[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / IR / AsmWriter.cpp
blob1523e222b5bf32c7fd0eb05d5923a7191c7acc2a
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ModuleSlotTracker.h"
61 #include "llvm/IR/ModuleSummaryIndex.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <memory>
83 #include <string>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
88 using namespace llvm;
90 // Make virtual table appear in this compilation unit.
91 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 //===----------------------------------------------------------------------===//
94 // Helper Functions
95 //===----------------------------------------------------------------------===//
97 using OrderMap = MapVector<const Value *, unsigned>;
99 using UseListOrderMap =
100 DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
102 /// Look for a value that might be wrapped as metadata, e.g. a value in a
103 /// metadata operand. Returns the input value as-is if it is not wrapped.
104 static const Value *skipMetadataWrapper(const Value *V) {
105 if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
106 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
107 return VAM->getValue();
108 return V;
111 static void orderValue(const Value *V, OrderMap &OM) {
112 if (OM.lookup(V))
113 return;
115 if (const Constant *C = dyn_cast<Constant>(V))
116 if (C->getNumOperands() && !isa<GlobalValue>(C))
117 for (const Value *Op : C->operands())
118 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
119 orderValue(Op, OM);
121 // Note: we cannot cache this lookup above, since inserting into the map
122 // changes the map's size, and thus affects the other IDs.
123 unsigned ID = OM.size() + 1;
124 OM[V] = ID;
127 static OrderMap orderModule(const Module *M) {
128 OrderMap OM;
130 for (const GlobalVariable &G : M->globals()) {
131 if (G.hasInitializer())
132 if (!isa<GlobalValue>(G.getInitializer()))
133 orderValue(G.getInitializer(), OM);
134 orderValue(&G, OM);
136 for (const GlobalAlias &A : M->aliases()) {
137 if (!isa<GlobalValue>(A.getAliasee()))
138 orderValue(A.getAliasee(), OM);
139 orderValue(&A, OM);
141 for (const GlobalIFunc &I : M->ifuncs()) {
142 if (!isa<GlobalValue>(I.getResolver()))
143 orderValue(I.getResolver(), OM);
144 orderValue(&I, OM);
146 for (const Function &F : *M) {
147 for (const Use &U : F.operands())
148 if (!isa<GlobalValue>(U.get()))
149 orderValue(U.get(), OM);
151 orderValue(&F, OM);
153 if (F.isDeclaration())
154 continue;
156 for (const Argument &A : F.args())
157 orderValue(&A, OM);
158 for (const BasicBlock &BB : F) {
159 orderValue(&BB, OM);
160 for (const Instruction &I : BB) {
161 for (const Value *Op : I.operands()) {
162 Op = skipMetadataWrapper(Op);
163 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
164 isa<InlineAsm>(*Op))
165 orderValue(Op, OM);
167 orderValue(&I, OM);
171 return OM;
174 static std::vector<unsigned>
175 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
176 // Predict use-list order for this one.
177 using Entry = std::pair<const Use *, unsigned>;
178 SmallVector<Entry, 64> List;
179 for (const Use &U : V->uses())
180 // Check if this user will be serialized.
181 if (OM.lookup(U.getUser()))
182 List.push_back(std::make_pair(&U, List.size()));
184 if (List.size() < 2)
185 // We may have lost some users.
186 return {};
188 // When referencing a value before its declaration, a temporary value is
189 // created, which will later be RAUWed with the actual value. This reverses
190 // the use list. This happens for all values apart from basic blocks.
191 bool GetsReversed = !isa<BasicBlock>(V);
192 if (auto *BA = dyn_cast<BlockAddress>(V))
193 ID = OM.lookup(BA->getBasicBlock());
194 llvm::sort(List, [&](const Entry &L, const Entry &R) {
195 const Use *LU = L.first;
196 const Use *RU = R.first;
197 if (LU == RU)
198 return false;
200 auto LID = OM.lookup(LU->getUser());
201 auto RID = OM.lookup(RU->getUser());
203 // If ID is 4, then expect: 7 6 5 1 2 3.
204 if (LID < RID) {
205 if (GetsReversed)
206 if (RID <= ID)
207 return true;
208 return false;
210 if (RID < LID) {
211 if (GetsReversed)
212 if (LID <= ID)
213 return false;
214 return true;
217 // LID and RID are equal, so we have different operands of the same user.
218 // Assume operands are added in order for all instructions.
219 if (GetsReversed)
220 if (LID <= ID)
221 return LU->getOperandNo() < RU->getOperandNo();
222 return LU->getOperandNo() > RU->getOperandNo();
225 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
226 return L.second < R.second;
228 // Order is already correct.
229 return {};
231 // Store the shuffle.
232 std::vector<unsigned> Shuffle(List.size());
233 for (size_t I = 0, E = List.size(); I != E; ++I)
234 Shuffle[I] = List[I].second;
235 return Shuffle;
238 static UseListOrderMap predictUseListOrder(const Module *M) {
239 OrderMap OM = orderModule(M);
240 UseListOrderMap ULOM;
241 for (const auto &Pair : OM) {
242 const Value *V = Pair.first;
243 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
244 continue;
246 std::vector<unsigned> Shuffle =
247 predictValueUseListOrder(V, Pair.second, OM);
248 if (Shuffle.empty())
249 continue;
251 const Function *F = nullptr;
252 if (auto *I = dyn_cast<Instruction>(V))
253 F = I->getFunction();
254 if (auto *A = dyn_cast<Argument>(V))
255 F = A->getParent();
256 if (auto *BB = dyn_cast<BasicBlock>(V))
257 F = BB->getParent();
258 ULOM[F][V] = std::move(Shuffle);
260 return ULOM;
263 static const Module *getModuleFromVal(const Value *V) {
264 if (const Argument *MA = dyn_cast<Argument>(V))
265 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
267 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
268 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
270 if (const Instruction *I = dyn_cast<Instruction>(V)) {
271 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
272 return M ? M->getParent() : nullptr;
275 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
276 return GV->getParent();
278 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
279 for (const User *U : MAV->users())
280 if (isa<Instruction>(U))
281 if (const Module *M = getModuleFromVal(U))
282 return M;
283 return nullptr;
286 return nullptr;
289 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
290 switch (cc) {
291 default: Out << "cc" << cc; break;
292 case CallingConv::Fast: Out << "fastcc"; break;
293 case CallingConv::Cold: Out << "coldcc"; break;
294 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
295 case CallingConv::AnyReg: Out << "anyregcc"; break;
296 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
297 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
298 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
299 case CallingConv::GHC: Out << "ghccc"; break;
300 case CallingConv::Tail: Out << "tailcc"; break;
301 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
302 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
303 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
304 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
305 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
306 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
307 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
308 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
309 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
310 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
311 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
312 case CallingConv::AArch64_SVE_VectorCall:
313 Out << "aarch64_sve_vector_pcs";
314 break;
315 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
316 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
317 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
318 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
319 case CallingConv::PTX_Device: Out << "ptx_device"; break;
320 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
321 case CallingConv::Win64: Out << "win64cc"; break;
322 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
323 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
324 case CallingConv::Swift: Out << "swiftcc"; break;
325 case CallingConv::SwiftTail: Out << "swifttailcc"; break;
326 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
327 case CallingConv::HHVM: Out << "hhvmcc"; break;
328 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
329 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
330 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
331 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
332 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
333 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
334 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
335 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
336 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
337 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
341 enum PrefixType {
342 GlobalPrefix,
343 ComdatPrefix,
344 LabelPrefix,
345 LocalPrefix,
346 NoPrefix
349 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
350 assert(!Name.empty() && "Cannot get empty name!");
352 // Scan the name to see if it needs quotes first.
353 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
354 if (!NeedsQuotes) {
355 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
356 // By making this unsigned, the value passed in to isalnum will always be
357 // in the range 0-255. This is important when building with MSVC because
358 // its implementation will assert. This situation can arise when dealing
359 // with UTF-8 multibyte characters.
360 unsigned char C = Name[i];
361 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
362 C != '_') {
363 NeedsQuotes = true;
364 break;
369 // If we didn't need any quotes, just write out the name in one blast.
370 if (!NeedsQuotes) {
371 OS << Name;
372 return;
375 // Okay, we need quotes. Output the quotes and escape any scary characters as
376 // needed.
377 OS << '"';
378 printEscapedString(Name, OS);
379 OS << '"';
382 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
383 /// (if the string only contains simple characters) or is surrounded with ""'s
384 /// (if it has special chars in it). Print it out.
385 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
386 switch (Prefix) {
387 case NoPrefix:
388 break;
389 case GlobalPrefix:
390 OS << '@';
391 break;
392 case ComdatPrefix:
393 OS << '$';
394 break;
395 case LabelPrefix:
396 break;
397 case LocalPrefix:
398 OS << '%';
399 break;
401 printLLVMNameWithoutPrefix(OS, Name);
404 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
405 /// (if the string only contains simple characters) or is surrounded with ""'s
406 /// (if it has special chars in it). Print it out.
407 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
408 PrintLLVMName(OS, V->getName(),
409 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
412 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
413 Out << ", <";
414 if (isa<ScalableVectorType>(Ty))
415 Out << "vscale x ";
416 Out << Mask.size() << " x i32> ";
417 bool FirstElt = true;
418 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
419 Out << "zeroinitializer";
420 } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
421 Out << "undef";
422 } else {
423 Out << "<";
424 for (int Elt : Mask) {
425 if (FirstElt)
426 FirstElt = false;
427 else
428 Out << ", ";
429 Out << "i32 ";
430 if (Elt == UndefMaskElem)
431 Out << "undef";
432 else
433 Out << Elt;
435 Out << ">";
439 namespace {
441 class TypePrinting {
442 public:
443 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
445 TypePrinting(const TypePrinting &) = delete;
446 TypePrinting &operator=(const TypePrinting &) = delete;
448 /// The named types that are used by the current module.
449 TypeFinder &getNamedTypes();
451 /// The numbered types, number to type mapping.
452 std::vector<StructType *> &getNumberedTypes();
454 bool empty();
456 void print(Type *Ty, raw_ostream &OS);
458 void printStructBody(StructType *Ty, raw_ostream &OS);
460 private:
461 void incorporateTypes();
463 /// A module to process lazily when needed. Set to nullptr as soon as used.
464 const Module *DeferredM;
466 TypeFinder NamedTypes;
468 // The numbered types, along with their value.
469 DenseMap<StructType *, unsigned> Type2Number;
471 std::vector<StructType *> NumberedTypes;
474 } // end anonymous namespace
476 TypeFinder &TypePrinting::getNamedTypes() {
477 incorporateTypes();
478 return NamedTypes;
481 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
482 incorporateTypes();
484 // We know all the numbers that each type is used and we know that it is a
485 // dense assignment. Convert the map to an index table, if it's not done
486 // already (judging from the sizes):
487 if (NumberedTypes.size() == Type2Number.size())
488 return NumberedTypes;
490 NumberedTypes.resize(Type2Number.size());
491 for (const auto &P : Type2Number) {
492 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
493 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
494 NumberedTypes[P.second] = P.first;
496 return NumberedTypes;
499 bool TypePrinting::empty() {
500 incorporateTypes();
501 return NamedTypes.empty() && Type2Number.empty();
504 void TypePrinting::incorporateTypes() {
505 if (!DeferredM)
506 return;
508 NamedTypes.run(*DeferredM, false);
509 DeferredM = nullptr;
511 // The list of struct types we got back includes all the struct types, split
512 // the unnamed ones out to a numbering and remove the anonymous structs.
513 unsigned NextNumber = 0;
515 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
516 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
517 StructType *STy = *I;
519 // Ignore anonymous types.
520 if (STy->isLiteral())
521 continue;
523 if (STy->getName().empty())
524 Type2Number[STy] = NextNumber++;
525 else
526 *NextToUse++ = STy;
529 NamedTypes.erase(NextToUse, NamedTypes.end());
532 /// Write the specified type to the specified raw_ostream, making use of type
533 /// names or up references to shorten the type name where possible.
534 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
535 switch (Ty->getTypeID()) {
536 case Type::VoidTyID: OS << "void"; return;
537 case Type::HalfTyID: OS << "half"; return;
538 case Type::BFloatTyID: OS << "bfloat"; return;
539 case Type::FloatTyID: OS << "float"; return;
540 case Type::DoubleTyID: OS << "double"; return;
541 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
542 case Type::FP128TyID: OS << "fp128"; return;
543 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
544 case Type::LabelTyID: OS << "label"; return;
545 case Type::MetadataTyID: OS << "metadata"; return;
546 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
547 case Type::X86_AMXTyID: OS << "x86_amx"; return;
548 case Type::TokenTyID: OS << "token"; return;
549 case Type::IntegerTyID:
550 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
551 return;
553 case Type::FunctionTyID: {
554 FunctionType *FTy = cast<FunctionType>(Ty);
555 print(FTy->getReturnType(), OS);
556 OS << " (";
557 for (FunctionType::param_iterator I = FTy->param_begin(),
558 E = FTy->param_end(); I != E; ++I) {
559 if (I != FTy->param_begin())
560 OS << ", ";
561 print(*I, OS);
563 if (FTy->isVarArg()) {
564 if (FTy->getNumParams()) OS << ", ";
565 OS << "...";
567 OS << ')';
568 return;
570 case Type::StructTyID: {
571 StructType *STy = cast<StructType>(Ty);
573 if (STy->isLiteral())
574 return printStructBody(STy, OS);
576 if (!STy->getName().empty())
577 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
579 incorporateTypes();
580 const auto I = Type2Number.find(STy);
581 if (I != Type2Number.end())
582 OS << '%' << I->second;
583 else // Not enumerated, print the hex address.
584 OS << "%\"type " << STy << '\"';
585 return;
587 case Type::PointerTyID: {
588 PointerType *PTy = cast<PointerType>(Ty);
589 if (PTy->isOpaque()) {
590 OS << "ptr";
591 if (unsigned AddressSpace = PTy->getAddressSpace())
592 OS << " addrspace(" << AddressSpace << ')';
593 return;
595 print(PTy->getElementType(), OS);
596 if (unsigned AddressSpace = PTy->getAddressSpace())
597 OS << " addrspace(" << AddressSpace << ')';
598 OS << '*';
599 return;
601 case Type::ArrayTyID: {
602 ArrayType *ATy = cast<ArrayType>(Ty);
603 OS << '[' << ATy->getNumElements() << " x ";
604 print(ATy->getElementType(), OS);
605 OS << ']';
606 return;
608 case Type::FixedVectorTyID:
609 case Type::ScalableVectorTyID: {
610 VectorType *PTy = cast<VectorType>(Ty);
611 ElementCount EC = PTy->getElementCount();
612 OS << "<";
613 if (EC.isScalable())
614 OS << "vscale x ";
615 OS << EC.getKnownMinValue() << " x ";
616 print(PTy->getElementType(), OS);
617 OS << '>';
618 return;
621 llvm_unreachable("Invalid TypeID");
624 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
625 if (STy->isOpaque()) {
626 OS << "opaque";
627 return;
630 if (STy->isPacked())
631 OS << '<';
633 if (STy->getNumElements() == 0) {
634 OS << "{}";
635 } else {
636 StructType::element_iterator I = STy->element_begin();
637 OS << "{ ";
638 print(*I++, OS);
639 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
640 OS << ", ";
641 print(*I, OS);
644 OS << " }";
646 if (STy->isPacked())
647 OS << '>';
650 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {}
652 namespace llvm {
654 //===----------------------------------------------------------------------===//
655 // SlotTracker Class: Enumerate slot numbers for unnamed values
656 //===----------------------------------------------------------------------===//
657 /// This class provides computation of slot numbers for LLVM Assembly writing.
659 class SlotTracker : public AbstractSlotTrackerStorage {
660 public:
661 /// ValueMap - A mapping of Values to slot numbers.
662 using ValueMap = DenseMap<const Value *, unsigned>;
664 private:
665 /// TheModule - The module for which we are holding slot numbers.
666 const Module* TheModule;
668 /// TheFunction - The function for which we are holding slot numbers.
669 const Function* TheFunction = nullptr;
670 bool FunctionProcessed = false;
671 bool ShouldInitializeAllMetadata;
673 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
674 ProcessModuleHookFn;
675 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
676 ProcessFunctionHookFn;
678 /// The summary index for which we are holding slot numbers.
679 const ModuleSummaryIndex *TheIndex = nullptr;
681 /// mMap - The slot map for the module level data.
682 ValueMap mMap;
683 unsigned mNext = 0;
685 /// fMap - The slot map for the function level data.
686 ValueMap fMap;
687 unsigned fNext = 0;
689 /// mdnMap - Map for MDNodes.
