->end());
1810 // Add compare/jump on neq/jump to the parent BB.
1811 FuncInfo->MBB = ParentMBB;
1812 FuncInfo->InsertPt = ParentMBB->end();
1813 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1814 CurDAG->setRoot(SDB->getRoot());
1815 SDB->clear();
1816 CodeGenAndEmitDAG();
1818 // CodeGen Failure MBB if we have not codegened it yet.
1819 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1820 if (FailureMBB->empty()) {
1821 FuncInfo->MBB = FailureMBB;
1822 FuncInfo->InsertPt = FailureMBB->end();
1823 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1824 CurDAG->setRoot(SDB->getRoot());
1825 SDB->clear();
1826 CodeGenAndEmitDAG();
1829 // Clear the Per-BB State.
1830 SDB->SPDescriptor.resetPerBBState();
1833 // Lower each BitTestBlock.
1834 for (auto &BTB : SDB->SL->BitTestCases) {
1835 // Lower header first, if it wasn't already lowered
1836 if (!BTB.Emitted) {
1837 // Set the current basic block to the mbb we wish to insert the code into
1838 FuncInfo->MBB = BTB.Parent;
1839 FuncInfo->InsertPt = FuncInfo->MBB->end();
1840 // Emit the code
1841 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1842 CurDAG->setRoot(SDB->getRoot());
1843 SDB->clear();
1844 CodeGenAndEmitDAG();
1847 BranchProbability UnhandledProb = BTB.Prob;
1848 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1849 UnhandledProb -= BTB.Cases[j].ExtraProb;
1850 // Set the current basic block to the mbb we wish to insert the code into
1851 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1852 FuncInfo->InsertPt = FuncInfo->MBB->end();
1853 // Emit the code
1855 // If all cases cover a contiguous range, it is not necessary to jump to
1856 // the default block after the last bit test fails. This is because the
1857 // range check during bit test header creation has guaranteed that every
1858 // case here doesn't go outside the range. In this case, there is no need
1859 // to perform the last bit test, as it will always be true. Instead, make
1860 // the second-to-last bit-test fall through to the target of the last bit
1861 // test, and delete the last bit test.
1863 MachineBasicBlock *NextMBB;
1864 if (BTB.ContiguousRange && j + 2 == ej) {
1865 // Second-to-last bit-test with contiguous range: fall through to the
1866 // target of the final bit test.
1867 NextMBB = BTB.Cases[j + 1].TargetBB;
1868 } else if (j + 1 == ej) {
1869 // For the last bit test, fall through to Default.
1870 NextMBB = BTB.Default;
1871 } else {
1872 // Otherwise, fall through to the next bit test.
1873 NextMBB = BTB.Cases[j + 1].ThisBB;
1876 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1877 FuncInfo->MBB);
1879 CurDAG->setRoot(SDB->getRoot());
1880 SDB->clear();
1881 CodeGenAndEmitDAG();
1883 if (BTB.ContiguousRange && j + 2 == ej) {
1884 // Since we're not going to use the final bit test, remove it.
1885 BTB.Cases.pop_back();
1886 break;
1890 // Update PHI Nodes
1891 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1892 pi != pe; ++pi) {
1893 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1894 MachineBasicBlock *PHIBB = PHI->getParent();
1895 assert(PHI->isPHI() &&
1896 "This is not a machine PHI node that we are updating!");
1897 // This is "default" BB. We have two jumps to it. From "header" BB and
1898 // from last "case" BB, unless the latter was skipped.
1899 if (PHIBB == BTB.Default) {
1900 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1901 if (!BTB.ContiguousRange) {
1902 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1903 .addMBB(BTB.Cases.back().ThisBB);
1906 // One of "cases" BB.
1907 for (unsigned j = 0, ej = BTB.Cases.size();
1908 j != ej; ++j) {
1909 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1910 if (cBB->isSuccessor(PHIBB))
1911 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1915 SDB->SL->BitTestCases.clear();
1917 // If the JumpTable record is filled in, then we need to emit a jump table.
1918 // Updating the PHI nodes is tricky in this case, since we need to determine
1919 // whether the PHI is a successor of the range check MBB or the jump table MBB
1920 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1921 // Lower header first, if it wasn't already lowered
1922 if (!SDB->SL->JTCases[i].first.Emitted) {
1923 // Set the current basic block to the mbb we wish to insert the code into
1924 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1925 FuncInfo->InsertPt = FuncInfo->MBB->end();
1926 // Emit the code
1927 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1928 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1929 CurDAG->setRoot(SDB->getRoot());
1930 SDB->clear();
1931 CodeGenAndEmitDAG();
1934 // Set the current basic block to the mbb we wish to insert the code into
1935 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1936 FuncInfo->InsertPt = FuncInfo->MBB->end();
1937 // Emit the code
1938 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1939 CurDAG->setRoot(SDB->getRoot());
1940 SDB->clear();
1941 CodeGenAndEmitDAG();
1943 // Update PHI Nodes
1944 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1945 pi != pe; ++pi) {
1946 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1947 MachineBasicBlock *PHIBB = PHI->getParent();
1948 assert(PHI->isPHI() &&
1949 "This is not a machine PHI node that we are updating!");
1950 // "default" BB. We can go there only from header BB.
1951 if (PHIBB == SDB->SL->JTCases[i].second.Default)
1952 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1953 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1954 // JT BB. Just iterate over successors here
1955 if (FuncInfo->MBB->isSuccessor(PHIBB))
1956 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1959 SDB->SL->JTCases.clear();
1961 // If we generated any switch lowering information, build and codegen any
1962 // additional DAGs necessary.
1963 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1964 // Set the current basic block to the mbb we wish to insert the code into
1965 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1966 FuncInfo->InsertPt = FuncInfo->MBB->end();
1968 // Determine the unique successors.
1969 SmallVector<MachineBasicBlock *, 2> Succs;
1970 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1971 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1972 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1974 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1975 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1976 CurDAG->setRoot(SDB->getRoot());
1977 SDB->clear();
1978 CodeGenAndEmitDAG();
1980 // Remember the last block, now that any splitting is done, for use in
1981 // populating PHI nodes in successors.
1982 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1984 // Handle any PHI nodes in successors of this chunk, as if we were coming
1985 // from the original BB before switch expansion. Note that PHI nodes can
1986 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1987 // handle them the right number of times.
1988 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1989 FuncInfo->MBB = Succs[i];
1990 FuncInfo->InsertPt = FuncInfo->MBB->end();
1991 // FuncInfo->MBB may have been removed from the CFG if a branch was
1992 // constant folded.
1993 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1994 for (MachineBasicBlock::iterator
1995 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1996 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1997 MachineInstrBuilder PHI(*MF, MBBI);
1998 // This value for this PHI node is recorded in PHINodesToUpdate.
1999 for (unsigned pn = 0; ; ++pn) {
2000 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2001 "Didn't find PHI entry!");
2002 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2003 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2004 break;
2011 SDB->SL->SwitchCases.clear();
2014 /// Create the scheduler. If a specific scheduler was specified
2015 /// via the SchedulerRegistry, use it, otherwise select the
2016 /// one preferred by the target.
2018 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2019 return ISHeuristic(this, OptLevel);
2022 //===----------------------------------------------------------------------===//
2023 // Helper functions used by the generated instruction selector.
2024 //===----------------------------------------------------------------------===//
2025 // Calls to these methods are generated by tblgen.
2027 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2028 /// the dag combiner simplified the 255, we still want to match. RHS is the
2029 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2030 /// specified in the .td file (e.g. 255).
2031 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2032 int64_t DesiredMaskS) const {
2033 const APInt &ActualMask = RHS->getAPIntValue();
2034 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2036 // If the actual mask exactly matches, success!
