[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMBaseInstrInfo.cpp
blob971eef1e9353e2b69bf4c059201e4f72ad365e27
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/MachineScheduler.h"
40 #include "llvm/CodeGen/MultiHazardRecognizer.h"
41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSchedule.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <new>
67 #include <utility>
68 #include <vector>
70 using namespace llvm;
72 #define DEBUG_TYPE "arm-instrinfo"
74 #define GET_INSTRINFO_CTOR_DTOR
75 #include "ARMGenInstrInfo.inc"
77 static cl::opt<bool>
78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
79 cl::desc("Enable ARM 2-addr to 3-addr conv"));
81 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
82 struct ARM_MLxEntry {
83 uint16_t MLxOpc; // MLA / MLS opcode
84 uint16_t MulOpc; // Expanded multiplication opcode
85 uint16_t AddSubOpc; // Expanded add / sub opcode
86 bool NegAcc; // True if the acc is negated before the add / sub.
87 bool HasLane; // True if instruction has an extra "lane" operand.
90 static const ARM_MLxEntry ARM_MLxTable[] = {
91 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
92 // fp scalar ops
93 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
94 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
95 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
96 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
97 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
98 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
99 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
100 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
102 // fp SIMD ops
103 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
104 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
105 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
106 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
107 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
108 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
109 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
110 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
114 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
115 Subtarget(STI) {
116 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
117 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
118 llvm_unreachable("Duplicated entries?");
119 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
120 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
125 // currently defaults to no prepass hazard recognizer.
126 ScheduleHazardRecognizer *
127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
128 const ScheduleDAG *DAG) const {
129 if (usePreRAHazardRecognizer()) {
130 const InstrItineraryData *II =
131 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
132 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
134 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
137 // Called during:
138 // - pre-RA scheduling
139 // - post-RA scheduling when FeatureUseMISched is set
140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
141 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
142 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
144 // We would like to restrict this hazard recognizer to only
145 // post-RA scheduling; we can tell that we're post-RA because we don't
146 // track VRegLiveness.
147 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
148 // banks banked on bit 2. Assume that TCMs are in use.
149 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
150 MHR->AddHazardRecognizer(
151 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
153 // Not inserting ARMHazardRecognizerFPMLx because that would change
154 // legacy behavior
156 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
157 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
158 return MHR;
161 // Called during post-RA scheduling when FeatureUseMISched is not set
162 ScheduleHazardRecognizer *ARMBaseInstrInfo::
163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
164 const ScheduleDAG *DAG) const {
165 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
167 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
168 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
170 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
171 if (BHR)
172 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
173 return MHR;
176 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
177 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
178 // FIXME: Thumb2 support.
180 if (!EnableARM3Addr)
181 return nullptr;
183 MachineFunction &MF = *MI.getParent()->getParent();
184 uint64_t TSFlags = MI.getDesc().TSFlags;
185 bool isPre = false;
186 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
187 default: return nullptr;
188 case ARMII::IndexModePre:
189 isPre = true;
190 break;
191 case ARMII::IndexModePost:
192 break;
195 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
196 // operation.
197 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
198 if (MemOpc == 0)
199 return nullptr;
201 MachineInstr *UpdateMI = nullptr;
202 MachineInstr *MemMI = nullptr;
203 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
204 const MCInstrDesc &MCID = MI.getDesc();
205 unsigned NumOps = MCID.getNumOperands();
206 bool isLoad = !MI.mayStore();
207 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
208 const MachineOperand &Base = MI.getOperand(2);
209 const MachineOperand &Offset = MI.getOperand(NumOps - 3);
210 Register WBReg = WB.getReg();
211 Register BaseReg = Base.getReg();
212 Register OffReg = Offset.getReg();
213 unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
214 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
215 switch (AddrMode) {
216 default: llvm_unreachable("Unknown indexed op!");
217 case ARMII::AddrMode2: {
218 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
219 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
220 if (OffReg == 0) {
221 if (ARM_AM::getSOImmVal(Amt) == -1)
222 // Can't encode it in a so_imm operand. This transformation will
223 // add more than 1 instruction. Abandon!
224 return nullptr;
225 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
226 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
227 .addReg(BaseReg)
228 .addImm(Amt)
229 .add(predOps(Pred))
230 .add(condCodeOp());
231 } else if (Amt != 0) {
232 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
233 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
234 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
235 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
236 .addReg(BaseReg)
237 .addReg(OffReg)
238 .addReg(0)
239 .addImm(SOOpc)
240 .add(predOps(Pred))
241 .add(condCodeOp());
242 } else
243 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
244 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
245 .addReg(BaseReg)
246 .addReg(OffReg)
247 .add(predOps(Pred))
248 .add(condCodeOp());
249 break;
251 case ARMII::AddrMode3 : {
252 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
253 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
254 if (OffReg == 0)
255 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
256 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
257 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
258 .addReg(BaseReg)
259 .addImm(Amt)
260 .add(predOps(Pred))
261 .add(condCodeOp());
262 else
263 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
264 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
265 .addReg(BaseReg)
266 .addReg(OffReg)
267 .add(predOps(Pred))
268 .add(condCodeOp());
269 break;
273 std::vector<MachineInstr*> NewMIs;
274 if (isPre) {
275 if (isLoad)
276 MemMI =
277 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
278 .addReg(WBReg)
279 .addImm(0)
280 .addImm(Pred);
281 else
282 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
283 .addReg(MI.getOperand(1).getReg())
284 .addReg(WBReg)
285 .addReg(0)
286 .addImm(0)
287 .addImm(Pred);
288 NewMIs.push_back(MemMI);
289 NewMIs.push_back(UpdateMI);
290 } else {
291 if (isLoad)
292 MemMI =
293 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
294 .addReg(BaseReg)
295 .addImm(0)
296 .addImm(Pred);
297 else
298 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
299 .addReg(MI.getOperand(1).getReg())
300 .addReg(BaseReg)
301 .addReg(0)
302 .addImm(0)
303 .addImm(Pred);
304 if (WB.isDead())
305 UpdateMI->getOperand(0).setIsDead();
306 NewMIs.push_back(UpdateMI);
307 NewMIs.push_back(MemMI);
310 // Transfer LiveVariables states, kill / dead info.
311 if (LV) {
312 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
313 MachineOperand &MO = MI.getOperand(i);
314 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
315 Register Reg = MO.getReg();
317 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
318 if (MO.isDef()) {
319 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
320 if (MO.isDead())
321 LV->addVirtualRegisterDead(Reg, *NewMI);
323 if (MO.isUse() && MO.isKill()) {
324 for (unsigned j = 0; j < 2; ++j) {
325 // Look at the two new MI's in reverse order.
326 MachineInstr *NewMI = NewMIs[j];
327 if (!NewMI->readsRegister(Reg))
328 continue;
329 LV->addVirtualRegisterKilled(Reg, *NewMI);
330 if (VI.removeKill(MI))
331 VI.Kills.push_back(NewMI);
332 break;
339 MachineBasicBlock::iterator MBBI = MI.getIterator();
340 MFI->insert(MBBI, NewMIs[1]);
341 MFI->insert(MBBI, NewMIs[0]);
342 return NewMIs[0];
345 // Branch analysis.
346 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
347 MachineBasicBlock *&TBB,
348 MachineBasicBlock *&FBB,
349 SmallVectorImpl<MachineOperand> &Cond,
350 bool AllowModify) const {
351 TBB = nullptr;
352 FBB = nullptr;
354 MachineBasicBlock::instr_iterator I = MBB.instr_end();
355 if (I == MBB.instr_begin())
356 return false; // Empty blocks are easy.
357 --I;
359 // Walk backwards from the end of the basic block until the branch is
360 // analyzed or we give up.
361 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
362 // Flag to be raised on unanalyzeable instructions. This is useful in cases
363 // where we want to clean up on the end of the basic block before we bail
364 // out.
365 bool CantAnalyze = false;
367 // Skip over DEBUG values, predicated nonterminators and speculation
368 // barrier terminators.
369 while (I->isDebugInstr() || !I->isTerminator() ||
370 isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
371 I->getOpcode() == ARM::t2DoLoopStartTP){
372 if (I == MBB.instr_begin())
373 return false;
374 --I;
377 if (isIndirectBranchOpcode(I->getOpcode()) ||
378 isJumpTableBranchOpcode(I->getOpcode())) {
379 // Indirect branches and jump tables can't be analyzed, but we still want
380 // to clean up any instructions at the tail of the basic block.
381 CantAnalyze = true;
382 } else if (isUncondBranchOpcode(I->getOpcode())) {
383 TBB = I->getOperand(0).getMBB();
384 } else if (isCondBranchOpcode(I->getOpcode())) {
385 // Bail out if we encounter multiple conditional branches.
386 if (!Cond.empty())
387 return true;
389 assert(!FBB && "FBB should have been null.");
390 FBB = TBB;
391 TBB = I->getOperand(0).getMBB();
392 Cond.push_back(I->getOperand(1));
393 Cond.push_back(I->getOperand(2));
394 } else if (I->isReturn()) {
395 // Returns can't be analyzed, but we should run cleanup.
396 CantAnalyze = true;
397 } else {
398 // We encountered other unrecognized terminator. Bail out immediately.
399 return true;
402 // Cleanup code - to be run for unpredicated unconditional branches and
403 // returns.
404 if (!isPredicated(*I) &&
405 (isUncondBranchOpcode(I->getOpcode()) ||
406 isIndirectBranchOpcode(I->getOpcode()) ||
407 isJumpTableBranchOpcode(I->getOpcode()) ||
408 I->isReturn())) {
409 // Forget any previous condition branch information - it no longer applies.
410 Cond.clear();
411 FBB = nullptr;
413 // If we can modify the function, delete everything below this
414 // unconditional branch.
415 if (AllowModify) {
416 MachineBasicBlock::iterator DI = std::next(I);
417 while (DI != MBB.instr_end()) {
418 MachineInstr &InstToDelete = *DI;
419 ++DI;
420 // Speculation barriers must not be deleted.
421 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
422 continue;
423 InstToDelete.eraseFromParent();
428 if (CantAnalyze) {
429 // We may not be able to analyze the block, but we could still have
430 // an unconditional branch as the last instruction in the block, which
431 // just branches to layout successor. If this is the case, then just
432 // remove it if we're allowed to make modifications.
433 if (AllowModify && !isPredicated(MBB.back()) &&
434 isUncondBranchOpcode(MBB.back().getOpcode()) &&
435 TBB && MBB.isLayoutSuccessor(TBB))
436 removeBranch(MBB);
437 return true;
440 if (I == MBB.instr_begin())
441 return false;
443 --I;
446 // We made it past the terminators without bailing out - we must have
447 // analyzed this branch successfully.
448 return false;
451 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
452 int *BytesRemoved) const {
453 assert(!BytesRemoved && "code size not handled");
455 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
456 if (I == MBB.end())
457 return 0;
459 if (!isUncondBranchOpcode(I->getOpcode()) &&
460 !isCondBranchOpcode(I->getOpcode()))
461 return 0;
463 // Remove the branch.
464 I->eraseFromParent();
466 I = MBB.end();
468 if (I == MBB.begin()) return 1;
469 --I;
470 if (!isCondBranchOpcode(I->getOpcode()))
471 return 1;
473 // Remove the branch.
474 I->eraseFromParent();
475 return 2;
478 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
479 MachineBasicBlock *TBB,
480 MachineBasicBlock *FBB,
481 ArrayRef<MachineOperand> Cond,
482 const DebugLoc &DL,
483 int *BytesAdded) const {
484 assert(!BytesAdded && "code size not handled");
485 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
486 int BOpc = !AFI->isThumbFunction()
487 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
488 int BccOpc = !AFI->isThumbFunction()
489 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
490 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
492 // Shouldn't be a fall through.
493 assert(TBB && "insertBranch must not be told to insert a fallthrough");
494 assert((Cond.size() == 2 || Cond.size() == 0) &&
495 "ARM branch conditions have two components!");
497 // For conditional branches, we use addOperand to preserve CPSR flags.
499 if (!FBB) {
500 if (Cond.empty()) { // Unconditional branch?
501 if (isThumb)
502 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
503 else
504 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
505 } else
506 BuildMI(&MBB, DL, get(BccOpc))
507 .addMBB(TBB)
508 .addImm(Cond[0].getImm())
509 .add(Cond[1]);
510 return 1;
513 // Two-way conditional branch.
514 BuildMI(&MBB, DL, get(BccOpc))
515 .addMBB(TBB)
516 .addImm(Cond[0].getImm())
517 .add(Cond[1]);
518 if (isThumb)
519 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
520 else
521 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
522 return 2;
525 bool ARMBaseInstrInfo::
526 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
527 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
528 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
529 return false;
532 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
533 if (MI.isBundle()) {
534 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
535 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
536 while (++I != E && I->isInsideBundle()) {
537 int PIdx = I->findFirstPredOperandIdx();
538 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
539 return true;
541 return false;
544 int PIdx = MI.findFirstPredOperandIdx();
545 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
548 std::string ARMBaseInstrInfo::createMIROperandComment(
549 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
550 const TargetRegisterInfo *TRI) const {
552 // First, let's see if there is a generic comment for this operand
553 std::string GenericComment =
554 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
555 if (!GenericComment.empty())
556 return GenericComment;
558 // If not, check if we have an immediate operand.
559 if (Op.getType() != MachineOperand::MO_Immediate)
560 return std::string();
562 // And print its corresponding condition code if the immediate is a
563 // predicate.
564 int FirstPredOp = MI.findFirstPredOperandIdx();
565 if (FirstPredOp != (int) OpIdx)
566 return std::string();
568 std::string CC = "CC::";
569 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
570 return CC;
573 bool ARMBaseInstrInfo::PredicateInstruction(
574 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
575 unsigned Opc = MI.getOpcode();
576 if (isUncondBranchOpcode(Opc)) {
577 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
578 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
579 .addImm(Pred[0].getImm())
580 .addReg(Pred[1].getReg());
581 return true;
584 int PIdx = MI.findFirstPredOperandIdx();
585 if (PIdx != -1) {
586 MachineOperand &PMO = MI.getOperand(PIdx);
587 PMO.setImm(Pred[0].getImm());
588 MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
590 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
591 // IT block. This affects how they are printed.
592 const MCInstrDesc &MCID = MI.getDesc();
593 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
594 assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
595 assert((MI.getOperand(1).isDead() ||
596 MI.getOperand(1).getReg() != ARM::CPSR) &&
597 "if conversion tried to stop defining used CPSR");
598 MI.getOperand(1).setReg(ARM::NoRegister);
601 return true;
603 return false;
606 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
607 ArrayRef<MachineOperand> Pred2) const {
608 if (Pred1.size() > 2 || Pred2.size() > 2)
609 return false;
611 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
612 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
613 if (CC1 == CC2)
614 return true;
616 switch (CC1) {
617 default:
618 return false;
619 case ARMCC::AL:
620 return true;
621 case ARMCC::HS:
622 return CC2 == ARMCC::HI;
623 case ARMCC::LS:
624 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
625 case ARMCC::GE:
626 return CC2 == ARMCC::GT;
627 case ARMCC::LE:
628 return CC2 == ARMCC::LT;
632 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
633 std::vector<MachineOperand> &Pred,
634 bool SkipDead) const {
635 bool Found = false;
636 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
637 const MachineOperand &MO = MI.getOperand(i);
638 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
639 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
640 if (ClobbersCPSR || IsCPSR) {
642 // Filter out T1 instructions that have a dead CPSR,
643 // allowing IT blocks to be generated containing T1 instructions
644 const MCInstrDesc &MCID = MI.getDesc();
645 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
646 SkipDead)
647 continue;
649 Pred.push_back(MO);
650 Found = true;
654 return Found;
657 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
658 for (const auto &MO : MI.operands())
659 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
660 return true;
661 return false;
664 static bool isEligibleForITBlock(const MachineInstr *MI) {
665 switch (MI->getOpcode()) {
666 default: return true;
667 case ARM::tADC: // ADC (register) T1
668 case ARM::tADDi3: // ADD (immediate) T1
669 case ARM::tADDi8: // ADD (immediate) T2
670 case ARM::tADDrr: // ADD (register) T1
671 case ARM::tAND: // AND (register) T1
672 case ARM::tASRri: // ASR (immediate) T1
673 case ARM::tASRrr: // ASR (register) T1
674 case ARM::tBIC: // BIC (register) T1
675 case ARM::tEOR: // EOR (register) T1
676 case ARM::tLSLri: // LSL (immediate) T1
677 case ARM::tLSLrr: // LSL (register) T1
678 case ARM::tLSRri: // LSR (immediate) T1
679 case ARM::tLSRrr: // LSR (register) T1
680 case ARM::tMUL: // MUL T1
681 case ARM::tMVN: // MVN (register) T1
682 case ARM::tORR: // ORR (register) T1
683 case ARM::tROR: // ROR (register) T1
684 case ARM::tRSB: // RSB (immediate) T1
685 case ARM::tSBC: // SBC (register) T1
686 case ARM::tSUBi3: // SUB (immediate) T1
687 case ARM::tSUBi8: // SUB (immediate) T2
688 case ARM::tSUBrr: // SUB (register) T1
689 return !ARMBaseInstrInfo::isCPSRDefined(*MI);
693 /// isPredicable - Return true if the specified instruction can be predicated.
694 /// By default, this returns true for every instruction with a
695 /// PredicateOperand.
696 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
697 if (!MI.isPredicable())
698 return false;
700 if (MI.isBundle())
701 return false;
703 if (!isEligibleForITBlock(&MI))
704 return false;
706 const MachineFunction *MF = MI.getParent()->getParent();
707 const ARMFunctionInfo *AFI =
708 MF->getInfo<ARMFunctionInfo>();
710 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
711 // In their ARM encoding, they can't be encoded in a conditional form.
712 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
713 return false;
715 // Make indirect control flow changes unpredicable when SLS mitigation is
716 // enabled.
717 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
718 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
719 return false;
720 if (ST.hardenSlsBlr() && isIndirectCall(MI))
721 return false;
723 if (AFI->isThumb2Function()) {
724 if (getSubtarget().restrictIT())
725 return isV8EligibleForIT(&MI);
728 return true;
731 namespace llvm {
733 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
734 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
735 const MachineOperand &MO = MI->getOperand(i);
736 if (!MO.isReg() || MO.isUndef() || MO.isUse())
737 continue;
738 if (MO.getReg() != ARM::CPSR)
739 continue;
740 if (!MO.isDead())
741 return false;
743 // all definitions of CPSR are dead
744 return true;
747 } // end namespace llvm
749 /// GetInstSize - Return the size of the specified MachineInstr.
751 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
752 const MachineBasicBlock &MBB = *MI.getParent();
753 const MachineFunction *MF = MBB.getParent();
754 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
756 const MCInstrDesc &MCID = MI.getDesc();
757 if (MCID.getSize())
758 return MCID.getSize();
760 switch (MI.getOpcode()) {
761 default:
762 // pseudo-instruction sizes are zero.
763 return 0;
764 case TargetOpcode::BUNDLE:
765 return getInstBundleLength(MI);
766 case ARM::MOVi16_ga_pcrel:
767 case ARM::MOVTi16_ga_pcrel:
768 case ARM::t2MOVi16_ga_pcrel:
769 case ARM::t2MOVTi16_ga_pcrel:
770 return 4;
771 case ARM::MOVi32imm:
772 case ARM::t2MOVi32imm:
773 return 8;
774 case ARM::CONSTPOOL_ENTRY:
775 case ARM::JUMPTABLE_INSTS:
776 case ARM::JUMPTABLE_ADDRS:
777 case ARM::JUMPTABLE_TBB:
778 case ARM::JUMPTABLE_TBH:
779 // If this machine instr is a constant pool entry, its size is recorded as
780 // operand #2.
781 return MI.getOperand(2).getImm();
782 case ARM::Int_eh_sjlj_longjmp:
783 return 16;
784 case ARM::tInt_eh_sjlj_longjmp:
785 return 10;
786 case ARM::tInt_WIN_eh_sjlj_longjmp:
787 return 12;
788 case ARM::Int_eh_sjlj_setjmp:
789 case ARM::Int_eh_sjlj_setjmp_nofp:
790 return 20;
791 case ARM::tInt_eh_sjlj_setjmp:
792 case ARM::t2Int_eh_sjlj_setjmp:
793 case ARM::t2Int_eh_sjlj_setjmp_nofp:
794 return 12;
795 case ARM::SPACE:
796 return MI.getOperand(1).getImm();
797 case ARM::INLINEASM:
798 case ARM::INLINEASM_BR: {
799 // If this machine instr is an inline asm, measure it.
800 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
801 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
802 Size = alignTo(Size, 4);
803 return Size;
805 case ARM::SpeculationBarrierISBDSBEndBB:
806 case ARM::t2SpeculationBarrierISBDSBEndBB:
807 // This gets lowered to 2 4-byte instructions.
808 return 8;
809 case ARM::SpeculationBarrierSBEndBB:
810 case ARM::t2SpeculationBarrierSBEndBB:
811 // This gets lowered to 1 4-byte instructions.
812 return 4;
816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
817 unsigned Size = 0;
818 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
819 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
820 while (++I != E && I->isInsideBundle()) {
821 assert(!I->isBundle() && "No nested bundle!");
822 Size += getInstSizeInBytes(*I);
824 return Size;
827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
828 MachineBasicBlock::iterator I,
829 unsigned DestReg, bool KillSrc,
830 const ARMSubtarget &Subtarget) const {
831 unsigned Opc = Subtarget.isThumb()
832 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
833 : ARM::MRS;
835 MachineInstrBuilder MIB =
836 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
838 // There is only 1 A/R class MRS instruction, and it always refers to
839 // APSR. However, there are lots of other possibilities on M-class cores.
840 if (Subtarget.isMClass())
841 MIB.addImm(0x800);
843 MIB.add(predOps(ARMCC::AL))
844 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
848 MachineBasicBlock::iterator I,
849 unsigned SrcReg, bool KillSrc,
850 const ARMSubtarget &Subtarget) const {
851 unsigned Opc = Subtarget.isThumb()
852 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
853 : ARM::MSR;
855 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
857 if (Subtarget.isMClass())
858 MIB.addImm(0x800);
859 else
860 MIB.addImm(8);
862 MIB.addReg(SrcReg, getKillRegState(KillSrc))
863 .add(predOps(ARMCC::AL))
864 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
868 MIB.addImm(ARMVCC::None);
869 MIB.addReg(0);
872 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
873 Register DestReg) {
874 addUnpredicatedMveVpredNOp(MIB);
875 MIB.addReg(DestReg, RegState::Undef);
878 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
879 MIB.addImm(Cond);
880 MIB.addReg(ARM::VPR, RegState::Implicit);
883 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
884 unsigned Cond, unsigned Inactive) {
885 addPredicatedMveVpredNOp(MIB, Cond);
886 MIB.addReg(Inactive);
889 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
890 MachineBasicBlock::iterator I,
891 const DebugLoc &DL, MCRegister DestReg,
892 MCRegister SrcReg, bool KillSrc) const {
893 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
894 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
896 if (GPRDest && GPRSrc) {
897 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
898 .addReg(SrcReg, getKillRegState(KillSrc))
899 .add(predOps(ARMCC::AL))
900 .add(condCodeOp());
901 return;
904 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
905 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
907 unsigned Opc = 0;
908 if (SPRDest && SPRSrc)
909 Opc = ARM::VMOVS;
910 else if (GPRDest && SPRSrc)
911 Opc = ARM::VMOVRS;
912 else if (SPRDest && GPRSrc)
913 Opc = ARM::VMOVSR;
914 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
915 Opc = ARM::VMOVD;
916 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
917 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
919 if (Opc) {
920 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
921 MIB.addReg(SrcReg, getKillRegState(KillSrc));
922 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
923 MIB.addReg(SrcReg, getKillRegState(KillSrc));
924 if (Opc == ARM::MVE_VORR)
925 addUnpredicatedMveVpredROp(MIB, DestReg);
926 else
927 MIB.add(predOps(ARMCC::AL));
928 return;
931 // Handle register classes that require multiple instructions.
932 unsigned BeginIdx = 0;
933 unsigned SubRegs = 0;
934 int Spacing = 1;
936 // Use VORRq when possible.
937 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
938 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
939 BeginIdx = ARM::qsub_0;
940 SubRegs = 2;
941 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
942 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
943 BeginIdx = ARM::qsub_0;
944 SubRegs = 4;
945 // Fall back to VMOVD.