690 DenseMap<const MDNode*, unsigned> mdnMap;
691 unsigned mdnNext = 0;
693 /// asMap - The slot map for attribute sets.
694 DenseMap<AttributeSet, unsigned> asMap;
695 unsigned asNext = 0;
697 /// ModulePathMap - The slot map for Module paths used in the summary index.
698 StringMap<unsigned> ModulePathMap;
699 unsigned ModulePathNext = 0;
701 /// GUIDMap - The slot map for GUIDs used in the summary index.
702 DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
703 unsigned GUIDNext = 0;
705 /// TypeIdMap - The slot map for type ids used in the summary index.
706 StringMap<unsigned> TypeIdMap;
707 unsigned TypeIdNext = 0;
709 public:
710 /// Construct from a module.
712 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
713 /// functions, giving correct numbering for metadata referenced only from
714 /// within a function (even if no functions have been initialized).
715 explicit SlotTracker(const Module *M,
716 bool ShouldInitializeAllMetadata = false);
718 /// Construct from a function, starting out in incorp state.
720 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
721 /// functions, giving correct numbering for metadata referenced only from
722 /// within a function (even if no functions have been initialized).
723 explicit SlotTracker(const Function *F,
724 bool ShouldInitializeAllMetadata = false);
726 /// Construct from a module summary index.
727 explicit SlotTracker(const ModuleSummaryIndex *Index);
729 SlotTracker(const SlotTracker &) = delete;
730 SlotTracker &operator=(const SlotTracker &) = delete;
732 ~SlotTracker() = default;
734 void setProcessHook(
735 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
736 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
737 const Function *, bool)>);
739 unsigned getNextMetadataSlot() override { return mdnNext; }
741 void createMetadataSlot(const MDNode *N) override;
743 /// Return the slot number of the specified value in it's type
744 /// plane. If something is not in the SlotTracker, return -1.
745 int getLocalSlot(const Value *V);
746 int getGlobalSlot(const GlobalValue *V);
747 int getMetadataSlot(const MDNode *N) override;
748 int getAttributeGroupSlot(AttributeSet AS);
749 int getModulePathSlot(StringRef Path);
750 int getGUIDSlot(GlobalValue::GUID GUID);
751 int getTypeIdSlot(StringRef Id);
753 /// If you'd like to deal with a function instead of just a module, use
754 /// this method to get its data into the SlotTracker.
755 void incorporateFunction(const Function *F) {
756 TheFunction = F;
757 FunctionProcessed = false;
760 const Function *getFunction() const { return TheFunction; }
762 /// After calling incorporateFunction, use this method to remove the
763 /// most recently incorporated function from the SlotTracker. This
764 /// will reset the state of the machine back to just the module contents.
765 void purgeFunction();
767 /// MDNode map iterators.
768 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
770 mdn_iterator mdn_begin() { return mdnMap.begin(); }
771 mdn_iterator mdn_end() { return mdnMap.end(); }
772 unsigned mdn_size() const { return mdnMap.size(); }
773 bool mdn_empty() const { return mdnMap.empty(); }
775 /// AttributeSet map iterators.
776 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
778 as_iterator as_begin() { return asMap.begin(); }
779 as_iterator as_end() { return asMap.end(); }
780 unsigned as_size() const { return asMap.size(); }
781 bool as_empty() const { return asMap.empty(); }
783 /// GUID map iterators.
784 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
786 /// These functions do the actual initialization.
787 inline void initializeIfNeeded();
788 int initializeIndexIfNeeded();
790 // Implementation Details
791 private:
792 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
793 void CreateModuleSlot(const GlobalValue *V);
795 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
796 void CreateMetadataSlot(const MDNode *N);
798 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
799 void CreateFunctionSlot(const Value *V);
801 /// Insert the specified AttributeSet into the slot table.
802 void CreateAttributeSetSlot(AttributeSet AS);
804 inline void CreateModulePathSlot(StringRef Path);
805 void CreateGUIDSlot(GlobalValue::GUID GUID);
806 void CreateTypeIdSlot(StringRef Id);
808 /// Add all of the module level global variables (and their initializers)
809 /// and function declarations, but not the contents of those functions.
810 void processModule();
811 // Returns number of allocated slots
812 int processIndex();
814 /// Add all of the functions arguments, basic blocks, and instructions.
815 void processFunction();
817 /// Add the metadata directly attached to a GlobalObject.
818 void processGlobalObjectMetadata(const GlobalObject &GO);
820 /// Add all of the metadata from a function.
821 void processFunctionMetadata(const Function &F);
823 /// Add all of the metadata from an instruction.
824 void processInstructionMetadata(const Instruction &I);
827 } // end namespace llvm
829 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
830 const Function *F)
831 : M(M), F(F), Machine(&Machine) {}
833 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
834 bool ShouldInitializeAllMetadata)
835 : ShouldCreateStorage(M),
836 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
838 ModuleSlotTracker::~ModuleSlotTracker() = default;
840 SlotTracker *ModuleSlotTracker::getMachine() {
841 if (!ShouldCreateStorage)
842 return Machine;
844 ShouldCreateStorage = false;
845 MachineStorage =
846 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
847 Machine = MachineStorage.get();
848 if (ProcessModuleHookFn)
849 Machine->setProcessHook(ProcessModuleHookFn);
850 if (ProcessFunctionHookFn)
851 Machine->setProcessHook(ProcessFunctionHookFn);
852 return Machine;
855 void ModuleSlotTracker::incorporateFunction(const Function &F) {
856 // Using getMachine() may lazily create the slot tracker.
857 if (!getMachine())
858 return;
860 // Nothing to do if this is the right function already.
861 if (this->F == &F)
862 return;
863 if (this->F)
864 Machine->purgeFunction();
865 Machine->incorporateFunction(&F);
866 this->F = &F;
869 int ModuleSlotTracker::getLocalSlot(const Value *V) {
870 assert(F && "No function incorporated");
871 return Machine->getLocalSlot(V);
874 void ModuleSlotTracker::setProcessHook(
875 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
876 Fn) {
877 ProcessModuleHookFn = Fn;
880 void ModuleSlotTracker::setProcessHook(
881 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
882 Fn) {
883 ProcessFunctionHookFn = Fn;
886 static SlotTracker *createSlotTracker(const Value *V) {
887 if (const Argument *FA = dyn_cast<Argument>(V))
888 return new SlotTracker(FA->getParent());
890 if (const Instruction *I = dyn_cast<Instruction>(V))
891 if (I->getParent())
892 return new SlotTracker(I->getParent()->getParent());
894 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
895 return new SlotTracker(BB->getParent());
897 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
898 return new SlotTracker(GV->getParent());
900 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
901 return new SlotTracker(GA->getParent());
903 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
904 return new SlotTracker(GIF->getParent());
906 if (const Function *Func = dyn_cast<Function>(V))
907 return new SlotTracker(Func);
909 return nullptr;
912 #if 0
913 #define ST_DEBUG(X) dbgs() << X
914 #else
915 #define ST_DEBUG(X)
916 #endif
918 // Module level constructor. Causes the contents of the Module (sans functions)
919 // to be added to the slot table.
920 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
921 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
923 // Function level constructor. Causes the contents of the Module and the one
924 // function provided to be added to the slot table.
925 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
926 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
927 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
929 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
930 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
932 inline void SlotTracker::initializeIfNeeded() {
933 if (TheModule) {
934 processModule();
935 TheModule = nullptr; ///< Prevent re-processing next time we're called.
938 if (TheFunction && !FunctionProcessed)
939 processFunction();
942 int SlotTracker::initializeIndexIfNeeded() {
943 if (!TheIndex)
944 return 0;
945 int NumSlots = processIndex();
946 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
947 return NumSlots;
950 // Iterate through all the global variables, functions, and global
951 // variable initializers and create slots for them.
952 void SlotTracker::processModule() {
953 ST_DEBUG("begin processModule!\n");
955 // Add all of the unnamed global variables to the value table.
956 for (const GlobalVariable &Var : TheModule->globals()) {
957 if (!Var.hasName())
958 CreateModuleSlot(&Var);
959 processGlobalObjectMetadata(Var);
960 auto Attrs = Var.getAttributes();
961 if (Attrs.hasAttributes())
962 CreateAttributeSetSlot(Attrs);
965 for (const GlobalAlias &A : TheModule->aliases()) {
966 if (!A.hasName())
967 CreateModuleSlot(&A);
970 for (const GlobalIFunc &I : TheModule->ifuncs()) {
971 if (!I.hasName())
972 CreateModuleSlot(&I);
975 // Add metadata used by named metadata.
976 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
977 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
978 CreateMetadataSlot(NMD.getOperand(i));
981 for (const Function &F : *TheModule) {
982 if (!F.hasName())
983 // Add all the unnamed functions to the table.
984 CreateModuleSlot(&F);
986 if (ShouldInitializeAllMetadata)
987 processFunctionMetadata(F);
989 // Add all the function attributes to the table.
990 // FIXME: Add attributes of other objects?
991 AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
992 if (FnAttrs.hasAttributes())
993 CreateAttributeSetSlot(FnAttrs);
996 if (ProcessModuleHookFn)
997 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
999 ST_DEBUG("end processModule!\n");
1002 // Process the arguments, basic blocks, and instructions of a function.
1003 void SlotTracker::processFunction() {
1004 ST_DEBUG("begin processFunction!\n");
1005 fNext = 0;
1007 // Process function metadata if it wasn't hit at the module-level.
1008 if (!ShouldInitializeAllMetadata)
1009 processFunctionMetadata(*TheFunction);
1011 // Add all the function arguments with no names.
1012 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1013 AE = TheFunction->arg_end(); AI != AE; ++AI)
1014 if (!AI->hasName())
1015 CreateFunctionSlot(&*AI);
1017 ST_DEBUG("Inserting Instructions:\n");
1019 // Add all of the basic blocks and instructions with no names.
1020 for (auto &BB : *TheFunction) {
1021 if (!BB.hasName())
1022 CreateFunctionSlot(&BB);
1024 for (auto &I : BB) {
1025 if (!I.getType()->isVoidTy() && !I.hasName())
1026 CreateFunctionSlot(&I);
1028 // We allow direct calls to any llvm.foo function here, because the
1029 // target may not be linked into the optimizer.
1030 if (const auto *Call = dyn_cast<CallBase>(&I)) {
1031 // Add all the call attributes to the table.
1032 AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1033 if (Attrs.hasAttributes())
1034 CreateAttributeSetSlot(Attrs);
1039 if (ProcessFunctionHookFn)
1040 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1042 FunctionProcessed = true;
1044 ST_DEBUG("end processFunction!\n");
1047 // Iterate through all the GUID in the index and create slots for them.
1048 int SlotTracker::processIndex() {
1049 ST_DEBUG("begin processIndex!\n");
1050 assert(TheIndex);
1052 // The first block of slots are just the module ids, which start at 0 and are
1053 // assigned consecutively. Since the StringMap iteration order isn't
1054 // guaranteed, use a std::map to order by module ID before assigning slots.
1055 std::map<uint64_t, StringRef> ModuleIdToPathMap;
1056 for (auto &ModPath : TheIndex->modulePaths())
1057 ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1058 for (auto &ModPair : ModuleIdToPathMap)
1059 CreateModulePathSlot(ModPair.second);
1061 // Start numbering the GUIDs after the module ids.
1062 GUIDNext = ModulePathNext;
1064 for (auto &GlobalList : *TheIndex)
1065 CreateGUIDSlot(GlobalList.first);
1067 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1068 CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1070 // Start numbering the TypeIds after the GUIDs.
1071 TypeIdNext = GUIDNext;
1072 for (const auto &TID : TheIndex->typeIds())
1073 CreateTypeIdSlot(TID.second.first);
1075 ST_DEBUG("end processIndex!\n");
1076 return TypeIdNext;
1079 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1080 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1081 GO.getAllMetadata(MDs);
1082 for (auto &MD : MDs)
1083 CreateMetadataSlot(MD.second);
1086 void SlotTracker::processFunctionMetadata(const Function &F) {
1087 processGlobalObjectMetadata(F);
1088 for (auto &BB : F) {
1089 for (auto &I : BB)
1090 processInstructionMetadata(I);
1094 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1095 // Process metadata used directly by intrinsics.
1096 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1097 if (Function *F = CI->getCalledFunction())
1098 if (F->isIntrinsic())
1099 for (auto &Op : I.operands())
1100 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1101 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1102 CreateMetadataSlot(N);
1104 // Process metadata attached to this instruction.
1105 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1106 I.getAllMetadata(MDs);
1107 for (auto &MD : MDs)
1108 CreateMetadataSlot(MD.second);
1111 /// Clean up after incorporating a function. This is the only way to get out of
1112 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1113 /// incorporation state is indicated by TheFunction != 0.
1114 void SlotTracker::purgeFunction() {
1115 ST_DEBUG("begin purgeFunction!\n");
1116 fMap.clear(); // Simply discard the function level map
1117 TheFunction = nullptr;
1118 FunctionProcessed = false;
1119 ST_DEBUG("end purgeFunction!\n");
1122 /// getGlobalSlot - Get the slot number of a global value.
1123 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1124 // Check for uninitialized state and do lazy initialization.
1125 initializeIfNeeded();
1127 // Find the value in the module map
1128 ValueMap::iterator MI = mMap.find(V);
1129 return MI == mMap.end() ? -1 : (int)MI->second;
1132 void SlotTracker::setProcessHook(
1133 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1134 Fn) {
1135 ProcessModuleHookFn = Fn;
1138 void SlotTracker::setProcessHook(
1139 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1140 Fn) {
1141 ProcessFunctionHookFn = Fn;
1144 /// getMetadataSlot - Get the slot number of a MDNode.
1145 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1147 /// getMetadataSlot - Get the slot number of a MDNode.
1148 int SlotTracker::getMetadataSlot(const MDNode *N) {
1149 // Check for uninitialized state and do lazy initialization.
1150 initializeIfNeeded();
1152 // Find the MDNode in the module map
1153 mdn_iterator MI = mdnMap.find(N);
1154 return MI == mdnMap.end() ? -1 : (int)MI->second;
1157 /// getLocalSlot - Get the slot number for a value that is local to a function.
1158 int SlotTracker::getLocalSlot(const Value *V) {
1159 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1161 // Check for uninitialized state and do lazy initialization.
1162 initializeIfNeeded();
1164 ValueMap::iterator FI = fMap.find(V);
1165 return FI == fMap.end() ? -1 : (int)FI->second;
1168 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1169 // Check for uninitialized state and do lazy initialization.
1170 initializeIfNeeded();
1172 // Find the AttributeSet in the module map.
1173 as_iterator AI = asMap.find(AS);
1174 return AI == asMap.end() ? -1 : (int)AI->second;
1177 int SlotTracker::getModulePathSlot(StringRef Path) {
1178 // Check for uninitialized state and do lazy initialization.
1179 initializeIndexIfNeeded();
1181 // Find the Module path in the map
1182 auto I = ModulePathMap.find(Path);
1183 return I == ModulePathMap.end() ? -1 : (int)I->second;
1186 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1187 // Check for uninitialized state and do lazy initialization.
1188 initializeIndexIfNeeded();
1190 // Find the GUID in the map
1191 guid_iterator I = GUIDMap.find(GUID);
1192 return I == GUIDMap.end() ? -1 : (int)I->second;
1195 int SlotTracker::getTypeIdSlot(StringRef Id) {
1196 // Check for uninitialized state and do lazy initialization.
1197 initializeIndexIfNeeded();
1199 // Find the TypeId string in the map
1200 auto I = TypeIdMap.find(Id);
1201 return I == TypeIdMap.end() ? -1 : (int)I->second;
1204 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1205 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1206 assert(V && "Can't insert a null Value into SlotTracker!");
1207 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1208 assert(!V->hasName() && "Doesn't need a slot!");
1210 unsigned DestSlot = mNext++;
1211 mMap[V] = DestSlot;
1213 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1214 DestSlot << " [");
1215 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1216 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1217 (isa<Function>(V) ? 'F' :
1218 (isa<GlobalAlias>(V) ? 'A' :
1219 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1222 /// CreateSlot - Create a new slot for the specified value if it has no name.
1223 void SlotTracker::CreateFunctionSlot(const Value *V) {
1224 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1226 unsigned DestSlot = fNext++;
1227 fMap[V] = DestSlot;
1229 // G = Global, F = Function, o = other
1230 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1231 DestSlot << " [o]\n");
1234 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1235 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1236 assert(N && "Can't insert a null Value into SlotTracker!");
1238 // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1239 // everywhere.
