[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Support / APInt.cpp
bloba8a950f09747b7e26d8f4fb7f0f9e0c4f8844e98
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <climits>
28 #include <cmath>
29 #include <cstdlib>
30 #include <cstring>
31 using namespace llvm;
33 #define DEBUG_TYPE "apint"
35 /// A utility function for allocating memory, checking for allocation failures,
36 /// and ensuring the contents are zeroed.
37 inline static uint64_t* getClearedMemory(unsigned numWords) {
38 uint64_t *result = new uint64_t[numWords];
39 memset(result, 0, numWords * sizeof(uint64_t));
40 return result;
43 /// A utility function for allocating memory and checking for allocation
44 /// failure. The content is not zeroed.
45 inline static uint64_t* getMemory(unsigned numWords) {
46 return new uint64_t[numWords];
49 /// A utility function that converts a character to a digit.
50 inline static unsigned getDigit(char cdigit, uint8_t radix) {
51 unsigned r;
53 if (radix == 16 || radix == 36) {
54 r = cdigit - '0';
55 if (r <= 9)
56 return r;
58 r = cdigit - 'A';
59 if (r <= radix - 11U)
60 return r + 10;
62 r = cdigit - 'a';
63 if (r <= radix - 11U)
64 return r + 10;
66 radix = 10;
69 r = cdigit - '0';
70 if (r < radix)
71 return r;
73 return -1U;
77 void APInt::initSlowCase(uint64_t val, bool isSigned) {
78 U.pVal = getClearedMemory(getNumWords());
79 U.pVal[0] = val;
80 if (isSigned && int64_t(val) < 0)
81 for (unsigned i = 1; i < getNumWords(); ++i)
82 U.pVal[i] = WORDTYPE_MAX;
83 clearUnusedBits();
86 void APInt::initSlowCase(const APInt& that) {
87 U.pVal = getMemory(getNumWords());
88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92 assert(BitWidth && "Bitwidth too small");
93 assert(bigVal.data() && "Null pointer detected!");
94 if (isSingleWord())
95 U.VAL = bigVal[0];
96 else {
97 // Get memory, cleared to 0
98 U.pVal = getClearedMemory(getNumWords());
99 // Calculate the number of words to copy
100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
101 // Copy the words from bigVal to pVal
102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
104 // Make sure unused high bits are cleared
105 clearUnusedBits();
108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109 : BitWidth(numBits) {
110 initFromArray(bigVal);
113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114 : BitWidth(numBits) {
115 initFromArray(makeArrayRef(bigVal, numWords));
118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
119 : BitWidth(numbits) {
120 assert(BitWidth && "Bitwidth too small");
121 fromString(numbits, Str, radix);
124 void APInt::reallocate(unsigned NewBitWidth) {
125 // If the number of words is the same we can just change the width and stop.
126 if (getNumWords() == getNumWords(NewBitWidth)) {
127 BitWidth = NewBitWidth;
128 return;
131 // If we have an allocation, delete it.
132 if (!isSingleWord())
133 delete [] U.pVal;
135 // Update BitWidth.
136 BitWidth = NewBitWidth;
138 // If we are supposed to have an allocation, create it.
139 if (!isSingleWord())
140 U.pVal = getMemory(getNumWords());
143 void APInt::AssignSlowCase(const APInt& RHS) {
144 // Don't do anything for X = X
145 if (this == &RHS)
146 return;
148 // Adjust the bit width and handle allocations as necessary.
149 reallocate(RHS.getBitWidth());
151 // Copy the data.
152 if (isSingleWord())
153 U.VAL = RHS.U.VAL;
154 else
155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
158 /// This method 'profiles' an APInt for use with FoldingSet.
159 void APInt::Profile(FoldingSetNodeID& ID) const {
160 ID.AddInteger(BitWidth);
162 if (isSingleWord()) {
163 ID.AddInteger(U.VAL);
164 return;
167 unsigned NumWords = getNumWords();
168 for (unsigned i = 0; i < NumWords; ++i)
169 ID.AddInteger(U.pVal[i]);
172 /// Prefix increment operator. Increments the APInt by one.
173 APInt& APInt::operator++() {
174 if (isSingleWord())
175 ++U.VAL;
176 else
177 tcIncrement(U.pVal, getNumWords());
178 return clearUnusedBits();
181 /// Prefix decrement operator. Decrements the APInt by one.
182 APInt& APInt::operator--() {
183 if (isSingleWord())
184 --U.VAL;
185 else
186 tcDecrement(U.pVal, getNumWords());
187 return clearUnusedBits();
190 /// Adds the RHS APInt to this APInt.
191 /// @returns this, after addition of RHS.
192 /// Addition assignment operator.
193 APInt& APInt::operator+=(const APInt& RHS) {
194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
195 if (isSingleWord())
196 U.VAL += RHS.U.VAL;
197 else
198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
199 return clearUnusedBits();
202 APInt& APInt::operator+=(uint64_t RHS) {
203 if (isSingleWord())
204 U.VAL += RHS;
205 else
206 tcAddPart(U.pVal, RHS, getNumWords());
207 return clearUnusedBits();
210 /// Subtracts the RHS APInt from this APInt
211 /// @returns this, after subtraction
212 /// Subtraction assignment operator.
213 APInt& APInt::operator-=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 U.VAL -= RHS.U.VAL;
217 else
218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
219 return clearUnusedBits();
222 APInt& APInt::operator-=(uint64_t RHS) {
223 if (isSingleWord())
224 U.VAL -= RHS;
225 else
226 tcSubtractPart(U.pVal, RHS, getNumWords());
227 return clearUnusedBits();
230 APInt APInt::operator*(const APInt& RHS) const {
231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
232 if (isSingleWord())
233 return APInt(BitWidth, U.VAL * RHS.U.VAL);
235 APInt Result(getMemory(getNumWords()), getBitWidth());
237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
239 Result.clearUnusedBits();
240 return Result;
243 void APInt::AndAssignSlowCase(const APInt& RHS) {
244 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
247 void APInt::OrAssignSlowCase(const APInt& RHS) {
248 tcOr(U.pVal, RHS.U.pVal, getNumWords());
251 void APInt::XorAssignSlowCase(const APInt& RHS) {
252 tcXor(U.pVal, RHS.U.pVal, getNumWords());
255 APInt& APInt::operator*=(const APInt& RHS) {
256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257 *this = *this * RHS;
258 return *this;
261 APInt& APInt::operator*=(uint64_t RHS) {
262 if (isSingleWord()) {
263 U.VAL *= RHS;
264 } else {
265 unsigned NumWords = getNumWords();
266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
268 return clearUnusedBits();
271 bool APInt::EqualSlowCase(const APInt& RHS) const {
272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
275 int APInt::compare(const APInt& RHS) const {
276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277 if (isSingleWord())
278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
283 int APInt::compareSigned(const APInt& RHS) const {
284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
285 if (isSingleWord()) {
286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
291 bool lhsNeg = isNegative();
292 bool rhsNeg = RHS.isNegative();
294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295 if (lhsNeg != rhsNeg)
296 return lhsNeg ? -1 : 1;
298 // Otherwise we can just use an unsigned comparison, because even negative
299 // numbers compare correctly this way if both have the same signed-ness.
300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304 unsigned loWord = whichWord(loBit);
305 unsigned hiWord = whichWord(hiBit);
307 // Create an initial mask for the low word with zeros below loBit.
308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
310 // If hiBit is not aligned, we need a high mask.
311 unsigned hiShiftAmt = whichBit(hiBit);
312 if (hiShiftAmt != 0) {
313 // Create a high mask with zeros above hiBit.
314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316 // set the bits in hiWord.
317 if (hiWord == loWord)
318 loMask &= hiMask;
319 else
320 U.pVal[hiWord] |= hiMask;
322 // Apply the mask to the low word.
323 U.pVal[loWord] |= loMask;
325 // Fill any words between loWord and hiWord with all ones.
326 for (unsigned word = loWord + 1; word < hiWord; ++word)
327 U.pVal[word] = WORDTYPE_MAX;
330 /// Toggle every bit to its opposite value.
331 void APInt::flipAllBitsSlowCase() {
332 tcComplement(U.pVal, getNumWords());
333 clearUnusedBits();
336 /// Toggle a given bit to its opposite value whose position is given
337 /// as "bitPosition".
338 /// Toggles a given bit to its opposite value.
339 void APInt::flipBit(unsigned bitPosition) {
340 assert(bitPosition < BitWidth && "Out of the bit-width range!");
341 setBitVal(bitPosition, !(*this)[bitPosition]);
344 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
345 unsigned subBitWidth = subBits.getBitWidth();
346 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
347 "Illegal bit insertion");
349 // Insertion is a direct copy.
350 if (subBitWidth == BitWidth) {
351 *this = subBits;
352 return;
355 // Single word result can be done as a direct bitmask.
356 if (isSingleWord()) {
357 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
358 U.VAL &= ~(mask << bitPosition);
359 U.VAL |= (subBits.U.VAL << bitPosition);
360 return;
363 unsigned loBit = whichBit(bitPosition);
364 unsigned loWord = whichWord(bitPosition);
365 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
367 // Insertion within a single word can be done as a direct bitmask.
368 if (loWord == hi1Word) {
369 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
370 U.pVal[loWord] &= ~(mask << loBit);
371 U.pVal[loWord] |= (subBits.U.VAL << loBit);
372 return;
375 // Insert on word boundaries.
376 if (loBit == 0) {
377 // Direct copy whole words.
378 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
379 memcpy(U.pVal + loWord, subBits.getRawData(),
380 numWholeSubWords * APINT_WORD_SIZE);
382 // Mask+insert remaining bits.
383 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
384 if (remainingBits != 0) {
385 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
386 U.pVal[hi1Word] &= ~mask;
387 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
389 return;
392 // General case - set/clear individual bits in dst based on src.
393 // TODO - there is scope for optimization here, but at the moment this code
394 // path is barely used so prefer readability over performance.
395 for (unsigned i = 0; i != subBitWidth; ++i)
396 setBitVal(bitPosition + i, subBits[i]);
399 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
400 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
401 subBits &= maskBits;
402 if (isSingleWord()) {
403 U.VAL &= ~(maskBits << bitPosition);
404 U.VAL |= subBits << bitPosition;
405 return;
408 unsigned loBit = whichBit(bitPosition);
409 unsigned loWord = whichWord(bitPosition);
410 unsigned hiWord = whichWord(bitPosition + numBits - 1);
411 if (loWord == hiWord) {
412 U.pVal[loWord] &= ~(maskBits << loBit);
413 U.pVal[loWord] |= subBits << loBit;
414 return;
417 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
418 unsigned wordBits = 8 * sizeof(WordType);
419 U.pVal[loWord] &= ~(maskBits << loBit);
420 U.pVal[loWord] |= subBits << loBit;
422 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
423 U.pVal[hiWord] |= subBits >> (wordBits - loBit);
426 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
427 assert(numBits > 0 && "Can't extract zero bits");
428 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
429 "Illegal bit extraction");
431 if (isSingleWord())
432 return APInt(numBits, U.VAL >> bitPosition);
434 unsigned loBit = whichBit(bitPosition);
435 unsigned loWord = whichWord(bitPosition);
436 unsigned hiWord = whichWord(bitPosition + numBits - 1);
438 // Single word result extracting bits from a single word source.