2037 if (ActualMask == DesiredMask)
2038 return true;
2040 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2041 if (!ActualMask.isSubsetOf(DesiredMask))
2042 return false;
2044 // Otherwise, the DAG Combiner may have proven that the value coming in is
2045 // either already zero or is not demanded. Check for known zero input bits.
2046 APInt NeededMask = DesiredMask & ~ActualMask;
2047 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2048 return true;
2050 // TODO: check to see if missing bits are just not demanded.
2052 // Otherwise, this pattern doesn't match.
2053 return false;
2056 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2057 /// the dag combiner simplified the 255, we still want to match. RHS is the
2058 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2059 /// specified in the .td file (e.g. 255).
2060 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2061 int64_t DesiredMaskS) const {
2062 const APInt &ActualMask = RHS->getAPIntValue();
2063 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2065 // If the actual mask exactly matches, success!
2066 if (ActualMask == DesiredMask)
2067 return true;
2069 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2070 if (!ActualMask.isSubsetOf(DesiredMask))
2071 return false;
2073 // Otherwise, the DAG Combiner may have proven that the value coming in is
2074 // either already zero or is not demanded. Check for known zero input bits.
2075 APInt NeededMask = DesiredMask & ~ActualMask;
2076 KnownBits Known = CurDAG->computeKnownBits(LHS);
2078 // If all the missing bits in the or are already known to be set, match!
2079 if (NeededMask.isSubsetOf(Known.One))
2080 return true;
2082 // TODO: check to see if missing bits are just not demanded.
2084 // Otherwise, this pattern doesn't match.
2085 return false;
2088 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2089 /// by tblgen. Others should not call it.
2090 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2091 const SDLoc &DL) {
2092 std::vector<SDValue> InOps;
2093 std::swap(InOps, Ops);
2095 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2096 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2097 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2098 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2100 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2101 if (InOps[e-1].getValueType() == MVT::Glue)
2102 --e; // Don't process a glue operand if it is here.
2104 while (i != e) {
2105 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2106 if (!InlineAsm::isMemKind(Flags)) {
2107 // Just skip over this operand, copying the operands verbatim.
2108 Ops.insert(Ops.end(), InOps.begin()+i,
2109 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2110 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2111 } else {
2112 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2113 "Memory operand with multiple values?");
2115 unsigned TiedToOperand;
2116 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2117 // We need the constraint ID from the operand this is tied to.
2118 unsigned CurOp = InlineAsm::Op_FirstOperand;
2119 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2120 for (; TiedToOperand; --TiedToOperand) {
2121 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2122 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2126 // Otherwise, this is a memory operand. Ask the target to select it.
2127 std::vector<SDValue> SelOps;
2128 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2129 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2130 report_fatal_error("Could not match memory address. Inline asm"
2131 " failure!");
2133 // Add this to the output node.
2134 unsigned NewFlags =
2135 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2136 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2137 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2138 llvm::append_range(Ops, SelOps);
2139 i += 2;
2143 // Add the glue input back if present.
2144 if (e != InOps.size())
2145 Ops.push_back(InOps.back());
2148 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2149 /// SDNode.
2151 static SDNode *findGlueUse(SDNode *N) {
2152 unsigned FlagResNo = N->getNumValues()-1;
2153 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2154 SDUse &Use = I.getUse();
2155 if (Use.getResNo() == FlagResNo)
2156 return Use.getUser();
2158 return nullptr;
2161 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2162 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2163 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2164 bool IgnoreChains) {
2165 SmallPtrSet<const SDNode *, 16> Visited;
2166 SmallVector<const SDNode *, 16> WorkList;
2167 // Only check if we have non-immediate uses of Def.
2168 if (ImmedUse->isOnlyUserOf(Def))
2169 return false;
2171 // We don't care about paths to Def that go through ImmedUse so mark it
2172 // visited and mark non-def operands as used.
2173 Visited.insert(ImmedUse);
2174 for (const SDValue &Op : ImmedUse->op_values()) {
2175 SDNode *N = Op.getNode();
2176 // Ignore chain deps (they are validated by
2177 // HandleMergeInputChains) and immediate uses
2178 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2179 continue;
2180 if (!Visited.insert(N).second)
2181 continue;
2182 WorkList.push_back(N);
2185 // Initialize worklist to operands of Root.
2186 if (Root != ImmedUse) {
2187 for (const SDValue &Op : Root->op_values()) {
2188 SDNode *N = Op.getNode();
2189 // Ignore chains (they are validated by HandleMergeInputChains)
2190 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2191 continue;
2192 if (!Visited.insert(N).second)
2193 continue;
2194 WorkList.push_back(N);
2198 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2201 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2202 /// operand node N of U during instruction selection that starts at Root.
2203 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2204 SDNode *Root) const {
2205 if (OptLevel == CodeGenOpt::None) return false;
2206 return N.hasOneUse();
2209 /// IsLegalToFold - Returns true if the specific operand node N of
2210 /// U can be folded during instruction selection that starts at Root.
2211 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2212 CodeGenOpt::Level OptLevel,
2213 bool IgnoreChains) {
2214 if (OptLevel == CodeGenOpt::None) return false;
2216 // If Root use can somehow reach N through a path that that doesn't contain
2217 // U then folding N would create a cycle. e.g. In the following
2218 // diagram, Root can reach N through X. If N is folded into Root, then
2219 // X is both a predecessor and a successor of U.
2221 // [N*] //
2222 // ^ ^ //
2223 // / \ //
2224 // [U*] [X]? //
2225 // ^ ^ //
2226 // \ / //
2227 // \ / //
2228 // [Root*] //
2230 // * indicates nodes to be folded together.
2232 // If Root produces glue, then it gets (even more) interesting. Since it
2233 // will be "glued" together with its glue use in the scheduler, we need to
2234 // check if it might reach N.
2236 // [N*] //
2237 // ^ ^ //
2238 // / \ //
2239 // [U*] [X]? //
2240 // ^ ^ //
2241 // \ \ //
2242 // \ | //
2243 // [Root*] | //
2244 // ^ | //
2245 // f | //
2246 // | / //
2247 // [Y] / //
2248 // ^ / //
2249 // f / //
2250 // | / //
2251 // [GU] //
2253 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2254 // (call it Fold), then X is a predecessor of GU and a successor of
2255 // Fold. But since Fold and GU are glued together, this will create
2256 // a cycle in the scheduling graph.
2258 // If the node has glue, walk down the graph to the "lowest" node in the
2259 // glueged set.
2260 EVT VT = Root->getValueType(Root->getNumValues()-1);
2261 while (VT == MVT::Glue) {
2262 SDNode *GU = findGlueUse(Root);
2263 if (!GU)
2264 break;
2265 Root = GU;
2266 VT = Root->getValueType(Root->getNumValues()-1);
2268 // If our query node has a glue result with a use, we've walked up it. If
2269 // the user (which has already been selected) has a chain or indirectly uses
2270 // the chain, HandleMergeInputChains will not consider it. Because of
2271 // this, we cannot ignore chains in this predicate.
2272 IgnoreChains = false;
2275 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2278 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2279 SDLoc DL(N);
2281 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2282 SelectInlineAsmMemoryOperands(Ops, DL);
2284 const EVT VTs[] = {MVT::Other, MVT::Glue};
2285 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2286 New->setNodeId(-1);
2287 ReplaceUses(N, New.getNode());
2288 CurDAG->RemoveDeadNode(N);
2291 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2292 SDLoc dl(Op);
2293 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2294 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2296 EVT VT = Op->getValueType(0);
2297 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2298 Register Reg =
2299 TLI->getRegisterByName(RegStr->getString().data(), Ty,
2300 CurDAG->getMachineFunction());
2301 SDValue New = CurDAG->getCopyFromReg(
2302 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2303 New->setNodeId(-1);
2304 ReplaceUses(Op, New.getNode());
2305 CurDAG->RemoveDeadNode(Op);
2308 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2309 SDLoc dl(Op);
2310 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2311 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2313 EVT VT = Op->getOperand(2).getValueType();
2314 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2316 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2317 CurDAG->getMachineFunction());
2318 SDValue New = CurDAG->getCopyToReg(
2319 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2320 New->setNodeId(-1);
2321 ReplaceUses(Op, New.getNode());
2322 CurDAG->RemoveDeadNode(Op);
2325 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2326 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2329 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2330 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2331 // If FREEZE instruction is added later, the code below must be changed as
2332 // well.