946 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
947 Opc = ARM::VMOVD;
948 BeginIdx = ARM::dsub_0;
949 SubRegs = 2;
950 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
951 Opc = ARM::VMOVD;
952 BeginIdx = ARM::dsub_0;
953 SubRegs = 3;
954 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
955 Opc = ARM::VMOVD;
956 BeginIdx = ARM::dsub_0;
957 SubRegs = 4;
958 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
959 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
960 BeginIdx = ARM::gsub_0;
961 SubRegs = 2;
962 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
963 Opc = ARM::VMOVD;
964 BeginIdx = ARM::dsub_0;
965 SubRegs = 2;
966 Spacing = 2;
967 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
968 Opc = ARM::VMOVD;
969 BeginIdx = ARM::dsub_0;
970 SubRegs = 3;
971 Spacing = 2;
972 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
973 Opc = ARM::VMOVD;
974 BeginIdx = ARM::dsub_0;
975 SubRegs = 4;
976 Spacing = 2;
977 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
978 !Subtarget.hasFP64()) {
979 Opc = ARM::VMOVS;
980 BeginIdx = ARM::ssub_0;
981 SubRegs = 2;
982 } else if (SrcReg == ARM::CPSR) {
983 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
984 return;
985 } else if (DestReg == ARM::CPSR) {
986 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
987 return;
988 } else if (DestReg == ARM::VPR) {
989 assert(ARM::GPRRegClass.contains(SrcReg));
990 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
991 .addReg(SrcReg, getKillRegState(KillSrc))
992 .add(predOps(ARMCC::AL));
993 return;
994 } else if (SrcReg == ARM::VPR) {
995 assert(ARM::GPRRegClass.contains(DestReg));
996 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
997 .addReg(SrcReg, getKillRegState(KillSrc))
998 .add(predOps(ARMCC::AL));
999 return;
1000 } else if (DestReg == ARM::FPSCR_NZCV) {
1001 assert(ARM::GPRRegClass.contains(SrcReg));
1002 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1003 .addReg(SrcReg, getKillRegState(KillSrc))
1004 .add(predOps(ARMCC::AL));
1005 return;
1006 } else if (SrcReg == ARM::FPSCR_NZCV) {
1007 assert(ARM::GPRRegClass.contains(DestReg));
1008 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1009 .addReg(SrcReg, getKillRegState(KillSrc))
1010 .add(predOps(ARMCC::AL));
1011 return;
1014 assert(Opc && "Impossible reg-to-reg copy");
1016 const TargetRegisterInfo *TRI = &getRegisterInfo();
1017 MachineInstrBuilder Mov;
1019 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1020 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1021 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1022 Spacing = -Spacing;
1024 #ifndef NDEBUG
1025 SmallSet<unsigned, 4> DstRegs;
1026 #endif
1027 for (unsigned i = 0; i != SubRegs; ++i) {
1028 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1029 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1030 assert(Dst && Src && "Bad sub-register");
1031 #ifndef NDEBUG
1032 assert(!DstRegs.count(Src) && "destructive vector copy");
1033 DstRegs.insert(Dst);
1034 #endif
1035 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1036 // VORR (NEON or MVE) takes two source operands.
1037 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1038 Mov.addReg(Src);
1040 // MVE VORR takes predicate operands in place of an ordinary condition.
1041 if (Opc == ARM::MVE_VORR)
1042 addUnpredicatedMveVpredROp(Mov, Dst);
1043 else
1044 Mov = Mov.add(predOps(ARMCC::AL));
1045 // MOVr can set CC.
1046 if (Opc == ARM::MOVr)
1047 Mov = Mov.add(condCodeOp());
1049 // Add implicit super-register defs and kills to the last instruction.
1050 Mov->addRegisterDefined(DestReg, TRI);
1051 if (KillSrc)
1052 Mov->addRegisterKilled(SrcReg, TRI);
1055 Optional<DestSourcePair>
1056 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1057 // VMOVRRD is also a copy instruction but it requires
1058 // special way of handling. It is more complex copy version
1059 // and since that we are not considering it. For recognition
1060 // of such instruction isExtractSubregLike MI interface fuction
1061 // could be used.
1062 // VORRq is considered as a move only if two inputs are
1063 // the same register.
1064 if (!MI.isMoveReg() ||
1065 (MI.getOpcode() == ARM::VORRq &&
1066 MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1067 return None;
1068 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1071 Optional<ParamLoadedValue>
1072 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1073 Register Reg) const {
1074 if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1075 Register DstReg = DstSrcPair->Destination->getReg();
1077 // TODO: We don't handle cases where the forwarding reg is narrower/wider
1078 // than the copy registers. Consider for example:
1080 // s16 = VMOVS s0
1081 // s17 = VMOVS s1
1082 // call @callee(d0)
1084 // We'd like to describe the call site value of d0 as d8, but this requires
1085 // gathering and merging the descriptions for the two VMOVS instructions.
1087 // We also don't handle the reverse situation, where the forwarding reg is
1088 // narrower than the copy destination:
1090 // d8 = VMOVD d0
1091 // call @callee(s1)
1093 // We need to produce a fragment description (the call site value of s1 is
1094 // /not/ just d8).
1095 if (DstReg != Reg)
1096 return None;
1098 return TargetInstrInfo::describeLoadedValue(MI, Reg);
1101 const MachineInstrBuilder &
1102 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1103 unsigned SubIdx, unsigned State,
1104 const TargetRegisterInfo *TRI) const {
1105 if (!SubIdx)
1106 return MIB.addReg(Reg, State);
1108 if (Register::isPhysicalRegister(Reg))
1109 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1110 return MIB.addReg(Reg, State, SubIdx);
1113 void ARMBaseInstrInfo::
1114 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1115 Register SrcReg, bool isKill, int FI,
1116 const TargetRegisterClass *RC,
1117 const TargetRegisterInfo *TRI) const {
1118 MachineFunction &MF = *MBB.getParent();
1119 MachineFrameInfo &MFI = MF.getFrameInfo();
1120 Align Alignment = MFI.getObjectAlign(FI);
1122 MachineMemOperand *MMO = MF.getMachineMemOperand(
1123 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1124 MFI.getObjectSize(FI), Alignment);
1126 switch (TRI->getSpillSize(*RC)) {
1127 case 2:
1128 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1129 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1130 .addReg(SrcReg, getKillRegState(isKill))
1131 .addFrameIndex(FI)
1132 .addImm(0)
1133 .addMemOperand(MMO)
1134 .add(predOps(ARMCC::AL));
1135 } else
1136 llvm_unreachable("Unknown reg class!");
1137 break;
1138 case 4:
1139 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1140 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1141 .addReg(SrcReg, getKillRegState(isKill))
1142 .addFrameIndex(FI)
1143 .addImm(0)
1144 .addMemOperand(MMO)
1145 .add(predOps(ARMCC::AL));
1146 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1147 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1148 .addReg(SrcReg, getKillRegState(isKill))
1149 .addFrameIndex(FI)
1150 .addImm(0)
1151 .addMemOperand(MMO)
1152 .add(predOps(ARMCC::AL));
1153 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1154 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1155 .addReg(SrcReg, getKillRegState(isKill))
1156 .addFrameIndex(FI)
1157 .addImm(0)
1158 .addMemOperand(MMO)
1159 .add(predOps(ARMCC::AL));
1160 } else
1161 llvm_unreachable("Unknown reg class!");
1162 break;
1163 case 8:
1164 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1165 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1166 .addReg(SrcReg, getKillRegState(isKill))
1167 .addFrameIndex(FI)
1168 .addImm(0)
1169 .addMemOperand(MMO)
1170 .add(predOps(ARMCC::AL));
1171 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1172 if (Subtarget.hasV5TEOps()) {
1173 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1174 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1175 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1176 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1177 .add(predOps(ARMCC::AL));
1178 } else {
1179 // Fallback to STM instruction, which has existed since the dawn of
1180 // time.
1181 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1182 .addFrameIndex(FI)
1183 .addMemOperand(MMO)
1184 .add(predOps(ARMCC::AL));
1185 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1186 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1188 } else
1189 llvm_unreachable("Unknown reg class!");
1190 break;
1191 case 16:
1192 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1193 // Use aligned spills if the stack can be realigned.
1194 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1195 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1196 .addFrameIndex(FI)
1197 .addImm(16)
1198 .addReg(SrcReg, getKillRegState(isKill))
1199 .addMemOperand(MMO)
1200 .add(predOps(ARMCC::AL));
1201 } else {
1202 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1203 .addReg(SrcReg, getKillRegState(isKill))
1204 .addFrameIndex(FI)
1205 .addMemOperand(MMO)
1206 .add(predOps(ARMCC::AL));
1208 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1209 Subtarget.hasMVEIntegerOps()) {
1210 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1211 MIB.addReg(SrcReg, getKillRegState(isKill))
1212 .addFrameIndex(FI)
1213 .addImm(0)
1214 .addMemOperand(MMO);
1215 addUnpredicatedMveVpredNOp(MIB);
1216 } else
1217 llvm_unreachable("Unknown reg class!");
1218 break;
1219 case 24:
1220 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1221 // Use aligned spills if the stack can be realigned.
1222 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1223 Subtarget.hasNEON()) {
1224 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1225 .addFrameIndex(FI)
1226 .addImm(16)
1227 .addReg(SrcReg, getKillRegState(isKill))
1228 .addMemOperand(MMO)
1229 .add(predOps(ARMCC::AL));
1230 } else {
1231 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1232 get(ARM::VSTMDIA))
1233 .addFrameIndex(FI)
1234 .add(predOps(ARMCC::AL))
1235 .addMemOperand(MMO);
1236 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1237 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1238 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1240 } else
1241 llvm_unreachable("Unknown reg class!");
1242 break;
1243 case 32:
1244 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1245 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1246 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1247 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1248 Subtarget.hasNEON()) {
1249 // FIXME: It's possible to only store part of the QQ register if the
1250 // spilled def has a sub-register index.
1251 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1252 .addFrameIndex(FI)
1253 .addImm(16)
1254 .addReg(SrcReg, getKillRegState(isKill))
1255 .addMemOperand(MMO)
1256 .add(predOps(ARMCC::AL));
1257 } else if (Subtarget.hasMVEIntegerOps()) {
1258 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1259 .addReg(SrcReg, getKillRegState(isKill))
1260 .addFrameIndex(FI)
1261 .addMemOperand(MMO);
1262 } else {
1263 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1264 get(ARM::VSTMDIA))
1265 .addFrameIndex(FI)
1266 .add(predOps(ARMCC::AL))
1267 .addMemOperand(MMO);
1268 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1269 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1270 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1271 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1273 } else
1274 llvm_unreachable("Unknown reg class!");
1275 break;
1276 case 64:
1277 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1278 Subtarget.hasMVEIntegerOps()) {
1279 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1280 .addReg(SrcReg, getKillRegState(isKill))
1281 .addFrameIndex(FI)
1282 .addMemOperand(MMO);
1283 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1284 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1285 .addFrameIndex(FI)
1286 .add(predOps(ARMCC::AL))
1287 .addMemOperand(MMO);
1288 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1289 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1290 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1295 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1296 } else
1297 llvm_unreachable("Unknown reg class!");
1298 break;
1299 default:
1300 llvm_unreachable("Unknown reg class!");
1304 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1305 int &FrameIndex) const {
1306 switch (MI.getOpcode()) {
1307 default: break;
1308 case ARM::STRrs:
1309 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1310 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1311 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1312 MI.getOperand(3).getImm() == 0) {
1313 FrameIndex = MI.getOperand(1).getIndex();
1314 return MI.getOperand(0).getReg();
1316 break;
1317 case ARM::STRi12:
1318 case ARM::t2STRi12:
1319 case ARM::tSTRspi:
1320 case ARM::VSTRD:
1321 case ARM::VSTRS:
1322 case ARM::VSTR_P0_off:
1323 case ARM::MVE_VSTRWU32:
1324 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1325 MI.getOperand(2).getImm() == 0) {
1326 FrameIndex = MI.getOperand(1).getIndex();
1327 return MI.getOperand(0).getReg();
1329 break;
1330 case ARM::VST1q64:
1331 case ARM::VST1d64TPseudo:
1332 case ARM::VST1d64QPseudo:
1333 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1334 FrameIndex = MI.getOperand(0).getIndex();
1335 return MI.getOperand(2).getReg();
1337 break;
1338 case ARM::VSTMQIA:
1339 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1340 FrameIndex = MI.getOperand(1).getIndex();
1341 return MI.getOperand(0).getReg();
1343 break;
1344 case ARM::MQQPRStore:
1345 case ARM::MQQQQPRStore:
1346 if (MI.getOperand(1).isFI()) {
1347 FrameIndex = MI.getOperand(1).getIndex();
1348 return MI.getOperand(0).getReg();
1350 break;
1353 return 0;
1356 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1357 int &FrameIndex) const {
1358 SmallVector<const MachineMemOperand *, 1> Accesses;
1359 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1360 Accesses.size() == 1) {
1361 FrameIndex =
1362 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1363 ->getFrameIndex();
1364 return true;
1366 return false;
1369 void ARMBaseInstrInfo::
1370 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1371 Register DestReg, int FI,
1372 const TargetRegisterClass *RC,
1373 const TargetRegisterInfo *TRI) const {
1374 DebugLoc DL;
1375 if (I != MBB.end()) DL = I->getDebugLoc();
1376 MachineFunction &MF = *MBB.getParent();
1377 MachineFrameInfo &MFI = MF.getFrameInfo();
1378 const Align Alignment = MFI.getObjectAlign(FI);
1379 MachineMemOperand *MMO = MF.getMachineMemOperand(
1380 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1381 MFI.getObjectSize(FI), Alignment);
1383 switch (TRI->getSpillSize(*RC)) {
1384 case 2:
1385 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1386 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1387 .addFrameIndex(FI)
1388 .addImm(0)
1389 .addMemOperand(MMO)
1390 .add(predOps(ARMCC::AL));
1391 } else
1392 llvm_unreachable("Unknown reg class!");
1393 break;
1394 case 4:
1395 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1396 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1397 .addFrameIndex(FI)
1398 .addImm(0)
1399 .addMemOperand(MMO)
1400 .add(predOps(ARMCC::AL));
1401 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1402 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1403 .addFrameIndex(FI)
1404 .addImm(0)
1405 .addMemOperand(MMO)
1406 .add(predOps(ARMCC::AL));
1407 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1408 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1409 .addFrameIndex(FI)
1410 .addImm(0)
1411 .addMemOperand(MMO)
1412 .add(predOps(ARMCC::AL));
1413 } else
1414 llvm_unreachable("Unknown reg class!");
1415 break;
1416 case 8:
1417 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1418 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1419 .addFrameIndex(FI)
1420 .addImm(0)
1421 .addMemOperand(MMO)
1422 .add(predOps(ARMCC::AL));
1423 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1424 MachineInstrBuilder MIB;
1426 if (Subtarget.hasV5TEOps()) {
1427 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1428 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1429 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1430 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1431 .add(predOps(ARMCC::AL));
1432 } else {
1433 // Fallback to LDM instruction, which has existed since the dawn of
1434 // time.
1435 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1436 .addFrameIndex(FI)
1437 .addMemOperand(MMO)
1438 .add(predOps(ARMCC::AL));
1439 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1440 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1443 if (Register::isPhysicalRegister(DestReg))
1444 MIB.addReg(DestReg, RegState::ImplicitDefine);
1445 } else
1446 llvm_unreachable("Unknown reg class!");
1447 break;
1448 case 16:
1449 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1450 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1451 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1452 .addFrameIndex(FI)
1453 .addImm(16)
1454 .addMemOperand(MMO)
1455 .add(predOps(ARMCC::AL));
1456 } else {
1457 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1458 .addFrameIndex(FI)
1459 .addMemOperand(MMO)
1460 .add(predOps(ARMCC::AL));
1462 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1463 Subtarget.hasMVEIntegerOps()) {
1464 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1465 MIB.addFrameIndex(FI)
1466 .addImm(0)
1467 .addMemOperand(MMO);
1468 addUnpredicatedMveVpredNOp(MIB);
1469 } else
1470 llvm_unreachable("Unknown reg class!");
1471 break;
1472 case 24:
1473 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1474 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1475 Subtarget.hasNEON()) {
1476 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1477 .addFrameIndex(FI)
1478 .addImm(16)
1479 .addMemOperand(MMO)
1480 .add(predOps(ARMCC::AL));
1481 } else {
1482 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1483 .addFrameIndex(FI)
1484 .addMemOperand(MMO)
1485 .add(predOps(ARMCC::AL));
1486 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1487 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1488 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1489 if (Register::isPhysicalRegister(DestReg))
1490 MIB.addReg(DestReg, RegState::ImplicitDefine);
1492 } else
1493 llvm_unreachable("Unknown reg class!");
1494 break;
1495 case 32:
1496 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1497 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1498 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1499 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1500 Subtarget.hasNEON()) {
1501 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1502 .addFrameIndex(FI)
1503 .addImm(16)
1504 .addMemOperand(MMO)
1505 .add(predOps(ARMCC::AL));
1506 } else if (Subtarget.hasMVEIntegerOps()) {
1507 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1508 .addFrameIndex(FI)
1509 .addMemOperand(MMO);
1510 } else {
1511 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1512 .addFrameIndex(FI)
1513 .add(predOps(ARMCC::AL))
1514 .addMemOperand(MMO);
1515 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1516 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1517 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1518 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1519 if (Register::isPhysicalRegister(DestReg))
1520 MIB.addReg(DestReg, RegState::ImplicitDefine);
1522 } else
1523 llvm_unreachable("Unknown reg class!");
1524 break;
1525 case 64:
1526 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1527 Subtarget.hasMVEIntegerOps()) {
1528 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1529 .addFrameIndex(FI)
1530 .addMemOperand(MMO);
1531 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1532 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1533 .addFrameIndex(FI)
1534 .add(predOps(ARMCC::AL))
1535 .addMemOperand(MMO);
1536 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1537 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1538 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1539 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1544 if (Register::isPhysicalRegister(DestReg))
1545 MIB.addReg(DestReg, RegState::ImplicitDefine);
1546 } else
1547 llvm_unreachable("Unknown reg class!");
1548 break;
1549 default:
1550 llvm_unreachable("Unknown regclass!");
1554 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1555 int &FrameIndex) const {
1556 switch (MI.getOpcode()) {
1557 default: break;
1558 case ARM::LDRrs:
1559 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1560 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1561 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1562 MI.getOperand(3).getImm() == 0) {
1563 FrameIndex = MI.getOperand(1).getIndex();
1564 return MI.getOperand(0).getReg();
1566 break;
1567 case ARM::LDRi12:
1568 case ARM::t2LDRi12:
1569 case ARM::tLDRspi:
1570 case ARM::VLDRD:
1571 case ARM::VLDRS:
1572 case ARM::VLDR_P0_off:
1573 case ARM::MVE_VLDRWU32:
1574 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1575 MI.getOperand(2).getImm() == 0) {
1576 FrameIndex = MI.getOperand(1).getIndex();
1577 return MI.getOperand(0).getReg();
1579 break;
1580 case ARM::VLD1q64:
1581 case ARM::VLD1d8TPseudo:
1582 case ARM::VLD1d16TPseudo:
1583 case ARM::VLD1d32TPseudo:
1584 case ARM::VLD1d64TPseudo:
1585 case ARM::VLD1d8QPseudo:
1586 case ARM::VLD1d16QPseudo:
1587 case ARM::VLD1d32QPseudo:
1588 case ARM::VLD1d64QPseudo:
1589 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1590 FrameIndex = MI.getOperand(1).getIndex();
1591 return MI.getOperand(0).getReg();
1593 break;
1594 case ARM::VLDMQIA:
1595 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1596 FrameIndex = MI.getOperand(1).getIndex();
1597 return MI.getOperand(0).getReg();
1599 break;
1600 case ARM::MQQPRLoad:
1601 case ARM::MQQQQPRLoad:
1602 if (MI.getOperand(1).isFI()) {
1603 FrameIndex = MI.getOperand(1).getIndex();
1604 return MI.getOperand(0).getReg();
1606 break;
1609 return 0;
1612 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1613 int &FrameIndex) const {
1614 SmallVector<const MachineMemOperand *, 1> Accesses;
1615 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1616 Accesses.size() == 1) {
1617 FrameIndex =
1618 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1619 ->getFrameIndex();
1620 return true;
1622 return false;
1625 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1626 /// depending on whether the result is used.
1627 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1628 bool isThumb1 = Subtarget.isThumb1Only();
1629 bool isThumb2 = Subtarget.isThumb2();
1630 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1632 DebugLoc dl = MI->getDebugLoc();
1633 MachineBasicBlock *BB = MI->getParent();
1635 MachineInstrBuilder LDM, STM;
1636 if (isThumb1 || !MI->getOperand(1).isDead()) {
1637 MachineOperand LDWb(MI->getOperand(1));
1638 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1639 : isThumb1 ? ARM::tLDMIA_UPD
1640 : ARM::LDMIA_UPD))
1641 .add(LDWb);
1642 } else {
1643 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1646 if (isThumb1 || !MI->getOperand(0).isDead()) {
1647 MachineOperand STWb(MI->getOperand(0));
1648 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1649 : isThumb1 ? ARM::tSTMIA_UPD
1650 : ARM::STMIA_UPD))
1651 .add(STWb);
1652 } else {
1653 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1656 MachineOperand LDBase(MI->getOperand(3));
1657 LDM.add(LDBase).add(predOps(ARMCC::AL));
1659 MachineOperand STBase(MI->getOperand(2));
1660 STM.add(STBase).add(predOps(ARMCC::AL));
1662 // Sort the scratch registers into ascending order.
1663 const TargetRegisterInfo &TRI = getRegisterInfo();
1664 SmallVector<unsigned, 6> ScratchRegs;
1665 for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1666 ScratchRegs.push_back(MI->getOperand(I).getReg());
1667 llvm::sort(ScratchRegs,
1668 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1669 return TRI.getEncodingValue(Reg1) <
1670 TRI.getEncodingValue(Reg2);
1673 for (const auto &Reg : ScratchRegs) {
1674 LDM.addReg(Reg, RegState::Define);
1675 STM.addReg(Reg, RegState::Kill);
1678 BB->erase(MI);
1681 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1682 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1683 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1684 "LOAD_STACK_GUARD currently supported only for MachO.");
1685 expandLoadStackGuard(MI);
1686 MI.getParent()->erase(MI);
1687 return true;
1690 if (MI.getOpcode() == ARM::MEMCPY) {
1691 expandMEMCPY(MI);
1692 return true;
1695 // This hook gets to expand COPY instructions before they become
1696 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1697 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1698 // changed into a VORR that can go down the NEON pipeline.
1699 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1700 return false;
1702 // Look for a copy between even S-registers. That is where we keep floats
1703 // when using NEON v2f32 instructions for f32 arithmetic.
1704 Register DstRegS = MI.getOperand(0).getReg();
1705 Register SrcRegS = MI.getOperand(1).getReg();
1706 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1707 return false;
1709 const TargetRegisterInfo *TRI = &getRegisterInfo();
1710 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1711 &ARM::DPRRegClass);
1712 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1713 &ARM::DPRRegClass);
1714 if (!DstRegD || !SrcRegD)
1715 return false;
1717 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1718 // legal if the COPY already defines the full DstRegD, and it isn't a
1719 // sub-register insertion.
1720 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1721 return false;
1723 // A dead copy shouldn't show up here, but reject it just in case.
1724 if (MI.getOperand(0).isDead())
1725 return false;
1727 // All clear, widen the COPY.
1728 LLVM_DEBUG(dbgs() << "widening: " << MI);
1729 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1731 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1732 // or some other super-register.
1733 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1734 if (ImpDefIdx != -1)
1735 MI.RemoveOperand(ImpDefIdx);
1737 // Change the opcode and operands.
1738 MI.setDesc(get(ARM::VMOVD));
1739 MI.getOperand(0).setReg(DstRegD);
1740 MI.getOperand(1).setReg(SrcRegD);
1741 MIB.add(predOps(ARMCC::AL));
1743 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1744 // register scavenger and machine verifier, so we need to indicate that we
1745 // are reading an undefined value from SrcRegD, but a proper value from
1746 // SrcRegS.
1747 MI.getOperand(1).setIsUndef();
1748 MIB.addReg(SrcRegS, RegState::Implicit);
1750 // SrcRegD may actually contain an unrelated value in the ssub_1
1751 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1752 if (MI.getOperand(1).isKill()) {
1753 MI.getOperand(1).setIsKill(false);
1754 MI.addRegisterKilled(SrcRegS, TRI, true);
1757 LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1758 return true;
1761 /// Create a copy of a const pool value. Update CPI to the new index and return
1762 /// the label UID.
1763 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1764 MachineConstantPool *MCP = MF.getConstantPool();
1765 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1767 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1768 assert(MCPE.isMachineConstantPoolEntry() &&
1769 "Expecting a machine constantpool entry!");
1770 ARMConstantPoolValue *ACPV =
1771 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1773 unsigned PCLabelId = AFI->createPICLabelUId();
1774 ARMConstantPoolValue *NewCPV = nullptr;
1776 // FIXME: The below assumes PIC relocation model and that the function
1777 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1778 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1779 // instructions, so that's probably OK, but is PIC always correct when
1780 // we get here?