439 if (loWord == hiWord)
440 return APInt(numBits, U.pVal[loWord] >> loBit);
442 // Extracting bits that start on a source word boundary can be done
443 // as a fast memory copy.
444 if (loBit == 0)
445 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
447 // General case - shift + copy source words directly into place.
448 APInt Result(numBits, 0);
449 unsigned NumSrcWords = getNumWords();
450 unsigned NumDstWords = Result.getNumWords();
452 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
453 for (unsigned word = 0; word < NumDstWords; ++word) {
454 uint64_t w0 = U.pVal[loWord + word];
455 uint64_t w1 =
456 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
457 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
460 return Result.clearUnusedBits();
463 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
464 unsigned bitPosition) const {
465 assert(numBits > 0 && "Can't extract zero bits");
466 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
467 "Illegal bit extraction");
468 assert(numBits <= 64 && "Illegal bit extraction");
470 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
471 if (isSingleWord())
472 return (U.VAL >> bitPosition) & maskBits;
474 unsigned loBit = whichBit(bitPosition);
475 unsigned loWord = whichWord(bitPosition);
476 unsigned hiWord = whichWord(bitPosition + numBits - 1);
477 if (loWord == hiWord)
478 return (U.pVal[loWord] >> loBit) & maskBits;
480 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
481 unsigned wordBits = 8 * sizeof(WordType);
482 uint64_t retBits = U.pVal[loWord] >> loBit;
483 retBits |= U.pVal[hiWord] << (wordBits - loBit);
484 retBits &= maskBits;
485 return retBits;
488 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
489 assert(!str.empty() && "Invalid string length");
490 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
491 radix == 36) &&
492 "Radix should be 2, 8, 10, 16, or 36!");
494 size_t slen = str.size();
496 // Each computation below needs to know if it's negative.
497 StringRef::iterator p = str.begin();
498 unsigned isNegative = *p == '-';
499 if (*p == '-' || *p == '+') {
500 p++;
501 slen--;
502 assert(slen && "String is only a sign, needs a value.");
505 // For radixes of power-of-two values, the bits required is accurately and
506 // easily computed
507 if (radix == 2)
508 return slen + isNegative;
509 if (radix == 8)
510 return slen * 3 + isNegative;
511 if (radix == 16)
512 return slen * 4 + isNegative;
514 // FIXME: base 36
516 // This is grossly inefficient but accurate. We could probably do something
517 // with a computation of roughly slen*64/20 and then adjust by the value of
518 // the first few digits. But, I'm not sure how accurate that could be.
520 // Compute a sufficient number of bits that is always large enough but might
521 // be too large. This avoids the assertion in the constructor. This
522 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
523 // bits in that case.
524 unsigned sufficient
525 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
526 : (slen == 1 ? 7 : slen * 16/3);
528 // Convert to the actual binary value.
529 APInt tmp(sufficient, StringRef(p, slen), radix);
531 // Compute how many bits are required. If the log is infinite, assume we need
532 // just bit. If the log is exact and value is negative, then the value is
533 // MinSignedValue with (log + 1) bits.
534 unsigned log = tmp.logBase2();
535 if (log == (unsigned)-1) {
536 return isNegative + 1;
537 } else if (isNegative && tmp.isPowerOf2()) {
538 return isNegative + log;
539 } else {
540 return isNegative + log + 1;
544 hash_code llvm::hash_value(const APInt &Arg) {
545 if (Arg.isSingleWord())
546 return hash_combine(Arg.BitWidth, Arg.U.VAL);
548 return hash_combine(
549 Arg.BitWidth,
550 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
553 unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) {
554 return static_cast<unsigned>(hash_value(Key));
557 bool APInt::isSplat(unsigned SplatSizeInBits) const {
558 assert(getBitWidth() % SplatSizeInBits == 0 &&
559 "SplatSizeInBits must divide width!");
560 // We can check that all parts of an integer are equal by making use of a
561 // little trick: rotate and check if it's still the same value.
562 return *this == rotl(SplatSizeInBits);
565 /// This function returns the high "numBits" bits of this APInt.
566 APInt APInt::getHiBits(unsigned numBits) const {
567 return this->lshr(BitWidth - numBits);
570 /// This function returns the low "numBits" bits of this APInt.
571 APInt APInt::getLoBits(unsigned numBits) const {
572 APInt Result(getLowBitsSet(BitWidth, numBits));
573 Result &= *this;
574 return Result;
577 /// Return a value containing V broadcasted over NewLen bits.
578 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
579 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
581 APInt Val = V.zextOrSelf(NewLen);
582 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
583 Val |= Val << I;
585 return Val;
588 unsigned APInt::countLeadingZerosSlowCase() const {
589 unsigned Count = 0;
590 for (int i = getNumWords()-1; i >= 0; --i) {
591 uint64_t V = U.pVal[i];
592 if (V == 0)
593 Count += APINT_BITS_PER_WORD;
594 else {
595 Count += llvm::countLeadingZeros(V);
596 break;
599 // Adjust for unused bits in the most significant word (they are zero).
600 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
601 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
602 return Count;
605 unsigned APInt::countLeadingOnesSlowCase() const {
606 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
607 unsigned shift;
608 if (!highWordBits) {
609 highWordBits = APINT_BITS_PER_WORD;
610 shift = 0;
611 } else {
612 shift = APINT_BITS_PER_WORD - highWordBits;
614 int i = getNumWords() - 1;
615 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
616 if (Count == highWordBits) {
617 for (i--; i >= 0; --i) {
618 if (U.pVal[i] == WORDTYPE_MAX)
619 Count += APINT_BITS_PER_WORD;
620 else {
621 Count += llvm::countLeadingOnes(U.pVal[i]);
622 break;
626 return Count;
629 unsigned APInt::countTrailingZerosSlowCase() const {
630 unsigned Count = 0;
631 unsigned i = 0;
632 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
633 Count += APINT_BITS_PER_WORD;
634 if (i < getNumWords())
635 Count += llvm::countTrailingZeros(U.pVal[i]);
636 return std::min(Count, BitWidth);
639 unsigned APInt::countTrailingOnesSlowCase() const {
640 unsigned Count = 0;
641 unsigned i = 0;
642 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
643 Count += APINT_BITS_PER_WORD;
644 if (i < getNumWords())
645 Count += llvm::countTrailingOnes(U.pVal[i]);
646 assert(Count <= BitWidth);
647 return Count;
650 unsigned APInt::countPopulationSlowCase() const {
651 unsigned Count = 0;
652 for (unsigned i = 0; i < getNumWords(); ++i)
653 Count += llvm::countPopulation(U.pVal[i]);
654 return Count;
657 bool APInt::intersectsSlowCase(const APInt &RHS) const {
658 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
659 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
660 return true;
662 return false;
665 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
666 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
667 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
668 return false;
670 return true;
673 APInt APInt::byteSwap() const {
674 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
675 if (BitWidth == 16)
676 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
677 if (BitWidth == 32)
678 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
679 if (BitWidth <= 64) {
680 uint64_t Tmp1 = ByteSwap_64(U.VAL);
681 Tmp1 >>= (64 - BitWidth);
682 return APInt(BitWidth, Tmp1);
685 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
686 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
687 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
688 if (Result.BitWidth != BitWidth) {
689 Result.lshrInPlace(Result.BitWidth - BitWidth);
690 Result.BitWidth = BitWidth;
692 return Result;
695 APInt APInt::reverseBits() const {
696 switch (BitWidth) {
697 case 64:
698 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
699 case 32:
700 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
701 case 16:
702 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
703 case 8:
704 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
705 default:
706 break;
709 APInt Val(*this);
710 APInt Reversed(BitWidth, 0);
711 unsigned S = BitWidth;
713 for (; Val != 0; Val.lshrInPlace(1)) {
714 Reversed <<= 1;
715 Reversed |= Val[0];
716 --S;
719 Reversed <<= S;
720 return Reversed;
723 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
724 // Fast-path a common case.
725 if (A == B) return A;
727 // Corner cases: if either operand is zero, the other is the gcd.
728 if (!A) return B;
729 if (!B) return A;
731 // Count common powers of 2 and remove all other powers of 2.
732 unsigned Pow2;
734 unsigned Pow2_A = A.countTrailingZeros();
735 unsigned Pow2_B = B.countTrailingZeros();
736 if (Pow2_A > Pow2_B) {
737 A.lshrInPlace(Pow2_A - Pow2_B);
738 Pow2 = Pow2_B;
739 } else if (Pow2_B > Pow2_A) {
740 B.lshrInPlace(Pow2_B - Pow2_A);
741 Pow2 = Pow2_A;
742 } else {
743 Pow2 = Pow2_A;
747 // Both operands are odd multiples of 2^Pow_2:
749 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
751 // This is a modified version of Stein's algorithm, taking advantage of
752 // efficient countTrailingZeros().
753 while (A != B) {
754 if (A.ugt(B)) {
755 A -= B;
756 A.lshrInPlace(A.countTrailingZeros() - Pow2);
757 } else {
758 B -= A;
759 B.lshrInPlace(B.countTrailingZeros() - Pow2);
763 return A;
766 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
767 uint64_t I = bit_cast<uint64_t>(Double);
769 // Get the sign bit from the highest order bit
770 bool isNeg = I >> 63;
772 // Get the 11-bit exponent and adjust for the 1023 bit bias
773 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
775 // If the exponent is negative, the value is < 0 so just return 0.
776 if (exp < 0)
777 return APInt(width, 0u);
779 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
780 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
782 // If the exponent doesn't shift all bits out of the mantissa
783 if (exp < 52)
784 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
785 APInt(width, mantissa >> (52 - exp));
787 // If the client didn't provide enough bits for us to shift the mantissa into
788 // then the result is undefined, just return 0
789 if (width <= exp - 52)
790 return APInt(width, 0);
792 // Otherwise, we have to shift the mantissa bits up to the right location
793 APInt Tmp(width, mantissa);
794 Tmp <<= (unsigned)exp - 52;
795 return isNeg ? -Tmp : Tmp;
798 /// This function converts this APInt to a double.
799 /// The layout for double is as following (IEEE Standard 754):
800 /// --------------------------------------
801 /// | Sign Exponent Fraction Bias |
802 /// |-------------------------------------- |
803 /// | 1[63] 11[62-52] 52[51-00] 1023 |
804 /// --------------------------------------
805 double APInt::roundToDouble(bool isSigned) const {
807 // Handle the simple case where the value is contained in one uint64_t.
808 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
809 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
810 if (isSigned) {
811 int64_t sext = SignExtend64(getWord(0), BitWidth);
812 return double(sext);
813 } else
814 return double(getWord(0));
817 // Determine if the value is negative.
818 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
820 // Construct the absolute value if we're negative.
821 APInt Tmp(isNeg ? -(*this) : (*this));
823 // Figure out how many bits we're using.
824 unsigned n = Tmp.getActiveBits();
826 // The exponent (without bias normalization) is just the number of bits
827 // we are using. Note that the sign bit is gone since we constructed the
828 // absolute value.
