[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMLowOverheadLoops.cpp
blob595da77e3327c35609d6a9c144277dc0e87d3dc1
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 /// form should be in the preheader, whereas the while form should be in the
14 /// preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
45 /// VPR.P0 &= Value
46 /// else
47 /// VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "MVETailPredUtils.h"
60 #include "Thumb2InstrInfo.h"
61 #include "llvm/ADT/SetOperations.h"
62 #include "llvm/ADT/SmallSet.h"
63 #include "llvm/CodeGen/LivePhysRegs.h"
64 #include "llvm/CodeGen/MachineFunctionPass.h"
65 #include "llvm/CodeGen/MachineLoopInfo.h"
66 #include "llvm/CodeGen/MachineLoopUtils.h"
67 #include "llvm/CodeGen/MachineRegisterInfo.h"
68 #include "llvm/CodeGen/Passes.h"
69 #include "llvm/CodeGen/ReachingDefAnalysis.h"
70 #include "llvm/MC/MCInstrDesc.h"
72 using namespace llvm;
74 #define DEBUG_TYPE "arm-low-overhead-loops"
75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
77 static cl::opt<bool>
78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
79 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
80 cl::init(false));
82 static bool isVectorPredicated(MachineInstr *MI) {
83 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
84 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
87 static bool isVectorPredicate(MachineInstr *MI) {
88 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
91 static bool hasVPRUse(MachineInstr &MI) {
92 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1;
95 static bool isDomainMVE(MachineInstr *MI) {
96 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
97 return Domain == ARMII::DomainMVE;
100 static bool shouldInspect(MachineInstr &MI) {
101 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
104 namespace {
106 using InstSet = SmallPtrSetImpl<MachineInstr *>;
108 class PostOrderLoopTraversal {
109 MachineLoop &ML;
110 MachineLoopInfo &MLI;
111 SmallPtrSet<MachineBasicBlock*, 4> Visited;
112 SmallVector<MachineBasicBlock*, 4> Order;
114 public:
115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
116 : ML(ML), MLI(MLI) { }
118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
119 return Order;
122 // Visit all the blocks within the loop, as well as exit blocks and any
123 // blocks properly dominating the header.
124 void ProcessLoop() {
125 std::function<void(MachineBasicBlock*)> Search = [this, &Search]
126 (MachineBasicBlock *MBB) -> void {
127 if (Visited.count(MBB))
128 return;
130 Visited.insert(MBB);
131 for (auto *Succ : MBB->successors()) {
132 if (!ML.contains(Succ))
133 continue;
134 Search(Succ);
136 Order.push_back(MBB);
139 // Insert exit blocks.
140 SmallVector<MachineBasicBlock*, 2> ExitBlocks;
141 ML.getExitBlocks(ExitBlocks);
142 append_range(Order, ExitBlocks);
144 // Then add the loop body.
145 Search(ML.getHeader());
147 // Then try the preheader and its predecessors.
148 std::function<void(MachineBasicBlock*)> GetPredecessor =
149 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
150 Order.push_back(MBB);
151 if (MBB->pred_size() == 1)
152 GetPredecessor(*MBB->pred_begin());
155 if (auto *Preheader = ML.getLoopPreheader())
156 GetPredecessor(Preheader);
157 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true))
158 GetPredecessor(Preheader);
162 struct PredicatedMI {
163 MachineInstr *MI = nullptr;
164 SetVector<MachineInstr*> Predicates;
166 public:
167 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
168 assert(I && "Instruction must not be null!");
169 Predicates.insert(Preds.begin(), Preds.end());
173 // Represent the current state of the VPR and hold all instances which
174 // represent a VPT block, which is a list of instructions that begins with a
175 // VPT/VPST and has a maximum of four proceeding instructions. All
176 // instructions within the block are predicated upon the vpr and we allow
177 // instructions to define the vpr within in the block too.
178 class VPTState {
179 friend struct LowOverheadLoop;
181 SmallVector<MachineInstr *, 4> Insts;
183 static SmallVector<VPTState, 4> Blocks;
184 static SetVector<MachineInstr *> CurrentPredicates;
185 static std::map<MachineInstr *,
186 std::unique_ptr<PredicatedMI>> PredicatedInsts;
188 static void CreateVPTBlock(MachineInstr *MI) {
189 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
190 && "Can't begin VPT without predicate");
191 Blocks.emplace_back(MI);
192 // The execution of MI is predicated upon the current set of instructions
193 // that are AND'ed together to form the VPR predicate value. In the case
194 // that MI is a VPT, CurrentPredicates will also just be MI.
195 PredicatedInsts.emplace(
196 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
199 static void reset() {
200 Blocks.clear();
201 PredicatedInsts.clear();
202 CurrentPredicates.clear();
205 static void addInst(MachineInstr *MI) {
206 Blocks.back().insert(MI);
207 PredicatedInsts.emplace(
208 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
211 static void addPredicate(MachineInstr *MI) {
212 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
213 CurrentPredicates.insert(MI);
216 static void resetPredicate(MachineInstr *MI) {
217 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
218 CurrentPredicates.clear();
219 CurrentPredicates.insert(MI);
222 public:
223 // Have we found an instruction within the block which defines the vpr? If
224 // so, not all the instructions in the block will have the same predicate.
225 static bool hasUniformPredicate(VPTState &Block) {
226 return getDivergent(Block) == nullptr;
229 // If it exists, return the first internal instruction which modifies the
230 // VPR.
231 static MachineInstr *getDivergent(VPTState &Block) {
232 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
233 for (unsigned i = 1; i < Insts.size(); ++i) {
234 MachineInstr *Next = Insts[i];
235 if (isVectorPredicate(Next))
236 return Next; // Found an instruction altering the vpr.
238 return nullptr;
241 // Return whether the given instruction is predicated upon a VCTP.
242 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
243 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
244 if (Exclusive && Predicates.size() != 1)
245 return false;
246 for (auto *PredMI : Predicates)
247 if (isVCTP(PredMI))
248 return true;
249 return false;
252 // Is the VPST, controlling the block entry, predicated upon a VCTP.
253 static bool isEntryPredicatedOnVCTP(VPTState &Block,
254 bool Exclusive = false) {
255 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
256 return isPredicatedOnVCTP(Insts.front(), Exclusive);
259 // If this block begins with a VPT, we can check whether it's using
260 // at least one predicated input(s), as well as possible loop invariant
261 // which would result in it being implicitly predicated.
262 static bool hasImplicitlyValidVPT(VPTState &Block,
263 ReachingDefAnalysis &RDA) {
264 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
265 MachineInstr *VPT = Insts.front();
266 assert(isVPTOpcode(VPT->getOpcode()) &&
267 "Expected VPT block to begin with VPT/VPST");
269 if (VPT->getOpcode() == ARM::MVE_VPST)
270 return false;
272 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
273 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
274 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
277 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
278 MachineOperand &MO = MI->getOperand(Idx);
279 if (!MO.isReg() || !MO.getReg())
280 return true;
282 SmallPtrSet<MachineInstr *, 2> Defs;
283 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
284 if (Defs.empty())
285 return true;
287 for (auto *Def : Defs)
288 if (Def->getParent() == VPT->getParent())
289 return false;
290 return true;
293 // Check that at least one of the operands is directly predicated on a
294 // vctp and allow an invariant value too.
