1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Metadata classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRange.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/TrackingMDRef.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MathExtras.h"
57 #include <type_traits>
63 MetadataAsValue::MetadataAsValue(Type
*Ty
, Metadata
*MD
)
64 : Value(Ty
, MetadataAsValueVal
), MD(MD
) {
68 MetadataAsValue::~MetadataAsValue() {
69 getType()->getContext().pImpl
->MetadataAsValues
.erase(MD
);
73 /// Canonicalize metadata arguments to intrinsics.
75 /// To support bitcode upgrades (and assembly semantic sugar) for \a
76 /// MetadataAsValue, we need to canonicalize certain metadata.
78 /// - nullptr is replaced by an empty MDNode.
79 /// - An MDNode with a single null operand is replaced by an empty MDNode.
80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
82 /// This maintains readability of bitcode from when metadata was a type of
83 /// value, and these bridges were unnecessary.
84 static Metadata
*canonicalizeMetadataForValue(LLVMContext
&Context
,
88 return MDNode::get(Context
, None
);
90 // Return early if this isn't a single-operand MDNode.
91 auto *N
= dyn_cast
<MDNode
>(MD
);
92 if (!N
|| N
->getNumOperands() != 1)
95 if (!N
->getOperand(0))
97 return MDNode::get(Context
, None
);
99 if (auto *C
= dyn_cast
<ConstantAsMetadata
>(N
->getOperand(0)))
100 // Look through the MDNode.
106 MetadataAsValue
*MetadataAsValue::get(LLVMContext
&Context
, Metadata
*MD
) {
107 MD
= canonicalizeMetadataForValue(Context
, MD
);
108 auto *&Entry
= Context
.pImpl
->MetadataAsValues
[MD
];
110 Entry
= new MetadataAsValue(Type::getMetadataTy(Context
), MD
);
114 MetadataAsValue
*MetadataAsValue::getIfExists(LLVMContext
&Context
,
116 MD
= canonicalizeMetadataForValue(Context
, MD
);
117 auto &Store
= Context
.pImpl
->MetadataAsValues
;
118 return Store
.lookup(MD
);
121 void MetadataAsValue::handleChangedMetadata(Metadata
*MD
) {
122 LLVMContext
&Context
= getContext();
123 MD
= canonicalizeMetadataForValue(Context
, MD
);
124 auto &Store
= Context
.pImpl
->MetadataAsValues
;
126 // Stop tracking the old metadata.
127 Store
.erase(this->MD
);
131 // Start tracking MD, or RAUW if necessary.
132 auto *&Entry
= Store
[MD
];
134 replaceAllUsesWith(Entry
);
144 void MetadataAsValue::track() {
146 MetadataTracking::track(&MD
, *MD
, *this);
149 void MetadataAsValue::untrack() {
151 MetadataTracking::untrack(MD
);
154 bool MetadataTracking::track(void *Ref
, Metadata
&MD
, OwnerTy Owner
) {
155 assert(Ref
&& "Expected live reference");
156 assert((Owner
|| *static_cast<Metadata
**>(Ref
) == &MD
) &&
157 "Reference without owner must be direct");
158 if (auto *R
= ReplaceableMetadataImpl::getOrCreate(MD
)) {
159 R
->addRef(Ref
, Owner
);
162 if (auto *PH
= dyn_cast
<DistinctMDOperandPlaceholder
>(&MD
)) {
163 assert(!PH
->Use
&& "Placeholders can only be used once");
164 assert(!Owner
&& "Unexpected callback to owner");
165 PH
->Use
= static_cast<Metadata
**>(Ref
);
171 void MetadataTracking::untrack(void *Ref
, Metadata
&MD
) {
172 assert(Ref
&& "Expected live reference");
173 if (auto *R
= ReplaceableMetadataImpl::getIfExists(MD
))
175 else if (auto *PH
= dyn_cast
<DistinctMDOperandPlaceholder
>(&MD
))
179 bool MetadataTracking::retrack(void *Ref
, Metadata
&MD
, void *New
) {
180 assert(Ref
&& "Expected live reference");
181 assert(New
&& "Expected live reference");
182 assert(Ref
!= New
&& "Expected change");
183 if (auto *R
= ReplaceableMetadataImpl::getIfExists(MD
)) {
184 R
->moveRef(Ref
, New
, MD
);
187 assert(!isa
<DistinctMDOperandPlaceholder
>(MD
) &&
188 "Unexpected move of an MDOperand");
189 assert(!isReplaceable(MD
) &&
190 "Expected un-replaceable metadata, since we didn't move a reference");
194 bool MetadataTracking::isReplaceable(const Metadata
&MD
) {
195 return ReplaceableMetadataImpl::isReplaceable(MD
);
198 SmallVector
<Metadata
*> ReplaceableMetadataImpl::getAllArgListUsers() {
199 SmallVector
<std::pair
<OwnerTy
, uint64_t> *> MDUsersWithID
;
200 for (auto Pair
: UseMap
) {
201 OwnerTy Owner
= Pair
.second
.first
;
202 if (!Owner
.is
<Metadata
*>())
204 Metadata
*OwnerMD
= Owner
.get
<Metadata
*>();
205 if (OwnerMD
->getMetadataID() == Metadata::DIArgListKind
)
206 MDUsersWithID
.push_back(&UseMap
[Pair
.first
]);
208 llvm::sort(MDUsersWithID
, [](auto UserA
, auto UserB
) {
209 return UserA
->second
< UserB
->second
;
211 SmallVector
<Metadata
*> MDUsers
;
212 for (auto UserWithID
: MDUsersWithID
)
213 MDUsers
.push_back(UserWithID
->first
.get
<Metadata
*>());
217 void ReplaceableMetadataImpl::addRef(void *Ref
, OwnerTy Owner
) {
219 UseMap
.insert(std::make_pair(Ref
, std::make_pair(Owner
, NextIndex
)))
222 assert(WasInserted
&& "Expected to add a reference");
225 assert(NextIndex
!= 0 && "Unexpected overflow");
228 void ReplaceableMetadataImpl::dropRef(void *Ref
) {
229 bool WasErased
= UseMap
.erase(Ref
);
231 assert(WasErased
&& "Expected to drop a reference");
234 void ReplaceableMetadataImpl::moveRef(void *Ref
, void *New
,
235 const Metadata
&MD
) {
236 auto I
= UseMap
.find(Ref
);
237 assert(I
!= UseMap
.end() && "Expected to move a reference");
238 auto OwnerAndIndex
= I
->second
;
240 bool WasInserted
= UseMap
.insert(std::make_pair(New
, OwnerAndIndex
)).second
;
242 assert(WasInserted
&& "Expected to add a reference");
244 // Check that the references are direct if there's no owner.
