[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / MCTargetDesc / ARMAddressingModes.h
blob8459b4ff2a142bb0a2538d5ec831b9457e7c4239
1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM addressing mode implementation stuff.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
14 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/bit.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
23 namespace llvm {
25 /// ARM_AM - ARM Addressing Mode Stuff
26 namespace ARM_AM {
27 enum ShiftOpc {
28 no_shift = 0,
29 asr,
30 lsl,
31 lsr,
32 ror,
33 rrx,
34 uxtw
37 enum AddrOpc {
38 sub = 0,
39 add
42 inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
44 inline const char *getShiftOpcStr(ShiftOpc Op) {
45 switch (Op) {
46 default: llvm_unreachable("Unknown shift opc!");
47 case ARM_AM::asr: return "asr";
48 case ARM_AM::lsl: return "lsl";
49 case ARM_AM::lsr: return "lsr";
50 case ARM_AM::ror: return "ror";
51 case ARM_AM::rrx: return "rrx";
52 case ARM_AM::uxtw: return "uxtw";
56 inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57 switch (Op) {
58 default: llvm_unreachable("Unknown shift opc!");
59 case ARM_AM::asr: return 2;
60 case ARM_AM::lsl: return 0;
61 case ARM_AM::lsr: return 1;
62 case ARM_AM::ror: return 3;
66 enum AMSubMode {
67 bad_am_submode = 0,
68 ia,
69 ib,
70 da,
74 inline const char *getAMSubModeStr(AMSubMode Mode) {
75 switch (Mode) {
76 default: llvm_unreachable("Unknown addressing sub-mode!");
77 case ARM_AM::ia: return "ia";
78 case ARM_AM::ib: return "ib";
79 case ARM_AM::da: return "da";
80 case ARM_AM::db: return "db";
84 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
85 ///
86 inline unsigned rotr32(unsigned Val, unsigned Amt) {
87 assert(Amt < 32 && "Invalid rotate amount");
88 return (Val >> Amt) | (Val << ((32-Amt)&31));
91 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
92 ///
93 inline unsigned rotl32(unsigned Val, unsigned Amt) {
94 assert(Amt < 32 && "Invalid rotate amount");
95 return (Val << Amt) | (Val >> ((32-Amt)&31));
98 //===--------------------------------------------------------------------===//
99 // Addressing Mode #1: shift_operand with registers
100 //===--------------------------------------------------------------------===//
102 // This 'addressing mode' is used for arithmetic instructions. It can
103 // represent things like:
104 // reg
105 // reg [asr|lsl|lsr|ror|rrx] reg
106 // reg [asr|lsl|lsr|ror|rrx] imm
108 // This is stored three operands [rega, regb, opc]. The first is the base
109 // reg, the second is the shift amount (or reg0 if not present or imm). The
110 // third operand encodes the shift opcode and the imm if a reg isn't present.
112 inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
113 return ShOp | (Imm << 3);
115 inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
116 inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
118 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
119 /// the 8-bit imm value.
120 inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
121 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
122 /// the rotate amount.
123 inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
125 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
126 /// computing the rotate amount to use. If this immediate value cannot be
127 /// handled with a single shifter-op, determine a good rotate amount that will
128 /// take a maximal chunk of bits out of the immediate.
129 inline unsigned getSOImmValRotate(unsigned Imm) {
130 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
131 // of zero.
132 if ((Imm & ~255U) == 0) return 0;
134 // Use CTZ to compute the rotate amount.
135 unsigned TZ = countTrailingZeros(Imm);
137 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
138 // not 9.
139 unsigned RotAmt = TZ & ~1;
141 // If we can handle this spread, return it.
142 if ((rotr32(Imm, RotAmt) & ~255U) == 0)
143 return (32-RotAmt)&31; // HW rotates right, not left.
145 // For values like 0xF000000F, we should ignore the low 6 bits, then
146 // retry the hunt.