295 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
296 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
297 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
300 static bool isValid(ReachingDefAnalysis &RDA) {
301 // All predication within the loop should be based on vctp. If the block
302 // isn't predicated on entry, check whether the vctp is within the block
303 // and that all other instructions are then predicated on it.
304 for (auto &Block : Blocks) {
305 if (isEntryPredicatedOnVCTP(Block, false) ||
306 hasImplicitlyValidVPT(Block, RDA))
307 continue;
309 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
310 // We don't know how to convert a block with just a VPT;VCTP into
311 // anything valid once we remove the VCTP. For now just bail out.
312 assert(isVPTOpcode(Insts.front()->getOpcode()) &&
313 "Expected VPT block to start with a VPST or VPT!");
314 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
315 isVCTP(Insts.back()))
316 return false;
318 for (auto *MI : Insts) {
319 // Check that any internal VCTPs are 'Then' predicated.
320 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
321 return false;
322 // Skip other instructions that build up the predicate.
323 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
324 continue;
325 // Check that any other instructions are predicated upon a vctp.
326 // TODO: We could infer when VPTs are implicitly predicated on the
327 // vctp (when the operands are predicated).
328 if (!isPredicatedOnVCTP(MI)) {
329 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
330 return false;
334 return true;
337 VPTState(MachineInstr *MI) { Insts.push_back(MI); }
339 void insert(MachineInstr *MI) {
340 Insts.push_back(MI);
341 // VPT/VPST + 4 predicated instructions.
342 assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
345 bool containsVCTP() const {
346 for (auto *MI : Insts)
347 if (isVCTP(MI))
348 return true;
349 return false;
352 unsigned size() const { return Insts.size(); }
353 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
356 struct LowOverheadLoop {
358 MachineLoop &ML;
359 MachineBasicBlock *Preheader = nullptr;
360 MachineLoopInfo &MLI;
361 ReachingDefAnalysis &RDA;
362 const TargetRegisterInfo &TRI;
363 const ARMBaseInstrInfo &TII;
364 MachineFunction *MF = nullptr;
365 MachineBasicBlock::iterator StartInsertPt;
366 MachineBasicBlock *StartInsertBB = nullptr;
367 MachineInstr *Start = nullptr;
368 MachineInstr *Dec = nullptr;
369 MachineInstr *End = nullptr;
370 MachineOperand TPNumElements;
371 SmallVector<MachineInstr*, 4> VCTPs;
372 SmallPtrSet<MachineInstr*, 4> ToRemove;
373 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
374 bool Revert = false;
375 bool CannotTailPredicate = false;
377 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
378 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
379 const ARMBaseInstrInfo &TII)
380 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
381 TPNumElements(MachineOperand::CreateImm(0)) {
382 MF = ML.getHeader()->getParent();
383 if (auto *MBB = ML.getLoopPreheader())
384 Preheader = MBB;
385 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true))
386 Preheader = MBB;
387 VPTState::reset();
390 // If this is an MVE instruction, check that we know how to use tail
391 // predication with it. Record VPT blocks and return whether the
392 // instruction is valid for tail predication.
393 bool ValidateMVEInst(MachineInstr *MI);
395 void AnalyseMVEInst(MachineInstr *MI) {
396 CannotTailPredicate = !ValidateMVEInst(MI);
399 bool IsTailPredicationLegal() const {
400 // For now, let's keep things really simple and only support a single
401 // block for tail predication.
402 return !Revert && FoundAllComponents() && !VCTPs.empty() &&
403 !CannotTailPredicate && ML.getNumBlocks() == 1;
406 // Given that MI is a VCTP, check that is equivalent to any other VCTPs
407 // found.
408 bool AddVCTP(MachineInstr *MI);
410 // Check that the predication in the loop will be equivalent once we
411 // perform the conversion. Also ensure that we can provide the number
412 // of elements to the loop start instruction.
413 bool ValidateTailPredicate();
415 // Check that any values available outside of the loop will be the same
416 // after tail predication conversion.
417 bool ValidateLiveOuts();
419 // Is it safe to define LR with DLS/WLS?
420 // LR can be defined if it is the operand to start, because it's the same
421 // value, or if it's going to be equivalent to the operand to Start.
422 MachineInstr *isSafeToDefineLR();
424 // Check the branch targets are within range and we satisfy our
425 // restrictions.
426 void Validate(ARMBasicBlockUtils *BBUtils);
428 bool FoundAllComponents() const {
429 return Start && Dec && End;
432 SmallVectorImpl<VPTState> &getVPTBlocks() {
433 return VPTState::Blocks;
436 // Return the operand for the loop start instruction. This will be the loop
437 // iteration count, or the number of elements if we're tail predicating.
438 MachineOperand &getLoopStartOperand() {
439 if (IsTailPredicationLegal())
440 return TPNumElements;
441 return Start->getOperand(1);
444 unsigned getStartOpcode() const {
445 bool IsDo = isDoLoopStart(*Start);
446 if (!IsTailPredicationLegal())
447 return IsDo ? ARM::t2DLS : ARM::t2WLS;
449 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
452 void dump() const {
453 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
454 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
455 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
456 if (!VCTPs.empty()) {
457 dbgs() << "ARM Loops: Found VCTP(s):\n";
458 for (auto *MI : VCTPs)
459 dbgs() << " - " << *MI;
461 if (!FoundAllComponents())
462 dbgs() << "ARM Loops: Not a low-overhead loop.\n";
463 else if (!(Start && Dec && End))
464 dbgs() << "ARM Loops: Failed to find all loop components.\n";
468 class ARMLowOverheadLoops : public MachineFunctionPass {
469 MachineFunction *MF = nullptr;
470 MachineLoopInfo *MLI = nullptr;
471 ReachingDefAnalysis *RDA = nullptr;
472 const ARMBaseInstrInfo *TII = nullptr;
473 MachineRegisterInfo *MRI = nullptr;
474 const TargetRegisterInfo *TRI = nullptr;
475 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
477 public:
478 static char ID;
480 ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
482 void getAnalysisUsage(AnalysisUsage &AU) const override {
483 AU.setPreservesCFG();
484 AU.addRequired<MachineLoopInfo>();
485 AU.addRequired<ReachingDefAnalysis>();
486 MachineFunctionPass::getAnalysisUsage(AU);
489 bool runOnMachineFunction(MachineFunction &MF) override;
491 MachineFunctionProperties getRequiredProperties() const override {
492 return MachineFunctionProperties().set(
493 MachineFunctionProperties::Property::NoVRegs).set(
494 MachineFunctionProperties::Property::TracksLiveness);
497 StringRef getPassName() const override {
498 return ARM_LOW_OVERHEAD_LOOPS_NAME;
501 private:
502 bool ProcessLoop(MachineLoop *ML);
504 bool RevertNonLoops();
506 void RevertWhile(MachineInstr *MI) const;
507 void RevertDo(MachineInstr *MI) const;
509 bool RevertLoopDec(MachineInstr *MI) const;
511 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
513 void RevertLoopEndDec(MachineInstr *MI) const;
515 void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
517 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
519 void Expand(LowOverheadLoop &LoLoop);
521 void IterationCountDCE(LowOverheadLoop &LoLoop);
525 char ARMLowOverheadLoops::ID = 0;
527 SmallVector<VPTState, 4> VPTState::Blocks;
528 SetVector<MachineInstr *> VPTState::CurrentPredicates;
529 std::map<MachineInstr *,
530 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
532 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
533 false, false)
535 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
536 InstSet &ToRemove, InstSet &Ignore) {
538 // Check that we can remove all of Killed without having to modify any IT
539 // blocks.