246 assert((OwnerAndIndex
.first
|| *static_cast<Metadata
**>(Ref
) == &MD
) &&
247 "Reference without owner must be direct");
248 assert((OwnerAndIndex
.first
|| *static_cast<Metadata
**>(New
) == &MD
) &&
249 "Reference without owner must be direct");
252 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata
*MD
) {
256 // Copy out uses since UseMap will get touched below.
257 using UseTy
= std::pair
<void *, std::pair
<OwnerTy
, uint64_t>>;
258 SmallVector
<UseTy
, 8> Uses(UseMap
.begin(), UseMap
.end());
259 llvm::sort(Uses
, [](const UseTy
&L
, const UseTy
&R
) {
260 return L
.second
.second
< R
.second
.second
;
262 for (const auto &Pair
: Uses
) {
263 // Check that this Ref hasn't disappeared after RAUW (when updating a
265 if (!UseMap
.count(Pair
.first
))
268 OwnerTy Owner
= Pair
.second
.first
;
270 // Update unowned tracking references directly.
271 Metadata
*&Ref
= *static_cast<Metadata
**>(Pair
.first
);
274 MetadataTracking::track(Ref
);
275 UseMap
.erase(Pair
.first
);
279 // Check for MetadataAsValue.
280 if (Owner
.is
<MetadataAsValue
*>()) {
281 Owner
.get
<MetadataAsValue
*>()->handleChangedMetadata(MD
);
285 // There's a Metadata owner -- dispatch.
286 Metadata
*OwnerMD
= Owner
.get
<Metadata
*>();
287 switch (OwnerMD
->getMetadataID()) {
288 #define HANDLE_METADATA_LEAF(CLASS) \
289 case Metadata::CLASS##Kind: \
290 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
292 #include "llvm/IR/Metadata.def"
294 llvm_unreachable("Invalid metadata subclass");
297 assert(UseMap
.empty() && "Expected all uses to be replaced");
300 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers
) {
309 // Copy out uses since UseMap could get touched below.
310 using UseTy
= std::pair
<void *, std::pair
<OwnerTy
, uint64_t>>;
311 SmallVector
<UseTy
, 8> Uses(UseMap
.begin(), UseMap
.end());
312 llvm::sort(Uses
, [](const UseTy
&L
, const UseTy
&R
) {
313 return L
.second
.second
< R
.second
.second
;
316 for (const auto &Pair
: Uses
) {
317 auto Owner
= Pair
.second
.first
;
320 if (Owner
.is
<MetadataAsValue
*>())
323 // Resolve MDNodes that point at this.
324 auto *OwnerMD
= dyn_cast
<MDNode
>(Owner
.get
<Metadata
*>());
327 if (OwnerMD
->isResolved())
329 OwnerMD
->decrementUnresolvedOperandCount();
333 ReplaceableMetadataImpl
*ReplaceableMetadataImpl::getOrCreate(Metadata
&MD
) {
334 if (auto *N
= dyn_cast
<MDNode
>(&MD
))
335 return N
->isResolved() ? nullptr : N
->Context
.getOrCreateReplaceableUses();
336 return dyn_cast
<ValueAsMetadata
>(&MD
);
339 ReplaceableMetadataImpl
*ReplaceableMetadataImpl::getIfExists(Metadata
&MD
) {
340 if (auto *N
= dyn_cast
<MDNode
>(&MD
))
341 return N
->isResolved() ? nullptr : N
->Context
.getReplaceableUses();
342 return dyn_cast
<ValueAsMetadata
>(&MD
);
345 bool ReplaceableMetadataImpl::isReplaceable(const Metadata
&MD
) {
346 if (auto *N
= dyn_cast
<MDNode
>(&MD
))
347 return !N
->isResolved();
348 return dyn_cast
<ValueAsMetadata
>(&MD
);
351 static DISubprogram
*getLocalFunctionMetadata(Value
*V
) {
352 assert(V
&& "Expected value");
353 if (auto *A
= dyn_cast
<Argument
>(V
)) {
354 if (auto *Fn
= A
->getParent())
355 return Fn
->getSubprogram();
359 if (BasicBlock
*BB
= cast
<Instruction
>(V
)->getParent()) {
360 if (auto *Fn
= BB
->getParent())
361 return Fn
->getSubprogram();
368 ValueAsMetadata
*ValueAsMetadata::get(Value
*V
) {
369 assert(V
&& "Unexpected null Value");
371 auto &Context
= V
->getContext();
372 auto *&Entry
= Context
.pImpl
->ValuesAsMetadata
[V
];
374 assert((isa
<Constant
>(V
) || isa
<Argument
>(V
) || isa
<Instruction
>(V
)) &&
375 "Expected constant or function-local value");
376 assert(!V
->IsUsedByMD
&& "Expected this to be the only metadata use");
377 V
->IsUsedByMD
= true;
378 if (auto *C
= dyn_cast
<Constant
>(V
))
379 Entry
= new ConstantAsMetadata(C
);
381 Entry
= new LocalAsMetadata(V
);
387 ValueAsMetadata
*ValueAsMetadata::getIfExists(Value
*V
) {
388 assert(V
&& "Unexpected null Value");
389 return V
->getContext().pImpl
->ValuesAsMetadata
.lookup(V
);
392 void ValueAsMetadata::handleDeletion(Value
*V
) {
393 assert(V
&& "Expected valid value");
395 auto &Store
= V
->getType()->getContext().pImpl
->ValuesAsMetadata
;
396 auto I
= Store
.find(V
);
397 if (I
== Store
.end())
400 // Remove old entry from the map.
401 ValueAsMetadata
*MD
= I
->second
;
402 assert(MD
&& "Expected valid metadata");
403 assert(MD
->getValue() == V
&& "Expected valid mapping");
406 // Delete the metadata.
407 MD
->replaceAllUsesWith(nullptr);
411 void ValueAsMetadata::handleRAUW(Value
*From
, Value
*To
) {
412 assert(From
&& "Expected valid value");
413 assert(To
&& "Expected valid value");
414 assert(From
!= To
&& "Expected changed value");
415 assert(From
->getType() == To
->getType() && "Unexpected type change");
417 LLVMContext
&Context
= From
->getType()->getContext();
418 auto &Store
= Context
.pImpl
->ValuesAsMetadata
;
419 auto I
= Store
.find(From
);
420 if (I
== Store
.end()) {
421 assert(!From
->IsUsedByMD
&& "Expected From not to be used by metadata");
425 // Remove old entry from the map.