1240 if (isa<DIExpression>(N) || isa<DIArgList>(N))
1241 return;
1243 unsigned DestSlot = mdnNext;
1244 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1245 return;
1246 ++mdnNext;
1248 // Recursively add any MDNodes referenced by operands.
1249 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1250 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1251 CreateMetadataSlot(Op);
1254 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1255 assert(AS.hasAttributes() && "Doesn't need a slot!");
1257 as_iterator I = asMap.find(AS);
1258 if (I != asMap.end())
1259 return;
1261 unsigned DestSlot = asNext++;
1262 asMap[AS] = DestSlot;
1265 /// Create a new slot for the specified Module
1266 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1267 ModulePathMap[Path] = ModulePathNext++;
1270 /// Create a new slot for the specified GUID
1271 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1272 GUIDMap[GUID] = GUIDNext++;
1275 /// Create a new slot for the specified Id
1276 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1277 TypeIdMap[Id] = TypeIdNext++;
1280 //===----------------------------------------------------------------------===//
1281 // AsmWriter Implementation
1282 //===----------------------------------------------------------------------===//
1284 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1285 TypePrinting *TypePrinter,
1286 SlotTracker *Machine,
1287 const Module *Context);
1289 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1290 TypePrinting *TypePrinter,
1291 SlotTracker *Machine, const Module *Context,
1292 bool FromValue = false);
1294 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1295 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1296 // 'Fast' is an abbreviation for all fast-math-flags.
1297 if (FPO->isFast())
1298 Out << " fast";
1299 else {
1300 if (FPO->hasAllowReassoc())
1301 Out << " reassoc";
1302 if (FPO->hasNoNaNs())
1303 Out << " nnan";
1304 if (FPO->hasNoInfs())
1305 Out << " ninf";
1306 if (FPO->hasNoSignedZeros())
1307 Out << " nsz";
1308 if (FPO->hasAllowReciprocal())
1309 Out << " arcp";
1310 if (FPO->hasAllowContract())
1311 Out << " contract";
1312 if (FPO->hasApproxFunc())
1313 Out << " afn";
1317 if (const OverflowingBinaryOperator *OBO =
1318 dyn_cast<OverflowingBinaryOperator>(U)) {
1319 if (OBO->hasNoUnsignedWrap())
1320 Out << " nuw";
1321 if (OBO->hasNoSignedWrap())
1322 Out << " nsw";
1323 } else if (const PossiblyExactOperator *Div =
1324 dyn_cast<PossiblyExactOperator>(U)) {
1325 if (Div->isExact())
1326 Out << " exact";
1327 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1328 if (GEP->isInBounds())
1329 Out << " inbounds";
1333 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1334 TypePrinting &TypePrinter,
1335 SlotTracker *Machine,
1336 const Module *Context) {
1337 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1338 if (CI->getType()->isIntegerTy(1)) {
1339 Out << (CI->getZExtValue() ? "true" : "false");
1340 return;
1342 Out << CI->getValue();
1343 return;
1346 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1347 const APFloat &APF = CFP->getValueAPF();
1348 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1349 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1350 // We would like to output the FP constant value in exponential notation,
1351 // but we cannot do this if doing so will lose precision. Check here to
1352 // make sure that we only output it in exponential format if we can parse
1353 // the value back and get the same value.
1355 bool ignored;
1356 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1357 bool isInf = APF.isInfinity();
1358 bool isNaN = APF.isNaN();
1359 if (!isInf && !isNaN) {
1360 double Val = APF.convertToDouble();
1361 SmallString<128> StrVal;
1362 APF.toString(StrVal, 6, 0, false);
1363 // Check to make sure that the stringized number is not some string like
1364 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1365 // that the string matches the "[-+]?[0-9]" regex.
1367 assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1368 isDigit(StrVal[1]))) &&
1369 "[-+]?[0-9] regex does not match!");
1370 // Reparse stringized version!
1371 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1372 Out << StrVal;
1373 return;
1376 // Otherwise we could not reparse it to exactly the same value, so we must
1377 // output the string in hexadecimal format! Note that loading and storing
1378 // floating point types changes the bits of NaNs on some hosts, notably
1379 // x86, so we must not use these types.
1380 static_assert(sizeof(double) == sizeof(uint64_t),
1381 "assuming that double is 64 bits!");
1382 APFloat apf = APF;
1383 // Floats are represented in ASCII IR as double, convert.
1384 // FIXME: We should allow 32-bit hex float and remove this.
1385 if (!isDouble) {
1386 // A signaling NaN is quieted on conversion, so we need to recreate the
1387 // expected value after convert (quiet bit of the payload is clear).
1388 bool IsSNAN = apf.isSignaling();
1389 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1390 &ignored);
1391 if (IsSNAN) {
1392 APInt Payload = apf.bitcastToAPInt();
1393 apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1394 &Payload);
1397 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1398 return;
1401 // Either half, bfloat or some form of long double.
1402 // These appear as a magic letter identifying the type, then a
1403 // fixed number of hex digits.
1404 Out << "0x";
1405 APInt API = APF.bitcastToAPInt();
1406 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1407 Out << 'K';
1408 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1409 /*Upper=*/true);
1410 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1411 /*Upper=*/true);
1412 return;
1413 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1414 Out << 'L';
1415 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1416 /*Upper=*/true);
1417 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1418 /*Upper=*/true);
1419 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1420 Out << 'M';
1421 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1422 /*Upper=*/true);
1423 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1424 /*Upper=*/true);
1425 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1426 Out << 'H';
1427 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1428 /*Upper=*/true);
1429 } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1430 Out << 'R';
1431 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1432 /*Upper=*/true);
1433 } else
1434 llvm_unreachable("Unsupported floating point type");
1435 return;
1438 if (isa<ConstantAggregateZero>(CV)) {
1439 Out << "zeroinitializer";
1440 return;
1443 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1444 Out << "blockaddress(";
1445 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1446 Context);
1447 Out << ", ";
1448 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1449 Context);
1450 Out << ")";
1451 return;
1454 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1455 Out << "dso_local_equivalent ";
1456 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), &TypePrinter, Machine,
1457 Context);
1458 return;
1461 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1462 Type *ETy = CA->getType()->getElementType();
1463 Out << '[';
1464 TypePrinter.print(ETy, Out);
1465 Out << ' ';
1466 WriteAsOperandInternal(Out, CA->getOperand(0),
1467 &TypePrinter, Machine,
1468 Context);
1469 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1470 Out << ", ";
1471 TypePrinter.print(ETy, Out);
1472 Out << ' ';
1473 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1474 Context);
1476 Out << ']';
1477 return;
1480 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1481 // As a special case, print the array as a string if it is an array of
1482 // i8 with ConstantInt values.
1483 if (CA->isString()) {
1484 Out << "c\"";
1485 printEscapedString(CA->getAsString(), Out);
1486 Out << '"';
1487 return;
1490 Type *ETy = CA->getType()->getElementType();
1491 Out << '[';
1492 TypePrinter.print(ETy, Out);
1493 Out << ' ';
1494 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1495 &TypePrinter, Machine,
1496 Context);
1497 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1498 Out << ", ";
1499 TypePrinter.print(ETy, Out);
1500 Out << ' ';
1501 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1502 Machine, Context);
1504 Out << ']';
1505 return;
1508 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1509 if (CS->getType()->isPacked())
1510 Out << '<';
1511 Out << '{';
1512 unsigned N = CS->getNumOperands();
1513 if (N) {
1514 Out << ' ';
1515 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1516 Out << ' ';
1518 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1519 Context);
1521 for (unsigned i = 1; i < N; i++) {
1522 Out << ", ";
1523 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1524 Out << ' ';
1526 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1527 Context);
1529 Out << ' ';
1532 Out << '}';
1533 if (CS->getType()->isPacked())
1534 Out << '>';
1535 return;
1538 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1539 auto *CVVTy = cast<FixedVectorType>(CV->getType());
1540 Type *ETy = CVVTy->getElementType();
1541 Out << '<';
1542 TypePrinter.print(ETy, Out);
1543 Out << ' ';
1544 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1545 Machine, Context);
1546 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1547 Out << ", ";
1548 TypePrinter.print(ETy, Out);
1549 Out << ' ';
1550 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1551 Machine, Context);
1553 Out << '>';
1554 return;
1557 if (isa<ConstantPointerNull>(CV)) {
1558 Out << "null";
1559 return;
1562 if (isa<ConstantTokenNone>(CV)) {
1563 Out << "none";
1564 return;
1567 if (isa<PoisonValue>(CV)) {
1568 Out << "poison";
1569 return;
1572 if (isa<UndefValue>(CV)) {
1573 Out << "undef";
1574 return;
1577 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1578 Out << CE->getOpcodeName();
1579 WriteOptimizationInfo(Out, CE);
1580 if (CE->isCompare())
1581 Out << ' ' << CmpInst::getPredicateName(
1582 static_cast<CmpInst::Predicate>(CE->getPredicate()));
1583 Out << " (";
1585 Optional<unsigned> InRangeOp;
1586 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1587 TypePrinter.print(GEP->getSourceElementType(), Out);
1588 Out << ", ";
1589 InRangeOp = GEP->getInRangeIndex();
1590 if (InRangeOp)
1591 ++*InRangeOp;
1594 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1595 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1596 Out << "inrange ";
1597 TypePrinter.print((*OI)->getType(), Out);
1598 Out << ' ';
1599 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1600 if (OI+1 != CE->op_end())
1601 Out << ", ";
1604 if (CE->hasIndices()) {
1605 ArrayRef<unsigned> Indices = CE->getIndices();
1606 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1607 Out << ", " << Indices[i];
1610 if (CE->isCast()) {
1611 Out << " to ";
1612 TypePrinter.print(CE->getType(), Out);
1615 if (CE->getOpcode() == Instruction::ShuffleVector)
1616 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1618 Out << ')';
1619 return;
1622 Out << "<placeholder or erroneous Constant>";
1625 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1626 TypePrinting *TypePrinter, SlotTracker *Machine,
1627 const Module *Context) {
1628 Out << "!{";
1629 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1630 const Metadata *MD = Node->getOperand(mi);
1631 if (!MD)
1632 Out << "null";
1633 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1634 Value *V = MDV->getValue();
1635 TypePrinter->print(V->getType(), Out);
1636 Out << ' ';
1637 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1638 } else {
1639 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1641 if (mi + 1 != me)
1642 Out << ", ";
1645 Out << "}";
1648 namespace {
1650 struct FieldSeparator {
1651 bool Skip = true;
1652 const char *Sep;
1654 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1657 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1658 if (FS.Skip) {
1659 FS.Skip = false;
1660 return OS;
1662 return OS << FS.Sep;
1665 struct MDFieldPrinter {
1666 raw_ostream &Out;
1667 FieldSeparator FS;
1668 TypePrinting *TypePrinter = nullptr;
1669 SlotTracker *Machine = nullptr;
1670 const Module *Context = nullptr;
1672 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1673 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1674 SlotTracker *Machine, const Module *Context)
1675 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1678 void printTag(const DINode *N);
1679 void printMacinfoType(const DIMacroNode *N);
1680 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1681 void printString(StringRef Name, StringRef Value,
1682 bool ShouldSkipEmpty = true);
1683 void printMetadata(StringRef Name, const Metadata *MD,
1684 bool ShouldSkipNull = true);
1685 template <class IntTy>
1686 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1687 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1688 bool ShouldSkipZero);
1689 void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1690 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1691 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1692 template <class IntTy, class Stringifier>
1693 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1694 bool ShouldSkipZero = true);
1695 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1696 void printNameTableKind(StringRef Name,
1697 DICompileUnit::DebugNameTableKind NTK);
1700 } // end anonymous namespace
1702 void MDFieldPrinter::printTag(const DINode *N) {
1703 Out << FS << "tag: ";
1704 auto Tag = dwarf::TagString(N->getTag());
1705 if (!Tag.empty())
1706 Out << Tag;
1707 else
1708 Out << N->getTag();
1711 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1712 Out << FS << "type: ";
1713 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1714 if (!Type.empty())
1715 Out << Type;
1716 else
1717 Out << N->getMacinfoType();
1720 void MDFieldPrinter::printChecksum(
1721 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1722 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1723 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1726 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1727 bool ShouldSkipEmpty) {
1728 if (ShouldSkipEmpty && Value.empty())
1729 return;
1731 Out << FS << Name << ": \"";
1732 printEscapedString(Value, Out);
1733 Out << "\"";
1736 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1737 TypePrinting *TypePrinter,
1738 SlotTracker *Machine,
1739 const Module *Context) {
1740 if (!MD) {
1741 Out << "null";
1742 return;
1744 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1747 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1748 bool ShouldSkipNull) {
1749 if (ShouldSkipNull && !MD)
1750 return;
1752 Out << FS << Name << ": ";
1753 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1756 template <class IntTy>
1757 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1758 if (ShouldSkipZero && !Int)
1759 return;
1761 Out << FS << Name << ": " << Int;
1764 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1765 bool IsUnsigned, bool ShouldSkipZero) {
1766 if (ShouldSkipZero && Int.isNullValue())
1767 return;
1769 Out << FS << Name << ": ";
1770 Int.print(Out, !IsUnsigned);
1773 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1774 Optional<bool> Default) {
1775 if (Default && Value == *Default)
1776 return;
1777 Out << FS << Name << ": " << (Value ? "true" : "false");
1780 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1781 if (!Flags)
1782 return;
1784 Out << FS << Name << ": ";
1786 SmallVector<DINode::DIFlags, 8> SplitFlags;
1787 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1789 FieldSeparator FlagsFS(" | ");
1790 for (auto F : SplitFlags) {
1791 auto StringF = DINode::getFlagString(F);
1792 assert(!StringF.empty() && "Expected valid flag");
1793 Out << FlagsFS << StringF;
1795 if (Extra || SplitFlags.empty())
1796 Out << FlagsFS << Extra;
1799 void MDFieldPrinter::printDISPFlags(StringRef Name,
1800 DISubprogram::DISPFlags Flags) {
1801 // Always print this field, because no flags in the IR at all will be
1802 // interpreted as old-style isDefinition: true.
1803 Out << FS << Name << ": ";
1805 if (!Flags) {
1806 Out << 0;
1807 return;
1810 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1811 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1813 FieldSeparator FlagsFS(" | ");
1814 for (auto F : SplitFlags) {
1815 auto StringF = DISubprogram::getFlagString(F);
1816 assert(!StringF.empty() && "Expected valid flag");
1817 Out << FlagsFS << StringF;
1819 if (Extra || SplitFlags.empty())
1820 Out << FlagsFS << Extra;
1823 void MDFieldPrinter::printEmissionKind(StringRef Name,
1824 DICompileUnit::DebugEmissionKind EK) {
1825 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1828 void MDFieldPrinter::printNameTableKind(StringRef Name,
1829 DICompileUnit::DebugNameTableKind NTK) {
1830 if (NTK == DICompileUnit::DebugNameTableKind::Default)
1831 return;
1832 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1835 template <class IntTy, class Stringifier>
1836 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1837 Stringifier toString, bool ShouldSkipZero) {
1838 if (!Value)
1839 return;
1841 Out << FS << Name << ": ";
1842 auto S = toString(Value);
1843 if (!S.empty())
1844 Out << S;
1845 else
1846 Out << Value;
1849 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1850 TypePrinting *TypePrinter, SlotTracker *Machine,
1851 const Module *Context) {
1852 Out << "!GenericDINode(";
1853 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1854 Printer.printTag(N);
1855 Printer.printString("header", N->getHeader());
1856 if (N->getNumDwarfOperands()) {
1857 Out << Printer.FS << "operands: {";
1858 FieldSeparator IFS;
1859 for (auto &I : N->dwarf_operands()) {
1860 Out << IFS;
1861 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1863 Out << "}";
1865 Out << ")";
1868 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1869 TypePrinting *TypePrinter, SlotTracker *Machine,
1870 const Module *Context) {
1871 Out << "!DILocation(";
1872 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1873 // Always output the line, since 0 is a relevant and important value for it.
1874 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1875 Printer.printInt("column", DL->getColumn());
1876 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1877 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1878 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1879 /* Default */ false);
1880 Out << ")";
1883 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1884 TypePrinting *TypePrinter, SlotTracker *Machine,
1885 const Module *Context) {
1886 Out << "!DISubrange(";
1887 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1889 auto *Count = N->getRawCountNode();
1890 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1891 auto *CV = cast<ConstantInt>(CE->getValue());
1892 Printer.printInt("count", CV->getSExtValue(),
1893 /* ShouldSkipZero */ false);
1894 } else
1895 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1897 // A lowerBound of constant 0 should not be skipped, since it is different
1898 // from an unspecified lower bound (= nullptr).
