[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMFastISel.cpp
blob28a076edd6dcd2d13c294aaa0a93d369b603f55a
1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCRegisterInfo.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cstdint>
81 #include <utility>
83 using namespace llvm;
85 namespace {
87 // All possible address modes, plus some.
88 struct Address {
89 enum {
90 RegBase,
91 FrameIndexBase
92 } BaseType = RegBase;
94 union {
95 unsigned Reg;
96 int FI;
97 } Base;
99 int Offset = 0;
101 // Innocuous defaults for our address.
102 Address() {
103 Base.Reg = 0;
107 class ARMFastISel final : public FastISel {
108 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
109 /// make the right decision when generating code for different targets.
110 const ARMSubtarget *Subtarget;
111 Module &M;
112 const TargetMachine &TM;
113 const TargetInstrInfo &TII;
114 const TargetLowering &TLI;
115 ARMFunctionInfo *AFI;
117 // Convenience variables to avoid some queries.
118 bool isThumb2;
119 LLVMContext *Context;
121 public:
122 explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
123 const TargetLibraryInfo *libInfo)
124 : FastISel(funcInfo, libInfo),
125 Subtarget(
126 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
127 M(const_cast<Module &>(*funcInfo.Fn->getParent())),
128 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
129 TLI(*Subtarget->getTargetLowering()) {
130 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
131 isThumb2 = AFI->isThumbFunction();
132 Context = &funcInfo.Fn->getContext();
135 private:
136 // Code from FastISel.cpp.
138 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
139 const TargetRegisterClass *RC, unsigned Op0);
140 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
141 const TargetRegisterClass *RC,
142 unsigned Op0, unsigned Op1);
143 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
144 const TargetRegisterClass *RC,
145 unsigned Op0, uint64_t Imm);
146 unsigned fastEmitInst_i(unsigned MachineInstOpcode,
147 const TargetRegisterClass *RC,
148 uint64_t Imm);
150 // Backend specific FastISel code.
152 bool fastSelectInstruction(const Instruction *I) override;
153 unsigned fastMaterializeConstant(const Constant *C) override;
154 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
155 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
156 const LoadInst *LI) override;
157 bool fastLowerArguments() override;
159 #include "ARMGenFastISel.inc"
161 // Instruction selection routines.
163 bool SelectLoad(const Instruction *I);
164 bool SelectStore(const Instruction *I);
165 bool SelectBranch(const Instruction *I);
166 bool SelectIndirectBr(const Instruction *I);
167 bool SelectCmp(const Instruction *I);
168 bool SelectFPExt(const Instruction *I);
169 bool SelectFPTrunc(const Instruction *I);
170 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
171 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
172 bool SelectIToFP(const Instruction *I, bool isSigned);
173 bool SelectFPToI(const Instruction *I, bool isSigned);
174 bool SelectDiv(const Instruction *I, bool isSigned);
175 bool SelectRem(const Instruction *I, bool isSigned);
176 bool SelectCall(const Instruction *I, const char *IntrMemName);
177 bool SelectIntrinsicCall(const IntrinsicInst &I);
178 bool SelectSelect(const Instruction *I);
179 bool SelectRet(const Instruction *I);
180 bool SelectTrunc(const Instruction *I);
181 bool SelectIntExt(const Instruction *I);
182 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
184 // Utility routines.
186 bool isPositionIndependent() const;
187 bool isTypeLegal(Type *Ty, MVT &VT);
188 bool isLoadTypeLegal(Type *Ty, MVT &VT);
189 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
190 bool isZExt);
191 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
192 unsigned Alignment = 0, bool isZExt = true,
193 bool allocReg = true);
194 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
195 unsigned Alignment = 0);
196 bool ARMComputeAddress(const Value *Obj, Address &Addr);
197 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
198 bool ARMIsMemCpySmall(uint64_t Len);
199 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
200 unsigned Alignment);
201 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
202 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
203 unsigned ARMMaterializeInt(const Constant *C, MVT VT);
204 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
205 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
206 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
207 unsigned ARMSelectCallOp(bool UseReg);
208 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
210 const TargetLowering *getTargetLowering() { return &TLI; }
212 // Call handling routines.
214 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
215 bool Return,
216 bool isVarArg);
217 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
218 SmallVectorImpl<Register> &ArgRegs,
219 SmallVectorImpl<MVT> &ArgVTs,
220 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
221 SmallVectorImpl<Register> &RegArgs,
222 CallingConv::ID CC,
223 unsigned &NumBytes,
224 bool isVarArg);
225 unsigned getLibcallReg(const Twine &Name);
226 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
227 const Instruction *I, CallingConv::ID CC,
228 unsigned &NumBytes, bool isVarArg);
229 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
231 // OptionalDef handling routines.
233 bool isARMNEONPred(const MachineInstr *MI);
234 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
235 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
236 void AddLoadStoreOperands(MVT VT, Address &Addr,
237 const MachineInstrBuilder &MIB,
238 MachineMemOperand::Flags Flags, bool useAM3);
241 } // end anonymous namespace
243 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
244 // we don't care about implicit defs here, just places we'll need to add a
245 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
246 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
247 if (!MI->hasOptionalDef())
248 return false;
250 // Look to see if our OptionalDef is defining CPSR or CCR.
251 for (const MachineOperand &MO : MI->operands()) {
252 if (!MO.isReg() || !MO.isDef()) continue;
253 if (MO.getReg() == ARM::CPSR)
254 *CPSR = true;
256 return true;
259 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
260 const MCInstrDesc &MCID = MI->getDesc();
262 // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
263 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
264 AFI->isThumb2Function())
265 return MI->isPredicable();
267 for (const MCOperandInfo &opInfo : MCID.operands())
268 if (opInfo.isPredicate())
269 return true;
271 return false;
274 // If the machine is predicable go ahead and add the predicate operands, if
275 // it needs default CC operands add those.
276 // TODO: If we want to support thumb1 then we'll need to deal with optional
277 // CPSR defs that need to be added before the remaining operands. See s_cc_out
278 // for descriptions why.
279 const MachineInstrBuilder &
280 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
281 MachineInstr *MI = &*MIB;
283 // Do we use a predicate? or...
284 // Are we NEON in ARM mode and have a predicate operand? If so, I know
285 // we're not predicable but add it anyways.
286 if (isARMNEONPred(MI))
287 MIB.add(predOps(ARMCC::AL));
289 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
290 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
291 bool CPSR = false;
292 if (DefinesOptionalPredicate(MI, &CPSR))
293 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
294 return MIB;
297 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
298 const TargetRegisterClass *RC,
299 unsigned Op0) {
300 Register ResultReg = createResultReg(RC);
301 const MCInstrDesc &II = TII.get(MachineInstOpcode);
303 // Make sure the input operand is sufficiently constrained to be legal
304 // for this instruction.
305 Op0 = constrainOperandRegClass(II, Op0, 1);
306 if (II.getNumDefs() >= 1) {
307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
308 ResultReg).addReg(Op0));
309 } else {
310 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
311 .addReg(Op0));
312 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
313 TII.get(TargetOpcode::COPY), ResultReg)
314 .addReg(II.ImplicitDefs[0]));
316 return ResultReg;
319 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
320 const TargetRegisterClass *RC,
321 unsigned Op0, unsigned Op1) {
322 unsigned ResultReg = createResultReg(RC);
323 const MCInstrDesc &II = TII.get(MachineInstOpcode);
325 // Make sure the input operands are sufficiently constrained to be legal
326 // for this instruction.
327 Op0 = constrainOperandRegClass(II, Op0, 1);
328 Op1 = constrainOperandRegClass(II, Op1, 2);
330 if (II.getNumDefs() >= 1) {
331 AddOptionalDefs(
332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
333 .addReg(Op0)
334 .addReg(Op1));
335 } else {
336 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
337 .addReg(Op0)
338 .addReg(Op1));
339 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
340 TII.get(TargetOpcode::COPY), ResultReg)
341 .addReg(II.ImplicitDefs[0]));
343 return ResultReg;
346 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
347 const TargetRegisterClass *RC,
348 unsigned Op0, uint64_t Imm) {
349 unsigned ResultReg = createResultReg(RC);
350 const MCInstrDesc &II = TII.get(MachineInstOpcode);
352 // Make sure the input operand is sufficiently constrained to be legal
353 // for this instruction.
354 Op0 = constrainOperandRegClass(II, Op0, 1);
355 if (II.getNumDefs() >= 1) {
356 AddOptionalDefs(
357 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
358 .addReg(Op0)
359 .addImm(Imm));
360 } else {
361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
362 .addReg(Op0)
363 .addImm(Imm));
364 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
365 TII.get(TargetOpcode::COPY), ResultReg)
366 .addReg(II.ImplicitDefs[0]));
368 return ResultReg;
371 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
372 const TargetRegisterClass *RC,
373 uint64_t Imm) {
374 unsigned ResultReg = createResultReg(RC);
375 const MCInstrDesc &II = TII.get(MachineInstOpcode);
377 if (II.getNumDefs() >= 1) {
378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
379 ResultReg).addImm(Imm));
380 } else {
381 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
382 .addImm(Imm));
383 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
384 TII.get(TargetOpcode::COPY), ResultReg)
385 .addReg(II.ImplicitDefs[0]));
387 return ResultReg;
390 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
391 // checks from the various callers.
392 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
393 if (VT == MVT::f64) return 0;
395 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
396 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
397 TII.get(ARM::VMOVSR), MoveReg)
398 .addReg(SrcReg));
399 return MoveReg;
402 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
403 if (VT == MVT::i64) return 0;
405 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
406 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
407 TII.get(ARM::VMOVRS), MoveReg)
408 .addReg(SrcReg));
409 return MoveReg;
412 // For double width floating point we need to materialize two constants
413 // (the high and the low) into integer registers then use a move to get
414 // the combined constant into an FP reg.
415 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
416 const APFloat Val = CFP->getValueAPF();
417 bool is64bit = VT == MVT::f64;
419 // This checks to see if we can use VFP3 instructions to materialize
420 // a constant, otherwise we have to go through the constant pool.
421 if (TLI.isFPImmLegal(Val, VT)) {
422 int Imm;
423 unsigned Opc;
424 if (is64bit) {
425 Imm = ARM_AM::getFP64Imm(Val);
426 Opc = ARM::FCONSTD;
427 } else {
428 Imm = ARM_AM::getFP32Imm(Val);
429 Opc = ARM::FCONSTS;
431 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
433 TII.get(Opc), DestReg).addImm(Imm));
434 return DestReg;
437 // Require VFP2 for loading fp constants.
438 if (!Subtarget->hasVFP2Base()) return false;
440 // MachineConstantPool wants an explicit alignment.