540 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
541 // Collect the dead code and the MBBs in which they reside.
542 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
543 for (auto *Dead : Killed)
544 BasicBlocks.insert(Dead->getParent());
546 // Collect IT blocks in all affected basic blocks.
547 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
548 for (auto *MBB : BasicBlocks) {
549 for (auto &IT : *MBB) {
550 if (IT.getOpcode() != ARM::t2IT)
551 continue;
552 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
553 ITBlocks[&IT]);
557 // If we're removing all of the instructions within an IT block, then
558 // also remove the IT instruction.
559 SmallPtrSet<MachineInstr *, 2> ModifiedITs;
560 SmallPtrSet<MachineInstr *, 2> RemoveITs;
561 for (auto *Dead : Killed) {
562 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
563 MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
564 RemoveITs.insert(IT);
565 auto &CurrentBlock = ITBlocks[IT];
566 CurrentBlock.erase(Dead);
567 if (CurrentBlock.empty())
568 ModifiedITs.erase(IT);
569 else
570 ModifiedITs.insert(IT);
573 if (!ModifiedITs.empty())
574 return false;
575 Killed.insert(RemoveITs.begin(), RemoveITs.end());
576 return true;
579 SmallPtrSet<MachineInstr *, 2> Uses;
580 if (!RDA.isSafeToRemove(MI, Uses, Ignore))
581 return false;
583 if (WontCorruptITs(Uses, RDA)) {
584 ToRemove.insert(Uses.begin(), Uses.end());
585 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
586 << " - can also remove:\n";
587 for (auto *Use : Uses)
588 dbgs() << " - " << *Use);
590 SmallPtrSet<MachineInstr*, 4> Killed;
591 RDA.collectKilledOperands(MI, Killed);
592 if (WontCorruptITs(Killed, RDA)) {
593 ToRemove.insert(Killed.begin(), Killed.end());
594 LLVM_DEBUG(for (auto *Dead : Killed)
595 dbgs() << " - " << *Dead);
597 return true;
599 return false;
602 bool LowOverheadLoop::ValidateTailPredicate() {
603 if (!IsTailPredicationLegal()) {
604 LLVM_DEBUG(if (VCTPs.empty())
605 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
606 dbgs() << "ARM Loops: Tail-predication is not valid.\n");
607 return false;
610 assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
611 assert(ML.getBlocks().size() == 1 &&
612 "Shouldn't be processing a loop with more than one block");
614 if (DisableTailPredication) {
615 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
616 return false;
619 if (!VPTState::isValid(RDA)) {
620 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
621 return false;
624 if (!ValidateLiveOuts()) {
625 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
626 return false;
629 // For tail predication, we need to provide the number of elements, instead
630 // of the iteration count, to the loop start instruction. The number of
631 // elements is provided to the vctp instruction, so we need to check that
632 // we can use this register at InsertPt.
633 MachineInstr *VCTP = VCTPs.back();
634 if (Start->getOpcode() == ARM::t2DoLoopStartTP ||
635 Start->getOpcode() == ARM::t2WhileLoopStartTP) {
636 TPNumElements = Start->getOperand(2);
637 StartInsertPt = Start;
638 StartInsertBB = Start->getParent();
639 } else {
640 TPNumElements = VCTP->getOperand(1);
641 MCRegister NumElements = TPNumElements.getReg().asMCReg();
643 // If the register is defined within loop, then we can't perform TP.
644 // TODO: Check whether this is just a mov of a register that would be
645 // available.
646 if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
647 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
648 return false;
651 // The element count register maybe defined after InsertPt, in which case we
652 // need to try to move either InsertPt or the def so that the [w|d]lstp can
653 // use the value.
655 if (StartInsertPt != StartInsertBB->end() &&
656 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
657 if (auto *ElemDef =
658 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
659 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
660 ElemDef->removeFromParent();
661 StartInsertBB->insert(StartInsertPt, ElemDef);
662 LLVM_DEBUG(dbgs()
663 << "ARM Loops: Moved element count def: " << *ElemDef);
664 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
665 StartInsertPt->removeFromParent();
666 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
667 &*StartInsertPt);
668 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
669 } else {
670 // If we fail to move an instruction and the element count is provided
671 // by a mov, use the mov operand if it will have the same value at the
672 // insertion point
673 MachineOperand Operand = ElemDef->getOperand(1);
674 if (isMovRegOpcode(ElemDef->getOpcode()) &&
675 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
676 RDA.getUniqueReachingMIDef(&*StartInsertPt,
677 Operand.getReg().asMCReg())) {
678 TPNumElements = Operand;
679 NumElements = TPNumElements.getReg();
680 } else {
681 LLVM_DEBUG(dbgs()
682 << "ARM Loops: Unable to move element count to loop "
683 << "start instruction.\n");
684 return false;
690 // Especially in the case of while loops, InsertBB may not be the
691 // preheader, so we need to check that the register isn't redefined
692 // before entering the loop.
693 auto CannotProvideElements = [this](MachineBasicBlock *MBB,
694 MCRegister NumElements) {
695 if (MBB->empty())
696 return false;
697 // NumElements is redefined in this block.
698 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
699 return true;
701 // Don't continue searching up through multiple predecessors.
702 if (MBB->pred_size() > 1)
703 return true;
705 return false;
708 // Search backwards for a def, until we get to InsertBB.
709 MachineBasicBlock *MBB = Preheader;
710 while (MBB && MBB != StartInsertBB) {
711 if (CannotProvideElements(MBB, NumElements)) {
712 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
713 return false;
715 MBB = *MBB->pred_begin();
719 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
720 // world the [w|d]lstp instruction would be last instruction in the preheader
721 // and so it would only affect instructions within the loop body. But due to
722 // scheduling, and/or the logic in this pass (above), the insertion point can
723 // be moved earlier. So if the Loop Start isn't the last instruction in the
724 // preheader, and if the initial element count is smaller than the vector
725 // width, the Loop Start instruction will immediately generate one or more
726 // false lane mask which can, incorrectly, affect the proceeding MVE
727 // instructions in the preheader.