1781 if (ACPV->isGlobalValue())
1782 NewCPV = ARMConstantPoolConstant::Create(
1783 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1784 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1785 else if (ACPV->isExtSymbol())
1786 NewCPV = ARMConstantPoolSymbol::
1787 Create(MF.getFunction().getContext(),
1788 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1789 else if (ACPV->isBlockAddress())
1790 NewCPV = ARMConstantPoolConstant::
1791 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1792 ARMCP::CPBlockAddress, 4);
1793 else if (ACPV->isLSDA())
1794 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1795 ARMCP::CPLSDA, 4);
1796 else if (ACPV->isMachineBasicBlock())
1797 NewCPV = ARMConstantPoolMBB::
1798 Create(MF.getFunction().getContext(),
1799 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1800 else
1801 llvm_unreachable("Unexpected ARM constantpool value type!!");
1802 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1803 return PCLabelId;
1806 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1807 MachineBasicBlock::iterator I,
1808 Register DestReg, unsigned SubIdx,
1809 const MachineInstr &Orig,
1810 const TargetRegisterInfo &TRI) const {
1811 unsigned Opcode = Orig.getOpcode();
1812 switch (Opcode) {
1813 default: {
1814 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1815 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1816 MBB.insert(I, MI);
1817 break;
1819 case ARM::tLDRpci_pic:
1820 case ARM::t2LDRpci_pic: {
1821 MachineFunction &MF = *MBB.getParent();
1822 unsigned CPI = Orig.getOperand(1).getIndex();
1823 unsigned PCLabelId = duplicateCPV(MF, CPI);
1824 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1825 .addConstantPoolIndex(CPI)
1826 .addImm(PCLabelId)
1827 .cloneMemRefs(Orig);
1828 break;
1833 MachineInstr &
1834 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1835 MachineBasicBlock::iterator InsertBefore,
1836 const MachineInstr &Orig) const {
1837 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1838 MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1839 for (;;) {
1840 switch (I->getOpcode()) {
1841 case ARM::tLDRpci_pic:
1842 case ARM::t2LDRpci_pic: {
1843 MachineFunction &MF = *MBB.getParent();
1844 unsigned CPI = I->getOperand(1).getIndex();
1845 unsigned PCLabelId = duplicateCPV(MF, CPI);
1846 I->getOperand(1).setIndex(CPI);
1847 I->getOperand(2).setImm(PCLabelId);
1848 break;
1851 if (!I->isBundledWithSucc())
1852 break;
1853 ++I;
1855 return Cloned;
1858 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1859 const MachineInstr &MI1,
1860 const MachineRegisterInfo *MRI) const {
1861 unsigned Opcode = MI0.getOpcode();
1862 if (Opcode == ARM::t2LDRpci ||
1863 Opcode == ARM::t2LDRpci_pic ||
1864 Opcode == ARM::tLDRpci ||
1865 Opcode == ARM::tLDRpci_pic ||
1866 Opcode == ARM::LDRLIT_ga_pcrel ||
1867 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1868 Opcode == ARM::tLDRLIT_ga_pcrel ||
1869 Opcode == ARM::MOV_ga_pcrel ||
1870 Opcode == ARM::MOV_ga_pcrel_ldr ||
1871 Opcode == ARM::t2MOV_ga_pcrel) {
1872 if (MI1.getOpcode() != Opcode)
1873 return false;
1874 if (MI0.getNumOperands() != MI1.getNumOperands())
1875 return false;
1877 const MachineOperand &MO0 = MI0.getOperand(1);
1878 const MachineOperand &MO1 = MI1.getOperand(1);
1879 if (MO0.getOffset() != MO1.getOffset())
1880 return false;
1882 if (Opcode == ARM::LDRLIT_ga_pcrel ||
1883 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1884 Opcode == ARM::tLDRLIT_ga_pcrel ||
1885 Opcode == ARM::MOV_ga_pcrel ||
1886 Opcode == ARM::MOV_ga_pcrel_ldr ||
1887 Opcode == ARM::t2MOV_ga_pcrel)
1888 // Ignore the PC labels.
1889 return MO0.getGlobal() == MO1.getGlobal();
1891 const MachineFunction *MF = MI0.getParent()->getParent();
1892 const MachineConstantPool *MCP = MF->getConstantPool();
1893 int CPI0 = MO0.getIndex();
1894 int CPI1 = MO1.getIndex();
1895 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1896 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1897 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1898 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1899 if (isARMCP0 && isARMCP1) {
1900 ARMConstantPoolValue *ACPV0 =
1901 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1902 ARMConstantPoolValue *ACPV1 =
1903 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1904 return ACPV0->hasSameValue(ACPV1);
1905 } else if (!isARMCP0 && !isARMCP1) {
1906 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1908 return false;
1909 } else if (Opcode == ARM::PICLDR) {
1910 if (MI1.getOpcode() != Opcode)
1911 return false;
1912 if (MI0.getNumOperands() != MI1.getNumOperands())
1913 return false;
1915 Register Addr0 = MI0.getOperand(1).getReg();
1916 Register Addr1 = MI1.getOperand(1).getReg();
1917 if (Addr0 != Addr1) {
1918 if (!MRI || !Register::isVirtualRegister(Addr0) ||
1919 !Register::isVirtualRegister(Addr1))
1920 return false;
1922 // This assumes SSA form.
1923 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1924 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1925 // Check if the loaded value, e.g. a constantpool of a global address, are
1926 // the same.
1927 if (!produceSameValue(*Def0, *Def1, MRI))
1928 return false;
1931 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1932 // %12 = PICLDR %11, 0, 14, %noreg
1933 const MachineOperand &MO0 = MI0.getOperand(i);
1934 const MachineOperand &MO1 = MI1.getOperand(i);
1935 if (!MO0.isIdenticalTo(MO1))
1936 return false;
1938 return true;
1941 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1944 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1945 /// determine if two loads are loading from the same base address. It should
1946 /// only return true if the base pointers are the same and the only differences
1947 /// between the two addresses is the offset. It also returns the offsets by
1948 /// reference.
1950 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1951 /// is permanently disabled.
1952 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1953 int64_t &Offset1,
1954 int64_t &Offset2) const {
1955 // Don't worry about Thumb: just ARM and Thumb2.
1956 if (Subtarget.isThumb1Only()) return false;
1958 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1959 return false;
1961 switch (Load1->getMachineOpcode()) {
1962 default:
1963 return false;
1964 case ARM::LDRi12:
1965 case ARM::LDRBi12:
1966 case ARM::LDRD:
1967 case ARM::LDRH:
1968 case ARM::LDRSB:
1969 case ARM::LDRSH:
1970 case ARM::VLDRD:
1971 case ARM::VLDRS:
1972 case ARM::t2LDRi8:
1973 case ARM::t2LDRBi8:
1974 case ARM::t2LDRDi8:
1975 case ARM::t2LDRSHi8:
1976 case ARM::t2LDRi12:
1977 case ARM::t2LDRBi12:
1978 case ARM::t2LDRSHi12:
1979 break;
1982 switch (Load2->getMachineOpcode()) {
1983 default:
1984 return false;
1985 case ARM::LDRi12:
1986 case ARM::LDRBi12:
1987 case ARM::LDRD:
1988 case ARM::LDRH:
1989 case ARM::LDRSB:
1990 case ARM::LDRSH:
1991 case ARM::VLDRD:
1992 case ARM::VLDRS:
1993 case ARM::t2LDRi8:
1994 case ARM::t2LDRBi8:
1995 case ARM::t2LDRSHi8:
1996 case ARM::t2LDRi12:
1997 case ARM::t2LDRBi12:
1998 case ARM::t2LDRSHi12:
1999 break;
2002 // Check if base addresses and chain operands match.
2003 if (Load1->getOperand(0) != Load2->getOperand(0) ||
2004 Load1->getOperand(4) != Load2->getOperand(4))
2005 return false;
2007 // Index should be Reg0.
2008 if (Load1->getOperand(3) != Load2->getOperand(3))
2009 return false;
2011 // Determine the offsets.
2012 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
2013 isa<ConstantSDNode>(Load2->getOperand(1))) {
2014 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
2015 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
2016 return true;
2019 return false;
2022 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2023 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2024 /// be scheduled togther. On some targets if two loads are loading from
2025 /// addresses in the same cache line, it's better if they are scheduled
2026 /// together. This function takes two integers that represent the load offsets
2027 /// from the common base address. It returns true if it decides it's desirable
2028 /// to schedule the two loads together. "NumLoads" is the number of loads that
2029 /// have already been scheduled after Load1.
2031 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2032 /// is permanently disabled.
2033 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2034 int64_t Offset1, int64_t Offset2,
2035 unsigned NumLoads) const {
2036 // Don't worry about Thumb: just ARM and Thumb2.
2037 if (Subtarget.isThumb1Only()) return false;
2039 assert(Offset2 > Offset1);
2041 if ((Offset2 - Offset1) / 8 > 64)
2042 return false;
2044 // Check if the machine opcodes are different. If they are different
2045 // then we consider them to not be of the same base address,
2046 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2047 // In this case, they are considered to be the same because they are different
2048 // encoding forms of the same basic instruction.
2049 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2050 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2051 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2052 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2053 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2054 return false; // FIXME: overly conservative?
2056 // Four loads in a row should be sufficient.
2057 if (NumLoads >= 3)
2058 return false;
2060 return true;
2063 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2064 const MachineBasicBlock *MBB,
2065 const MachineFunction &MF) const {
2066 // Debug info is never a scheduling boundary. It's necessary to be explicit
2067 // due to the special treatment of IT instructions below, otherwise a
2068 // dbg_value followed by an IT will result in the IT instruction being
2069 // considered a scheduling hazard, which is wrong. It should be the actual
2070 // instruction preceding the dbg_value instruction(s), just like it is
2071 // when debug info is not present.
2072 if (MI.isDebugInstr())
2073 return false;
2075 // Terminators and labels can't be scheduled around.
2076 if (MI.isTerminator() || MI.isPosition())
2077 return true;
2079 // INLINEASM_BR can jump to another block
2080 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2081 return true;
2083 // Treat the start of the IT block as a scheduling boundary, but schedule
2084 // t2IT along with all instructions following it.
2085 // FIXME: This is a big hammer. But the alternative is to add all potential
2086 // true and anti dependencies to IT block instructions as implicit operands
2087 // to the t2IT instruction. The added compile time and complexity does not
2088 // seem worth it.
2089 MachineBasicBlock::const_iterator I = MI;
2090 // Make sure to skip any debug instructions
2091 while (++I != MBB->end() && I->isDebugInstr())
2093 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2094 return true;
2096 // Don't attempt to schedule around any instruction that defines
2097 // a stack-oriented pointer, as it's unlikely to be profitable. This
2098 // saves compile time, because it doesn't require every single
2099 // stack slot reference to depend on the instruction that does the
2100 // modification.
2101 // Calls don't actually change the stack pointer, even if they have imp-defs.
2102 // No ARM calling conventions change the stack pointer. (X86 calling
2103 // conventions sometimes do).
2104 if (!MI.isCall() && MI.definesRegister(ARM::SP))
2105 return true;
2107 return false;
2110 bool ARMBaseInstrInfo::
2111 isProfitableToIfCvt(MachineBasicBlock &MBB,
2112 unsigned NumCycles, unsigned ExtraPredCycles,
2113 BranchProbability Probability) const {
2114 if (!NumCycles)
2115 return false;
2117 // If we are optimizing for size, see if the branch in the predecessor can be
2118 // lowered to cbn?z by the constant island lowering pass, and return false if
2119 // so. This results in a shorter instruction sequence.
2120 if (MBB.getParent()->getFunction().hasOptSize()) {
2121 MachineBasicBlock *Pred = *MBB.pred_begin();
2122 if (!Pred->empty()) {
2123 MachineInstr *LastMI = &*Pred->rbegin();
2124 if (LastMI->getOpcode() == ARM::t2Bcc) {
2125 const TargetRegisterInfo *TRI = &getRegisterInfo();
2126 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2127 if (CmpMI)
2128 return false;
2132 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2133 MBB, 0, 0, Probability);
2136 bool ARMBaseInstrInfo::
2137 isProfitableToIfCvt(MachineBasicBlock &TBB,
2138 unsigned TCycles, unsigned TExtra,
2139 MachineBasicBlock &FBB,
2140 unsigned FCycles, unsigned FExtra,
2141 BranchProbability Probability) const {
2142 if (!TCycles)
2143 return false;
2145 // In thumb code we often end up trading one branch for a IT block, and
2146 // if we are cloning the instruction can increase code size. Prevent
2147 // blocks with multiple predecesors from being ifcvted to prevent this
2148 // cloning.
2149 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2150 if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2151 return false;
2154 // Attempt to estimate the relative costs of predication versus branching.
2155 // Here we scale up each component of UnpredCost to avoid precision issue when
2156 // scaling TCycles/FCycles by Probability.
2157 const unsigned ScalingUpFactor = 1024;
2159 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2160 unsigned UnpredCost;
2161 if (!Subtarget.hasBranchPredictor()) {
2162 // When we don't have a branch predictor it's always cheaper to not take a
2163 // branch than take it, so we have to take that into account.
2164 unsigned NotTakenBranchCost = 1;
2165 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2166 unsigned TUnpredCycles, FUnpredCycles;
2167 if (!FCycles) {
2168 // Triangle: TBB is the fallthrough
2169 TUnpredCycles = TCycles + NotTakenBranchCost;
2170 FUnpredCycles = TakenBranchCost;
2171 } else {
2172 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2173 TUnpredCycles = TCycles + TakenBranchCost;
2174 FUnpredCycles = FCycles + NotTakenBranchCost;
2175 // The branch at the end of FBB will disappear when it's predicated, so
2176 // discount it from PredCost.
2177 PredCost -= 1 * ScalingUpFactor;
2179 // The total cost is the cost of each path scaled by their probabilites
2180 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2181 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2182 UnpredCost = TUnpredCost + FUnpredCost;
2183 // When predicating assume that the first IT can be folded away but later
2184 // ones cost one cycle each
2185 if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2186 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2188 } else {
2189 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2190 unsigned FUnpredCost =
2191 Probability.getCompl().scale(FCycles * ScalingUpFactor);
2192 UnpredCost = TUnpredCost + FUnpredCost;
2193 UnpredCost += 1 * ScalingUpFactor; // The branch itself
2194 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2197 return PredCost <= UnpredCost;
2200 unsigned
2201 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2202 unsigned NumInsts) const {
2203 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2204 // ARM has a condition code field in every predicable instruction, using it
2205 // doesn't change code size.
2206 if (!Subtarget.isThumb2())
2207 return 0;
2209 // It's possible that the size of the IT is restricted to a single block.
2210 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2211 return divideCeil(NumInsts, MaxInsts) * 2;
2214 unsigned
2215 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2216 // If this branch is likely to be folded into the comparison to form a
2217 // CB(N)Z, then removing it won't reduce code size at all, because that will
2218 // just replace the CB(N)Z with a CMP.
2219 if (MI.getOpcode() == ARM::t2Bcc &&
2220 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2221 return 0;
2223 unsigned Size = getInstSizeInBytes(MI);
2225 // For Thumb2, all branches are 32-bit instructions during the if conversion
2226 // pass, but may be replaced with 16-bit instructions during size reduction.
2227 // Since the branches considered by if conversion tend to be forward branches
2228 // over small basic blocks, they are very likely to be in range for the
2229 // narrow instructions, so we assume the final code size will be half what it
2230 // currently is.
2231 if (Subtarget.isThumb2())
2232 Size /= 2;
2234 return Size;
2237 bool
2238 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2239 MachineBasicBlock &FMBB) const {
2240 // Reduce false anti-dependencies to let the target's out-of-order execution
2241 // engine do its thing.
2242 return Subtarget.isProfitableToUnpredicate();
2245 /// getInstrPredicate - If instruction is predicated, returns its predicate
2246 /// condition, otherwise returns AL. It also returns the condition code
2247 /// register by reference.
2248 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2249 Register &PredReg) {
2250 int PIdx = MI.findFirstPredOperandIdx();
2251 if (PIdx == -1) {
2252 PredReg = 0;
2253 return ARMCC::AL;
2256 PredReg = MI.getOperand(PIdx+1).getReg();
2257 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2260 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2261 if (Opc == ARM::B)
2262 return ARM::Bcc;
2263 if (Opc == ARM::tB)
2264 return ARM::tBcc;
2265 if (Opc == ARM::t2B)
2266 return ARM::t2Bcc;
2268 llvm_unreachable("Unknown unconditional branch opcode!");
2271 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2272 bool NewMI,
2273 unsigned OpIdx1,
2274 unsigned OpIdx2) const {
2275 switch (MI.getOpcode()) {
2276 case ARM::MOVCCr:
2277 case ARM::t2MOVCCr: {
2278 // MOVCC can be commuted by inverting the condition.
2279 Register PredReg;
2280 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2281 // MOVCC AL can't be inverted. Shouldn't happen.
2282 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2283 return nullptr;
2284 MachineInstr *CommutedMI =
2285 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2286 if (!CommutedMI)
2287 return nullptr;
2288 // After swapping the MOVCC operands, also invert the condition.
2289 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2290 .setImm(ARMCC::getOppositeCondition(CC));
2291 return CommutedMI;
2294 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2297 /// Identify instructions that can be folded into a MOVCC instruction, and
2298 /// return the defining instruction.
2299 MachineInstr *
2300 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2301 const TargetInstrInfo *TII) const {
2302 if (!Reg.isVirtual())
2303 return nullptr;
2304 if (!MRI.hasOneNonDBGUse(Reg))
2305 return nullptr;
2306 MachineInstr *MI = MRI.getVRegDef(Reg);
2307 if (!MI)
2308 return nullptr;
2309 // Check if MI can be predicated and folded into the MOVCC.
2310 if (!isPredicable(*MI))
2311 return nullptr;
2312 // Check if MI has any non-dead defs or physreg uses. This also detects
2313 // predicated instructions which will be reading CPSR.
2314 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2315 const MachineOperand &MO = MI->getOperand(i);
2316 // Reject frame index operands, PEI can't handle the predicated pseudos.
2317 if (MO.isFI() || MO.isCPI() || MO.isJTI())
2318 return nullptr;
2319 if (!MO.isReg())
2320 continue;
2321 // MI can't have any tied operands, that would conflict with predication.
2322 if (MO.isTied())
2323 return nullptr;
2324 if (Register::isPhysicalRegister(MO.getReg()))
2325 return nullptr;
2326 if (MO.isDef() && !MO.isDead())
2327 return nullptr;
2329 bool DontMoveAcrossStores = true;
2330 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2331 return nullptr;
2332 return MI;
2335 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2336 SmallVectorImpl<MachineOperand> &Cond,
2337 unsigned &TrueOp, unsigned &FalseOp,
2338 bool &Optimizable) const {
2339 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2340 "Unknown select instruction");
2341 // MOVCC operands:
2342 // 0: Def.
2343 // 1: True use.
2344 // 2: False use.
2345 // 3: Condition code.
2346 // 4: CPSR use.
2347 TrueOp = 1;
2348 FalseOp = 2;
2349 Cond.push_back(MI.getOperand(3));
2350 Cond.push_back(MI.getOperand(4));
2351 // We can always fold a def.
2352 Optimizable = true;
2353 return false;
2356 MachineInstr *
2357 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2358 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2359 bool PreferFalse) const {
2360 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2361 "Unknown select instruction");
2362 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2363 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2364 bool Invert = !DefMI;
2365 if (!DefMI)
2366 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2367 if (!DefMI)
2368 return nullptr;
2370 // Find new register class to use.
2371 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2372 Register DestReg = MI.getOperand(0).getReg();
2373 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2374 if (!MRI.constrainRegClass(DestReg, PreviousClass))
2375 return nullptr;
2377 // Create a new predicated version of DefMI.
2378 // Rfalse is the first use.
2379 MachineInstrBuilder NewMI =
2380 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2382 // Copy all the DefMI operands, excluding its (null) predicate.
2383 const MCInstrDesc &DefDesc = DefMI->getDesc();
2384 for (unsigned i = 1, e = DefDesc.getNumOperands();
2385 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2386 NewMI.add(DefMI->getOperand(i));
2388 unsigned CondCode = MI.getOperand(3).getImm();
2389 if (Invert)
2390 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2391 else
2392 NewMI.addImm(CondCode);
2393 NewMI.add(MI.getOperand(4));
2395 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2396 if (NewMI->hasOptionalDef())
2397 NewMI.add(condCodeOp());
2399 // The output register value when the predicate is false is an implicit
2400 // register operand tied to the first def.
2401 // The tie makes the register allocator ensure the FalseReg is allocated the
2402 // same register as operand 0.
2403 FalseReg.setImplicit();
2404 NewMI.add(FalseReg);
2405 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2407 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2408 SeenMIs.insert(NewMI);
2409 SeenMIs.erase(DefMI);
2411 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2412 // DefMI would be invalid when tranferred inside the loop. Checking for a
2413 // loop is expensive, but at least remove kill flags if they are in different
2414 // BBs.
2415 if (DefMI->getParent() != MI.getParent())
2416 NewMI->clearKillInfo();
2418 // The caller will erase MI, but not DefMI.
2419 DefMI->eraseFromParent();
2420 return NewMI;
2423 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2424 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2425 /// def operand.
2427 /// This will go away once we can teach tblgen how to set the optional CPSR def
2428 /// operand itself.
2429 struct AddSubFlagsOpcodePair {
2430 uint16_t PseudoOpc;
2431 uint16_t MachineOpc;
2434 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2435 {ARM::ADDSri, ARM::ADDri},
2436 {ARM::ADDSrr, ARM::ADDrr},
2437 {ARM::ADDSrsi, ARM::ADDrsi},
2438 {ARM::ADDSrsr, ARM::ADDrsr},
2440 {ARM::SUBSri, ARM::SUBri},
2441 {ARM::SUBSrr, ARM::SUBrr},
2442 {ARM::SUBSrsi, ARM::SUBrsi},
2443 {ARM::SUBSrsr, ARM::SUBrsr},
2445 {ARM::RSBSri, ARM::RSBri},
2446 {ARM::RSBSrsi, ARM::RSBrsi},
2447 {ARM::RSBSrsr, ARM::RSBrsr},
2449 {ARM::tADDSi3, ARM::tADDi3},
2450 {ARM::tADDSi8, ARM::tADDi8},
2451 {ARM::tADDSrr, ARM::tADDrr},
2452 {ARM::tADCS, ARM::tADC},
2454 {ARM::tSUBSi3, ARM::tSUBi3},
2455 {ARM::tSUBSi8, ARM::tSUBi8},
2456 {ARM::tSUBSrr, ARM::tSUBrr},
2457 {ARM::tSBCS, ARM::tSBC},
2458 {ARM::tRSBS, ARM::tRSB},
2459 {ARM::tLSLSri, ARM::tLSLri},
2461 {ARM::t2ADDSri, ARM::t2ADDri},
2462 {ARM::t2ADDSrr, ARM::t2ADDrr},
2463 {ARM::t2ADDSrs, ARM::t2ADDrs},
2465 {ARM::t2SUBSri, ARM::t2SUBri},
2466 {ARM::t2SUBSrr, ARM::t2SUBrr},
2467 {ARM::t2SUBSrs, ARM::t2SUBrs},
2469 {ARM::t2RSBSri, ARM::t2RSBri},
2470 {ARM::t2RSBSrs, ARM::t2RSBrs},
2473 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2474 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2475 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2476 return AddSubFlagsOpcodeMap[i].MachineOpc;
2477 return 0;
2480 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2481 MachineBasicBlock::iterator &MBBI,
2482 const DebugLoc &dl, Register DestReg,
2483 Register BaseReg, int NumBytes,
2484 ARMCC::CondCodes Pred, Register PredReg,
2485 const ARMBaseInstrInfo &TII,
2486 unsigned MIFlags) {
2487 if (NumBytes == 0 && DestReg != BaseReg) {
2488 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2489 .addReg(BaseReg, RegState::Kill)
2490 .add(predOps(Pred, PredReg))
2491 .add(condCodeOp())
2492 .setMIFlags(MIFlags);
2493 return;
2496 bool isSub = NumBytes < 0;
2497 if (isSub) NumBytes = -NumBytes;
2499 while (NumBytes) {
2500 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2501 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2502 assert(ThisVal && "Didn't extract field correctly");
2504 // We will handle these bits from offset, clear them.
2505 NumBytes &= ~ThisVal;
2507 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2509 // Build the new ADD / SUB.
2510 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2511 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2512 .addReg(BaseReg, RegState::Kill)
2513 .addImm(ThisVal)
2514 .add(predOps(Pred, PredReg))
2515 .add(condCodeOp())
2516 .setMIFlags(MIFlags);
2517 BaseReg = DestReg;
2521 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2522 MachineFunction &MF, MachineInstr *MI,
2523 unsigned NumBytes) {
2524 // This optimisation potentially adds lots of load and store
2525 // micro-operations, it's only really a great benefit to code-size.
2526 if (!Subtarget.hasMinSize())
2527 return false;
2529 // If only one register is pushed/popped, LLVM can use an LDR/STR
2530 // instead. We can't modify those so make sure we're dealing with an
2531 // instruction we understand.
2532 bool IsPop = isPopOpcode(MI->getOpcode());
2533 bool IsPush = isPushOpcode(MI->getOpcode());
2534 if (!IsPush && !IsPop)
2535 return false;
2537 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2538 MI->getOpcode() == ARM::VLDMDIA_UPD;
2539 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2540 MI->getOpcode() == ARM::tPOP ||
2541 MI->getOpcode() == ARM::tPOP_RET;
2543 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2544 MI->getOperand(1).getReg() == ARM::SP)) &&
2545 "trying to fold sp update into non-sp-updating push/pop");
2547 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2548 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2549 // if this is violated.
2550 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2551 return false;
2553 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2554 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2555 int RegListIdx = IsT1PushPop ? 2 : 4;
2557 // Calculate the space we'll need in terms of registers.
2558 unsigned RegsNeeded;
2559 const TargetRegisterClass *RegClass;
2560 if (IsVFPPushPop) {
2561 RegsNeeded = NumBytes / 8;
2562 RegClass = &ARM::DPRRegClass;
2563 } else {
2564 RegsNeeded = NumBytes / 4;
2565 RegClass = &ARM::GPRRegClass;
2568 // We're going to have to strip all list operands off before
2569 // re-adding them since the order matters, so save the existing ones
2570 // for later.
2571 SmallVector<MachineOperand, 4> RegList;
2573 // We're also going to need the first register transferred by this
2574 // instruction, which won't necessarily be the first register in the list.
2575 unsigned FirstRegEnc = -1;
2577 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2578 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2579 MachineOperand &MO = MI->getOperand(i);
2580 RegList.push_back(MO);
2582 if (MO.isReg() && !MO.isImplicit() &&
2583 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2584 FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2587 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2589 // Now try to find enough space in the reglist to allocate NumBytes.
