[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMLegalizerInfo.cpp
blobde88ffab1c28c16846d3d92728b6e895ea52bb51
1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for ARM.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
13 #include "ARMLegalizerInfo.h"
14 #include "ARMCallLowering.h"
15 #include "ARMSubtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/LowLevelType.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetOpcodes.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Type.h"
24 using namespace llvm;
25 using namespace LegalizeActions;
27 /// FIXME: The following static functions are SizeChangeStrategy functions
28 /// that are meant to temporarily mimic the behaviour of the old legalization
29 /// based on doubling/halving non-legal types as closely as possible. This is
30 /// not entirly possible as only legalizing the types that are exactly a power
31 /// of 2 times the size of the legal types would require specifying all those
32 /// sizes explicitly.
33 /// In practice, not specifying those isn't a problem, and the below functions
34 /// should disappear quickly as we add support for legalizing non-power-of-2
35 /// sized types further.
36 static void addAndInterleaveWithUnsupported(
37 LegacyLegalizerInfo::SizeAndActionsVec &result,
38 const LegacyLegalizerInfo::SizeAndActionsVec &v) {
39 for (unsigned i = 0; i < v.size(); ++i) {
40 result.push_back(v[i]);
41 if (i + 1 < v[i].first && i + 1 < v.size() &&
42 v[i + 1].first != v[i].first + 1)
43 result.push_back({v[i].first + 1, LegacyLegalizeActions::Unsupported});
47 static LegacyLegalizerInfo::SizeAndActionsVec
48 widen_8_16(const LegacyLegalizerInfo::SizeAndActionsVec &v) {
49 assert(v.size() >= 1);
50 assert(v[0].first > 17);
51 LegacyLegalizerInfo::SizeAndActionsVec result = {
52 {1, LegacyLegalizeActions::Unsupported},
53 {8, LegacyLegalizeActions::WidenScalar},
54 {9, LegacyLegalizeActions::Unsupported},
55 {16, LegacyLegalizeActions::WidenScalar},
56 {17, LegacyLegalizeActions::Unsupported}};
57 addAndInterleaveWithUnsupported(result, v);
58 auto Largest = result.back().first;
59 result.push_back({Largest + 1, LegacyLegalizeActions::Unsupported});
60 return result;
63 static bool AEABI(const ARMSubtarget &ST) {
64 return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
67 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
68 using namespace TargetOpcode;
70 const LLT p0 = LLT::pointer(0, 32);
72 const LLT s1 = LLT::scalar(1);
73 const LLT s8 = LLT::scalar(8);
74 const LLT s16 = LLT::scalar(16);
75 const LLT s32 = LLT::scalar(32);
76 const LLT s64 = LLT::scalar(64);
78 auto &LegacyInfo = getLegacyLegalizerInfo();
79 if (ST.isThumb1Only()) {
80 // Thumb1 is not supported yet.
81 LegacyInfo.computeTables();
82 verify(*ST.getInstrInfo());
83 return;
86 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
87 .legalForCartesianProduct({s8, s16, s32}, {s1, s8, s16});
89 getActionDefinitionsBuilder(G_SEXT_INREG).lower();
91 getActionDefinitionsBuilder({G_MUL, G_AND, G_OR, G_XOR})
92 .legalFor({s32})
93 .clampScalar(0, s32, s32);
95 if (ST.hasNEON())
96 getActionDefinitionsBuilder({G_ADD, G_SUB})
97 .legalFor({s32, s64})
98 .minScalar(0, s32);
99 else
100 getActionDefinitionsBuilder({G_ADD, G_SUB})
101 .legalFor({s32})
102 .minScalar(0, s32);
104 getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
105 .legalFor({{s32, s32}})
106 .minScalar(0, s32)
107 .clampScalar(1, s32, s32);
109 bool HasHWDivide = (!ST.isThumb() && ST.hasDivideInARMMode()) ||
110 (ST.isThumb() && ST.hasDivideInThumbMode());
111 if (HasHWDivide)
112 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
113 .legalFor({s32})
114 .clampScalar(0, s32, s32);
115 else
116 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
117 .libcallFor({s32})
118 .clampScalar(0, s32, s32);
120 for (unsigned Op : {G_SREM, G_UREM}) {
121 LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16);
122 if (HasHWDivide)
123 LegacyInfo.setAction({Op, s32}, LegacyLegalizeActions::Lower);
124 else if (AEABI(ST))
125 LegacyInfo.setAction({Op, s32}, LegacyLegalizeActions::Custom);
126 else
127 LegacyInfo.setAction({Op, s32}, LegacyLegalizeActions::Libcall);
130 getActionDefinitionsBuilder(G_INTTOPTR)
131 .legalFor({{p0, s32}})
132 .minScalar(1, s32);
133 getActionDefinitionsBuilder(G_PTRTOINT)
134 .legalFor({{s32, p0}})
135 .minScalar(0, s32);
137 getActionDefinitionsBuilder(G_CONSTANT)
138 .legalFor({s32, p0})
139 .clampScalar(0, s32, s32);
141 getActionDefinitionsBuilder(G_ICMP)
142 .legalForCartesianProduct({s1}, {s32, p0})
143 .minScalar(1, s32);
145 getActionDefinitionsBuilder(G_SELECT)
146 .legalForCartesianProduct({s32, p0}, {s1})
147 .minScalar(0, s32);
149 // We're keeping these builders around because we'll want to add support for
150 // floating point to them.