1899 auto *LBound = N->getRawLowerBound();
1900 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1901 auto *LV = cast<ConstantInt>(LE->getValue());
1902 Printer.printInt("lowerBound", LV->getSExtValue(),
1903 /* ShouldSkipZero */ false);
1904 } else
1905 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1907 auto *UBound = N->getRawUpperBound();
1908 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1909 auto *UV = cast<ConstantInt>(UE->getValue());
1910 Printer.printInt("upperBound", UV->getSExtValue(),
1911 /* ShouldSkipZero */ false);
1912 } else
1913 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1915 auto *Stride = N->getRawStride();
1916 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1917 auto *SV = cast<ConstantInt>(SE->getValue());
1918 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1919 } else
1920 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1922 Out << ")";
1925 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1926 TypePrinting *TypePrinter,
1927 SlotTracker *Machine,
1928 const Module *Context) {
1929 Out << "!DIGenericSubrange(";
1930 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1932 auto IsConstant = [&](Metadata *Bound) -> bool {
1933 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1934 return BE->isConstant() &&
1935 DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1936 *BE->isConstant();
1938 return false;
1941 auto GetConstant = [&](Metadata *Bound) -> int64_t {
1942 assert(IsConstant(Bound) && "Expected constant");
1943 auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1944 return static_cast<int64_t>(BE->getElement(1));
1947 auto *Count = N->getRawCountNode();
1948 if (IsConstant(Count))
1949 Printer.printInt("count", GetConstant(Count),
1950 /* ShouldSkipZero */ false);
1951 else
1952 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1954 auto *LBound = N->getRawLowerBound();
1955 if (IsConstant(LBound))
1956 Printer.printInt("lowerBound", GetConstant(LBound),
1957 /* ShouldSkipZero */ false);
1958 else
1959 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1961 auto *UBound = N->getRawUpperBound();
1962 if (IsConstant(UBound))
1963 Printer.printInt("upperBound", GetConstant(UBound),
1964 /* ShouldSkipZero */ false);
1965 else
1966 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1968 auto *Stride = N->getRawStride();
1969 if (IsConstant(Stride))
1970 Printer.printInt("stride", GetConstant(Stride),
1971 /* ShouldSkipZero */ false);
1972 else
1973 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1975 Out << ")";
1978 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1979 TypePrinting *, SlotTracker *, const Module *) {
1980 Out << "!DIEnumerator(";
1981 MDFieldPrinter Printer(Out);
1982 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1983 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1984 /*ShouldSkipZero=*/false);
1985 if (N->isUnsigned())
1986 Printer.printBool("isUnsigned", true);
1987 Out << ")";
1990 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1991 TypePrinting *, SlotTracker *, const Module *) {
1992 Out << "!DIBasicType(";
1993 MDFieldPrinter Printer(Out);
1994 if (N->getTag() != dwarf::DW_TAG_base_type)
1995 Printer.printTag(N);
1996 Printer.printString("name", N->getName());
1997 Printer.printInt("size", N->getSizeInBits());
1998 Printer.printInt("align", N->getAlignInBits());
1999 Printer.printDwarfEnum("encoding", N->getEncoding(),
2000 dwarf::AttributeEncodingString);
2001 Printer.printDIFlags("flags", N->getFlags());
2002 Out << ")";
2005 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2006 TypePrinting *TypePrinter, SlotTracker *Machine,
2007 const Module *Context) {
2008 Out << "!DIStringType(";
2009 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2010 if (N->getTag() != dwarf::DW_TAG_string_type)
2011 Printer.printTag(N);
2012 Printer.printString("name", N->getName());
2013 Printer.printMetadata("stringLength", N->getRawStringLength());
2014 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2015 Printer.printInt("size", N->getSizeInBits());
2016 Printer.printInt("align", N->getAlignInBits());
2017 Printer.printDwarfEnum("encoding", N->getEncoding(),
2018 dwarf::AttributeEncodingString);
2019 Out << ")";
2022 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2023 TypePrinting *TypePrinter, SlotTracker *Machine,
2024 const Module *Context) {
2025 Out << "!DIDerivedType(";
2026 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2027 Printer.printTag(N);
2028 Printer.printString("name", N->getName());
2029 Printer.printMetadata("scope", N->getRawScope());
2030 Printer.printMetadata("file", N->getRawFile());
2031 Printer.printInt("line", N->getLine());
2032 Printer.printMetadata("baseType", N->getRawBaseType(),
2033 /* ShouldSkipNull */ false);
2034 Printer.printInt("size", N->getSizeInBits());
2035 Printer.printInt("align", N->getAlignInBits());
2036 Printer.printInt("offset", N->getOffsetInBits());
2037 Printer.printDIFlags("flags", N->getFlags());
2038 Printer.printMetadata("extraData", N->getRawExtraData());
2039 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2040 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2041 /* ShouldSkipZero */ false);
2042 Printer.printMetadata("annotations", N->getRawAnnotations());
2043 Out << ")";
2046 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2047 TypePrinting *TypePrinter,
2048 SlotTracker *Machine, const Module *Context) {
2049 Out << "!DICompositeType(";
2050 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2051 Printer.printTag(N);
2052 Printer.printString("name", N->getName());
2053 Printer.printMetadata("scope", N->getRawScope());
2054 Printer.printMetadata("file", N->getRawFile());
2055 Printer.printInt("line", N->getLine());
2056 Printer.printMetadata("baseType", N->getRawBaseType());
2057 Printer.printInt("size", N->getSizeInBits());
2058 Printer.printInt("align", N->getAlignInBits());
2059 Printer.printInt("offset", N->getOffsetInBits());
2060 Printer.printDIFlags("flags", N->getFlags());
2061 Printer.printMetadata("elements", N->getRawElements());
2062 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2063 dwarf::LanguageString);
2064 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2065 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2066 Printer.printString("identifier", N->getIdentifier());
2067 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2068 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2069 Printer.printMetadata("associated", N->getRawAssociated());
2070 Printer.printMetadata("allocated", N->getRawAllocated());
2071 if (auto *RankConst = N->getRankConst())
2072 Printer.printInt("rank", RankConst->getSExtValue(),
2073 /* ShouldSkipZero */ false);
2074 else
2075 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2076 Printer.printMetadata("annotations", N->getRawAnnotations());
2077 Out << ")";
2080 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2081 TypePrinting *TypePrinter,
2082 SlotTracker *Machine, const Module *Context) {
2083 Out << "!DISubroutineType(";
2084 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2085 Printer.printDIFlags("flags", N->getFlags());
2086 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2087 Printer.printMetadata("types", N->getRawTypeArray(),
2088 /* ShouldSkipNull */ false);
2089 Out << ")";
2092 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
2093 SlotTracker *, const Module *) {
2094 Out << "!DIFile(";
2095 MDFieldPrinter Printer(Out);
2096 Printer.printString("filename", N->getFilename(),
2097 /* ShouldSkipEmpty */ false);
2098 Printer.printString("directory", N->getDirectory(),
2099 /* ShouldSkipEmpty */ false);
2100 // Print all values for checksum together, or not at all.
2101 if (N->getChecksum())
2102 Printer.printChecksum(*N->getChecksum());
2103 Printer.printString("source", N->getSource().getValueOr(StringRef()),
2104 /* ShouldSkipEmpty */ true);
2105 Out << ")";
2108 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2109 TypePrinting *TypePrinter, SlotTracker *Machine,
2110 const Module *Context) {
2111 Out << "!DICompileUnit(";
2112 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2113 Printer.printDwarfEnum("language", N->getSourceLanguage(),
2114 dwarf::LanguageString, /* ShouldSkipZero */ false);
2115 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2116 Printer.printString("producer", N->getProducer());
2117 Printer.printBool("isOptimized", N->isOptimized());
2118 Printer.printString("flags", N->getFlags());
2119 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2120 /* ShouldSkipZero */ false);
2121 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2122 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2123 Printer.printMetadata("enums", N->getRawEnumTypes());
2124 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2125 Printer.printMetadata("globals", N->getRawGlobalVariables());
2126 Printer.printMetadata("imports", N->getRawImportedEntities());
2127 Printer.printMetadata("macros", N->getRawMacros());
2128 Printer.printInt("dwoId", N->getDWOId());
2129 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2130 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2131 false);
2132 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2133 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2134 Printer.printString("sysroot", N->getSysRoot());
2135 Printer.printString("sdk", N->getSDK());
2136 Out << ")";
2139 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2140 TypePrinting *TypePrinter, SlotTracker *Machine,
2141 const Module *Context) {
2142 Out << "!DISubprogram(";
2143 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2144 Printer.printString("name", N->getName());
2145 Printer.printString("linkageName", N->getLinkageName());
2146 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2147 Printer.printMetadata("file", N->getRawFile());
2148 Printer.printInt("line", N->getLine());
2149 Printer.printMetadata("type", N->getRawType());
2150 Printer.printInt("scopeLine", N->getScopeLine());
2151 Printer.printMetadata("containingType", N->getRawContainingType());
2152 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2153 N->getVirtualIndex() != 0)
2154 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2155 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2156 Printer.printDIFlags("flags", N->getFlags());
2157 Printer.printDISPFlags("spFlags", N->getSPFlags());
2158 Printer.printMetadata("unit", N->getRawUnit());
2159 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2160 Printer.printMetadata("declaration", N->getRawDeclaration());
2161 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2162 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2163 Out << ")";
2166 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2167 TypePrinting *TypePrinter, SlotTracker *Machine,
2168 const Module *Context) {
2169 Out << "!DILexicalBlock(";
2170 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2171 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2172 Printer.printMetadata("file", N->getRawFile());
2173 Printer.printInt("line", N->getLine());
2174 Printer.printInt("column", N->getColumn());
2175 Out << ")";
2178 static void writeDILexicalBlockFile(raw_ostream &Out,
2179 const DILexicalBlockFile *N,
2180 TypePrinting *TypePrinter,
2181 SlotTracker *Machine,
2182 const Module *Context) {
2183 Out << "!DILexicalBlockFile(";
2184 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2185 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2186 Printer.printMetadata("file", N->getRawFile());
2187 Printer.printInt("discriminator", N->getDiscriminator(),
2188 /* ShouldSkipZero */ false);
2189 Out << ")";
2192 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2193 TypePrinting *TypePrinter, SlotTracker *Machine,
2194 const Module *Context) {
2195 Out << "!DINamespace(";
2196 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2197 Printer.printString("name", N->getName());
2198 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2199 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2200 Out << ")";
2203 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2204 TypePrinting *TypePrinter, SlotTracker *Machine,
2205 const Module *Context) {
2206 Out << "!DICommonBlock(";
2207 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2208 Printer.printMetadata("scope", N->getRawScope(), false);
2209 Printer.printMetadata("declaration", N->getRawDecl(), false);
2210 Printer.printString("name", N->getName());
2211 Printer.printMetadata("file", N->getRawFile());
2212 Printer.printInt("line", N->getLineNo());
2213 Out << ")";
2216 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2217 TypePrinting *TypePrinter, SlotTracker *Machine,
2218 const Module *Context) {
2219 Out << "!DIMacro(";
2220 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2221 Printer.printMacinfoType(N);
2222 Printer.printInt("line", N->getLine());
2223 Printer.printString("name", N->getName());
2224 Printer.printString("value", N->getValue());
2225 Out << ")";
2228 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2229 TypePrinting *TypePrinter, SlotTracker *Machine,
2230 const Module *Context) {
2231 Out << "!DIMacroFile(";
2232 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2233 Printer.printInt("line", N->getLine());
2234 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2235 Printer.printMetadata("nodes", N->getRawElements());
2236 Out << ")";
2239 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2240 TypePrinting *TypePrinter, SlotTracker *Machine,
2241 const Module *Context) {
2242 Out << "!DIModule(";
2243 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2244 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2245 Printer.printString("name", N->getName());
2246 Printer.printString("configMacros", N->getConfigurationMacros());
2247 Printer.printString("includePath", N->getIncludePath());
2248 Printer.printString("apinotes", N->getAPINotesFile());
2249 Printer.printMetadata("file", N->getRawFile());
2250 Printer.printInt("line", N->getLineNo());
2251 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2252 Out << ")";
2256 static void writeDITemplateTypeParameter(raw_ostream &Out,
2257 const DITemplateTypeParameter *N,
2258 TypePrinting *TypePrinter,
2259 SlotTracker *Machine,
2260 const Module *Context) {
2261 Out << "!DITemplateTypeParameter(";
2262 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2263 Printer.printString("name", N->getName());
2264 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2265 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2266 Out << ")";
2269 static void writeDITemplateValueParameter(raw_ostream &Out,
2270 const DITemplateValueParameter *N,
2271 TypePrinting *TypePrinter,
2272 SlotTracker *Machine,
2273 const Module *Context) {
2274 Out << "!DITemplateValueParameter(";
2275 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2276 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2277 Printer.printTag(N);
2278 Printer.printString("name", N->getName());
2279 Printer.printMetadata("type", N->getRawType());
2280 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2281 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2282 Out << ")";
2285 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2286 TypePrinting *TypePrinter,
2287 SlotTracker *Machine, const Module *Context) {
2288 Out << "!DIGlobalVariable(";
2289 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2290 Printer.printString("name", N->getName());
2291 Printer.printString("linkageName", N->getLinkageName());
2292 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2293 Printer.printMetadata("file", N->getRawFile());
2294 Printer.printInt("line", N->getLine());
2295 Printer.printMetadata("type", N->getRawType());
2296 Printer.printBool("isLocal", N->isLocalToUnit());
2297 Printer.printBool("isDefinition", N->isDefinition());
2298 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2299 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2300 Printer.printInt("align", N->getAlignInBits());
2301 Out << ")";
2304 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2305 TypePrinting *TypePrinter,
2306 SlotTracker *Machine, const Module *Context) {
2307 Out << "!DILocalVariable(";
2308 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2309 Printer.printString("name", N->getName());
2310 Printer.printInt("arg", N->getArg());
2311 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2312 Printer.printMetadata("file", N->getRawFile());
2313 Printer.printInt("line", N->getLine());
2314 Printer.printMetadata("type", N->getRawType());
2315 Printer.printDIFlags("flags", N->getFlags());
2316 Printer.printInt("align", N->getAlignInBits());
2317 Out << ")";
2320 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2321 TypePrinting *TypePrinter,
2322 SlotTracker *Machine, const Module *Context) {
2323 Out << "!DILabel(";
2324 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2325 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2326 Printer.printString("name", N->getName());
2327 Printer.printMetadata("file", N->getRawFile());
2328 Printer.printInt("line", N->getLine());
2329 Out << ")";
2332 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2333 TypePrinting *TypePrinter, SlotTracker *Machine,
2334 const Module *Context) {
2335 Out << "!DIExpression(";
2336 FieldSeparator FS;
2337 if (N->isValid()) {
2338 for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2339 auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2340 assert(!OpStr.empty() && "Expected valid opcode");
2342 Out << FS << OpStr;
2343 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2344 Out << FS << Op.getArg(0);
2345 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2346 } else {
2347 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2348 Out << FS << Op.getArg(A);
2351 } else {
2352 for (const auto &I : N->getElements())
2353 Out << FS << I;
2355 Out << ")";
2358 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2359 TypePrinting *TypePrinter, SlotTracker *Machine,
2360 const Module *Context, bool FromValue = false) {
2361 assert(FromValue &&
2362 "Unexpected DIArgList metadata outside of value argument");
2363 Out << "!DIArgList(";
2364 FieldSeparator FS;
2365 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2366 for (Metadata *Arg : N->getArgs()) {
2367 Out << FS;
2368 WriteAsOperandInternal(Out, Arg, TypePrinter, Machine, Context, true);
2370 Out << ")";
2373 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2374 const DIGlobalVariableExpression *N,
2375 TypePrinting *TypePrinter,
2376 SlotTracker *Machine,
2377 const Module *Context) {
2378 Out << "!DIGlobalVariableExpression(";
2379 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2380 Printer.printMetadata("var", N->getVariable());
2381 Printer.printMetadata("expr", N->getExpression());
2382 Out << ")";
2385 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2386 TypePrinting *TypePrinter, SlotTracker *Machine,
2387 const Module *Context) {
2388 Out << "!DIObjCProperty(";
2389 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2390 Printer.printString("name", N->getName());
2391 Printer.printMetadata("file", N->getRawFile());
2392 Printer.printInt("line", N->getLine());
2393 Printer.printString("setter", N->getSetterName());
2394 Printer.printString("getter", N->getGetterName());
2395 Printer.printInt("attributes", N->getAttributes());
2396 Printer.printMetadata("type", N->getRawType());
2397 Out << ")";
2400 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2401 TypePrinting *TypePrinter,
2402 SlotTracker *Machine, const Module *Context) {
2403 Out << "!DIImportedEntity(";
2404 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2405 Printer.printTag(N);
2406 Printer.printString("name", N->getName());
2407 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2408 Printer.printMetadata("entity", N->getRawEntity());
2409 Printer.printMetadata("file", N->getRawFile());
2410 Printer.printInt("line", N->getLine());
2411 Out << ")";
2414 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2415 TypePrinting *TypePrinter,
2416 SlotTracker *Machine,
2417 const Module *Context) {
2418 if (Node->isDistinct())
2419 Out << "distinct ";
2420 else if (Node->isTemporary())
2421 Out << "<temporary!> "; // Handle broken code.
2423 switch (Node->getMetadataID()) {
2424 default:
2425 llvm_unreachable("Expected uniquable MDNode");
2426 #define HANDLE_MDNODE_LEAF(CLASS) \
2427 case Metadata::CLASS##Kind: \
2428 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
2429 break;
2430 #include "llvm/IR/Metadata.def"
2434 // Full implementation of printing a Value as an operand with support for
2435 // TypePrinting, etc.