2590 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2591 --CurRegEnc) {
2592 unsigned CurReg = RegClass->getRegister(CurRegEnc);
2593 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2594 continue;
2595 if (!IsPop) {
2596 // Pushing any register is completely harmless, mark the register involved
2597 // as undef since we don't care about its value and must not restore it
2598 // during stack unwinding.
2599 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2600 false, false, true));
2601 --RegsNeeded;
2602 continue;
2605 // However, we can only pop an extra register if it's not live. For
2606 // registers live within the function we might clobber a return value
2607 // register; the other way a register can be live here is if it's
2608 // callee-saved.
2609 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2610 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2611 MachineBasicBlock::LQR_Dead) {
2612 // VFP pops don't allow holes in the register list, so any skip is fatal
2613 // for our transformation. GPR pops do, so we should just keep looking.
2614 if (IsVFPPushPop)
2615 return false;
2616 else
2617 continue;
2620 // Mark the unimportant registers as <def,dead> in the POP.
2621 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2622 true));
2623 --RegsNeeded;
2626 if (RegsNeeded > 0)
2627 return false;
2629 // Finally we know we can profitably perform the optimisation so go
2630 // ahead: strip all existing registers off and add them back again
2631 // in the right order.
2632 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2633 MI->RemoveOperand(i);
2635 // Add the complete list back in.
2636 MachineInstrBuilder MIB(MF, &*MI);
2637 for (int i = RegList.size() - 1; i >= 0; --i)
2638 MIB.add(RegList[i]);
2640 return true;
2643 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2644 Register FrameReg, int &Offset,
2645 const ARMBaseInstrInfo &TII) {
2646 unsigned Opcode = MI.getOpcode();
2647 const MCInstrDesc &Desc = MI.getDesc();
2648 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2649 bool isSub = false;
2651 // Memory operands in inline assembly always use AddrMode2.
2652 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2653 AddrMode = ARMII::AddrMode2;
2655 if (Opcode == ARM::ADDri) {
2656 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2657 if (Offset == 0) {
2658 // Turn it into a move.
2659 MI.setDesc(TII.get(ARM::MOVr));
2660 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2661 MI.RemoveOperand(FrameRegIdx+1);
2662 Offset = 0;
2663 return true;
2664 } else if (Offset < 0) {
2665 Offset = -Offset;
2666 isSub = true;
2667 MI.setDesc(TII.get(ARM::SUBri));
2670 // Common case: small offset, fits into instruction.
2671 if (ARM_AM::getSOImmVal(Offset) != -1) {
2672 // Replace the FrameIndex with sp / fp
2673 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2674 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2675 Offset = 0;
2676 return true;
2679 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2680 // as possible.
2681 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2682 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2684 // We will handle these bits from offset, clear them.
2685 Offset &= ~ThisImmVal;
2687 // Get the properly encoded SOImmVal field.
2688 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2689 "Bit extraction didn't work?");
2690 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2691 } else {
2692 unsigned ImmIdx = 0;
2693 int InstrOffs = 0;
2694 unsigned NumBits = 0;
2695 unsigned Scale = 1;
2696 switch (AddrMode) {
2697 case ARMII::AddrMode_i12:
2698 ImmIdx = FrameRegIdx + 1;
2699 InstrOffs = MI.getOperand(ImmIdx).getImm();
2700 NumBits = 12;
2701 break;
2702 case ARMII::AddrMode2:
2703 ImmIdx = FrameRegIdx+2;
2704 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2705 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2706 InstrOffs *= -1;
2707 NumBits = 12;
2708 break;
2709 case ARMII::AddrMode3:
2710 ImmIdx = FrameRegIdx+2;
2711 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2712 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2713 InstrOffs *= -1;
2714 NumBits = 8;
2715 break;
2716 case ARMII::AddrMode4:
2717 case ARMII::AddrMode6:
2718 // Can't fold any offset even if it's zero.
2719 return false;
2720 case ARMII::AddrMode5:
2721 ImmIdx = FrameRegIdx+1;
2722 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2723 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2724 InstrOffs *= -1;
2725 NumBits = 8;
2726 Scale = 4;
2727 break;
2728 case ARMII::AddrMode5FP16:
2729 ImmIdx = FrameRegIdx+1;
2730 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2731 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2732 InstrOffs *= -1;
2733 NumBits = 8;
2734 Scale = 2;
2735 break;
2736 case ARMII::AddrModeT2_i7:
2737 case ARMII::AddrModeT2_i7s2:
2738 case ARMII::AddrModeT2_i7s4:
2739 ImmIdx = FrameRegIdx+1;
2740 InstrOffs = MI.getOperand(ImmIdx).getImm();
2741 NumBits = 7;
2742 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2743 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2744 break;
2745 default:
2746 llvm_unreachable("Unsupported addressing mode!");
2749 Offset += InstrOffs * Scale;
2750 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2751 if (Offset < 0) {
2752 Offset = -Offset;
2753 isSub = true;
2756 // Attempt to fold address comp. if opcode has offset bits
2757 if (NumBits > 0) {
2758 // Common case: small offset, fits into instruction.
2759 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2760 int ImmedOffset = Offset / Scale;
2761 unsigned Mask = (1 << NumBits) - 1;
2762 if ((unsigned)Offset <= Mask * Scale) {
2763 // Replace the FrameIndex with sp
2764 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2765 // FIXME: When addrmode2 goes away, this will simplify (like the
2766 // T2 version), as the LDR.i12 versions don't need the encoding
2767 // tricks for the offset value.
2768 if (isSub) {
2769 if (AddrMode == ARMII::AddrMode_i12)
2770 ImmedOffset = -ImmedOffset;
2771 else
2772 ImmedOffset |= 1 << NumBits;
2774 ImmOp.ChangeToImmediate(ImmedOffset);
2775 Offset = 0;
2776 return true;
2779 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2780 ImmedOffset = ImmedOffset & Mask;
2781 if (isSub) {
2782 if (AddrMode == ARMII::AddrMode_i12)
2783 ImmedOffset = -ImmedOffset;
2784 else
2785 ImmedOffset |= 1 << NumBits;
2787 ImmOp.ChangeToImmediate(ImmedOffset);
2788 Offset &= ~(Mask*Scale);
2792 Offset = (isSub) ? -Offset : Offset;
2793 return Offset == 0;
2796 /// analyzeCompare - For a comparison instruction, return the source registers
2797 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2798 /// compares against in CmpValue. Return true if the comparison instruction
2799 /// can be analyzed.
2800 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2801 Register &SrcReg2, int &CmpMask,
2802 int &CmpValue) const {
2803 switch (MI.getOpcode()) {
2804 default: break;
2805 case ARM::CMPri:
2806 case ARM::t2CMPri:
2807 case ARM::tCMPi8:
2808 SrcReg = MI.getOperand(0).getReg();
2809 SrcReg2 = 0;
2810 CmpMask = ~0;
2811 CmpValue = MI.getOperand(1).getImm();
2812 return true;
2813 case ARM::CMPrr:
2814 case ARM::t2CMPrr:
2815 case ARM::tCMPr:
2816 SrcReg = MI.getOperand(0).getReg();
2817 SrcReg2 = MI.getOperand(1).getReg();
2818 CmpMask = ~0;
2819 CmpValue = 0;
2820 return true;
2821 case ARM::TSTri:
2822 case ARM::t2TSTri:
2823 SrcReg = MI.getOperand(0).getReg();
2824 SrcReg2 = 0;
2825 CmpMask = MI.getOperand(1).getImm();
2826 CmpValue = 0;
2827 return true;
2830 return false;
2833 /// isSuitableForMask - Identify a suitable 'and' instruction that
2834 /// operates on the given source register and applies the same mask
2835 /// as a 'tst' instruction. Provide a limited look-through for copies.
2836 /// When successful, MI will hold the found instruction.
2837 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2838 int CmpMask, bool CommonUse) {
2839 switch (MI->getOpcode()) {
2840 case ARM::ANDri:
2841 case ARM::t2ANDri:
2842 if (CmpMask != MI->getOperand(2).getImm())
2843 return false;
2844 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2845 return true;
2846 break;
2849 return false;
2852 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2853 /// the condition code if we modify the instructions such that flags are
2854 /// set by ADD(a,b,X).
2855 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2856 switch (CC) {
2857 default: return ARMCC::AL;
2858 case ARMCC::HS: return ARMCC::LO;
2859 case ARMCC::LO: return ARMCC::HS;
2860 case ARMCC::VS: return ARMCC::VS;
2861 case ARMCC::VC: return ARMCC::VC;
2865 /// isRedundantFlagInstr - check whether the first instruction, whose only
2866 /// purpose is to update flags, can be made redundant.
2867 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2868 /// CMPri can be made redundant by SUBri if the operands are the same.
2869 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2870 /// This function can be extended later on.
2871 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2872 Register SrcReg, Register SrcReg2,
2873 int ImmValue, const MachineInstr *OI,
2874 bool &IsThumb1) {
2875 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2876 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2877 ((OI->getOperand(1).getReg() == SrcReg &&
2878 OI->getOperand(2).getReg() == SrcReg2) ||
2879 (OI->getOperand(1).getReg() == SrcReg2 &&
2880 OI->getOperand(2).getReg() == SrcReg))) {
2881 IsThumb1 = false;
2882 return true;
2885 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2886 ((OI->getOperand(2).getReg() == SrcReg &&
2887 OI->getOperand(3).getReg() == SrcReg2) ||
2888 (OI->getOperand(2).getReg() == SrcReg2 &&
2889 OI->getOperand(3).getReg() == SrcReg))) {
2890 IsThumb1 = true;
2891 return true;
2894 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2895 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2896 OI->getOperand(1).getReg() == SrcReg &&
2897 OI->getOperand(2).getImm() == ImmValue) {
2898 IsThumb1 = false;
2899 return true;
2902 if (CmpI->getOpcode() == ARM::tCMPi8 &&
2903 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2904 OI->getOperand(2).getReg() == SrcReg &&
2905 OI->getOperand(3).getImm() == ImmValue) {
2906 IsThumb1 = true;
2907 return true;
2910 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2911 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2912 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2913 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2914 OI->getOperand(0).getReg() == SrcReg &&
2915 OI->getOperand(1).getReg() == SrcReg2) {
2916 IsThumb1 = false;
2917 return true;
2920 if (CmpI->getOpcode() == ARM::tCMPr &&
2921 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2922 OI->getOpcode() == ARM::tADDrr) &&
2923 OI->getOperand(0).getReg() == SrcReg &&
2924 OI->getOperand(2).getReg() == SrcReg2) {
2925 IsThumb1 = true;
2926 return true;
2929 return false;
2932 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2933 switch (MI->getOpcode()) {
2934 default: return false;
2935 case ARM::tLSLri:
2936 case ARM::tLSRri:
2937 case ARM::tLSLrr:
2938 case ARM::tLSRrr:
2939 case ARM::tSUBrr:
2940 case ARM::tADDrr:
2941 case ARM::tADDi3:
2942 case ARM::tADDi8:
2943 case ARM::tSUBi3:
2944 case ARM::tSUBi8:
2945 case ARM::tMUL:
2946 case ARM::tADC:
2947 case ARM::tSBC:
2948 case ARM::tRSB:
2949 case ARM::tAND:
2950 case ARM::tORR:
2951 case ARM::tEOR:
2952 case ARM::tBIC:
2953 case ARM::tMVN:
2954 case ARM::tASRri:
2955 case ARM::tASRrr:
2956 case ARM::tROR:
2957 IsThumb1 = true;
2958 LLVM_FALLTHROUGH;
2959 case ARM::RSBrr:
2960 case ARM::RSBri:
2961 case ARM::RSCrr:
2962 case ARM::RSCri:
2963 case ARM::ADDrr:
2964 case ARM::ADDri:
2965 case ARM::ADCrr:
2966 case ARM::ADCri:
2967 case ARM::SUBrr:
2968 case ARM::SUBri:
2969 case ARM::SBCrr:
2970 case ARM::SBCri:
2971 case ARM::t2RSBri:
2972 case ARM::t2ADDrr:
2973 case ARM::t2ADDri:
2974 case ARM::t2ADCrr:
2975 case ARM::t2ADCri:
2976 case ARM::t2SUBrr:
2977 case ARM::t2SUBri:
2978 case ARM::t2SBCrr:
2979 case ARM::t2SBCri:
2980 case ARM::ANDrr:
2981 case ARM::ANDri:
2982 case ARM::t2ANDrr:
2983 case ARM::t2ANDri:
2984 case ARM::ORRrr:
2985 case ARM::ORRri:
2986 case ARM::t2ORRrr:
2987 case ARM::t2ORRri:
2988 case ARM::EORrr:
2989 case ARM::EORri:
2990 case ARM::t2EORrr:
2991 case ARM::t2EORri:
2992 case ARM::t2LSRri:
2993 case ARM::t2LSRrr:
2994 case ARM::t2LSLri:
2995 case ARM::t2LSLrr:
2996 return true;
3000 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
3001 /// comparison into one that sets the zero bit in the flags register;
3002 /// Remove a redundant Compare instruction if an earlier instruction can set the
3003 /// flags in the same way as Compare.
3004 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3005 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3006 /// condition code of instructions which use the flags.
3007 bool ARMBaseInstrInfo::optimizeCompareInstr(
3008 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask,
3009 int CmpValue, const MachineRegisterInfo *MRI) const {
3010 // Get the unique definition of SrcReg.
3011 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3012 if (!MI) return false;
3014 // Masked compares sometimes use the same register as the corresponding 'and'.
3015 if (CmpMask != ~0) {
3016 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3017 MI = nullptr;
3018 for (MachineRegisterInfo::use_instr_iterator
3019 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3020 UI != UE; ++UI) {
3021 if (UI->getParent() != CmpInstr.getParent())
3022 continue;
3023 MachineInstr *PotentialAND = &*UI;
3024 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3025 isPredicated(*PotentialAND))
3026 continue;
3027 MI = PotentialAND;
3028 break;
3030 if (!MI) return false;
3034 // Get ready to iterate backward from CmpInstr.
3035 MachineBasicBlock::iterator I = CmpInstr, E = MI,
3036 B = CmpInstr.getParent()->begin();
3038 // Early exit if CmpInstr is at the beginning of the BB.
3039 if (I == B) return false;
3041 // There are two possible candidates which can be changed to set CPSR:
3042 // One is MI, the other is a SUB or ADD instruction.
3043 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3044 // ADDr[ri](r1, r2, X).
3045 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3046 MachineInstr *SubAdd = nullptr;
3047 if (SrcReg2 != 0)
3048 // MI is not a candidate for CMPrr.
3049 MI = nullptr;
3050 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3051 // Conservatively refuse to convert an instruction which isn't in the same
3052 // BB as the comparison.
3053 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3054 // Thus we cannot return here.
3055 if (CmpInstr.getOpcode() == ARM::CMPri ||
3056 CmpInstr.getOpcode() == ARM::t2CMPri ||
3057 CmpInstr.getOpcode() == ARM::tCMPi8)
3058 MI = nullptr;
3059 else
3060 return false;
3063 bool IsThumb1 = false;
3064 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3065 return false;
3067 // We also want to do this peephole for cases like this: if (a*b == 0),
3068 // and optimise away the CMP instruction from the generated code sequence:
3069 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3070 // resulting from the select instruction, but these MOVS instructions for
3071 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3072 // However, if we only have MOVS instructions in between the CMP and the
3073 // other instruction (the MULS in this example), then the CPSR is dead so we
3074 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3075 // reordering and then continue the analysis hoping we can eliminate the
3076 // CMP. This peephole works on the vregs, so is still in SSA form. As a
3077 // consequence, the movs won't redefine/kill the MUL operands which would
3078 // make this reordering illegal.
3079 const TargetRegisterInfo *TRI = &getRegisterInfo();
3080 if (MI && IsThumb1) {
3081 --I;
3082 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3083 bool CanReorder = true;
3084 for (; I != E; --I) {
3085 if (I->getOpcode() != ARM::tMOVi8) {
3086 CanReorder = false;
3087 break;
3090 if (CanReorder) {
3091 MI = MI->removeFromParent();
3092 E = CmpInstr;
3093 CmpInstr.getParent()->insert(E, MI);
3096 I = CmpInstr;
3097 E = MI;
3100 // Check that CPSR isn't set between the comparison instruction and the one we
3101 // want to change. At the same time, search for SubAdd.
3102 bool SubAddIsThumb1 = false;
3103 do {
3104 const MachineInstr &Instr = *--I;
3106 // Check whether CmpInstr can be made redundant by the current instruction.
3107 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3108 SubAddIsThumb1)) {
3109 SubAdd = &*I;
3110 break;
3113 // Allow E (which was initially MI) to be SubAdd but do not search before E.
3114 if (I == E)
3115 break;
3117 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3118 Instr.readsRegister(ARM::CPSR, TRI))
3119 // This instruction modifies or uses CPSR after the one we want to
3120 // change. We can't do this transformation.
3121 return false;
3123 if (I == B) {
3124 // In some cases, we scan the use-list of an instruction for an AND;
3125 // that AND is in the same BB, but may not be scheduled before the
3126 // corresponding TST. In that case, bail out.
3128 // FIXME: We could try to reschedule the AND.
3129 return false;
3131 } while (true);
3133 // Return false if no candidates exist.
3134 if (!MI && !SubAdd)
3135 return false;
3137 // If we found a SubAdd, use it as it will be closer to the CMP
3138 if (SubAdd) {
3139 MI = SubAdd;
3140 IsThumb1 = SubAddIsThumb1;
3143 // We can't use a predicated instruction - it doesn't always write the flags.
3144 if (isPredicated(*MI))
3145 return false;
3147 // Scan forward for the use of CPSR
3148 // When checking against MI: if it's a conditional code that requires
3149 // checking of the V bit or C bit, then this is not safe to do.
3150 // It is safe to remove CmpInstr if CPSR is redefined or killed.
3151 // If we are done with the basic block, we need to check whether CPSR is
3152 // live-out.
3153 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3154 OperandsToUpdate;
3155 bool isSafe = false;
3156 I = CmpInstr;
3157 E = CmpInstr.getParent()->end();
3158 while (!isSafe && ++I != E) {
3159 const MachineInstr &Instr = *I;
3160 for (unsigned IO = 0, EO = Instr.getNumOperands();
3161 !isSafe && IO != EO; ++IO) {
3162 const MachineOperand &MO = Instr.getOperand(IO);
3163 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3164 isSafe = true;
3165 break;
3167 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3168 continue;
3169 if (MO.isDef()) {
3170 isSafe = true;
3171 break;
3173 // Condition code is after the operand before CPSR except for VSELs.
3174 ARMCC::CondCodes CC;
3175 bool IsInstrVSel = true;
3176 switch (Instr.getOpcode()) {
3177 default:
3178 IsInstrVSel = false;
3179 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3180 break;
3181 case ARM::VSELEQD:
3182 case ARM::VSELEQS:
3183 case ARM::VSELEQH:
3184 CC = ARMCC::EQ;
3185 break;
3186 case ARM::VSELGTD:
3187 case ARM::VSELGTS:
3188 case ARM::VSELGTH:
3189 CC = ARMCC::GT;
3190 break;
3191 case ARM::VSELGED:
3192 case ARM::VSELGES:
3193 case ARM::VSELGEH:
3194 CC = ARMCC::GE;
3195 break;
3196 case ARM::VSELVSD:
3197 case ARM::VSELVSS:
3198 case ARM::VSELVSH:
3199 CC = ARMCC::VS;
3200 break;
3203 if (SubAdd) {
3204 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3205 // on CMP needs to be updated to be based on SUB.
3206 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3207 // needs to be modified.
3208 // Push the condition code operands to OperandsToUpdate.
3209 // If it is safe to remove CmpInstr, the condition code of these
3210 // operands will be modified.
3211 unsigned Opc = SubAdd->getOpcode();
3212 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3213 Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3214 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3215 Opc == ARM::tSUBi8;
3216 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3217 if (!IsSub ||
3218 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3219 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3220 // VSel doesn't support condition code update.
3221 if (IsInstrVSel)
3222 return false;
3223 // Ensure we can swap the condition.
3224 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3225 if (NewCC == ARMCC::AL)
3226 return false;
3227 OperandsToUpdate.push_back(
3228 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3230 } else {
3231 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3232 switch (CC) {
3233 case ARMCC::EQ: // Z
3234 case ARMCC::NE: // Z
3235 case ARMCC::MI: // N
3236 case ARMCC::PL: // N
3237 case ARMCC::AL: // none
3238 // CPSR can be used multiple times, we should continue.
3239 break;
3240 case ARMCC::HS: // C
3241 case ARMCC::LO: // C
3242 case ARMCC::VS: // V
3243 case ARMCC::VC: // V
3244 case ARMCC::HI: // C Z
3245 case ARMCC::LS: // C Z
3246 case ARMCC::GE: // N V
3247 case ARMCC::LT: // N V
3248 case ARMCC::GT: // Z N V
3249 case ARMCC::LE: // Z N V
3250 // The instruction uses the V bit or C bit which is not safe.
3251 return false;
3257 // If CPSR is not killed nor re-defined, we should check whether it is
3258 // live-out. If it is live-out, do not optimize.
3259 if (!isSafe) {
3260 MachineBasicBlock *MBB = CmpInstr.getParent();
3261 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3262 SE = MBB->succ_end(); SI != SE; ++SI)
3263 if ((*SI)->isLiveIn(ARM::CPSR))
3264 return false;
3267 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3268 // set CPSR so this is represented as an explicit output)
3269 if (!IsThumb1) {
3270 MI->getOperand(5).setReg(ARM::CPSR);
3271 MI->getOperand(5).setIsDef(true);
3273 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3274 CmpInstr.eraseFromParent();
3276 // Modify the condition code of operands in OperandsToUpdate.
3277 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3278 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3279 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3280 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3282 MI->clearRegisterDeads(ARM::CPSR);
3284 return true;
3287 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3288 // Do not sink MI if it might be used to optimize a redundant compare.
3289 // We heuristically only look at the instruction immediately following MI to
3290 // avoid potentially searching the entire basic block.
3291 if (isPredicated(MI))
3292 return true;
3293 MachineBasicBlock::const_iterator Next = &MI;
3294 ++Next;
3295 Register SrcReg, SrcReg2;
3296 int CmpMask, CmpValue;
3297 bool IsThumb1;
3298 if (Next != MI.getParent()->end() &&
3299 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3300 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3301 return false;
3302 return true;
3305 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3306 Register Reg,
3307 MachineRegisterInfo *MRI) const {
3308 // Fold large immediates into add, sub, or, xor.
3309 unsigned DefOpc = DefMI.getOpcode();
3310 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3311 return false;
3312 if (!DefMI.getOperand(1).isImm())
3313 // Could be t2MOVi32imm @xx
3314 return false;
3316 if (!MRI->hasOneNonDBGUse(Reg))
3317 return false;
3319 const MCInstrDesc &DefMCID = DefMI.getDesc();
3320 if (DefMCID.hasOptionalDef()) {
3321 unsigned NumOps = DefMCID.getNumOperands();
3322 const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3323 if (MO.getReg() == ARM::CPSR && !MO.isDead())
3324 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3325 // to delete DefMI.
3326 return false;
3329 const MCInstrDesc &UseMCID = UseMI.getDesc();
3330 if (UseMCID.hasOptionalDef()) {
3331 unsigned NumOps = UseMCID.getNumOperands();
3332 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3333 // If the instruction sets the flag, do not attempt this optimization
3334 // since it may change the semantics of the code.
3335 return false;
3338 unsigned UseOpc = UseMI.getOpcode();
3339 unsigned NewUseOpc = 0;
3340 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3341 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3342 bool Commute = false;
3343 switch (UseOpc) {
3344 default: return false;
3345 case ARM::SUBrr:
3346 case ARM::ADDrr:
3347 case ARM::ORRrr:
3348 case ARM::EORrr:
3349 case ARM::t2SUBrr:
3350 case ARM::t2ADDrr:
3351 case ARM::t2ORRrr:
3352 case ARM::t2EORrr: {
3353 Commute = UseMI.getOperand(2).getReg() != Reg;
3354 switch (UseOpc) {
3355 default: break;
3356 case ARM::ADDrr:
3357 case ARM::SUBrr:
3358 if (UseOpc == ARM::SUBrr && Commute)
3359 return false;
3361 // ADD/SUB are special because they're essentially the same operation, so
3362 // we can handle a larger range of immediates.
3363 if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3364 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3365 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3366 ImmVal = -ImmVal;
3367 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3368 } else
3369 return false;
3370 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3371 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3372 break;
3373 case ARM::ORRrr:
3374 case ARM::EORrr:
3375 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3376 return false;
3377 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3378 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3379 switch (UseOpc) {
3380 default: break;
3381 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3382 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3384 break;
3385 case ARM::t2ADDrr:
3386 case ARM::t2SUBrr: {
3387 if (UseOpc == ARM::t2SUBrr && Commute)
3388 return false;
3390 // ADD/SUB are special because they're essentially the same operation, so
3391 // we can handle a larger range of immediates.