147 if (Imm & 63U) {
148 unsigned TZ2 = countTrailingZeros(Imm & ~63U);
149 unsigned RotAmt2 = TZ2 & ~1;
150 if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
151 return (32-RotAmt2)&31; // HW rotates right, not left.
154 // Otherwise, we have no way to cover this span of bits with a single
155 // shifter_op immediate. Return a chunk of bits that will be useful to
156 // handle.
157 return (32-RotAmt)&31; // HW rotates right, not left.
160 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
161 /// into an shifter_operand immediate operand, return the 12-bit encoding for
162 /// it. If not, return -1.
163 inline int getSOImmVal(unsigned Arg) {
164 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
165 // of zero.
166 if ((Arg & ~255U) == 0) return Arg;
168 unsigned RotAmt = getSOImmValRotate(Arg);
170 // If this cannot be handled with a single shifter_op, bail out.
171 if (rotr32(~255U, RotAmt) & Arg)
172 return -1;
174 // Encode this correctly.
175 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
178 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
179 /// or'ing together two SOImmVal's.
180 inline bool isSOImmTwoPartVal(unsigned V) {
181 // If this can be handled with a single shifter_op, bail out.
182 V = rotr32(~255U, getSOImmValRotate(V)) & V;
183 if (V == 0)
184 return false;
186 // If this can be handled with two shifter_op's, accept.
187 V = rotr32(~255U, getSOImmValRotate(V)) & V;
188 return V == 0;
191 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
192 /// return the first chunk of it.
193 inline unsigned getSOImmTwoPartFirst(unsigned V) {
194 return rotr32(255U, getSOImmValRotate(V)) & V;
197 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
198 /// return the second chunk of it.
199 inline unsigned getSOImmTwoPartSecond(unsigned V) {
200 // Mask out the first hunk.
201 V = rotr32(~255U, getSOImmValRotate(V)) & V;
203 // Take what's left.
204 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
205 return V;
208 /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained
209 /// by two SOImmVal, that -V = First + Second.
210 /// "R+V" can be optimized to (sub (sub R, First), Second).
211 /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second).
212 inline bool isSOImmTwoPartValNeg(unsigned V) {
213 unsigned First;
214 if (!isSOImmTwoPartVal(-V))
215 return false;
216 // Return false if ~(-First) is not a SoImmval.
217 First = getSOImmTwoPartFirst(-V);
218 First = ~(-First);
219 return !(rotr32(~255U, getSOImmValRotate(First)) & First);
222 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
223 /// by a left shift. Returns the shift amount to use.
224 inline unsigned getThumbImmValShift(unsigned Imm) {
225 // 8-bit (or less) immediates are trivially immediate operand with a shift
226 // of zero.
227 if ((Imm & ~255U) == 0) return 0;
229 // Use CTZ to compute the shift amount.
230 return countTrailingZeros(Imm);
233 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
234 /// by left shifting a 8-bit immediate.
235 inline bool isThumbImmShiftedVal(unsigned V) {
236 // If this can be handled with
237 V = (~255U << getThumbImmValShift(V)) & V;
238 return V == 0;
241 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
242 /// by a left shift. Returns the shift amount to use.
243 inline unsigned getThumbImm16ValShift(unsigned Imm) {
244 // 16-bit (or less) immediates are trivially immediate operand with a shift
245 // of zero.
246 if ((Imm & ~65535U) == 0) return 0;
248 // Use CTZ to compute the shift amount.
249 return countTrailingZeros(Imm);
252 /// isThumbImm16ShiftedVal - Return true if the specified value can be
253 /// obtained by left shifting a 16-bit immediate.
254 inline bool isThumbImm16ShiftedVal(unsigned V) {
255 // If this can be handled with
256 V = (~65535U << getThumbImm16ValShift(V)) & V;
257 return V == 0;
260 /// getThumbImmNonShiftedVal - If V is a value that satisfies
261 /// isThumbImmShiftedVal, return the non-shiftd value.
