[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / MCTargetDesc / ARMAsmBackend.cpp
blob9f7327f792c76a91d935aa8b5b4e22f822a23904
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
44 ARMELFObjectWriter(uint8_t OSABI)
45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46 /*HasRelocationAddend*/ false) {}
48 } // end anonymous namespace
50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
51 if (!STI.getTargetTriple().isOSBinFormatELF())
52 return None;
54 unsigned Type = llvm::StringSwitch<unsigned>(Name)
55 #define ELF_RELOC(X, Y) .Case(#X, Y)
56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
57 #undef ELF_RELOC
58 .Case("BFD_RELOC_NONE", ELF::R_ARM_NONE)
59 .Case("BFD_RELOC_8", ELF::R_ARM_ABS8)
60 .Case("BFD_RELOC_16", ELF::R_ARM_ABS16)
61 .Case("BFD_RELOC_32", ELF::R_ARM_ABS32)
62 .Default(-1u);
63 if (Type == -1u)
64 return None;
65 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
68 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
69 unsigned IsPCRelConstant =
70 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant;
71 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
72 // This table *must* be in the order that the fixup_* kinds are defined in
73 // ARMFixupKinds.h.
75 // Name Offset (bits) Size (bits) Flags
76 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
77 {"fixup_t2_ldst_pcrel_12", 0, 32,
78 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
79 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
80 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
81 {"fixup_t2_pcrel_10", 0, 32,
82 MCFixupKindInfo::FKF_IsPCRel |
83 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
84 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85 {"fixup_t2_pcrel_9", 0, 32,
86 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
87 {"fixup_arm_ldst_abs_12", 0, 32, 0},
88 {"fixup_thumb_adr_pcrel_10", 0, 8,
89 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
90 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
91 {"fixup_t2_adr_pcrel_12", 0, 32,
92 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
93 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
94 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
95 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
96 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
97 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
98 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
99 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
100 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
101 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
102 {"fixup_arm_thumb_blx", 0, 32,
103 MCFixupKindInfo::FKF_IsPCRel |
104 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
105 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
106 {"fixup_arm_thumb_cp", 0, 8,
107 MCFixupKindInfo::FKF_IsPCRel |
108 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
109 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
110 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
111 // - 19.
112 {"fixup_arm_movt_hi16", 0, 20, 0},
113 {"fixup_arm_movw_lo16", 0, 20, 0},
114 {"fixup_t2_movt_hi16", 0, 20, 0},
115 {"fixup_t2_movw_lo16", 0, 20, 0},
116 {"fixup_arm_mod_imm", 0, 12, 0},
117 {"fixup_t2_so_imm", 0, 26, 0},
118 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
119 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
120 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
121 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
122 {"fixup_bfcsel_else_target", 0, 32, 0},
123 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
125 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
126 // This table *must* be in the order that the fixup_* kinds are defined in
127 // ARMFixupKinds.h.
129 // Name Offset (bits) Size (bits) Flags
130 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
131 {"fixup_t2_ldst_pcrel_12", 0, 32,
132 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
133 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
134 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
135 {"fixup_t2_pcrel_10", 0, 32,
136 MCFixupKindInfo::FKF_IsPCRel |
137 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
138 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
139 {"fixup_t2_pcrel_9", 0, 32,
140 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
141 {"fixup_arm_ldst_abs_12", 0, 32, 0},
142 {"fixup_thumb_adr_pcrel_10", 8, 8,
143 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
144 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
145 {"fixup_t2_adr_pcrel_12", 0, 32,
146 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
147 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
148 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
149 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
150 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
151 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
152 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
153 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
154 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
155 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
156 {"fixup_arm_thumb_blx", 0, 32,
157 MCFixupKindInfo::FKF_IsPCRel |
158 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
159 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
160 {"fixup_arm_thumb_cp", 8, 8,
161 MCFixupKindInfo::FKF_IsPCRel |
162 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
163 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
164 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
165 // - 19.