426 assert(From
->IsUsedByMD
&& "Expected From to be used by metadata");
427 From
->IsUsedByMD
= false;
428 ValueAsMetadata
*MD
= I
->second
;
429 assert(MD
&& "Expected valid metadata");
430 assert(MD
->getValue() == From
&& "Expected valid mapping");
433 if (isa
<LocalAsMetadata
>(MD
)) {
434 if (auto *C
= dyn_cast
<Constant
>(To
)) {
435 // Local became a constant.
436 MD
->replaceAllUsesWith(ConstantAsMetadata::get(C
));
440 if (getLocalFunctionMetadata(From
) && getLocalFunctionMetadata(To
) &&
441 getLocalFunctionMetadata(From
) != getLocalFunctionMetadata(To
)) {
442 // DISubprogram changed.
443 MD
->replaceAllUsesWith(nullptr);
447 } else if (!isa
<Constant
>(To
)) {
448 // Changed to function-local value.
449 MD
->replaceAllUsesWith(nullptr);
454 auto *&Entry
= Store
[To
];
456 // The target already exists.
457 MD
->replaceAllUsesWith(Entry
);
462 // Update MD in place (and update the map entry).
463 assert(!To
->IsUsedByMD
&& "Expected this to be the only metadata use");
464 To
->IsUsedByMD
= true;
469 //===----------------------------------------------------------------------===//
470 // MDString implementation.
473 MDString
*MDString::get(LLVMContext
&Context
, StringRef Str
) {
474 auto &Store
= Context
.pImpl
->MDStringCache
;
475 auto I
= Store
.try_emplace(Str
);
476 auto &MapEntry
= I
.first
->getValue();
479 MapEntry
.Entry
= &*I
.first
;
483 StringRef
MDString::getString() const {
484 assert(Entry
&& "Expected to find string map entry");
485 return Entry
->first();
488 //===----------------------------------------------------------------------===//
489 // MDNode implementation.
492 // Assert that the MDNode types will not be unaligned by the objects
493 // prepended to them.
494 #define HANDLE_MDNODE_LEAF(CLASS) \
496 alignof(uint64_t) >= alignof(CLASS), \
497 "Alignment is insufficient after objects prepended to " #CLASS);
498 #include "llvm/IR/Metadata.def"
500 void *MDNode::operator new(size_t Size
, unsigned NumOps
) {
501 size_t OpSize
= NumOps
* sizeof(MDOperand
);
502 // uint64_t is the most aligned type we need support (ensured by static_assert
504 OpSize
= alignTo(OpSize
, alignof(uint64_t));
505 void *Ptr
= reinterpret_cast<char *>(::operator new(OpSize
+ Size
)) + OpSize
;
506 MDOperand
*O
= static_cast<MDOperand
*>(Ptr
);
507 for (MDOperand
*E
= O
- NumOps
; O
!= E
; --O
)
508 (void)new (O
- 1) MDOperand
;
512 // Repress memory sanitization, due to use-after-destroy by operator
513 // delete. Bug report 24578 identifies this issue.
514 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE
void MDNode::operator delete(void *Mem
) {
515 MDNode
*N
= static_cast<MDNode
*>(Mem
);
516 size_t OpSize
= N
->NumOperands
* sizeof(MDOperand
);
517 OpSize
= alignTo(OpSize
, alignof(uint64_t));
519 MDOperand
*O
= static_cast<MDOperand
*>(Mem
);
520 for (MDOperand
*E
= O
- N
->NumOperands
; O
!= E
; --O
)
521 (O
- 1)->~MDOperand();
522 ::operator delete(reinterpret_cast<char *>(Mem
) - OpSize
);
525 MDNode::MDNode(LLVMContext
&Context
, unsigned ID
, StorageType Storage
,
526 ArrayRef
<Metadata
*> Ops1
, ArrayRef
<Metadata
*> Ops2
)
527 : Metadata(ID
, Storage
), NumOperands(Ops1
.size() + Ops2
.size()),
528 NumUnresolved(0), Context(Context
) {
530 for (Metadata
*MD
: Ops1
)
531 setOperand(Op
++, MD
);
532 for (Metadata
*MD
: Ops2
)
533 setOperand(Op
++, MD
);
538 // Count the unresolved operands. If there are any, RAUW support will be
539 // added lazily on first reference.
540 countUnresolvedOperands();
543 TempMDNode
MDNode::clone() const {
544 switch (getMetadataID()) {
546 llvm_unreachable("Invalid MDNode subclass");
547 #define HANDLE_MDNODE_LEAF(CLASS) \
549 return cast<CLASS>(this)->cloneImpl();
550 #include "llvm/IR/Metadata.def"
554 static bool isOperandUnresolved(Metadata
*Op
) {
555 if (auto *N
= dyn_cast_or_null
<MDNode
>(Op
))
556 return !N
->isResolved();
560 void MDNode::countUnresolvedOperands() {
561 assert(NumUnresolved
== 0 && "Expected unresolved ops to be uncounted");
562 assert(isUniqued() && "Expected this to be uniqued");
563 NumUnresolved
= count_if(operands(), isOperandUnresolved
);
566 void MDNode::makeUniqued() {
567 assert(isTemporary() && "Expected this to be temporary");
568 assert(!isResolved() && "Expected this to be unresolved");
570 // Enable uniquing callbacks.
571 for (auto &Op
: mutable_operands())
572 Op
.reset(Op
.get(), this);
574 // Make this 'uniqued'.
576 countUnresolvedOperands();
577 if (!NumUnresolved
) {
578 dropReplaceableUses();
579 assert(isResolved() && "Expected this to be resolved");
582 assert(isUniqued() && "Expected this to be uniqued");
585 void MDNode::makeDistinct() {
586 assert(isTemporary() && "Expected this to be temporary");
587 assert(!isResolved() && "Expected this to be unresolved");
589 // Drop RAUW support and store as a distinct node.
590 dropReplaceableUses();
591 storeDistinctInContext();
593 assert(isDistinct() && "Expected this to be distinct");
594 assert(isResolved() && "Expected this to be resolved");
597 void MDNode::resolve() {
598 assert(isUniqued() && "Expected this to be uniqued");
599 assert(!isResolved() && "Expected this to be unresolved");
602 dropReplaceableUses();
604 assert(isResolved() && "Expected this to be resolved");
607 void MDNode::dropReplaceableUses() {
608 assert(!NumUnresolved
&& "Unexpected unresolved operand");
610 // Drop any RAUW support.