262 inline unsigned getThumbImmNonShiftedVal(unsigned V) {
263 return V >> getThumbImmValShift(V);
267 /// getT2SOImmValSplat - Return the 12-bit encoded representation
268 /// if the specified value can be obtained by splatting the low 8 bits
269 /// into every other byte or every byte of a 32-bit value. i.e.,
270 /// 00000000 00000000 00000000 abcdefgh control = 0
271 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
272 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
273 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
274 /// Return -1 if none of the above apply.
275 /// See ARM Reference Manual A6.3.2.
276 inline int getT2SOImmValSplatVal(unsigned V) {
277 unsigned u, Vs, Imm;
278 // control = 0
279 if ((V & 0xffffff00) == 0)
280 return V;
282 // If the value is zeroes in the first byte, just shift those off
283 Vs = ((V & 0xff) == 0) ? V >> 8 : V;
284 // Any passing value only has 8 bits of payload, splatted across the word
285 Imm = Vs & 0xff;
286 // Likewise, any passing values have the payload splatted into the 3rd byte
287 u = Imm | (Imm << 16);
289 // control = 1 or 2
290 if (Vs == u)
291 return (((Vs == V) ? 1 : 2) << 8) | Imm;
293 // control = 3
294 if (Vs == (u | (u << 8)))
295 return (3 << 8) | Imm;
297 return -1;
300 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
301 /// specified value is a rotated 8-bit value. Return -1 if no rotation
302 /// encoding is possible.
303 /// See ARM Reference Manual A6.3.2.
304 inline int getT2SOImmValRotateVal(unsigned V) {
305 unsigned RotAmt = countLeadingZeros(V);
306 if (RotAmt >= 24)
307 return -1;
309 // If 'Arg' can be handled with a single shifter_op return the value.
310 if ((rotr32(0xff000000U, RotAmt) & V) == V)
311 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
313 return -1;
316 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
317 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
318 /// encoding for it. If not, return -1.
319 /// See ARM Reference Manual A6.3.2.
320 inline int getT2SOImmVal(unsigned Arg) {
321 // If 'Arg' is an 8-bit splat, then get the encoded value.
322 int Splat = getT2SOImmValSplatVal(Arg);
323 if (Splat != -1)
324 return Splat;
326 // If 'Arg' can be handled with a single shifter_op return the value.
327 int Rot = getT2SOImmValRotateVal(Arg);
328 if (Rot != -1)
329 return Rot;
331 return -1;
334 inline unsigned getT2SOImmValRotate(unsigned V) {
335 if ((V & ~255U) == 0) return 0;
336 // Use CTZ to compute the rotate amount.
337 unsigned RotAmt = countTrailingZeros(V);
338 return (32 - RotAmt) & 31;
341 inline bool isT2SOImmTwoPartVal(unsigned Imm) {
342 unsigned V = Imm;
343 // Passing values can be any combination of splat values and shifter
344 // values. If this can be handled with a single shifter or splat, bail
345 // out. Those should be handled directly, not with a two-part val.
346 if (getT2SOImmValSplatVal(V) != -1)
347 return false;
348 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
349 if (V == 0)
350 return false;
352 // If this can be handled as an immediate, accept.
353 if (getT2SOImmVal(V) != -1) return true;
355 // Likewise, try masking out a splat value first.
356 V = Imm;
357 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
358 V &= ~0xff00ff00U;
359 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
360 V &= ~0x00ff00ffU;
361 // If what's left can be handled as an immediate, accept.
362 if (getT2SOImmVal(V) != -1) return true;
364 // Otherwise, do not accept.
365 return false;
368 inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
369 assert (isT2SOImmTwoPartVal(Imm) &&
370 "Immedate cannot be encoded as two part immediate!");
371 // Try a shifter operand as one part
372 unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
373 // If the rest is encodable as an immediate, then return it.
374 if (getT2SOImmVal(V) != -1) return V;
376 // Try masking out a splat value first.