2436 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2437 TypePrinting *TypePrinter,
2438 SlotTracker *Machine,
2439 const Module *Context) {
2440 if (V->hasName()) {
2441 PrintLLVMName(Out, V);
2442 return;
2445 const Constant *CV = dyn_cast<Constant>(V);
2446 if (CV && !isa<GlobalValue>(CV)) {
2447 assert(TypePrinter && "Constants require TypePrinting!");
2448 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2449 return;
2452 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2453 Out << "asm ";
2454 if (IA->hasSideEffects())
2455 Out << "sideeffect ";
2456 if (IA->isAlignStack())
2457 Out << "alignstack ";
2458 // We don't emit the AD_ATT dialect as it's the assumed default.
2459 if (IA->getDialect() == InlineAsm::AD_Intel)
2460 Out << "inteldialect ";
2461 if (IA->canThrow())
2462 Out << "unwind ";
2463 Out << '"';
2464 printEscapedString(IA->getAsmString(), Out);
2465 Out << "\", \"";
2466 printEscapedString(IA->getConstraintString(), Out);
2467 Out << '"';
2468 return;
2471 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2472 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2473 Context, /* FromValue */ true);
2474 return;
2477 char Prefix = '%';
2478 int Slot;
2479 // If we have a SlotTracker, use it.
2480 if (Machine) {
2481 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2482 Slot = Machine->getGlobalSlot(GV);
2483 Prefix = '@';
2484 } else {
2485 Slot = Machine->getLocalSlot(V);
2487 // If the local value didn't succeed, then we may be referring to a value
2488 // from a different function. Translate it, as this can happen when using
2489 // address of blocks.
2490 if (Slot == -1)
2491 if ((Machine = createSlotTracker(V))) {
2492 Slot = Machine->getLocalSlot(V);
2493 delete Machine;
2496 } else if ((Machine = createSlotTracker(V))) {
2497 // Otherwise, create one to get the # and then destroy it.
2498 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2499 Slot = Machine->getGlobalSlot(GV);
2500 Prefix = '@';
2501 } else {
2502 Slot = Machine->getLocalSlot(V);
2504 delete Machine;
2505 Machine = nullptr;
2506 } else {
2507 Slot = -1;
2510 if (Slot != -1)
2511 Out << Prefix << Slot;
2512 else
2513 Out << "<badref>";
2516 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2517 TypePrinting *TypePrinter,
2518 SlotTracker *Machine, const Module *Context,
2519 bool FromValue) {
2520 // Write DIExpressions and DIArgLists inline when used as a value. Improves
2521 // readability of debug info intrinsics.
2522 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2523 writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2524 return;
2526 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2527 writeDIArgList(Out, ArgList, TypePrinter, Machine, Context, FromValue);
2528 return;
2531 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2532 std::unique_ptr<SlotTracker> MachineStorage;
2533 if (!Machine) {
2534 MachineStorage = std::make_unique<SlotTracker>(Context);
2535 Machine = MachineStorage.get();
2537 int Slot = Machine->getMetadataSlot(N);
2538 if (Slot == -1) {
2539 if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2540 writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2541 return;
2543 // Give the pointer value instead of "badref", since this comes up all
2544 // the time when debugging.
2545 Out << "<" << N << ">";
2546 } else
2547 Out << '!' << Slot;
2548 return;
2551 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2552 Out << "!\"";
2553 printEscapedString(MDS->getString(), Out);
2554 Out << '"';
2555 return;
2558 auto *V = cast<ValueAsMetadata>(MD);
2559 assert(TypePrinter && "TypePrinter required for metadata values");
2560 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2561 "Unexpected function-local metadata outside of value argument");
2563 TypePrinter->print(V->getValue()->getType(), Out);
2564 Out << ' ';
2565 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2568 namespace {
2570 class AssemblyWriter {
2571 formatted_raw_ostream &Out;
2572 const Module *TheModule = nullptr;
2573 const ModuleSummaryIndex *TheIndex = nullptr;
2574 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2575 SlotTracker &Machine;
2576 TypePrinting TypePrinter;
2577 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2578 SetVector<const Comdat *> Comdats;
2579 bool IsForDebug;
2580 bool ShouldPreserveUseListOrder;
2581 UseListOrderMap UseListOrders;
2582 SmallVector<StringRef, 8> MDNames;
2583 /// Synchronization scope names registered with LLVMContext.
2584 SmallVector<StringRef, 8> SSNs;
2585 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2587 public:
2588 /// Construct an AssemblyWriter with an external SlotTracker
2589 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2590 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2591 bool ShouldPreserveUseListOrder = false);
2593 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2594 const ModuleSummaryIndex *Index, bool IsForDebug);
2596 void printMDNodeBody(const MDNode *MD);
2597 void printNamedMDNode(const NamedMDNode *NMD);
2599 void printModule(const Module *M);
2601 void writeOperand(const Value *Op, bool PrintType);
2602 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2603 void writeOperandBundles(const CallBase *Call);
2604 void writeSyncScope(const LLVMContext &Context,
2605 SyncScope::ID SSID);
2606 void writeAtomic(const LLVMContext &Context,
2607 AtomicOrdering Ordering,
2608 SyncScope::ID SSID);
2609 void writeAtomicCmpXchg(const LLVMContext &Context,
2610 AtomicOrdering SuccessOrdering,
2611 AtomicOrdering FailureOrdering,
2612 SyncScope::ID SSID);
2614 void writeAllMDNodes();
2615 void writeMDNode(unsigned Slot, const MDNode *Node);
2616 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2617 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2618 void writeAllAttributeGroups();
2620 void printTypeIdentities();
2621 void printGlobal(const GlobalVariable *GV);
2622 void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2623 void printComdat(const Comdat *C);
2624 void printFunction(const Function *F);
2625 void printArgument(const Argument *FA, AttributeSet Attrs);
2626 void printBasicBlock(const BasicBlock *BB);
2627 void printInstructionLine(const Instruction &I);
2628 void printInstruction(const Instruction &I);
2630 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2631 void printUseLists(const Function *F);
2633 void printModuleSummaryIndex();
2634 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2635 void printSummary(const GlobalValueSummary &Summary);
2636 void printAliasSummary(const AliasSummary *AS);
2637 void printGlobalVarSummary(const GlobalVarSummary *GS);
2638 void printFunctionSummary(const FunctionSummary *FS);
2639 void printTypeIdSummary(const TypeIdSummary &TIS);
2640 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2641 void printTypeTestResolution(const TypeTestResolution &TTRes);
2642 void printArgs(const std::vector<uint64_t> &Args);
2643 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2644 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2645 void printVFuncId(const FunctionSummary::VFuncId VFId);
2646 void
2647 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2648 const char *Tag);
2649 void
2650 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2651 const char *Tag);
2653 private:
2654 /// Print out metadata attachments.
2655 void printMetadataAttachments(
2656 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2657 StringRef Separator);
2659 // printInfoComment - Print a little comment after the instruction indicating
2660 // which slot it occupies.
2661 void printInfoComment(const Value &V);
2663 // printGCRelocateComment - print comment after call to the gc.relocate
2664 // intrinsic indicating base and derived pointer names.
2665 void printGCRelocateComment(const GCRelocateInst &Relocate);
2668 } // end anonymous namespace
2670 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2671 const Module *M, AssemblyAnnotationWriter *AAW,
2672 bool IsForDebug, bool ShouldPreserveUseListOrder)
2673 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2674 IsForDebug(IsForDebug),
2675 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2676 if (!TheModule)
2677 return;
2678 for (const GlobalObject &GO : TheModule->global_objects())
2679 if (const Comdat *C = GO.getComdat())
2680 Comdats.insert(C);
2683 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2684 const ModuleSummaryIndex *Index, bool IsForDebug)
2685 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2686 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2688 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2689 if (!Operand) {
2690 Out << "<null operand!>";
2691 return;
2693 if (PrintType) {
2694 TypePrinter.print(Operand->getType(), Out);
2695 Out << ' ';
2697 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2700 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2701 SyncScope::ID SSID) {
2702 switch (SSID) {
2703 case SyncScope::System: {
2704 break;
2706 default: {
2707 if (SSNs.empty())
2708 Context.getSyncScopeNames(SSNs);
2710 Out << " syncscope(\"";
2711 printEscapedString(SSNs[SSID], Out);
2712 Out << "\")";
2713 break;
2718 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2719 AtomicOrdering Ordering,
2720 SyncScope::ID SSID) {
2721 if (Ordering == AtomicOrdering::NotAtomic)
2722 return;
2724 writeSyncScope(Context, SSID);
2725 Out << " " << toIRString(Ordering);
2728 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2729 AtomicOrdering SuccessOrdering,
2730 AtomicOrdering FailureOrdering,
2731 SyncScope::ID SSID) {
2732 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2733 FailureOrdering != AtomicOrdering::NotAtomic);
2735 writeSyncScope(Context, SSID);
2736 Out << " " << toIRString(SuccessOrdering);
2737 Out << " " << toIRString(FailureOrdering);
2740 void AssemblyWriter::writeParamOperand(const Value *Operand,
2741 AttributeSet Attrs) {
2742 if (!Operand) {
2743 Out << "<null operand!>";
2744 return;
2747 // Print the type
2748 TypePrinter.print(Operand->getType(), Out);
2749 // Print parameter attributes list
2750 if (Attrs.hasAttributes()) {
2751 Out << ' ';
2752 writeAttributeSet(Attrs);
2754 Out << ' ';
2755 // Print the operand
2756 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2759 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2760 if (!Call->hasOperandBundles())
2761 return;
2763 Out << " [ ";
2765 bool FirstBundle = true;
2766 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2767 OperandBundleUse BU = Call->getOperandBundleAt(i);
2769 if (!FirstBundle)
2770 Out << ", ";
2771 FirstBundle = false;
2773 Out << '"';
2774 printEscapedString(BU.getTagName(), Out);
2775 Out << '"';
2777 Out << '(';
2779 bool FirstInput = true;
2780 for (const auto &Input : BU.Inputs) {
2781 if (!FirstInput)
2782 Out << ", ";
2783 FirstInput = false;
2785 TypePrinter.print(Input->getType(), Out);
2786 Out << " ";
2787 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2790 Out << ')';
2793 Out << " ]";
2796 void AssemblyWriter::printModule(const Module *M) {
2797 Machine.initializeIfNeeded();
2799 if (ShouldPreserveUseListOrder)
2800 UseListOrders = predictUseListOrder(M);
2802 if (!M->getModuleIdentifier().empty() &&
2803 // Don't print the ID if it will start a new line (which would
2804 // require a comment char before it).
2805 M->getModuleIdentifier().find('\n') == std::string::npos)
2806 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2808 if (!M->getSourceFileName().empty()) {
2809 Out << "source_filename = \"";
2810 printEscapedString(M->getSourceFileName(), Out);
2811 Out << "\"\n";
2814 const std::string &DL = M->getDataLayoutStr();
2815 if (!DL.empty())
2816 Out << "target datalayout = \"" << DL << "\"\n";
2817 if (!M->getTargetTriple().empty())
2818 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2820 if (!M->getModuleInlineAsm().empty()) {
2821 Out << '\n';
2823 // Split the string into lines, to make it easier to read the .ll file.
2824 StringRef Asm = M->getModuleInlineAsm();
2825 do {
2826 StringRef Front;
2827 std::tie(Front, Asm) = Asm.split('\n');
2829 // We found a newline, print the portion of the asm string from the
2830 // last newline up to this newline.
2831 Out << "module asm \"";
2832 printEscapedString(Front, Out);
2833 Out << "\"\n";
2834 } while (!Asm.empty());
2837 printTypeIdentities();
2839 // Output all comdats.
2840 if (!Comdats.empty())
2841 Out << '\n';
2842 for (const Comdat *C : Comdats) {
2843 printComdat(C);
2844 if (C != Comdats.back())
2845 Out << '\n';
2848 // Output all globals.
2849 if (!M->global_empty()) Out << '\n';
2850 for (const GlobalVariable &GV : M->globals()) {
2851 printGlobal(&GV); Out << '\n';
2854 // Output all aliases.
2855 if (!M->alias_empty()) Out << "\n";
2856 for (const GlobalAlias &GA : M->aliases())
2857 printIndirectSymbol(&GA);
2859 // Output all ifuncs.
2860 if (!M->ifunc_empty()) Out << "\n";
2861 for (const GlobalIFunc &GI : M->ifuncs())
2862 printIndirectSymbol(&GI);
2864 // Output all of the functions.
2865 for (const Function &F : *M) {
2866 Out << '\n';
2867 printFunction(&F);
2870 // Output global use-lists.
2871 printUseLists(nullptr);
2873 // Output all attribute groups.
2874 if (!Machine.as_empty()) {
2875 Out << '\n';
2876 writeAllAttributeGroups();
2879 // Output named metadata.
2880 if (!M->named_metadata_empty()) Out << '\n';
2882 for (const NamedMDNode &Node : M->named_metadata())
2883 printNamedMDNode(&Node);
2885 // Output metadata.
2886 if (!Machine.mdn_empty()) {
2887 Out << '\n';
2888 writeAllMDNodes();
2892 void AssemblyWriter::printModuleSummaryIndex() {
2893 assert(TheIndex);
2894 int NumSlots = Machine.initializeIndexIfNeeded();
2896 Out << "\n";
2898 // Print module path entries. To print in order, add paths to a vector
2899 // indexed by module slot.
2900 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2901 std::string RegularLTOModuleName =
2902 ModuleSummaryIndex::getRegularLTOModuleName();
2903 moduleVec.resize(TheIndex->modulePaths().size());
2904 for (auto &ModPath : TheIndex->modulePaths())
2905 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2906 // A module id of -1 is a special entry for a regular LTO module created
2907 // during the thin link.
2908 ModPath.second.first == -1u ? RegularLTOModuleName
2909 : (std::string)std::string(ModPath.first()),
2910 ModPath.second.second);
2912 unsigned i = 0;
2913 for (auto &ModPair : moduleVec) {
2914 Out << "^" << i++ << " = module: (";
2915 Out << "path: \"";
2916 printEscapedString(ModPair.first, Out);
2917 Out << "\", hash: (";
2918 FieldSeparator FS;
2919 for (auto Hash : ModPair.second)
2920 Out << FS << Hash;
2921 Out << "))\n";
2924 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2925 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2926 for (auto &GlobalList : *TheIndex) {
2927 auto GUID = GlobalList.first;
2928 for (auto &Summary : GlobalList.second.SummaryList)
2929 SummaryToGUIDMap[Summary.get()] = GUID;
2932 // Print the global value summary entries.
2933 for (auto &GlobalList : *TheIndex) {
2934 auto GUID = GlobalList.first;
2935 auto VI = TheIndex->getValueInfo(GlobalList);
2936 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2939 // Print the TypeIdMap entries.
2940 for (const auto &TID : TheIndex->typeIds()) {
2941 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2942 << " = typeid: (name: \"" << TID.second.first << "\"";
2943 printTypeIdSummary(TID.second.second);
2944 Out << ") ; guid = " << TID.first << "\n";
2947 // Print the TypeIdCompatibleVtableMap entries.
2948 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2949 auto GUID = GlobalValue::getGUID(TId.first);
2950 Out << "^" << Machine.getGUIDSlot(GUID)
2951 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2952 printTypeIdCompatibleVtableSummary(TId.second);
2953 Out << ") ; guid = " << GUID << "\n";
2956 // Don't emit flags when it's not really needed (value is zero by default).