728 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
729 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
730 return false;
733 // Check that the value change of the element count is what we expect and
734 // that the predication will be equivalent. For this we need:
735 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
736 // and we can also allow register copies within the chain too.
737 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
738 return -getAddSubImmediate(*MI) == ExpectedVecWidth;
741 MachineBasicBlock *MBB = VCTP->getParent();
742 // Remove modifications to the element count since they have no purpose in a
743 // tail predicated loop. Explicitly refer to the vctp operand no matter which
744 // register NumElements has been assigned to, since that is what the
745 // modifications will be using
746 if (auto *Def = RDA.getUniqueReachingMIDef(
747 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
748 SmallPtrSet<MachineInstr*, 2> ElementChain;
749 SmallPtrSet<MachineInstr*, 2> Ignore;
750 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
752 Ignore.insert(VCTPs.begin(), VCTPs.end());
754 if (TryRemove(Def, RDA, ElementChain, Ignore)) {
755 bool FoundSub = false;
757 for (auto *MI : ElementChain) {
758 if (isMovRegOpcode(MI->getOpcode()))
759 continue;
761 if (isSubImmOpcode(MI->getOpcode())) {
762 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
763 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
764 " count: " << *MI);
765 return false;
767 FoundSub = true;
768 } else {
769 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
770 " count: " << *MI);
771 return false;
774 ToRemove.insert(ElementChain.begin(), ElementChain.end());
778 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we
779 // can also remove any extra instructions in the preheader, which often
780 // includes a now unused MOV.
781 if ((Start->getOpcode() == ARM::t2DoLoopStartTP ||
782 Start->getOpcode() == ARM::t2WhileLoopStartTP) &&
783 Preheader && !Preheader->empty() &&
784 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
785 if (auto *Def = RDA.getUniqueReachingMIDef(
786 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
787 SmallPtrSet<MachineInstr*, 2> Ignore;
788 Ignore.insert(VCTPs.begin(), VCTPs.end());
789 TryRemove(Def, RDA, ToRemove, Ignore);
793 return true;
796 static bool isRegInClass(const MachineOperand &MO,
797 const TargetRegisterClass *Class) {
798 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
801 // MVE 'narrowing' operate on half a lane, reading from half and writing
802 // to half, which are referred to has the top and bottom half. The other
803 // half retains its previous value.
804 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
805 const MCInstrDesc &MCID = MI.getDesc();
806 uint64_t Flags = MCID.TSFlags;
807 return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
810 // Some MVE instructions read from the top/bottom halves of their operand(s)
811 // and generate a vector result with result elements that are double the
812 // width of the input.
813 static bool producesDoubleWidthResult(const MachineInstr &MI) {
814 const MCInstrDesc &MCID = MI.getDesc();
815 uint64_t Flags = MCID.TSFlags;
816 return (Flags & ARMII::DoubleWidthResult) != 0;
819 static bool isHorizontalReduction(const MachineInstr &MI) {
820 const MCInstrDesc &MCID = MI.getDesc();
821 uint64_t Flags = MCID.TSFlags;
822 return (Flags & ARMII::HorizontalReduction) != 0;
825 // Can this instruction generate a non-zero result when given only zeroed
826 // operands? This allows us to know that, given operands with false bytes
827 // zeroed by masked loads, that the result will also contain zeros in those
828 // bytes.
829 static bool canGenerateNonZeros(const MachineInstr &MI) {
831 // Check for instructions which can write into a larger element size,
832 // possibly writing into a previous zero'd lane.
833 if (producesDoubleWidthResult(MI))
834 return true;
836 switch (MI.getOpcode()) {
837 default:
838 break;
839 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
840 // fp16 -> fp32 vector conversions.
841 // Instructions that perform a NOT will generate 1s from 0s.
842 case ARM::MVE_VMVN:
843 case ARM::MVE_VORN:
844 // Count leading zeros will do just that!
845 case ARM::MVE_VCLZs8:
846 case ARM::MVE_VCLZs16:
847 case ARM::MVE_VCLZs32:
848 return true;
850 return false;
853 // Look at its register uses to see if it only can only receive zeros
854 // into its false lanes which would then produce zeros. Also check that
855 // the output register is also defined by an FalseLanesZero instruction
856 // so that if tail-predication happens, the lanes that aren't updated will
857 // still be zeros.
858 static bool producesFalseLanesZero(MachineInstr &MI,
859 const TargetRegisterClass *QPRs,
860 const ReachingDefAnalysis &RDA,
861 InstSet &FalseLanesZero) {
862 if (canGenerateNonZeros(MI))
863 return false;
865 bool isPredicated = isVectorPredicated(&MI);
866 // Predicated loads will write zeros to the falsely predicated bytes of the
867 // destination register.
868 if (MI.mayLoad())
869 return isPredicated;
871 auto IsZeroInit = [](MachineInstr *Def) {
872 return !isVectorPredicated(Def) &&
873 Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
874 Def->getOperand(1).getImm() == 0;
877 bool AllowScalars = isHorizontalReduction(MI);
878 for (auto &MO : MI.operands()) {
879 if (!MO.isReg() || !MO.getReg())
880 continue;
881 if (!isRegInClass(MO, QPRs) && AllowScalars)
882 continue;
884 // Check that this instruction will produce zeros in its false lanes:
885 // - If it only consumes false lanes zero or constant 0 (vmov #0)
886 // - If it's predicated, it only matters that it's def register already has
887 // false lane zeros, so we can ignore the uses.
888 SmallPtrSet<MachineInstr *, 2> Defs;
889 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
890 for (auto *Def : Defs) {
891 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
892 continue;
893 if (MO.isUse() && isPredicated)
894 continue;
895 return false;
898 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
899 return true;
902 bool LowOverheadLoop::ValidateLiveOuts() {
903 // We want to find out if the tail-predicated version of this loop will
904 // produce the same values as the loop in its original form. For this to
905 // be true, the newly inserted implicit predication must not change the
906 // the (observable) results.
907 // We're doing this because many instructions in the loop will not be
908 // predicated and so the conversion from VPT predication to tail-predication
909 // can result in different values being produced; due to the tail-predication
910 // preventing many instructions from updating their falsely predicated
911 // lanes. This analysis assumes that all the instructions perform lane-wise
912 // operations and don't perform any exchanges.
913 // A masked load, whether through VPT or tail predication, will write zeros
914 // to any of the falsely predicated bytes. So, from the loads, we know that
915 // the false lanes are zeroed and here we're trying to track that those false
916 // lanes remain zero, or where they change, the differences are masked away
917 // by their user(s).
918 // All MVE stores have to be predicated, so we know that any predicate load
919 // operands, or stored results are equivalent already. Other explicitly
920 // predicated instructions will perform the same operation in the original
921 // loop and the tail-predicated form too. Because of this, we can insert
922 // loads, stores and other predicated instructions into our Predicated
923 // set and build from there.