441 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
442 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
443 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
444 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
446 // The extra reg is for addrmode5.
447 AddOptionalDefs(
448 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
449 .addConstantPoolIndex(Idx)
450 .addReg(0));
451 return DestReg;
454 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
455 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
456 return 0;
458 // If we can do this in a single instruction without a constant pool entry
459 // do so now.
460 const ConstantInt *CI = cast<ConstantInt>(C);
461 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
462 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
463 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
464 &ARM::GPRRegClass;
465 unsigned ImmReg = createResultReg(RC);
466 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
467 TII.get(Opc), ImmReg)
468 .addImm(CI->getZExtValue()));
469 return ImmReg;
472 // Use MVN to emit negative constants.
473 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
474 unsigned Imm = (unsigned)~(CI->getSExtValue());
475 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
476 (ARM_AM::getSOImmVal(Imm) != -1);
477 if (UseImm) {
478 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
479 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
480 &ARM::GPRRegClass;
481 unsigned ImmReg = createResultReg(RC);
482 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
483 TII.get(Opc), ImmReg)
484 .addImm(Imm));
485 return ImmReg;
489 unsigned ResultReg = 0;
490 if (Subtarget->useMovt())
491 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
493 if (ResultReg)
494 return ResultReg;
496 // Load from constant pool. For now 32-bit only.
497 if (VT != MVT::i32)
498 return 0;
500 // MachineConstantPool wants an explicit alignment.
501 Align Alignment = DL.getPrefTypeAlign(C->getType());
502 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
503 ResultReg = createResultReg(TLI.getRegClassFor(VT));
504 if (isThumb2)
505 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
506 TII.get(ARM::t2LDRpci), ResultReg)
507 .addConstantPoolIndex(Idx));
508 else {
509 // The extra immediate is for addrmode2.
510 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
511 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
512 TII.get(ARM::LDRcp), ResultReg)
513 .addConstantPoolIndex(Idx)
514 .addImm(0));
516 return ResultReg;
519 bool ARMFastISel::isPositionIndependent() const {
520 return TLI.isPositionIndependent();
523 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
524 // For now 32-bit only.
525 if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
527 // ROPI/RWPI not currently supported.
528 if (Subtarget->isROPI() || Subtarget->isRWPI())
529 return 0;
531 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
532 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
533 : &ARM::GPRRegClass;
534 unsigned DestReg = createResultReg(RC);
536 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
537 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
538 bool IsThreadLocal = GVar && GVar->isThreadLocal();
539 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
541 bool IsPositionIndependent = isPositionIndependent();
542 // Use movw+movt when possible, it avoids constant pool entries.
543 // Non-darwin targets only support static movt relocations in FastISel.
544 if (Subtarget->useMovt() &&
545 (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
546 unsigned Opc;
547 unsigned char TF = 0;
548 if (Subtarget->isTargetMachO())
549 TF = ARMII::MO_NONLAZY;
551 if (IsPositionIndependent)
552 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
553 else
554 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
555 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
556 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
557 } else {
558 // MachineConstantPool wants an explicit alignment.
559 Align Alignment = DL.getPrefTypeAlign(GV->getType());
561 if (Subtarget->isTargetELF() && IsPositionIndependent)
562 return ARMLowerPICELF(GV, VT);
564 // Grab index.
565 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
566 unsigned Id = AFI->createPICLabelUId();
567 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
568 ARMCP::CPValue,
569 PCAdj);
570 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);
572 // Load value.
573 MachineInstrBuilder MIB;
574 if (isThumb2) {
575 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
576 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
577 DestReg).addConstantPoolIndex(Idx);
578 if (IsPositionIndependent)
579 MIB.addImm(Id);
580 AddOptionalDefs(MIB);
581 } else {
582 // The extra immediate is for addrmode2.
583 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
584 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
585 TII.get(ARM::LDRcp), DestReg)
586 .addConstantPoolIndex(Idx)
587 .addImm(0);
588 AddOptionalDefs(MIB);
590 if (IsPositionIndependent) {
591 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
592 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
594 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
595 DbgLoc, TII.get(Opc), NewDestReg)
596 .addReg(DestReg)
597 .addImm(Id);
598 AddOptionalDefs(MIB);
599 return NewDestReg;
604 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
605 (Subtarget->isTargetMachO() && IsIndirect) ||
606 Subtarget->genLongCalls()) {
607 MachineInstrBuilder MIB;
608 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
609 if (isThumb2)
610 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
611 TII.get(ARM::t2LDRi12), NewDestReg)
612 .addReg(DestReg)
613 .addImm(0);
614 else
615 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
616 TII.get(ARM::LDRi12), NewDestReg)
617 .addReg(DestReg)
618 .addImm(0);
619 DestReg = NewDestReg;
620 AddOptionalDefs(MIB);
623 return DestReg;
626 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
627 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
629 // Only handle simple types.
630 if (!CEVT.isSimple()) return 0;
631 MVT VT = CEVT.getSimpleVT();
633 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
634 return ARMMaterializeFP(CFP, VT);
635 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
636 return ARMMaterializeGV(GV, VT);
637 else if (isa<ConstantInt>(C))
638 return ARMMaterializeInt(C, VT);
640 return 0;
643 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
645 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
646 // Don't handle dynamic allocas.
647 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
649 MVT VT;
650 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
652 DenseMap<const AllocaInst*, int>::iterator SI =
653 FuncInfo.StaticAllocaMap.find(AI);
655 // This will get lowered later into the correct offsets and registers
656 // via rewriteXFrameIndex.
657 if (SI != FuncInfo.StaticAllocaMap.end()) {
658 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
659 const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
660 unsigned ResultReg = createResultReg(RC);
661 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
663 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
664 TII.get(Opc), ResultReg)
665 .addFrameIndex(SI->second)
666 .addImm(0));
667 return ResultReg;
670 return 0;
673 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
674 EVT evt = TLI.getValueType(DL, Ty, true);
676 // Only handle simple types.
677 if (evt == MVT::Other || !evt.isSimple()) return false;
678 VT = evt.getSimpleVT();
680 // Handle all legal types, i.e. a register that will directly hold this
681 // value.
682 return TLI.isTypeLegal(VT);
685 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
686 if (isTypeLegal(Ty, VT)) return true;
688 // If this is a type than can be sign or zero-extended to a basic operation
689 // go ahead and accept it now.
690 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
691 return true;
693 return false;
696 // Computes the address to get to an object.
697 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
698 // Some boilerplate from the X86 FastISel.
699 const User *U = nullptr;
700 unsigned Opcode = Instruction::UserOp1;
701 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
702 // Don't walk into other basic blocks unless the object is an alloca from
703 // another block, otherwise it may not have a virtual register assigned.
704 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
705 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
706 Opcode = I->getOpcode();
707 U = I;
709 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
710 Opcode = C->getOpcode();
711 U = C;
714 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
715 if (Ty->getAddressSpace() > 255)
716 // Fast instruction selection doesn't support the special
717 // address spaces.
718 return false;
720 switch (Opcode) {
721 default:
722 break;
723 case Instruction::BitCast:
724 // Look through bitcasts.
725 return ARMComputeAddress(U->getOperand(0), Addr);
726 case Instruction::IntToPtr:
727 // Look past no-op inttoptrs.
728 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
729 TLI.getPointerTy(DL))
730 return ARMComputeAddress(U->getOperand(0), Addr);
731 break;
732 case Instruction::PtrToInt:
733 // Look past no-op ptrtoints.
734 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
735 return ARMComputeAddress(U->getOperand(0), Addr);
736 break;
737 case Instruction::GetElementPtr: {
738 Address SavedAddr = Addr;
739 int TmpOffset = Addr.Offset;
741 // Iterate through the GEP folding the constants into offsets where
742 // we can.
743 gep_type_iterator GTI = gep_type_begin(U);
744 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
745 i != e; ++i, ++GTI) {
746 const Value *Op = *i;
747 if (StructType *STy = GTI.getStructTypeOrNull()) {
748 const StructLayout *SL = DL.getStructLayout(STy);
749 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
750 TmpOffset += SL->getElementOffset(Idx);
751 } else {
752 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
753 while (true) {
754 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
755 // Constant-offset addressing.
756 TmpOffset += CI->getSExtValue() * S;
757 break;
759 if (canFoldAddIntoGEP(U, Op)) {
760 // A compatible add with a constant operand. Fold the constant.
761 ConstantInt *CI =
762 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
763 TmpOffset += CI->getSExtValue() * S;
764 // Iterate on the other operand.
765 Op = cast<AddOperator>(Op)->getOperand(0);
766 continue;
768 // Unsupported
769 goto unsupported_gep;
774 // Try to grab the base operand now.
775 Addr.Offset = TmpOffset;
776 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
778 // We failed, restore everything and try the other options.
779 Addr = SavedAddr;
781 unsupported_gep:
782 break;
784 case Instruction::Alloca: {
785 const AllocaInst *AI = cast<AllocaInst>(Obj);
786 DenseMap<const AllocaInst*, int>::iterator SI =
787 FuncInfo.StaticAllocaMap.find(AI);
788 if (SI != FuncInfo.StaticAllocaMap.end()) {
789 Addr.BaseType = Address::FrameIndexBase;
790 Addr.Base.FI = SI->second;
791 return true;
793 break;
797 // Try to get this in a register if nothing else has worked.
798 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
799 return Addr.Base.Reg != 0;
802 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
803 bool needsLowering = false;
804 switch (VT.SimpleTy) {
805 default: llvm_unreachable("Unhandled load/store type!");
806 case MVT::i1:
807 case MVT::i8:
808 case MVT::i16:
809 case MVT::i32:
810 if (!useAM3) {
811 // Integer loads/stores handle 12-bit offsets.
812 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
813 // Handle negative offsets.
814 if (needsLowering && isThumb2)
815 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
816 Addr.Offset > -256);
817 } else {
818 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
819 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
821 break;
822 case MVT::f32:
823 case MVT::f64:
824 // Floating point operands handle 8-bit offsets.
825 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
826 break;
829 // If this is a stack pointer and the offset needs to be simplified then
830 // put the alloca address into a register, set the base type back to
831 // register and continue. This should almost never happen.
832 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
833 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
834 : &ARM::GPRRegClass;
835 unsigned ResultReg = createResultReg(RC);
836 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
837 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
838 TII.get(Opc), ResultReg)
839 .addFrameIndex(Addr.Base.FI)
840 .addImm(0));
841 Addr.Base.Reg = ResultReg;
842 Addr.BaseType = Address::RegBase;
845 // Since the offset is too large for the load/store instruction
846 // get the reg+offset into a register.