166 {"fixup_arm_movt_hi16", 12, 20, 0},
167 {"fixup_arm_movw_lo16", 12, 20, 0},
168 {"fixup_t2_movt_hi16", 12, 20, 0},
169 {"fixup_t2_movw_lo16", 12, 20, 0},
170 {"fixup_arm_mod_imm", 20, 12, 0},
171 {"fixup_t2_so_imm", 26, 6, 0},
172 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
173 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
174 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
175 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
176 {"fixup_bfcsel_else_target", 0, 32, 0},
177 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
178 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
180 // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require
181 // any extra processing.
182 if (Kind >= FirstLiteralRelocationKind)
183 return MCAsmBackend::getFixupKindInfo(FK_NONE);
185 if (Kind < FirstTargetFixupKind)
186 return MCAsmBackend::getFixupKindInfo(Kind);
188 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
189 "Invalid kind!");
190 return (Endian == support::little ? InfosLE
191 : InfosBE)[Kind - FirstTargetFixupKind];
194 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
195 switch (Flag) {
196 default:
197 break;
198 case MCAF_Code16:
199 setIsThumb(true);
200 break;
201 case MCAF_Code32:
202 setIsThumb(false);
203 break;
207 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
208 const MCSubtargetInfo &STI) const {
209 bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
210 bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
212 switch (Op) {
213 default:
214 return Op;
215 case ARM::tBcc:
216 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
217 case ARM::tLDRpci:
218 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
219 case ARM::tADR:
220 return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
221 case ARM::tB:
222 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
223 case ARM::tCBZ:
224 return ARM::tHINT;
225 case ARM::tCBNZ:
226 return ARM::tHINT;
230 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
231 const MCSubtargetInfo &STI) const {
232 if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
233 return true;
234 return false;
237 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
238 int64_t Offset = int64_t(Value) - 4;
239 if (Offset < Min || Offset > Max)
240 return "out of range pc-relative fixup value";
241 return nullptr;
244 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
245 uint64_t Value) const {
246 switch (Fixup.getTargetKind()) {
247 case ARM::fixup_arm_thumb_br: {
248 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
249 // low bit being an implied zero. There's an implied +4 offset for the
250 // branch, so we adjust the other way here to determine what's
251 // encodable.
253 // Relax if the value is too big for a (signed) i8.
254 int64_t Offset = int64_t(Value) - 4;
255 if (Offset > 2046 || Offset < -2048)
256 return "out of range pc-relative fixup value";
257 break;
259 case ARM::fixup_arm_thumb_bcc: {
260 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
261 // low bit being an implied zero. There's an implied +4 offset for the
262 // branch, so we adjust the other way here to determine what's
263 // encodable.
265 // Relax if the value is too big for a (signed) i8.
266 int64_t Offset = int64_t(Value) - 4;
267 if (Offset > 254 || Offset < -256)
268 return "out of range pc-relative fixup value";
269 break;
271 case ARM::fixup_thumb_adr_pcrel_10:
272 case ARM::fixup_arm_thumb_cp: {
273 // If the immediate is negative, greater than 1020, or not a multiple
274 // of four, the wide version of the instruction must be used.
275 int64_t Offset = int64_t(Value) - 4;
276 if (Offset & 3)
277 return "misaligned pc-relative fixup value";
278 else if (Offset > 1020 || Offset < 0)
279 return "out of range pc-relative fixup value";
280 break;
282 case ARM::fixup_arm_thumb_cb: {
283 // If we have a Thumb CBZ or CBNZ instruction and its target is the next
284 // instruction it is actually out of range for the instruction.
285 // It will be changed to a NOP.