829 uint64_t exp = n;
831 // Return infinity for exponent overflow
832 if (exp > 1023) {
833 if (!isSigned || !isNeg)
834 return std::numeric_limits<double>::infinity();
835 else
836 return -std::numeric_limits<double>::infinity();
838 exp += 1023; // Increment for 1023 bias
840 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
841 // extract the high 52 bits from the correct words in pVal.
842 uint64_t mantissa;
843 unsigned hiWord = whichWord(n-1);
844 if (hiWord == 0) {
845 mantissa = Tmp.U.pVal[0];
846 if (n > 52)
847 mantissa >>= n - 52; // shift down, we want the top 52 bits.
848 } else {
849 assert(hiWord > 0 && "huh?");
850 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
851 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
852 mantissa = hibits | lobits;
855 // The leading bit of mantissa is implicit, so get rid of it.
856 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
857 uint64_t I = sign | (exp << 52) | mantissa;
858 return bit_cast<double>(I);
861 // Truncate to new width.
862 APInt APInt::trunc(unsigned width) const {
863 assert(width < BitWidth && "Invalid APInt Truncate request");
864 assert(width && "Can't truncate to 0 bits");
866 if (width <= APINT_BITS_PER_WORD)
867 return APInt(width, getRawData()[0]);
869 APInt Result(getMemory(getNumWords(width)), width);
871 // Copy full words.
872 unsigned i;
873 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
874 Result.U.pVal[i] = U.pVal[i];
876 // Truncate and copy any partial word.
877 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
878 if (bits != 0)
879 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
881 return Result;
884 // Truncate to new width with unsigned saturation.
885 APInt APInt::truncUSat(unsigned width) const {
886 assert(width < BitWidth && "Invalid APInt Truncate request");
887 assert(width && "Can't truncate to 0 bits");
889 // Can we just losslessly truncate it?
890 if (isIntN(width))
891 return trunc(width);
892 // If not, then just return the new limit.
893 return APInt::getMaxValue(width);
896 // Truncate to new width with signed saturation.
897 APInt APInt::truncSSat(unsigned width) const {
898 assert(width < BitWidth && "Invalid APInt Truncate request");
899 assert(width && "Can't truncate to 0 bits");
901 // Can we just losslessly truncate it?
902 if (isSignedIntN(width))
903 return trunc(width);
904 // If not, then just return the new limits.
905 return isNegative() ? APInt::getSignedMinValue(width)
906 : APInt::getSignedMaxValue(width);
909 // Sign extend to a new width.
910 APInt APInt::sext(unsigned Width) const {
911 assert(Width > BitWidth && "Invalid APInt SignExtend request");
913 if (Width <= APINT_BITS_PER_WORD)
914 return APInt(Width, SignExtend64(U.VAL, BitWidth));
916 APInt Result(getMemory(getNumWords(Width)), Width);
918 // Copy words.
919 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
921 // Sign extend the last word since there may be unused bits in the input.
922 Result.U.pVal[getNumWords() - 1] =
923 SignExtend64(Result.U.pVal[getNumWords() - 1],
924 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
926 // Fill with sign bits.
927 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
928 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
929 Result.clearUnusedBits();
930 return Result;
933 // Zero extend to a new width.
934 APInt APInt::zext(unsigned width) const {
935 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
937 if (width <= APINT_BITS_PER_WORD)
938 return APInt(width, U.VAL);
940 APInt Result(getMemory(getNumWords(width)), width);
942 // Copy words.
943 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
945 // Zero remaining words.
946 std::memset(Result.U.pVal + getNumWords(), 0,
947 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
949 return Result;
952 APInt APInt::zextOrTrunc(unsigned width) const {
953 if (BitWidth < width)
954 return zext(width);
955 if (BitWidth > width)
956 return trunc(width);
957 return *this;
960 APInt APInt::sextOrTrunc(unsigned width) const {
961 if (BitWidth < width)
962 return sext(width);
963 if (BitWidth > width)
964 return trunc(width);
965 return *this;
968 APInt APInt::truncOrSelf(unsigned width) const {
969 if (BitWidth > width)
970 return trunc(width);
971 return *this;
974 APInt APInt::zextOrSelf(unsigned width) const {
975 if (BitWidth < width)
976 return zext(width);
977 return *this;
980 APInt APInt::sextOrSelf(unsigned width) const {
981 if (BitWidth < width)
982 return sext(width);
983 return *this;
986 /// Arithmetic right-shift this APInt by shiftAmt.
987 /// Arithmetic right-shift function.
988 void APInt::ashrInPlace(const APInt &shiftAmt) {
989 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
992 /// Arithmetic right-shift this APInt by shiftAmt.
993 /// Arithmetic right-shift function.
994 void APInt::ashrSlowCase(unsigned ShiftAmt) {
995 // Don't bother performing a no-op shift.
996 if (!ShiftAmt)
997 return;
999 // Save the original sign bit for later.
1000 bool Negative = isNegative();
1002 // WordShift is the inter-part shift; BitShift is intra-part shift.
1003 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1004 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1006 unsigned WordsToMove = getNumWords() - WordShift;
1007 if (WordsToMove != 0) {
1008 // Sign extend the last word to fill in the unused bits.
1009 U.pVal[getNumWords() - 1] = SignExtend64(
1010 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1012 // Fastpath for moving by whole words.
1013 if (BitShift == 0) {
1014 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1015 } else {
1016 // Move the words containing significant bits.
1017 for (unsigned i = 0; i != WordsToMove - 1; ++i)
1018 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1019 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1021 // Handle the last word which has no high bits to copy.
1022 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1023 // Sign extend one more time.
1024 U.pVal[WordsToMove - 1] =
1025 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1029 // Fill in the remainder based on the original sign.
1030 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1031 WordShift * APINT_WORD_SIZE);
1032 clearUnusedBits();
1035 /// Logical right-shift this APInt by shiftAmt.
1036 /// Logical right-shift function.
1037 void APInt::lshrInPlace(const APInt &shiftAmt) {
1038 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1041 /// Logical right-shift this APInt by shiftAmt.
1042 /// Logical right-shift function.
1043 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1044 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1047 /// Left-shift this APInt by shiftAmt.
1048 /// Left-shift function.
1049 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1050 // It's undefined behavior in C to shift by BitWidth or greater.
1051 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1052 return *this;
1055 void APInt::shlSlowCase(unsigned ShiftAmt) {
1056 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1057 clearUnusedBits();
1060 // Calculate the rotate amount modulo the bit width.
1061 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1062 unsigned rotBitWidth = rotateAmt.getBitWidth();
1063 APInt rot = rotateAmt;
1064 if (rotBitWidth < BitWidth) {
1065 // Extend the rotate APInt, so that the urem doesn't divide by 0.
1066 // e.g. APInt(1, 32) would give APInt(1, 0).
1067 rot = rotateAmt.zext(BitWidth);
1069 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1070 return rot.getLimitedValue(BitWidth);
1073 APInt APInt::rotl(const APInt &rotateAmt) const {
1074 return rotl(rotateModulo(BitWidth, rotateAmt));
1077 APInt APInt::rotl(unsigned rotateAmt) const {
1078 rotateAmt %= BitWidth;
1079 if (rotateAmt == 0)
1080 return *this;
1081 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1084 APInt APInt::rotr(const APInt &rotateAmt) const {
1085 return rotr(rotateModulo(BitWidth, rotateAmt));
1088 APInt APInt::rotr(unsigned rotateAmt) const {
1089 rotateAmt %= BitWidth;
1090 if (rotateAmt == 0)
1091 return *this;
1092 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1095 // Square Root - this method computes and returns the square root of "this".
1096 // Three mechanisms are used for computation. For small values (<= 5 bits),
1097 // a table lookup is done. This gets some performance for common cases. For
1098 // values using less than 52 bits, the value is converted to double and then
1099 // the libc sqrt function is called. The result is rounded and then converted
1100 // back to a uint64_t which is then used to construct the result. Finally,
1101 // the Babylonian method for computing square roots is used.
1102 APInt APInt::sqrt() const {
1104 // Determine the magnitude of the value.
1105 unsigned magnitude = getActiveBits();
1107 // Use a fast table for some small values. This also gets rid of some
1108 // rounding errors in libc sqrt for small values.
1109 if (magnitude <= 5) {
1110 static const uint8_t results[32] = {
1111 /* 0 */ 0,
1112 /* 1- 2 */ 1, 1,
1113 /* 3- 6 */ 2, 2, 2, 2,
1114 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1115 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1116 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1117 /* 31 */ 6
1119 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1122 // If the magnitude of the value fits in less than 52 bits (the precision of
1123 // an IEEE double precision floating point value), then we can use the
1124 // libc sqrt function which will probably use a hardware sqrt computation.
1125 // This should be faster than the algorithm below.
1126 if (magnitude < 52) {
1127 return APInt(BitWidth,
1128 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1129 : U.pVal[0])))));
1132 // Okay, all the short cuts are exhausted. We must compute it. The following
1133 // is a classical Babylonian method for computing the square root. This code
1134 // was adapted to APInt from a wikipedia article on such computations.
1135 // See http://www.wikipedia.org/ and go to the page named
1136 // Calculate_an_integer_square_root.
1137 unsigned nbits = BitWidth, i = 4;
1138 APInt testy(BitWidth, 16);
1139 APInt x_old(BitWidth, 1);
1140 APInt x_new(BitWidth, 0);
1141 APInt two(BitWidth, 2);
1143 // Select a good starting value using binary logarithms.
1144 for (;; i += 2, testy = testy.shl(2))
1145 if (i >= nbits || this->ule(testy)) {
1146 x_old = x_old.shl(i / 2);
1147 break;
1150 // Use the Babylonian method to arrive at the integer square root:
1151 for (;;) {
1152 x_new = (this->udiv(x_old) + x_old).udiv(two);
1153 if (x_old.ule(x_new))
1154 break;
1155 x_old = x_new;
1158 // Make sure we return the closest approximation
1159 // NOTE: The rounding calculation below is correct. It will produce an
1160 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1161 // determined to be a rounding issue with pari/gp as it begins to use a
1162 // floating point representation after 192 bits. There are no discrepancies
1163 // between this algorithm and pari/gp for bit widths < 192 bits.
1164 APInt square(x_old * x_old);
1165 APInt nextSquare((x_old + 1) * (x_old +1));
1166 if (this->ult(square))
1167 return x_old;
1168 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1169 APInt midpoint((nextSquare - square).udiv(two));
1170 APInt offset(*this - square);
1171 if (offset.ult(midpoint))
1172 return x_old;
1173 return x_old + 1;
1176 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1177 /// iterative extended Euclidean algorithm is used to solve for this value,
1178 /// however we simplify it to speed up calculating only the inverse, and take
1179 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1180 /// (potentially large) APInts around.
1181 /// WARNING: a value of '0' may be returned,
1182 /// signifying that no multiplicative inverse exists!
1183 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1184 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1186 // Using the properties listed at the following web page (accessed 06/21/08):
1187 // http://www.numbertheory.org/php/euclid.html
1188 // (especially the properties numbered 3, 4 and 9) it can be proved that
1189 // BitWidth bits suffice for all the computations in the algorithm implemented
1190 // below. More precisely, this number of bits suffice if the multiplicative
1191 // inverse exists, but may not suffice for the general extended Euclidean
1192 // algorithm.