611 if (Context
.hasReplaceableUses())
612 Context
.takeReplaceableUses()->resolveAllUses();
615 void MDNode::resolveAfterOperandChange(Metadata
*Old
, Metadata
*New
) {
616 assert(isUniqued() && "Expected this to be uniqued");
617 assert(NumUnresolved
!= 0 && "Expected unresolved operands");
619 // Check if an operand was resolved.
620 if (!isOperandUnresolved(Old
)) {
621 if (isOperandUnresolved(New
))
622 // An operand was un-resolved!
624 } else if (!isOperandUnresolved(New
))
625 decrementUnresolvedOperandCount();
628 void MDNode::decrementUnresolvedOperandCount() {
629 assert(!isResolved() && "Expected this to be unresolved");
633 assert(isUniqued() && "Expected this to be uniqued");
637 // Last unresolved operand has just been resolved.
638 dropReplaceableUses();
639 assert(isResolved() && "Expected this to become resolved");
642 void MDNode::resolveCycles() {
646 // Resolve this node immediately.
649 // Resolve all operands.
650 for (const auto &Op
: operands()) {
651 auto *N
= dyn_cast_or_null
<MDNode
>(Op
);
655 assert(!N
->isTemporary() &&
656 "Expected all forward declarations to be resolved");
657 if (!N
->isResolved())
662 static bool hasSelfReference(MDNode
*N
) {
663 return llvm::is_contained(N
->operands(), N
);
666 MDNode
*MDNode::replaceWithPermanentImpl() {
667 switch (getMetadataID()) {
669 // If this type isn't uniquable, replace with a distinct node.
670 return replaceWithDistinctImpl();
672 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
675 #include "llvm/IR/Metadata.def"
678 // Even if this type is uniquable, self-references have to be distinct.
679 if (hasSelfReference(this))
680 return replaceWithDistinctImpl();
681 return replaceWithUniquedImpl();
684 MDNode
*MDNode::replaceWithUniquedImpl() {
685 // Try to uniquify in place.
686 MDNode
*UniquedNode
= uniquify();
688 if (UniquedNode
== this) {
693 // Collision, so RAUW instead.
694 replaceAllUsesWith(UniquedNode
);
699 MDNode
*MDNode::replaceWithDistinctImpl() {
704 void MDTuple::recalculateHash() {
705 setHash(MDTupleInfo::KeyTy::calculateHash(this));
708 void MDNode::dropAllReferences() {
709 for (unsigned I
= 0, E
= NumOperands
; I
!= E
; ++I
)
710 setOperand(I
, nullptr);
711 if (Context
.hasReplaceableUses()) {
712 Context
.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
713 (void)Context
.takeReplaceableUses();
717 void MDNode::handleChangedOperand(void *Ref
, Metadata
*New
) {
718 unsigned Op
= static_cast<MDOperand
*>(Ref
) - op_begin();
719 assert(Op
< getNumOperands() && "Expected valid operand");
722 // This node is not uniqued. Just set the operand and be done with it.
727 // This node is uniqued.
730 Metadata
*Old
= getOperand(Op
);
733 // Drop uniquing for self-reference cycles and deleted constants.
734 if (New
== this || (!New
&& Old
&& isa
<ConstantAsMetadata
>(Old
))) {
737 storeDistinctInContext();
741 // Re-unique the node.
742 auto *Uniqued
= uniquify();
743 if (Uniqued
== this) {
745 resolveAfterOperandChange(Old
, New
);
751 // Still unresolved, so RAUW.
753 // First, clear out all operands to prevent any recursion (similar to
754 // dropAllReferences(), but we still need the use-list).
755 for (unsigned O
= 0, E
= getNumOperands(); O
!= E
; ++O
)
756 setOperand(O
, nullptr);
757 if (Context
.hasReplaceableUses())
758 Context
.getReplaceableUses()->replaceAllUsesWith(Uniqued
);
763 // Store in non-uniqued form if RAUW isn't possible.
764 storeDistinctInContext();
767 void MDNode::deleteAsSubclass() {
768 switch (getMetadataID()) {
770 llvm_unreachable("Invalid subclass of MDNode");
771 #define HANDLE_MDNODE_LEAF(CLASS) \
773 delete cast<CLASS>(this); \
775 #include "llvm/IR/Metadata.def"
779 template <class T
, class InfoT
>
780 static T
*uniquifyImpl(T
*N
, DenseSet
<T
*, InfoT
> &Store
) {
781 if (T
*U
= getUniqued(Store
, N
))
788 template <class NodeTy
> struct MDNode::HasCachedHash
{
791 template <class U
, U Val
> struct SFINAE
{};
794 static Yes
&check(SFINAE
<void (U::*)(unsigned), &U::setHash
> *);
795 template <class U
> static No
&check(...);
797 static const bool value
= sizeof(check
<NodeTy
>(nullptr)) == sizeof(Yes
);
800 MDNode
*MDNode::uniquify() {
801 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
803 // Try to insert into uniquing store.
804 switch (getMetadataID()) {
806 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
807 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
808 case CLASS##Kind: { \
809 CLASS *SubclassThis = cast<CLASS>(this); \
810 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
811 ShouldRecalculateHash; \
812 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
813 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
815 #include "llvm/IR/Metadata.def"
819 void MDNode::eraseFromStore() {
820 switch (getMetadataID()) {
822 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
823 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
825 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
827 #include "llvm/IR/Metadata.def"
831 MDTuple
*MDTuple::getImpl(LLVMContext
&Context
, ArrayRef
<Metadata
*> MDs
,
832 StorageType Storage
, bool ShouldCreate
) {
834 if (Storage
== Uniqued
) {
835 MDTupleInfo::KeyTy
Key(MDs
);
836 if (auto *N
= getUniqued(Context
.pImpl
->MDTuples
, Key
))
840 Hash
= Key
.getHash();
842 assert(ShouldCreate
&& "Expected non-uniqued nodes to always be created");
845 return storeImpl(new (MDs
.size()) MDTuple(Context
, Storage
, Hash
, MDs
),
846 Storage
, Context
.pImpl
->MDTuples
);
849 void MDNode::deleteTemporary(MDNode
*N
) {
850 assert(N
->isTemporary() && "Expected temporary node");
851 N
->replaceAllUsesWith(nullptr);
852 N
->deleteAsSubclass();
855 void MDNode::storeDistinctInContext() {
856 assert(!Context
.hasReplaceableUses() && "Unexpected replaceable uses");
857 assert(!NumUnresolved
&& "Unexpected unresolved nodes");
859 assert(isResolved() && "Expected this to be resolved");
862 switch (getMetadataID()) {
864 llvm_unreachable("Invalid subclass of MDNode");
865 #define HANDLE_MDNODE_LEAF(CLASS) \
866 case CLASS##Kind: { \
867 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
868 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
871 #include "llvm/IR/Metadata.def"
874 getContext().pImpl
->DistinctMDNodes
.push_back(this);
877 void MDNode::replaceOperandWith(unsigned I
, Metadata
*New
) {
878 if (getOperand(I
) == New
)
886 handleChangedOperand(mutable_begin() + I
, New
);
889 void MDNode::setOperand(unsigned I
, Metadata
*New
) {
890 assert(I
< NumOperands
);
891 mutable_begin()[I
].reset(New
, isUniqued() ? this : nullptr);
894 /// Get a node or a self-reference that looks like it.