286 int64_t Offset = (Value & ~1);
287 if (Offset == 2)
288 return "will be converted to nop";
289 break;
291 case ARM::fixup_bf_branch:
292 return checkPCRelOffset(Value, 0, 30);
293 case ARM::fixup_bf_target:
294 return checkPCRelOffset(Value, -0x10000, +0xfffe);
295 case ARM::fixup_bfl_target:
296 return checkPCRelOffset(Value, -0x40000, +0x3fffe);
297 case ARM::fixup_bfc_target:
298 return checkPCRelOffset(Value, -0x1000, +0xffe);
299 case ARM::fixup_wls:
300 return checkPCRelOffset(Value, 0, +0xffe);
301 case ARM::fixup_le:
302 // The offset field in the LE and LETP instructions is an 11-bit
303 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
304 // interpreted as a negative offset from the value read from pc,
305 // i.e. from instruction_address+4.
307 // So an LE instruction can in principle address the instruction
308 // immediately after itself, or (not very usefully) the address
309 // half way through the 4-byte LE.
310 return checkPCRelOffset(Value, -0xffe, 0);
311 case ARM::fixup_bfcsel_else_target: {
312 if (Value != 2 && Value != 4)
313 return "out of range label-relative fixup value";
314 break;
317 default:
318 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
320 return nullptr;
323 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
324 const MCRelaxableFragment *DF,
325 const MCAsmLayout &Layout) const {
326 return reasonForFixupRelaxation(Fixup, Value);
329 void ARMAsmBackend::relaxInstruction(MCInst &Inst,
330 const MCSubtargetInfo &STI) const {
331 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
333 // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
334 if (RelaxedOp == Inst.getOpcode()) {
335 SmallString<256> Tmp;
336 raw_svector_ostream OS(Tmp);
337 Inst.dump_pretty(OS);
338 OS << "\n";
339 report_fatal_error("unexpected instruction to relax: " + OS.str());
342 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
343 // have to change the operands too.
344 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
345 RelaxedOp == ARM::tHINT) {
346 MCInst Res;
347 Res.setOpcode(RelaxedOp);
348 Res.addOperand(MCOperand::createImm(0));
349 Res.addOperand(MCOperand::createImm(14));
350 Res.addOperand(MCOperand::createReg(0));
351 Inst = std::move(Res);
352 return;
355 // The rest of instructions we're relaxing have the same operands.
356 // We just need to update to the proper opcode.
357 Inst.setOpcode(RelaxedOp);
360 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
361 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
362 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
363 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
364 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
365 if (isThumb()) {
366 const uint16_t nopEncoding =
367 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
368 uint64_t NumNops = Count / 2;
369 for (uint64_t i = 0; i != NumNops; ++i)
370 support::endian::write(OS, nopEncoding, Endian);
371 if (Count & 1)
372 OS << '\0';
373 return true;
375 // ARM mode
376 const uint32_t nopEncoding =
377 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
378 uint64_t NumNops = Count / 4;
379 for (uint64_t i = 0; i != NumNops; ++i)
380 support::endian::write(OS, nopEncoding, Endian);
381 // FIXME: should this function return false when unable to write exactly
382 // 'Count' bytes with NOP encodings?
383 switch (Count % 4) {
384 default:
385 break; // No leftover bytes to write
386 case 1:
387 OS << '\0';
388 break;
389 case 2:
390 OS.write("\0\0", 2);
391 break;
392 case 3:
393 OS.write("\0\0\xa0", 3);
394 break;
397 return true;
400 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
401 if (IsLittleEndian) {
402 // Note that the halfwords are stored high first and low second in thumb;
403 // so we need to swap the fixup value here to map properly.
404 uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
405 Swapped |= (Value & 0x0000FFFF) << 16;
406 return Swapped;
407 } else
408 return Value;
411 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
412 bool IsLittleEndian) {
413 uint32_t Value;
415 if (IsLittleEndian) {
416 Value = (SecondHalf & 0xFFFF) << 16;
417 Value |= (FirstHalf & 0xFFFF);
418 } else {
419 Value = (SecondHalf & 0xFFFF);
420 Value |= (FirstHalf & 0xFFFF) << 16;
423 return Value;
426 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
427 const MCFixup &Fixup,
428 const MCValue &Target, uint64_t Value,
429 bool IsResolved, MCContext &Ctx,
430 const MCSubtargetInfo* STI) const {
431 unsigned Kind = Fixup.getKind();
433 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
434 // and .word relocations they put the Thumb bit into the addend if possible.