2333 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2334 N->getOperand(0));
2337 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2338 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2339 N->getOperand(0));
2342 /// GetVBR - decode a vbr encoding whose top bit is set.
2343 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2344 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2345 assert(Val >= 128 && "Not a VBR");
2346 Val &= 127; // Remove first vbr bit.
2348 unsigned Shift = 7;
2349 uint64_t NextBits;
2350 do {
2351 NextBits = MatcherTable[Idx++];
2352 Val |= (NextBits&127) << Shift;
2353 Shift += 7;
2354 } while (NextBits & 128);
2356 return Val;
2359 /// When a match is complete, this method updates uses of interior chain results
2360 /// to use the new results.
2361 void SelectionDAGISel::UpdateChains(
2362 SDNode *NodeToMatch, SDValue InputChain,
2363 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2364 SmallVector<SDNode*, 4> NowDeadNodes;
2366 // Now that all the normal results are replaced, we replace the chain and
2367 // glue results if present.
2368 if (!ChainNodesMatched.empty()) {
2369 assert(InputChain.getNode() &&
2370 "Matched input chains but didn't produce a chain");
2371 // Loop over all of the nodes we matched that produced a chain result.
2372 // Replace all the chain results with the final chain we ended up with.
2373 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2374 SDNode *ChainNode = ChainNodesMatched[i];
2375 // If ChainNode is null, it's because we replaced it on a previous
2376 // iteration and we cleared it out of the map. Just skip it.
2377 if (!ChainNode)
2378 continue;
2380 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2381 "Deleted node left in chain");
2383 // Don't replace the results of the root node if we're doing a
2384 // MorphNodeTo.
2385 if (ChainNode == NodeToMatch && isMorphNodeTo)
2386 continue;
2388 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2389 if (ChainVal.getValueType() == MVT::Glue)
2390 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2391 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2392 SelectionDAG::DAGNodeDeletedListener NDL(
2393 *CurDAG, [&](SDNode *N, SDNode *E) {
2394 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2395 static_cast<SDNode *>(nullptr));
2397 if (ChainNode->getOpcode() != ISD::TokenFactor)
2398 ReplaceUses(ChainVal, InputChain);
2400 // If the node became dead and we haven't already seen it, delete it.
2401 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2402 !llvm::is_contained(NowDeadNodes, ChainNode))
2403 NowDeadNodes.push_back(ChainNode);
2407 if (!NowDeadNodes.empty())
2408 CurDAG->RemoveDeadNodes(NowDeadNodes);
2410 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2413 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2414 /// operation for when the pattern matched at least one node with a chains. The
2415 /// input vector contains a list of all of the chained nodes that we match. We
2416 /// must determine if this is a valid thing to cover (i.e. matching it won't
2417 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2418 /// be used as the input node chain for the generated nodes.
2419 static SDValue
2420 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2421 SelectionDAG *CurDAG) {
2423 SmallPtrSet<const SDNode *, 16> Visited;
2424 SmallVector<const SDNode *, 8> Worklist;
2425 SmallVector<SDValue, 3> InputChains;
2426 unsigned int Max = 8192;
2428 // Quick exit on trivial merge.
2429 if (ChainNodesMatched.size() == 1)
2430 return ChainNodesMatched[0]->getOperand(0);
2432 // Add chains that aren't already added (internal). Peek through
2433 // token factors.
2434 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2435 if (V.getValueType() != MVT::Other)
2436 return;
2437 if (V->getOpcode() == ISD::EntryToken)
2438 return;
2439 if (!Visited.insert(V.getNode()).second)
2440 return;
2441 if (V->getOpcode() == ISD::TokenFactor) {
2442 for (const SDValue &Op : V->op_values())
2443 AddChains(Op);
2444 } else
2445 InputChains.push_back(V);
2448 for (auto *N : ChainNodesMatched) {
2449 Worklist.push_back(N);
2450 Visited.insert(N);
2453 while (!Worklist.empty())
2454 AddChains(Worklist.pop_back_val()->getOperand(0));
2456 // Skip the search if there are no chain dependencies.
2457 if (InputChains.size() == 0)
2458 return CurDAG->getEntryNode();
2460 // If one of these chains is a successor of input, we must have a
2461 // node that is both the predecessor and successor of the
2462 // to-be-merged nodes. Fail.
2463 Visited.clear();
2464 for (SDValue V : InputChains)
2465 Worklist.push_back(V.getNode());
2467 for (auto *N : ChainNodesMatched)
2468 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2469 return SDValue();
2471 // Return merged chain.
2472 if (InputChains.size() == 1)
2473 return InputChains[0];
2474 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2475 MVT::Other, InputChains);
2478 /// MorphNode - Handle morphing a node in place for the selector.
2479 SDNode *SelectionDAGISel::
2480 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2481 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2482 // It is possible we're using MorphNodeTo to replace a node with no
2483 // normal results with one that has a normal result (or we could be
2484 // adding a chain) and the input could have glue and chains as well.
2485 // In this case we need to shift the operands down.
2486 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2487 // than the old isel though.
2488 int OldGlueResultNo = -1, OldChainResultNo = -1;
2490 unsigned NTMNumResults = Node->getNumValues();
2491 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2492 OldGlueResultNo = NTMNumResults-1;
2493 if (NTMNumResults != 1 &&
2494 Node->getValueType(NTMNumResults-2) == MVT::Other)
2495 OldChainResultNo = NTMNumResults-2;
2496 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2497 OldChainResultNo = NTMNumResults-1;
2499 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2500 // that this deletes operands of the old node that become dead.
2501 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2503 // MorphNodeTo can operate in two ways: if an existing node with the
2504 // specified operands exists, it can just return it. Otherwise, it
2505 // updates the node in place to have the requested operands.
2506 if (Res == Node) {
2507 // If we updated the node in place, reset the node ID. To the isel,
2508 // this should be just like a newly allocated machine node.
2509 Res->setNodeId(-1);
2512 unsigned ResNumResults = Res->getNumValues();
2513 // Move the glue if needed.
2514 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2515 (unsigned)OldGlueResultNo != ResNumResults-1)
2516 ReplaceUses(SDValue(Node, OldGlueResultNo),
2517 SDValue(Res, ResNumResults - 1));
2519 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2520 --ResNumResults;
2522 // Move the chain reference if needed.
2523 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2524 (unsigned)OldChainResultNo != ResNumResults-1)
2525 ReplaceUses(SDValue(Node, OldChainResultNo),
2526 SDValue(Res, ResNumResults - 1));
2528 // Otherwise, no replacement happened because the node already exists. Replace
2529 // Uses of the old node with the new one.
2530 if (Res != Node) {
2531 ReplaceNode(Node, Res);
2532 } else {
2533 EnforceNodeIdInvariant(Res);
2536 return Res;
2539 /// CheckSame - Implements OP_CheckSame.
2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2541 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2542 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2543 // Accept if it is exactly the same as a previously recorded node.
2544 unsigned RecNo = MatcherTable[MatcherIndex++];
2545 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2546 return N == RecordedNodes[RecNo].first;
2549 /// CheckChildSame - Implements OP_CheckChildXSame.
2550 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2551 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2552 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2553 unsigned ChildNo) {
2554 if (ChildNo >= N.getNumOperands())
2555 return false; // Match fails if out of range child #.