924 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
925 SetVector<MachineInstr *> FalseLanesUnknown;
926 SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
927 SmallPtrSet<MachineInstr *, 4> Predicated;
928 MachineBasicBlock *Header = ML.getHeader();
930 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n");
932 for (auto &MI : *Header) {
933 if (!shouldInspect(MI))
934 continue;
936 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
937 continue;
939 bool isPredicated = isVectorPredicated(&MI);
940 bool retainsOrReduces =
941 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
943 if (isPredicated)
944 Predicated.insert(&MI);
945 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
946 FalseLanesZero.insert(&MI);
947 else if (MI.getNumDefs() == 0)
948 continue;
949 else if (!isPredicated && retainsOrReduces) {
950 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI);
951 return false;
953 else if (!isPredicated)
954 FalseLanesUnknown.insert(&MI);
957 LLVM_DEBUG({
958 dbgs() << " Predicated:\n";
959 for (auto *I : Predicated)
960 dbgs() << " " << *I;
961 dbgs() << " FalseLanesZero:\n";
962 for (auto *I : FalseLanesZero)
963 dbgs() << " " << *I;
964 dbgs() << " FalseLanesUnknown:\n";
965 for (auto *I : FalseLanesUnknown)
966 dbgs() << " " << *I;
969 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
970 SmallPtrSetImpl<MachineInstr *> &Predicated) {
971 SmallPtrSet<MachineInstr *, 2> Uses;
972 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
973 for (auto *Use : Uses) {
974 if (Use != MI && !Predicated.count(Use))
975 return false;
977 return true;
980 // Visit the unknowns in reverse so that we can start at the values being
981 // stored and then we can work towards the leaves, hopefully adding more
982 // instructions to Predicated. Successfully terminating the loop means that
983 // all the unknown values have to found to be masked by predicated user(s).
984 // For any unpredicated values, we store them in NonPredicated so that we
985 // can later check whether these form a reduction.
986 SmallPtrSet<MachineInstr*, 2> NonPredicated;
987 for (auto *MI : reverse(FalseLanesUnknown)) {
988 for (auto &MO : MI->operands()) {
989 if (!isRegInClass(MO, QPRs) || !MO.isDef())
990 continue;
991 if (!HasPredicatedUsers(MI, MO, Predicated)) {
992 LLVM_DEBUG(dbgs() << " Found an unknown def of : "
993 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
994 NonPredicated.insert(MI);
995 break;
998 // Any unknown false lanes have been masked away by the user(s).
999 if (!NonPredicated.contains(MI))
1000 Predicated.insert(MI);
1003 SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
1004 SmallVector<MachineBasicBlock *, 2> ExitBlocks;
1005 ML.getExitBlocks(ExitBlocks);
1006 assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
1007 assert(ExitBlocks.size() == 1 && "Expected a single exit block");
1008 MachineBasicBlock *ExitBB = ExitBlocks.front();
1009 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
1010 // TODO: Instead of blocking predication, we could move the vctp to the exit
1011 // block and calculate it's operand there in or the preheader.
1012 if (RegMask.PhysReg == ARM::VPR) {
1013 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block.");
1014 return false;
1016 // Check Q-regs that are live in the exit blocks. We don't collect scalars
1017 // because they won't be affected by lane predication.
1018 if (QPRs->contains(RegMask.PhysReg))
1019 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1020 LiveOutMIs.insert(MI);
1023 // We've already validated that any VPT predication within the loop will be
1024 // equivalent when we perform the predication transformation; so we know that
1025 // any VPT predicated instruction is predicated upon VCTP. Any live-out
1026 // instruction needs to be predicated, so check this here. The instructions
1027 // in NonPredicated have been found to be a reduction that we can ensure its
1028 // legality.
1029 for (auto *MI : LiveOutMIs) {
1030 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1031 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI);
1032 return false;
1036 return true;
1039 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1040 if (Revert)
1041 return;
1043 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1044 // can only jump back.
1045 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1046 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1047 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1048 ? End->getOperand(1).getMBB()
1049 : End->getOperand(2).getMBB();
1050 // TODO Maybe there's cases where the target doesn't have to be the header,
1051 // but for now be safe and revert.
1052 if (TgtBB != ML.getHeader()) {
1053 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1054 return false;
1057 // The WLS and LE instructions have 12-bits for the label offset. WLS
1058 // requires a positive offset, while LE uses negative.
1059 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1060 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1061 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1062 return false;
1065 if (isWhileLoopStart(*Start)) {
1066 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start);
1067 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) ||
1068 !BBUtils->isBBInRange(Start, TargetBB, 4094)) {
1069 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1070 return false;
1073 return true;
1076 StartInsertPt = MachineBasicBlock::iterator(Start);
1077 StartInsertBB = Start->getParent();
1078 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1079 << *StartInsertPt);
1081 Revert = !ValidateRanges(Start, End, BBUtils, ML);
1082 CannotTailPredicate = !ValidateTailPredicate();
1085 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1086 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1087 if (VCTPs.empty()) {
1088 VCTPs.push_back(MI);
1089 return true;
1092 // If we find another VCTP, check whether it uses the same value as the main VCTP.
1093 // If it does, store it in the VCTPs set, else refuse it.
1094 MachineInstr *Prev = VCTPs.back();
1095 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1096 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1097 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1098 "definition from the main VCTP");
1099 return false;
1101 VCTPs.push_back(MI);
1102 return true;
1105 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) {
1107 auto GetFrameIndex = [](MachineMemOperand *Operand) {
1108 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue();
1109 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) {
1110 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) {
1111 return FS->getFrameIndex();
1114 return -1;
1117 auto IsStackOp = [GetFrameIndex](MachineInstr *I) {
1118 switch (I->getOpcode()) {
1119 case ARM::MVE_VSTRWU32:
1120 case ARM::MVE_VLDRWU32: {
1121 return I->getOperand(1).getReg() == ARM::SP &&
1122 I->memoperands().size() == 1 &&
1123 GetFrameIndex(I->memoperands().front()) >= 0;
1125 default:
1126 return false;
1130 // An unpredicated vector register spill is allowed if all of the uses of the
1131 // stack slot are within the loop
1132 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI))
1133 return false;
1135 // Search all blocks after the loop for accesses to the same stack slot.