377 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
378 return Imm & 0xff00ff00U;
380 // The other splat is all that's left as an option.
381 assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
382 return Imm & 0x00ff00ffU;
385 inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
386 // Mask out the first hunk
387 Imm ^= getT2SOImmTwoPartFirst(Imm);
388 // Return what's left
389 assert (getT2SOImmVal(Imm) != -1 &&
390 "Unable to encode second part of T2 two part SO immediate");
391 return Imm;
395 //===--------------------------------------------------------------------===//
396 // Addressing Mode #2
397 //===--------------------------------------------------------------------===//
399 // This is used for most simple load/store instructions.
401 // addrmode2 := reg +/- reg shop imm
402 // addrmode2 := reg +/- imm12
404 // The first operand is always a Reg. The second operand is a reg if in
405 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
406 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
407 // fourth operand 16-17 encodes the index mode.
409 // If this addressing mode is a frame index (before prolog/epilog insertion
410 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
411 // with no shift amount for the frame offset.
413 inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
414 unsigned IdxMode = 0) {
415 assert(Imm12 < (1 << 12) && "Imm too large!");
416 bool isSub = Opc == sub;
417 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
419 inline unsigned getAM2Offset(unsigned AM2Opc) {
420 return AM2Opc & ((1 << 12)-1);
422 inline AddrOpc getAM2Op(unsigned AM2Opc) {
423 return ((AM2Opc >> 12) & 1) ? sub : add;
425 inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
426 return (ShiftOpc)((AM2Opc >> 13) & 7);
428 inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
430 //===--------------------------------------------------------------------===//
431 // Addressing Mode #3
432 //===--------------------------------------------------------------------===//
434 // This is used for sign-extending loads, and load/store-pair instructions.
436 // addrmode3 := reg +/- reg
437 // addrmode3 := reg +/- imm8
439 // The first operand is always a Reg. The second operand is a reg if in
440 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
441 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
442 // index mode.
444 /// getAM3Opc - This function encodes the addrmode3 opc field.
445 inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
446 unsigned IdxMode = 0) {
447 bool isSub = Opc == sub;
448 return ((int)isSub << 8) | Offset | (IdxMode << 9);
450 inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
451 inline AddrOpc getAM3Op(unsigned AM3Opc) {
452 return ((AM3Opc >> 8) & 1) ? sub : add;
454 inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
456 //===--------------------------------------------------------------------===//
457 // Addressing Mode #4
458 //===--------------------------------------------------------------------===//
460 // This is used for load / store multiple instructions.
462 // addrmode4 := reg, <mode>
464 // The four modes are:
465 // IA - Increment after
466 // IB - Increment before
467 // DA - Decrement after
468 // DB - Decrement before
469 // For VFP instructions, only the IA and DB modes are valid.
471 inline AMSubMode getAM4SubMode(unsigned Mode) {
472 return (AMSubMode)(Mode & 0x7);
475 inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
477 //===--------------------------------------------------------------------===//
478 // Addressing Mode #5
479 //===--------------------------------------------------------------------===//
481 // This is used for coprocessor instructions, such as FP load/stores.
483 // addrmode5 := reg +/- imm8*4
485 // The first operand is always a Reg. The second operand encodes the
486 // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
488 /// getAM5Opc - This function encodes the addrmode5 opc field.
489 inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
490 bool isSub = Opc == sub;
491 return ((int)isSub << 8) | Offset;
493 inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
494 inline AddrOpc getAM5Op(unsigned AM5Opc) {
495 return ((AM5Opc >> 8) & 1) ? sub : add;
498 //===--------------------------------------------------------------------===//
499 // Addressing Mode #5 FP16
500 //===--------------------------------------------------------------------===//
502 // This is used for coprocessor instructions, such as 16-bit FP load/stores.