2556 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2557 RecordedNodes);
2560 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2561 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2562 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2563 const SelectionDAGISel &SDISel) {
2564 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2567 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2568 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2569 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2570 const SelectionDAGISel &SDISel, SDNode *N) {
2571 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2574 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2575 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2576 SDNode *N) {
2577 uint16_t Opc = MatcherTable[MatcherIndex++];
2578 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2579 return N->getOpcode() == Opc;
2582 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2583 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2584 const TargetLowering *TLI, const DataLayout &DL) {
2585 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2586 if (N.getValueType() == VT) return true;
2588 // Handle the case when VT is iPTR.
2589 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2592 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2593 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2594 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2595 unsigned ChildNo) {
2596 if (ChildNo >= N.getNumOperands())
2597 return false; // Match fails if out of range child #.
2598 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2599 DL);
2602 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2603 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2604 SDValue N) {
2605 return cast<CondCodeSDNode>(N)->get() ==
2606 (ISD::CondCode)MatcherTable[MatcherIndex++];
2609 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2610 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2611 SDValue N) {
2612 if (2 >= N.getNumOperands())
2613 return false;
2614 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2617 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2618 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2619 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2620 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2621 if (cast<VTSDNode>(N)->getVT() == VT)
2622 return true;
2624 // Handle the case when VT is iPTR.
2625 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2628 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2629 // shifted left by 1.
2630 static uint64_t decodeSignRotatedValue(uint64_t V) {
2631 if ((V & 1) == 0)
2632 return V >> 1;
2633 if (V != 1)
2634 return -(V >> 1);
2635 // There is no such thing as -0 with integers. "-0" really means MININT.
2636 return 1ULL << 63;
2639 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2640 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2641 SDValue N) {
2642 int64_t Val = MatcherTable[MatcherIndex++];
2643 if (Val & 128)
2644 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2646 Val = decodeSignRotatedValue(Val);
2648 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2649 return C && C->getSExtValue() == Val;
2652 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2653 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2654 SDValue N, unsigned ChildNo) {
2655 if (ChildNo >= N.getNumOperands())
2656 return false; // Match fails if out of range child #.
2657 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2660 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2661 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2662 SDValue N, const SelectionDAGISel &SDISel) {
2663 int64_t Val = MatcherTable[MatcherIndex++];
2664 if (Val & 128)
2665 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2667 if (N->getOpcode() != ISD::AND) return false;
2669 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2670 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2673 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2674 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2675 const SelectionDAGISel &SDISel) {
2676 int64_t Val = MatcherTable[MatcherIndex++];
2677 if (Val & 128)
2678 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2680 if (N->getOpcode() != ISD::OR) return false;
2682 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2683 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2686 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2687 /// scope, evaluate the current node. If the current predicate is known to
2688 /// fail, set Result=true and return anything. If the current predicate is
2689 /// known to pass, set Result=false and return the MatcherIndex to continue
2690 /// with. If the current predicate is unknown, set Result=false and return the
2691 /// MatcherIndex to continue with.
2692 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2693 unsigned Index, SDValue N,
2694 bool &Result,
2695 const SelectionDAGISel &SDISel,
2696 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2697 switch (Table[Index++]) {
2698 default:
2699 Result = false;
2700 return Index-1; // Could not evaluate this predicate.
2701 case SelectionDAGISel::OPC_CheckSame:
2702 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2703 return Index;
2704 case SelectionDAGISel::OPC_CheckChild0Same:
2705 case SelectionDAGISel::OPC_CheckChild1Same:
2706 case SelectionDAGISel::OPC_CheckChild2Same:
2707 case SelectionDAGISel::OPC_CheckChild3Same:
2708 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2709 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2710 return Index;
2711 case SelectionDAGISel::OPC_CheckPatternPredicate:
2712 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2713 return Index;
2714 case SelectionDAGISel::OPC_CheckPredicate:
2715 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2716 return Index;
2717 case SelectionDAGISel::OPC_CheckOpcode:
2718 Result = !::CheckOpcode(Table, Index, N.getNode());
2719 return Index;
2720 case SelectionDAGISel::OPC_CheckType:
2721 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2722 SDISel.CurDAG->getDataLayout());
2723 return Index;
2724 case SelectionDAGISel::OPC_CheckTypeRes: {
2725 unsigned Res = Table[Index++];
2726 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2727 SDISel.CurDAG->getDataLayout());
2728 return Index;
2730 case SelectionDAGISel::OPC_CheckChild0Type:
2731 case SelectionDAGISel::OPC_CheckChild1Type:
2732 case SelectionDAGISel::OPC_CheckChild2Type:
2733 case SelectionDAGISel::OPC_CheckChild3Type:
2734 case SelectionDAGISel::OPC_CheckChild4Type:
2735 case SelectionDAGISel::OPC_CheckChild5Type:
2736 case SelectionDAGISel::OPC_CheckChild6Type:
2737 case SelectionDAGISel::OPC_CheckChild7Type:
2738 Result = !::CheckChildType(
2739 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2740 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2741 return Index;
2742 case SelectionDAGISel::OPC_CheckCondCode:
2743 Result = !::CheckCondCode(Table, Index, N);
2744 return Index;
2745 case SelectionDAGISel::OPC_CheckChild2CondCode:
2746 Result = !::CheckChild2CondCode(Table, Index, N);
2747 return Index;
2748 case SelectionDAGISel::OPC_CheckValueType:
2749 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2750 SDISel.CurDAG->getDataLayout());
2751 return Index;
2752 case SelectionDAGISel::OPC_CheckInteger:
2753 Result = !::CheckInteger(Table, Index, N);
2754 return Index;
2755 case SelectionDAGISel::OPC_CheckChild0Integer:
2756 case SelectionDAGISel::OPC_CheckChild1Integer:
2757 case SelectionDAGISel::OPC_CheckChild2Integer:
2758 case SelectionDAGISel::OPC_CheckChild3Integer:
2759 case SelectionDAGISel::OPC_CheckChild4Integer:
2760 Result = !::CheckChildInteger(Table, Index, N,
2761 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2762 return Index;
2763 case SelectionDAGISel::OPC_CheckAndImm:
2764 Result = !::CheckAndImm(Table, Index, N, SDISel);
2765 return Index;
2766 case SelectionDAGISel::OPC_CheckOrImm:
2767 Result = !::CheckOrImm(Table, Index, N, SDISel);
2768 return Index;
2772 namespace {
2774 struct MatchScope {
2775 /// FailIndex - If this match fails, this is the index to continue with.
2776 unsigned FailIndex;
2778 /// NodeStack - The node stack when the scope was formed.
2779 SmallVector<SDValue, 4> NodeStack;
2781 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2782 unsigned NumRecordedNodes;
2784 /// NumMatchedMemRefs - The number of matched memref entries.
2785 unsigned NumMatchedMemRefs;
2787 /// InputChain/InputGlue - The current chain/glue
2788 SDValue InputChain, InputGlue;
2790 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2791 bool HasChainNodesMatched;
2794 /// \A DAG update listener to keep the matching state
2795 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2796 /// change the DAG while matching. X86 addressing mode matcher is an example
2797 /// for this.
2798 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2800 SDNode **NodeToMatch;
2801 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2802 SmallVectorImpl<MatchScope> &MatchScopes;
2804 public:
2805 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2806 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2807 SmallVectorImpl<MatchScope> &MS)
2808 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2809 RecordedNodes(RN), MatchScopes(MS) {}
2811 void NodeDeleted(SDNode *N, SDNode *E) override {
2812 // Some early-returns here to avoid the search if we deleted the node or
2813 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2814 // do, so it's unnecessary to update matching state at that point).
2815 // Neither of these can occur currently because we only install this
2816 // update listener during matching a complex patterns.
2817 if (!E || E->isMachineOpcode())
2818 return;
2819 // Check if NodeToMatch was updated.