2957 if (TheIndex->getFlags()) {
2958 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2959 ++NumSlots;
2962 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2963 << "\n";
2966 static const char *
2967 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2968 switch (K) {
2969 case WholeProgramDevirtResolution::Indir:
2970 return "indir";
2971 case WholeProgramDevirtResolution::SingleImpl:
2972 return "singleImpl";
2973 case WholeProgramDevirtResolution::BranchFunnel:
2974 return "branchFunnel";
2976 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2979 static const char *getWholeProgDevirtResByArgKindName(
2980 WholeProgramDevirtResolution::ByArg::Kind K) {
2981 switch (K) {
2982 case WholeProgramDevirtResolution::ByArg::Indir:
2983 return "indir";
2984 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2985 return "uniformRetVal";
2986 case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2987 return "uniqueRetVal";
2988 case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2989 return "virtualConstProp";
2991 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2994 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2995 switch (K) {
2996 case TypeTestResolution::Unknown:
2997 return "unknown";
2998 case TypeTestResolution::Unsat:
2999 return "unsat";
3000 case TypeTestResolution::ByteArray:
3001 return "byteArray";
3002 case TypeTestResolution::Inline:
3003 return "inline";
3004 case TypeTestResolution::Single:
3005 return "single";
3006 case TypeTestResolution::AllOnes:
3007 return "allOnes";
3009 llvm_unreachable("invalid TypeTestResolution kind");
3012 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3013 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3014 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3016 // The following fields are only used if the target does not support the use
3017 // of absolute symbols to store constants. Print only if non-zero.
3018 if (TTRes.AlignLog2)
3019 Out << ", alignLog2: " << TTRes.AlignLog2;
3020 if (TTRes.SizeM1)
3021 Out << ", sizeM1: " << TTRes.SizeM1;
3022 if (TTRes.BitMask)
3023 // BitMask is uint8_t which causes it to print the corresponding char.
3024 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3025 if (TTRes.InlineBits)
3026 Out << ", inlineBits: " << TTRes.InlineBits;
3028 Out << ")";
3031 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3032 Out << ", summary: (";
3033 printTypeTestResolution(TIS.TTRes);
3034 if (!TIS.WPDRes.empty()) {
3035 Out << ", wpdResolutions: (";
3036 FieldSeparator FS;
3037 for (auto &WPDRes : TIS.WPDRes) {
3038 Out << FS;
3039 Out << "(offset: " << WPDRes.first << ", ";
3040 printWPDRes(WPDRes.second);
3041 Out << ")";
3043 Out << ")";
3045 Out << ")";
3048 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3049 const TypeIdCompatibleVtableInfo &TI) {
3050 Out << ", summary: (";
3051 FieldSeparator FS;
3052 for (auto &P : TI) {
3053 Out << FS;
3054 Out << "(offset: " << P.AddressPointOffset << ", ";
3055 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3056 Out << ")";
3058 Out << ")";
3061 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3062 Out << "args: (";
3063 FieldSeparator FS;
3064 for (auto arg : Args) {
3065 Out << FS;
3066 Out << arg;
3068 Out << ")";
3071 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3072 Out << "wpdRes: (kind: ";
3073 Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3075 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3076 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3078 if (!WPDRes.ResByArg.empty()) {
3079 Out << ", resByArg: (";
3080 FieldSeparator FS;
3081 for (auto &ResByArg : WPDRes.ResByArg) {
3082 Out << FS;
3083 printArgs(ResByArg.first);
3084 Out << ", byArg: (kind: ";
3085 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3086 if (ResByArg.second.TheKind ==
3087 WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3088 ResByArg.second.TheKind ==
3089 WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3090 Out << ", info: " << ResByArg.second.Info;
3092 // The following fields are only used if the target does not support the
3093 // use of absolute symbols to store constants. Print only if non-zero.
3094 if (ResByArg.second.Byte || ResByArg.second.Bit)
3095 Out << ", byte: " << ResByArg.second.Byte
3096 << ", bit: " << ResByArg.second.Bit;
3098 Out << ")";
3100 Out << ")";
3102 Out << ")";
3105 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3106 switch (SK) {
3107 case GlobalValueSummary::AliasKind:
3108 return "alias";
3109 case GlobalValueSummary::FunctionKind:
3110 return "function";
3111 case GlobalValueSummary::GlobalVarKind:
3112 return "variable";
3114 llvm_unreachable("invalid summary kind");
3117 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3118 Out << ", aliasee: ";
3119 // The indexes emitted for distributed backends may not include the
3120 // aliasee summary (only if it is being imported directly). Handle
3121 // that case by just emitting "null" as the aliasee.
3122 if (AS->hasAliasee())
3123 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3124 else
3125 Out << "null";
3128 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3129 auto VTableFuncs = GS->vTableFuncs();
3130 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3131 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3132 << "constant: " << GS->VarFlags.Constant;
3133 if (!VTableFuncs.empty())
3134 Out << ", "
3135 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3136 Out << ")";
3138 if (!VTableFuncs.empty()) {
3139 Out << ", vTableFuncs: (";
3140 FieldSeparator FS;
3141 for (auto &P : VTableFuncs) {
3142 Out << FS;
3143 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3144 << ", offset: " << P.VTableOffset;
3145 Out << ")";
3147 Out << ")";
3151 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3152 switch (LT) {
3153 case GlobalValue::ExternalLinkage:
3154 return "external";
3155 case GlobalValue::PrivateLinkage:
3156 return "private";
3157 case GlobalValue::InternalLinkage:
3158 return "internal";
3159 case GlobalValue::LinkOnceAnyLinkage:
3160 return "linkonce";
3161 case GlobalValue::LinkOnceODRLinkage:
3162 return "linkonce_odr";
3163 case GlobalValue::WeakAnyLinkage:
3164 return "weak";
3165 case GlobalValue::WeakODRLinkage:
3166 return "weak_odr";
3167 case GlobalValue::CommonLinkage:
3168 return "common";
3169 case GlobalValue::AppendingLinkage:
3170 return "appending";
3171 case GlobalValue::ExternalWeakLinkage:
3172 return "extern_weak";
3173 case GlobalValue::AvailableExternallyLinkage:
3174 return "available_externally";
3176 llvm_unreachable("invalid linkage");
3179 // When printing the linkage types in IR where the ExternalLinkage is
3180 // not printed, and other linkage types are expected to be printed with
3181 // a space after the name.
3182 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3183 if (LT == GlobalValue::ExternalLinkage)
3184 return "";
3185 return getLinkageName(LT) + " ";
3188 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3189 switch (Vis) {
3190 case GlobalValue::DefaultVisibility:
3191 return "default";
3192 case GlobalValue::HiddenVisibility:
3193 return "hidden";
3194 case GlobalValue::ProtectedVisibility:
3195 return "protected";
3197 llvm_unreachable("invalid visibility");
3200 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3201 Out << ", insts: " << FS->instCount();
3203 FunctionSummary::FFlags FFlags = FS->fflags();
3204 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
3205 FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) {
3206 Out << ", funcFlags: (";
3207 Out << "readNone: " << FFlags.ReadNone;
3208 Out << ", readOnly: " << FFlags.ReadOnly;
3209 Out << ", noRecurse: " << FFlags.NoRecurse;
3210 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
3211 Out << ", noInline: " << FFlags.NoInline;
3212 Out << ", alwaysInline: " << FFlags.AlwaysInline;
3213 Out << ")";
3215 if (!FS->calls().empty()) {
3216 Out << ", calls: (";
3217 FieldSeparator IFS;
3218 for (auto &Call : FS->calls()) {
3219 Out << IFS;
3220 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3221 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3222 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3223 else if (Call.second.RelBlockFreq)
3224 Out << ", relbf: " << Call.second.RelBlockFreq;
3225 Out << ")";
3227 Out << ")";
3230 if (const auto *TIdInfo = FS->getTypeIdInfo())
3231 printTypeIdInfo(*TIdInfo);
3233 auto PrintRange = [&](const ConstantRange &Range) {
3234 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3237 if (!FS->paramAccesses().empty()) {
3238 Out << ", params: (";
3239 FieldSeparator IFS;
3240 for (auto &PS : FS->paramAccesses()) {
3241 Out << IFS;
3242 Out << "(param: " << PS.ParamNo;
3243 Out << ", offset: ";
3244 PrintRange(PS.Use);
3245 if (!PS.Calls.empty()) {
3246 Out << ", calls: (";
3247 FieldSeparator IFS;
3248 for (auto &Call : PS.Calls) {
3249 Out << IFS;
3250 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3251 Out << ", param: " << Call.ParamNo;
3252 Out << ", offset: ";
3253 PrintRange(Call.Offsets);
3254 Out << ")";
3256 Out << ")";
3258 Out << ")";
3260 Out << ")";
3264 void AssemblyWriter::printTypeIdInfo(
3265 const FunctionSummary::TypeIdInfo &TIDInfo) {
3266 Out << ", typeIdInfo: (";
3267 FieldSeparator TIDFS;
3268 if (!TIDInfo.TypeTests.empty()) {
3269 Out << TIDFS;
3270 Out << "typeTests: (";
3271 FieldSeparator FS;
3272 for (auto &GUID : TIDInfo.TypeTests) {
3273 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3274 if (TidIter.first == TidIter.second) {
3275 Out << FS;
3276 Out << GUID;
3277 continue;
3279 // Print all type id that correspond to this GUID.
3280 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3281 Out << FS;
3282 auto Slot = Machine.getTypeIdSlot(It->second.first);
3283 assert(Slot != -1);
3284 Out << "^" << Slot;
3287 Out << ")";
3289 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3290 Out << TIDFS;
3291 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3293 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3294 Out << TIDFS;
3295 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3297 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3298 Out << TIDFS;
3299 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3300 "typeTestAssumeConstVCalls");
3302 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3303 Out << TIDFS;
3304 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3305 "typeCheckedLoadConstVCalls");
3307 Out << ")";
3310 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3311 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3312 if (TidIter.first == TidIter.second) {
3313 Out << "vFuncId: (";
3314 Out << "guid: " << VFId.GUID;
3315 Out << ", offset: " << VFId.Offset;
3316 Out << ")";
3317 return;
3319 // Print all type id that correspond to this GUID.
3320 FieldSeparator FS;
3321 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3322 Out << FS;
3323 Out << "vFuncId: (";
3324 auto Slot = Machine.getTypeIdSlot(It->second.first);
3325 assert(Slot != -1);
3326 Out << "^" << Slot;
3327 Out << ", offset: " << VFId.Offset;
3328 Out << ")";
3332 void AssemblyWriter::printNonConstVCalls(
3333 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3334 Out << Tag << ": (";
3335 FieldSeparator FS;
3336 for (auto &VFuncId : VCallList) {
3337 Out << FS;
3338 printVFuncId(VFuncId);
3340 Out << ")";
3343 void AssemblyWriter::printConstVCalls(
3344 const std::vector<FunctionSummary::ConstVCall> &VCallList,
3345 const char *Tag) {
3346 Out << Tag << ": (";
3347 FieldSeparator FS;
3348 for (auto &ConstVCall : VCallList) {
3349 Out << FS;
3350 Out << "(";
3351 printVFuncId(ConstVCall.VFunc);
3352 if (!ConstVCall.Args.empty()) {
3353 Out << ", ";
3354 printArgs(ConstVCall.Args);
3356 Out << ")";
3358 Out << ")";
3361 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3362 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3363 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3364 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3365 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3366 << ", flags: (";
3367 Out << "linkage: " << getLinkageName(LT);
3368 Out << ", visibility: "
3369 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3370 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3371 Out << ", live: " << GVFlags.Live;
3372 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3373 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3374 Out << ")";
3376 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3377 printAliasSummary(cast<AliasSummary>(&Summary));
3378 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3379 printFunctionSummary(cast<FunctionSummary>(&Summary));
3380 else
3381 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3383 auto RefList = Summary.refs();
3384 if (!RefList.empty()) {
3385 Out << ", refs: (";
3386 FieldSeparator FS;
3387 for (auto &Ref : RefList) {
3388 Out << FS;
3389 if (Ref.isReadOnly())
3390 Out << "readonly ";
3391 else if (Ref.isWriteOnly())
3392 Out << "writeonly ";
3393 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3395 Out << ")";
3398 Out << ")";
3401 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3402 Out << "^" << Slot << " = gv: (";
3403 if (!VI.name().empty())
3404 Out << "name: \"" << VI.name() << "\"";
3405 else
3406 Out << "guid: " << VI.getGUID();
3407 if (!VI.getSummaryList().empty()) {
3408 Out << ", summaries: (";
3409 FieldSeparator FS;
3410 for (auto &Summary : VI.getSummaryList()) {
3411 Out << FS;
3412 printSummary(*Summary);
3414 Out << ")";
3416 Out << ")";
3417 if (!VI.name().empty())
3418 Out << " ; guid = " << VI.getGUID();
3419 Out << "\n";
3422 static void printMetadataIdentifier(StringRef Name,
3423 formatted_raw_ostream &Out) {
3424 if (Name.empty()) {
3425 Out << "<empty name> ";
3426 } else {
3427 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3428 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3429 Out << Name[0];
3430 else
3431 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3432 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3433 unsigned char C = Name[i];
3434 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3435 C == '.' || C == '_')
3436 Out << C;
3437 else
3438 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3443 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3444 Out << '!';
3445 printMetadataIdentifier(NMD->getName(), Out);
3446 Out << " = !{";
3447 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3448 if (i)
3449 Out << ", ";
3451 // Write DIExpressions inline.
3452 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3453 MDNode *Op = NMD->getOperand(i);
3454 assert(!isa<DIArgList>(Op) &&
3455 "DIArgLists should not appear in NamedMDNodes");
3456 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3457 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3458 continue;
3461 int Slot = Machine.getMetadataSlot(Op);
3462 if (Slot == -1)
3463 Out << "<badref>";
3464 else
3465 Out << '!' << Slot;
3467 Out << "}\n";
3470 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3471 formatted_raw_ostream &Out) {
3472 switch (Vis) {
3473 case GlobalValue::DefaultVisibility: break;
3474 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3475 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3479 static void PrintDSOLocation(const GlobalValue &GV,
3480 formatted_raw_ostream &Out) {
3481 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3482 Out << "dso_local ";
3485 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3486 formatted_raw_ostream &Out) {
3487 switch (SCT) {
3488 case GlobalValue::DefaultStorageClass: break;
3489 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3490 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3494 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3495 formatted_raw_ostream &Out) {
3496 switch (TLM) {
3497 case GlobalVariable::NotThreadLocal:
3498 break;
3499 case GlobalVariable::GeneralDynamicTLSModel:
3500 Out << "thread_local ";
3501 break;
3502 case GlobalVariable::LocalDynamicTLSModel:
3503 Out << "thread_local(localdynamic) ";
3504 break;
3505 case GlobalVariable::InitialExecTLSModel:
3506 Out << "thread_local(initialexec) ";
3507 break;
3508 case GlobalVariable::LocalExecTLSModel:
3509 Out << "thread_local(localexec) ";
3510 break;
3514 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3515 switch (UA) {
3516 case GlobalVariable::UnnamedAddr::None:
3517 return "";
3518 case GlobalVariable::UnnamedAddr::Local:
3519 return "local_unnamed_addr";
3520 case GlobalVariable::UnnamedAddr::Global:
3521 return "unnamed_addr";
3523 llvm_unreachable("Unknown UnnamedAddr");
3526 static void maybePrintComdat(formatted_raw_ostream &Out,
3527 const GlobalObject &GO) {
3528 const Comdat *C = GO.getComdat();
3529 if (!C)
3530 return;
3532 if (isa<GlobalVariable>(GO))
3533 Out << ',';
3534 Out << " comdat";
3536 if (GO.getName() == C->getName())
3537 return;
3539 Out << '(';
3540 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3541 Out << ')';
3544 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3545 if (GV->isMaterializable())
3546 Out << "; Materializable\n";
3548 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3549 Out << " = ";
3551 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3552 Out << "external ";
3554 Out << getLinkageNameWithSpace(GV->getLinkage());
3555 PrintDSOLocation(*GV, Out);
3556 PrintVisibility(GV->getVisibility(), Out);
3557 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3558 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3559 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3560 if (!UA.empty())
3561 Out << UA << ' ';
3563 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3564 Out << "addrspace(" << AddressSpace << ") ";
3565 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3566 Out << (GV->isConstant() ? "constant " : "global ");
3567 TypePrinter.print(GV->getValueType(), Out);
3569 if (GV->hasInitializer()) {
3570 Out << ' ';
3571 writeOperand(GV->getInitializer(), false);
3574 if (GV->hasSection()) {
3575 Out << ", section \"";
3576 printEscapedString(GV->getSection(), Out);
3577 Out << '"';
3579 if (GV->hasPartition()) {
3580 Out << ", partition \"";
3581 printEscapedString(GV->getPartition(), Out);
3582 Out << '"';
3585 maybePrintComdat(Out, *GV);
3586 if (GV->getAlignment())
3587 Out << ", align " << GV->getAlignment();
3589 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3590 GV->getAllMetadata(MDs);
3591 printMetadataAttachments(MDs, ", ");
3593 auto Attrs = GV->getAttributes();
3594 if (Attrs.hasAttributes())
3595 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3597 printInfoComment(*GV);
3600 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3601 if (GIS->isMaterializable())
3602 Out << "; Materializable\n";
3604 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3605 Out << " = ";
3607 Out << getLinkageNameWithSpace(GIS->getLinkage());
3608 PrintDSOLocation(*GIS, Out);
3609 PrintVisibility(GIS->getVisibility(), Out);
3610 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3611 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3612 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3613 if (!UA.empty())
3614 Out << UA << ' ';
3616 if (isa<GlobalAlias>(GIS))
3617 Out << "alias ";
3618 else if (isa<GlobalIFunc>(GIS))
3619 Out << "ifunc ";
3620 else
3621 llvm_unreachable("Not an alias or ifunc!");
3623 TypePrinter.print(GIS->getValueType(), Out);
3625 Out << ", ";
3627 const Constant *IS = GIS->getIndirectSymbol();
3629 if (!IS) {
3630 TypePrinter.print(GIS->getType(), Out);
3631 Out << " <<NULL ALIASEE>>";
3632 } else {
3633 writeOperand(IS, !isa<ConstantExpr>(IS));
3636 if (GIS->hasPartition()) {
3637 Out << ", partition \"";
3638 printEscapedString(GIS->getPartition(), Out);
3639 Out << '"';
3642 printInfoComment(*GIS);
3643 Out << '\n';
3646 void AssemblyWriter::printComdat(const Comdat *C) {
3647 C->print(Out);
3650 void AssemblyWriter::printTypeIdentities() {
3651 if (TypePrinter.empty())
3652 return;
3654 Out << '\n';
3656 // Emit all numbered types.