3392 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3393 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3394 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3395 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3396 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3397 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3398 ImmVal = -ImmVal;
3399 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3400 } else
3401 return false;
3402 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3403 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3404 break;
3406 case ARM::t2ORRrr:
3407 case ARM::t2EORrr:
3408 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3409 return false;
3410 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3411 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3412 switch (UseOpc) {
3413 default: break;
3414 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3415 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3417 break;
3422 unsigned OpIdx = Commute ? 2 : 1;
3423 Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3424 bool isKill = UseMI.getOperand(OpIdx).isKill();
3425 const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3426 Register NewReg = MRI->createVirtualRegister(TRC);
3427 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3428 NewReg)
3429 .addReg(Reg1, getKillRegState(isKill))
3430 .addImm(SOImmValV1)
3431 .add(predOps(ARMCC::AL))
3432 .add(condCodeOp());
3433 UseMI.setDesc(get(NewUseOpc));
3434 UseMI.getOperand(1).setReg(NewReg);
3435 UseMI.getOperand(1).setIsKill();
3436 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3437 DefMI.eraseFromParent();
3438 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3439 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3440 // Then the below code will not be needed, as the input/output register
3441 // classes will be rgpr or gprSP.
3442 // For now, we fix the UseMI operand explicitly here:
3443 switch(NewUseOpc){
3444 case ARM::t2ADDspImm:
3445 case ARM::t2SUBspImm:
3446 case ARM::t2ADDri:
3447 case ARM::t2SUBri:
3448 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3450 return true;
3453 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3454 const MachineInstr &MI) {
3455 switch (MI.getOpcode()) {
3456 default: {
3457 const MCInstrDesc &Desc = MI.getDesc();
3458 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3459 assert(UOps >= 0 && "bad # UOps");
3460 return UOps;
3463 case ARM::LDRrs:
3464 case ARM::LDRBrs:
3465 case ARM::STRrs:
3466 case ARM::STRBrs: {
3467 unsigned ShOpVal = MI.getOperand(3).getImm();
3468 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3469 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3470 if (!isSub &&
3471 (ShImm == 0 ||
3472 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3473 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3474 return 1;
3475 return 2;
3478 case ARM::LDRH:
3479 case ARM::STRH: {
3480 if (!MI.getOperand(2).getReg())
3481 return 1;
3483 unsigned ShOpVal = MI.getOperand(3).getImm();
3484 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3485 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3486 if (!isSub &&
3487 (ShImm == 0 ||
3488 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3489 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3490 return 1;
3491 return 2;
3494 case ARM::LDRSB:
3495 case ARM::LDRSH:
3496 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3498 case ARM::LDRSB_POST:
3499 case ARM::LDRSH_POST: {
3500 Register Rt = MI.getOperand(0).getReg();
3501 Register Rm = MI.getOperand(3).getReg();
3502 return (Rt == Rm) ? 4 : 3;
3505 case ARM::LDR_PRE_REG:
3506 case ARM::LDRB_PRE_REG: {
3507 Register Rt = MI.getOperand(0).getReg();
3508 Register Rm = MI.getOperand(3).getReg();
3509 if (Rt == Rm)
3510 return 3;
3511 unsigned ShOpVal = MI.getOperand(4).getImm();
3512 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3513 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3514 if (!isSub &&
3515 (ShImm == 0 ||
3516 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3517 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3518 return 2;
3519 return 3;
3522 case ARM::STR_PRE_REG:
3523 case ARM::STRB_PRE_REG: {
3524 unsigned ShOpVal = MI.getOperand(4).getImm();
3525 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3526 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3527 if (!isSub &&
3528 (ShImm == 0 ||
3529 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3530 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3531 return 2;
3532 return 3;
3535 case ARM::LDRH_PRE:
3536 case ARM::STRH_PRE: {
3537 Register Rt = MI.getOperand(0).getReg();
3538 Register Rm = MI.getOperand(3).getReg();
3539 if (!Rm)
3540 return 2;
3541 if (Rt == Rm)
3542 return 3;
3543 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3546 case ARM::LDR_POST_REG:
3547 case ARM::LDRB_POST_REG:
3548 case ARM::LDRH_POST: {
3549 Register Rt = MI.getOperand(0).getReg();
3550 Register Rm = MI.getOperand(3).getReg();
3551 return (Rt == Rm) ? 3 : 2;
3554 case ARM::LDR_PRE_IMM:
3555 case ARM::LDRB_PRE_IMM:
3556 case ARM::LDR_POST_IMM:
3557 case ARM::LDRB_POST_IMM:
3558 case ARM::STRB_POST_IMM:
3559 case ARM::STRB_POST_REG:
3560 case ARM::STRB_PRE_IMM:
3561 case ARM::STRH_POST:
3562 case ARM::STR_POST_IMM:
3563 case ARM::STR_POST_REG:
3564 case ARM::STR_PRE_IMM:
3565 return 2;
3567 case ARM::LDRSB_PRE:
3568 case ARM::LDRSH_PRE: {
3569 Register Rm = MI.getOperand(3).getReg();
3570 if (Rm == 0)
3571 return 3;
3572 Register Rt = MI.getOperand(0).getReg();
3573 if (Rt == Rm)
3574 return 4;
3575 unsigned ShOpVal = MI.getOperand(4).getImm();
3576 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3577 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3578 if (!isSub &&
3579 (ShImm == 0 ||
3580 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3581 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3582 return 3;
3583 return 4;
3586 case ARM::LDRD: {
3587 Register Rt = MI.getOperand(0).getReg();
3588 Register Rn = MI.getOperand(2).getReg();
3589 Register Rm = MI.getOperand(3).getReg();
3590 if (Rm)
3591 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3592 : 3;
3593 return (Rt == Rn) ? 3 : 2;
3596 case ARM::STRD: {
3597 Register Rm = MI.getOperand(3).getReg();
3598 if (Rm)
3599 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3600 : 3;
3601 return 2;
3604 case ARM::LDRD_POST:
3605 case ARM::t2LDRD_POST:
3606 return 3;
3608 case ARM::STRD_POST:
3609 case ARM::t2STRD_POST:
3610 return 4;
3612 case ARM::LDRD_PRE: {
3613 Register Rt = MI.getOperand(0).getReg();
3614 Register Rn = MI.getOperand(3).getReg();
3615 Register Rm = MI.getOperand(4).getReg();
3616 if (Rm)
3617 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3618 : 4;
3619 return (Rt == Rn) ? 4 : 3;
3622 case ARM::t2LDRD_PRE: {
3623 Register Rt = MI.getOperand(0).getReg();
3624 Register Rn = MI.getOperand(3).getReg();
3625 return (Rt == Rn) ? 4 : 3;
3628 case ARM::STRD_PRE: {
3629 Register Rm = MI.getOperand(4).getReg();
3630 if (Rm)
3631 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3632 : 4;
3633 return 3;
3636 case ARM::t2STRD_PRE:
3637 return 3;
3639 case ARM::t2LDR_POST:
3640 case ARM::t2LDRB_POST:
3641 case ARM::t2LDRB_PRE:
3642 case ARM::t2LDRSBi12:
3643 case ARM::t2LDRSBi8:
3644 case ARM::t2LDRSBpci:
3645 case ARM::t2LDRSBs:
3646 case ARM::t2LDRH_POST:
3647 case ARM::t2LDRH_PRE:
3648 case ARM::t2LDRSBT:
3649 case ARM::t2LDRSB_POST:
3650 case ARM::t2LDRSB_PRE:
3651 case ARM::t2LDRSH_POST:
3652 case ARM::t2LDRSH_PRE:
3653 case ARM::t2LDRSHi12:
3654 case ARM::t2LDRSHi8:
3655 case ARM::t2LDRSHpci:
3656 case ARM::t2LDRSHs:
3657 return 2;
3659 case ARM::t2LDRDi8: {
3660 Register Rt = MI.getOperand(0).getReg();
3661 Register Rn = MI.getOperand(2).getReg();
3662 return (Rt == Rn) ? 3 : 2;
3665 case ARM::t2STRB_POST:
3666 case ARM::t2STRB_PRE:
3667 case ARM::t2STRBs:
3668 case ARM::t2STRDi8:
3669 case ARM::t2STRH_POST:
3670 case ARM::t2STRH_PRE:
3671 case ARM::t2STRHs:
3672 case ARM::t2STR_POST:
3673 case ARM::t2STR_PRE:
3674 case ARM::t2STRs:
3675 return 2;
3679 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3680 // can't be easily determined return 0 (missing MachineMemOperand).
3682 // FIXME: The current MachineInstr design does not support relying on machine
3683 // mem operands to determine the width of a memory access. Instead, we expect
3684 // the target to provide this information based on the instruction opcode and
3685 // operands. However, using MachineMemOperand is the best solution now for
3686 // two reasons:
3688 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3689 // operands. This is much more dangerous than using the MachineMemOperand
3690 // sizes because CodeGen passes can insert/remove optional machine operands. In
3691 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3692 // postRA passes as well.
3694 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3695 // machine model that calls this should handle the unknown (zero size) case.
3697 // Long term, we should require a target hook that verifies MachineMemOperand
3698 // sizes during MC lowering. That target hook should be local to MC lowering
3699 // because we can't ensure that it is aware of other MI forms. Doing this will
3700 // ensure that MachineMemOperands are correctly propagated through all passes.
3701 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3702 unsigned Size = 0;
3703 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3704 E = MI.memoperands_end();
3705 I != E; ++I) {
3706 Size += (*I)->getSize();
3708 // FIXME: The scheduler currently can't handle values larger than 16. But
3709 // the values can actually go up to 32 for floating-point load/store
3710 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3711 // operations isn't right; we could end up with "extra" memory operands for
3712 // various reasons, like tail merge merging two memory operations.
3713 return std::min(Size / 4, 16U);
3716 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3717 unsigned NumRegs) {
3718 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3719 switch (Opc) {
3720 default:
3721 break;
3722 case ARM::VLDMDIA_UPD:
3723 case ARM::VLDMDDB_UPD:
3724 case ARM::VLDMSIA_UPD:
3725 case ARM::VLDMSDB_UPD:
3726 case ARM::VSTMDIA_UPD:
3727 case ARM::VSTMDDB_UPD:
3728 case ARM::VSTMSIA_UPD:
3729 case ARM::VSTMSDB_UPD:
3730 case ARM::LDMIA_UPD:
3731 case ARM::LDMDA_UPD:
3732 case ARM::LDMDB_UPD:
3733 case ARM::LDMIB_UPD:
3734 case ARM::STMIA_UPD:
3735 case ARM::STMDA_UPD:
3736 case ARM::STMDB_UPD:
3737 case ARM::STMIB_UPD:
3738 case ARM::tLDMIA_UPD:
3739 case ARM::tSTMIA_UPD:
3740 case ARM::t2LDMIA_UPD:
3741 case ARM::t2LDMDB_UPD:
3742 case ARM::t2STMIA_UPD:
3743 case ARM::t2STMDB_UPD:
3744 ++UOps; // One for base register writeback.
3745 break;
3746 case ARM::LDMIA_RET:
3747 case ARM::tPOP_RET:
3748 case ARM::t2LDMIA_RET:
3749 UOps += 2; // One for base reg wb, one for write to pc.
3750 break;
3752 return UOps;
3755 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3756 const MachineInstr &MI) const {
3757 if (!ItinData || ItinData->isEmpty())
3758 return 1;
3760 const MCInstrDesc &Desc = MI.getDesc();
3761 unsigned Class = Desc.getSchedClass();
3762 int ItinUOps = ItinData->getNumMicroOps(Class);
3763 if (ItinUOps >= 0) {
3764 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3765 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3767 return ItinUOps;
3770 unsigned Opc = MI.getOpcode();
3771 switch (Opc) {
3772 default:
3773 llvm_unreachable("Unexpected multi-uops instruction!");
3774 case ARM::VLDMQIA:
3775 case ARM::VSTMQIA:
3776 return 2;
3778 // The number of uOps for load / store multiple are determined by the number
3779 // registers.
3781 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3782 // same cycle. The scheduling for the first load / store must be done
3783 // separately by assuming the address is not 64-bit aligned.
3785 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3786 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3787 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3788 case ARM::VLDMDIA:
3789 case ARM::VLDMDIA_UPD:
3790 case ARM::VLDMDDB_UPD:
3791 case ARM::VLDMSIA:
3792 case ARM::VLDMSIA_UPD:
3793 case ARM::VLDMSDB_UPD:
3794 case ARM::VSTMDIA:
3795 case ARM::VSTMDIA_UPD:
3796 case ARM::VSTMDDB_UPD:
3797 case ARM::VSTMSIA:
3798 case ARM::VSTMSIA_UPD:
3799 case ARM::VSTMSDB_UPD: {
3800 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3801 return (NumRegs / 2) + (NumRegs % 2) + 1;
3804 case ARM::LDMIA_RET:
3805 case ARM::LDMIA:
3806 case ARM::LDMDA:
3807 case ARM::LDMDB:
3808 case ARM::LDMIB:
3809 case ARM::LDMIA_UPD:
3810 case ARM::LDMDA_UPD:
3811 case ARM::LDMDB_UPD:
3812 case ARM::LDMIB_UPD:
3813 case ARM::STMIA:
3814 case ARM::STMDA:
3815 case ARM::STMDB:
3816 case ARM::STMIB:
3817 case ARM::STMIA_UPD:
3818 case ARM::STMDA_UPD:
3819 case ARM::STMDB_UPD:
3820 case ARM::STMIB_UPD:
3821 case ARM::tLDMIA:
3822 case ARM::tLDMIA_UPD:
3823 case ARM::tSTMIA_UPD:
3824 case ARM::tPOP_RET:
3825 case ARM::tPOP:
3826 case ARM::tPUSH:
3827 case ARM::t2LDMIA_RET:
3828 case ARM::t2LDMIA:
3829 case ARM::t2LDMDB:
3830 case ARM::t2LDMIA_UPD:
3831 case ARM::t2LDMDB_UPD:
3832 case ARM::t2STMIA:
3833 case ARM::t2STMDB:
3834 case ARM::t2STMIA_UPD:
3835 case ARM::t2STMDB_UPD: {
3836 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3837 switch (Subtarget.getLdStMultipleTiming()) {
3838 case ARMSubtarget::SingleIssuePlusExtras:
3839 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3840 case ARMSubtarget::SingleIssue:
3841 // Assume the worst.
3842 return NumRegs;
3843 case ARMSubtarget::DoubleIssue: {
3844 if (NumRegs < 4)
3845 return 2;
3846 // 4 registers would be issued: 2, 2.
3847 // 5 registers would be issued: 2, 2, 1.
3848 unsigned UOps = (NumRegs / 2);
3849 if (NumRegs % 2)
3850 ++UOps;
3851 return UOps;
3853 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3854 unsigned UOps = (NumRegs / 2);
3855 // If there are odd number of registers or if it's not 64-bit aligned,
3856 // then it takes an extra AGU (Address Generation Unit) cycle.
3857 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3858 (*MI.memoperands_begin())->getAlign() < Align(8))
3859 ++UOps;
3860 return UOps;
3865 llvm_unreachable("Didn't find the number of microops");
3869 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3870 const MCInstrDesc &DefMCID,
3871 unsigned DefClass,
3872 unsigned DefIdx, unsigned DefAlign) const {
3873 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3874 if (RegNo <= 0)
3875 // Def is the address writeback.
3876 return ItinData->getOperandCycle(DefClass, DefIdx);
3878 int DefCycle;
3879 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3880 // (regno / 2) + (regno % 2) + 1
3881 DefCycle = RegNo / 2 + 1;
3882 if (RegNo % 2)
3883 ++DefCycle;
3884 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3885 DefCycle = RegNo;
3886 bool isSLoad = false;
3888 switch (DefMCID.getOpcode()) {
3889 default: break;
3890 case ARM::VLDMSIA:
3891 case ARM::VLDMSIA_UPD:
3892 case ARM::VLDMSDB_UPD:
3893 isSLoad = true;
3894 break;
3897 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3898 // then it takes an extra cycle.
3899 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3900 ++DefCycle;
3901 } else {
3902 // Assume the worst.
3903 DefCycle = RegNo + 2;
3906 return DefCycle;
3910 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3911 const MCInstrDesc &DefMCID,
3912 unsigned DefClass,
3913 unsigned DefIdx, unsigned DefAlign) const {
3914 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3915 if (RegNo <= 0)
3916 // Def is the address writeback.
3917 return ItinData->getOperandCycle(DefClass, DefIdx);
3919 int DefCycle;
3920 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3921 // 4 registers would be issued: 1, 2, 1.
3922 // 5 registers would be issued: 1, 2, 2.
3923 DefCycle = RegNo / 2;
3924 if (DefCycle < 1)
3925 DefCycle = 1;
3926 // Result latency is issue cycle + 2: E2.
3927 DefCycle += 2;
3928 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3929 DefCycle = (RegNo / 2);
3930 // If there are odd number of registers or if it's not 64-bit aligned,
3931 // then it takes an extra AGU (Address Generation Unit) cycle.
3932 if ((RegNo % 2) || DefAlign < 8)
3933 ++DefCycle;
3934 // Result latency is AGU cycles + 2.
3935 DefCycle += 2;
3936 } else {
3937 // Assume the worst.
3938 DefCycle = RegNo + 2;
3941 return DefCycle;
3945 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3946 const MCInstrDesc &UseMCID,
3947 unsigned UseClass,
3948 unsigned UseIdx, unsigned UseAlign) const {
3949 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3950 if (RegNo <= 0)
3951 return ItinData->getOperandCycle(UseClass, UseIdx);
3953 int UseCycle;
3954 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3955 // (regno / 2) + (regno % 2) + 1
3956 UseCycle = RegNo / 2 + 1;
3957 if (RegNo % 2)
3958 ++UseCycle;
3959 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3960 UseCycle = RegNo;
3961 bool isSStore = false;
3963 switch (UseMCID.getOpcode()) {
3964 default: break;
3965 case ARM::VSTMSIA:
3966 case ARM::VSTMSIA_UPD:
3967 case ARM::VSTMSDB_UPD:
3968 isSStore = true;
3969 break;
3972 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3973 // then it takes an extra cycle.
3974 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3975 ++UseCycle;
3976 } else {
3977 // Assume the worst.
3978 UseCycle = RegNo + 2;
3981 return UseCycle;
3985 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3986 const MCInstrDesc &UseMCID,
3987 unsigned UseClass,
3988 unsigned UseIdx, unsigned UseAlign) const {
3989 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3990 if (RegNo <= 0)
3991 return ItinData->getOperandCycle(UseClass, UseIdx);
3993 int UseCycle;
3994 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3995 UseCycle = RegNo / 2;
3996 if (UseCycle < 2)
3997 UseCycle = 2;
3998 // Read in E3.
3999 UseCycle += 2;
4000 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4001 UseCycle = (RegNo / 2);
4002 // If there are odd number of registers or if it's not 64-bit aligned,
4003 // then it takes an extra AGU (Address Generation Unit) cycle.
4004 if ((RegNo % 2) || UseAlign < 8)
4005 ++UseCycle;
4006 } else {
4007 // Assume the worst.
4008 UseCycle = 1;
4010 return UseCycle;
4014 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4015 const MCInstrDesc &DefMCID,
4016 unsigned DefIdx, unsigned DefAlign,
4017 const MCInstrDesc &UseMCID,
4018 unsigned UseIdx, unsigned UseAlign) const {
4019 unsigned DefClass = DefMCID.getSchedClass();
4020 unsigned UseClass = UseMCID.getSchedClass();
4022 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4023 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4025 // This may be a def / use of a variable_ops instruction, the operand
4026 // latency might be determinable dynamically. Let the target try to
4027 // figure it out.
4028 int DefCycle = -1;
4029 bool LdmBypass = false;
4030 switch (DefMCID.getOpcode()) {
4031 default:
4032 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4033 break;
4035 case ARM::VLDMDIA:
4036 case ARM::VLDMDIA_UPD:
4037 case ARM::VLDMDDB_UPD:
4038 case ARM::VLDMSIA:
4039 case ARM::VLDMSIA_UPD:
4040 case ARM::VLDMSDB_UPD:
4041 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4042 break;
4044 case ARM::LDMIA_RET:
4045 case ARM::LDMIA:
4046 case ARM::LDMDA:
4047 case ARM::LDMDB:
4048 case ARM::LDMIB:
4049 case ARM::LDMIA_UPD:
4050 case ARM::LDMDA_UPD:
4051 case ARM::LDMDB_UPD:
4052 case ARM::LDMIB_UPD:
4053 case ARM::tLDMIA:
4054 case ARM::tLDMIA_UPD:
4055 case ARM::tPUSH:
4056 case ARM::t2LDMIA_RET:
4057 case ARM::t2LDMIA:
4058 case ARM::t2LDMDB:
4059 case ARM::t2LDMIA_UPD:
4060 case ARM::t2LDMDB_UPD:
4061 LdmBypass = true;
4062 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4063 break;
4066 if (DefCycle == -1)
4067 // We can't seem to determine the result latency of the def, assume it's 2.
4068 DefCycle = 2;
4070 int UseCycle = -1;
4071 switch (UseMCID.getOpcode()) {
4072 default:
4073 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4074 break;
4076 case ARM::VSTMDIA:
4077 case ARM::VSTMDIA_UPD:
4078 case ARM::VSTMDDB_UPD:
4079 case ARM::VSTMSIA:
4080 case ARM::VSTMSIA_UPD:
4081 case ARM::VSTMSDB_UPD:
4082 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4083 break;
4085 case ARM::STMIA:
4086 case ARM::STMDA:
4087 case ARM::STMDB:
4088 case ARM::STMIB:
4089 case ARM::STMIA_UPD:
4090 case ARM::STMDA_UPD:
4091 case ARM::STMDB_UPD:
4092 case ARM::STMIB_UPD:
4093 case ARM::tSTMIA_UPD:
4094 case ARM::tPOP_RET:
4095 case ARM::tPOP:
4096 case ARM::t2STMIA:
4097 case ARM::t2STMDB:
4098 case ARM::t2STMIA_UPD:
4099 case ARM::t2STMDB_UPD:
4100 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4101 break;
4104 if (UseCycle == -1)
4105 // Assume it's read in the first stage.
4106 UseCycle = 1;
4108 UseCycle = DefCycle - UseCycle + 1;
4109 if (UseCycle > 0) {
4110 if (LdmBypass) {
4111 // It's a variable_ops instruction so we can't use DefIdx here. Just use
4112 // first def operand.
4113 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4114 UseClass, UseIdx))
4115 --UseCycle;
4116 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4117 UseClass, UseIdx)) {
4118 --UseCycle;
4122 return UseCycle;
4125 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4126 const MachineInstr *MI, unsigned Reg,
4127 unsigned &DefIdx, unsigned &Dist) {
4128 Dist = 0;
4130 MachineBasicBlock::const_iterator I = MI; ++I;
4131 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4132 assert(II->isInsideBundle() && "Empty bundle?");
4134 int Idx = -1;
4135 while (II->isInsideBundle()) {
4136 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4137 if (Idx != -1)
4138 break;
4139 --II;
4140 ++Dist;
4143 assert(Idx != -1 && "Cannot find bundled definition!");
4144 DefIdx = Idx;
4145 return &*II;
4148 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4149 const MachineInstr &MI, unsigned Reg,
4150 unsigned &UseIdx, unsigned &Dist) {
4151 Dist = 0;
4153 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4154 assert(II->isInsideBundle() && "Empty bundle?");
4155 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4157 // FIXME: This doesn't properly handle multiple uses.
4158 int Idx = -1;
4159 while (II != E && II->isInsideBundle()) {
4160 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4161 if (Idx != -1)
4162 break;
4163 if (II->getOpcode() != ARM::t2IT)
4164 ++Dist;
4165 ++II;
4168 if (Idx == -1) {
4169 Dist = 0;
4170 return nullptr;
4173 UseIdx = Idx;
4174 return &*II;
4177 /// Return the number of cycles to add to (or subtract from) the static
4178 /// itinerary based on the def opcode and alignment. The caller will ensure that
4179 /// adjusted latency is at least one cycle.
4180 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4181 const MachineInstr &DefMI,
4182 const MCInstrDesc &DefMCID, unsigned DefAlign) {
4183 int Adjust = 0;
4184 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4185 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4186 // variants are one cycle cheaper.
4187 switch (DefMCID.getOpcode()) {
4188 default: break;
4189 case ARM::LDRrs:
4190 case ARM::LDRBrs: {
4191 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4192 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4193 if (ShImm == 0 ||
4194 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4195 --Adjust;
4196 break;
4198 case ARM::t2LDRs:
4199 case ARM::t2LDRBs:
4200 case ARM::t2LDRHs:
4201 case ARM::t2LDRSHs: {
4202 // Thumb2 mode: lsl only.
4203 unsigned ShAmt = DefMI.getOperand(3).getImm();
4204 if (ShAmt == 0 || ShAmt == 2)
4205 --Adjust;
4206 break;
4209 } else if (Subtarget.isSwift()) {
4210 // FIXME: Properly handle all of the latency adjustments for address
4211 // writeback.
4212 switch (DefMCID.getOpcode()) {
4213 default: break;
4214 case ARM::LDRrs:
4215 case ARM::LDRBrs: {
4216 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4217 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4218 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4219 if (!isSub &&
4220 (ShImm == 0 ||
4221 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4222 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4223 Adjust -= 2;
4224 else if (!isSub &&
4225 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4226 --Adjust;
4227 break;
4229 case ARM::t2LDRs:
4230 case ARM::t2LDRBs:
4231 case ARM::t2LDRHs:
4232 case ARM::t2LDRSHs: {
4233 // Thumb2 mode: lsl only.