504 // addrmode5fp16 := reg +/- imm8*2
506 // The first operand is always a Reg. The second operand encodes the
507 // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
509 /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
510 inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
511 bool isSub = Opc == sub;
512 return ((int)isSub << 8) | Offset;
514 inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
515 return AM5Opc & 0xFF;
517 inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
518 return ((AM5Opc >> 8) & 1) ? sub : add;
521 //===--------------------------------------------------------------------===//
522 // Addressing Mode #6
523 //===--------------------------------------------------------------------===//
525 // This is used for NEON load / store instructions.
527 // addrmode6 := reg with optional alignment
529 // This is stored in two operands [regaddr, align]. The first is the
530 // address register. The second operand is the value of the alignment
531 // specifier in bytes or zero if no explicit alignment.
532 // Valid alignments depend on the specific instruction.
534 //===--------------------------------------------------------------------===//
535 // NEON/MVE Modified Immediates
536 //===--------------------------------------------------------------------===//
538 // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
539 // vector operand, where a small immediate encoded in the instruction
540 // specifies a full NEON vector value. These modified immediates are
541 // represented here as encoded integers. The low 8 bits hold the immediate
542 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
543 // the "Cmode" field of the instruction. The interfaces below treat the
544 // Op and Cmode values as a single 5-bit value.
546 inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
547 return (OpCmode << 8) | Val;
549 inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
550 return (ModImm >> 8) & 0x1f;
552 inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }
554 /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
555 /// element value and the element size in bits. (If the element size is
556 /// smaller than the vector, it is splatted into all the elements.)
557 inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
558 unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
559 unsigned Imm8 = getVMOVModImmVal(ModImm);
560 uint64_t Val = 0;
562 if (OpCmode == 0xe) {
563 // 8-bit vector elements
564 Val = Imm8;
565 EltBits = 8;
566 } else if ((OpCmode & 0xc) == 0x8) {
567 // 16-bit vector elements
568 unsigned ByteNum = (OpCmode & 0x6) >> 1;
569 Val = Imm8 << (8 * ByteNum);
570 EltBits = 16;
571 } else if ((OpCmode & 0x8) == 0) {
572 // 32-bit vector elements, zero with one byte set
573 unsigned ByteNum = (OpCmode & 0x6) >> 1;
574 Val = Imm8 << (8 * ByteNum);
575 EltBits = 32;
576 } else if ((OpCmode & 0xe) == 0xc) {
577 // 32-bit vector elements, one byte with low bits set
578 unsigned ByteNum = 1 + (OpCmode & 0x1);
579 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
580 EltBits = 32;
581 } else if (OpCmode == 0x1e) {
582 // 64-bit vector elements
583 for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
584 if ((ModImm >> ByteNum) & 1)
585 Val |= (uint64_t)0xff << (8 * ByteNum);
587 EltBits = 64;
588 } else {
589 llvm_unreachable("Unsupported VMOV immediate");
591 return Val;
594 // Generic validation for single-byte immediate (0X00, 00X0, etc).
595 inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
596 assert(Size >= 1 && Size <= 4 && "Invalid size");
597 unsigned count = 0;
598 for (unsigned i = 0; i < Size; ++i) {
599 if (Value & 0xff) count++;
600 Value >>= 8;
602 return count == 1;
605 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
606 inline bool isNEONi16splat(unsigned Value) {
607 if (Value > 0xffff)
608 return false;
609 // i16 value with set bits only in one byte X0 or 0X.
610 return Value == 0 || isNEONBytesplat(Value, 2);
613 // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
614 inline unsigned encodeNEONi16splat(unsigned Value) {
615 assert(isNEONi16splat(Value) && "Invalid NEON splat value");
616 if (Value >= 0x100)
617 Value = (Value >> 8) | 0xa00;
618 else
619 Value |= 0x800;
620 return Value;
623 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
624 inline bool isNEONi32splat(unsigned Value) {
625 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
626 return Value == 0 || isNEONBytesplat(Value, 4);
629 /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
630 inline unsigned encodeNEONi32splat(unsigned Value) {
631 assert(isNEONi32splat(Value) && "Invalid NEON splat value");
632 if (Value >= 0x100 && Value <= 0xff00)
633 Value = (Value >> 8) | 0x200;
634 else if (Value > 0xffff && Value <= 0xff0000)
635 Value = (Value >> 16) | 0x400;
636 else if (Value > 0xffffff)
637 Value = (Value >> 24) | 0x600;
638 return Value;
641 //===--------------------------------------------------------------------===//
642 // Floating-point Immediates
644 inline float getFPImmFloat(unsigned Imm) {
645 // We expect an 8-bit binary encoding of a floating-point number here.