1194 APInt r[2] = { modulo, *this };
1195 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1196 APInt q(BitWidth, 0);
1198 unsigned i;
1199 for (i = 0; r[i^1] != 0; i ^= 1) {
1200 // An overview of the math without the confusing bit-flipping:
1201 // q = r[i-2] / r[i-1]
1202 // r[i] = r[i-2] % r[i-1]
1203 // t[i] = t[i-2] - t[i-1] * q
1204 udivrem(r[i], r[i^1], q, r[i]);
1205 t[i] -= t[i^1] * q;
1208 // If this APInt and the modulo are not coprime, there is no multiplicative
1209 // inverse, so return 0. We check this by looking at the next-to-last
1210 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1211 // algorithm.
1212 if (r[i] != 1)
1213 return APInt(BitWidth, 0);
1215 // The next-to-last t is the multiplicative inverse. However, we are
1216 // interested in a positive inverse. Calculate a positive one from a negative
1217 // one if necessary. A simple addition of the modulo suffices because
1218 // abs(t[i]) is known to be less than *this/2 (see the link above).
1219 if (t[i].isNegative())
1220 t[i] += modulo;
1222 return std::move(t[i]);
1225 /// Calculate the magic numbers required to implement a signed integer division
1226 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1227 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1228 /// Warren, Jr., chapter 10.
1229 APInt::ms APInt::magic() const {
1230 const APInt& d = *this;
1231 unsigned p;
1232 APInt ad, anc, delta, q1, r1, q2, r2, t;
1233 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1234 struct ms mag;
1236 ad = d.abs();
1237 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1238 anc = t - 1 - t.urem(ad); // absolute value of nc
1239 p = d.getBitWidth() - 1; // initialize p
1240 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1241 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1242 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1243 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1244 do {
1245 p = p + 1;
1246 q1 = q1<<1; // update q1 = 2p/abs(nc)
1247 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1248 if (r1.uge(anc)) { // must be unsigned comparison
1249 q1 = q1 + 1;
1250 r1 = r1 - anc;
1252 q2 = q2<<1; // update q2 = 2p/abs(d)
1253 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1254 if (r2.uge(ad)) { // must be unsigned comparison
1255 q2 = q2 + 1;
1256 r2 = r2 - ad;
1258 delta = ad - r2;
1259 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1261 mag.m = q2 + 1;
1262 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1263 mag.s = p - d.getBitWidth(); // resulting shift
1264 return mag;
1267 /// Calculate the magic numbers required to implement an unsigned integer
1268 /// division by a constant as a sequence of multiplies, adds and shifts.
1269 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1270 /// S. Warren, Jr., chapter 10.
1271 /// LeadingZeros can be used to simplify the calculation if the upper bits
1272 /// of the divided value are known zero.
1273 APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1274 const APInt& d = *this;
1275 unsigned p;
1276 APInt nc, delta, q1, r1, q2, r2;
1277 struct mu magu;
1278 magu.a = 0; // initialize "add" indicator
1279 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1280 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1281 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1283 nc = allOnes - (allOnes - d).urem(d);
1284 p = d.getBitWidth() - 1; // initialize p
1285 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1286 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1287 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1288 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1289 do {
1290 p = p + 1;
1291 if (r1.uge(nc - r1)) {
1292 q1 = q1 + q1 + 1; // update q1
1293 r1 = r1 + r1 - nc; // update r1
1295 else {
1296 q1 = q1+q1; // update q1
1297 r1 = r1+r1; // update r1
1299 if ((r2 + 1).uge(d - r2)) {
1300 if (q2.uge(signedMax)) magu.a = 1;
1301 q2 = q2+q2 + 1; // update q2
1302 r2 = r2+r2 + 1 - d; // update r2
1304 else {
1305 if (q2.uge(signedMin)) magu.a = 1;
1306 q2 = q2+q2; // update q2
1307 r2 = r2+r2 + 1; // update r2
1309 delta = d - 1 - r2;
1310 } while (p < d.getBitWidth()*2 &&
1311 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1312 magu.m = q2 + 1; // resulting magic number
1313 magu.s = p - d.getBitWidth(); // resulting shift
1314 return magu;
1317 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1318 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1319 /// variables here have the same names as in the algorithm. Comments explain
1320 /// the algorithm and any deviation from it.
1321 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1322 unsigned m, unsigned n) {
1323 assert(u && "Must provide dividend");
1324 assert(v && "Must provide divisor");
1325 assert(q && "Must provide quotient");
1326 assert(u != v && u != q && v != q && "Must use different memory");
1327 assert(n>1 && "n must be > 1");
1329 // b denotes the base of the number system. In our case b is 2^32.
1330 const uint64_t b = uint64_t(1) << 32;
1332 // The DEBUG macros here tend to be spam in the debug output if you're not
1333 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1334 #ifdef KNUTH_DEBUG
1335 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1336 #else
1337 #define DEBUG_KNUTH(X) do {} while(false)
1338 #endif
1340 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1341 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1342 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1343 DEBUG_KNUTH(dbgs() << " by");
1344 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1345 DEBUG_KNUTH(dbgs() << '\n');
1346 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1347 // u and v by d. Note that we have taken Knuth's advice here to use a power
1348 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1349 // 2 allows us to shift instead of multiply and it is easy to determine the
1350 // shift amount from the leading zeros. We are basically normalizing the u
1351 // and v so that its high bits are shifted to the top of v's range without
1352 // overflow. Note that this can require an extra word in u so that u must
1353 // be of length m+n+1.
1354 unsigned shift = countLeadingZeros(v[n-1]);
1355 uint32_t v_carry = 0;
1356 uint32_t u_carry = 0;
1357 if (shift) {
1358 for (unsigned i = 0; i < m+n; ++i) {
1359 uint32_t u_tmp = u[i] >> (32 - shift);
1360 u[i] = (u[i] << shift) | u_carry;
1361 u_carry = u_tmp;
1363 for (unsigned i = 0; i < n; ++i) {
1364 uint32_t v_tmp = v[i] >> (32 - shift);
1365 v[i] = (v[i] << shift) | v_carry;
1366 v_carry = v_tmp;
1369 u[m+n] = u_carry;
1371 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1372 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1373 DEBUG_KNUTH(dbgs() << " by");
1374 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1375 DEBUG_KNUTH(dbgs() << '\n');
1377 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1378 int j = m;
1379 do {
1380 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1381 // D3. [Calculate q'.].
1382 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1383 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1384 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1385 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1386 // on v[n-2] determines at high speed most of the cases in which the trial
1387 // value qp is one too large, and it eliminates all cases where qp is two
1388 // too large.
1389 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1390 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1391 uint64_t qp = dividend / v[n-1];
1392 uint64_t rp = dividend % v[n-1];
1393 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1394 qp--;
1395 rp += v[n-1];
1396 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1397 qp--;
1399 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1401 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1402 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1403 // consists of a simple multiplication by a one-place number, combined with
1404 // a subtraction.
1405 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1406 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1407 // true value plus b**(n+1), namely as the b's complement of
1408 // the true value, and a "borrow" to the left should be remembered.
1409 int64_t borrow = 0;
1410 for (unsigned i = 0; i < n; ++i) {
1411 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1412 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1413 u[j+i] = Lo_32(subres);
1414 borrow = Hi_32(p) - Hi_32(subres);
1415 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1416 << ", borrow = " << borrow << '\n');
1418 bool isNeg = u[j+n] < borrow;
1419 u[j+n] -= Lo_32(borrow);
1421 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1422 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1423 DEBUG_KNUTH(dbgs() << '\n');
1425 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1426 // negative, go to step D6; otherwise go on to step D7.
1427 q[j] = Lo_32(qp);
1428 if (isNeg) {
1429 // D6. [Add back]. The probability that this step is necessary is very
1430 // small, on the order of only 2/b. Make sure that test data accounts for
1431 // this possibility. Decrease q[j] by 1
1432 q[j]--;
1433 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1434 // A carry will occur to the left of u[j+n], and it should be ignored
1435 // since it cancels with the borrow that occurred in D4.
1436 bool carry = false;
1437 for (unsigned i = 0; i < n; i++) {
1438 uint32_t limit = std::min(u[j+i],v[i]);
1439 u[j+i] += v[i] + carry;
1440 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1442 u[j+n] += carry;
1444 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1445 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1446 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1448 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1449 } while (--j >= 0);
1451 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1452 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1453 DEBUG_KNUTH(dbgs() << '\n');
1455 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1456 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1457 // compute the remainder (urem uses this).
1458 if (r) {
1459 // The value d is expressed by the "shift" value above since we avoided
1460 // multiplication by d by using a shift left. So, all we have to do is
1461 // shift right here.
1462 if (shift) {
1463 uint32_t carry = 0;
1464 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1465 for (int i = n-1; i >= 0; i--) {
1466 r[i] = (u[i] >> shift) | carry;
1467 carry = u[i] << (32 - shift);
1468 DEBUG_KNUTH(dbgs() << " " << r[i]);
1470 } else {
1471 for (int i = n-1; i >= 0; i--) {
1472 r[i] = u[i];
1473 DEBUG_KNUTH(dbgs() << " " << r[i]);
1476 DEBUG_KNUTH(dbgs() << '\n');
1478 DEBUG_KNUTH(dbgs() << '\n');
1481 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1482 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1483 assert(lhsWords >= rhsWords && "Fractional result");
1485 // First, compose the values into an array of 32-bit words instead of
1486 // 64-bit words. This is a necessity of both the "short division" algorithm
1487 // and the Knuth "classical algorithm" which requires there to be native
1488 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1489 // can't use 64-bit operands here because we don't have native results of
1490 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1491 // work on large-endian machines.
1492 unsigned n = rhsWords * 2;
1493 unsigned m = (lhsWords * 2) - n;
1495 // Allocate space for the temporary values we need either on the stack, if
1496 // it will fit, or on the heap if it won't.
1497 uint32_t SPACE[128];
1498 uint32_t *U = nullptr;
1499 uint32_t *V = nullptr;
1500 uint32_t *Q = nullptr;
1501 uint32_t *R = nullptr;
1502 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1503 U = &SPACE[0];
1504 V = &SPACE[m+n+1];
1505 Q = &SPACE[(m+n+1) + n];
1506 if (Remainder)
1507 R = &SPACE[(m+n+1) + n + (m+n)];
1508 } else {
1509 U = new uint32_t[m + n + 1];
1510 V = new uint32_t[n];
1511 Q = new uint32_t[m+n];
1512 if (Remainder)
1513 R = new uint32_t[n];
1516 // Initialize the dividend
1517 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1518 for (unsigned i = 0; i < lhsWords; ++i) {
1519 uint64_t tmp = LHS[i];
1520 U[i * 2] = Lo_32(tmp);
1521 U[i * 2 + 1] = Hi_32(tmp);
1523 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1525 // Initialize the divisor
1526 memset(V, 0, (n)*sizeof(uint32_t));
1527 for (unsigned i = 0; i < rhsWords; ++i) {
1528 uint64_t tmp = RHS[i];
1529 V[i * 2] = Lo_32(tmp);
1530 V[i * 2 + 1] = Hi_32(tmp);
1533 // initialize the quotient and remainder
1534 memset(Q, 0, (m+n) * sizeof(uint32_t));
1535 if (Remainder)
1536 memset(R, 0, n * sizeof(uint32_t));
1538 // Now, adjust m and n for the Knuth division. n is the number of words in
1539 // the divisor. m is the number of words by which the dividend exceeds the
1540 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1541 // contain any zero words or the Knuth algorithm fails.