3657 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3658 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3659 Out << '%' << I << " = type ";
3661 // Make sure we print out at least one level of the type structure, so
3662 // that we do not get %2 = type %2
3663 TypePrinter.printStructBody(NumberedTypes[I], Out);
3664 Out << '\n';
3667 auto &NamedTypes = TypePrinter.getNamedTypes();
3668 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3669 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3670 Out << " = type ";
3672 // Make sure we print out at least one level of the type structure, so
3673 // that we do not get %FILE = type %FILE
3674 TypePrinter.printStructBody(NamedTypes[I], Out);
3675 Out << '\n';
3679 /// printFunction - Print all aspects of a function.
3680 void AssemblyWriter::printFunction(const Function *F) {
3681 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3683 if (F->isMaterializable())
3684 Out << "; Materializable\n";
3686 const AttributeList &Attrs = F->getAttributes();
3687 if (Attrs.hasFnAttrs()) {
3688 AttributeSet AS = Attrs.getFnAttrs();
3689 std::string AttrStr;
3691 for (const Attribute &Attr : AS) {
3692 if (!Attr.isStringAttribute()) {
3693 if (!AttrStr.empty()) AttrStr += ' ';
3694 AttrStr += Attr.getAsString();
3698 if (!AttrStr.empty())
3699 Out << "; Function Attrs: " << AttrStr << '\n';
3702 Machine.incorporateFunction(F);
3704 if (F->isDeclaration()) {
3705 Out << "declare";
3706 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3707 F->getAllMetadata(MDs);
3708 printMetadataAttachments(MDs, " ");
3709 Out << ' ';
3710 } else
3711 Out << "define ";
3713 Out << getLinkageNameWithSpace(F->getLinkage());
3714 PrintDSOLocation(*F, Out);
3715 PrintVisibility(F->getVisibility(), Out);
3716 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3718 // Print the calling convention.
3719 if (F->getCallingConv() != CallingConv::C) {
3720 PrintCallingConv(F->getCallingConv(), Out);
3721 Out << " ";
3724 FunctionType *FT = F->getFunctionType();
3725 if (Attrs.hasRetAttrs())
3726 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3727 TypePrinter.print(F->getReturnType(), Out);
3728 Out << ' ';
3729 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3730 Out << '(';
3732 // Loop over the arguments, printing them...
3733 if (F->isDeclaration() && !IsForDebug) {
3734 // We're only interested in the type here - don't print argument names.
3735 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3736 // Insert commas as we go... the first arg doesn't get a comma
3737 if (I)
3738 Out << ", ";
3739 // Output type...
3740 TypePrinter.print(FT->getParamType(I), Out);
3742 AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3743 if (ArgAttrs.hasAttributes()) {
3744 Out << ' ';
3745 writeAttributeSet(ArgAttrs);
3748 } else {
3749 // The arguments are meaningful here, print them in detail.
3750 for (const Argument &Arg : F->args()) {
3751 // Insert commas as we go... the first arg doesn't get a comma
3752 if (Arg.getArgNo() != 0)
3753 Out << ", ";
3754 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3758 // Finish printing arguments...
3759 if (FT->isVarArg()) {
3760 if (FT->getNumParams()) Out << ", ";
3761 Out << "..."; // Output varargs portion of signature!
3763 Out << ')';
3764 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3765 if (!UA.empty())
3766 Out << ' ' << UA;
3767 // We print the function address space if it is non-zero or if we are writing
3768 // a module with a non-zero program address space or if there is no valid
3769 // Module* so that the file can be parsed without the datalayout string.
3770 const Module *Mod = F->getParent();
3771 if (F->getAddressSpace() != 0 || !Mod ||
3772 Mod->getDataLayout().getProgramAddressSpace() != 0)
3773 Out << " addrspace(" << F->getAddressSpace() << ")";
3774 if (Attrs.hasFnAttrs())
3775 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3776 if (F->hasSection()) {
3777 Out << " section \"";
3778 printEscapedString(F->getSection(), Out);
3779 Out << '"';
3781 if (F->hasPartition()) {
3782 Out << " partition \"";
3783 printEscapedString(F->getPartition(), Out);
3784 Out << '"';
3786 maybePrintComdat(Out, *F);
3787 if (F->getAlignment())
3788 Out << " align " << F->getAlignment();
3789 if (F->hasGC())
3790 Out << " gc \"" << F->getGC() << '"';
3791 if (F->hasPrefixData()) {
3792 Out << " prefix ";
3793 writeOperand(F->getPrefixData(), true);
3795 if (F->hasPrologueData()) {
3796 Out << " prologue ";
3797 writeOperand(F->getPrologueData(), true);
3799 if (F->hasPersonalityFn()) {
3800 Out << " personality ";
3801 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3804 if (F->isDeclaration()) {
3805 Out << '\n';
3806 } else {
3807 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3808 F->getAllMetadata(MDs);
3809 printMetadataAttachments(MDs, " ");
3811 Out << " {";
3812 // Output all of the function's basic blocks.
3813 for (const BasicBlock &BB : *F)
3814 printBasicBlock(&BB);
3816 // Output the function's use-lists.
3817 printUseLists(F);
3819 Out << "}\n";
3822 Machine.purgeFunction();
3825 /// printArgument - This member is called for every argument that is passed into
3826 /// the function. Simply print it out
3827 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3828 // Output type...
3829 TypePrinter.print(Arg->getType(), Out);
3831 // Output parameter attributes list
3832 if (Attrs.hasAttributes()) {
3833 Out << ' ';
3834 writeAttributeSet(Attrs);
3837 // Output name, if available...
3838 if (Arg->hasName()) {
3839 Out << ' ';
3840 PrintLLVMName(Out, Arg);
3841 } else {
3842 int Slot = Machine.getLocalSlot(Arg);
3843 assert(Slot != -1 && "expect argument in function here");
3844 Out << " %" << Slot;
3848 /// printBasicBlock - This member is called for each basic block in a method.
3849 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3850 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3851 if (BB->hasName()) { // Print out the label if it exists...
3852 Out << "\n";
3853 PrintLLVMName(Out, BB->getName(), LabelPrefix);
3854 Out << ':';
3855 } else if (!IsEntryBlock) {
3856 Out << "\n";
3857 int Slot = Machine.getLocalSlot(BB);
3858 if (Slot != -1)
3859 Out << Slot << ":";
3860 else
3861 Out << "<badref>:";
3864 if (!IsEntryBlock) {
3865 // Output predecessors for the block.
3866 Out.PadToColumn(50);
3867 Out << ";";
3868 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3870 if (PI == PE) {
3871 Out << " No predecessors!";
3872 } else {
3873 Out << " preds = ";
3874 writeOperand(*PI, false);
3875 for (++PI; PI != PE; ++PI) {
3876 Out << ", ";
3877 writeOperand(*PI, false);
3882 Out << "\n";
3884 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3886 // Output all of the instructions in the basic block...
3887 for (const Instruction &I : *BB) {
3888 printInstructionLine(I);
3891 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3894 /// printInstructionLine - Print an instruction and a newline character.
3895 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3896 printInstruction(I);
3897 Out << '\n';
3900 /// printGCRelocateComment - print comment after call to the gc.relocate
3901 /// intrinsic indicating base and derived pointer names.
3902 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3903 Out << " ; (";
3904 writeOperand(Relocate.getBasePtr(), false);
3905 Out << ", ";
3906 writeOperand(Relocate.getDerivedPtr(), false);
3907 Out << ")";
3910 /// printInfoComment - Print a little comment after the instruction indicating
3911 /// which slot it occupies.
3912 void AssemblyWriter::printInfoComment(const Value &V) {
3913 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3914 printGCRelocateComment(*Relocate);
3916 if (AnnotationWriter)
3917 AnnotationWriter->printInfoComment(V, Out);
3920 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3921 raw_ostream &Out) {
3922 // We print the address space of the call if it is non-zero.
3923 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3924 bool PrintAddrSpace = CallAddrSpace != 0;
3925 if (!PrintAddrSpace) {
3926 const Module *Mod = getModuleFromVal(I);
3927 // We also print it if it is zero but not equal to the program address space
3928 // or if we can't find a valid Module* to make it possible to parse
3929 // the resulting file even without a datalayout string.
3930 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3931 PrintAddrSpace = true;
3933 if (PrintAddrSpace)
3934 Out << " addrspace(" << CallAddrSpace << ")";
3937 // This member is called for each Instruction in a function..
3938 void AssemblyWriter::printInstruction(const Instruction &I) {
3939 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3941 // Print out indentation for an instruction.
3942 Out << " ";
3944 // Print out name if it exists...
3945 if (I.hasName()) {
3946 PrintLLVMName(Out, &I);
3947 Out << " = ";
3948 } else if (!I.getType()->isVoidTy()) {
3949 // Print out the def slot taken.
3950 int SlotNum = Machine.getLocalSlot(&I);
3951 if (SlotNum == -1)
3952 Out << "<badref> = ";
3953 else
3954 Out << '%' << SlotNum << " = ";
3957 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3958 if (CI->isMustTailCall())
3959 Out << "musttail ";
3960 else if (CI->isTailCall())
3961 Out << "tail ";
3962 else if (CI->isNoTailCall())
3963 Out << "notail ";
3966 // Print out the opcode...
3967 Out << I.getOpcodeName();
3969 // If this is an atomic load or store, print out the atomic marker.
3970 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
3971 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3972 Out << " atomic";
3974 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3975 Out << " weak";
3977 // If this is a volatile operation, print out the volatile marker.
3978 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
3979 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3980 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3981 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3982 Out << " volatile";
3984 // Print out optimization information.
3985 WriteOptimizationInfo(Out, &I);
3987 // Print out the compare instruction predicates
3988 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3989 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3991 // Print out the atomicrmw operation
3992 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3993 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3995 // Print out the type of the operands...
3996 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3998 // Special case conditional branches to swizzle the condition out to the front
3999 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4000 const BranchInst &BI(cast<BranchInst>(I));
4001 Out << ' ';
4002 writeOperand(BI.getCondition(), true);
4003 Out << ", ";
4004 writeOperand(BI.getSuccessor(0), true);
4005 Out << ", ";
4006 writeOperand(BI.getSuccessor(1), true);
4008 } else if (isa<SwitchInst>(I)) {
4009 const SwitchInst& SI(cast<SwitchInst>(I));
4010 // Special case switch instruction to get formatting nice and correct.
4011 Out << ' ';
4012 writeOperand(SI.getCondition(), true);
4013 Out << ", ";
4014 writeOperand(SI.getDefaultDest(), true);
4015 Out << " [";
4016 for (auto Case : SI.cases()) {
4017 Out << "\n ";
4018 writeOperand(Case.getCaseValue(), true);
4019 Out << ", ";
4020 writeOperand(Case.getCaseSuccessor(), true);
4022 Out << "\n ]";
4023 } else if (isa<IndirectBrInst>(I)) {
4024 // Special case indirectbr instruction to get formatting nice and correct.
4025 Out << ' ';
4026 writeOperand(Operand, true);
4027 Out << ", [";
4029 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4030 if (i != 1)
4031 Out << ", ";
4032 writeOperand(I.getOperand(i), true);
4034 Out << ']';
4035 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4036 Out << ' ';
4037 TypePrinter.print(I.getType(), Out);
4038 Out << ' ';
4040 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4041 if (op) Out << ", ";
4042 Out << "[ ";
4043 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4044 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4046 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4047 Out << ' ';
4048 writeOperand(I.getOperand(0), true);
4049 for (unsigned i : EVI->indices())
4050 Out << ", " << i;
4051 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4052 Out << ' ';
4053 writeOperand(I.getOperand(0), true); Out << ", ";
4054 writeOperand(I.getOperand(1), true);
4055 for (unsigned i : IVI->indices())
4056 Out << ", " << i;
4057 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4058 Out << ' ';
4059 TypePrinter.print(I.getType(), Out);
4060 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4061 Out << '\n';
4063 if (LPI->isCleanup())
4064 Out << " cleanup";
4066 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4067 if (i != 0 || LPI->isCleanup()) Out << "\n";
4068 if (LPI->isCatch(i))
4069 Out << " catch ";
4070 else
4071 Out << " filter ";
4073 writeOperand(LPI->getClause(i), true);
4075 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4076 Out << " within ";
4077 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4078 Out << " [";
4079 unsigned Op = 0;
4080 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4081 if (Op > 0)
4082 Out << ", ";
4083 writeOperand(PadBB, /*PrintType=*/true);
4084 ++Op;
4086 Out << "] unwind ";
4087 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4088 writeOperand(UnwindDest, /*PrintType=*/true);
4089 else
4090 Out << "to caller";
4091 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4092 Out << " within ";
4093 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4094 Out << " [";
4095 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4096 ++Op) {
4097 if (Op > 0)
4098 Out << ", ";
4099 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4101 Out << ']';
4102 } else if (isa<ReturnInst>(I) && !Operand) {
4103 Out << " void";
4104 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4105 Out << " from ";
4106 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4108 Out << " to ";
4109 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4110 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4111 Out << " from ";
4112 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4114 Out << " unwind ";
4115 if (CRI->hasUnwindDest())
4116 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4117 else
4118 Out << "to caller";
4119 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4120 // Print the calling convention being used.
4121 if (CI->getCallingConv() != CallingConv::C) {
4122 Out << " ";
4123 PrintCallingConv(CI->getCallingConv(), Out);
4126 Operand = CI->getCalledOperand();
4127 FunctionType *FTy = CI->getFunctionType();
4128 Type *RetTy = FTy->getReturnType();
4129 const AttributeList &PAL = CI->getAttributes();
4131 if (PAL.hasRetAttrs())
4132 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4134 // Only print addrspace(N) if necessary:
4135 maybePrintCallAddrSpace(Operand, &I, Out);
4137 // If possible, print out the short form of the call instruction. We can
4138 // only do this if the first argument is a pointer to a nonvararg function,
4139 // and if the return type is not a pointer to a function.
4141 Out << ' ';
4142 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4143 Out << ' ';
4144 writeOperand(Operand, false);
4145 Out << '(';
4146 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
4147 if (op > 0)
4148 Out << ", ";
4149 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4152 // Emit an ellipsis if this is a musttail call in a vararg function. This
4153 // is only to aid readability, musttail calls forward varargs by default.