4234 unsigned ShAmt = DefMI.getOperand(3).getImm();
4235 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4236 Adjust -= 2;
4237 break;
4242 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4243 switch (DefMCID.getOpcode()) {
4244 default: break;
4245 case ARM::VLD1q8:
4246 case ARM::VLD1q16:
4247 case ARM::VLD1q32:
4248 case ARM::VLD1q64:
4249 case ARM::VLD1q8wb_fixed:
4250 case ARM::VLD1q16wb_fixed:
4251 case ARM::VLD1q32wb_fixed:
4252 case ARM::VLD1q64wb_fixed:
4253 case ARM::VLD1q8wb_register:
4254 case ARM::VLD1q16wb_register:
4255 case ARM::VLD1q32wb_register:
4256 case ARM::VLD1q64wb_register:
4257 case ARM::VLD2d8:
4258 case ARM::VLD2d16:
4259 case ARM::VLD2d32:
4260 case ARM::VLD2q8:
4261 case ARM::VLD2q16:
4262 case ARM::VLD2q32:
4263 case ARM::VLD2d8wb_fixed:
4264 case ARM::VLD2d16wb_fixed:
4265 case ARM::VLD2d32wb_fixed:
4266 case ARM::VLD2q8wb_fixed:
4267 case ARM::VLD2q16wb_fixed:
4268 case ARM::VLD2q32wb_fixed:
4269 case ARM::VLD2d8wb_register:
4270 case ARM::VLD2d16wb_register:
4271 case ARM::VLD2d32wb_register:
4272 case ARM::VLD2q8wb_register:
4273 case ARM::VLD2q16wb_register:
4274 case ARM::VLD2q32wb_register:
4275 case ARM::VLD3d8:
4276 case ARM::VLD3d16:
4277 case ARM::VLD3d32:
4278 case ARM::VLD1d64T:
4279 case ARM::VLD3d8_UPD:
4280 case ARM::VLD3d16_UPD:
4281 case ARM::VLD3d32_UPD:
4282 case ARM::VLD1d64Twb_fixed:
4283 case ARM::VLD1d64Twb_register:
4284 case ARM::VLD3q8_UPD:
4285 case ARM::VLD3q16_UPD:
4286 case ARM::VLD3q32_UPD:
4287 case ARM::VLD4d8:
4288 case ARM::VLD4d16:
4289 case ARM::VLD4d32:
4290 case ARM::VLD1d64Q:
4291 case ARM::VLD4d8_UPD:
4292 case ARM::VLD4d16_UPD:
4293 case ARM::VLD4d32_UPD:
4294 case ARM::VLD1d64Qwb_fixed:
4295 case ARM::VLD1d64Qwb_register:
4296 case ARM::VLD4q8_UPD:
4297 case ARM::VLD4q16_UPD:
4298 case ARM::VLD4q32_UPD:
4299 case ARM::VLD1DUPq8:
4300 case ARM::VLD1DUPq16:
4301 case ARM::VLD1DUPq32:
4302 case ARM::VLD1DUPq8wb_fixed:
4303 case ARM::VLD1DUPq16wb_fixed:
4304 case ARM::VLD1DUPq32wb_fixed:
4305 case ARM::VLD1DUPq8wb_register:
4306 case ARM::VLD1DUPq16wb_register:
4307 case ARM::VLD1DUPq32wb_register:
4308 case ARM::VLD2DUPd8:
4309 case ARM::VLD2DUPd16:
4310 case ARM::VLD2DUPd32:
4311 case ARM::VLD2DUPd8wb_fixed:
4312 case ARM::VLD2DUPd16wb_fixed:
4313 case ARM::VLD2DUPd32wb_fixed:
4314 case ARM::VLD2DUPd8wb_register:
4315 case ARM::VLD2DUPd16wb_register:
4316 case ARM::VLD2DUPd32wb_register:
4317 case ARM::VLD4DUPd8:
4318 case ARM::VLD4DUPd16:
4319 case ARM::VLD4DUPd32:
4320 case ARM::VLD4DUPd8_UPD:
4321 case ARM::VLD4DUPd16_UPD:
4322 case ARM::VLD4DUPd32_UPD:
4323 case ARM::VLD1LNd8:
4324 case ARM::VLD1LNd16:
4325 case ARM::VLD1LNd32:
4326 case ARM::VLD1LNd8_UPD:
4327 case ARM::VLD1LNd16_UPD:
4328 case ARM::VLD1LNd32_UPD:
4329 case ARM::VLD2LNd8:
4330 case ARM::VLD2LNd16:
4331 case ARM::VLD2LNd32:
4332 case ARM::VLD2LNq16:
4333 case ARM::VLD2LNq32:
4334 case ARM::VLD2LNd8_UPD:
4335 case ARM::VLD2LNd16_UPD:
4336 case ARM::VLD2LNd32_UPD:
4337 case ARM::VLD2LNq16_UPD:
4338 case ARM::VLD2LNq32_UPD:
4339 case ARM::VLD4LNd8:
4340 case ARM::VLD4LNd16:
4341 case ARM::VLD4LNd32:
4342 case ARM::VLD4LNq16:
4343 case ARM::VLD4LNq32:
4344 case ARM::VLD4LNd8_UPD:
4345 case ARM::VLD4LNd16_UPD:
4346 case ARM::VLD4LNd32_UPD:
4347 case ARM::VLD4LNq16_UPD:
4348 case ARM::VLD4LNq32_UPD:
4349 // If the address is not 64-bit aligned, the latencies of these
4350 // instructions increases by one.
4351 ++Adjust;
4352 break;
4355 return Adjust;
4358 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4359 const MachineInstr &DefMI,
4360 unsigned DefIdx,
4361 const MachineInstr &UseMI,
4362 unsigned UseIdx) const {
4363 // No operand latency. The caller may fall back to getInstrLatency.
4364 if (!ItinData || ItinData->isEmpty())
4365 return -1;
4367 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4368 Register Reg = DefMO.getReg();
4370 const MachineInstr *ResolvedDefMI = &DefMI;
4371 unsigned DefAdj = 0;
4372 if (DefMI.isBundle())
4373 ResolvedDefMI =
4374 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4375 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4376 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4377 return 1;
4380 const MachineInstr *ResolvedUseMI = &UseMI;
4381 unsigned UseAdj = 0;
4382 if (UseMI.isBundle()) {
4383 ResolvedUseMI =
4384 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4385 if (!ResolvedUseMI)
4386 return -1;
4389 return getOperandLatencyImpl(
4390 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4391 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4394 int ARMBaseInstrInfo::getOperandLatencyImpl(
4395 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4396 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4397 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4398 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4399 if (Reg == ARM::CPSR) {
4400 if (DefMI.getOpcode() == ARM::FMSTAT) {
4401 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4402 return Subtarget.isLikeA9() ? 1 : 20;
4405 // CPSR set and branch can be paired in the same cycle.
4406 if (UseMI.isBranch())
4407 return 0;
4409 // Otherwise it takes the instruction latency (generally one).
4410 unsigned Latency = getInstrLatency(ItinData, DefMI);
4412 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4413 // its uses. Instructions which are otherwise scheduled between them may
4414 // incur a code size penalty (not able to use the CPSR setting 16-bit
4415 // instructions).
4416 if (Latency > 0 && Subtarget.isThumb2()) {
4417 const MachineFunction *MF = DefMI.getParent()->getParent();
4418 // FIXME: Use Function::hasOptSize().
4419 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4420 --Latency;
4422 return Latency;
4425 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4426 return -1;
4428 unsigned DefAlign = DefMI.hasOneMemOperand()
4429 ? (*DefMI.memoperands_begin())->getAlign().value()
4430 : 0;
4431 unsigned UseAlign = UseMI.hasOneMemOperand()
4432 ? (*UseMI.memoperands_begin())->getAlign().value()
4433 : 0;
4435 // Get the itinerary's latency if possible, and handle variable_ops.
4436 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4437 UseIdx, UseAlign);
4438 // Unable to find operand latency. The caller may resort to getInstrLatency.
4439 if (Latency < 0)
4440 return Latency;
4442 // Adjust for IT block position.
4443 int Adj = DefAdj + UseAdj;
4445 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4446 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4447 if (Adj >= 0 || (int)Latency > -Adj) {
4448 return Latency + Adj;
4450 // Return the itinerary latency, which may be zero but not less than zero.
4451 return Latency;
4455 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4456 SDNode *DefNode, unsigned DefIdx,
4457 SDNode *UseNode, unsigned UseIdx) const {
4458 if (!DefNode->isMachineOpcode())
4459 return 1;
4461 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4463 if (isZeroCost(DefMCID.Opcode))
4464 return 0;
4466 if (!ItinData || ItinData->isEmpty())
4467 return DefMCID.mayLoad() ? 3 : 1;
4469 if (!UseNode->isMachineOpcode()) {
4470 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4471 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4472 int Threshold = 1 + Adj;
4473 return Latency <= Threshold ? 1 : Latency - Adj;
4476 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4477 auto *DefMN = cast<MachineSDNode>(DefNode);
4478 unsigned DefAlign = !DefMN->memoperands_empty()
4479 ? (*DefMN->memoperands_begin())->getAlign().value()
4480 : 0;
4481 auto *UseMN = cast<MachineSDNode>(UseNode);
4482 unsigned UseAlign = !UseMN->memoperands_empty()
4483 ? (*UseMN->memoperands_begin())->getAlign().value()
4484 : 0;
4485 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4486 UseMCID, UseIdx, UseAlign);
4488 if (Latency > 1 &&
4489 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4490 Subtarget.isCortexA7())) {
4491 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4492 // variants are one cycle cheaper.
4493 switch (DefMCID.getOpcode()) {
4494 default: break;
4495 case ARM::LDRrs:
4496 case ARM::LDRBrs: {
4497 unsigned ShOpVal =
4498 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4499 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4500 if (ShImm == 0 ||
4501 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4502 --Latency;
4503 break;
4505 case ARM::t2LDRs:
4506 case ARM::t2LDRBs:
4507 case ARM::t2LDRHs:
4508 case ARM::t2LDRSHs: {
4509 // Thumb2 mode: lsl only.
4510 unsigned ShAmt =
4511 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4512 if (ShAmt == 0 || ShAmt == 2)
4513 --Latency;
4514 break;
4517 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4518 // FIXME: Properly handle all of the latency adjustments for address
4519 // writeback.
4520 switch (DefMCID.getOpcode()) {
4521 default: break;
4522 case ARM::LDRrs:
4523 case ARM::LDRBrs: {
4524 unsigned ShOpVal =
4525 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4526 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4527 if (ShImm == 0 ||
4528 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4529 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4530 Latency -= 2;
4531 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4532 --Latency;
4533 break;
4535 case ARM::t2LDRs:
4536 case ARM::t2LDRBs:
4537 case ARM::t2LDRHs:
4538 case ARM::t2LDRSHs:
4539 // Thumb2 mode: lsl 0-3 only.
4540 Latency -= 2;
4541 break;
4545 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4546 switch (DefMCID.getOpcode()) {
4547 default: break;
4548 case ARM::VLD1q8:
4549 case ARM::VLD1q16:
4550 case ARM::VLD1q32:
4551 case ARM::VLD1q64:
4552 case ARM::VLD1q8wb_register:
4553 case ARM::VLD1q16wb_register:
4554 case ARM::VLD1q32wb_register:
4555 case ARM::VLD1q64wb_register:
4556 case ARM::VLD1q8wb_fixed:
4557 case ARM::VLD1q16wb_fixed:
4558 case ARM::VLD1q32wb_fixed:
4559 case ARM::VLD1q64wb_fixed:
4560 case ARM::VLD2d8:
4561 case ARM::VLD2d16:
4562 case ARM::VLD2d32:
4563 case ARM::VLD2q8Pseudo:
4564 case ARM::VLD2q16Pseudo:
4565 case ARM::VLD2q32Pseudo:
4566 case ARM::VLD2d8wb_fixed:
4567 case ARM::VLD2d16wb_fixed:
4568 case ARM::VLD2d32wb_fixed:
4569 case ARM::VLD2q8PseudoWB_fixed:
4570 case ARM::VLD2q16PseudoWB_fixed:
4571 case ARM::VLD2q32PseudoWB_fixed:
4572 case ARM::VLD2d8wb_register:
4573 case ARM::VLD2d16wb_register:
4574 case ARM::VLD2d32wb_register:
4575 case ARM::VLD2q8PseudoWB_register:
4576 case ARM::VLD2q16PseudoWB_register:
4577 case ARM::VLD2q32PseudoWB_register:
4578 case ARM::VLD3d8Pseudo:
4579 case ARM::VLD3d16Pseudo:
4580 case ARM::VLD3d32Pseudo:
4581 case ARM::VLD1d8TPseudo:
4582 case ARM::VLD1d16TPseudo:
4583 case ARM::VLD1d32TPseudo:
4584 case ARM::VLD1d64TPseudo:
4585 case ARM::VLD1d64TPseudoWB_fixed:
4586 case ARM::VLD1d64TPseudoWB_register:
4587 case ARM::VLD3d8Pseudo_UPD:
4588 case ARM::VLD3d16Pseudo_UPD:
4589 case ARM::VLD3d32Pseudo_UPD:
4590 case ARM::VLD3q8Pseudo_UPD:
4591 case ARM::VLD3q16Pseudo_UPD:
4592 case ARM::VLD3q32Pseudo_UPD:
4593 case ARM::VLD3q8oddPseudo:
4594 case ARM::VLD3q16oddPseudo:
4595 case ARM::VLD3q32oddPseudo:
4596 case ARM::VLD3q8oddPseudo_UPD:
4597 case ARM::VLD3q16oddPseudo_UPD:
4598 case ARM::VLD3q32oddPseudo_UPD:
4599 case ARM::VLD4d8Pseudo:
4600 case ARM::VLD4d16Pseudo:
4601 case ARM::VLD4d32Pseudo:
4602 case ARM::VLD1d8QPseudo:
4603 case ARM::VLD1d16QPseudo:
4604 case ARM::VLD1d32QPseudo:
4605 case ARM::VLD1d64QPseudo:
4606 case ARM::VLD1d64QPseudoWB_fixed:
4607 case ARM::VLD1d64QPseudoWB_register:
4608 case ARM::VLD1q8HighQPseudo:
4609 case ARM::VLD1q8LowQPseudo_UPD:
4610 case ARM::VLD1q8HighTPseudo:
4611 case ARM::VLD1q8LowTPseudo_UPD:
4612 case ARM::VLD1q16HighQPseudo:
4613 case ARM::VLD1q16LowQPseudo_UPD:
4614 case ARM::VLD1q16HighTPseudo:
4615 case ARM::VLD1q16LowTPseudo_UPD:
4616 case ARM::VLD1q32HighQPseudo:
4617 case ARM::VLD1q32LowQPseudo_UPD:
4618 case ARM::VLD1q32HighTPseudo:
4619 case ARM::VLD1q32LowTPseudo_UPD:
4620 case ARM::VLD1q64HighQPseudo:
4621 case ARM::VLD1q64LowQPseudo_UPD:
4622 case ARM::VLD1q64HighTPseudo:
4623 case ARM::VLD1q64LowTPseudo_UPD:
4624 case ARM::VLD4d8Pseudo_UPD:
4625 case ARM::VLD4d16Pseudo_UPD:
4626 case ARM::VLD4d32Pseudo_UPD:
4627 case ARM::VLD4q8Pseudo_UPD:
4628 case ARM::VLD4q16Pseudo_UPD:
4629 case ARM::VLD4q32Pseudo_UPD:
4630 case ARM::VLD4q8oddPseudo:
4631 case ARM::VLD4q16oddPseudo:
4632 case ARM::VLD4q32oddPseudo:
4633 case ARM::VLD4q8oddPseudo_UPD:
4634 case ARM::VLD4q16oddPseudo_UPD:
4635 case ARM::VLD4q32oddPseudo_UPD:
4636 case ARM::VLD1DUPq8:
4637 case ARM::VLD1DUPq16:
4638 case ARM::VLD1DUPq32:
4639 case ARM::VLD1DUPq8wb_fixed:
4640 case ARM::VLD1DUPq16wb_fixed:
4641 case ARM::VLD1DUPq32wb_fixed:
4642 case ARM::VLD1DUPq8wb_register:
4643 case ARM::VLD1DUPq16wb_register:
4644 case ARM::VLD1DUPq32wb_register:
4645 case ARM::VLD2DUPd8:
4646 case ARM::VLD2DUPd16:
4647 case ARM::VLD2DUPd32:
4648 case ARM::VLD2DUPd8wb_fixed:
4649 case ARM::VLD2DUPd16wb_fixed:
4650 case ARM::VLD2DUPd32wb_fixed:
4651 case ARM::VLD2DUPd8wb_register:
4652 case ARM::VLD2DUPd16wb_register:
4653 case ARM::VLD2DUPd32wb_register:
4654 case ARM::VLD2DUPq8EvenPseudo:
4655 case ARM::VLD2DUPq8OddPseudo:
4656 case ARM::VLD2DUPq16EvenPseudo:
4657 case ARM::VLD2DUPq16OddPseudo:
4658 case ARM::VLD2DUPq32EvenPseudo:
4659 case ARM::VLD2DUPq32OddPseudo:
4660 case ARM::VLD3DUPq8EvenPseudo:
4661 case ARM::VLD3DUPq8OddPseudo:
4662 case ARM::VLD3DUPq16EvenPseudo:
4663 case ARM::VLD3DUPq16OddPseudo:
4664 case ARM::VLD3DUPq32EvenPseudo:
4665 case ARM::VLD3DUPq32OddPseudo:
4666 case ARM::VLD4DUPd8Pseudo:
4667 case ARM::VLD4DUPd16Pseudo:
4668 case ARM::VLD4DUPd32Pseudo:
4669 case ARM::VLD4DUPd8Pseudo_UPD:
4670 case ARM::VLD4DUPd16Pseudo_UPD:
4671 case ARM::VLD4DUPd32Pseudo_UPD:
4672 case ARM::VLD4DUPq8EvenPseudo:
4673 case ARM::VLD4DUPq8OddPseudo:
4674 case ARM::VLD4DUPq16EvenPseudo:
4675 case ARM::VLD4DUPq16OddPseudo:
4676 case ARM::VLD4DUPq32EvenPseudo:
4677 case ARM::VLD4DUPq32OddPseudo:
4678 case ARM::VLD1LNq8Pseudo:
4679 case ARM::VLD1LNq16Pseudo:
4680 case ARM::VLD1LNq32Pseudo:
4681 case ARM::VLD1LNq8Pseudo_UPD:
4682 case ARM::VLD1LNq16Pseudo_UPD:
4683 case ARM::VLD1LNq32Pseudo_UPD:
4684 case ARM::VLD2LNd8Pseudo:
4685 case ARM::VLD2LNd16Pseudo:
4686 case ARM::VLD2LNd32Pseudo:
4687 case ARM::VLD2LNq16Pseudo:
4688 case ARM::VLD2LNq32Pseudo:
4689 case ARM::VLD2LNd8Pseudo_UPD:
4690 case ARM::VLD2LNd16Pseudo_UPD:
4691 case ARM::VLD2LNd32Pseudo_UPD:
4692 case ARM::VLD2LNq16Pseudo_UPD:
4693 case ARM::VLD2LNq32Pseudo_UPD:
4694 case ARM::VLD4LNd8Pseudo:
4695 case ARM::VLD4LNd16Pseudo:
4696 case ARM::VLD4LNd32Pseudo:
4697 case ARM::VLD4LNq16Pseudo:
4698 case ARM::VLD4LNq32Pseudo:
4699 case ARM::VLD4LNd8Pseudo_UPD:
4700 case ARM::VLD4LNd16Pseudo_UPD:
4701 case ARM::VLD4LNd32Pseudo_UPD:
4702 case ARM::VLD4LNq16Pseudo_UPD:
4703 case ARM::VLD4LNq32Pseudo_UPD:
4704 // If the address is not 64-bit aligned, the latencies of these
4705 // instructions increases by one.
4706 ++Latency;
4707 break;
4710 return Latency;
4713 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4714 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4715 MI.isImplicitDef())
4716 return 0;
4718 if (MI.isBundle())
4719 return 0;
4721 const MCInstrDesc &MCID = MI.getDesc();
4723 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4724 !Subtarget.cheapPredicableCPSRDef())) {
4725 // When predicated, CPSR is an additional source operand for CPSR updating
4726 // instructions, this apparently increases their latencies.
4727 return 1;
4729 return 0;
4732 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4733 const MachineInstr &MI,
4734 unsigned *PredCost) const {
4735 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4736 MI.isImplicitDef())
4737 return 1;
4739 // An instruction scheduler typically runs on unbundled instructions, however
4740 // other passes may query the latency of a bundled instruction.
4741 if (MI.isBundle()) {
4742 unsigned Latency = 0;
4743 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4744 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4745 while (++I != E && I->isInsideBundle()) {
4746 if (I->getOpcode() != ARM::t2IT)
4747 Latency += getInstrLatency(ItinData, *I, PredCost);
4749 return Latency;
4752 const MCInstrDesc &MCID = MI.getDesc();
4753 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4754 !Subtarget.cheapPredicableCPSRDef()))) {
4755 // When predicated, CPSR is an additional source operand for CPSR updating
4756 // instructions, this apparently increases their latencies.
4757 *PredCost = 1;
4759 // Be sure to call getStageLatency for an empty itinerary in case it has a
4760 // valid MinLatency property.
4761 if (!ItinData)
4762 return MI.mayLoad() ? 3 : 1;
4764 unsigned Class = MCID.getSchedClass();
4766 // For instructions with variable uops, use uops as latency.
4767 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4768 return getNumMicroOps(ItinData, MI);
4770 // For the common case, fall back on the itinerary's latency.
4771 unsigned Latency = ItinData->getStageLatency(Class);
4773 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4774 unsigned DefAlign =
4775 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4776 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4777 if (Adj >= 0 || (int)Latency > -Adj) {
4778 return Latency + Adj;
4780 return Latency;
4783 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4784 SDNode *Node) const {
4785 if (!Node->isMachineOpcode())
4786 return 1;
4788 if (!ItinData || ItinData->isEmpty())
4789 return 1;
4791 unsigned Opcode = Node->getMachineOpcode();
4792 switch (Opcode) {
4793 default:
4794 return ItinData->getStageLatency(get(Opcode).getSchedClass());
4795 case ARM::VLDMQIA:
4796 case ARM::VSTMQIA:
4797 return 2;
4801 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4802 const MachineRegisterInfo *MRI,
4803 const MachineInstr &DefMI,
4804 unsigned DefIdx,
4805 const MachineInstr &UseMI,
4806 unsigned UseIdx) const {
4807 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4808 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4809 if (Subtarget.nonpipelinedVFP() &&
4810 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4811 return true;
4813 // Hoist VFP / NEON instructions with 4 or higher latency.
4814 unsigned Latency =
4815 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4816 if (Latency <= 3)
4817 return false;
4818 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4819 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4822 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4823 const MachineInstr &DefMI,
4824 unsigned DefIdx) const {
4825 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4826 if (!ItinData || ItinData->isEmpty())
4827 return false;
4829 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4830 if (DDomain == ARMII::DomainGeneral) {
4831 unsigned DefClass = DefMI.getDesc().getSchedClass();
4832 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4833 return (DefCycle != -1 && DefCycle <= 2);
4835 return false;
4838 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4839 StringRef &ErrInfo) const {
4840 if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4841 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4842 return false;
4844 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4845 // Make sure we don't generate a lo-lo mov that isn't supported.
4846 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4847 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4848 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4849 return false;
4852 if (MI.getOpcode() == ARM::tPUSH ||
4853 MI.getOpcode() == ARM::tPOP ||
4854 MI.getOpcode() == ARM::tPOP_RET) {
4855 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4856 if (MI.getOperand(i).isImplicit() ||
4857 !MI.getOperand(i).isReg())
4858 continue;
4859 Register Reg = MI.getOperand(i).getReg();
4860 if (Reg < ARM::R0 || Reg > ARM::R7) {
4861 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4862 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4863 ErrInfo = "Unsupported register in Thumb1 push/pop";
4864 return false;
4869 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4870 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4871 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4872 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4873 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4874 return false;
4877 return true;
4880 // LoadStackGuard has so far only been implemented for MachO. Different code
4881 // sequence is needed for other targets.
4882 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4883 unsigned LoadImmOpc,
4884 unsigned LoadOpc) const {
4885 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4886 "ROPI/RWPI not currently supported with stack guard");
4888 MachineBasicBlock &MBB = *MI->getParent();
4889 DebugLoc DL = MI->getDebugLoc();
4890 Register Reg = MI->getOperand(0).getReg();
4891 const GlobalValue *GV =
4892 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4893 MachineInstrBuilder MIB;
4895 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4896 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4898 if (Subtarget.isGVIndirectSymbol(GV)) {
4899 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4900 MIB.addReg(Reg, RegState::Kill).addImm(0);
4901 auto Flags = MachineMemOperand::MOLoad |
4902 MachineMemOperand::MODereferenceable |
4903 MachineMemOperand::MOInvariant;
4904 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4905 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4906 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4909 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4910 MIB.addReg(Reg, RegState::Kill)
4911 .addImm(0)
4912 .cloneMemRefs(*MI)
4913 .add(predOps(ARMCC::AL));
4916 bool
4917 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4918 unsigned &AddSubOpc,
4919 bool &NegAcc, bool &HasLane) const {
4920 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4921 if (I == MLxEntryMap.end())
4922 return false;
4924 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4925 MulOpc = Entry.MulOpc;
4926 AddSubOpc = Entry.AddSubOpc;
4927 NegAcc = Entry.NegAcc;
4928 HasLane = Entry.HasLane;
4929 return true;
4932 //===----------------------------------------------------------------------===//
4933 // Execution domains.
4934 //===----------------------------------------------------------------------===//
4936 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4937 // and some can go down both. The vmov instructions go down the VFP pipeline,
4938 // but they can be changed to vorr equivalents that are executed by the NEON
4939 // pipeline.