1542 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1543 n--;
1544 m++;
1546 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1547 m--;
1549 // If we're left with only a single word for the divisor, Knuth doesn't work
1550 // so we implement the short division algorithm here. This is much simpler
1551 // and faster because we are certain that we can divide a 64-bit quantity
1552 // by a 32-bit quantity at hardware speed and short division is simply a
1553 // series of such operations. This is just like doing short division but we
1554 // are using base 2^32 instead of base 10.
1555 assert(n != 0 && "Divide by zero?");
1556 if (n == 1) {
1557 uint32_t divisor = V[0];
1558 uint32_t remainder = 0;
1559 for (int i = m; i >= 0; i--) {
1560 uint64_t partial_dividend = Make_64(remainder, U[i]);
1561 if (partial_dividend == 0) {
1562 Q[i] = 0;
1563 remainder = 0;
1564 } else if (partial_dividend < divisor) {
1565 Q[i] = 0;
1566 remainder = Lo_32(partial_dividend);
1567 } else if (partial_dividend == divisor) {
1568 Q[i] = 1;
1569 remainder = 0;
1570 } else {
1571 Q[i] = Lo_32(partial_dividend / divisor);
1572 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1575 if (R)
1576 R[0] = remainder;
1577 } else {
1578 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1579 // case n > 1.
1580 KnuthDiv(U, V, Q, R, m, n);
1583 // If the caller wants the quotient
1584 if (Quotient) {
1585 for (unsigned i = 0; i < lhsWords; ++i)
1586 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1589 // If the caller wants the remainder
1590 if (Remainder) {
1591 for (unsigned i = 0; i < rhsWords; ++i)
1592 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1595 // Clean up the memory we allocated.
1596 if (U != &SPACE[0]) {
1597 delete [] U;
1598 delete [] V;
1599 delete [] Q;
1600 delete [] R;
1604 APInt APInt::udiv(const APInt &RHS) const {
1605 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1607 // First, deal with the easy case
1608 if (isSingleWord()) {
1609 assert(RHS.U.VAL != 0 && "Divide by zero?");
1610 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1613 // Get some facts about the LHS and RHS number of bits and words
1614 unsigned lhsWords = getNumWords(getActiveBits());
1615 unsigned rhsBits = RHS.getActiveBits();
1616 unsigned rhsWords = getNumWords(rhsBits);
1617 assert(rhsWords && "Divided by zero???");
1619 // Deal with some degenerate cases
1620 if (!lhsWords)
1621 // 0 / X ===> 0
1622 return APInt(BitWidth, 0);
1623 if (rhsBits == 1)
1624 // X / 1 ===> X
1625 return *this;
1626 if (lhsWords < rhsWords || this->ult(RHS))
1627 // X / Y ===> 0, iff X < Y
1628 return APInt(BitWidth, 0);
1629 if (*this == RHS)
1630 // X / X ===> 1
1631 return APInt(BitWidth, 1);
1632 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1633 // All high words are zero, just use native divide
1634 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1636 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1637 APInt Quotient(BitWidth, 0); // to hold result.
1638 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1639 return Quotient;
1642 APInt APInt::udiv(uint64_t RHS) const {
1643 assert(RHS != 0 && "Divide by zero?");
1645 // First, deal with the easy case
1646 if (isSingleWord())
1647 return APInt(BitWidth, U.VAL / RHS);
1649 // Get some facts about the LHS words.
1650 unsigned lhsWords = getNumWords(getActiveBits());
1652 // Deal with some degenerate cases
1653 if (!lhsWords)
1654 // 0 / X ===> 0
1655 return APInt(BitWidth, 0);
1656 if (RHS == 1)
1657 // X / 1 ===> X
1658 return *this;
1659 if (this->ult(RHS))
1660 // X / Y ===> 0, iff X < Y
1661 return APInt(BitWidth, 0);
1662 if (*this == RHS)
1663 // X / X ===> 1
1664 return APInt(BitWidth, 1);
1665 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1666 // All high words are zero, just use native divide
1667 return APInt(BitWidth, this->U.pVal[0] / RHS);
1669 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1670 APInt Quotient(BitWidth, 0); // to hold result.
1671 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1672 return Quotient;
1675 APInt APInt::sdiv(const APInt &RHS) const {
1676 if (isNegative()) {
1677 if (RHS.isNegative())
1678 return (-(*this)).udiv(-RHS);
1679 return -((-(*this)).udiv(RHS));
1681 if (RHS.isNegative())
1682 return -(this->udiv(-RHS));
1683 return this->udiv(RHS);
1686 APInt APInt::sdiv(int64_t RHS) const {
1687 if (isNegative()) {
1688 if (RHS < 0)
1689 return (-(*this)).udiv(-RHS);
1690 return -((-(*this)).udiv(RHS));
1692 if (RHS < 0)
1693 return -(this->udiv(-RHS));
1694 return this->udiv(RHS);
1697 APInt APInt::urem(const APInt &RHS) const {
1698 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1699 if (isSingleWord()) {
1700 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1701 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1704 // Get some facts about the LHS
1705 unsigned lhsWords = getNumWords(getActiveBits());
1707 // Get some facts about the RHS
1708 unsigned rhsBits = RHS.getActiveBits();
1709 unsigned rhsWords = getNumWords(rhsBits);
1710 assert(rhsWords && "Performing remainder operation by zero ???");
1712 // Check the degenerate cases
1713 if (lhsWords == 0)
1714 // 0 % Y ===> 0
1715 return APInt(BitWidth, 0);
1716 if (rhsBits == 1)
1717 // X % 1 ===> 0
1718 return APInt(BitWidth, 0);
1719 if (lhsWords < rhsWords || this->ult(RHS))
1720 // X % Y ===> X, iff X < Y
1721 return *this;
1722 if (*this == RHS)
1723 // X % X == 0;
1724 return APInt(BitWidth, 0);
1725 if (lhsWords == 1)
1726 // All high words are zero, just use native remainder
1727 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1729 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1730 APInt Remainder(BitWidth, 0);
1731 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1732 return Remainder;
1735 uint64_t APInt::urem(uint64_t RHS) const {
1736 assert(RHS != 0 && "Remainder by zero?");
1738 if (isSingleWord())
1739 return U.VAL % RHS;
1741 // Get some facts about the LHS
1742 unsigned lhsWords = getNumWords(getActiveBits());
1744 // Check the degenerate cases
1745 if (lhsWords == 0)
1746 // 0 % Y ===> 0
1747 return 0;
1748 if (RHS == 1)
1749 // X % 1 ===> 0
1750 return 0;
1751 if (this->ult(RHS))
1752 // X % Y ===> X, iff X < Y
1753 return getZExtValue();
1754 if (*this == RHS)
1755 // X % X == 0;
1756 return 0;
1757 if (lhsWords == 1)
1758 // All high words are zero, just use native remainder
1759 return U.pVal[0] % RHS;
1761 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1762 uint64_t Remainder;
1763 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1764 return Remainder;
1767 APInt APInt::srem(const APInt &RHS) const {
1768 if (isNegative()) {
1769 if (RHS.isNegative())
1770 return -((-(*this)).urem(-RHS));
1771 return -((-(*this)).urem(RHS));
1773 if (RHS.isNegative())
1774 return this->urem(-RHS);
1775 return this->urem(RHS);
1778 int64_t APInt::srem(int64_t RHS) const {
1779 if (isNegative()) {
1780 if (RHS < 0)
1781 return -((-(*this)).urem(-RHS));
1782 return -((-(*this)).urem(RHS));
1784 if (RHS < 0)
1785 return this->urem(-RHS);
1786 return this->urem(RHS);
1789 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1790 APInt &Quotient, APInt &Remainder) {
1791 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1792 unsigned BitWidth = LHS.BitWidth;
1794 // First, deal with the easy case
1795 if (LHS.isSingleWord()) {
1796 assert(RHS.U.VAL != 0 && "Divide by zero?");
1797 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1798 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1799 Quotient = APInt(BitWidth, QuotVal);
1800 Remainder = APInt(BitWidth, RemVal);
1801 return;
1804 // Get some size facts about the dividend and divisor
1805 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1806 unsigned rhsBits = RHS.getActiveBits();
1807 unsigned rhsWords = getNumWords(rhsBits);
1808 assert(rhsWords && "Performing divrem operation by zero ???");
1810 // Check the degenerate cases
1811 if (lhsWords == 0) {
1812 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1813 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
1814 return;
1817 if (rhsBits == 1) {
1818 Quotient = LHS; // X / 1 ===> X
1819 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
1822 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1823 Remainder = LHS; // X % Y ===> X, iff X < Y
1824 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1825 return;
1828 if (LHS == RHS) {
1829 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1830 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
1831 return;
1834 // Make sure there is enough space to hold the results.
1835 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1836 // change the size. This is necessary if Quotient or Remainder is aliased
1837 // with LHS or RHS.
1838 Quotient.reallocate(BitWidth);
1839 Remainder.reallocate(BitWidth);
1841 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1842 // There is only one word to consider so use the native versions.
1843 uint64_t lhsValue = LHS.U.pVal[0];
1844 uint64_t rhsValue = RHS.U.pVal[0];
1845 Quotient = lhsValue / rhsValue;
1846 Remainder = lhsValue % rhsValue;
1847 return;
1850 // Okay, lets do it the long way
1851 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1852 Remainder.U.pVal);
1853 // Clear the rest of the Quotient and Remainder.
1854 std::memset(Quotient.U.pVal + lhsWords, 0,
1855 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1856 std::memset(Remainder.U.pVal + rhsWords, 0,
1857 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1860 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1861 uint64_t &Remainder) {
1862 assert(RHS != 0 && "Divide by zero?");
1863 unsigned BitWidth = LHS.BitWidth;
1865 // First, deal with the easy case
1866 if (LHS.isSingleWord()) {
1867 uint64_t QuotVal = LHS.U.VAL / RHS;
1868 Remainder = LHS.U.VAL % RHS;
1869 Quotient = APInt(BitWidth, QuotVal);
1870 return;
1873 // Get some size facts about the dividend and divisor
1874 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1876 // Check the degenerate cases
1877 if (lhsWords == 0) {
1878 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1879 Remainder = 0; // 0 % Y ===> 0
1880 return;
1883 if (RHS == 1) {
1884 Quotient = LHS; // X / 1 ===> X
1885 Remainder = 0; // X % 1 ===> 0
1886 return;
1889 if (LHS.ult(RHS)) {
1890 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1891 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1892 return;
1895 if (LHS == RHS) {
1896 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1897 Remainder = 0; // X % X ===> 0;
1898 return;
1901 // Make sure there is enough space to hold the results.
1902 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1903 // change the size. This is necessary if Quotient is aliased with LHS.