2820 if (N == *NodeToMatch)
2821 *NodeToMatch = E;
2822 // Performing linear search here does not matter because we almost never
2823 // run this code. You'd have to have a CSE during complex pattern
2824 // matching.
2825 for (auto &I : RecordedNodes)
2826 if (I.first.getNode() == N)
2827 I.first.setNode(E);
2829 for (auto &I : MatchScopes)
2830 for (auto &J : I.NodeStack)
2831 if (J.getNode() == N)
2832 J.setNode(E);
2836 } // end anonymous namespace
2838 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2839 const unsigned char *MatcherTable,
2840 unsigned TableSize) {
2841 // FIXME: Should these even be selected? Handle these cases in the caller?
2842 switch (NodeToMatch->getOpcode()) {
2843 default:
2844 break;
2845 case ISD::EntryToken: // These nodes remain the same.
2846 case ISD::BasicBlock:
2847 case ISD::Register:
2848 case ISD::RegisterMask:
2849 case ISD::HANDLENODE:
2850 case ISD::MDNODE_SDNODE:
2851 case ISD::TargetConstant:
2852 case ISD::TargetConstantFP:
2853 case ISD::TargetConstantPool:
2854 case ISD::TargetFrameIndex:
2855 case ISD::TargetExternalSymbol:
2856 case ISD::MCSymbol:
2857 case ISD::TargetBlockAddress:
2858 case ISD::TargetJumpTable:
2859 case ISD::TargetGlobalTLSAddress:
2860 case ISD::TargetGlobalAddress:
2861 case ISD::TokenFactor:
2862 case ISD::CopyFromReg:
2863 case ISD::CopyToReg:
2864 case ISD::EH_LABEL:
2865 case ISD::ANNOTATION_LABEL:
2866 case ISD::LIFETIME_START:
2867 case ISD::LIFETIME_END:
2868 case ISD::PSEUDO_PROBE:
2869 NodeToMatch->setNodeId(-1); // Mark selected.
2870 return;
2871 case ISD::AssertSext:
2872 case ISD::AssertZext:
2873 case ISD::AssertAlign:
2874 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2875 CurDAG->RemoveDeadNode(NodeToMatch);
2876 return;
2877 case ISD::INLINEASM:
2878 case ISD::INLINEASM_BR:
2879 Select_INLINEASM(NodeToMatch);
2880 return;
2881 case ISD::READ_REGISTER:
2882 Select_READ_REGISTER(NodeToMatch);
2883 return;
2884 case ISD::WRITE_REGISTER:
2885 Select_WRITE_REGISTER(NodeToMatch);
2886 return;
2887 case ISD::UNDEF:
2888 Select_UNDEF(NodeToMatch);
2889 return;
2890 case ISD::FREEZE:
2891 Select_FREEZE(NodeToMatch);
2892 return;
2893 case ISD::ARITH_FENCE:
2894 Select_ARITH_FENCE(NodeToMatch);
2895 return;
2898 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2900 // Set up the node stack with NodeToMatch as the only node on the stack.
2901 SmallVector<SDValue, 8> NodeStack;
2902 SDValue N = SDValue(NodeToMatch, 0);
2903 NodeStack.push_back(N);
2905 // MatchScopes - Scopes used when matching, if a match failure happens, this
2906 // indicates where to continue checking.
2907 SmallVector<MatchScope, 8> MatchScopes;
2909 // RecordedNodes - This is the set of nodes that have been recorded by the
2910 // state machine. The second value is the parent of the node, or null if the
2911 // root is recorded.
2912 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2914 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2915 // pattern.
2916 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2918 // These are the current input chain and glue for use when generating nodes.
2919 // Various Emit operations change these. For example, emitting a copytoreg
2920 // uses and updates these.
2921 SDValue InputChain, InputGlue;
2923 // ChainNodesMatched - If a pattern matches nodes that have input/output
2924 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2925 // which ones they are. The result is captured into this list so that we can
2926 // update the chain results when the pattern is complete.
2927 SmallVector<SDNode*, 3> ChainNodesMatched;
2929 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2931 // Determine where to start the interpreter. Normally we start at opcode #0,
2932 // but if the state machine starts with an OPC_SwitchOpcode, then we
2933 // accelerate the first lookup (which is guaranteed to be hot) with the
2934 // OpcodeOffset table.
2935 unsigned MatcherIndex = 0;
2937 if (!OpcodeOffset.empty()) {
2938 // Already computed the OpcodeOffset table, just index into it.
2939 if (N.getOpcode() < OpcodeOffset.size())
2940 MatcherIndex = OpcodeOffset[N.getOpcode()];
2941 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2943 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2944 // Otherwise, the table isn't computed, but the state machine does start
2945 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2946 // is the first time we're selecting an instruction.
2947 unsigned Idx = 1;
2948 while (true) {
2949 // Get the size of this case.
2950 unsigned CaseSize = MatcherTable[Idx++];
2951 if (CaseSize & 128)
2952 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2953 if (CaseSize == 0) break;
2955 // Get the opcode, add the index to the table.
2956 uint16_t Opc = MatcherTable[Idx++];
2957 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2958 if (Opc >= OpcodeOffset.size())
2959 OpcodeOffset.resize((Opc+1)*2);
2960 OpcodeOffset[Opc] = Idx;
2961 Idx += CaseSize;
2964 // Okay, do the lookup for the first opcode.
2965 if (N.getOpcode() < OpcodeOffset.size())
2966 MatcherIndex = OpcodeOffset[N.getOpcode()];
2969 while (true) {
2970 assert(MatcherIndex < TableSize && "Invalid index");
2971 #ifndef NDEBUG
2972 unsigned CurrentOpcodeIndex = MatcherIndex;
2973 #endif
2974 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2975 switch (Opcode) {
2976 case OPC_Scope: {
2977 // Okay, the semantics of this operation are that we should push a scope
2978 // then evaluate the first child. However, pushing a scope only to have
2979 // the first check fail (which then pops it) is inefficient. If we can
2980 // determine immediately that the first check (or first several) will
2981 // immediately fail, don't even bother pushing a scope for them.
2982 unsigned FailIndex;
2984 while (true) {
2985 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2986 if (NumToSkip & 128)
2987 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2988 // Found the end of the scope with no match.
2989 if (NumToSkip == 0) {
2990 FailIndex = 0;
2991 break;
2994 FailIndex = MatcherIndex+NumToSkip;
2996 unsigned MatcherIndexOfPredicate = MatcherIndex;
2997 (void)MatcherIndexOfPredicate; // silence warning.
2999 // If we can't evaluate this predicate without pushing a scope (e.g. if
3000 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3001 // push the scope and evaluate the full predicate chain.
3002 bool Result;
3003 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3004 Result, *this, RecordedNodes);
3005 if (!Result)
3006 break;
3008 LLVM_DEBUG(
3009 dbgs() << " Skipped scope entry (due to false predicate) at "
3010 << "index " << MatcherIndexOfPredicate << ", continuing at "
3011 << FailIndex << "\n");
3012 ++NumDAGIselRetries;
3014 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3015 // move to the next case.
3016 MatcherIndex = FailIndex;
3019 // If the whole scope failed to match, bail.
3020 if (FailIndex == 0) break;
3022 // Push a MatchScope which indicates where to go if the first child fails
3023 // to match.
3024 MatchScope NewEntry;
3025 NewEntry.FailIndex = FailIndex;
3026 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3027 NewEntry.NumRecordedNodes = RecordedNodes.size();
3028 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3029 NewEntry.InputChain = InputChain;
3030 NewEntry.InputGlue = InputGlue;
3031 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3032 MatchScopes.push_back(NewEntry);
3033 continue;
3035 case OPC_RecordNode: {
3036 // Remember this node, it may end up being an operand in the pattern.