151 auto &LoadStoreBuilder = getActionDefinitionsBuilder({G_LOAD, G_STORE})
152 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
153 {s16, p0, s16, 8},
154 {s32, p0, s32, 8},
155 {p0, p0, p0, 8}})
156 .unsupportedIfMemSizeNotPow2();
158 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
159 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
161 auto &PhiBuilder =
162 getActionDefinitionsBuilder(G_PHI)
163 .legalFor({s32, p0})
164 .minScalar(0, s32);
166 getActionDefinitionsBuilder(G_PTR_ADD)
167 .legalFor({{p0, s32}})
168 .minScalar(1, s32);
170 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
172 if (!ST.useSoftFloat() && ST.hasVFP2Base()) {
173 getActionDefinitionsBuilder(
174 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
175 .legalFor({s32, s64});
177 LoadStoreBuilder
178 .legalForTypesWithMemDesc({{s64, p0, s64, 32}})
179 .maxScalar(0, s32);
180 PhiBuilder.legalFor({s64});
182 getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
183 {s32, s64});
185 getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
186 getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
188 getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
189 getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
191 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
192 .legalForCartesianProduct({s32}, {s32, s64});
193 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
194 .legalForCartesianProduct({s32, s64}, {s32});
195 } else {
196 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
197 .libcallFor({s32, s64});
199 LoadStoreBuilder.maxScalar(0, s32);
201 for (auto Ty : {s32, s64})
202 LegacyInfo.setAction({G_FNEG, Ty}, LegacyLegalizeActions::Lower);
204 getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
206 getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
207 {s32, s64});
209 if (AEABI(ST))
210 setFCmpLibcallsAEABI();
211 else
212 setFCmpLibcallsGNU();
214 getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
215 getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
217 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
218 .libcallForCartesianProduct({s32}, {s32, s64});
219 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
220 .libcallForCartesianProduct({s32, s64}, {s32});
223 // Just expand whatever loads and stores are left.
224 LoadStoreBuilder.lower();
226 if (!ST.useSoftFloat() && ST.hasVFP4Base())
227 getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
228 else
229 getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
231 getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
233 if (ST.hasV5TOps()) {
234 getActionDefinitionsBuilder(G_CTLZ)
235 .legalFor({s32, s32})
236 .clampScalar(1, s32, s32)
237 .clampScalar(0, s32, s32);
238 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
239 .lowerFor({s32, s32})
240 .clampScalar(1, s32, s32)
241 .clampScalar(0, s32, s32);
242 } else {
243 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
244 .libcallFor({s32, s32})
245 .clampScalar(1, s32, s32)
246 .clampScalar(0, s32, s32);
247 getActionDefinitionsBuilder(G_CTLZ)
248 .lowerFor({s32, s32})
249 .clampScalar(1, s32, s32)
250 .clampScalar(0, s32, s32);
253 LegacyInfo.computeTables();
254 verify(*ST.getInstrInfo());
257 void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
258 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
259 // default-initialized.
260 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
261 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
262 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
263 FCmp32Libcalls[CmpInst::FCMP_OGE] = {
264 {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
265 FCmp32Libcalls[CmpInst::FCMP_OGT] = {
266 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
267 FCmp32Libcalls[CmpInst::FCMP_OLE] = {
268 {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
269 FCmp32Libcalls[CmpInst::FCMP_OLT] = {
270 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
271 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}};
272 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
273 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
274 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
275 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
276 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
277 FCmp32Libcalls[CmpInst::FCMP_UNO] = {
278 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
279 FCmp32Libcalls[CmpInst::FCMP_ONE] = {
280 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
281 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
282 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
283 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
284 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
286 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
287 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
288 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
289 FCmp64Libcalls[CmpInst::FCMP_OGE] = {
290 {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
291 FCmp64Libcalls[CmpInst::FCMP_OGT] = {
292 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
293 FCmp64Libcalls[CmpInst::FCMP_OLE] = {
294 {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
295 FCmp64Libcalls[CmpInst::FCMP_OLT] = {
296 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
297 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}};
298 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
299 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
300 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
301 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
302 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
303 FCmp64Libcalls[CmpInst::FCMP_UNO] = {
304 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
305 FCmp64Libcalls[CmpInst::FCMP_ONE] = {
306 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
307 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
308 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
309 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
310 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
313 void ARMLegalizerInfo::setFCmpLibcallsGNU() {
314 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
315 // default-initialized.