896 /// Special handling for finding self-references, for use by \a
897 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
898 /// when self-referencing nodes were still uniqued. If the first operand has
899 /// the same operands as \c Ops, return the first operand instead.
900 static MDNode
*getOrSelfReference(LLVMContext
&Context
,
901 ArrayRef
<Metadata
*> Ops
) {
903 if (MDNode
*N
= dyn_cast_or_null
<MDNode
>(Ops
[0]))
904 if (N
->getNumOperands() == Ops
.size() && N
== N
->getOperand(0)) {
905 for (unsigned I
= 1, E
= Ops
.size(); I
!= E
; ++I
)
906 if (Ops
[I
] != N
->getOperand(I
))
907 return MDNode::get(Context
, Ops
);
911 return MDNode::get(Context
, Ops
);
914 MDNode
*MDNode::concatenate(MDNode
*A
, MDNode
*B
) {
920 SmallSetVector
<Metadata
*, 4> MDs(A
->op_begin(), A
->op_end());
921 MDs
.insert(B
->op_begin(), B
->op_end());
923 // FIXME: This preserves long-standing behaviour, but is it really the right
924 // behaviour? Or was that an unintended side-effect of node uniquing?
925 return getOrSelfReference(A
->getContext(), MDs
.getArrayRef());
928 MDNode
*MDNode::intersect(MDNode
*A
, MDNode
*B
) {
932 SmallSetVector
<Metadata
*, 4> MDs(A
->op_begin(), A
->op_end());
933 SmallPtrSet
<Metadata
*, 4> BSet(B
->op_begin(), B
->op_end());
934 MDs
.remove_if([&](Metadata
*MD
) { return !BSet
.count(MD
); });
936 // FIXME: This preserves long-standing behaviour, but is it really the right
937 // behaviour? Or was that an unintended side-effect of node uniquing?
938 return getOrSelfReference(A
->getContext(), MDs
.getArrayRef());
941 MDNode
*MDNode::getMostGenericAliasScope(MDNode
*A
, MDNode
*B
) {
945 // Take the intersection of domains then union the scopes
946 // within those domains
947 SmallPtrSet
<const MDNode
*, 16> ADomains
;
948 SmallPtrSet
<const MDNode
*, 16> IntersectDomains
;
949 SmallSetVector
<Metadata
*, 4> MDs
;
950 for (const MDOperand
&MDOp
: A
->operands())
951 if (const MDNode
*NAMD
= dyn_cast
<MDNode
>(MDOp
))
952 if (const MDNode
*Domain
= AliasScopeNode(NAMD
).getDomain())
953 ADomains
.insert(Domain
);
955 for (const MDOperand
&MDOp
: B
->operands())
956 if (const MDNode
*NAMD
= dyn_cast
<MDNode
>(MDOp
))
957 if (const MDNode
*Domain
= AliasScopeNode(NAMD
).getDomain())
958 if (ADomains
.contains(Domain
)) {
959 IntersectDomains
.insert(Domain
);
963 for (const MDOperand
&MDOp
: A
->operands())
964 if (const MDNode
*NAMD
= dyn_cast
<MDNode
>(MDOp
))
965 if (const MDNode
*Domain
= AliasScopeNode(NAMD
).getDomain())
966 if (IntersectDomains
.contains(Domain
))
969 return MDs
.empty() ? nullptr
970 : getOrSelfReference(A
->getContext(), MDs
.getArrayRef());
973 MDNode
*MDNode::getMostGenericFPMath(MDNode
*A
, MDNode
*B
) {
977 APFloat AVal
= mdconst::extract
<ConstantFP
>(A
->getOperand(0))->getValueAPF();
978 APFloat BVal
= mdconst::extract
<ConstantFP
>(B
->getOperand(0))->getValueAPF();
984 static bool isContiguous(const ConstantRange
&A
, const ConstantRange
&B
) {
985 return A
.getUpper() == B
.getLower() || A
.getLower() == B
.getUpper();
988 static bool canBeMerged(const ConstantRange
&A
, const ConstantRange
&B
) {
989 return !A
.intersectWith(B
).isEmptySet() || isContiguous(A
, B
);
992 static bool tryMergeRange(SmallVectorImpl
<ConstantInt
*> &EndPoints
,
993 ConstantInt
*Low
, ConstantInt
*High
) {
994 ConstantRange
NewRange(Low
->getValue(), High
->getValue());
995 unsigned Size
= EndPoints
.size();
996 APInt LB
= EndPoints
[Size
- 2]->getValue();
997 APInt LE
= EndPoints
[Size
- 1]->getValue();
998 ConstantRange
LastRange(LB
, LE
);
999 if (canBeMerged(NewRange
, LastRange
)) {
1000 ConstantRange Union
= LastRange
.unionWith(NewRange
);
1001 Type
*Ty
= High
->getType();
1002 EndPoints
[Size
- 2] =
1003 cast
<ConstantInt
>(ConstantInt::get(Ty
, Union
.getLower()));
1004 EndPoints
[Size
- 1] =
1005 cast
<ConstantInt
>(ConstantInt::get(Ty
, Union
.getUpper()));
1011 static void addRange(SmallVectorImpl
<ConstantInt
*> &EndPoints
,
1012 ConstantInt
*Low
, ConstantInt
*High
) {
1013 if (!EndPoints
.empty())
1014 if (tryMergeRange(EndPoints
, Low
, High
))
1017 EndPoints
.push_back(Low
);
1018 EndPoints
.push_back(High
);
1021 MDNode
*MDNode::getMostGenericRange(MDNode
*A
, MDNode
*B
) {
1022 // Given two ranges, we want to compute the union of the ranges. This
1023 // is slightly complicated by having to combine the intervals and merge
1024 // the ones that overlap.