3037 SDNode *Parent = nullptr;
3038 if (NodeStack.size() > 1)
3039 Parent = NodeStack[NodeStack.size()-2].getNode();
3040 RecordedNodes.push_back(std::make_pair(N, Parent));
3041 continue;
3044 case OPC_RecordChild0: case OPC_RecordChild1:
3045 case OPC_RecordChild2: case OPC_RecordChild3:
3046 case OPC_RecordChild4: case OPC_RecordChild5:
3047 case OPC_RecordChild6: case OPC_RecordChild7: {
3048 unsigned ChildNo = Opcode-OPC_RecordChild0;
3049 if (ChildNo >= N.getNumOperands())
3050 break; // Match fails if out of range child #.
3052 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3053 N.getNode()));
3054 continue;
3056 case OPC_RecordMemRef:
3057 if (auto *MN = dyn_cast<MemSDNode>(N))
3058 MatchedMemRefs.push_back(MN->getMemOperand());
3059 else {
3060 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3061 dbgs() << '\n');
3064 continue;
3066 case OPC_CaptureGlueInput:
3067 // If the current node has an input glue, capture it in InputGlue.
3068 if (N->getNumOperands() != 0 &&
3069 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3070 InputGlue = N->getOperand(N->getNumOperands()-1);
3071 continue;
3073 case OPC_MoveChild: {
3074 unsigned ChildNo = MatcherTable[MatcherIndex++];
3075 if (ChildNo >= N.getNumOperands())
3076 break; // Match fails if out of range child #.
3077 N = N.getOperand(ChildNo);
3078 NodeStack.push_back(N);
3079 continue;
3082 case OPC_MoveChild0: case OPC_MoveChild1:
3083 case OPC_MoveChild2: case OPC_MoveChild3:
3084 case OPC_MoveChild4: case OPC_MoveChild5:
3085 case OPC_MoveChild6: case OPC_MoveChild7: {
3086 unsigned ChildNo = Opcode-OPC_MoveChild0;
3087 if (ChildNo >= N.getNumOperands())
3088 break; // Match fails if out of range child #.
3089 N = N.getOperand(ChildNo);
3090 NodeStack.push_back(N);
3091 continue;
3094 case OPC_MoveParent:
3095 // Pop the current node off the NodeStack.
3096 NodeStack.pop_back();
3097 assert(!NodeStack.empty() && "Node stack imbalance!");
3098 N = NodeStack.back();
3099 continue;
3101 case OPC_CheckSame:
3102 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3103 continue;
3105 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3106 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3107 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3108 Opcode-OPC_CheckChild0Same))
3109 break;
3110 continue;
3112 case OPC_CheckPatternPredicate:
3113 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3114 continue;
3115 case OPC_CheckPredicate:
3116 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3117 N.getNode()))
3118 break;
3119 continue;
3120 case OPC_CheckPredicateWithOperands: {
3121 unsigned OpNum = MatcherTable[MatcherIndex++];
3122 SmallVector<SDValue, 8> Operands;
3124 for (unsigned i = 0; i < OpNum; ++i)
3125 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3127 unsigned PredNo = MatcherTable[MatcherIndex++];
3128 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3129 break;
3130 continue;
3132 case OPC_CheckComplexPat: {
3133 unsigned CPNum = MatcherTable[MatcherIndex++];
3134 unsigned RecNo = MatcherTable[MatcherIndex++];
3135 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3137 // If target can modify DAG during matching, keep the matching state
3138 // consistent.
3139 std::unique_ptr<MatchStateUpdater> MSU;
3140 if (ComplexPatternFuncMutatesDAG())
3141 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3142 MatchScopes));
3144 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3145 RecordedNodes[RecNo].first, CPNum,
3146 RecordedNodes))
3147 break;
3148 continue;
3150 case OPC_CheckOpcode:
3151 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3152 continue;
3154 case OPC_CheckType:
3155 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3156 CurDAG->getDataLayout()))
3157 break;
3158 continue;
3160 case OPC_CheckTypeRes: {
3161 unsigned Res = MatcherTable[MatcherIndex++];
3162 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3163 CurDAG->getDataLayout()))
3164 break;
3165 continue;
3168 case OPC_SwitchOpcode: {
3169 unsigned CurNodeOpcode = N.getOpcode();
3170 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3171 unsigned CaseSize;
3172 while (true) {
3173 // Get the size of this case.
3174 CaseSize = MatcherTable[MatcherIndex++];
3175 if (CaseSize & 128)
3176 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3177 if (CaseSize == 0) break;
3179 uint16_t Opc = MatcherTable[MatcherIndex++];
3180 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3182 // If the opcode matches, then we will execute this case.
3183 if (CurNodeOpcode == Opc)
3184 break;
3186 // Otherwise, skip over this case.
3187 MatcherIndex += CaseSize;
3190 // If no cases matched, bail out.
3191 if (CaseSize == 0) break;
3193 // Otherwise, execute the case we found.
3194 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3195 << MatcherIndex << "\n");
3196 continue;
3199 case OPC_SwitchType: {
3200 MVT CurNodeVT = N.getSimpleValueType();
3201 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3202 unsigned CaseSize;
3203 while (true) {
3204 // Get the size of this case.
3205 CaseSize = MatcherTable[MatcherIndex++];
3206 if (CaseSize & 128)
3207 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3208 if (CaseSize == 0) break;
3210 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3211 if (CaseVT == MVT::iPTR)
3212 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3214 // If the VT matches, then we will execute this case.
3215 if (CurNodeVT == CaseVT)
3216 break;
3218 // Otherwise, skip over this case.
3219 MatcherIndex += CaseSize;
3222 // If no cases matched, bail out.
3223 if (CaseSize == 0) break;
3225 // Otherwise, execute the case we found.
3226 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3227 << "] from " << SwitchStart << " to " << MatcherIndex
3228 << '\n');
3229 continue;
3231 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3232 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3233 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3234 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3235 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3236 CurDAG->getDataLayout(),
3237 Opcode - OPC_CheckChild0Type))
3238 break;
3239 continue;
3240 case OPC_CheckCondCode:
3241 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3242 continue;
3243 case OPC_CheckChild2CondCode:
3244 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3245 continue;
3246 case OPC_CheckValueType:
3247 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3248 CurDAG->getDataLayout()))
3249 break;
3250 continue;
3251 case OPC_CheckInteger:
3252 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3253 continue;
3254 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3255 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3256 case OPC_CheckChild4Integer:
3257 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3258 Opcode-OPC_CheckChild0Integer)) break;
3259 continue;
3260 case OPC_CheckAndImm:
3261 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3262 continue;
3263 case OPC_CheckOrImm:
3264 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3265 continue;
3266 case OPC_CheckImmAllOnesV:
3267 if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3268 break;
3269 continue;
3270 case OPC_CheckImmAllZerosV:
3271 if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3272 break;
3273 continue;
3275 case OPC_CheckFoldableChainNode: {
3276 assert(NodeStack.size() != 1 && "No parent node");
3277 // Verify that all intermediate nodes between the root and this one have
3278 // a single use (ignoring chains, which are handled in UpdateChains).
3279 bool HasMultipleUses = false;
3280 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3281 unsigned NNonChainUses = 0;
3282 SDNode *NS = NodeStack[i].getNode();
3283 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3284 if (UI.getUse().getValueType() != MVT::Other)
3285 if (++NNonChainUses > 1) {
3286 HasMultipleUses = true;
3287 break;
3289 if (HasMultipleUses) break;
3291 if (HasMultipleUses) break;
3293 // Check to see that the target thinks this is profitable to fold and that
3294 // we can fold it without inducing cycles in the graph.