1904 Quotient.reallocate(BitWidth);
1906 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1907 // There is only one word to consider so use the native versions.
1908 uint64_t lhsValue = LHS.U.pVal[0];
1909 Quotient = lhsValue / RHS;
1910 Remainder = lhsValue % RHS;
1911 return;
1914 // Okay, lets do it the long way
1915 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1916 // Clear the rest of the Quotient.
1917 std::memset(Quotient.U.pVal + lhsWords, 0,
1918 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1921 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1922 APInt &Quotient, APInt &Remainder) {
1923 if (LHS.isNegative()) {
1924 if (RHS.isNegative())
1925 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1926 else {
1927 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1928 Quotient.negate();
1930 Remainder.negate();
1931 } else if (RHS.isNegative()) {
1932 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1933 Quotient.negate();
1934 } else {
1935 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1939 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1940 APInt &Quotient, int64_t &Remainder) {
1941 uint64_t R = Remainder;
1942 if (LHS.isNegative()) {
1943 if (RHS < 0)
1944 APInt::udivrem(-LHS, -RHS, Quotient, R);
1945 else {
1946 APInt::udivrem(-LHS, RHS, Quotient, R);
1947 Quotient.negate();
1949 R = -R;
1950 } else if (RHS < 0) {
1951 APInt::udivrem(LHS, -RHS, Quotient, R);
1952 Quotient.negate();
1953 } else {
1954 APInt::udivrem(LHS, RHS, Quotient, R);
1956 Remainder = R;
1959 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1960 APInt Res = *this+RHS;
1961 Overflow = isNonNegative() == RHS.isNonNegative() &&
1962 Res.isNonNegative() != isNonNegative();
1963 return Res;
1966 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1967 APInt Res = *this+RHS;
1968 Overflow = Res.ult(RHS);
1969 return Res;
1972 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1973 APInt Res = *this - RHS;
1974 Overflow = isNonNegative() != RHS.isNonNegative() &&
1975 Res.isNonNegative() != isNonNegative();
1976 return Res;
1979 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1980 APInt Res = *this-RHS;
1981 Overflow = Res.ugt(*this);
1982 return Res;
1985 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1986 // MININT/-1 --> overflow.
1987 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1988 return sdiv(RHS);
1991 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1992 APInt Res = *this * RHS;
1994 if (*this != 0 && RHS != 0)
1995 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1996 else
1997 Overflow = false;
1998 return Res;
2001 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2002 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
2003 Overflow = true;
2004 return *this * RHS;
2007 APInt Res = lshr(1) * RHS;
2008 Overflow = Res.isNegative();
2009 Res <<= 1;
2010 if ((*this)[0]) {
2011 Res += RHS;
2012 if (Res.ult(RHS))
2013 Overflow = true;
2015 return Res;
2018 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2019 Overflow = ShAmt.uge(getBitWidth());
2020 if (Overflow)
2021 return APInt(BitWidth, 0);
2023 if (isNonNegative()) // Don't allow sign change.
2024 Overflow = ShAmt.uge(countLeadingZeros());
2025 else
2026 Overflow = ShAmt.uge(countLeadingOnes());
2028 return *this << ShAmt;
2031 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2032 Overflow = ShAmt.uge(getBitWidth());
2033 if (Overflow)
2034 return APInt(BitWidth, 0);
2036 Overflow = ShAmt.ugt(countLeadingZeros());
2038 return *this << ShAmt;
2041 APInt APInt::sadd_sat(const APInt &RHS) const {
2042 bool Overflow;
2043 APInt Res = sadd_ov(RHS, Overflow);
2044 if (!Overflow)
2045 return Res;
2047 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2048 : APInt::getSignedMaxValue(BitWidth);
2051 APInt APInt::uadd_sat(const APInt &RHS) const {
2052 bool Overflow;
2053 APInt Res = uadd_ov(RHS, Overflow);
2054 if (!Overflow)
2055 return Res;
2057 return APInt::getMaxValue(BitWidth);
2060 APInt APInt::ssub_sat(const APInt &RHS) const {
2061 bool Overflow;
2062 APInt Res = ssub_ov(RHS, Overflow);
2063 if (!Overflow)
2064 return Res;
2066 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2067 : APInt::getSignedMaxValue(BitWidth);
2070 APInt APInt::usub_sat(const APInt &RHS) const {
2071 bool Overflow;
2072 APInt Res = usub_ov(RHS, Overflow);
2073 if (!Overflow)
2074 return Res;
2076 return APInt(BitWidth, 0);
2079 APInt APInt::smul_sat(const APInt &RHS) const {
2080 bool Overflow;
2081 APInt Res = smul_ov(RHS, Overflow);
2082 if (!Overflow)
2083 return Res;
2085 // The result is negative if one and only one of inputs is negative.
2086 bool ResIsNegative = isNegative() ^ RHS.isNegative();
2088 return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2089 : APInt::getSignedMaxValue(BitWidth);
2092 APInt APInt::umul_sat(const APInt &RHS) const {
2093 bool Overflow;
2094 APInt Res = umul_ov(RHS, Overflow);
2095 if (!Overflow)
2096 return Res;
2098 return APInt::getMaxValue(BitWidth);
2101 APInt APInt::sshl_sat(const APInt &RHS) const {
2102 bool Overflow;
2103 APInt Res = sshl_ov(RHS, Overflow);
2104 if (!Overflow)
2105 return Res;
2107 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2108 : APInt::getSignedMaxValue(BitWidth);
2111 APInt APInt::ushl_sat(const APInt &RHS) const {
2112 bool Overflow;
2113 APInt Res = ushl_ov(RHS, Overflow);
2114 if (!Overflow)
2115 return Res;
2117 return APInt::getMaxValue(BitWidth);
2120 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2121 // Check our assumptions here
2122 assert(!str.empty() && "Invalid string length");
2123 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2124 radix == 36) &&
2125 "Radix should be 2, 8, 10, 16, or 36!");
2127 StringRef::iterator p = str.begin();
2128 size_t slen = str.size();
2129 bool isNeg = *p == '-';
2130 if (*p == '-' || *p == '+') {
2131 p++;
2132 slen--;
2133 assert(slen && "String is only a sign, needs a value.");
2135 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2136 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2137 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2138 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2139 "Insufficient bit width");
2141 // Allocate memory if needed
2142 if (isSingleWord())
2143 U.VAL = 0;
2144 else
2145 U.pVal = getClearedMemory(getNumWords());
2147 // Figure out if we can shift instead of multiply
2148 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2150 // Enter digit traversal loop
2151 for (StringRef::iterator e = str.end(); p != e; ++p) {
2152 unsigned digit = getDigit(*p, radix);
2153 assert(digit < radix && "Invalid character in digit string");
2155 // Shift or multiply the value by the radix
2156 if (slen > 1) {
2157 if (shift)
2158 *this <<= shift;
2159 else
2160 *this *= radix;
2163 // Add in the digit we just interpreted
2164 *this += digit;
2166 // If its negative, put it in two's complement form
2167 if (isNeg)
2168 this->negate();
2171 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2172 bool Signed, bool formatAsCLiteral) const {
2173 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2174 Radix == 36) &&
2175 "Radix should be 2, 8, 10, 16, or 36!");
2177 const char *Prefix = "";
2178 if (formatAsCLiteral) {
2179 switch (Radix) {
2180 case 2:
2181 // Binary literals are a non-standard extension added in gcc 4.3:
2182 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2183 Prefix = "0b";
2184 break;
2185 case 8:
2186 Prefix = "0";
2187 break;
2188 case 10:
2189 break; // No prefix
2190 case 16:
2191 Prefix = "0x";
2192 break;
2193 default:
2194 llvm_unreachable("Invalid radix!");
2198 // First, check for a zero value and just short circuit the logic below.
2199 if (*this == 0) {
2200 while (*Prefix) {
2201 Str.push_back(*Prefix);
2202 ++Prefix;
2204 Str.push_back('0');
2205 return;
2208 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2210 if (isSingleWord()) {
2211 char Buffer[65];
2212 char *BufPtr = std::end(Buffer);
2214 uint64_t N;
2215 if (!Signed) {
2216 N = getZExtValue();
2217 } else {
2218 int64_t I = getSExtValue();
2219 if (I >= 0) {
2220 N = I;
2221 } else {
2222 Str.push_back('-');
2223 N = -(uint64_t)I;
2227 while (*Prefix) {
2228 Str.push_back(*Prefix);
2229 ++Prefix;
2232 while (N) {
2233 *--BufPtr = Digits[N % Radix];
2234 N /= Radix;
2236 Str.append(BufPtr, std::end(Buffer));
2237 return;
2240 APInt Tmp(*this);
2242 if (Signed && isNegative()) {
2243 // They want to print the signed version and it is a negative value
2244 // Flip the bits and add one to turn it into the equivalent positive
2245 // value and put a '-' in the result.
2246 Tmp.negate();
2247 Str.push_back('-');
2250 while (*Prefix) {
2251 Str.push_back(*Prefix);
2252 ++Prefix;
2255 // We insert the digits backward, then reverse them to get the right order.
2256 unsigned StartDig = Str.size();
2258 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2259 // because the number of bits per digit (1, 3 and 4 respectively) divides
2260 // equally. We just shift until the value is zero.
2261 if (Radix == 2 || Radix == 8 || Radix == 16) {
2262 // Just shift tmp right for each digit width until it becomes zero
2263 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2264 unsigned MaskAmt = Radix - 1;
2266 while (Tmp.getBoolValue()) {
2267 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2268 Str.push_back(Digits[Digit]);
2269 Tmp.lshrInPlace(ShiftAmt);
2271 } else {
2272 while (Tmp.getBoolValue()) {
2273 uint64_t Digit;
2274 udivrem(Tmp, Radix, Tmp, Digit);
2275 assert(Digit < Radix && "divide failed");
2276 Str.push_back(Digits[Digit]);
2280 // Reverse the digits before returning.
2281 std::reverse(Str.begin()+StartDig, Str.end());
2284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2285 LLVM_DUMP_METHOD void APInt::dump() const {
2286 SmallString<40> S, U;
2287 this->toStringUnsigned(U);
2288 this->toStringSigned(S);
2289 dbgs() << "APInt(" << BitWidth << "b, "
2290 << U << "u " << S << "s)\n";
2292 #endif
2294 void APInt::print(raw_ostream &OS, bool isSigned) const {
2295 SmallString<40> S;
2296 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2297 OS << S;
2300 // This implements a variety of operations on a representation of
2301 // arbitrary precision, two's-complement, bignum integer values.
2303 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2304 // and unrestricting assumption.
2305 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2306 "Part width must be divisible by 2!");
2308 /* Some handy functions local to this file. */
2310 /* Returns the integer part with the least significant BITS set.
2311 BITS cannot be zero. */
2312 static inline APInt::WordType lowBitMask(unsigned bits) {
2313 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2315 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2318 /* Returns the value of the lower half of PART. */
2319 static inline APInt::WordType lowHalf(APInt::WordType part) {
2320 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2323 /* Returns the value of the upper half of PART. */
2324 static inline APInt::WordType highHalf(APInt::WordType part) {
2325 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2328 /* Returns the bit number of the most significant set bit of a part.