1032 // First, walk both lists in order of the lower boundary of each interval.
1033 // At each step, try to merge the new interval to the last one we adedd.
1034 SmallVector
<ConstantInt
*, 4> EndPoints
;
1037 int AN
= A
->getNumOperands() / 2;
1038 int BN
= B
->getNumOperands() / 2;
1039 while (AI
< AN
&& BI
< BN
) {
1040 ConstantInt
*ALow
= mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
));
1041 ConstantInt
*BLow
= mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
));
1043 if (ALow
->getValue().slt(BLow
->getValue())) {
1044 addRange(EndPoints
, ALow
,
1045 mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
+ 1)));
1048 addRange(EndPoints
, BLow
,
1049 mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
+ 1)));
1054 addRange(EndPoints
, mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
)),
1055 mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
+ 1)));
1059 addRange(EndPoints
, mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
)),
1060 mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
+ 1)));
1064 // If we have more than 2 ranges (4 endpoints) we have to try to merge
1065 // the last and first ones.
1066 unsigned Size
= EndPoints
.size();
1068 ConstantInt
*FB
= EndPoints
[0];
1069 ConstantInt
*FE
= EndPoints
[1];
1070 if (tryMergeRange(EndPoints
, FB
, FE
)) {
1071 for (unsigned i
= 0; i
< Size
- 2; ++i
) {
1072 EndPoints
[i
] = EndPoints
[i
+ 2];
1074 EndPoints
.resize(Size
- 2);
1078 // If in the end we have a single range, it is possible that it is now the
1079 // full range. Just drop the metadata in that case.
1080 if (EndPoints
.size() == 2) {
1081 ConstantRange
Range(EndPoints
[0]->getValue(), EndPoints
[1]->getValue());
1082 if (Range
.isFullSet())
1086 SmallVector
<Metadata
*, 4> MDs
;
1087 MDs
.reserve(EndPoints
.size());
1088 for (auto *I
: EndPoints
)
1089 MDs
.push_back(ConstantAsMetadata::get(I
));
1090 return MDNode::get(A
->getContext(), MDs
);
1093 MDNode
*MDNode::getMostGenericAlignmentOrDereferenceable(MDNode
*A
, MDNode
*B
) {
1097 ConstantInt
*AVal
= mdconst::extract
<ConstantInt
>(A
->getOperand(0));
1098 ConstantInt
*BVal
= mdconst::extract
<ConstantInt
>(B
->getOperand(0));
1099 if (AVal
->getZExtValue() < BVal
->getZExtValue())
1104 //===----------------------------------------------------------------------===//
1105 // NamedMDNode implementation.
1108 static SmallVector
<TrackingMDRef
, 4> &getNMDOps(void *Operands
) {
1109 return *(SmallVector
<TrackingMDRef
, 4> *)Operands
;
1112 NamedMDNode::NamedMDNode(const Twine
&N
)
1113 : Name(N
.str()), Operands(new SmallVector
<TrackingMDRef
, 4>()) {}
1115 NamedMDNode::~NamedMDNode() {
1116 dropAllReferences();
1117 delete &getNMDOps(Operands
);
1120 unsigned NamedMDNode::getNumOperands() const {
1121 return (unsigned)getNMDOps(Operands
).size();
1124 MDNode
*NamedMDNode::getOperand(unsigned i
) const {
1125 assert(i
< getNumOperands() && "Invalid Operand number!");
1126 auto *N
= getNMDOps(Operands
)[i
].get();
1127 return cast_or_null
<MDNode
>(N
);
1130 void NamedMDNode::addOperand(MDNode
*M
) { getNMDOps(Operands
).emplace_back(M
); }
1132 void NamedMDNode::setOperand(unsigned I
, MDNode
*New
) {
1133 assert(I
< getNumOperands() && "Invalid operand number");
1134 getNMDOps(Operands
)[I
].reset(New
);
1137 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1139 void NamedMDNode::clearOperands() { getNMDOps(Operands
).clear(); }
1141 StringRef
NamedMDNode::getName() const { return StringRef(Name
); }
1143 //===----------------------------------------------------------------------===//
1144 // Instruction Metadata method implementations.
1147 MDNode
*MDAttachments::lookup(unsigned ID
) const {
1148 for (const auto &A
: Attachments
)
1154 void MDAttachments::get(unsigned ID
, SmallVectorImpl
<MDNode
*> &Result
) const {
1155 for (const auto &A
: Attachments
)
1157 Result
.push_back(A
.Node
);
1160 void MDAttachments::getAll(
1161 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &Result
) const {
1162 for (const auto &A
: Attachments
)
1163 Result
.emplace_back(A
.MDKind
, A
.Node
);
1165 // Sort the resulting array so it is stable with respect to metadata IDs. We
1166 // need to preserve the original insertion order though.
1167 if (Result
.size() > 1)
1168 llvm::stable_sort(Result
, less_first());
1171 void MDAttachments::set(unsigned ID
, MDNode
*MD
) {
1177 void MDAttachments::insert(unsigned ID
, MDNode
&MD
) {
1178 Attachments
.push_back({ID
, TrackingMDNodeRef(&MD
)});
1181 bool MDAttachments::erase(unsigned ID
) {
1185 // Common case is one value.