647 uint8_t Sign = (Imm >> 7) & 0x1;
648 uint8_t Exp = (Imm >> 4) & 0x7;
649 uint8_t Mantissa = Imm & 0xf;
651 // 8-bit FP IEEE Float Encoding
652 // abcd efgh aBbbbbbc defgh000 00000000 00000000
654 // where B = NOT(b);
655 uint32_t I = 0;
656 I |= Sign << 31;
657 I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
658 I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
659 I |= (Exp & 0x3) << 23;
660 I |= Mantissa << 19;
661 return bit_cast<float>(I);
664 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
665 /// floating-point value. If the value cannot be represented as an 8-bit
666 /// floating-point value, then return -1.
667 inline int getFP16Imm(const APInt &Imm) {
668 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
669 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
670 int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
672 // We can handle 4 bits of mantissa.
673 // mantissa = (16+UInt(e:f:g:h))/16.
674 if (Mantissa & 0x3f)
675 return -1;
676 Mantissa >>= 6;
678 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
679 if (Exp < -3 || Exp > 4)
680 return -1;
681 Exp = ((Exp+3) & 0x7) ^ 4;
683 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
686 inline int getFP16Imm(const APFloat &FPImm) {
687 return getFP16Imm(FPImm.bitcastToAPInt());
690 /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding
691 /// for it. Otherwise return -1 like getFP16Imm.
692 inline int getFP32FP16Imm(const APInt &Imm) {
693 if (Imm.getActiveBits() > 16)
694 return -1;
695 return ARM_AM::getFP16Imm(Imm.trunc(16));
698 inline int getFP32FP16Imm(const APFloat &FPImm) {
699 return getFP32FP16Imm(FPImm.bitcastToAPInt());
702 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
703 /// floating-point value. If the value cannot be represented as an 8-bit
704 /// floating-point value, then return -1.
705 inline int getFP32Imm(const APInt &Imm) {
706 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
707 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
708 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
710 // We can handle 4 bits of mantissa.
711 // mantissa = (16+UInt(e:f:g:h))/16.
712 if (Mantissa & 0x7ffff)
713 return -1;
714 Mantissa >>= 19;
715 if ((Mantissa & 0xf) != Mantissa)
716 return -1;
718 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
719 if (Exp < -3 || Exp > 4)
720 return -1;
721 Exp = ((Exp+3) & 0x7) ^ 4;
723 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
726 inline int getFP32Imm(const APFloat &FPImm) {
727 return getFP32Imm(FPImm.bitcastToAPInt());
730 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
731 /// floating-point value. If the value cannot be represented as an 8-bit
732 /// floating-point value, then return -1.
733 inline int getFP64Imm(const APInt &Imm) {
734 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
735 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
736 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
738 // We can handle 4 bits of mantissa.
739 // mantissa = (16+UInt(e:f:g:h))/16.
740 if (Mantissa & 0xffffffffffffULL)
741 return -1;
742 Mantissa >>= 48;
743 if ((Mantissa & 0xf) != Mantissa)
744 return -1;
746 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
747 if (Exp < -3 || Exp > 4)
748 return -1;
749 Exp = ((Exp+3) & 0x7) ^ 4;
751 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
754 inline int getFP64Imm(const APFloat &FPImm) {
755 return getFP64Imm(FPImm.bitcastToAPInt());
758 } // end namespace ARM_AM
759 } // end namespace llvm
761 #endif