3295 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3296 NodeToMatch) ||
3297 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3298 NodeToMatch, OptLevel,
3299 true/*We validate our own chains*/))
3300 break;
3302 continue;
3304 case OPC_EmitInteger:
3305 case OPC_EmitStringInteger: {
3306 MVT::SimpleValueType VT =
3307 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3308 int64_t Val = MatcherTable[MatcherIndex++];
3309 if (Val & 128)
3310 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3311 if (Opcode == OPC_EmitInteger)
3312 Val = decodeSignRotatedValue(Val);
3313 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3314 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3315 VT), nullptr));
3316 continue;
3318 case OPC_EmitRegister: {
3319 MVT::SimpleValueType VT =
3320 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3321 unsigned RegNo = MatcherTable[MatcherIndex++];
3322 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3323 CurDAG->getRegister(RegNo, VT), nullptr));
3324 continue;
3326 case OPC_EmitRegister2: {
3327 // For targets w/ more than 256 register names, the register enum
3328 // values are stored in two bytes in the matcher table (just like
3329 // opcodes).
3330 MVT::SimpleValueType VT =
3331 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3332 unsigned RegNo = MatcherTable[MatcherIndex++];
3333 RegNo |= MatcherTable[MatcherIndex++] << 8;
3334 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3335 CurDAG->getRegister(RegNo, VT), nullptr));
3336 continue;
3339 case OPC_EmitConvertToTarget: {
3340 // Convert from IMM/FPIMM to target version.
3341 unsigned RecNo = MatcherTable[MatcherIndex++];
3342 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3343 SDValue Imm = RecordedNodes[RecNo].first;
3345 if (Imm->getOpcode() == ISD::Constant) {
3346 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3347 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3348 Imm.getValueType());
3349 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3350 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3351 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3352 Imm.getValueType());
3355 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3356 continue;
3359 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3360 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3361 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3362 // These are space-optimized forms of OPC_EmitMergeInputChains.
3363 assert(!InputChain.getNode() &&
3364 "EmitMergeInputChains should be the first chain producing node");
3365 assert(ChainNodesMatched.empty() &&
3366 "Should only have one EmitMergeInputChains per match");
3368 // Read all of the chained nodes.
3369 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3370 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3371 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3373 // FIXME: What if other value results of the node have uses not matched
3374 // by this pattern?
3375 if (ChainNodesMatched.back() != NodeToMatch &&
3376 !RecordedNodes[RecNo].first.hasOneUse()) {
3377 ChainNodesMatched.clear();
3378 break;
3381 // Merge the input chains if they are not intra-pattern references.
3382 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3384 if (!InputChain.getNode())
3385 break; // Failed to merge.
3386 continue;
3389 case OPC_EmitMergeInputChains: {
3390 assert(!InputChain.getNode() &&
3391 "EmitMergeInputChains should be the first chain producing node");
3392 // This node gets a list of nodes we matched in the input that have
3393 // chains. We want to token factor all of the input chains to these nodes
3394 // together. However, if any of the input chains is actually one of the
3395 // nodes matched in this pattern, then we have an intra-match reference.
3396 // Ignore these because the newly token factored chain should not refer to
3397 // the old nodes.
3398 unsigned NumChains = MatcherTable[MatcherIndex++];
3399 assert(NumChains != 0 && "Can't TF zero chains");
3401 assert(ChainNodesMatched.empty() &&
3402 "Should only have one EmitMergeInputChains per match");
3404 // Read all of the chained nodes.
3405 for (unsigned i = 0; i != NumChains; ++i) {
3406 unsigned RecNo = MatcherTable[MatcherIndex++];
3407 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3408 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3410 // FIXME: What if other value results of the node have uses not matched
3411 // by this pattern?
3412 if (ChainNodesMatched.back() != NodeToMatch &&
3413 !RecordedNodes[RecNo].first.hasOneUse()) {
3414 ChainNodesMatched.clear();
3415 break;
3419 // If the inner loop broke out, the match fails.
3420 if (ChainNodesMatched.empty())
3421 break;
3423 // Merge the input chains if they are not intra-pattern references.
3424 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3426 if (!InputChain.getNode())
3427 break; // Failed to merge.
3429 continue;
3432 case OPC_EmitCopyToReg:
3433 case OPC_EmitCopyToReg2: {
3434 unsigned RecNo = MatcherTable[MatcherIndex++];
3435 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3436 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3437 if (Opcode == OPC_EmitCopyToReg2)
3438 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3440 if (!InputChain.getNode())
3441 InputChain = CurDAG->getEntryNode();
3443 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3444 DestPhysReg, RecordedNodes[RecNo].first,
3445 InputGlue);
3447 InputGlue = InputChain.getValue(1);
3448 continue;
3451 case OPC_EmitNodeXForm: {
3452 unsigned XFormNo = MatcherTable[MatcherIndex++];
3453 unsigned RecNo = MatcherTable[MatcherIndex++];
3454 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3455 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3456 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3457 continue;
3459 case OPC_Coverage: {
3460 // This is emitted right before MorphNode/EmitNode.
3461 // So it should be safe to assume that this node has been selected
3462 unsigned index = MatcherTable[MatcherIndex++];
3463 index |= (MatcherTable[MatcherIndex++] << 8);
3464 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3465 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3466 continue;
3469 case OPC_EmitNode: case OPC_MorphNodeTo:
3470 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3471 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3472 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3473 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3474 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3475 // Get the result VT list.
3476 unsigned NumVTs;
3477 // If this is one of the compressed forms, get the number of VTs based
3478 // on the Opcode. Otherwise read the next byte from the table.
3479 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3480 NumVTs = Opcode - OPC_MorphNodeTo0;
3481 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3482 NumVTs = Opcode - OPC_EmitNode0;
3483 else
3484 NumVTs = MatcherTable[MatcherIndex++];
3485 SmallVector<EVT, 4> VTs;
3486 for (unsigned i = 0; i != NumVTs; ++i) {
3487 MVT::SimpleValueType VT =
3488 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3489 if (VT == MVT::iPTR)
3490 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3491 VTs.push_back(VT);
3494 if (EmitNodeInfo & OPFL_Chain)
3495 VTs.push_back(MVT::Other);
3496 if (EmitNodeInfo & OPFL_GlueOutput)
3497 VTs.push_back(MVT::Glue);
3499 // This is hot code, so optimize the two most common cases of 1 and 2
3500 // results.
3501 SDVTList VTList;
3502 if (VTs.size() == 1)
3503 VTList = CurDAG->getVTList(VTs[0]);
3504 else if (VTs.size() == 2)
3505 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3506 else
3507 VTList = CurDAG->getVTList(VTs);
3509 // Get the operand list.
3510 unsigned NumOps = MatcherTable[MatcherIndex++];
3511 SmallVector<SDValue, 8> Ops;
3512 for (unsigned i = 0; i != NumOps; ++i) {
3513 unsigned RecNo = MatcherTable[MatcherIndex++];
3514 if (RecNo & 128)
3515 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3517 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3518 Ops.push_back(RecordedNodes[RecNo].first);
3521 // If there are variadic operands to add, handle them now.
3522 if (EmitNodeInfo & OPFL_VariadicInfo) {
3523 // Determine the start index to copy from.
3524 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3525 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3526 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3527 "Invalid variadic node");
3528 // Copy all of the variadic operands, not including a potential glue
3529 // input.
3530 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3531 i != e; ++i) {
3532 SDValue V = NodeToMatch->getOperand(i);
3533 if (V.getValueType() == MVT::Glue) break;
3534 Ops.push_back(V);
3538 // If this has chain/glue inputs, add them.
3539 if (EmitNodeInfo & OPFL_Chain)
3540 Ops.push_back(InputChain);
3541 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3542 Ops.push_back(InputGlue);
3544 // Check whether any matched node could raise an FP exception. Since all
3545 // such nodes must have a chain, it suffices to check ChainNodesMatched.
3546 // We need to perform this check before potentially modifying one of the
3547 // nodes via MorphNode.
3548 bool MayRaiseFPException = false;
3549 for (auto *N : ChainNodesMatched)
3550 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3551 MayRaiseFPException = true;
3552 break;
3555 // Create the node.