1186 if (Attachments
.size() == 1 && Attachments
.back().MDKind
== ID
) {
1187 Attachments
.pop_back();
1191 auto OldSize
= Attachments
.size();
1192 llvm::erase_if(Attachments
,
1193 [ID
](const Attachment
&A
) { return A
.MDKind
== ID
; });
1194 return OldSize
!= Attachments
.size();
1197 MDNode
*Value::getMetadata(unsigned KindID
) const {
1200 const auto &Info
= getContext().pImpl
->ValueMetadata
[this];
1201 assert(!Info
.empty() && "bit out of sync with hash table");
1202 return Info
.lookup(KindID
);
1205 MDNode
*Value::getMetadata(StringRef Kind
) const {
1208 const auto &Info
= getContext().pImpl
->ValueMetadata
[this];
1209 assert(!Info
.empty() && "bit out of sync with hash table");
1210 return Info
.lookup(getContext().getMDKindID(Kind
));
1213 void Value::getMetadata(unsigned KindID
, SmallVectorImpl
<MDNode
*> &MDs
) const {
1215 getContext().pImpl
->ValueMetadata
[this].get(KindID
, MDs
);
1218 void Value::getMetadata(StringRef Kind
, SmallVectorImpl
<MDNode
*> &MDs
) const {
1220 getMetadata(getContext().getMDKindID(Kind
), MDs
);
1223 void Value::getAllMetadata(
1224 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
) const {
1225 if (hasMetadata()) {
1226 assert(getContext().pImpl
->ValueMetadata
.count(this) &&
1227 "bit out of sync with hash table");
1228 const auto &Info
= getContext().pImpl
->ValueMetadata
.find(this)->second
;
1229 assert(!Info
.empty() && "Shouldn't have called this");
1234 void Value::setMetadata(unsigned KindID
, MDNode
*Node
) {
1235 assert(isa
<Instruction
>(this) || isa
<GlobalObject
>(this));
1237 // Handle the case when we're adding/updating metadata on a value.
1239 auto &Info
= getContext().pImpl
->ValueMetadata
[this];
1240 assert(!Info
.empty() == HasMetadata
&& "bit out of sync with hash table");
1243 Info
.set(KindID
, Node
);
1247 // Otherwise, we're removing metadata from an instruction.
1248 assert((HasMetadata
== (getContext().pImpl
->ValueMetadata
.count(this) > 0)) &&
1249 "bit out of sync with hash table");
1251 return; // Nothing to remove!
1252 auto &Info
= getContext().pImpl
->ValueMetadata
[this];
1254 // Handle removal of an existing value.
1258 getContext().pImpl
->ValueMetadata
.erase(this);
1259 HasMetadata
= false;
1262 void Value::setMetadata(StringRef Kind
, MDNode
*Node
) {
1263 if (!Node
&& !HasMetadata
)
1265 setMetadata(getContext().getMDKindID(Kind
), Node
);
1268 void Value::addMetadata(unsigned KindID
, MDNode
&MD
) {
1269 assert(isa
<Instruction
>(this) || isa
<GlobalObject
>(this));
1272 getContext().pImpl
->ValueMetadata
[this].insert(KindID
, MD
);
1275 void Value::addMetadata(StringRef Kind
, MDNode
&MD
) {
1276 addMetadata(getContext().getMDKindID(Kind
), MD
);
1279 bool Value::eraseMetadata(unsigned KindID
) {
1280 // Nothing to unset.
1284 auto &Store
= getContext().pImpl
->ValueMetadata
[this];
1285 bool Changed
= Store
.erase(KindID
);
1291 void Value::clearMetadata() {
1294 assert(getContext().pImpl
->ValueMetadata
.count(this) &&
1295 "bit out of sync with hash table");
1296 getContext().pImpl
->ValueMetadata
.erase(this);
1297 HasMetadata
= false;
1300 void Instruction::setMetadata(StringRef Kind
, MDNode
*Node
) {
1301 if (!Node
&& !hasMetadata())
1303 setMetadata(getContext().getMDKindID(Kind
), Node
);
1306 MDNode
*Instruction::getMetadataImpl(StringRef Kind
) const {
1307 return getMetadataImpl(getContext().getMDKindID(Kind
));
1310 void Instruction::dropUnknownNonDebugMetadata(ArrayRef
<unsigned> KnownIDs
) {
1311 if (!Value::hasMetadata())
1312 return; // Nothing to remove!
1314 if (KnownIDs
.empty()) {
1315 // Just drop our entry at the store.
1320 SmallSet
<unsigned, 4> KnownSet
;
1321 KnownSet
.insert(KnownIDs
.begin(), KnownIDs
.end());
1323 auto &MetadataStore
= getContext().pImpl
->ValueMetadata
;
1324 auto &Info
= MetadataStore
[this];
1325 assert(!Info
.empty() && "bit out of sync with hash table");
1326 Info
.remove_if([&KnownSet
](const MDAttachments::Attachment
&I
) {
1327 return !KnownSet
.count(I
.MDKind
);
1331 // Drop our entry at the store.
1336 void Instruction::setMetadata(unsigned KindID
, MDNode
*Node
) {
1337 if (!Node
&& !hasMetadata())
1340 // Handle 'dbg' as a special case since it is not stored in the hash table.
1341 if (KindID
== LLVMContext::MD_dbg
) {
1342 DbgLoc
= DebugLoc(Node
);
1346 Value::setMetadata(KindID
, Node
);
1349 void Instruction::addAnnotationMetadata(StringRef Name
) {
1350 MDBuilder
MDB(getContext());
1352 auto *Existing
= getMetadata(LLVMContext::MD_annotation
);
1353 SmallVector
<Metadata
*, 4> Names
;
1354 bool AppendName
= true;
1356 auto *Tuple
= cast
<MDTuple
>(Existing
);
1357 for (auto &N
: Tuple
->operands()) {
1358 if (cast
<MDString
>(N
.get())->getString() == Name
)
1360 Names
.push_back(N
.get());
1364 Names
.push_back(MDB
.createString(Name
));
1366 MDNode
*MD
= MDTuple::get(getContext(), Names
);
1367 setMetadata(LLVMContext::MD_annotation
, MD
);
1370 void Instruction::setAAMetadata(const AAMDNodes
&N
) {
1371 setMetadata(LLVMContext::MD_tbaa
, N
.TBAA
);
1372 setMetadata(LLVMContext::MD_tbaa_struct
, N
.TBAAStruct
);
1373 setMetadata(LLVMContext::MD_alias_scope
, N
.Scope
);
1374 setMetadata(LLVMContext::MD_noalias
, N
.NoAlias
);
1377 MDNode
*Instruction::getMetadataImpl(unsigned KindID
) const {
1378 // Handle 'dbg' as a special case since it is not stored in the hash table.
1379 if (KindID
== LLVMContext::MD_dbg
)
1380 return DbgLoc
.getAsMDNode();
1381 return Value::getMetadata(KindID
);
1384 void Instruction::getAllMetadataImpl(
1385 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &Result
) const {
1388 // Handle 'dbg' as a special case since it is not stored in the hash table.