1136 // ReachingDefAnalysis doesn't work for sp as it relies on registers being
1137 // live-out (which sp never is) to know what blocks to look in
1138 if (MI->memoperands().size() == 0)
1139 return false;
1140 int FI = GetFrameIndex(MI->memoperands().front());
1142 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo();
1143 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI))
1144 return false;
1146 SmallVector<MachineBasicBlock *> Frontier;
1147 ML->getExitBlocks(Frontier);
1148 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()};
1149 unsigned Idx = 0;
1150 while (Idx < Frontier.size()) {
1151 MachineBasicBlock *BB = Frontier[Idx];
1152 bool LookAtSuccessors = true;
1153 for (auto &I : *BB) {
1154 if (!IsStackOp(&I) || I.memoperands().size() == 0)
1155 continue;
1156 if (GetFrameIndex(I.memoperands().front()) != FI)
1157 continue;
1158 // If this block has a store to the stack slot before any loads then we
1159 // can ignore the block
1160 if (I.getOpcode() == ARM::MVE_VSTRWU32) {
1161 LookAtSuccessors = false;
1162 break;
1164 // If the store and the load are using the same stack slot then the
1165 // store isn't valid for tail predication
1166 if (I.getOpcode() == ARM::MVE_VLDRWU32)
1167 return false;
1170 if (LookAtSuccessors) {
1171 for (auto Succ : BB->successors()) {
1172 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ))
1173 Frontier.push_back(Succ);
1176 Visited.insert(BB);
1177 Idx++;
1180 return true;
1183 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) {
1184 if (CannotTailPredicate)
1185 return false;
1187 if (!shouldInspect(*MI))
1188 return true;
1190 if (MI->getOpcode() == ARM::MVE_VPSEL ||
1191 MI->getOpcode() == ARM::MVE_VPNOT) {
1192 // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1193 // 1) It will use the VPR as a predicate operand, but doesn't have to be
1194 // instead a VPT block, which means we can assert while building up
1195 // the VPT block because we don't find another VPT or VPST to being a new
1196 // one.
1197 // 2) VPSEL still requires a VPR operand even after tail predicating,
1198 // which means we can't remove it unless there is another
1199 // instruction, such as vcmp, that can provide the VPR def.
1200 return false;
1203 // Record all VCTPs and check that they're equivalent to one another.
1204 if (isVCTP(MI) && !AddVCTP(MI))
1205 return false;
1207 // Inspect uses first so that any instructions that alter the VPR don't
1208 // alter the predicate upon themselves.
1209 const MCInstrDesc &MCID = MI->getDesc();
1210 bool IsUse = false;
1211 unsigned LastOpIdx = MI->getNumOperands() - 1;
1212 for (auto &Op : enumerate(reverse(MCID.operands()))) {
1213 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1214 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1215 continue;
1217 if (ARM::isVpred(Op.value().OperandType)) {
1218 VPTState::addInst(MI);
1219 IsUse = true;
1220 } else if (MI->getOpcode() != ARM::MVE_VPST) {
1221 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1222 return false;
1226 // If we find an instruction that has been marked as not valid for tail
1227 // predication, only allow the instruction if it's contained within a valid
1228 // VPT block.
1229 bool RequiresExplicitPredication =
1230 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1231 if (isDomainMVE(MI) && RequiresExplicitPredication) {
1232 LLVM_DEBUG(if (!IsUse)
1233 dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1234 return IsUse;
1237 // If the instruction is already explicitly predicated, then the conversion
1238 // will be fine, but ensure that all store operations are predicated.
1239 if (MI->mayStore() && !ValidateMVEStore(MI, &ML))
1240 return IsUse;
1242 // If this instruction defines the VPR, update the predicate for the
1243 // proceeding instructions.
1244 if (isVectorPredicate(MI)) {
1245 // Clear the existing predicate when we're not in VPT Active state,
1246 // otherwise we add to it.
1247 if (!isVectorPredicated(MI))
1248 VPTState::resetPredicate(MI);
1249 else
1250 VPTState::addPredicate(MI);
1253 // Finally once the predicate has been modified, we can start a new VPT
1254 // block if necessary.
1255 if (isVPTOpcode(MI->getOpcode()))
1256 VPTState::CreateVPTBlock(MI);
1258 return true;
1261 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1262 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1263 if (!ST.hasLOB())
1264 return false;
1266 MF = &mf;
1267 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1269 MLI = &getAnalysis<MachineLoopInfo>();
1270 RDA = &getAnalysis<ReachingDefAnalysis>();
1271 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1272 MRI = &MF->getRegInfo();
1273 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1274 TRI = ST.getRegisterInfo();
1275 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1276 BBUtils->computeAllBlockSizes();
1277 BBUtils->adjustBBOffsetsAfter(&MF->front());
1279 bool Changed = false;
1280 for (auto ML : *MLI) {
1281 if (ML->isOutermost())
1282 Changed |= ProcessLoop(ML);
1284 Changed |= RevertNonLoops();
1285 return Changed;
1288 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1290 bool Changed = false;
1292 // Process inner loops first.
1293 for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1294 Changed |= ProcessLoop(*I);
1296 LLVM_DEBUG({
1297 dbgs() << "ARM Loops: Processing loop containing:\n";
1298 if (auto *Preheader = ML->getLoopPreheader())
1299 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1300 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true))
1301 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1302 for (auto *MBB : ML->getBlocks())
1303 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n";
1306 // Search the given block for a loop start instruction. If one isn't found,
1307 // and there's only one predecessor block, search that one too.
1308 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1309 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1310 for (auto &MI : *MBB) {
1311 if (isLoopStart(MI))
1312 return &MI;
1314 if (MBB->pred_size() == 1)
1315 return SearchForStart(*MBB->pred_begin());
1316 return nullptr;
1319 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1320 // Search the preheader for the start intrinsic.
1321 // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1322 // with potentially multiple set.loop.iterations, so we need to enable this.
1323 if (LoLoop.Preheader)
1324 LoLoop.Start = SearchForStart(LoLoop.Preheader);
1325 else
1326 return Changed;
1328 // Find the low-overhead loop components and decide whether or not to fall
1329 // back to a normal loop. Also look for a vctp instructions and decide
1330 // whether we can convert that predicate using tail predication.
1331 for (auto *MBB : reverse(ML->getBlocks())) {
1332 for (auto &MI : *MBB) {
1333 if (MI.isDebugValue())
1334 continue;
1335 else if (MI.getOpcode() == ARM::t2LoopDec)
1336 LoLoop.Dec = &MI;
1337 else if (MI.getOpcode() == ARM::t2LoopEnd)
1338 LoLoop.End = &MI;
1339 else if (MI.getOpcode() == ARM::t2LoopEndDec)
1340 LoLoop.End = LoLoop.Dec = &MI;
1341 else if (isLoopStart(MI))
1342 LoLoop.Start = &MI;
1343 else if (MI.getDesc().isCall()) {
1344 // TODO: Though the call will require LE to execute again, does this
1345 // mean we should revert? Always executing LE hopefully should be
1346 // faster than performing a sub,cmp,br or even subs,br.
1347 LoLoop.Revert = true;
1348 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1349 } else {
1350 // Record VPR defs and build up their corresponding vpt blocks.
1351 // Check we know how to tail predicate any mve instructions.