847 if (needsLowering) {
848 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
849 Addr.Offset, MVT::i32);
850 Addr.Offset = 0;
854 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
855 const MachineInstrBuilder &MIB,
856 MachineMemOperand::Flags Flags,
857 bool useAM3) {
858 // addrmode5 output depends on the selection dag addressing dividing the
859 // offset by 4 that it then later multiplies. Do this here as well.
860 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
861 Addr.Offset /= 4;
863 // Frame base works a bit differently. Handle it separately.
864 if (Addr.BaseType == Address::FrameIndexBase) {
865 int FI = Addr.Base.FI;
866 int Offset = Addr.Offset;
867 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
868 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
869 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
870 // Now add the rest of the operands.
871 MIB.addFrameIndex(FI);
873 // ARM halfword load/stores and signed byte loads need an additional
874 // operand.
875 if (useAM3) {
876 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
877 MIB.addReg(0);
878 MIB.addImm(Imm);
879 } else {
880 MIB.addImm(Addr.Offset);
882 MIB.addMemOperand(MMO);
883 } else {
884 // Now add the rest of the operands.
885 MIB.addReg(Addr.Base.Reg);
887 // ARM halfword load/stores and signed byte loads need an additional
888 // operand.
889 if (useAM3) {
890 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
891 MIB.addReg(0);
892 MIB.addImm(Imm);
893 } else {
894 MIB.addImm(Addr.Offset);
897 AddOptionalDefs(MIB);
900 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
901 unsigned Alignment, bool isZExt, bool allocReg) {
902 unsigned Opc;
903 bool useAM3 = false;
904 bool needVMOV = false;
905 const TargetRegisterClass *RC;
906 switch (VT.SimpleTy) {
907 // This is mostly going to be Neon/vector support.
908 default: return false;
909 case MVT::i1:
910 case MVT::i8:
911 if (isThumb2) {
912 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
913 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
914 else
915 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
916 } else {
917 if (isZExt) {
918 Opc = ARM::LDRBi12;
919 } else {
920 Opc = ARM::LDRSB;
921 useAM3 = true;
924 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
925 break;
926 case MVT::i16:
927 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
928 return false;
930 if (isThumb2) {
931 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
932 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
933 else
934 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
935 } else {
936 Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
937 useAM3 = true;
939 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
940 break;
941 case MVT::i32:
942 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
943 return false;
945 if (isThumb2) {
946 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
947 Opc = ARM::t2LDRi8;
948 else
949 Opc = ARM::t2LDRi12;
950 } else {
951 Opc = ARM::LDRi12;
953 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
954 break;
955 case MVT::f32:
956 if (!Subtarget->hasVFP2Base()) return false;
957 // Unaligned loads need special handling. Floats require word-alignment.
958 if (Alignment && Alignment < 4) {
959 needVMOV = true;
960 VT = MVT::i32;
961 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
962 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
963 } else {
964 Opc = ARM::VLDRS;
965 RC = TLI.getRegClassFor(VT);
967 break;
968 case MVT::f64:
969 // Can load and store double precision even without FeatureFP64
970 if (!Subtarget->hasVFP2Base()) return false;
971 // FIXME: Unaligned loads need special handling. Doublewords require
972 // word-alignment.
973 if (Alignment && Alignment < 4)
974 return false;
976 Opc = ARM::VLDRD;
977 RC = TLI.getRegClassFor(VT);
978 break;
980 // Simplify this down to something we can handle.
981 ARMSimplifyAddress(Addr, VT, useAM3);
983 // Create the base instruction, then add the operands.
984 if (allocReg)
985 ResultReg = createResultReg(RC);
986 assert(ResultReg > 255 && "Expected an allocated virtual register.");
987 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
988 TII.get(Opc), ResultReg);
989 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
991 // If we had an unaligned load of a float we've converted it to an regular
992 // load. Now we must move from the GRP to the FP register.
993 if (needVMOV) {
994 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
995 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
996 TII.get(ARM::VMOVSR), MoveReg)
997 .addReg(ResultReg));
998 ResultReg = MoveReg;
1000 return true;
1003 bool ARMFastISel::SelectLoad(const Instruction *I) {
1004 // Atomic loads need special handling.
1005 if (cast<LoadInst>(I)->isAtomic())
1006 return false;
1008 const Value *SV = I->getOperand(0);
1009 if (TLI.supportSwiftError()) {
1010 // Swifterror values can come from either a function parameter with
1011 // swifterror attribute or an alloca with swifterror attribute.
1012 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1013 if (Arg->hasSwiftErrorAttr())
1014 return false;
1017 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1018 if (Alloca->isSwiftError())
1019 return false;
1023 // Verify we have a legal type before going any further.
1024 MVT VT;
1025 if (!isLoadTypeLegal(I->getType(), VT))
1026 return false;
1028 // See if we can handle this address.
1029 Address Addr;
1030 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1032 Register ResultReg;
1033 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1034 return false;
1035 updateValueMap(I, ResultReg);
1036 return true;
1039 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1040 unsigned Alignment) {
1041 unsigned StrOpc;
1042 bool useAM3 = false;
1043 switch (VT.SimpleTy) {
1044 // This is mostly going to be Neon/vector support.
1045 default: return false;
1046 case MVT::i1: {
1047 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1048 : &ARM::GPRRegClass);
1049 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1050 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1051 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1052 TII.get(Opc), Res)
1053 .addReg(SrcReg).addImm(1));
1054 SrcReg = Res;
1055 LLVM_FALLTHROUGH;
1057 case MVT::i8:
1058 if (isThumb2) {
1059 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1060 StrOpc = ARM::t2STRBi8;
1061 else
1062 StrOpc = ARM::t2STRBi12;
1063 } else {
1064 StrOpc = ARM::STRBi12;
1066 break;
1067 case MVT::i16:
1068 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1069 return false;
1071 if (isThumb2) {
1072 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1073 StrOpc = ARM::t2STRHi8;
1074 else
1075 StrOpc = ARM::t2STRHi12;
1076 } else {
1077 StrOpc = ARM::STRH;
1078 useAM3 = true;
1080 break;
1081 case MVT::i32:
1082 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1083 return false;
1085 if (isThumb2) {
1086 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1087 StrOpc = ARM::t2STRi8;
1088 else
1089 StrOpc = ARM::t2STRi12;
1090 } else {
1091 StrOpc = ARM::STRi12;
1093 break;
1094 case MVT::f32:
1095 if (!Subtarget->hasVFP2Base()) return false;
1096 // Unaligned stores need special handling. Floats require word-alignment.
1097 if (Alignment && Alignment < 4) {
1098 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1099 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1100 TII.get(ARM::VMOVRS), MoveReg)
1101 .addReg(SrcReg));
1102 SrcReg = MoveReg;
1103 VT = MVT::i32;
1104 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1105 } else {
1106 StrOpc = ARM::VSTRS;
1108 break;
1109 case MVT::f64:
1110 // Can load and store double precision even without FeatureFP64
1111 if (!Subtarget->hasVFP2Base()) return false;
1112 // FIXME: Unaligned stores need special handling. Doublewords require
1113 // word-alignment.
1114 if (Alignment && Alignment < 4)
1115 return false;
1117 StrOpc = ARM::VSTRD;
1118 break;
1120 // Simplify this down to something we can handle.
1121 ARMSimplifyAddress(Addr, VT, useAM3);
1123 // Create the base instruction, then add the operands.
1124 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1125 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1126 TII.get(StrOpc))
1127 .addReg(SrcReg);
1128 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1129 return true;
1132 bool ARMFastISel::SelectStore(const Instruction *I) {
1133 Value *Op0 = I->getOperand(0);
1134 unsigned SrcReg = 0;
1136 // Atomic stores need special handling.
1137 if (cast<StoreInst>(I)->isAtomic())
1138 return false;
1140 const Value *PtrV = I->getOperand(1);
1141 if (TLI.supportSwiftError()) {
1142 // Swifterror values can come from either a function parameter with
1143 // swifterror attribute or an alloca with swifterror attribute.
1144 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1145 if (Arg->hasSwiftErrorAttr())
1146 return false;
1149 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1150 if (Alloca->isSwiftError())
1151 return false;
1155 // Verify we have a legal type before going any further.
1156 MVT VT;
1157 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1158 return false;
1160 // Get the value to be stored into a register.
1161 SrcReg = getRegForValue(Op0);
1162 if (SrcReg == 0) return false;
1164 // See if we can handle this address.
1165 Address Addr;
1166 if (!ARMComputeAddress(I->getOperand(1), Addr))
1167 return false;
1169 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1170 return false;
1171 return true;
1174 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1175 switch (Pred) {
1176 // Needs two compares...
1177 case CmpInst::FCMP_ONE:
1178 case CmpInst::FCMP_UEQ:
1179 default:
1180 // AL is our "false" for now. The other two need more compares.
1181 return ARMCC::AL;
1182 case CmpInst::ICMP_EQ:
1183 case CmpInst::FCMP_OEQ:
1184 return ARMCC::EQ;
1185 case CmpInst::ICMP_SGT:
1186 case CmpInst::FCMP_OGT:
1187 return ARMCC::GT;
1188 case CmpInst::ICMP_SGE:
1189 case CmpInst::FCMP_OGE:
1190 return ARMCC::GE;
1191 case CmpInst::ICMP_UGT:
1192 case CmpInst::FCMP_UGT:
1193 return ARMCC::HI;
1194 case CmpInst::FCMP_OLT:
1195 return ARMCC::MI;
1196 case CmpInst::ICMP_ULE:
1197 case CmpInst::FCMP_OLE:
1198 return ARMCC::LS;
1199 case CmpInst::FCMP_ORD:
1200 return ARMCC::VC;
1201 case CmpInst::FCMP_UNO:
1202 return ARMCC::VS;
1203 case CmpInst::FCMP_UGE:
1204 return ARMCC::PL;
1205 case CmpInst::ICMP_SLT:
1206 case CmpInst::FCMP_ULT:
1207 return ARMCC::LT;
1208 case CmpInst::ICMP_SLE:
1209 case CmpInst::FCMP_ULE:
1210 return ARMCC::LE;
1211 case CmpInst::FCMP_UNE:
1212 case CmpInst::ICMP_NE:
1213 return ARMCC::NE;
1214 case CmpInst::ICMP_UGE:
1215 return ARMCC::HS;
1216 case CmpInst::ICMP_ULT:
1217 return ARMCC::LO;
1221 bool ARMFastISel::SelectBranch(const Instruction *I) {
1222 const BranchInst *BI = cast<BranchInst>(I);
1223 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1224 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1226 // Simple branch support.
1228 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1229 // behavior.
1230 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1231 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1232 // Get the compare predicate.
1233 // Try to take advantage of fallthrough opportunities.