3556 MachineSDNode *Res = nullptr;
3557 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3558 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3559 if (!IsMorphNodeTo) {
3560 // If this is a normal EmitNode command, just create the new node and
3561 // add the results to the RecordedNodes list.
3562 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3563 VTList, Ops);
3565 // Add all the non-glue/non-chain results to the RecordedNodes list.
3566 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3567 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3568 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3569 nullptr));
3571 } else {
3572 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3573 "NodeToMatch was removed partway through selection");
3574 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3575 SDNode *E) {
3576 CurDAG->salvageDebugInfo(*N);
3577 auto &Chain = ChainNodesMatched;
3578 assert((!E || !is_contained(Chain, N)) &&
3579 "Chain node replaced during MorphNode");
3580 llvm::erase_value(Chain, N);
3582 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3583 Ops, EmitNodeInfo));
3586 // Set the NoFPExcept flag when no original matched node could
3587 // raise an FP exception, but the new node potentially might.
3588 if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3589 SDNodeFlags Flags = Res->getFlags();
3590 Flags.setNoFPExcept(true);
3591 Res->setFlags(Flags);
3594 // If the node had chain/glue results, update our notion of the current
3595 // chain and glue.
3596 if (EmitNodeInfo & OPFL_GlueOutput) {
3597 InputGlue = SDValue(Res, VTs.size()-1);
3598 if (EmitNodeInfo & OPFL_Chain)
3599 InputChain = SDValue(Res, VTs.size()-2);
3600 } else if (EmitNodeInfo & OPFL_Chain)
3601 InputChain = SDValue(Res, VTs.size()-1);
3603 // If the OPFL_MemRefs glue is set on this node, slap all of the
3604 // accumulated memrefs onto it.
3606 // FIXME: This is vastly incorrect for patterns with multiple outputs
3607 // instructions that access memory and for ComplexPatterns that match
3608 // loads.
3609 if (EmitNodeInfo & OPFL_MemRefs) {
3610 // Only attach load or store memory operands if the generated
3611 // instruction may load or store.
3612 const MCInstrDesc &MCID = TII->get(TargetOpc);
3613 bool mayLoad = MCID.mayLoad();
3614 bool mayStore = MCID.mayStore();
3616 // We expect to have relatively few of these so just filter them into a
3617 // temporary buffer so that we can easily add them to the instruction.
3618 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3619 for (MachineMemOperand *MMO : MatchedMemRefs) {
3620 if (MMO->isLoad()) {
3621 if (mayLoad)
3622 FilteredMemRefs.push_back(MMO);
3623 } else if (MMO->isStore()) {
3624 if (mayStore)
3625 FilteredMemRefs.push_back(MMO);
3626 } else {
3627 FilteredMemRefs.push_back(MMO);
3631 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3634 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3635 << " Dropping mem operands\n";
3636 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3637 << " node: ";
3638 Res->dump(CurDAG););
3640 // If this was a MorphNodeTo then we're completely done!
3641 if (IsMorphNodeTo) {
3642 // Update chain uses.
3643 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3644 return;
3646 continue;
3649 case OPC_CompleteMatch: {
3650 // The match has been completed, and any new nodes (if any) have been
3651 // created. Patch up references to the matched dag to use the newly
3652 // created nodes.
3653 unsigned NumResults = MatcherTable[MatcherIndex++];
3655 for (unsigned i = 0; i != NumResults; ++i) {
3656 unsigned ResSlot = MatcherTable[MatcherIndex++];
3657 if (ResSlot & 128)
3658 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3660 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3661 SDValue Res = RecordedNodes[ResSlot].first;
3663 assert(i < NodeToMatch->getNumValues() &&
3664 NodeToMatch->getValueType(i) != MVT::Other &&
3665 NodeToMatch->getValueType(i) != MVT::Glue &&
3666 "Invalid number of results to complete!");
3667 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3668 NodeToMatch->getValueType(i) == MVT::iPTR ||
3669 Res.getValueType() == MVT::iPTR ||
3670 NodeToMatch->getValueType(i).getSizeInBits() ==
3671 Res.getValueSizeInBits()) &&
3672 "invalid replacement");
3673 ReplaceUses(SDValue(NodeToMatch, i), Res);
3676 // Update chain uses.
3677 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3679 // If the root node defines glue, we need to update it to the glue result.
3680 // TODO: This never happens in our tests and I think it can be removed /
3681 // replaced with an assert, but if we do it this the way the change is
3682 // NFC.
3683 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3684 MVT::Glue &&
3685 InputGlue.getNode())
3686 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3687 InputGlue);
3689 assert(NodeToMatch->use_empty() &&
3690 "Didn't replace all uses of the node?");
3691 CurDAG->RemoveDeadNode(NodeToMatch);
3693 return;
3697 // If the code reached this point, then the match failed. See if there is
3698 // another child to try in the current 'Scope', otherwise pop it until we
3699 // find a case to check.
3700 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3701 << "\n");
3702 ++NumDAGIselRetries;
3703 while (true) {
3704 if (MatchScopes.empty()) {
3705 CannotYetSelect(NodeToMatch);
3706 return;
3709 // Restore the interpreter state back to the point where the scope was
3710 // formed.
3711 MatchScope &LastScope = MatchScopes.back();
3712 RecordedNodes.resize(LastScope.NumRecordedNodes);
3713 NodeStack.clear();
3714 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3715 N = NodeStack.back();
3717 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3718 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3719 MatcherIndex = LastScope.FailIndex;
3721 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3723 InputChain = LastScope.InputChain;
3724 InputGlue = LastScope.InputGlue;
3725 if (!LastScope.HasChainNodesMatched)
3726 ChainNodesMatched.clear();
3728 // Check to see what the offset is at the new MatcherIndex. If it is zero
3729 // we have reached the end of this scope, otherwise we have another child
3730 // in the current scope to try.
3731 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3732 if (NumToSkip & 128)
3733 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3735 // If we have another child in this scope to match, update FailIndex and
3736 // try it.
3737 if (NumToSkip != 0) {
3738 LastScope.FailIndex = MatcherIndex+NumToSkip;
3739 break;
3742 // End of this scope, pop it and try the next child in the containing
3743 // scope.
3744 MatchScopes.pop_back();
3749 /// Return whether the node may raise an FP exception.
3750 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3751 // For machine opcodes, consult the MCID flag.
3752 if (N->isMachineOpcode()) {
3753 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3754 return MCID.mayRaiseFPException();
3757 // For ISD opcodes, only StrictFP opcodes may raise an FP
3758 // exception.
3759 if (N->isTargetOpcode())
3760 return N->isTargetStrictFPOpcode();
3761 return N->isStrictFPOpcode();
3764 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3765 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3766 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3767 if (!C)
3768 return false;
3770 // Detect when "or" is used to add an offset to a stack object.
3771 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3772 MachineFrameInfo &MFI = MF->getFrameInfo();
3773 Align A = MFI.getObjectAlign(FN->getIndex());
3774 int32_t Off = C->getSExtValue();
3775 // If the alleged offset fits in the zero bits guaranteed by
3776 // the alignment, then this or is really an add.
3777 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3779 return false;
3782 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3783 std::string msg;
3784 raw_string_ostream Msg(msg);
3785 Msg << "Cannot select: ";
3787 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3788 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3789 N->getOpcode() != ISD::INTRINSIC_VOID) {
3790 N->printrFull(Msg, CurDAG);
3791 Msg << "\nIn function: " << MF->getName();
3792 } else {
3793 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3794 unsigned iid =
3795 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3796 if (iid < Intrinsic::num_intrinsics)
3797 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
3798 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3799 Msg << "target intrinsic %" << TII->getName(iid);
3800 else
3801 Msg << "unknown intrinsic #" << iid;
3803 report_fatal_error(Msg.str());
3806 char SelectionDAGISel::ID = 0;