1352 LoLoop.AnalyseMVEInst(&MI);
1357 LLVM_DEBUG(LoLoop.dump());
1358 if (!LoLoop.FoundAllComponents()) {
1359 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1360 return Changed;
1363 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
1364 "Expected t2WhileLoopStart to be removed before regalloc!");
1366 // Check that the only instruction using LoopDec is LoopEnd. This can only
1367 // happen when the Dec and End are separate, not a single t2LoopEndDec.
1368 // TODO: Check for copy chains that really have no effect.
1369 if (LoLoop.Dec != LoLoop.End) {
1370 SmallPtrSet<MachineInstr *, 2> Uses;
1371 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1372 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1373 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1374 LoLoop.Revert = true;
1377 LoLoop.Validate(BBUtils.get());
1378 Expand(LoLoop);
1379 return true;
1382 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1383 // beq that branches to the exit branch.
1384 // TODO: We could also try to generate a cbz if the value in LR is also in
1385 // another low register.
1386 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1387 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1388 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI);
1389 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1390 ARM::tBcc : ARM::t2Bcc;
1392 RevertWhileLoopStartLR(MI, TII, BrOpc);
1395 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1396 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1397 RevertDoLoopStart(MI, TII);
1400 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1401 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1402 MachineBasicBlock *MBB = MI->getParent();
1403 SmallPtrSet<MachineInstr*, 1> Ignore;
1404 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1405 if (I->getOpcode() == ARM::t2LoopEnd) {
1406 Ignore.insert(&*I);
1407 break;
1411 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1412 bool SetFlags =
1413 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1415 llvm::RevertLoopDec(MI, TII, SetFlags);
1416 return SetFlags;
1419 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1420 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1421 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1423 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1424 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1425 ARM::tBcc : ARM::t2Bcc;
1427 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1430 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1431 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1432 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1433 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1434 MachineBasicBlock *MBB = MI->getParent();
1436 MachineInstrBuilder MIB =
1437 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1438 MIB.addDef(ARM::LR);
1439 MIB.add(MI->getOperand(1));
1440 MIB.addImm(1);
1441 MIB.addImm(ARMCC::AL);
1442 MIB.addReg(ARM::NoRegister);
1443 MIB.addReg(ARM::CPSR);
1444 MIB->getOperand(5).setIsDef(true);
1446 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1447 unsigned BrOpc =
1448 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1450 // Create bne
1451 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1452 MIB.add(MI->getOperand(2)); // branch target
1453 MIB.addImm(ARMCC::NE); // condition code
1454 MIB.addReg(ARM::CPSR);
1456 MI->eraseFromParent();
1459 // Perform dead code elimation on the loop iteration count setup expression.
1460 // If we are tail-predicating, the number of elements to be processed is the
1461 // operand of the VCTP instruction in the vector body, see getCount(), which is
1462 // register $r3 in this example:
1464 // $lr = big-itercount-expression
1465 // ..
1466 // $lr = t2DoLoopStart renamable $lr
1467 // vector.body:
1468 // ..
1469 // $vpr = MVE_VCTP32 renamable $r3
1470 // renamable $lr = t2LoopDec killed renamable $lr, 1
1471 // t2LoopEnd renamable $lr, %vector.body
1472 // tB %end
1474 // What we would like achieve here is to replace the do-loop start pseudo
1475 // instruction t2DoLoopStart with:
1477 // $lr = MVE_DLSTP_32 killed renamable $r3
1479 // Thus, $r3 which defines the number of elements, is written to $lr,
1480 // and then we want to delete the whole chain that used to define $lr,
1481 // see the comment below how this chain could look like.
1483 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1484 if (!LoLoop.IsTailPredicationLegal())
1485 return;
1487 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1489 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1);
1490 if (!Def) {
1491 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1492 return;
1495 // Collect and remove the users of iteration count.
1496 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec,
1497 LoLoop.End };
1498 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1499 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1502 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1503 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1504 // When using tail-predication, try to delete the dead code that was used to
1505 // calculate the number of loop iterations.
1506 IterationCountDCE(LoLoop);
1508 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1509 MachineInstr *Start = LoLoop.Start;
1510 MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1511 unsigned Opc = LoLoop.getStartOpcode();
1512 MachineOperand &Count = LoLoop.getLoopStartOperand();
1514 // A DLS lr, lr we needn't emit
1515 MachineInstr* NewStart;
1516 if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) {
1517 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1518 NewStart = nullptr;
1519 } else {
1520 MachineInstrBuilder MIB =
1521 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1523 MIB.addDef(ARM::LR);
1524 MIB.add(Count);
1525 if (isWhileLoopStart(*Start))
1526 MIB.addMBB(getWhileLoopStartTargetBB(*Start));
1528 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1529 NewStart = &*MIB;
1532 LoLoop.ToRemove.insert(Start);
1533 return NewStart;
1536 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1537 auto RemovePredicate = [](MachineInstr *MI) {
1538 if (MI->isDebugInstr())
1539 return;
1540 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1541 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
1542 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1543 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1544 "Expected Then predicate!");
1545 MI->getOperand(PIdx).setImm(ARMVCC::None);
1546 MI->getOperand(PIdx + 1).setReg(0);
1549 for (auto &Block : LoLoop.getVPTBlocks()) {
1550 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1552 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1553 assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1554 // Replace the VCMP with a VPT
1555 MachineInstrBuilder MIB =
1556 BuildMI(*At->getParent(), At, At->getDebugLoc(),
1557 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1558 MIB.addImm(ARMVCC::Then);
1559 // Register one
1560 MIB.add(TheVCMP->getOperand(1));
1561 // Register two
1562 MIB.add(TheVCMP->getOperand(2));
1563 // The comparison code, e.g. ge, eq, lt
1564 MIB.add(TheVCMP->getOperand(3));
1565 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1566 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1567 LoLoop.ToRemove.insert(TheVCMP);
1568 TheVCMP = nullptr;
1571 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1572 MachineInstr *VPST = Insts.front();
1573 if (VPTState::hasUniformPredicate(Block)) {
1574 // A vpt block starting with VPST, is only predicated upon vctp and has no
1575 // internal vpr defs:
1576 // - Remove vpst.
1577 // - Unpredicate the remaining instructions.
1578 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1579 for (unsigned i = 1; i < Insts.size(); ++i)
1580 RemovePredicate(Insts[i]);
1581 } else {
1582 // The VPT block has a non-uniform predicate but it uses a vpst and its
1583 // entry is guarded only by a vctp, which means we:
1584 // - Need to remove the original vpst.
1585 // - Then need to unpredicate any following instructions, until
1586 // we come across the divergent vpr def.
1587 // - Insert a new vpst to predicate the instruction(s) that following
1588 // the divergent vpr def.