1234 CmpInst::Predicate Predicate = CI->getPredicate();
1235 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1236 std::swap(TBB, FBB);
1237 Predicate = CmpInst::getInversePredicate(Predicate);
1240 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1242 // We may not handle every CC for now.
1243 if (ARMPred == ARMCC::AL) return false;
1245 // Emit the compare.
1246 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1247 return false;
1249 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1250 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1251 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1252 finishCondBranch(BI->getParent(), TBB, FBB);
1253 return true;
1255 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1256 MVT SourceVT;
1257 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1258 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1259 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1260 unsigned OpReg = getRegForValue(TI->getOperand(0));
1261 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1262 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1263 TII.get(TstOpc))
1264 .addReg(OpReg).addImm(1));
1266 unsigned CCMode = ARMCC::NE;
1267 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1268 std::swap(TBB, FBB);
1269 CCMode = ARMCC::EQ;
1272 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1274 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1276 finishCondBranch(BI->getParent(), TBB, FBB);
1277 return true;
1279 } else if (const ConstantInt *CI =
1280 dyn_cast<ConstantInt>(BI->getCondition())) {
1281 uint64_t Imm = CI->getZExtValue();
1282 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1283 fastEmitBranch(Target, DbgLoc);
1284 return true;
1287 unsigned CmpReg = getRegForValue(BI->getCondition());
1288 if (CmpReg == 0) return false;
1290 // We've been divorced from our compare! Our block was split, and
1291 // now our compare lives in a predecessor block. We musn't
1292 // re-compare here, as the children of the compare aren't guaranteed
1293 // live across the block boundary (we *could* check for this).
1294 // Regardless, the compare has been done in the predecessor block,
1295 // and it left a value for us in a virtual register. Ergo, we test
1296 // the one-bit value left in the virtual register.
1297 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1298 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1299 AddOptionalDefs(
1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1301 .addReg(CmpReg)
1302 .addImm(1));
1304 unsigned CCMode = ARMCC::NE;
1305 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1306 std::swap(TBB, FBB);
1307 CCMode = ARMCC::EQ;
1310 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1311 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1312 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1313 finishCondBranch(BI->getParent(), TBB, FBB);
1314 return true;
1317 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1318 unsigned AddrReg = getRegForValue(I->getOperand(0));
1319 if (AddrReg == 0) return false;
1321 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1322 assert(isThumb2 || Subtarget->hasV4TOps());
1324 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1325 TII.get(Opc)).addReg(AddrReg));
1327 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1328 for (const BasicBlock *SuccBB : IB->successors())
1329 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1331 return true;
1334 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1335 bool isZExt) {
1336 Type *Ty = Src1Value->getType();
1337 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1338 if (!SrcEVT.isSimple()) return false;
1339 MVT SrcVT = SrcEVT.getSimpleVT();
1341 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1342 return false;
1344 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1345 return false;
1347 // Check to see if the 2nd operand is a constant that we can encode directly
1348 // in the compare.
1349 int Imm = 0;
1350 bool UseImm = false;
1351 bool isNegativeImm = false;
1352 // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1353 // Thus, Src1Value may be a ConstantInt, but we're missing it.
1354 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1355 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1356 SrcVT == MVT::i1) {
1357 const APInt &CIVal = ConstInt->getValue();
1358 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1359 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1360 // then a cmn, because there is no way to represent 2147483648 as a
1361 // signed 32-bit int.
1362 if (Imm < 0 && Imm != (int)0x80000000) {
1363 isNegativeImm = true;
1364 Imm = -Imm;
1366 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1367 (ARM_AM::getSOImmVal(Imm) != -1);
1369 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1370 if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1371 if (ConstFP->isZero() && !ConstFP->isNegative())
1372 UseImm = true;
1375 unsigned CmpOpc;
1376 bool isICmp = true;
1377 bool needsExt = false;
1378 switch (SrcVT.SimpleTy) {
1379 default: return false;
1380 // TODO: Verify compares.
1381 case MVT::f32:
1382 isICmp = false;
1383 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1384 break;
1385 case MVT::f64:
1386 isICmp = false;
1387 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1388 break;
1389 case MVT::i1:
1390 case MVT::i8:
1391 case MVT::i16:
1392 needsExt = true;
1393 LLVM_FALLTHROUGH;
1394 case MVT::i32:
1395 if (isThumb2) {
1396 if (!UseImm)
1397 CmpOpc = ARM::t2CMPrr;
1398 else
1399 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1400 } else {
1401 if (!UseImm)
1402 CmpOpc = ARM::CMPrr;
1403 else
1404 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1406 break;
1409 unsigned SrcReg1 = getRegForValue(Src1Value);
1410 if (SrcReg1 == 0) return false;
1412 unsigned SrcReg2 = 0;
1413 if (!UseImm) {
1414 SrcReg2 = getRegForValue(Src2Value);
1415 if (SrcReg2 == 0) return false;
1418 // We have i1, i8, or i16, we need to either zero extend or sign extend.
1419 if (needsExt) {
1420 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1421 if (SrcReg1 == 0) return false;
1422 if (!UseImm) {
1423 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1424 if (SrcReg2 == 0) return false;
1428 const MCInstrDesc &II = TII.get(CmpOpc);
1429 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1430 if (!UseImm) {
1431 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1433 .addReg(SrcReg1).addReg(SrcReg2));
1434 } else {
1435 MachineInstrBuilder MIB;
1436 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1437 .addReg(SrcReg1);
1439 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1440 if (isICmp)
1441 MIB.addImm(Imm);
1442 AddOptionalDefs(MIB);
1445 // For floating point we need to move the result to a comparison register
1446 // that we can then use for branches.
1447 if (Ty->isFloatTy() || Ty->isDoubleTy())
1448 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1449 TII.get(ARM::FMSTAT)));
1450 return true;
1453 bool ARMFastISel::SelectCmp(const Instruction *I) {
1454 const CmpInst *CI = cast<CmpInst>(I);
1456 // Get the compare predicate.
1457 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1459 // We may not handle every CC for now.
1460 if (ARMPred == ARMCC::AL) return false;
1462 // Emit the compare.
1463 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1464 return false;
1466 // Now set a register based on the comparison. Explicitly set the predicates
1467 // here.
1468 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1469 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1470 : &ARM::GPRRegClass;
1471 unsigned DestReg = createResultReg(RC);
1472 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1473 unsigned ZeroReg = fastMaterializeConstant(Zero);
1474 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1475 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1476 .addReg(ZeroReg).addImm(1)
1477 .addImm(ARMPred).addReg(ARM::CPSR);
1479 updateValueMap(I, DestReg);
1480 return true;
1483 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1484 // Make sure we have VFP and that we're extending float to double.
1485 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1487 Value *V = I->getOperand(0);
1488 if (!I->getType()->isDoubleTy() ||
1489 !V->getType()->isFloatTy()) return false;
1491 unsigned Op = getRegForValue(V);
1492 if (Op == 0) return false;
1494 unsigned Result = createResultReg(&ARM::DPRRegClass);
1495 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1496 TII.get(ARM::VCVTDS), Result)
1497 .addReg(Op));
1498 updateValueMap(I, Result);
1499 return true;
1502 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1503 // Make sure we have VFP and that we're truncating double to float.
1504 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1506 Value *V = I->getOperand(0);
1507 if (!(I->getType()->isFloatTy() &&
1508 V->getType()->isDoubleTy())) return false;
1510 unsigned Op = getRegForValue(V);
1511 if (Op == 0) return false;
1513 unsigned Result = createResultReg(&ARM::SPRRegClass);
1514 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1515 TII.get(ARM::VCVTSD), Result)
1516 .addReg(Op));
1517 updateValueMap(I, Result);
1518 return true;
1521 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1522 // Make sure we have VFP.
1523 if (!Subtarget->hasVFP2Base()) return false;
1525 MVT DstVT;
1526 Type *Ty = I->getType();
1527 if (!isTypeLegal(Ty, DstVT))
1528 return false;
1530 Value *Src = I->getOperand(0);
1531 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1532 if (!SrcEVT.isSimple())
1533 return false;
1534 MVT SrcVT = SrcEVT.getSimpleVT();
1535 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1536 return false;
1538 unsigned SrcReg = getRegForValue(Src);
1539 if (SrcReg == 0) return false;
1541 // Handle sign-extension.
1542 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1543 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1544 /*isZExt*/!isSigned);
1545 if (SrcReg == 0) return false;
1548 // The conversion routine works on fp-reg to fp-reg and the operand above
1549 // was an integer, move it to the fp registers if possible.
1550 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1551 if (FP == 0) return false;
1553 unsigned Opc;
1554 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1555 else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1556 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1557 else return false;
1559 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1560 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1561 TII.get(Opc), ResultReg).addReg(FP));
1562 updateValueMap(I, ResultReg);
1563 return true;
1566 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1567 // Make sure we have VFP.
1568 if (!Subtarget->hasVFP2Base()) return false;
1570 MVT DstVT;
1571 Type *RetTy = I->getType();
1572 if (!isTypeLegal(RetTy, DstVT))
1573 return false;
1575 unsigned Op = getRegForValue(I->getOperand(0));
1576 if (Op == 0) return false;
1578 unsigned Opc;
1579 Type *OpTy = I->getOperand(0)->getType();
1580 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1581 else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1582 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1583 else return false;
1585 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1586 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1587 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1588 TII.get(Opc), ResultReg).addReg(Op));
1590 // This result needs to be in an integer register, but the conversion only
1591 // takes place in fp-regs.
1592 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1593 if (IntReg == 0) return false;
1595 updateValueMap(I, IntReg);
1596 return true;
1599 bool ARMFastISel::SelectSelect(const Instruction *I) {
1600 MVT VT;
1601 if (!isTypeLegal(I->getType(), VT))
1602 return false;
1604 // Things need to be register sized for register moves.
1605 if (VT != MVT::i32) return false;
1607 unsigned CondReg = getRegForValue(I->getOperand(0));
1608 if (CondReg == 0) return false;
1609 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1610 if (Op1Reg == 0) return false;
1612 // Check to see if we can use an immediate in the conditional move.