2329 If the input number has no bits set -1U is returned. */
2330 static unsigned partMSB(APInt::WordType value) {
2331 return findLastSet(value, ZB_Max);
2334 /* Returns the bit number of the least significant set bit of a
2335 part. If the input number has no bits set -1U is returned. */
2336 static unsigned partLSB(APInt::WordType value) {
2337 return findFirstSet(value, ZB_Max);
2340 /* Sets the least significant part of a bignum to the input value, and
2341 zeroes out higher parts. */
2342 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2343 assert(parts > 0);
2345 dst[0] = part;
2346 for (unsigned i = 1; i < parts; i++)
2347 dst[i] = 0;
2350 /* Assign one bignum to another. */
2351 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2352 for (unsigned i = 0; i < parts; i++)
2353 dst[i] = src[i];
2356 /* Returns true if a bignum is zero, false otherwise. */
2357 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2358 for (unsigned i = 0; i < parts; i++)
2359 if (src[i])
2360 return false;
2362 return true;
2365 /* Extract the given bit of a bignum; returns 0 or 1. */
2366 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2367 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2370 /* Set the given bit of a bignum. */
2371 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2372 parts[whichWord(bit)] |= maskBit(bit);
2375 /* Clears the given bit of a bignum. */
2376 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2377 parts[whichWord(bit)] &= ~maskBit(bit);
2380 /* Returns the bit number of the least significant set bit of a
2381 number. If the input number has no bits set -1U is returned. */
2382 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2383 for (unsigned i = 0; i < n; i++) {
2384 if (parts[i] != 0) {
2385 unsigned lsb = partLSB(parts[i]);
2387 return lsb + i * APINT_BITS_PER_WORD;
2391 return -1U;
2394 /* Returns the bit number of the most significant set bit of a number.
2395 If the input number has no bits set -1U is returned. */
2396 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2397 do {
2398 --n;
2400 if (parts[n] != 0) {
2401 unsigned msb = partMSB(parts[n]);
2403 return msb + n * APINT_BITS_PER_WORD;
2405 } while (n);
2407 return -1U;
2410 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2411 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2412 the least significant bit of DST. All high bits above srcBITS in
2413 DST are zero-filled. */
2414 void
2415 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2416 unsigned srcBits, unsigned srcLSB) {
2417 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2418 assert(dstParts <= dstCount);
2420 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2421 tcAssign (dst, src + firstSrcPart, dstParts);
2423 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2424 tcShiftRight (dst, dstParts, shift);
2426 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2427 in DST. If this is less that srcBits, append the rest, else
2428 clear the high bits. */
2429 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2430 if (n < srcBits) {
2431 WordType mask = lowBitMask (srcBits - n);
2432 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2433 << n % APINT_BITS_PER_WORD);
2434 } else if (n > srcBits) {
2435 if (srcBits % APINT_BITS_PER_WORD)
2436 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2439 /* Clear high parts. */
2440 while (dstParts < dstCount)
2441 dst[dstParts++] = 0;
2444 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2445 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2446 WordType c, unsigned parts) {
2447 assert(c <= 1);
2449 for (unsigned i = 0; i < parts; i++) {
2450 WordType l = dst[i];
2451 if (c) {
2452 dst[i] += rhs[i] + 1;
2453 c = (dst[i] <= l);
2454 } else {
2455 dst[i] += rhs[i];
2456 c = (dst[i] < l);
2460 return c;
2463 /// This function adds a single "word" integer, src, to the multiple
2464 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2465 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2466 /// @returns the carry of the addition.
2467 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2468 unsigned parts) {
2469 for (unsigned i = 0; i < parts; ++i) {
2470 dst[i] += src;
2471 if (dst[i] >= src)
2472 return 0; // No need to carry so exit early.
2473 src = 1; // Carry one to next digit.
2476 return 1;
2479 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2480 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2481 WordType c, unsigned parts) {
2482 assert(c <= 1);
2484 for (unsigned i = 0; i < parts; i++) {
2485 WordType l = dst[i];
2486 if (c) {
2487 dst[i] -= rhs[i] + 1;
2488 c = (dst[i] >= l);
2489 } else {
2490 dst[i] -= rhs[i];
2491 c = (dst[i] > l);
2495 return c;
2498 /// This function subtracts a single "word" (64-bit word), src, from
2499 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2500 /// no further borrowing is needed or it runs out of "words" in dst. The result
2501 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2502 /// exhausted. In other words, if src > dst then this function returns 1,
2503 /// otherwise 0.
2504 /// @returns the borrow out of the subtraction
2505 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2506 unsigned parts) {
2507 for (unsigned i = 0; i < parts; ++i) {
2508 WordType Dst = dst[i];
2509 dst[i] -= src;
2510 if (src <= Dst)
2511 return 0; // No need to borrow so exit early.
2512 src = 1; // We have to "borrow 1" from next "word"
2515 return 1;
2518 /* Negate a bignum in-place. */
2519 void APInt::tcNegate(WordType *dst, unsigned parts) {
2520 tcComplement(dst, parts);
2521 tcIncrement(dst, parts);
2524 /* DST += SRC * MULTIPLIER + CARRY if add is true
2525 DST = SRC * MULTIPLIER + CARRY if add is false
2527 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2528 they must start at the same point, i.e. DST == SRC.
2530 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2531 returned. Otherwise DST is filled with the least significant
2532 DSTPARTS parts of the result, and if all of the omitted higher
2533 parts were zero return zero, otherwise overflow occurred and
2534 return one. */
2535 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2536 WordType multiplier, WordType carry,
2537 unsigned srcParts, unsigned dstParts,
2538 bool add) {
2539 /* Otherwise our writes of DST kill our later reads of SRC. */
2540 assert(dst <= src || dst >= src + srcParts);
2541 assert(dstParts <= srcParts + 1);
2543 /* N loops; minimum of dstParts and srcParts. */
2544 unsigned n = std::min(dstParts, srcParts);
2546 for (unsigned i = 0; i < n; i++) {
2547 WordType low, mid, high, srcPart;
2549 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2551 This cannot overflow, because
2553 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2555 which is less than n^2. */
2557 srcPart = src[i];
2559 if (multiplier == 0 || srcPart == 0) {
2560 low = carry;
2561 high = 0;
2562 } else {
2563 low = lowHalf(srcPart) * lowHalf(multiplier);
2564 high = highHalf(srcPart) * highHalf(multiplier);
2566 mid = lowHalf(srcPart) * highHalf(multiplier);
2567 high += highHalf(mid);
2568 mid <<= APINT_BITS_PER_WORD / 2;
2569 if (low + mid < low)
2570 high++;
2571 low += mid;
2573 mid = highHalf(srcPart) * lowHalf(multiplier);
2574 high += highHalf(mid);
2575 mid <<= APINT_BITS_PER_WORD / 2;
2576 if (low + mid < low)
2577 high++;
2578 low += mid;
2580 /* Now add carry. */
2581 if (low + carry < low)
2582 high++;
2583 low += carry;
2586 if (add) {
2587 /* And now DST[i], and store the new low part there. */
2588 if (low + dst[i] < low)
2589 high++;
2590 dst[i] += low;
2591 } else
2592 dst[i] = low;
2594 carry = high;
2597 if (srcParts < dstParts) {
2598 /* Full multiplication, there is no overflow. */
2599 assert(srcParts + 1 == dstParts);
2600 dst[srcParts] = carry;
2601 return 0;
2604 /* We overflowed if there is carry. */
2605 if (carry)
2606 return 1;
2608 /* We would overflow if any significant unwritten parts would be
2609 non-zero. This is true if any remaining src parts are non-zero
2610 and the multiplier is non-zero. */
2611 if (multiplier)
2612 for (unsigned i = dstParts; i < srcParts; i++)
2613 if (src[i])
2614 return 1;
2616 /* We fitted in the narrow destination. */
2617 return 0;
2620 /* DST = LHS * RHS, where DST has the same width as the operands and
2621 is filled with the least significant parts of the result. Returns
2622 one if overflow occurred, otherwise zero. DST must be disjoint
2623 from both operands. */
2624 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2625 const WordType *rhs, unsigned parts) {
2626 assert(dst != lhs && dst != rhs);
2628 int overflow = 0;
2629 tcSet(dst, 0, parts);
2631 for (unsigned i = 0; i < parts; i++)
2632 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2633 parts - i, true);
2635 return overflow;
2638 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2639 /// operands. No overflow occurs. DST must be disjoint from both operands.
2640 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2641 const WordType *rhs, unsigned lhsParts,
2642 unsigned rhsParts) {
2643 /* Put the narrower number on the LHS for less loops below. */
2644 if (lhsParts > rhsParts)
2645 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2647 assert(dst != lhs && dst != rhs);
2649 tcSet(dst, 0, rhsParts);
2651 for (unsigned i = 0; i < lhsParts; i++)
2652 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2655 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2656 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2657 set REMAINDER to the remainder, return zero. i.e.
2659 OLD_LHS = RHS * LHS + REMAINDER
2661 SCRATCH is a bignum of the same size as the operands and result for
2662 use by the routine; its contents need not be initialized and are
2663 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2665 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2666 WordType *remainder, WordType *srhs,
2667 unsigned parts) {
2668 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2670 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2671 if (shiftCount == 0)
2672 return true;
2674 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2675 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2676 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2678 tcAssign(srhs, rhs, parts);
2679 tcShiftLeft(srhs, parts, shiftCount);
2680 tcAssign(remainder, lhs, parts);
2681 tcSet(lhs, 0, parts);
2683 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2684 the total. */
2685 for (;;) {
2686 int compare = tcCompare(remainder, srhs, parts);
2687 if (compare >= 0) {
2688 tcSubtract(remainder, srhs, 0, parts);
2689 lhs[n] |= mask;
2692 if (shiftCount == 0)
2693 break;
2694 shiftCount--;
2695 tcShiftRight(srhs, parts, 1);
2696 if ((mask >>= 1) == 0) {
2697 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2698 n--;
2702 return false;
2705 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2706 /// no restrictions on Count.
2707 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2708 // Don't bother performing a no-op shift.
2709 if (!Count)
2710 return;
2712 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2713 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2714 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2716 // Fastpath for moving by whole words.
2717 if (BitShift == 0) {
2718 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2719 } else {
2720 while (Words-- > WordShift) {
2721 Dst[Words] = Dst[Words - WordShift] << BitShift;
2722 if (Words > WordShift)
2723 Dst[Words] |=
2724 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2728 // Fill in the remainder with 0s.
2729 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2732 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2733 /// are no restrictions on Count.
2734 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2735 // Don't bother performing a no-op shift.
2736 if (!Count)
2737 return;
2739 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2740 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2741 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2743 unsigned WordsToMove = Words - WordShift;
2744 // Fastpath for moving by whole words.
2745 if (BitShift == 0) {
2746 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2747 } else {
2748 for (unsigned i = 0; i != WordsToMove; ++i) {
2749 Dst[i] = Dst[i + WordShift] >> BitShift;
2750 if (i + 1 != WordsToMove)
2751 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2755 // Fill in the remainder with 0s.