1589 MachineInstr *Divergent = VPTState::getDivergent(Block);
1590 MachineBasicBlock *MBB = Divergent->getParent();
1591 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1592 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1593 ++DivergentNext;
1595 bool DivergentNextIsPredicated =
1596 DivergentNext != MBB->end() &&
1597 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1599 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1600 I != E; ++I)
1601 RemovePredicate(&*I);
1603 // Check if the instruction defining vpr is a vcmp so it can be combined
1604 // with the VPST This should be the divergent instruction
1605 MachineInstr *VCMP =
1606 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1608 if (DivergentNextIsPredicated) {
1609 // Insert a VPST at the divergent only if the next instruction
1610 // would actually use it. A VCMP following a VPST can be
1611 // merged into a VPT so do that instead if the VCMP exists.
1612 if (!VCMP) {
1613 // Create a VPST (with a null mask for now, we'll recompute it
1614 // later)
1615 MachineInstrBuilder MIB =
1616 BuildMI(*Divergent->getParent(), Divergent,
1617 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1618 MIB.addImm(0);
1619 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1620 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1621 } else {
1622 // No RDA checks are necessary here since the VPST would have been
1623 // directly after the VCMP
1624 ReplaceVCMPWithVPT(VCMP, VCMP);
1628 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1629 LoLoop.ToRemove.insert(VPST);
1630 } else if (Block.containsVCTP()) {
1631 // The vctp will be removed, so either the entire block will be dead or
1632 // the block mask of the vp(s)t will need to be recomputed.
1633 MachineInstr *VPST = Insts.front();
1634 if (Block.size() == 2) {
1635 assert(VPST->getOpcode() == ARM::MVE_VPST &&
1636 "Found a VPST in an otherwise empty vpt block");
1637 LoLoop.ToRemove.insert(VPST);
1638 } else
1639 LoLoop.BlockMasksToRecompute.insert(VPST);
1640 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1641 // If this block starts with a VPST then attempt to merge it with the
1642 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1643 // block that no longer exists
1644 MachineInstr *VPST = Insts.front();
1645 auto Next = ++MachineBasicBlock::iterator(VPST);
1646 assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
1647 "The instruction after a VPST must be predicated");
1648 (void)Next;
1649 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1650 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1651 !LoLoop.ToRemove.contains(VprDef)) {
1652 MachineInstr *VCMP = VprDef;
1653 // The VCMP and VPST can only be merged if the VCMP's operands will have
1654 // the same values at the VPST.
1655 // If any of the instructions between the VCMP and VPST are predicated
1656 // then a different code path is expected to have merged the VCMP and
1657 // VPST already.
1658 if (!std::any_of(++MachineBasicBlock::iterator(VCMP),
1659 MachineBasicBlock::iterator(VPST), hasVPRUse) &&
1660 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1661 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1662 ReplaceVCMPWithVPT(VCMP, VPST);
1663 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1664 LoLoop.ToRemove.insert(VPST);
1670 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1673 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1675 // Combine the LoopDec and LoopEnd instructions into LE(TP).
1676 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1677 MachineInstr *End = LoLoop.End;
1678 MachineBasicBlock *MBB = End->getParent();
1679 unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1680 ARM::MVE_LETP : ARM::t2LEUpdate;
1681 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1682 TII->get(Opc));
1683 MIB.addDef(ARM::LR);
1684 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1685 MIB.add(End->getOperand(Off + 0));
1686 MIB.add(End->getOperand(Off + 1));
1687 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1688 LoLoop.ToRemove.insert(LoLoop.Dec);
1689 LoLoop.ToRemove.insert(End);
1690 return &*MIB;
1693 // TODO: We should be able to automatically remove these branches before we
1694 // get here - probably by teaching analyzeBranch about the pseudo
1695 // instructions.
1696 // If there is an unconditional branch, after I, that just branches to the
1697 // next block, remove it.
1698 auto RemoveDeadBranch = [](MachineInstr *I) {
1699 MachineBasicBlock *BB = I->getParent();
1700 MachineInstr *Terminator = &BB->instr_back();
1701 if (Terminator->isUnconditionalBranch() && I != Terminator) {
1702 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1703 if (BB->isLayoutSuccessor(Succ)) {
1704 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1705 Terminator->eraseFromParent();
1710 if (LoLoop.Revert) {
1711 if (isWhileLoopStart(*LoLoop.Start))
1712 RevertWhile(LoLoop.Start);
1713 else
1714 RevertDo(LoLoop.Start);
1715 if (LoLoop.Dec == LoLoop.End)
1716 RevertLoopEndDec(LoLoop.End);
1717 else
1718 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1719 } else {
1720 LoLoop.Start = ExpandLoopStart(LoLoop);
1721 if (LoLoop.Start)
1722 RemoveDeadBranch(LoLoop.Start);
1723 LoLoop.End = ExpandLoopEnd(LoLoop);
1724 RemoveDeadBranch(LoLoop.End);
1725 if (LoLoop.IsTailPredicationLegal())
1726 ConvertVPTBlocks(LoLoop);
1727 for (auto *I : LoLoop.ToRemove) {
1728 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1729 I->eraseFromParent();
1731 for (auto *I : LoLoop.BlockMasksToRecompute) {
1732 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1733 recomputeVPTBlockMask(*I);
1734 LLVM_DEBUG(dbgs() << " ... done: " << *I);
1738 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1739 DFS.ProcessLoop();
1740 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1741 for (auto *MBB : PostOrder) {
1742 recomputeLiveIns(*MBB);
1743 // FIXME: For some reason, the live-in print order is non-deterministic for
1744 // our tests and I can't out why... So just sort them.
1745 MBB->sortUniqueLiveIns();
1748 for (auto *MBB : reverse(PostOrder))
1749 recomputeLivenessFlags(*MBB);
1751 // We've moved, removed and inserted new instructions, so update RDA.
1752 RDA->reset();
1755 bool ARMLowOverheadLoops::RevertNonLoops() {
1756 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1757 bool Changed = false;
1759 for (auto &MBB : *MF) {
1760 SmallVector<MachineInstr*, 4> Starts;
1761 SmallVector<MachineInstr*, 4> Decs;
1762 SmallVector<MachineInstr*, 4> Ends;
1763 SmallVector<MachineInstr *, 4> EndDecs;
1765 for (auto &I : MBB) {
1766 if (isLoopStart(I))
1767 Starts.push_back(&I);
1768 else if (I.getOpcode() == ARM::t2LoopDec)
1769 Decs.push_back(&I);
1770 else if (I.getOpcode() == ARM::t2LoopEnd)
1771 Ends.push_back(&I);
1772 else if (I.getOpcode() == ARM::t2LoopEndDec)
1773 EndDecs.push_back(&I);
1776 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty())
1777 continue;
1779 Changed = true;
1781 for (auto *Start : Starts) {
1782 if (isWhileLoopStart(*Start))
1783 RevertWhile(Start);
1784 else
1785 RevertDo(Start);
1787 for (auto *Dec : Decs)
1788 RevertLoopDec(Dec);
1790 for (auto *End : Ends)
1791 RevertLoopEnd(End);
1792 for (auto *End : EndDecs)
1793 RevertLoopEndDec(End);
1795 return Changed;
1798 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1799 return new ARMLowOverheadLoops();