435 // Other relocation types don't want this bit though (branches couldn't encode
436 // it if it *was* present, and no other relocations exist) and it can
437 // interfere with checking valid expressions.
438 if (const MCSymbolRefExpr *A = Target.getSymA()) {
439 if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
440 A->getSymbol().isExternal() &&
441 (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
442 Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
443 Kind == ARM::fixup_t2_movt_hi16))
444 Value |= 1;
447 switch (Kind) {
448 default:
449 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
450 return 0;
451 case FK_Data_1:
452 case FK_Data_2:
453 case FK_Data_4:
454 return Value;
455 case FK_SecRel_2:
456 return Value;
457 case FK_SecRel_4:
458 return Value;
459 case ARM::fixup_arm_movt_hi16:
460 assert(STI != nullptr);
461 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
462 Value >>= 16;
463 LLVM_FALLTHROUGH;
464 case ARM::fixup_arm_movw_lo16: {
465 unsigned Hi4 = (Value & 0xF000) >> 12;
466 unsigned Lo12 = Value & 0x0FFF;
467 // inst{19-16} = Hi4;
468 // inst{11-0} = Lo12;
469 Value = (Hi4 << 16) | (Lo12);
470 return Value;
472 case ARM::fixup_t2_movt_hi16:
473 assert(STI != nullptr);
474 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
475 Value >>= 16;
476 LLVM_FALLTHROUGH;
477 case ARM::fixup_t2_movw_lo16: {
478 unsigned Hi4 = (Value & 0xF000) >> 12;
479 unsigned i = (Value & 0x800) >> 11;
480 unsigned Mid3 = (Value & 0x700) >> 8;
481 unsigned Lo8 = Value & 0x0FF;
482 // inst{19-16} = Hi4;
483 // inst{26} = i;
484 // inst{14-12} = Mid3;
485 // inst{7-0} = Lo8;
486 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
487 return swapHalfWords(Value, Endian == support::little);
489 case ARM::fixup_arm_ldst_pcrel_12:
490 // ARM PC-relative values are offset by 8.
491 Value -= 4;
492 LLVM_FALLTHROUGH;
493 case ARM::fixup_t2_ldst_pcrel_12:
494 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
495 Value -= 4;
496 LLVM_FALLTHROUGH;
497 case ARM::fixup_arm_ldst_abs_12: {
498 bool isAdd = true;
499 if ((int64_t)Value < 0) {
500 Value = -Value;
501 isAdd = false;
503 if (Value >= 4096) {
504 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
505 return 0;
507 Value |= isAdd << 23;
509 // Same addressing mode as fixup_arm_pcrel_10,
510 // but with 16-bit halfwords swapped.
511 if (Kind == ARM::fixup_t2_ldst_pcrel_12)
512 return swapHalfWords(Value, Endian == support::little);
514 return Value;
516 case ARM::fixup_arm_adr_pcrel_12: {
517 // ARM PC-relative values are offset by 8.
518 Value -= 8;
519 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
520 if ((int64_t)Value < 0) {
521 Value = -Value;
522 opc = 2; // 0b0010
524 if (ARM_AM::getSOImmVal(Value) == -1) {
525 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
526 return 0;
528 // Encode the immediate and shift the opcode into place.
529 return ARM_AM::getSOImmVal(Value) | (opc << 21);
532 case ARM::fixup_t2_adr_pcrel_12: {
533 Value -= 4;
534 unsigned opc = 0;
535 if ((int64_t)Value < 0) {
536 Value = -Value;
537 opc = 5;
540 uint32_t out = (opc << 21);
541 out |= (Value & 0x800) << 15;
542 out |= (Value & 0x700) << 4;
543 out |= (Value & 0x0FF);
545 return swapHalfWords(out, Endian == support::little);
548 case ARM::fixup_arm_condbranch:
549 case ARM::fixup_arm_uncondbranch:
550 case ARM::fixup_arm_uncondbl:
551 case ARM::fixup_arm_condbl:
552 case ARM::fixup_arm_blx:
553 // These values don't encode the low two bits since they're always zero.