2756 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2759 /* Bitwise and of two bignums. */
2760 void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2761 for (unsigned i = 0; i < parts; i++)
2762 dst[i] &= rhs[i];
2765 /* Bitwise inclusive or of two bignums. */
2766 void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2767 for (unsigned i = 0; i < parts; i++)
2768 dst[i] |= rhs[i];
2771 /* Bitwise exclusive or of two bignums. */
2772 void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2773 for (unsigned i = 0; i < parts; i++)
2774 dst[i] ^= rhs[i];
2777 /* Complement a bignum in-place. */
2778 void APInt::tcComplement(WordType *dst, unsigned parts) {
2779 for (unsigned i = 0; i < parts; i++)
2780 dst[i] = ~dst[i];
2783 /* Comparison (unsigned) of two bignums. */
2784 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2785 unsigned parts) {
2786 while (parts) {
2787 parts--;
2788 if (lhs[parts] != rhs[parts])
2789 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2792 return 0;
2795 /* Set the least significant BITS bits of a bignum, clear the
2796 rest. */
2797 void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2798 unsigned bits) {
2799 unsigned i = 0;
2800 while (bits > APINT_BITS_PER_WORD) {
2801 dst[i++] = ~(WordType) 0;
2802 bits -= APINT_BITS_PER_WORD;
2805 if (bits)
2806 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2808 while (i < parts)
2809 dst[i++] = 0;
2812 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2813 APInt::Rounding RM) {
2814 // Currently udivrem always rounds down.
2815 switch (RM) {
2816 case APInt::Rounding::DOWN:
2817 case APInt::Rounding::TOWARD_ZERO:
2818 return A.udiv(B);
2819 case APInt::Rounding::UP: {
2820 APInt Quo, Rem;
2821 APInt::udivrem(A, B, Quo, Rem);
2822 if (Rem == 0)
2823 return Quo;
2824 return Quo + 1;
2827 llvm_unreachable("Unknown APInt::Rounding enum");
2830 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2831 APInt::Rounding RM) {
2832 switch (RM) {
2833 case APInt::Rounding::DOWN:
2834 case APInt::Rounding::UP: {
2835 APInt Quo, Rem;
2836 APInt::sdivrem(A, B, Quo, Rem);
2837 if (Rem == 0)
2838 return Quo;
2839 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2840 // We want to check whether the non-integer part of the mathematical value
2841 // is negative or not. If the non-integer part is negative, we need to round
2842 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2843 // already rounded down.
2844 if (RM == APInt::Rounding::DOWN) {
2845 if (Rem.isNegative() != B.isNegative())
2846 return Quo - 1;
2847 return Quo;
2849 if (Rem.isNegative() != B.isNegative())
2850 return Quo;
2851 return Quo + 1;
2853 // Currently sdiv rounds towards zero.
2854 case APInt::Rounding::TOWARD_ZERO:
2855 return A.sdiv(B);
2857 llvm_unreachable("Unknown APInt::Rounding enum");
2860 Optional<APInt>
2861 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2862 unsigned RangeWidth) {
2863 unsigned CoeffWidth = A.getBitWidth();
2864 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2865 assert(RangeWidth <= CoeffWidth &&
2866 "Value range width should be less than coefficient width");
2867 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2869 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2870 << "x + " << C << ", rw:" << RangeWidth << '\n');
2872 // Identify 0 as a (non)solution immediately.
2873 if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2874 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2875 return APInt(CoeffWidth, 0);
2878 // The result of APInt arithmetic has the same bit width as the operands,
2879 // so it can actually lose high bits. A product of two n-bit integers needs
2880 // 2n-1 bits to represent the full value.
2881 // The operation done below (on quadratic coefficients) that can produce
2882 // the largest value is the evaluation of the equation during bisection,
2883 // which needs 3 times the bitwidth of the coefficient, so the total number
2884 // of required bits is 3n.
2886 // The purpose of this extension is to simulate the set Z of all integers,
2887 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2888 // and negative numbers (not so much in a modulo arithmetic). The method
2889 // used to solve the equation is based on the standard formula for real
2890 // numbers, and uses the concepts of "positive" and "negative" with their
2891 // usual meanings.
2892 CoeffWidth *= 3;
2893 A = A.sext(CoeffWidth);
2894 B = B.sext(CoeffWidth);
2895 C = C.sext(CoeffWidth);
2897 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2898 // the bit width has increased.
2899 if (A.isNegative()) {
2900 A.negate();
2901 B.negate();
2902 C.negate();
2905 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2906 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2907 // and R = 2^BitWidth.
2908 // Since we're trying not only to find exact solutions, but also values
2909 // that "wrap around", such a set will always have a solution, i.e. an x
2910 // that satisfies at least one of the equations, or such that |q(x)|
2911 // exceeds kR, while |q(x-1)| for the same k does not.
2913 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2914 // positive solution n (in the above sense), and also such that the n
2915 // will be the least among all solutions corresponding to k = 0, 1, ...
2916 // (more precisely, the least element in the set
2917 // { n(k) | k is such that a solution n(k) exists }).
2919 // Consider the parabola (over real numbers) that corresponds to the
2920 // quadratic equation. Since A > 0, the arms of the parabola will point
2921 // up. Picking different values of k will shift it up and down by R.
2923 // We want to shift the parabola in such a way as to reduce the problem
2924 // of solving q(x) = kR to solving shifted_q(x) = 0.
2925 // (The interesting solutions are the ceilings of the real number
2926 // solutions.)
2927 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2928 APInt TwoA = 2 * A;
2929 APInt SqrB = B * B;
2930 bool PickLow;
2932 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2933 assert(A.isStrictlyPositive());
2934 APInt T = V.abs().urem(A);
2935 if (T.isNullValue())
2936 return V;
2937 return V.isNegative() ? V+T : V+(A-T);
2940 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2941 // iff B is positive.
2942 if (B.isNonNegative()) {
2943 // If B >= 0, the vertex it at a negative location (or at 0), so in
2944 // order to have a non-negative solution we need to pick k that makes
2945 // C-kR negative. To satisfy all the requirements for the solution
2946 // that we are looking for, it needs to be closest to 0 of all k.
2947 C = C.srem(R);
2948 if (C.isStrictlyPositive())
2949 C -= R;
2950 // Pick the greater solution.
2951 PickLow = false;
2952 } else {
2953 // If B < 0, the vertex is at a positive location. For any solution
2954 // to exist, the discriminant must be non-negative. This means that
2955 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2956 // lower bound on values of k: kR >= C - B^2/4A.
2957 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2958 // Round LowkR up (towards +inf) to the nearest kR.
2959 LowkR = RoundUp(LowkR, R);
2961 // If there exists k meeting the condition above, and such that
2962 // C-kR > 0, there will be two positive real number solutions of
2963 // q(x) = kR. Out of all such values of k, pick the one that makes
2964 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2965 // In other words, find maximum k such that LowkR <= kR < C.
2966 if (C.sgt(LowkR)) {
2967 // If LowkR < C, then such a k is guaranteed to exist because
2968 // LowkR itself is a multiple of R.
2969 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2970 // Pick the smaller solution.
2971 PickLow = true;
2972 } else {
2973 // If C-kR < 0 for all potential k's, it means that one solution
2974 // will be negative, while the other will be positive. The positive
2975 // solution will shift towards 0 if the parabola is moved up.
2976 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2977 // to 0, or in other words, out of all parabolas that have solutions,
2978 // pick the one that is the farthest "up").
2979 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2980 C -= LowkR;
2981 // Pick the greater solution.
2982 PickLow = false;
2986 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2987 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2989 APInt D = SqrB - 4*A*C;
2990 assert(D.isNonNegative() && "Negative discriminant");
2991 APInt SQ = D.sqrt();
2993 APInt Q = SQ * SQ;
2994 bool InexactSQ = Q != D;
2995 // The calculated SQ may actually be greater than the exact (non-integer)
2996 // value. If that's the case, decrement SQ to get a value that is lower.
2997 if (Q.sgt(D))
2998 SQ -= 1;
3000 APInt X;
3001 APInt Rem;
3003 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
3004 // When using the quadratic formula directly, the calculated low root
3005 // may be greater than the exact one, since we would be subtracting SQ.
3006 // To make sure that the calculated root is not greater than the exact
3007 // one, subtract SQ+1 when calculating the low root (for inexact value
3008 // of SQ).
3009 if (PickLow)
3010 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
3011 else
3012 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
3014 // The updated coefficients should be such that the (exact) solution is
3015 // positive. Since APInt division rounds towards 0, the calculated one
3016 // can be 0, but cannot be negative.
3017 assert(X.isNonNegative() && "Solution should be non-negative");
3019 if (!InexactSQ && Rem.isNullValue()) {
3020 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
3021 return X;
3024 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
3025 // The exact value of the square root of D should be between SQ and SQ+1.
3026 // This implies that the solution should be between that corresponding to
3027 // SQ (i.e. X) and that corresponding to SQ+1.
3029 // The calculated X cannot be greater than the exact (real) solution.
3030 // Actually it must be strictly less than the exact solution, while
3031 // X+1 will be greater than or equal to it.
3033 APInt VX = (A*X + B)*X + C;
3034 APInt VY = VX + TwoA*X + A + B;
3035 bool SignChange = VX.isNegative() != VY.isNegative() ||
3036 VX.isNullValue() != VY.isNullValue();
3037 // If the sign did not change between X and X+1, X is not a valid solution.
3038 // This could happen when the actual (exact) roots don't have an integer
3039 // between them, so they would both be contained between X and X+1.
3040 if (!SignChange) {
3041 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
3042 return None;
3045 X += 1;
3046 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
3047 return X;
3050 Optional<unsigned>
3051 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
3052 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
3053 if (A == B)
3054 return llvm::None;
3055 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
3058 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3059 /// with the integer held in IntVal.
3060 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3061 unsigned StoreBytes) {
3062 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3063 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3065 if (sys::IsLittleEndianHost) {
3066 // Little-endian host - the source is ordered from LSB to MSB. Order the
3067 // destination from LSB to MSB: Do a straight copy.
3068 memcpy(Dst, Src, StoreBytes);
3069 } else {
3070 // Big-endian host - the source is an array of 64 bit words ordered from
3071 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
3072 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3073 while (StoreBytes > sizeof(uint64_t)) {
3074 StoreBytes -= sizeof(uint64_t);
3075 // May not be aligned so use memcpy.
3076 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3077 Src += sizeof(uint64_t);
3080 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3084 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3085 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3086 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3087 unsigned LoadBytes) {
3088 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3089 uint8_t *Dst = reinterpret_cast<uint8_t *>(
3090 const_cast<uint64_t *>(IntVal.getRawData()));
3092 if (sys::IsLittleEndianHost)
3093 // Little-endian host - the destination must be ordered from LSB to MSB.
3094 // The source is ordered from LSB to MSB: Do a straight copy.
3095 memcpy(Dst, Src, LoadBytes);
3096 else {
3097 // Big-endian - the destination is an array of 64 bit words ordered from
3098 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
3099 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3100 // a word.
3101 while (LoadBytes > sizeof(uint64_t)) {
3102 LoadBytes -= sizeof(uint64_t);
3103 // May not be aligned so use memcpy.
3104 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3105 Dst += sizeof(uint64_t);
3108 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);