1613 int Imm = 0;
1614 bool UseImm = false;
1615 bool isNegativeImm = false;
1616 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1617 assert(VT == MVT::i32 && "Expecting an i32.");
1618 Imm = (int)ConstInt->getValue().getZExtValue();
1619 if (Imm < 0) {
1620 isNegativeImm = true;
1621 Imm = ~Imm;
1623 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1624 (ARM_AM::getSOImmVal(Imm) != -1);
1627 unsigned Op2Reg = 0;
1628 if (!UseImm) {
1629 Op2Reg = getRegForValue(I->getOperand(2));
1630 if (Op2Reg == 0) return false;
1633 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1634 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1635 AddOptionalDefs(
1636 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1637 .addReg(CondReg)
1638 .addImm(1));
1640 unsigned MovCCOpc;
1641 const TargetRegisterClass *RC;
1642 if (!UseImm) {
1643 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1644 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1645 } else {
1646 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1647 if (!isNegativeImm)
1648 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1649 else
1650 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1652 unsigned ResultReg = createResultReg(RC);
1653 if (!UseImm) {
1654 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1655 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1657 ResultReg)
1658 .addReg(Op2Reg)
1659 .addReg(Op1Reg)
1660 .addImm(ARMCC::NE)
1661 .addReg(ARM::CPSR);
1662 } else {
1663 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1665 ResultReg)
1666 .addReg(Op1Reg)
1667 .addImm(Imm)
1668 .addImm(ARMCC::EQ)
1669 .addReg(ARM::CPSR);
1671 updateValueMap(I, ResultReg);
1672 return true;
1675 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1676 MVT VT;
1677 Type *Ty = I->getType();
1678 if (!isTypeLegal(Ty, VT))
1679 return false;
1681 // If we have integer div support we should have selected this automagically.
1682 // In case we have a real miss go ahead and return false and we'll pick
1683 // it up later.
1684 if (Subtarget->hasDivideInThumbMode())
1685 return false;
1687 // Otherwise emit a libcall.
1688 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1689 if (VT == MVT::i8)
1690 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1691 else if (VT == MVT::i16)
1692 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1693 else if (VT == MVT::i32)
1694 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1695 else if (VT == MVT::i64)
1696 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1697 else if (VT == MVT::i128)
1698 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1699 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1701 return ARMEmitLibcall(I, LC);
1704 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1705 MVT VT;
1706 Type *Ty = I->getType();
1707 if (!isTypeLegal(Ty, VT))
1708 return false;
1710 // Many ABIs do not provide a libcall for standalone remainder, so we need to
1711 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1712 // multi-reg returns, we'll have to bail out.
1713 if (!TLI.hasStandaloneRem(VT)) {
1714 return false;
1717 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1718 if (VT == MVT::i8)
1719 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1720 else if (VT == MVT::i16)
1721 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1722 else if (VT == MVT::i32)
1723 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1724 else if (VT == MVT::i64)
1725 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1726 else if (VT == MVT::i128)
1727 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1728 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1730 return ARMEmitLibcall(I, LC);
1733 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1734 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1736 // We can get here in the case when we have a binary operation on a non-legal
1737 // type and the target independent selector doesn't know how to handle it.
1738 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1739 return false;
1741 unsigned Opc;
1742 switch (ISDOpcode) {
1743 default: return false;
1744 case ISD::ADD:
1745 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1746 break;
1747 case ISD::OR:
1748 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1749 break;
1750 case ISD::SUB:
1751 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1752 break;
1755 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1756 if (SrcReg1 == 0) return false;
1758 // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1759 // in the instruction, rather then materializing the value in a register.
1760 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1761 if (SrcReg2 == 0) return false;
1763 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1764 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1765 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1766 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1767 TII.get(Opc), ResultReg)
1768 .addReg(SrcReg1).addReg(SrcReg2));
1769 updateValueMap(I, ResultReg);
1770 return true;
1773 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1774 EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1775 if (!FPVT.isSimple()) return false;
1776 MVT VT = FPVT.getSimpleVT();
1778 // FIXME: Support vector types where possible.
1779 if (VT.isVector())
1780 return false;
1782 // We can get here in the case when we want to use NEON for our fp
1783 // operations, but can't figure out how to. Just use the vfp instructions
1784 // if we have them.
1785 // FIXME: It'd be nice to use NEON instructions.
1786 Type *Ty = I->getType();
1787 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1788 return false;
1789 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1790 return false;
1792 unsigned Opc;
1793 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1794 switch (ISDOpcode) {
1795 default: return false;
1796 case ISD::FADD:
1797 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1798 break;
1799 case ISD::FSUB:
1800 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1801 break;
1802 case ISD::FMUL:
1803 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1804 break;
1806 unsigned Op1 = getRegForValue(I->getOperand(0));
1807 if (Op1 == 0) return false;
1809 unsigned Op2 = getRegForValue(I->getOperand(1));
1810 if (Op2 == 0) return false;
1812 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1813 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1814 TII.get(Opc), ResultReg)
1815 .addReg(Op1).addReg(Op2));
1816 updateValueMap(I, ResultReg);
1817 return true;
1820 // Call Handling Code
1822 // This is largely taken directly from CCAssignFnForNode
1823 // TODO: We may not support all of this.
1824 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1825 bool Return,
1826 bool isVarArg) {
1827 switch (CC) {
1828 default:
1829 report_fatal_error("Unsupported calling convention");
1830 case CallingConv::Fast:
1831 if (Subtarget->hasVFP2Base() && !isVarArg) {
1832 if (!Subtarget->isAAPCS_ABI())
1833 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1834 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1835 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1837 LLVM_FALLTHROUGH;
1838 case CallingConv::C:
1839 case CallingConv::CXX_FAST_TLS:
1840 // Use target triple & subtarget features to do actual dispatch.
1841 if (Subtarget->isAAPCS_ABI()) {
1842 if (Subtarget->hasVFP2Base() &&
1843 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1844 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1845 else
1846 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1847 } else {
1848 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1850 case CallingConv::ARM_AAPCS_VFP:
1851 case CallingConv::Swift:
1852 case CallingConv::SwiftTail:
1853 if (!isVarArg)
1854 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1855 // Fall through to soft float variant, variadic functions don't
1856 // use hard floating point ABI.
1857 LLVM_FALLTHROUGH;
1858 case CallingConv::ARM_AAPCS:
1859 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1860 case CallingConv::ARM_APCS:
1861 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1862 case CallingConv::GHC:
1863 if (Return)
1864 report_fatal_error("Can't return in GHC call convention");
1865 else
1866 return CC_ARM_APCS_GHC;
1867 case CallingConv::CFGuard_Check:
1868 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1872 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1873 SmallVectorImpl<Register> &ArgRegs,
1874 SmallVectorImpl<MVT> &ArgVTs,
1875 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1876 SmallVectorImpl<Register> &RegArgs,
1877 CallingConv::ID CC,
1878 unsigned &NumBytes,
1879 bool isVarArg) {
1880 SmallVector<CCValAssign, 16> ArgLocs;
1881 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1882 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1883 CCAssignFnForCall(CC, false, isVarArg));
1885 // Check that we can handle all of the arguments. If we can't, then bail out
1886 // now before we add code to the MBB.
1887 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1888 CCValAssign &VA = ArgLocs[i];
1889 MVT ArgVT = ArgVTs[VA.getValNo()];
1891 // We don't handle NEON/vector parameters yet.
1892 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1893 return false;
1895 // Now copy/store arg to correct locations.
1896 if (VA.isRegLoc() && !VA.needsCustom()) {
1897 continue;
1898 } else if (VA.needsCustom()) {
1899 // TODO: We need custom lowering for vector (v2f64) args.
1900 if (VA.getLocVT() != MVT::f64 ||
1901 // TODO: Only handle register args for now.
1902 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1903 return false;
1904 } else {
1905 switch (ArgVT.SimpleTy) {
1906 default:
1907 return false;
1908 case MVT::i1:
1909 case MVT::i8:
1910 case MVT::i16:
1911 case MVT::i32:
1912 break;
1913 case MVT::f32:
1914 if (!Subtarget->hasVFP2Base())
1915 return false;
1916 break;
1917 case MVT::f64:
1918 if (!Subtarget->hasVFP2Base())
1919 return false;
1920 break;
1925 // At the point, we are able to handle the call's arguments in fast isel.
1927 // Get a count of how many bytes are to be pushed on the stack.
1928 NumBytes = CCInfo.getNextStackOffset();
1930 // Issue CALLSEQ_START
1931 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1932 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1933 TII.get(AdjStackDown))
1934 .addImm(NumBytes).addImm(0));
1936 // Process the args.
1937 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1938 CCValAssign &VA = ArgLocs[i];
1939 const Value *ArgVal = Args[VA.getValNo()];
1940 Register Arg = ArgRegs[VA.getValNo()];
1941 MVT ArgVT = ArgVTs[VA.getValNo()];
1943 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1944 "We don't handle NEON/vector parameters yet.");
1946 // Handle arg promotion, etc.
1947 switch (VA.getLocInfo()) {
1948 case CCValAssign::Full: break;
1949 case CCValAssign::SExt: {
1950 MVT DestVT = VA.getLocVT();
1951 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1952 assert(Arg != 0 && "Failed to emit a sext");
1953 ArgVT = DestVT;
1954 break;
1956 case CCValAssign::AExt:
1957 // Intentional fall-through. Handle AExt and ZExt.
1958 case CCValAssign::ZExt: {
1959 MVT DestVT = VA.getLocVT();
1960 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1961 assert(Arg != 0 && "Failed to emit a zext");
1962 ArgVT = DestVT;
1963 break;
1965 case CCValAssign::BCvt: {
1966 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
1967 assert(BC != 0 && "Failed to emit a bitcast!");
1968 Arg = BC;
1969 ArgVT = VA.getLocVT();
1970 break;
1972 default: llvm_unreachable("Unknown arg promotion!");
1975 // Now copy/store arg to correct locations.
1976 if (VA.isRegLoc() && !VA.needsCustom()) {
1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1978 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1979 RegArgs.push_back(VA.getLocReg());
1980 } else if (VA.needsCustom()) {
1981 // TODO: We need custom lowering for vector (v2f64) args.
1982 assert(VA.getLocVT() == MVT::f64 &&
1983 "Custom lowering for v2f64 args not available");
1985 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1986 CCValAssign &NextVA = ArgLocs[++i];
1988 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1989 "We only handle register args!");
1991 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992 TII.get(ARM::VMOVRRD), VA.getLocReg())
1993 .addReg(NextVA.getLocReg(), RegState::Define)
1994 .addReg(Arg));
1995 RegArgs.push_back(VA.getLocReg());
1996 RegArgs.push_back(NextVA.getLocReg());
1997 } else {
1998 assert(VA.isMemLoc());
1999 // Need to store on the stack.
2001 // Don't emit stores for undef values.
2002 if (isa<UndefValue>(ArgVal))
2003 continue;
2005 Address Addr;
2006 Addr.BaseType = Address::RegBase;
2007 Addr.Base.Reg = ARM::SP;
2008 Addr.Offset = VA.getLocMemOffset();
2010 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2011 assert(EmitRet && "Could not emit a store for argument!");
2015 return true;
2018 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2019 const Instruction *I, CallingConv::ID CC,
2020 unsigned &NumBytes, bool isVarArg) {
2021 // Issue CALLSEQ_END
2022 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2023 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2024 TII.get(AdjStackUp))
2025 .addImm(NumBytes).addImm(0));
2027 // Now the return value.