4941 // We use the following execution domain numbering:
4943 enum ARMExeDomain {
4944 ExeGeneric = 0,
4945 ExeVFP = 1,
4946 ExeNEON = 2
4950 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4952 std::pair<uint16_t, uint16_t>
4953 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4954 // If we don't have access to NEON instructions then we won't be able
4955 // to swizzle anything to the NEON domain. Check to make sure.
4956 if (Subtarget.hasNEON()) {
4957 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4958 // if they are not predicated.
4959 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4960 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4962 // CortexA9 is particularly picky about mixing the two and wants these
4963 // converted.
4964 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4965 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4966 MI.getOpcode() == ARM::VMOVS))
4967 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4969 // No other instructions can be swizzled, so just determine their domain.
4970 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4972 if (Domain & ARMII::DomainNEON)
4973 return std::make_pair(ExeNEON, 0);
4975 // Certain instructions can go either way on Cortex-A8.
4976 // Treat them as NEON instructions.
4977 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4978 return std::make_pair(ExeNEON, 0);
4980 if (Domain & ARMII::DomainVFP)
4981 return std::make_pair(ExeVFP, 0);
4983 return std::make_pair(ExeGeneric, 0);
4986 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4987 unsigned SReg, unsigned &Lane) {
4988 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4989 Lane = 0;
4991 if (DReg != ARM::NoRegister)
4992 return DReg;
4994 Lane = 1;
4995 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4997 assert(DReg && "S-register with no D super-register?");
4998 return DReg;
5001 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5002 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5003 /// zero if no register needs to be defined as implicit-use.
5005 /// If the function cannot determine if an SPR should be marked implicit use or
5006 /// not, it returns false.
5008 /// This function handles cases where an instruction is being modified from taking
5009 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5010 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5011 /// lane of the DPR).
5013 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5014 /// (including the case where the DPR itself is defined), it should not.
5016 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5017 MachineInstr &MI, unsigned DReg,
5018 unsigned Lane, unsigned &ImplicitSReg) {
5019 // If the DPR is defined or used already, the other SPR lane will be chained
5020 // correctly, so there is nothing to be done.
5021 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5022 ImplicitSReg = 0;
5023 return true;
5026 // Otherwise we need to go searching to see if the SPR is set explicitly.
5027 ImplicitSReg = TRI->getSubReg(DReg,
5028 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5029 MachineBasicBlock::LivenessQueryResult LQR =
5030 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5032 if (LQR == MachineBasicBlock::LQR_Live)
5033 return true;
5034 else if (LQR == MachineBasicBlock::LQR_Unknown)
5035 return false;
5037 // If the register is known not to be live, there is no need to add an
5038 // implicit-use.
5039 ImplicitSReg = 0;
5040 return true;
5043 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5044 unsigned Domain) const {
5045 unsigned DstReg, SrcReg, DReg;
5046 unsigned Lane;
5047 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5048 const TargetRegisterInfo *TRI = &getRegisterInfo();
5049 switch (MI.getOpcode()) {
5050 default:
5051 llvm_unreachable("cannot handle opcode!");
5052 break;
5053 case ARM::VMOVD:
5054 if (Domain != ExeNEON)
5055 break;
5057 // Zap the predicate operands.
5058 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5060 // Make sure we've got NEON instructions.
5061 assert(Subtarget.hasNEON() && "VORRd requires NEON");
5063 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5064 DstReg = MI.getOperand(0).getReg();
5065 SrcReg = MI.getOperand(1).getReg();
5067 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5068 MI.RemoveOperand(i - 1);
5070 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5071 MI.setDesc(get(ARM::VORRd));
5072 MIB.addReg(DstReg, RegState::Define)
5073 .addReg(SrcReg)
5074 .addReg(SrcReg)
5075 .add(predOps(ARMCC::AL));
5076 break;
5077 case ARM::VMOVRS:
5078 if (Domain != ExeNEON)
5079 break;
5080 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5082 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5083 DstReg = MI.getOperand(0).getReg();
5084 SrcReg = MI.getOperand(1).getReg();
5086 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5087 MI.RemoveOperand(i - 1);
5089 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5091 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5092 // Note that DSrc has been widened and the other lane may be undef, which
5093 // contaminates the entire register.
5094 MI.setDesc(get(ARM::VGETLNi32));
5095 MIB.addReg(DstReg, RegState::Define)
5096 .addReg(DReg, RegState::Undef)
5097 .addImm(Lane)
5098 .add(predOps(ARMCC::AL));
5100 // The old source should be an implicit use, otherwise we might think it
5101 // was dead before here.
5102 MIB.addReg(SrcReg, RegState::Implicit);
5103 break;
5104 case ARM::VMOVSR: {
5105 if (Domain != ExeNEON)
5106 break;
5107 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5109 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5110 DstReg = MI.getOperand(0).getReg();
5111 SrcReg = MI.getOperand(1).getReg();
5113 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5115 unsigned ImplicitSReg;
5116 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5117 break;
5119 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5120 MI.RemoveOperand(i - 1);
5122 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5123 // Again DDst may be undefined at the beginning of this instruction.
5124 MI.setDesc(get(ARM::VSETLNi32));
5125 MIB.addReg(DReg, RegState::Define)
5126 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5127 .addReg(SrcReg)
5128 .addImm(Lane)
5129 .add(predOps(ARMCC::AL));
5131 // The narrower destination must be marked as set to keep previous chains
5132 // in place.
5133 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5134 if (ImplicitSReg != 0)
5135 MIB.addReg(ImplicitSReg, RegState::Implicit);
5136 break;
5138 case ARM::VMOVS: {
5139 if (Domain != ExeNEON)
5140 break;
5142 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5143 DstReg = MI.getOperand(0).getReg();
5144 SrcReg = MI.getOperand(1).getReg();
5146 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5147 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5148 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5150 unsigned ImplicitSReg;
5151 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5152 break;
5154 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5155 MI.RemoveOperand(i - 1);
5157 if (DSrc == DDst) {
5158 // Destination can be:
5159 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5160 MI.setDesc(get(ARM::VDUPLN32d));
5161 MIB.addReg(DDst, RegState::Define)
5162 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5163 .addImm(SrcLane)
5164 .add(predOps(ARMCC::AL));
5166 // Neither the source or the destination are naturally represented any
5167 // more, so add them in manually.
5168 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5169 MIB.addReg(SrcReg, RegState::Implicit);
5170 if (ImplicitSReg != 0)
5171 MIB.addReg(ImplicitSReg, RegState::Implicit);
5172 break;
5175 // In general there's no single instruction that can perform an S <-> S
5176 // move in NEON space, but a pair of VEXT instructions *can* do the
5177 // job. It turns out that the VEXTs needed will only use DSrc once, with
5178 // the position based purely on the combination of lane-0 and lane-1
5179 // involved. For example
5180 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5181 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5182 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5183 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5185 // Pattern of the MachineInstrs is:
5186 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5187 MachineInstrBuilder NewMIB;
5188 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5189 DDst);
5191 // On the first instruction, both DSrc and DDst may be undef if present.
5192 // Specifically when the original instruction didn't have them as an
5193 // <imp-use>.
5194 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5195 bool CurUndef = !MI.readsRegister(CurReg, TRI);
5196 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5198 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5199 CurUndef = !MI.readsRegister(CurReg, TRI);
5200 NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5201 .addImm(1)
5202 .add(predOps(ARMCC::AL));
5204 if (SrcLane == DstLane)
5205 NewMIB.addReg(SrcReg, RegState::Implicit);
5207 MI.setDesc(get(ARM::VEXTd32));
5208 MIB.addReg(DDst, RegState::Define);
5210 // On the second instruction, DDst has definitely been defined above, so
5211 // it is not undef. DSrc, if present, can be undef as above.
5212 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5213 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5214 MIB.addReg(CurReg, getUndefRegState(CurUndef));
5216 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5217 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5218 MIB.addReg(CurReg, getUndefRegState(CurUndef))
5219 .addImm(1)
5220 .add(predOps(ARMCC::AL));
5222 if (SrcLane != DstLane)
5223 MIB.addReg(SrcReg, RegState::Implicit);
5225 // As before, the original destination is no longer represented, add it
5226 // implicitly.
5227 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5228 if (ImplicitSReg != 0)
5229 MIB.addReg(ImplicitSReg, RegState::Implicit);
5230 break;
5235 //===----------------------------------------------------------------------===//
5236 // Partial register updates
5237 //===----------------------------------------------------------------------===//
5239 // Swift renames NEON registers with 64-bit granularity. That means any
5240 // instruction writing an S-reg implicitly reads the containing D-reg. The
5241 // problem is mostly avoided by translating f32 operations to v2f32 operations
5242 // on D-registers, but f32 loads are still a problem.
5244 // These instructions can load an f32 into a NEON register:
5246 // VLDRS - Only writes S, partial D update.
5247 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5248 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5250 // FCONSTD can be used as a dependency-breaking instruction.
5251 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5252 const MachineInstr &MI, unsigned OpNum,
5253 const TargetRegisterInfo *TRI) const {
5254 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5255 if (!PartialUpdateClearance)
5256 return 0;
5258 assert(TRI && "Need TRI instance");
5260 const MachineOperand &MO = MI.getOperand(OpNum);
5261 if (MO.readsReg())
5262 return 0;
5263 Register Reg = MO.getReg();
5264 int UseOp = -1;
5266 switch (MI.getOpcode()) {
5267 // Normal instructions writing only an S-register.
5268 case ARM::VLDRS:
5269 case ARM::FCONSTS:
5270 case ARM::VMOVSR:
5271 case ARM::VMOVv8i8:
5272 case ARM::VMOVv4i16:
5273 case ARM::VMOVv2i32:
5274 case ARM::VMOVv2f32:
5275 case ARM::VMOVv1i64:
5276 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5277 break;
5279 // Explicitly reads the dependency.
5280 case ARM::VLD1LNd32:
5281 UseOp = 3;
5282 break;
5283 default:
5284 return 0;
5287 // If this instruction actually reads a value from Reg, there is no unwanted
5288 // dependency.
5289 if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5290 return 0;
5292 // We must be able to clobber the whole D-reg.
5293 if (Register::isVirtualRegister(Reg)) {
5294 // Virtual register must be a def undef foo:ssub_0 operand.
5295 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5296 return 0;
5297 } else if (ARM::SPRRegClass.contains(Reg)) {
5298 // Physical register: MI must define the full D-reg.
5299 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5300 &ARM::DPRRegClass);
5301 if (!DReg || !MI.definesRegister(DReg, TRI))
5302 return 0;
5305 // MI has an unwanted D-register dependency.
5306 // Avoid defs in the previous N instructrions.
5307 return PartialUpdateClearance;
5310 // Break a partial register dependency after getPartialRegUpdateClearance
5311 // returned non-zero.
5312 void ARMBaseInstrInfo::breakPartialRegDependency(
5313 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5314 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5315 assert(TRI && "Need TRI instance");
5317 const MachineOperand &MO = MI.getOperand(OpNum);
5318 Register Reg = MO.getReg();
5319 assert(Register::isPhysicalRegister(Reg) &&
5320 "Can't break virtual register dependencies.");
5321 unsigned DReg = Reg;
5323 // If MI defines an S-reg, find the corresponding D super-register.
5324 if (ARM::SPRRegClass.contains(Reg)) {
5325 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5326 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5329 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5330 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5332 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5333 // the full D-register by loading the same value to both lanes. The
5334 // instruction is micro-coded with 2 uops, so don't do this until we can
5335 // properly schedule micro-coded instructions. The dispatcher stalls cause
5336 // too big regressions.
5338 // Insert the dependency-breaking FCONSTD before MI.
5339 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5340 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5341 .addImm(96)
5342 .add(predOps(ARMCC::AL));
5343 MI.addRegisterKilled(DReg, TRI, true);
5346 bool ARMBaseInstrInfo::hasNOP() const {
5347 return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5350 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5351 if (MI->getNumOperands() < 4)
5352 return true;
5353 unsigned ShOpVal = MI->getOperand(3).getImm();
5354 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5355 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5356 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5357 ((ShImm == 1 || ShImm == 2) &&
5358 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5359 return true;
5361 return false;
5364 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5365 const MachineInstr &MI, unsigned DefIdx,
5366 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5367 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5368 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5370 switch (MI.getOpcode()) {
5371 case ARM::VMOVDRR:
5372 // dX = VMOVDRR rY, rZ
5373 // is the same as:
5374 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5375 // Populate the InputRegs accordingly.
5376 // rY
5377 const MachineOperand *MOReg = &MI.getOperand(1);
5378 if (!MOReg->isUndef())
5379 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5380 MOReg->getSubReg(), ARM::ssub_0));
5381 // rZ
5382 MOReg = &MI.getOperand(2);
5383 if (!MOReg->isUndef())
5384 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5385 MOReg->getSubReg(), ARM::ssub_1));
5386 return true;
5388 llvm_unreachable("Target dependent opcode missing");
5391 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5392 const MachineInstr &MI, unsigned DefIdx,
5393 RegSubRegPairAndIdx &InputReg) const {
5394 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5395 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5397 switch (MI.getOpcode()) {
5398 case ARM::VMOVRRD:
5399 // rX, rY = VMOVRRD dZ
5400 // is the same as:
5401 // rX = EXTRACT_SUBREG dZ, ssub_0
5402 // rY = EXTRACT_SUBREG dZ, ssub_1
5403 const MachineOperand &MOReg = MI.getOperand(2);
5404 if (MOReg.isUndef())
5405 return false;
5406 InputReg.Reg = MOReg.getReg();
5407 InputReg.SubReg = MOReg.getSubReg();
5408 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5409 return true;
5411 llvm_unreachable("Target dependent opcode missing");
5414 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5415 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5416 RegSubRegPairAndIdx &InsertedReg) const {
5417 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5418 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5420 switch (MI.getOpcode()) {
5421 case ARM::VSETLNi32:
5422 case ARM::MVE_VMOV_to_lane_32:
5423 // dX = VSETLNi32 dY, rZ, imm
5424 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5425 const MachineOperand &MOBaseReg = MI.getOperand(1);
5426 const MachineOperand &MOInsertedReg = MI.getOperand(2);
5427 if (MOInsertedReg.isUndef())
5428 return false;
5429 const MachineOperand &MOIndex = MI.getOperand(3);
5430 BaseReg.Reg = MOBaseReg.getReg();
5431 BaseReg.SubReg = MOBaseReg.getSubReg();
5433 InsertedReg.Reg = MOInsertedReg.getReg();
5434 InsertedReg.SubReg = MOInsertedReg.getSubReg();
5435 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5436 return true;
5438 llvm_unreachable("Target dependent opcode missing");
5441 std::pair<unsigned, unsigned>
5442 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5443 const unsigned Mask = ARMII::MO_OPTION_MASK;
5444 return std::make_pair(TF & Mask, TF & ~Mask);
5447 ArrayRef<std::pair<unsigned, const char *>>
5448 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5449 using namespace ARMII;
5451 static const std::pair<unsigned, const char *> TargetFlags[] = {
5452 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5453 return makeArrayRef(TargetFlags);
5456 ArrayRef<std::pair<unsigned, const char *>>
5457 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5458 using namespace ARMII;
5460 static const std::pair<unsigned, const char *> TargetFlags[] = {
5461 {MO_COFFSTUB, "arm-coffstub"},
5462 {MO_GOT, "arm-got"},
5463 {MO_SBREL, "arm-sbrel"},
5464 {MO_DLLIMPORT, "arm-dllimport"},
5465 {MO_SECREL, "arm-secrel"},
5466 {MO_NONLAZY, "arm-nonlazy"}};
5467 return makeArrayRef(TargetFlags);
5470 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5471 Register Reg) const {
5472 int Sign = 1;
5473 unsigned Opcode = MI.getOpcode();
5474 int64_t Offset = 0;
5476 // TODO: Handle cases where Reg is a super- or sub-register of the
5477 // destination register.
5478 const MachineOperand &Op0 = MI.getOperand(0);
5479 if (!Op0.isReg() || Reg != Op0.getReg())
5480 return None;
5482 // We describe SUBri or ADDri instructions.
5483 if (Opcode == ARM::SUBri)
5484 Sign = -1;
5485 else if (Opcode != ARM::ADDri)
5486 return None;
5488 // TODO: Third operand can be global address (usually some string). Since
5489 // strings can be relocated we cannot calculate their offsets for
5490 // now.
5491 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5492 return None;
5494 Offset = MI.getOperand(2).getImm() * Sign;
5495 return RegImmPair{MI.getOperand(1).getReg(), Offset};
5498 bool llvm::registerDefinedBetween(unsigned Reg,
5499 MachineBasicBlock::iterator From,
5500 MachineBasicBlock::iterator To,
5501 const TargetRegisterInfo *TRI) {
5502 for (auto I = From; I != To; ++I)
5503 if (I->modifiesRegister(Reg, TRI))
5504 return true;
5505 return false;
5508 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5509 const TargetRegisterInfo *TRI) {
5510 // Search backwards to the instruction that defines CSPR. This may or not
5511 // be a CMP, we check that after this loop. If we find another instruction
5512 // that reads cpsr, we return nullptr.
5513 MachineBasicBlock::iterator CmpMI = Br;
5514 while (CmpMI != Br->getParent()->begin()) {
5515 --CmpMI;
5516 if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5517 break;
5518 if (CmpMI->readsRegister(ARM::CPSR, TRI))
5519 break;
5522 // Check that this inst is a CMP r[0-7], #0 and that the register
5523 // is not redefined between the cmp and the br.
5524 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5525 return nullptr;
5526 Register Reg = CmpMI->getOperand(0).getReg();
5527 Register PredReg;
5528 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5529 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5530 return nullptr;
5531 if (!isARMLowRegister(Reg))
5532 return nullptr;
5533 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5534 return nullptr;
5536 return &*CmpMI;
5539 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5540 const ARMSubtarget *Subtarget,
5541 bool ForCodesize) {
5542 if (Subtarget->isThumb()) {
5543 if (Val <= 255) // MOV
5544 return ForCodesize ? 2 : 1;
5545 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV
5546 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5547 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5548 return ForCodesize ? 4 : 1;
5549 if (Val <= 510) // MOV + ADDi8
5550 return ForCodesize ? 4 : 2;
5551 if (~Val <= 255) // MOV + MVN
5552 return ForCodesize ? 4 : 2;
5553 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5554 return ForCodesize ? 4 : 2;
5555 } else {
5556 if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5557 return ForCodesize ? 4 : 1;
5558 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5559 return ForCodesize ? 4 : 1;
5560 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5561 return ForCodesize ? 4 : 1;
5562 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5563 return ForCodesize ? 8 : 2;
5564 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5565 return ForCodesize ? 8 : 2;
5567 if (Subtarget->useMovt()) // MOVW + MOVT
5568 return ForCodesize ? 8 : 2;
5569 return ForCodesize ? 8 : 3; // Literal pool load
5572 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5573 const ARMSubtarget *Subtarget,
5574 bool ForCodesize) {
5575 // Check with ForCodesize
5576 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5577 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5578 if (Cost1 < Cost2)
5579 return true;
5580 if (Cost1 > Cost2)
5581 return false;
5583 // If they are equal, try with !ForCodesize
5584 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5585 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5588 /// Constants defining how certain sequences should be outlined.
5589 /// This encompasses how an outlined function should be called, and what kind of
5590 /// frame should be emitted for that outlined function.
5592 /// \p MachineOutlinerTailCall implies that the function is being created from
5593 /// a sequence of instructions ending in a return.
5595 /// That is,
5597 /// I1 OUTLINED_FUNCTION:
5598 /// I2 --> B OUTLINED_FUNCTION I1
5599 /// BX LR I2
5600 /// BX LR
5602 /// +-------------------------+--------+-----+
5603 /// | | Thumb2 | ARM |
5604 /// +-------------------------+--------+-----+
5605 /// | Call overhead in Bytes | 4 | 4 |
5606 /// | Frame overhead in Bytes | 0 | 0 |
5607 /// | Stack fixup required | No | No |
5608 /// +-------------------------+--------+-----+
5610 /// \p MachineOutlinerThunk implies that the function is being created from
5611 /// a sequence of instructions ending in a call. The outlined function is
5612 /// called with a BL instruction, and the outlined function tail-calls the
5613 /// original call destination.
5615 /// That is,
5617 /// I1 OUTLINED_FUNCTION:
5618 /// I2 --> BL OUTLINED_FUNCTION I1
5619 /// BL f I2
5620 /// B f
5622 /// +-------------------------+--------+-----+
5623 /// | | Thumb2 | ARM |
5624 /// +-------------------------+--------+-----+
5625 /// | Call overhead in Bytes | 4 | 4 |
5626 /// | Frame overhead in Bytes | 0 | 0 |
5627 /// | Stack fixup required | No | No |
5628 /// +-------------------------+--------+-----+
5630 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5631 /// a BL instruction, but doesn't require LR to be saved and restored. This
5632 /// happens when LR is known to be dead.
5634 /// That is,
5636 /// I1 OUTLINED_FUNCTION:
5637 /// I2 --> BL OUTLINED_FUNCTION I1
5638 /// I3 I2
5639 /// I3
5640 /// BX LR
5642 /// +-------------------------+--------+-----+
5643 /// | | Thumb2 | ARM |
5644 /// +-------------------------+--------+-----+
5645 /// | Call overhead in Bytes | 4 | 4 |
5646 /// | Frame overhead in Bytes | 4 | 4 |
5647 /// | Stack fixup required | No | No |
5648 /// +-------------------------+--------+-----+
5650 /// \p MachineOutlinerRegSave implies that the function should be called with a
5651 /// save and restore of LR to an available register. This allows us to avoid
5652 /// stack fixups. Note that this outlining variant is compatible with the
5653 /// NoLRSave case.
5655 /// That is,
5657 /// I1 Save LR OUTLINED_FUNCTION:
5658 /// I2 --> BL OUTLINED_FUNCTION I1
5659 /// I3 Restore LR I2
5660 /// I3
5661 /// BX LR
5663 /// +-------------------------+--------+-----+
5664 /// | | Thumb2 | ARM |
5665 /// +-------------------------+--------+-----+
5666 /// | Call overhead in Bytes | 8 | 12 |
5667 /// | Frame overhead in Bytes | 2 | 4 |
5668 /// | Stack fixup required | No | No |
5669 /// +-------------------------+--------+-----+
5671 /// \p MachineOutlinerDefault implies that the function should be called with
5672 /// a save and restore of LR to the stack.
5674 /// That is,
5676 /// I1 Save LR OUTLINED_FUNCTION:
5677 /// I2 --> BL OUTLINED_FUNCTION I1
5678 /// I3 Restore LR I2
5679 /// I3
5680 /// BX LR
5682 /// +-------------------------+--------+-----+
5683 /// | | Thumb2 | ARM |
5684 /// +-------------------------+--------+-----+
5685 /// | Call overhead in Bytes | 8 | 12 |
5686 /// | Frame overhead in Bytes | 2 | 4 |
5687 /// | Stack fixup required | Yes | Yes |
5688 /// +-------------------------+--------+-----+
5690 enum MachineOutlinerClass {
5691 MachineOutlinerTailCall,
5692 MachineOutlinerThunk,
5693 MachineOutlinerNoLRSave,
5694 MachineOutlinerRegSave,
5695 MachineOutlinerDefault
5698 enum MachineOutlinerMBBFlags {
5699 LRUnavailableSomewhere = 0x2,
5700 HasCalls = 0x4,
5701 UnsafeRegsDead = 0x8
5704 struct OutlinerCosts {
5705 const int CallTailCall;
5706 const int FrameTailCall;
5707 const int CallThunk;
5708 const int FrameThunk;
5709 const int CallNoLRSave;
5710 const int FrameNoLRSave;
5711 const int CallRegSave;
5712 const int FrameRegSave;
5713 const int CallDefault;
5714 const int FrameDefault;
5715 const int SaveRestoreLROnStack;
5717 OutlinerCosts(const ARMSubtarget &target)
5718 : CallTailCall(target.isThumb() ? 4 : 4),
5719 FrameTailCall(target.isThumb() ? 0 : 0),
5720 CallThunk(target.isThumb() ? 4 : 4),
5721 FrameThunk(target.isThumb() ? 0 : 0),
5722 CallNoLRSave(target.isThumb() ? 4 : 4),
5723 FrameNoLRSave(target.isThumb() ? 4 : 4),
5724 CallRegSave(target.isThumb() ? 8 : 12),
5725 FrameRegSave(target.isThumb() ? 2 : 4),
5726 CallDefault(target.isThumb() ? 8 : 12),
5727 FrameDefault(target.isThumb() ? 2 : 4),
5728 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5731 unsigned
5732 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5733 assert(C.LRUWasSet && "LRU wasn't set?");
5734 MachineFunction *MF = C.getMF();
5735 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
5736 MF->getSubtarget().getRegisterInfo());
5738 BitVector regsReserved = ARI->getReservedRegs(*MF);
5739 // Check if there is an available register across the sequence that we can
5740 // use.
5741 for (unsigned Reg : ARM::rGPRRegClass) {
5742 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5743 Reg != ARM::LR && // LR is not reserved, but don't use it.
5744 Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5745 C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5746 return Reg;
5749 // No suitable register. Return 0.
5750 return 0u;
5753 // Compute liveness of LR at the point after the interval [I, E), which
5754 // denotes a *backward* iteration through instructions. Used only for return
5755 // basic blocks, which do not end with a tail call.
5756 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5757 MachineBasicBlock::reverse_iterator I,
5758 MachineBasicBlock::reverse_iterator E) {
5759 // At the end of the function LR dead.