554 // Offset by 8 just as above.
555 if (const MCSymbolRefExpr *SRE =
556 dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
557 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
558 return 0;
559 return 0xffffff & ((Value - 8) >> 2);
560 case ARM::fixup_t2_uncondbranch: {
561 Value = Value - 4;
562 if (!isInt<25>(Value)) {
563 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
564 return 0;
567 Value >>= 1; // Low bit is not encoded.
569 uint32_t out = 0;
570 bool I = Value & 0x800000;
571 bool J1 = Value & 0x400000;
572 bool J2 = Value & 0x200000;
573 J1 ^= I;
574 J2 ^= I;
576 out |= I << 26; // S bit
577 out |= !J1 << 13; // J1 bit
578 out |= !J2 << 11; // J2 bit
579 out |= (Value & 0x1FF800) << 5; // imm6 field
580 out |= (Value & 0x0007FF); // imm11 field
582 return swapHalfWords(out, Endian == support::little);
584 case ARM::fixup_t2_condbranch: {
585 Value = Value - 4;
586 if (!isInt<21>(Value)) {
587 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
588 return 0;
591 Value >>= 1; // Low bit is not encoded.
593 uint64_t out = 0;
594 out |= (Value & 0x80000) << 7; // S bit
595 out |= (Value & 0x40000) >> 7; // J2 bit
596 out |= (Value & 0x20000) >> 4; // J1 bit
597 out |= (Value & 0x1F800) << 5; // imm6 field
598 out |= (Value & 0x007FF); // imm11 field
600 return swapHalfWords(out, Endian == support::little);
602 case ARM::fixup_arm_thumb_bl: {
603 if (!isInt<25>(Value - 4) ||
604 (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
605 !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
606 !STI->getFeatureBits()[ARM::HasV6MOps] &&
607 !isInt<23>(Value - 4))) {
608 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
609 return 0;
612 // The value doesn't encode the low bit (always zero) and is offset by
613 // four. The 32-bit immediate value is encoded as
614 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
615 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
616 // The value is encoded into disjoint bit positions in the destination
617 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
618 // J = either J1 or J2 bit
620 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
622 // Note that the halfwords are stored high first, low second; so we need
623 // to transpose the fixup value here to map properly.
624 uint32_t offset = (Value - 4) >> 1;
625 uint32_t signBit = (offset & 0x800000) >> 23;
626 uint32_t I1Bit = (offset & 0x400000) >> 22;
627 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
628 uint32_t I2Bit = (offset & 0x200000) >> 21;
629 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
630 uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
631 uint32_t imm11Bits = (offset & 0x000007FF);
633 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
634 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
635 (uint16_t)imm11Bits);
636 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
638 case ARM::fixup_arm_thumb_blx: {
639 // The value doesn't encode the low two bits (always zero) and is offset by
640 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
641 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
642 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
643 // The value is encoded into disjoint bit positions in the destination
644 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
645 // J = either J1 or J2 bit, 0 = zero.
647 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
649 // Note that the halfwords are stored high first, low second; so we need
650 // to transpose the fixup value here to map properly.
651 if (Value % 4 != 0) {
652 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
653 return 0;
656 uint32_t offset = (Value - 4) >> 2;
657 if (const MCSymbolRefExpr *SRE =
658 dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
659 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
660 offset = 0;
661 uint32_t signBit = (offset & 0x400000) >> 22;
662 uint32_t I1Bit = (offset & 0x200000) >> 21;
663 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
664 uint32_t I2Bit = (offset & 0x100000) >> 20;
665 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
666 uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
667 uint32_t imm10LBits = (offset & 0x3FF);
669 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
670 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
671 ((uint16_t)imm10LBits) << 1);
672 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
674 case ARM::fixup_thumb_adr_pcrel_10:
675 case ARM::fixup_arm_thumb_cp:
676 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
677 // could have an error on our hands.