2028 if (RetVT != MVT::isVoid) {
2029 SmallVector<CCValAssign, 16> RVLocs;
2030 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2031 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2033 // Copy all of the result registers out of their specified physreg.
2034 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2035 // For this move we copy into two registers and then move into the
2036 // double fp reg we want.
2037 MVT DestVT = RVLocs[0].getValVT();
2038 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2039 Register ResultReg = createResultReg(DstRC);
2040 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2041 TII.get(ARM::VMOVDRR), ResultReg)
2042 .addReg(RVLocs[0].getLocReg())
2043 .addReg(RVLocs[1].getLocReg()));
2045 UsedRegs.push_back(RVLocs[0].getLocReg());
2046 UsedRegs.push_back(RVLocs[1].getLocReg());
2048 // Finally update the result.
2049 updateValueMap(I, ResultReg);
2050 } else {
2051 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2052 MVT CopyVT = RVLocs[0].getValVT();
2054 // Special handling for extended integers.
2055 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2056 CopyVT = MVT::i32;
2058 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2060 Register ResultReg = createResultReg(DstRC);
2061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2062 TII.get(TargetOpcode::COPY),
2063 ResultReg).addReg(RVLocs[0].getLocReg());
2064 UsedRegs.push_back(RVLocs[0].getLocReg());
2066 // Finally update the result.
2067 updateValueMap(I, ResultReg);
2071 return true;
2074 bool ARMFastISel::SelectRet(const Instruction *I) {
2075 const ReturnInst *Ret = cast<ReturnInst>(I);
2076 const Function &F = *I->getParent()->getParent();
2077 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");
2079 if (!FuncInfo.CanLowerReturn)
2080 return false;
2082 if (TLI.supportSwiftError() &&
2083 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2084 return false;
2086 if (TLI.supportSplitCSR(FuncInfo.MF))
2087 return false;
2089 // Build a list of return value registers.
2090 SmallVector<unsigned, 4> RetRegs;
2092 CallingConv::ID CC = F.getCallingConv();
2093 if (Ret->getNumOperands() > 0) {
2094 SmallVector<ISD::OutputArg, 4> Outs;
2095 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2097 // Analyze operands of the call, assigning locations to each operand.
2098 SmallVector<CCValAssign, 16> ValLocs;
2099 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2100 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2101 F.isVarArg()));
2103 const Value *RV = Ret->getOperand(0);
2104 unsigned Reg = getRegForValue(RV);
2105 if (Reg == 0)
2106 return false;
2108 // Only handle a single return value for now.
2109 if (ValLocs.size() != 1)
2110 return false;
2112 CCValAssign &VA = ValLocs[0];
2114 // Don't bother handling odd stuff for now.
2115 if (VA.getLocInfo() != CCValAssign::Full)
2116 return false;
2117 // Only handle register returns for now.
2118 if (!VA.isRegLoc())
2119 return false;
2121 unsigned SrcReg = Reg + VA.getValNo();
2122 EVT RVEVT = TLI.getValueType(DL, RV->getType());
2123 if (!RVEVT.isSimple()) return false;
2124 MVT RVVT = RVEVT.getSimpleVT();
2125 MVT DestVT = VA.getValVT();
2126 // Special handling for extended integers.
2127 if (RVVT != DestVT) {
2128 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2129 return false;
2131 assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2133 // Perform extension if flagged as either zext or sext. Otherwise, do
2134 // nothing.
2135 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2136 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2137 if (SrcReg == 0) return false;
2141 // Make the copy.
2142 Register DstReg = VA.getLocReg();
2143 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2144 // Avoid a cross-class copy. This is very unlikely.
2145 if (!SrcRC->contains(DstReg))
2146 return false;
2147 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2148 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2150 // Add register to return instruction.
2151 RetRegs.push_back(VA.getLocReg());
2154 unsigned RetOpc;
2155 if (IsCmseNSEntry)
2156 if (isThumb2)
2157 RetOpc = ARM::tBXNS_RET;
2158 else
2159 llvm_unreachable("CMSE not valid for non-Thumb targets");
2160 else
2161 RetOpc = Subtarget->getReturnOpcode();
2163 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2164 TII.get(RetOpc));
2165 AddOptionalDefs(MIB);
2166 for (unsigned R : RetRegs)
2167 MIB.addReg(R, RegState::Implicit);
2168 return true;
2171 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2172 if (UseReg)
2173 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
2174 else
2175 return isThumb2 ? ARM::tBL : ARM::BL;
2178 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2179 // Manually compute the global's type to avoid building it when unnecessary.
2180 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2181 EVT LCREVT = TLI.getValueType(DL, GVTy);
2182 if (!LCREVT.isSimple()) return 0;
2184 GlobalValue *GV = M.getNamedGlobal(Name.str());
2185 if (!GV)
2186 GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2187 GlobalValue::ExternalLinkage, nullptr, Name);
2189 return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2192 // A quick function that will emit a call for a named libcall in F with the
2193 // vector of passed arguments for the Instruction in I. We can assume that we
2194 // can emit a call for any libcall we can produce. This is an abridged version
2195 // of the full call infrastructure since we won't need to worry about things
2196 // like computed function pointers or strange arguments at call sites.
2197 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2198 // with X86.
2199 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2200 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2202 // Handle *simple* calls for now.
2203 Type *RetTy = I->getType();
2204 MVT RetVT;
2205 if (RetTy->isVoidTy())
2206 RetVT = MVT::isVoid;
2207 else if (!isTypeLegal(RetTy, RetVT))
2208 return false;
2210 // Can't handle non-double multi-reg retvals.
2211 if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2212 SmallVector<CCValAssign, 16> RVLocs;
2213 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2214 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2215 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2216 return false;
2219 // Set up the argument vectors.
2220 SmallVector<Value*, 8> Args;
2221 SmallVector<Register, 8> ArgRegs;
2222 SmallVector<MVT, 8> ArgVTs;
2223 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2224 Args.reserve(I->getNumOperands());
2225 ArgRegs.reserve(I->getNumOperands());
2226 ArgVTs.reserve(I->getNumOperands());
2227 ArgFlags.reserve(I->getNumOperands());
2228 for (Value *Op : I->operands()) {
2229 unsigned Arg = getRegForValue(Op);
2230 if (Arg == 0) return false;
2232 Type *ArgTy = Op->getType();
2233 MVT ArgVT;
2234 if (!isTypeLegal(ArgTy, ArgVT)) return false;
2236 ISD::ArgFlagsTy Flags;
2237 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2239 Args.push_back(Op);
2240 ArgRegs.push_back(Arg);
2241 ArgVTs.push_back(ArgVT);
2242 ArgFlags.push_back(Flags);
2245 // Handle the arguments now that we've gotten them.
2246 SmallVector<Register, 4> RegArgs;
2247 unsigned NumBytes;
2248 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2249 RegArgs, CC, NumBytes, false))
2250 return false;
2252 Register CalleeReg;
2253 if (Subtarget->genLongCalls()) {
2254 CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2255 if (CalleeReg == 0) return false;
2258 // Issue the call.
2259 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2260 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2261 DbgLoc, TII.get(CallOpc));
2262 // BL / BLX don't take a predicate, but tBL / tBLX do.
2263 if (isThumb2)
2264 MIB.add(predOps(ARMCC::AL));
2265 if (Subtarget->genLongCalls()) {
2266 CalleeReg =
2267 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2268 MIB.addReg(CalleeReg);
2269 } else
2270 MIB.addExternalSymbol(TLI.getLibcallName(Call));
2272 // Add implicit physical register uses to the call.
2273 for (Register R : RegArgs)
2274 MIB.addReg(R, RegState::Implicit);
2276 // Add a register mask with the call-preserved registers.
2277 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2278 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2280 // Finish off the call including any return values.
2281 SmallVector<Register, 4> UsedRegs;
2282 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2284 // Set all unused physreg defs as dead.
2285 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2287 return true;
2290 bool ARMFastISel::SelectCall(const Instruction *I,
2291 const char *IntrMemName = nullptr) {
2292 const CallInst *CI = cast<CallInst>(I);
2293 const Value *Callee = CI->getCalledOperand();
2295 // Can't handle inline asm.
2296 if (isa<InlineAsm>(Callee)) return false;
2298 // Allow SelectionDAG isel to handle tail calls.
2299 if (CI->isTailCall()) return false;
2301 // Check the calling convention.
2302 CallingConv::ID CC = CI->getCallingConv();
2304 // TODO: Avoid some calling conventions?
2306 FunctionType *FTy = CI->getFunctionType();
2307 bool isVarArg = FTy->isVarArg();
2309 // Handle *simple* calls for now.
2310 Type *RetTy = I->getType();
2311 MVT RetVT;
2312 if (RetTy->isVoidTy())
2313 RetVT = MVT::isVoid;
2314 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2315 RetVT != MVT::i8 && RetVT != MVT::i1)
2316 return false;
2318 // Can't handle non-double multi-reg retvals.
2319 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2320 RetVT != MVT::i16 && RetVT != MVT::i32) {
2321 SmallVector<CCValAssign, 16> RVLocs;
2322 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2323 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2324 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2325 return false;
2328 // Set up the argument vectors.
2329 SmallVector<Value*, 8> Args;
2330 SmallVector<Register, 8> ArgRegs;
2331 SmallVector<MVT, 8> ArgVTs;
2332 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2333 unsigned arg_size = CI->arg_size();
2334 Args.reserve(arg_size);
2335 ArgRegs.reserve(arg_size);
2336 ArgVTs.reserve(arg_size);
2337 ArgFlags.reserve(arg_size);
2338 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
2339 // If we're lowering a memory intrinsic instead of a regular call, skip the
2340 // last argument, which shouldn't be passed to the underlying function.
2341 if (IntrMemName && ArgE - ArgI <= 1)
2342 break;
2344 ISD::ArgFlagsTy Flags;
2345 unsigned ArgIdx = ArgI - CI->arg_begin();
2346 if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
2347 Flags.setSExt();
2348 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
2349 Flags.setZExt();
2351 // FIXME: Only handle *easy* calls for now.