5760 bool Live = false;
5761 for (; I != E; ++I) {
5762 const MachineInstr &MI = *I;
5764 // Check defs of LR.
5765 if (MI.modifiesRegister(ARM::LR, &TRI))
5766 Live = false;
5768 // Check uses of LR.
5769 unsigned Opcode = MI.getOpcode();
5770 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5771 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5772 Opcode == ARM::tBXNS_RET) {
5773 // These instructions use LR, but it's not an (explicit or implicit)
5774 // operand.
5775 Live = true;
5776 continue;
5778 if (MI.readsRegister(ARM::LR, &TRI))
5779 Live = true;
5781 return !Live;
5784 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5785 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5786 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5787 unsigned SequenceSize =
5788 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5789 [this](unsigned Sum, const MachineInstr &MI) {
5790 return Sum + getInstSizeInBytes(MI);
5793 // Properties about candidate MBBs that hold for all of them.
5794 unsigned FlagsSetInAll = 0xF;
5796 // Compute liveness information for each candidate, and set FlagsSetInAll.
5797 const TargetRegisterInfo &TRI = getRegisterInfo();
5798 std::for_each(
5799 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5800 [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });
5802 // According to the ARM Procedure Call Standard, the following are
5803 // undefined on entry/exit from a function call:
5805 // * Register R12(IP),
5806 // * Condition codes (and thus the CPSR register)
5808 // Since we control the instructions which are part of the outlined regions
5809 // we don't need to be fully compliant with the AAPCS, but we have to
5810 // guarantee that if a veneer is inserted at link time the code is still
5811 // correct. Because of this, we can't outline any sequence of instructions
5812 // where one of these registers is live into/across it. Thus, we need to
5813 // delete those candidates.
5814 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5815 // If the unsafe registers in this block are all dead, then we don't need
5816 // to compute liveness here.
5817 if (C.Flags & UnsafeRegsDead)
5818 return false;
5819 C.initLRU(TRI);
5820 LiveRegUnits LRU = C.LRU;
5821 return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
5824 // Are there any candidates where those registers are live?
5825 if (!(FlagsSetInAll & UnsafeRegsDead)) {
5826 // Erase every candidate that violates the restrictions above. (It could be
5827 // true that we have viable candidates, so it's not worth bailing out in
5828 // the case that, say, 1 out of 20 candidates violate the restructions.)
5829 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5831 // If the sequence doesn't have enough candidates left, then we're done.
5832 if (RepeatedSequenceLocs.size() < 2)
5833 return outliner::OutlinedFunction();
5836 // At this point, we have only "safe" candidates to outline. Figure out
5837 // frame + call instruction information.
5839 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5841 // Helper lambda which sets call information for every candidate.
5842 auto SetCandidateCallInfo =
5843 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5844 for (outliner::Candidate &C : RepeatedSequenceLocs)
5845 C.setCallInfo(CallID, NumBytesForCall);
5848 OutlinerCosts Costs(Subtarget);
5849 unsigned FrameID = MachineOutlinerDefault;
5850 unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5852 // If the last instruction in any candidate is a terminator, then we should
5853 // tail call all of the candidates.
5854 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5855 FrameID = MachineOutlinerTailCall;
5856 NumBytesToCreateFrame = Costs.FrameTailCall;
5857 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5858 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5859 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
5860 LastInstrOpcode == ARM::tBLXr ||
5861 LastInstrOpcode == ARM::tBLXr_noip ||
5862 LastInstrOpcode == ARM::tBLXi) {
5863 FrameID = MachineOutlinerThunk;
5864 NumBytesToCreateFrame = Costs.FrameThunk;
5865 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5866 } else {
5867 // We need to decide how to emit calls + frames. We can always emit the same
5868 // frame if we don't need to save to the stack. If we have to save to the
5869 // stack, then we need a different frame.
5870 unsigned NumBytesNoStackCalls = 0;
5871 std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5873 for (outliner::Candidate &C : RepeatedSequenceLocs) {
5874 C.initLRU(TRI);
5875 // LR liveness is overestimated in return blocks, unless they end with a
5876 // tail call.
5877 const auto Last = C.getMBB()->rbegin();
5878 const bool LRIsAvailable =
5879 C.getMBB()->isReturnBlock() && !Last->isCall()
5880 ? isLRAvailable(TRI, Last,
5881 (MachineBasicBlock::reverse_iterator)C.front())
5882 : C.LRU.available(ARM::LR);
5883 if (LRIsAvailable) {
5884 FrameID = MachineOutlinerNoLRSave;
5885 NumBytesNoStackCalls += Costs.CallNoLRSave;
5886 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
5887 CandidatesWithoutStackFixups.push_back(C);
5890 // Is an unused register available? If so, we won't modify the stack, so
5891 // we can outline with the same frame type as those that don't save LR.
5892 else if (findRegisterToSaveLRTo(C)) {
5893 FrameID = MachineOutlinerRegSave;
5894 NumBytesNoStackCalls += Costs.CallRegSave;
5895 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
5896 CandidatesWithoutStackFixups.push_back(C);
5899 // Is SP used in the sequence at all? If not, we don't have to modify
5900 // the stack, so we are guaranteed to get the same frame.
5901 else if (C.UsedInSequence.available(ARM::SP)) {
5902 NumBytesNoStackCalls += Costs.CallDefault;
5903 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5904 CandidatesWithoutStackFixups.push_back(C);
5907 // If we outline this, we need to modify the stack. Pretend we don't
5908 // outline this by saving all of its bytes.
5909 else
5910 NumBytesNoStackCalls += SequenceSize;
5913 // If there are no places where we have to save LR, then note that we don't
5914 // have to update the stack. Otherwise, give every candidate the default
5915 // call type
5916 if (NumBytesNoStackCalls <=
5917 RepeatedSequenceLocs.size() * Costs.CallDefault) {
5918 RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5919 FrameID = MachineOutlinerNoLRSave;
5920 } else
5921 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5924 // Does every candidate's MBB contain a call? If so, then we might have a
5925 // call in the range.
5926 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5927 // check if the range contains a call. These require a save + restore of
5928 // the link register.
5929 if (std::any_of(FirstCand.front(), FirstCand.back(),
5930 [](const MachineInstr &MI) { return MI.isCall(); }))
5931 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5933 // Handle the last instruction separately. If it is tail call, then the
5934 // last instruction is a call, we don't want to save + restore in this
5935 // case. However, it could be possible that the last instruction is a
5936 // call without it being valid to tail call this sequence. We should
5937 // consider this as well.
5938 else if (FrameID != MachineOutlinerThunk &&
5939 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
5940 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5943 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5944 NumBytesToCreateFrame, FrameID);
5947 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
5948 int64_t Fixup,
5949 bool Updt) const {
5950 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP);
5951 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
5952 if (SPIdx < 0)
5953 // No SP operand
5954 return true;
5955 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
5956 // If SP is not the base register we can't do much
5957 return false;
5959 // Stack might be involved but addressing mode doesn't handle any offset.
5960 // Rq: AddrModeT1_[1|2|4] don't operate on SP
5961 if (AddrMode == ARMII::AddrMode1 // Arithmetic instructions
5962 || AddrMode == ARMII::AddrMode4 // Load/Store Multiple
5963 || AddrMode == ARMII::AddrMode6 // Neon Load/Store Multiple
5964 || AddrMode == ARMII::AddrModeT2_so // SP can't be used as based register
5965 || AddrMode == ARMII::AddrModeT2_pc // PCrel access
5966 || AddrMode == ARMII::AddrMode2 // Used by PRE and POST indexed LD/ST
5967 || AddrMode == ARMII::AddrModeT2_i7 // v8.1-M MVE
5968 || AddrMode == ARMII::AddrModeT2_i7s2 // v8.1-M MVE
5969 || AddrMode == ARMII::AddrModeT2_i7s4 // v8.1-M sys regs VLDR/VSTR
5970 || AddrMode == ARMII::AddrModeNone)
5971 return false;
5973 unsigned NumOps = MI->getDesc().getNumOperands();
5974 unsigned ImmIdx = NumOps - 3;
5976 const MachineOperand &Offset = MI->getOperand(ImmIdx);
5977 assert(Offset.isImm() && "Is not an immediate");
5978 int64_t OffVal = Offset.getImm();
5980 if (OffVal < 0)
5981 // Don't override data if the are below SP.
5982 return false;
5984 unsigned NumBits = 0;
5985 unsigned Scale = 1;
5987 switch (AddrMode) {
5988 case ARMII::AddrMode3:
5989 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
5990 return false;
5991 OffVal = ARM_AM::getAM3Offset(OffVal);
5992 NumBits = 8;
5993 break;
5994 case ARMII::AddrMode5:
5995 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
5996 return false;
5997 OffVal = ARM_AM::getAM5Offset(OffVal);
5998 NumBits = 8;
5999 Scale = 4;
6000 break;
6001 case ARMII::AddrMode5FP16:
6002 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6003 return false;
6004 OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6005 NumBits = 8;
6006 Scale = 2;
6007 break;
6008 case ARMII::AddrModeT2_i8:
6009 NumBits = 8;
6010 break;
6011 case ARMII::AddrModeT2_i8s4:
6012 // FIXME: Values are already scaled in this addressing mode.
6013 assert((Fixup & 3) == 0 && "Can't encode this offset!");
6014 NumBits = 10;
6015 break;
6016 case ARMII::AddrModeT2_ldrex:
6017 NumBits = 8;
6018 Scale = 4;
6019 break;
6020 case ARMII::AddrModeT2_i12:
6021 case ARMII::AddrMode_i12:
6022 NumBits = 12;
6023 break;
6024 case ARMII::AddrModeT1_s: // SP-relative LD/ST
6025 NumBits = 8;
6026 Scale = 4;
6027 break;
6028 default:
6029 llvm_unreachable("Unsupported addressing mode!");
6031 // Make sure the offset is encodable for instructions that scale the
6032 // immediate.
6033 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6034 "Can't encode this offset!");
6035 OffVal += Fixup / Scale;
6037 unsigned Mask = (1 << NumBits) - 1;
6039 if (OffVal <= Mask) {
6040 if (Updt)
6041 MI->getOperand(ImmIdx).setImm(OffVal);
6042 return true;
6045 return false;
6049 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6050 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6051 const Function &F = MF.getFunction();
6053 // Can F be deduplicated by the linker? If it can, don't outline from it.
6054 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6055 return false;
6057 // Don't outline from functions with section markings; the program could
6058 // expect that all the code is in the named section.
6059 // FIXME: Allow outlining from multiple functions with the same section
6060 // marking.
6061 if (F.hasSection())
6062 return false;
6064 // FIXME: Thumb1 outlining is not handled
6065 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6066 return false;
6068 // It's safe to outline from MF.
6069 return true;
6072 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6073 unsigned &Flags) const {
6074 // Check if LR is available through all of the MBB. If it's not, then set
6075 // a flag.
6076 assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6077 "Suitable Machine Function for outlining must track liveness");
6079 LiveRegUnits LRU(getRegisterInfo());
6081 std::for_each(MBB.rbegin(), MBB.rend(),
6082 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
6084 // Check if each of the unsafe registers are available...
6085 bool R12AvailableInBlock = LRU.available(ARM::R12);
6086 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6088 // If all of these are dead (and not live out), we know we don't have to check
6089 // them later.
6090 if (R12AvailableInBlock && CPSRAvailableInBlock)
6091 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6093 // Now, add the live outs to the set.
6094 LRU.addLiveOuts(MBB);
6096 // If any of these registers is available in the MBB, but also a live out of
6097 // the block, then we know outlining is unsafe.
6098 if (R12AvailableInBlock && !LRU.available(ARM::R12))
6099 return false;
6100 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6101 return false;
6103 // Check if there's a call inside this MachineBasicBlock. If there is, then
6104 // set a flag.
6105 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6106 Flags |= MachineOutlinerMBBFlags::HasCalls;
6108 // LR liveness is overestimated in return blocks.
6110 bool LRIsAvailable =
6111 MBB.isReturnBlock() && !MBB.back().isCall()
6112 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6113 : LRU.available(ARM::LR);
6114 if (!LRIsAvailable)
6115 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6117 return true;
6120 outliner::InstrType
6121 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
6122 unsigned Flags) const {
6123 MachineInstr &MI = *MIT;
6124 const TargetRegisterInfo *TRI = &getRegisterInfo();
6126 // Be conservative with inline ASM
6127 if (MI.isInlineAsm())
6128 return outliner::InstrType::Illegal;
6130 // Don't allow debug values to impact outlining type.
6131 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
6132 return outliner::InstrType::Invisible;
6134 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
6135 // so we can go ahead and skip over them.
6136 if (MI.isKill() || MI.isImplicitDef())
6137 return outliner::InstrType::Invisible;
6139 // PIC instructions contain labels, outlining them would break offset
6140 // computing. unsigned Opc = MI.getOpcode();
6141 unsigned Opc = MI.getOpcode();
6142 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6143 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6144 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6145 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6146 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6147 Opc == ARM::t2MOV_ga_pcrel)
6148 return outliner::InstrType::Illegal;
6150 // Be conservative with ARMv8.1 MVE instructions.
6151 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6152 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6153 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6154 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6155 Opc == ARM::t2LoopEndDec)
6156 return outliner::InstrType::Illegal;
6158 const MCInstrDesc &MCID = MI.getDesc();
6159 uint64_t MIFlags = MCID.TSFlags;
6160 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6161 return outliner::InstrType::Illegal;
6163 // Is this a terminator for a basic block?
6164 if (MI.isTerminator()) {
6165 // Don't outline if the branch is not unconditional.
6166 if (isPredicated(MI))
6167 return outliner::InstrType::Illegal;
6169 // Is this the end of a function?
6170 if (MI.getParent()->succ_empty())
6171 return outliner::InstrType::Legal;
6173 // It's not, so don't outline it.
6174 return outliner::InstrType::Illegal;
6177 // Make sure none of the operands are un-outlinable.
6178 for (const MachineOperand &MOP : MI.operands()) {
6179 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
6180 MOP.isTargetIndex())
6181 return outliner::InstrType::Illegal;
6184 // Don't outline if link register or program counter value are used.
6185 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6186 return outliner::InstrType::Illegal;
6188 if (MI.isCall()) {
6189 // Get the function associated with the call. Look at each operand and find
6190 // the one that represents the calle and get its name.
6191 const Function *Callee = nullptr;
6192 for (const MachineOperand &MOP : MI.operands()) {
6193 if (MOP.isGlobal()) {
6194 Callee = dyn_cast<Function>(MOP.getGlobal());
6195 break;
6199 // Dont't outline calls to "mcount" like functions, in particular Linux
6200 // kernel function tracing relies on it.
6201 if (Callee &&
6202 (Callee->getName() == "\01__gnu_mcount_nc" ||
6203 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6204 return outliner::InstrType::Illegal;
6206 // If we don't know anything about the callee, assume it depends on the
6207 // stack layout of the caller. In that case, it's only legal to outline
6208 // as a tail-call. Explicitly list the call instructions we know about so
6209 // we don't get unexpected results with call pseudo-instructions.
6210 auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6211 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6212 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6213 Opc == ARM::tBLXi)
6214 UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6216 if (!Callee)
6217 return UnknownCallOutlineType;
6219 // We have a function we have information about. Check if it's something we
6220 // can safely outline.
6221 MachineFunction *MF = MI.getParent()->getParent();
6222 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6224 // We don't know what's going on with the callee at all. Don't touch it.
6225 if (!CalleeMF)
6226 return UnknownCallOutlineType;
6228 // Check if we know anything about the callee saves on the function. If we
6229 // don't, then don't touch it, since that implies that we haven't computed
6230 // anything about its stack frame yet.
6231 MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6232 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6233 MFI.getNumObjects() > 0)
6234 return UnknownCallOutlineType;
6236 // At this point, we can say that CalleeMF ought to not pass anything on the
6237 // stack. Therefore, we can outline it.
6238 return outliner::InstrType::Legal;
6241 // Since calls are handled, don't touch LR or PC
6242 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6243 return outliner::InstrType::Illegal;
6245 // Does this use the stack?
6246 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6247 // True if there is no chance that any outlined candidate from this range
6248 // could require stack fixups. That is, both
6249 // * LR is available in the range (No save/restore around call)
6250 // * The range doesn't include calls (No save/restore in outlined frame)
6251 // are true.
6252 // FIXME: This is very restrictive; the flags check the whole block,
6253 // not just the bit we will try to outline.
6254 bool MightNeedStackFixUp =
6255 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6256 MachineOutlinerMBBFlags::HasCalls));
6258 if (!MightNeedStackFixUp)
6259 return outliner::InstrType::Legal;
6261 // Any modification of SP will break our code to save/restore LR.
6262 // FIXME: We could handle some instructions which add a constant offset to
6263 // SP, with a bit more work.
6264 if (MI.modifiesRegister(ARM::SP, TRI))
6265 return outliner::InstrType::Illegal;
6267 // At this point, we have a stack instruction that we might need to fix up.
6268 // up. We'll handle it if it's a load or store.
6269 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6270 false))
6271 return outliner::InstrType::Legal;
6273 // We can't fix it up, so don't outline it.
6274 return outliner::InstrType::Illegal;
6277 // Be conservative with IT blocks.
6278 if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6279 MI.modifiesRegister(ARM::ITSTATE, TRI))
6280 return outliner::InstrType::Illegal;
6282 // Don't outline positions.
6283 if (MI.isPosition())
6284 return outliner::InstrType::Illegal;
6286 return outliner::InstrType::Legal;
6289 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6290 for (MachineInstr &MI : MBB) {
6291 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6295 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6296 MachineBasicBlock::iterator It) const {
6297 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6298 int Align = -Subtarget.getStackAlignment().value();
6299 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6300 .addReg(ARM::LR, RegState::Kill)
6301 .addReg(ARM::SP)
6302 .addImm(Align)
6303 .add(predOps(ARMCC::AL));
6306 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack(
6307 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6308 MachineFunction &MF = *MBB.getParent();
6309 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6310 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6311 int Align = Subtarget.getStackAlignment().value();
6312 // Add a CFI saying the stack was moved down.
6313 int64_t StackPosEntry =
6314 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6315 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6316 .addCFIIndex(StackPosEntry)
6317 .setMIFlags(MachineInstr::FrameSetup);
6319 // Add a CFI saying that the LR that we want to find is now higher than
6320 // before.
6321 int64_t LRPosEntry =
6322 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align));
6323 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6324 .addCFIIndex(LRPosEntry)
6325 .setMIFlags(MachineInstr::FrameSetup);
6328 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6329 MachineBasicBlock::iterator It,
6330 Register Reg) const {
6331 MachineFunction &MF = *MBB.getParent();
6332 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6333 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6334 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6336 int64_t LRPosEntry = MF.addFrameInst(
6337 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6338 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6339 .addCFIIndex(LRPosEntry)
6340 .setMIFlags(MachineInstr::FrameSetup);
6343 void ARMBaseInstrInfo::restoreLRFromStack(
6344 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6345 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6346 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6347 .addReg(ARM::SP, RegState::Define)
6348 .addReg(ARM::SP);
6349 if (!Subtarget.isThumb())
6350 MIB.addReg(0);
6351 MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL));
6354 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack(
6355 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6356 // Now stack has moved back up...
6357 MachineFunction &MF = *MBB.getParent();
6358 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6359 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6360 int64_t StackPosEntry =
6361 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6362 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6363 .addCFIIndex(StackPosEntry)
6364 .setMIFlags(MachineInstr::FrameDestroy);
6366 // ... and we have restored LR.
6367 int64_t LRPosEntry =
6368 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6369 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6370 .addCFIIndex(LRPosEntry)
6371 .setMIFlags(MachineInstr::FrameDestroy);
6374 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6375 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6376 MachineFunction &MF = *MBB.getParent();
6377 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6378 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6380 int64_t LRPosEntry =
6381 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6382 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6383 .addCFIIndex(LRPosEntry)
6384 .setMIFlags(MachineInstr::FrameDestroy);
6387 void ARMBaseInstrInfo::buildOutlinedFrame(
6388 MachineBasicBlock &MBB, MachineFunction &MF,
6389 const outliner::OutlinedFunction &OF) const {
6390 // For thunk outlining, rewrite the last instruction from a call to a
6391 // tail-call.
6392 if (OF.FrameConstructionID == MachineOutlinerThunk) {
6393 MachineInstr *Call = &*--MBB.instr_end();
6394 bool isThumb = Subtarget.isThumb();
6395 unsigned FuncOp = isThumb ? 2 : 0;
6396 unsigned Opc = Call->getOperand(FuncOp).isReg()
6397 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6398 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6399 : ARM::tTAILJMPdND
6400 : ARM::TAILJMPd;
6401 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6402 .add(Call->getOperand(FuncOp));
6403 if (isThumb && !Call->getOperand(FuncOp).isReg())
6404 MIB.add(predOps(ARMCC::AL));
6405 Call->eraseFromParent();
6408 // Is there a call in the outlined range?
6409 auto IsNonTailCall = [](MachineInstr &MI) {
6410 return MI.isCall() && !MI.isReturn();
6412 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6413 MachineBasicBlock::iterator It = MBB.begin();
6414 MachineBasicBlock::iterator Et = MBB.end();
6416 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6417 OF.FrameConstructionID == MachineOutlinerThunk)
6418 Et = std::prev(MBB.end());
6420 // We have to save and restore LR, we need to add it to the liveins if it
6421 // is not already part of the set. This is suffient since outlined
6422 // functions only have one block.
6423 if (!MBB.isLiveIn(ARM::LR))
6424 MBB.addLiveIn(ARM::LR);
6426 // Insert a save before the outlined region
6427 saveLROnStack(MBB, It);
6428 emitCFIForLRSaveOnStack(MBB, It);
6430 // Fix up the instructions in the range, since we're going to modify the
6431 // stack.
6432 assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6433 "Can only fix up stack references once");
6434 fixupPostOutline(MBB);
6436 // Insert a restore before the terminator for the function. Restore LR.
6437 restoreLRFromStack(MBB, Et);
6438 emitCFIForLRRestoreFromStack(MBB, Et);
6441 // If this is a tail call outlined function, then there's already a return.
6442 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6443 OF.FrameConstructionID == MachineOutlinerThunk)
6444 return;
6446 // Here we have to insert the return ourselves. Get the correct opcode from
6447 // current feature set.
6448 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6449 .add(predOps(ARMCC::AL));
6451 // Did we have to modify the stack by saving the link register?
6452 if (OF.FrameConstructionID != MachineOutlinerDefault &&
6453 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6454 return;
6456 // We modified the stack.
6457 // Walk over the basic block and fix up all the stack accesses.
6458 fixupPostOutline(MBB);
6461 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6462 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6463 MachineFunction &MF, const outliner::Candidate &C) const {
6464 MachineInstrBuilder MIB;
6465 MachineBasicBlock::iterator CallPt;
6466 unsigned Opc;
6467 bool isThumb = Subtarget.isThumb();
6469 // Are we tail calling?
6470 if (C.CallConstructionID == MachineOutlinerTailCall) {
6471 // If yes, then we can just branch to the label.
6472 Opc = isThumb
6473 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6474 : ARM::TAILJMPd;
6475 MIB = BuildMI(MF, DebugLoc(), get(Opc))
6476 .addGlobalAddress(M.getNamedValue(MF.getName()));
6477 if (isThumb)
6478 MIB.add(predOps(ARMCC::AL));
6479 It = MBB.insert(It, MIB);
6480 return It;
6483 // Create the call instruction.
6484 Opc = isThumb ? ARM::tBL : ARM::BL;
6485 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6486 if (isThumb)
6487 CallMIB.add(predOps(ARMCC::AL));
6488 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6490 if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6491 C.CallConstructionID == MachineOutlinerThunk) {
6492 // No, so just insert the call.
6493 It = MBB.insert(It, CallMIB);
6494 return It;
6497 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6498 // Can we save to a register?
6499 if (C.CallConstructionID == MachineOutlinerRegSave) {
6500 unsigned Reg = findRegisterToSaveLRTo(C);
6501 assert(Reg != 0 && "No callee-saved register available?");
6503 // Save and restore LR from that register.
6504 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6505 if (!AFI.isLRSpilled())
6506 emitCFIForLRSaveToReg(MBB, It, Reg);
6507 CallPt = MBB.insert(It, CallMIB);
6508 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6509 if (!AFI.isLRSpilled())
6510 emitCFIForLRRestoreFromReg(MBB, It);
6511 It--;
6512 return CallPt;
6514 // We have the default case. Save and restore from SP.
6515 if (!MBB.isLiveIn(ARM::LR))
6516 MBB.addLiveIn(ARM::LR);
6517 saveLROnStack(MBB, It);
6518 if (!AFI.isLRSpilled())
6519 emitCFIForLRSaveOnStack(MBB, It);
6520 CallPt = MBB.insert(It, CallMIB);
6521 restoreLRFromStack(MBB, It);
6522 if (!AFI.isLRSpilled())
6523 emitCFIForLRRestoreFromStack(MBB, It);
6524 It--;
6525 return CallPt;
6528 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6529 MachineFunction &MF) const {
6530 return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6533 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
6534 AAResults *AA) const {
6535 // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6536 // the tail predication conversion. This means that the element count
6537 // register has to be live for longer, but that has to be better than
6538 // spill/restore and VPT predication.
6539 return isVCTP(&MI) && !isPredicated(MI);
6542 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6543 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6544 : ARM::BLX;
6547 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6548 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6549 : ARM::tBLXr;
6552 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6553 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6554 : ARM::BLX_pred;