4154 if (CI->isMustTailCall() && CI->getParent() &&
4155 CI->getParent()->getParent() &&
4156 CI->getParent()->getParent()->isVarArg())
4157 Out << ", ...";
4159 Out << ')';
4160 if (PAL.hasFnAttrs())
4161 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4163 writeOperandBundles(CI);
4164 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4165 Operand = II->getCalledOperand();
4166 FunctionType *FTy = II->getFunctionType();
4167 Type *RetTy = FTy->getReturnType();
4168 const AttributeList &PAL = II->getAttributes();
4170 // Print the calling convention being used.
4171 if (II->getCallingConv() != CallingConv::C) {
4172 Out << " ";
4173 PrintCallingConv(II->getCallingConv(), Out);
4176 if (PAL.hasRetAttrs())
4177 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4179 // Only print addrspace(N) if necessary:
4180 maybePrintCallAddrSpace(Operand, &I, Out);
4182 // If possible, print out the short form of the invoke instruction. We can
4183 // only do this if the first argument is a pointer to a nonvararg function,
4184 // and if the return type is not a pointer to a function.
4186 Out << ' ';
4187 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4188 Out << ' ';
4189 writeOperand(Operand, false);
4190 Out << '(';
4191 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
4192 if (op)
4193 Out << ", ";
4194 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4197 Out << ')';
4198 if (PAL.hasFnAttrs())
4199 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4201 writeOperandBundles(II);
4203 Out << "\n to ";
4204 writeOperand(II->getNormalDest(), true);
4205 Out << " unwind ";
4206 writeOperand(II->getUnwindDest(), true);
4207 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4208 Operand = CBI->getCalledOperand();
4209 FunctionType *FTy = CBI->getFunctionType();
4210 Type *RetTy = FTy->getReturnType();
4211 const AttributeList &PAL = CBI->getAttributes();
4213 // Print the calling convention being used.
4214 if (CBI->getCallingConv() != CallingConv::C) {
4215 Out << " ";
4216 PrintCallingConv(CBI->getCallingConv(), Out);
4219 if (PAL.hasRetAttrs())
4220 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4222 // If possible, print out the short form of the callbr instruction. We can
4223 // only do this if the first argument is a pointer to a nonvararg function,
4224 // and if the return type is not a pointer to a function.
4226 Out << ' ';
4227 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4228 Out << ' ';
4229 writeOperand(Operand, false);
4230 Out << '(';
4231 for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
4232 if (op)
4233 Out << ", ";
4234 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4237 Out << ')';
4238 if (PAL.hasFnAttrs())
4239 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4241 writeOperandBundles(CBI);
4243 Out << "\n to ";
4244 writeOperand(CBI->getDefaultDest(), true);
4245 Out << " [";
4246 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4247 if (i != 0)
4248 Out << ", ";
4249 writeOperand(CBI->getIndirectDest(i), true);
4251 Out << ']';
4252 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4253 Out << ' ';
4254 if (AI->isUsedWithInAlloca())
4255 Out << "inalloca ";
4256 if (AI->isSwiftError())
4257 Out << "swifterror ";
4258 TypePrinter.print(AI->getAllocatedType(), Out);
4260 // Explicitly write the array size if the code is broken, if it's an array
4261 // allocation, or if the type is not canonical for scalar allocations. The
4262 // latter case prevents the type from mutating when round-tripping through
4263 // assembly.
4264 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4265 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4266 Out << ", ";
4267 writeOperand(AI->getArraySize(), true);
4269 if (AI->getAlignment()) {
4270 Out << ", align " << AI->getAlignment();
4273 unsigned AddrSpace = AI->getType()->getAddressSpace();
4274 if (AddrSpace != 0) {
4275 Out << ", addrspace(" << AddrSpace << ')';
4277 } else if (isa<CastInst>(I)) {
4278 if (Operand) {
4279 Out << ' ';
4280 writeOperand(Operand, true); // Work with broken code
4282 Out << " to ";
4283 TypePrinter.print(I.getType(), Out);
4284 } else if (isa<VAArgInst>(I)) {
4285 if (Operand) {
4286 Out << ' ';
4287 writeOperand(Operand, true); // Work with broken code
4289 Out << ", ";
4290 TypePrinter.print(I.getType(), Out);
4291 } else if (Operand) { // Print the normal way.
4292 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4293 Out << ' ';
4294 TypePrinter.print(GEP->getSourceElementType(), Out);
4295 Out << ',';
4296 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4297 Out << ' ';
4298 TypePrinter.print(LI->getType(), Out);
4299 Out << ',';
4302 // PrintAllTypes - Instructions who have operands of all the same type
4303 // omit the type from all but the first operand. If the instruction has
4304 // different type operands (for example br), then they are all printed.
4305 bool PrintAllTypes = false;
4306 Type *TheType = Operand->getType();
4308 // Select, Store and ShuffleVector always print all types.
4309 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4310 || isa<ReturnInst>(I)) {
4311 PrintAllTypes = true;
4312 } else {
4313 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4314 Operand = I.getOperand(i);
4315 // note that Operand shouldn't be null, but the test helps make dump()
4316 // more tolerant of malformed IR
4317 if (Operand && Operand->getType() != TheType) {
4318 PrintAllTypes = true; // We have differing types! Print them all!
4319 break;
4324 if (!PrintAllTypes) {
4325 Out << ' ';
4326 TypePrinter.print(TheType, Out);
4329 Out << ' ';
4330 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4331 if (i) Out << ", ";
4332 writeOperand(I.getOperand(i), PrintAllTypes);
4336 // Print atomic ordering/alignment for memory operations
4337 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4338 if (LI->isAtomic())
4339 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4340 if (LI->getAlignment())
4341 Out << ", align " << LI->getAlignment();
4342 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4343 if (SI->isAtomic())
4344 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4345 if (SI->getAlignment())
4346 Out << ", align " << SI->getAlignment();
4347 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4348 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4349 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4350 Out << ", align " << CXI->getAlign().value();
4351 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4352 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4353 RMWI->getSyncScopeID());
4354 Out << ", align " << RMWI->getAlign().value();
4355 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4356 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4357 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4358 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4361 // Print Metadata info.
4362 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4363 I.getAllMetadata(InstMD);
4364 printMetadataAttachments(InstMD, ", ");
4366 // Print a nice comment.
4367 printInfoComment(I);
4370 void AssemblyWriter::printMetadataAttachments(
4371 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4372 StringRef Separator) {
4373 if (MDs.empty())
4374 return;
4376 if (MDNames.empty())
4377 MDs[0].second->getContext().getMDKindNames(MDNames);
4379 for (const auto &I : MDs) {
4380 unsigned Kind = I.first;
4381 Out << Separator;
4382 if (Kind < MDNames.size()) {
4383 Out << "!";
4384 printMetadataIdentifier(MDNames[Kind], Out);
4385 } else
4386 Out << "!<unknown kind #" << Kind << ">";
4387 Out << ' ';
4388 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4392 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4393 Out << '!' << Slot << " = ";
4394 printMDNodeBody(Node);
4395 Out << "\n";
4398 void AssemblyWriter::writeAllMDNodes() {
4399 SmallVector<const MDNode *, 16> Nodes;
4400 Nodes.resize(Machine.mdn_size());
4401 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4402 Nodes[I.second] = cast<MDNode>(I.first);
4404 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4405 writeMDNode(i, Nodes[i]);
4409 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4410 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4413 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4414 if (!Attr.isTypeAttribute()) {
4415 Out << Attr.getAsString(InAttrGroup);
4416 return;
4419 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4420 if (Type *Ty = Attr.getValueAsType()) {
4421 Out << '(';
4422 TypePrinter.print(Ty, Out);
4423 Out << ')';
4427 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4428 bool InAttrGroup) {
4429 bool FirstAttr = true;
4430 for (const auto &Attr : AttrSet) {
4431 if (!FirstAttr)
4432 Out << ' ';
4433 writeAttribute(Attr, InAttrGroup);
4434 FirstAttr = false;
4438 void AssemblyWriter::writeAllAttributeGroups() {
4439 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4440 asVec.resize(Machine.as_size());
4442 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4443 asVec[I.second] = I;
4445 for (const auto &I : asVec)
4446 Out << "attributes #" << I.second << " = { "
4447 << I.first.getAsString(true) << " }\n";
4450 void AssemblyWriter::printUseListOrder(const Value *V,
4451 const std::vector<unsigned> &Shuffle) {
4452 bool IsInFunction = Machine.getFunction();
4453 if (IsInFunction)
4454 Out << " ";
4456 Out << "uselistorder";
4457 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4458 Out << "_bb ";
4459 writeOperand(BB->getParent(), false);
4460 Out << ", ";
4461 writeOperand(BB, false);
4462 } else {
4463 Out << " ";
4464 writeOperand(V, true);
4466 Out << ", { ";
4468 assert(Shuffle.size() >= 2 && "Shuffle too small");
4469 Out << Shuffle[0];
4470 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4471 Out << ", " << Shuffle[I];
4472 Out << " }\n";
4475 void AssemblyWriter::printUseLists(const Function *F) {
4476 auto It = UseListOrders.find(F);
4477 if (It == UseListOrders.end())
4478 return;
4480 Out << "\n; uselistorder directives\n";
4481 for (const auto &Pair : It->second)
4482 printUseListOrder(Pair.first, Pair.second);
4485 //===----------------------------------------------------------------------===//
4486 // External Interface declarations
4487 //===----------------------------------------------------------------------===//
4489 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4490 bool ShouldPreserveUseListOrder,
4491 bool IsForDebug) const {
4492 SlotTracker SlotTable(this->getParent());
4493 formatted_raw_ostream OS(ROS);
4494 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4495 IsForDebug,
4496 ShouldPreserveUseListOrder);
4497 W.printFunction(this);
4500 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4501 bool ShouldPreserveUseListOrder,
4502 bool IsForDebug) const {
4503 SlotTracker SlotTable(this->getParent());
4504 formatted_raw_ostream OS(ROS);
4505 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4506 IsForDebug,
4507 ShouldPreserveUseListOrder);
4508 W.printBasicBlock(this);
4511 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4512 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4513 SlotTracker SlotTable(this);
4514 formatted_raw_ostream OS(ROS);
4515 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4516 ShouldPreserveUseListOrder);
4517 W.printModule(this);
4520 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4521 SlotTracker SlotTable(getParent());
4522 formatted_raw_ostream OS(ROS);
4523 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4524 W.printNamedMDNode(this);
4527 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4528 bool IsForDebug) const {
4529 Optional<SlotTracker> LocalST;
4530 SlotTracker *SlotTable;
4531 if (auto *ST = MST.getMachine())
4532 SlotTable = ST;
4533 else {
4534 LocalST.emplace(getParent());
4535 SlotTable = &*LocalST;
4538 formatted_raw_ostream OS(ROS);
4539 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4540 W.printNamedMDNode(this);
4543 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4544 PrintLLVMName(ROS, getName(), ComdatPrefix);
4545 ROS << " = comdat ";
4547 switch (getSelectionKind()) {
4548 case Comdat::Any:
4549 ROS << "any";
4550 break;
4551 case Comdat::ExactMatch:
4552 ROS << "exactmatch";
4553 break;
4554 case Comdat::Largest:
4555 ROS << "largest";
4556 break;
4557 case Comdat::NoDeduplicate:
4558 ROS << "nodeduplicate";
4559 break;
4560 case Comdat::SameSize:
4561 ROS << "samesize";
4562 break;
4565 ROS << '\n';
4568 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4569 TypePrinting TP;
4570 TP.print(const_cast<Type*>(this), OS);
4572 if (NoDetails)
4573 return;
4575 // If the type is a named struct type, print the body as well.
4576 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4577 if (!STy->isLiteral()) {
4578 OS << " = type ";
4579 TP.printStructBody(STy, OS);
4583 static bool isReferencingMDNode(const Instruction &I) {
4584 if (const auto *CI = dyn_cast<CallInst>(&I))
4585 if (Function *F = CI->getCalledFunction())
4586 if (F->isIntrinsic())
4587 for (auto &Op : I.operands())
4588 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4589 if (isa<MDNode>(V->getMetadata()))
4590 return true;
4591 return false;
4594 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4595 bool ShouldInitializeAllMetadata = false;
4596 if (auto *I = dyn_cast<Instruction>(this))
4597 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4598 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4599 ShouldInitializeAllMetadata = true;
4601 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4602 print(ROS, MST, IsForDebug);
4605 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4606 bool IsForDebug) const {
4607 formatted_raw_ostream OS(ROS);
4608 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4609 SlotTracker &SlotTable =
4610 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4611 auto incorporateFunction = [&](const Function *F) {
4612 if (F)
4613 MST.incorporateFunction(*F);
4616 if (const Instruction *I = dyn_cast<Instruction>(this)) {
4617 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4618 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4619 W.printInstruction(*I);
4620 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4621 incorporateFunction(BB->getParent());
4622 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4623 W.printBasicBlock(BB);
4624 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4625 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4626 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4627 W.printGlobal(V);
4628 else if (const Function *F = dyn_cast<Function>(GV))
4629 W.printFunction(F);
4630 else
4631 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4632 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4633 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4634 } else if (const Constant *C = dyn_cast<Constant>(this)) {
4635 TypePrinting TypePrinter;
4636 TypePrinter.print(C->getType(), OS);
4637 OS << ' ';
4638 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4639 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4640 this->printAsOperand(OS, /* PrintType */ true, MST);
4641 } else {
4642 llvm_unreachable("Unknown value to print out!");
4646 /// Print without a type, skipping the TypePrinting object.
4648 /// \return \c true iff printing was successful.
4649 static bool printWithoutType(const Value &V, raw_ostream &O,
4650 SlotTracker *Machine, const Module *M) {
4651 if (V.hasName() || isa<GlobalValue>(V) ||
4652 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4653 WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4654 return true;
4656 return false;
4659 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4660 ModuleSlotTracker &MST) {
4661 TypePrinting TypePrinter(MST.getModule());
4662 if (PrintType) {
4663 TypePrinter.print(V.getType(), O);
4664 O << ' ';
4667 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4668 MST.getModule());
4671 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4672 const Module *M) const {
4673 if (!M)
4674 M = getModuleFromVal(this);
4676 if (!PrintType)
4677 if (printWithoutType(*this, O, nullptr, M))
4678 return;
4680 SlotTracker Machine(
4681 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4682 ModuleSlotTracker MST(Machine, M);
4683 printAsOperandImpl(*this, O, PrintType, MST);
4686 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4687 ModuleSlotTracker &MST) const {
4688 if (!PrintType)
4689 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4690 return;
4692 printAsOperandImpl(*this, O, PrintType, MST);
4695 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4696 ModuleSlotTracker &MST, const Module *M,
4697 bool OnlyAsOperand) {
4698 formatted_raw_ostream OS(ROS);
4700 TypePrinting TypePrinter(M);
4702 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4703 /* FromValue */ true);
4705 auto *N = dyn_cast<MDNode>(&MD);
4706 if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4707 return;
4709 OS << " = ";
4710 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4713 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4714 ModuleSlotTracker MST(M, isa<MDNode>(this));
4715 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4718 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4719 const Module *M) const {
4720 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4723 void Metadata::print(raw_ostream &OS, const Module *M,
4724 bool /*IsForDebug*/) const {
4725 ModuleSlotTracker MST(M, isa<MDNode>(this));
4726 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4729 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4730 const Module *M, bool /*IsForDebug*/) const {
4731 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4734 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4735 SlotTracker SlotTable(this);
4736 formatted_raw_ostream OS(ROS);
4737 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4738 W.printModuleSummaryIndex();
4741 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4742 unsigned UB) const {
4743 SlotTracker *ST = MachineStorage.get();
4744 if (!ST)
4745 return;
4747 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4748 if (I.second >= LB && I.second < UB)
4749 L.push_back(std::make_pair(I.second, I.first));
4752 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4753 // Value::dump - allow easy printing of Values from the debugger.
4754 LLVM_DUMP_METHOD
4755 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4757 // Type::dump - allow easy printing of Types from the debugger.
4758 LLVM_DUMP_METHOD
4759 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4761 // Module::dump() - Allow printing of Modules from the debugger.
4762 LLVM_DUMP_METHOD
4763 void Module::dump() const {
4764 print(dbgs(), nullptr,
4765 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4768 // Allow printing of Comdats from the debugger.
4769 LLVM_DUMP_METHOD
4770 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4772 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4773 LLVM_DUMP_METHOD
4774 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4776 LLVM_DUMP_METHOD
4777 void Metadata::dump() const { dump(nullptr); }
4779 LLVM_DUMP_METHOD
4780 void Metadata::dump(const Module *M) const {
4781 print(dbgs(), M, /*IsForDebug=*/true);
4782 dbgs() << '\n';
4785 // Allow printing of ModuleSummaryIndex from the debugger.
4786 LLVM_DUMP_METHOD
4787 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4788 #endif