2352 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
2353 CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
2354 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2355 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2356 CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
2357 CI->paramHasAttr(ArgIdx, Attribute::ByVal))
2358 return false;
2360 Type *ArgTy = (*ArgI)->getType();
2361 MVT ArgVT;
2362 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2363 ArgVT != MVT::i1)
2364 return false;
2366 Register Arg = getRegForValue(*ArgI);
2367 if (!Arg.isValid())
2368 return false;
2370 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2372 Args.push_back(*ArgI);
2373 ArgRegs.push_back(Arg);
2374 ArgVTs.push_back(ArgVT);
2375 ArgFlags.push_back(Flags);
2378 // Handle the arguments now that we've gotten them.
2379 SmallVector<Register, 4> RegArgs;
2380 unsigned NumBytes;
2381 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2382 RegArgs, CC, NumBytes, isVarArg))
2383 return false;
2385 bool UseReg = false;
2386 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2387 if (!GV || Subtarget->genLongCalls()) UseReg = true;
2389 Register CalleeReg;
2390 if (UseReg) {
2391 if (IntrMemName)
2392 CalleeReg = getLibcallReg(IntrMemName);
2393 else
2394 CalleeReg = getRegForValue(Callee);
2396 if (CalleeReg == 0) return false;
2399 // Issue the call.
2400 unsigned CallOpc = ARMSelectCallOp(UseReg);
2401 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2402 DbgLoc, TII.get(CallOpc));
2404 // ARM calls don't take a predicate, but tBL / tBLX do.
2405 if(isThumb2)
2406 MIB.add(predOps(ARMCC::AL));
2407 if (UseReg) {
2408 CalleeReg =
2409 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2410 MIB.addReg(CalleeReg);
2411 } else if (!IntrMemName)
2412 MIB.addGlobalAddress(GV, 0, 0);
2413 else
2414 MIB.addExternalSymbol(IntrMemName, 0);
2416 // Add implicit physical register uses to the call.
2417 for (Register R : RegArgs)
2418 MIB.addReg(R, RegState::Implicit);
2420 // Add a register mask with the call-preserved registers.
2421 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2422 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2424 // Finish off the call including any return values.
2425 SmallVector<Register, 4> UsedRegs;
2426 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2427 return false;
2429 // Set all unused physreg defs as dead.
2430 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2432 return true;
2435 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2436 return Len <= 16;
2439 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2440 uint64_t Len, unsigned Alignment) {
2441 // Make sure we don't bloat code by inlining very large memcpy's.
2442 if (!ARMIsMemCpySmall(Len))
2443 return false;
2445 while (Len) {
2446 MVT VT;
2447 if (!Alignment || Alignment >= 4) {
2448 if (Len >= 4)
2449 VT = MVT::i32;
2450 else if (Len >= 2)
2451 VT = MVT::i16;
2452 else {
2453 assert(Len == 1 && "Expected a length of 1!");
2454 VT = MVT::i8;
2456 } else {
2457 // Bound based on alignment.
2458 if (Len >= 2 && Alignment == 2)
2459 VT = MVT::i16;
2460 else {
2461 VT = MVT::i8;
2465 bool RV;
2466 Register ResultReg;
2467 RV = ARMEmitLoad(VT, ResultReg, Src);
2468 assert(RV && "Should be able to handle this load.");
2469 RV = ARMEmitStore(VT, ResultReg, Dest);
2470 assert(RV && "Should be able to handle this store.");
2471 (void)RV;
2473 unsigned Size = VT.getSizeInBits()/8;
2474 Len -= Size;
2475 Dest.Offset += Size;
2476 Src.Offset += Size;
2479 return true;
2482 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2483 // FIXME: Handle more intrinsics.
2484 switch (I.getIntrinsicID()) {
2485 default: return false;
2486 case Intrinsic::frameaddress: {
2487 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2488 MFI.setFrameAddressIsTaken(true);
2490 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2491 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2492 : &ARM::GPRRegClass;
2494 const ARMBaseRegisterInfo *RegInfo =
2495 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2496 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2497 unsigned SrcReg = FramePtr;
2499 // Recursively load frame address
2500 // ldr r0 [fp]
2501 // ldr r0 [r0]
2502 // ldr r0 [r0]
2503 // ...
2504 unsigned DestReg;
2505 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2506 while (Depth--) {
2507 DestReg = createResultReg(RC);
2508 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2509 TII.get(LdrOpc), DestReg)
2510 .addReg(SrcReg).addImm(0));
2511 SrcReg = DestReg;
2513 updateValueMap(&I, SrcReg);
2514 return true;
2516 case Intrinsic::memcpy:
2517 case Intrinsic::memmove: {
2518 const MemTransferInst &MTI = cast<MemTransferInst>(I);
2519 // Don't handle volatile.
2520 if (MTI.isVolatile())
2521 return false;
2523 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
2524 // we would emit dead code because we don't currently handle memmoves.
2525 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2526 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2527 // Small memcpy's are common enough that we want to do them without a call
2528 // if possible.
2529 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2530 if (ARMIsMemCpySmall(Len)) {
2531 Address Dest, Src;
2532 if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2533 !ARMComputeAddress(MTI.getRawSource(), Src))
2534 return false;
2535 unsigned Alignment = MinAlign(MTI.getDestAlignment(),
2536 MTI.getSourceAlignment());
2537 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2538 return true;
2542 if (!MTI.getLength()->getType()->isIntegerTy(32))
2543 return false;
2545 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2546 return false;
2548 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2549 return SelectCall(&I, IntrMemName);
2551 case Intrinsic::memset: {
2552 const MemSetInst &MSI = cast<MemSetInst>(I);
2553 // Don't handle volatile.
2554 if (MSI.isVolatile())
2555 return false;
2557 if (!MSI.getLength()->getType()->isIntegerTy(32))
2558 return false;
2560 if (MSI.getDestAddressSpace() > 255)
2561 return false;
2563 return SelectCall(&I, "memset");
2565 case Intrinsic::trap: {
2566 unsigned Opcode;
2567 if (Subtarget->isThumb())
2568 Opcode = ARM::tTRAP;
2569 else
2570 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2571 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode));
2572 return true;
2577 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2578 // The high bits for a type smaller than the register size are assumed to be
2579 // undefined.
2580 Value *Op = I->getOperand(0);
2582 EVT SrcVT, DestVT;
2583 SrcVT = TLI.getValueType(DL, Op->getType(), true);
2584 DestVT = TLI.getValueType(DL, I->getType(), true);
2586 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2587 return false;
2588 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2589 return false;
2591 unsigned SrcReg = getRegForValue(Op);
2592 if (!SrcReg) return false;
2594 // Because the high bits are undefined, a truncate doesn't generate
2595 // any code.
2596 updateValueMap(I, SrcReg);
2597 return true;
2600 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2601 bool isZExt) {
2602 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2603 return 0;
2604 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2605 return 0;
2607 // Table of which combinations can be emitted as a single instruction,
2608 // and which will require two.
2609 static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2610 // ARM Thumb
2611 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
2612 // ext: s z s z s z s z
2613 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2614 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2615 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2618 // Target registers for:
2619 // - For ARM can never be PC.
2620 // - For 16-bit Thumb are restricted to lower 8 registers.
2621 // - For 32-bit Thumb are restricted to non-SP and non-PC.
2622 static const TargetRegisterClass *RCTbl[2][2] = {
2623 // Instructions: Two Single
2624 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2625 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
2628 // Table governing the instruction(s) to be emitted.
2629 static const struct InstructionTable {
2630 uint32_t Opc : 16;
2631 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
2632 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
2633 uint32_t Imm : 8; // All instructions have either a shift or a mask.
2634 } IT[2][2][3][2] = {
2635 { // Two instructions (first is left shift, second is in this table).
2636 { // ARM Opc S Shift Imm
2637 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
2638 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
2639 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
2640 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
2641 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
2642 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
2644 { // Thumb Opc S Shift Imm
2645 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
2646 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
2647 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
2648 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
2649 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
2650 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
2653 { // Single instruction.
2654 { // ARM Opc S Shift Imm
2655 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2656 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
2657 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
2658 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
2659 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
2660 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
2662 { // Thumb Opc S Shift Imm
2663 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2664 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
2665 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
2666 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2667 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
2668 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
2673 unsigned SrcBits = SrcVT.getSizeInBits();
2674 unsigned DestBits = DestVT.getSizeInBits();
2675 (void) DestBits;
2676 assert((SrcBits < DestBits) && "can only extend to larger types");
2677 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2678 "other sizes unimplemented");
2679 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2680 "other sizes unimplemented");
2682 bool hasV6Ops = Subtarget->hasV6Ops();
2683 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
2684 assert((Bitness < 3) && "sanity-check table bounds");
2686 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2687 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2688 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2689 unsigned Opc = ITP->Opc;
2690 assert(ARM::KILL != Opc && "Invalid table entry");
2691 unsigned hasS = ITP->hasS;
2692 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2693 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2694 "only MOVsi has shift operand addressing mode");
2695 unsigned Imm = ITP->Imm;
2697 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2698 bool setsCPSR = &ARM::tGPRRegClass == RC;
2699 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2700 unsigned ResultReg;
2701 // MOVsi encodes shift and immediate in shift operand addressing mode.
2702 // The following condition has the same value when emitting two
2703 // instruction sequences: both are shifts.
2704 bool ImmIsSO = (Shift != ARM_AM::no_shift);
2706 // Either one or two instructions are emitted.
2707 // They're always of the form:
2708 // dst = in OP imm
2709 // CPSR is set only by 16-bit Thumb instructions.
2710 // Predicate, if any, is AL.
2711 // S bit, if available, is always 0.
2712 // When two are emitted the first's result will feed as the second's input,
2713 // that value is then dead.
2714 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2715 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2716 ResultReg = createResultReg(RC);
2717 bool isLsl = (0 == Instr) && !isSingleInstr;
2718 unsigned Opcode = isLsl ? LSLOpc : Opc;
2719 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2720 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2721 bool isKill = 1 == Instr;
2722 MachineInstrBuilder MIB = BuildMI(
2723 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2724 if (setsCPSR)
2725 MIB.addReg(ARM::CPSR, RegState::Define);
2726 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2727 MIB.addReg(SrcReg, isKill * RegState::Kill)
2728 .addImm(ImmEnc)
2729 .add(predOps(ARMCC::AL));
2730 if (hasS)
2731 MIB.add(condCodeOp());
2732 // Second instruction consumes the first's result.
2733 SrcReg = ResultReg;
2736 return ResultReg;
2739 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2740 // On ARM, in general, integer casts don't involve legal types; this code
2741 // handles promotable integers.