1391 std::make_pair((unsigned)LLVMContext::MD_dbg
, DbgLoc
.getAsMDNode()));
1393 Value::getAllMetadata(Result
);
1396 bool Instruction::extractProfMetadata(uint64_t &TrueVal
,
1397 uint64_t &FalseVal
) const {
1399 (getOpcode() == Instruction::Br
|| getOpcode() == Instruction::Select
) &&
1400 "Looking for branch weights on something besides branch or select");
1402 auto *ProfileData
= getMetadata(LLVMContext::MD_prof
);
1403 if (!ProfileData
|| ProfileData
->getNumOperands() != 3)
1406 auto *ProfDataName
= dyn_cast
<MDString
>(ProfileData
->getOperand(0));
1407 if (!ProfDataName
|| !ProfDataName
->getString().equals("branch_weights"))
1410 auto *CITrue
= mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(1));
1411 auto *CIFalse
= mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(2));
1412 if (!CITrue
|| !CIFalse
)
1415 TrueVal
= CITrue
->getValue().getZExtValue();
1416 FalseVal
= CIFalse
->getValue().getZExtValue();
1421 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal
) const {
1423 (getOpcode() == Instruction::Br
|| getOpcode() == Instruction::Select
||
1424 getOpcode() == Instruction::Call
|| getOpcode() == Instruction::Invoke
||
1425 getOpcode() == Instruction::IndirectBr
||
1426 getOpcode() == Instruction::Switch
) &&
1427 "Looking for branch weights on something besides branch");
1430 auto *ProfileData
= getMetadata(LLVMContext::MD_prof
);
1434 auto *ProfDataName
= dyn_cast
<MDString
>(ProfileData
->getOperand(0));
1438 if (ProfDataName
->getString().equals("branch_weights")) {
1440 for (unsigned i
= 1; i
< ProfileData
->getNumOperands(); i
++) {
1441 auto *V
= mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(i
));
1444 TotalVal
+= V
->getValue().getZExtValue();
1447 } else if (ProfDataName
->getString().equals("VP") &&
1448 ProfileData
->getNumOperands() > 3) {
1449 TotalVal
= mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(2))
1457 void GlobalObject::copyMetadata(const GlobalObject
*Other
, unsigned Offset
) {
1458 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MDs
;
1459 Other
->getAllMetadata(MDs
);
1460 for (auto &MD
: MDs
) {
1461 // We need to adjust the type metadata offset.
1462 if (Offset
!= 0 && MD
.first
== LLVMContext::MD_type
) {
1463 auto *OffsetConst
= cast
<ConstantInt
>(
1464 cast
<ConstantAsMetadata
>(MD
.second
->getOperand(0))->getValue());
1465 Metadata
*TypeId
= MD
.second
->getOperand(1);
1466 auto *NewOffsetMD
= ConstantAsMetadata::get(ConstantInt::get(
1467 OffsetConst
->getType(), OffsetConst
->getValue() + Offset
));
1468 addMetadata(LLVMContext::MD_type
,
1469 *MDNode::get(getContext(), {NewOffsetMD
, TypeId
}));
1472 // If an offset adjustment was specified we need to modify the DIExpression
1473 // to prepend the adjustment:
1474 // !DIExpression(DW_OP_plus, Offset, [original expr])
1475 auto *Attachment
= MD
.second
;
1476 if (Offset
!= 0 && MD
.first
== LLVMContext::MD_dbg
) {
1477 DIGlobalVariable
*GV
= dyn_cast
<DIGlobalVariable
>(Attachment
);
1478 DIExpression
*E
= nullptr;
1480 auto *GVE
= cast
<DIGlobalVariableExpression
>(Attachment
);
1481 GV
= GVE
->getVariable();
1482 E
= GVE
->getExpression();
1484 ArrayRef
<uint64_t> OrigElements
;
1486 OrigElements
= E
->getElements();
1487 std::vector
<uint64_t> Elements(OrigElements
.size() + 2);
1488 Elements
[0] = dwarf::DW_OP_plus_uconst
;
1489 Elements
[1] = Offset
;
1490 llvm::copy(OrigElements
, Elements
.begin() + 2);
1491 E
= DIExpression::get(getContext(), Elements
);
1492 Attachment
= DIGlobalVariableExpression::get(getContext(), GV
, E
);
1494 addMetadata(MD
.first
, *Attachment
);
1498 void GlobalObject::addTypeMetadata(unsigned Offset
, Metadata
*TypeID
) {
1500 LLVMContext::MD_type
,
1501 *MDTuple::get(getContext(),
1502 {ConstantAsMetadata::get(ConstantInt::get(
1503 Type::getInt64Ty(getContext()), Offset
)),
1507 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility
) {
1508 // Remove any existing vcall visibility metadata first in case we are
1510 eraseMetadata(LLVMContext::MD_vcall_visibility
);
1511 addMetadata(LLVMContext::MD_vcall_visibility
,
1512 *MDNode::get(getContext(),
1513 {ConstantAsMetadata::get(ConstantInt::get(
1514 Type::getInt64Ty(getContext()), Visibility
))}));
1517 GlobalObject::VCallVisibility
GlobalObject::getVCallVisibility() const {
1518 if (MDNode
*MD
= getMetadata(LLVMContext::MD_vcall_visibility
)) {
1519 uint64_t Val
= cast
<ConstantInt
>(
1520 cast
<ConstantAsMetadata
>(MD
->getOperand(0))->getValue())
1522 assert(Val
<= 2 && "unknown vcall visibility!");
1523 return (VCallVisibility
)Val
;
1525 return VCallVisibility::VCallVisibilityPublic
;
1528 void Function::setSubprogram(DISubprogram
*SP
) {
1529 setMetadata(LLVMContext::MD_dbg
, SP
);
1532 DISubprogram
*Function::getSubprogram() const {
1533 return cast_or_null
<DISubprogram
>(getMetadata(LLVMContext::MD_dbg
));
1536 bool Function::isDebugInfoForProfiling() const {
1537 if (DISubprogram
*SP
= getSubprogram()) {
1538 if (DICompileUnit
*CU
= SP
->getUnit()) {
1539 return CU
->getDebugInfoForProfiling();
1545 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression
*GV
) {
1546 addMetadata(LLVMContext::MD_dbg
, *GV
);
1549 void GlobalVariable::getDebugInfo(
1550 SmallVectorImpl
<DIGlobalVariableExpression
*> &GVs
) const {
1551 SmallVector
<MDNode
*, 1> MDs
;
1552 getMetadata(LLVMContext::MD_dbg
, MDs
);
1553 for (MDNode
*MD
: MDs
)
1554 GVs
.push_back(cast
<DIGlobalVariableExpression
>(MD
));