316 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
317 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
318 FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
319 FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
320 FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
321 FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
322 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}};
323 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
324 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
325 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
326 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
327 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
328 FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
329 FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
330 {RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
331 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
332 {RTLIB::UO_F32, CmpInst::ICMP_NE}};
334 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
335 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
336 FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
337 FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
338 FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
339 FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
340 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}};
341 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
342 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
343 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
344 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
345 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
346 FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
347 FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
348 {RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
349 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
350 {RTLIB::UO_F64, CmpInst::ICMP_NE}};
353 ARMLegalizerInfo::FCmpLibcallsList
354 ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
355 unsigned Size) const {
356 assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
357 if (Size == 32)
358 return FCmp32Libcalls[Predicate];
359 if (Size == 64)
360 return FCmp64Libcalls[Predicate];
361 llvm_unreachable("Unsupported size for FCmp predicate");
364 bool ARMLegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
365 MachineInstr &MI) const {
366 using namespace TargetOpcode;
368 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
369 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
370 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
372 switch (MI.getOpcode()) {
373 default:
374 return false;
375 case G_SREM:
376 case G_UREM: {
377 Register OriginalResult = MI.getOperand(0).getReg();
378 auto Size = MRI.getType(OriginalResult).getSizeInBits();
379 if (Size != 32)
380 return false;
382 auto Libcall =
383 MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
385 // Our divmod libcalls return a struct containing the quotient and the
386 // remainder. Create a new, unused register for the quotient and use the
387 // destination of the original instruction for the remainder.
388 Type *ArgTy = Type::getInt32Ty(Ctx);
389 StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
390 Register RetRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)),
391 OriginalResult};
392 auto Status = createLibcall(MIRBuilder, Libcall, {RetRegs, RetTy, 0},
393 {{MI.getOperand(1).getReg(), ArgTy, 0},
394 {MI.getOperand(2).getReg(), ArgTy, 0}});
395 if (Status != LegalizerHelper::Legalized)
396 return false;
397 break;
399 case G_FCMP: {
400 assert(MRI.getType(MI.getOperand(2).getReg()) ==
401 MRI.getType(MI.getOperand(3).getReg()) &&
402 "Mismatched operands for G_FCMP");
403 auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
405 auto OriginalResult = MI.getOperand(0).getReg();
406 auto Predicate =
407 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
408 auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
410 if (Libcalls.empty()) {
411 assert((Predicate == CmpInst::FCMP_TRUE ||
412 Predicate == CmpInst::FCMP_FALSE) &&
413 "Predicate needs libcalls, but none specified");
414 MIRBuilder.buildConstant(OriginalResult,
415 Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
416 MI.eraseFromParent();
417 return true;
420 assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
421 auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
422 auto *RetTy = Type::getInt32Ty(Ctx);
424 SmallVector<Register, 2> Results;
425 for (auto Libcall : Libcalls) {
426 auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
427 auto Status = createLibcall(MIRBuilder, Libcall.LibcallID,
428 {LibcallResult, RetTy, 0},
429 {{MI.getOperand(2).getReg(), ArgTy, 0},
430 {MI.getOperand(3).getReg(), ArgTy, 0}});
432 if (Status != LegalizerHelper::Legalized)
433 return false;
435 auto ProcessedResult =
436 Libcalls.size() == 1
437 ? OriginalResult
438 : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
440 // We have a result, but we need to transform it into a proper 1-bit 0 or
441 // 1, taking into account the different peculiarities of the values
442 // returned by the comparison functions.
443 CmpInst::Predicate ResultPred = Libcall.Predicate;
444 if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
445 // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
446 // to keep the types consistent.
447 MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
448 } else {
449 // We need to compare against 0.
450 assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
451 auto Zero = MIRBuilder.buildConstant(LLT::scalar(32), 0);
452 MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
454 Results.push_back(ProcessedResult);
457 if (Results.size() != 1) {
458 assert(Results.size() == 2 && "Unexpected number of results");
459 MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
461 break;
463 case G_FCONSTANT: {
464 // Convert to integer constants, while preserving the binary representation.
465 auto AsInteger =
466 MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
467 MIRBuilder.buildConstant(MI.getOperand(0),
468 *ConstantInt::get(Ctx, AsInteger));
469 break;
473 MI.eraseFromParent();
474 return true;