2742 Type *DestTy = I->getType();
2743 Value *Src = I->getOperand(0);
2744 Type *SrcTy = Src->getType();
2746 bool isZExt = isa<ZExtInst>(I);
2747 unsigned SrcReg = getRegForValue(Src);
2748 if (!SrcReg) return false;
2750 EVT SrcEVT, DestEVT;
2751 SrcEVT = TLI.getValueType(DL, SrcTy, true);
2752 DestEVT = TLI.getValueType(DL, DestTy, true);
2753 if (!SrcEVT.isSimple()) return false;
2754 if (!DestEVT.isSimple()) return false;
2756 MVT SrcVT = SrcEVT.getSimpleVT();
2757 MVT DestVT = DestEVT.getSimpleVT();
2758 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2759 if (ResultReg == 0) return false;
2760 updateValueMap(I, ResultReg);
2761 return true;
2764 bool ARMFastISel::SelectShift(const Instruction *I,
2765 ARM_AM::ShiftOpc ShiftTy) {
2766 // We handle thumb2 mode by target independent selector
2767 // or SelectionDAG ISel.
2768 if (isThumb2)
2769 return false;
2771 // Only handle i32 now.
2772 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2773 if (DestVT != MVT::i32)
2774 return false;
2776 unsigned Opc = ARM::MOVsr;
2777 unsigned ShiftImm;
2778 Value *Src2Value = I->getOperand(1);
2779 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2780 ShiftImm = CI->getZExtValue();
2782 // Fall back to selection DAG isel if the shift amount
2783 // is zero or greater than the width of the value type.
2784 if (ShiftImm == 0 || ShiftImm >=32)
2785 return false;
2787 Opc = ARM::MOVsi;
2790 Value *Src1Value = I->getOperand(0);
2791 unsigned Reg1 = getRegForValue(Src1Value);
2792 if (Reg1 == 0) return false;
2794 unsigned Reg2 = 0;
2795 if (Opc == ARM::MOVsr) {
2796 Reg2 = getRegForValue(Src2Value);
2797 if (Reg2 == 0) return false;
2800 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2801 if(ResultReg == 0) return false;
2803 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2804 TII.get(Opc), ResultReg)
2805 .addReg(Reg1);
2807 if (Opc == ARM::MOVsi)
2808 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2809 else if (Opc == ARM::MOVsr) {
2810 MIB.addReg(Reg2);
2811 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2814 AddOptionalDefs(MIB);
2815 updateValueMap(I, ResultReg);
2816 return true;
2819 // TODO: SoftFP support.
2820 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2821 switch (I->getOpcode()) {
2822 case Instruction::Load:
2823 return SelectLoad(I);
2824 case Instruction::Store:
2825 return SelectStore(I);
2826 case Instruction::Br:
2827 return SelectBranch(I);
2828 case Instruction::IndirectBr:
2829 return SelectIndirectBr(I);
2830 case Instruction::ICmp:
2831 case Instruction::FCmp:
2832 return SelectCmp(I);
2833 case Instruction::FPExt:
2834 return SelectFPExt(I);
2835 case Instruction::FPTrunc:
2836 return SelectFPTrunc(I);
2837 case Instruction::SIToFP:
2838 return SelectIToFP(I, /*isSigned*/ true);
2839 case Instruction::UIToFP:
2840 return SelectIToFP(I, /*isSigned*/ false);
2841 case Instruction::FPToSI:
2842 return SelectFPToI(I, /*isSigned*/ true);
2843 case Instruction::FPToUI:
2844 return SelectFPToI(I, /*isSigned*/ false);
2845 case Instruction::Add:
2846 return SelectBinaryIntOp(I, ISD::ADD);
2847 case Instruction::Or:
2848 return SelectBinaryIntOp(I, ISD::OR);
2849 case Instruction::Sub:
2850 return SelectBinaryIntOp(I, ISD::SUB);
2851 case Instruction::FAdd:
2852 return SelectBinaryFPOp(I, ISD::FADD);
2853 case Instruction::FSub:
2854 return SelectBinaryFPOp(I, ISD::FSUB);
2855 case Instruction::FMul:
2856 return SelectBinaryFPOp(I, ISD::FMUL);
2857 case Instruction::SDiv:
2858 return SelectDiv(I, /*isSigned*/ true);
2859 case Instruction::UDiv:
2860 return SelectDiv(I, /*isSigned*/ false);
2861 case Instruction::SRem:
2862 return SelectRem(I, /*isSigned*/ true);
2863 case Instruction::URem:
2864 return SelectRem(I, /*isSigned*/ false);
2865 case Instruction::Call:
2866 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2867 return SelectIntrinsicCall(*II);
2868 return SelectCall(I);
2869 case Instruction::Select:
2870 return SelectSelect(I);
2871 case Instruction::Ret:
2872 return SelectRet(I);
2873 case Instruction::Trunc:
2874 return SelectTrunc(I);
2875 case Instruction::ZExt:
2876 case Instruction::SExt:
2877 return SelectIntExt(I);
2878 case Instruction::Shl:
2879 return SelectShift(I, ARM_AM::lsl);
2880 case Instruction::LShr:
2881 return SelectShift(I, ARM_AM::lsr);
2882 case Instruction::AShr:
2883 return SelectShift(I, ARM_AM::asr);
2884 default: break;
2886 return false;
2889 // This table describes sign- and zero-extend instructions which can be
2890 // folded into a preceding load. All of these extends have an immediate
2891 // (sometimes a mask and sometimes a shift) that's applied after
2892 // extension.
2893 static const struct FoldableLoadExtendsStruct {
2894 uint16_t Opc[2]; // ARM, Thumb.
2895 uint8_t ExpectedImm;
2896 uint8_t isZExt : 1;
2897 uint8_t ExpectedVT : 7;
2898 } FoldableLoadExtends[] = {
2899 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
2900 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
2901 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
2902 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
2903 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
2906 /// The specified machine instr operand is a vreg, and that
2907 /// vreg is being provided by the specified load instruction. If possible,
2908 /// try to fold the load as an operand to the instruction, returning true if
2909 /// successful.
2910 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2911 const LoadInst *LI) {
2912 // Verify we have a legal type before going any further.
2913 MVT VT;
2914 if (!isLoadTypeLegal(LI->getType(), VT))
2915 return false;
2917 // Combine load followed by zero- or sign-extend.
2918 // ldrb r1, [r0] ldrb r1, [r0]
2919 // uxtb r2, r1 =>
2920 // mov r3, r2 mov r3, r1
2921 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2922 return false;
2923 const uint64_t Imm = MI->getOperand(2).getImm();
2925 bool Found = false;
2926 bool isZExt;
2927 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2928 if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2929 (uint64_t)FLE.ExpectedImm == Imm &&
2930 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2931 Found = true;
2932 isZExt = FLE.isZExt;
2935 if (!Found) return false;
2937 // See if we can handle this address.
2938 Address Addr;
2939 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2941 Register ResultReg = MI->getOperand(0).getReg();
2942 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2943 return false;
2944 MachineBasicBlock::iterator I(MI);
2945 removeDeadCode(I, std::next(I));
2946 return true;
2949 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2950 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2952 LLVMContext *Context = &MF->getFunction().getContext();
2953 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2954 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2955 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2956 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2957 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2958 /*AddCurrentAddress=*/UseGOT_PREL);
2960 Align ConstAlign =
2961 MF->getDataLayout().getPrefTypeAlign(Type::getInt32PtrTy(*Context));
2962 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2963 MachineMemOperand *CPMMO =
2964 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2965 MachineMemOperand::MOLoad, 4, Align(4));
2967 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2968 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2969 MachineInstrBuilder MIB =
2970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2971 .addConstantPoolIndex(Idx)
2972 .addMemOperand(CPMMO);
2973 if (Opc == ARM::LDRcp)
2974 MIB.addImm(0);
2975 MIB.add(predOps(ARMCC::AL));
2977 // Fix the address by adding pc.
2978 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2979 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2980 : ARM::PICADD;
2981 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2982 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2983 .addReg(TempReg)
2984 .addImm(ARMPCLabelIndex);
2986 if (!Subtarget->isThumb())
2987 MIB.add(predOps(ARMCC::AL));
2989 if (UseGOT_PREL && Subtarget->isThumb()) {
2990 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2991 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2992 TII.get(ARM::t2LDRi12), NewDestReg)
2993 .addReg(DestReg)
2994 .addImm(0);
2995 DestReg = NewDestReg;
2996 AddOptionalDefs(MIB);
2998 return DestReg;
3001 bool ARMFastISel::fastLowerArguments() {
3002 if (!FuncInfo.CanLowerReturn)
3003 return false;
3005 const Function *F = FuncInfo.Fn;
3006 if (F->isVarArg())
3007 return false;
3009 CallingConv::ID CC = F->getCallingConv();
3010 switch (CC) {
3011 default:
3012 return false;
3013 case CallingConv::Fast:
3014 case CallingConv::C:
3015 case CallingConv::ARM_AAPCS_VFP:
3016 case CallingConv::ARM_AAPCS:
3017 case CallingConv::ARM_APCS:
3018 case CallingConv::Swift:
3019 case CallingConv::SwiftTail:
3020 break;
3023 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3024 // which are passed in r0 - r3.
3025 for (const Argument &Arg : F->args()) {
3026 if (Arg.getArgNo() >= 4)
3027 return false;
3029 if (Arg.hasAttribute(Attribute::InReg) ||
3030 Arg.hasAttribute(Attribute::StructRet) ||
3031 Arg.hasAttribute(Attribute::SwiftSelf) ||
3032 Arg.hasAttribute(Attribute::SwiftError) ||
3033 Arg.hasAttribute(Attribute::ByVal))
3034 return false;
3036 Type *ArgTy = Arg.getType();
3037 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3038 return false;
3040 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3041 if (!ArgVT.isSimple()) return false;
3042 switch (ArgVT.getSimpleVT().SimpleTy) {
3043 case MVT::i8:
3044 case MVT::i16:
3045 case MVT::i32:
3046 break;
3047 default:
3048 return false;
3052 static const MCPhysReg GPRArgRegs[] = {
3053 ARM::R0, ARM::R1, ARM::R2, ARM::R3
3056 const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3057 for (const Argument &Arg : F->args()) {
3058 unsigned ArgNo = Arg.getArgNo();
3059 unsigned SrcReg = GPRArgRegs[ArgNo];
3060 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3061 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3062 // Without this, EmitLiveInCopies may eliminate the livein if its only
3063 // use is a bitcast (which isn't turned into an instruction).
3064 unsigned ResultReg = createResultReg(RC);
3065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3066 TII.get(TargetOpcode::COPY),
3067 ResultReg).addReg(DstReg, getKillRegState(true));
3068 updateValueMap(&Arg, ResultReg);
3071 return true;
3074 namespace llvm {
3076 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3077 const TargetLibraryInfo *libInfo) {
3078 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3079 return new ARMFastISel(funcInfo, libInfo);
3081 return nullptr;
3084 } // end namespace llvm