678 assert(STI != nullptr);
679 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
680 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
681 if (FixupDiagnostic) {
682 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
683 return 0;
686 // Offset by 4, and don't encode the low two bits.
687 return ((Value - 4) >> 2) & 0xff;
688 case ARM::fixup_arm_thumb_cb: {
689 // CB instructions can only branch to offsets in [4, 126] in multiples of 2
690 // so ensure that the raw value LSB is zero and it lies in [2, 130].
691 // An offset of 2 will be relaxed to a NOP.
692 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
693 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
694 return 0;
696 // Offset by 4 and don't encode the lower bit, which is always 0.
697 // FIXME: diagnose if no Thumb2
698 uint32_t Binary = (Value - 4) >> 1;
699 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
701 case ARM::fixup_arm_thumb_br:
702 // Offset by 4 and don't encode the lower bit, which is always 0.
703 assert(STI != nullptr);
704 if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
705 !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
706 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
707 if (FixupDiagnostic) {
708 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
709 return 0;
712 return ((Value - 4) >> 1) & 0x7ff;
713 case ARM::fixup_arm_thumb_bcc:
714 // Offset by 4 and don't encode the lower bit, which is always 0.
715 assert(STI != nullptr);
716 if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
717 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
718 if (FixupDiagnostic) {
719 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
720 return 0;
723 return ((Value - 4) >> 1) & 0xff;
724 case ARM::fixup_arm_pcrel_10_unscaled: {
725 Value = Value - 8; // ARM fixups offset by an additional word and don't
726 // need to adjust for the half-word ordering.
727 bool isAdd = true;
728 if ((int64_t)Value < 0) {
729 Value = -Value;
730 isAdd = false;
732 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
733 if (Value >= 256) {
734 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
735 return 0;
737 Value = (Value & 0xf) | ((Value & 0xf0) << 4);
738 return Value | (isAdd << 23);
740 case ARM::fixup_arm_pcrel_10:
741 Value = Value - 4; // ARM fixups offset by an additional word and don't
742 // need to adjust for the half-word ordering.
743 LLVM_FALLTHROUGH;
744 case ARM::fixup_t2_pcrel_10: {
745 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
746 Value = Value - 4;
747 bool isAdd = true;
748 if ((int64_t)Value < 0) {
749 Value = -Value;
750 isAdd = false;
752 // These values don't encode the low two bits since they're always zero.
753 Value >>= 2;
754 if (Value >= 256) {
755 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
756 return 0;
758 Value |= isAdd << 23;
760 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
761 // swapped.
762 if (Kind == ARM::fixup_t2_pcrel_10)
763 return swapHalfWords(Value, Endian == support::little);
765 return Value;
767 case ARM::fixup_arm_pcrel_9:
768 Value = Value - 4; // ARM fixups offset by an additional word and don't
769 // need to adjust for the half-word ordering.
770 LLVM_FALLTHROUGH;
771 case ARM::fixup_t2_pcrel_9: {
772 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
773 Value = Value - 4;
774 bool isAdd = true;
775 if ((int64_t)Value < 0) {
776 Value = -Value;
777 isAdd = false;
779 // These values don't encode the low bit since it's always zero.
780 if (Value & 1) {
781 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
782 return 0;
784 Value >>= 1;
785 if (Value >= 256) {
786 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
787 return 0;
789 Value |= isAdd << 23;
791 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
792 // swapped.
793 if (Kind == ARM::fixup_t2_pcrel_9)
794 return swapHalfWords(Value, Endian == support::little);
796 return Value;
798 case ARM::fixup_arm_mod_imm:
799 Value = ARM_AM::getSOImmVal(Value);
800 if (Value >> 12) {
801 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
802 return 0;
804 return Value;
805 case ARM::fixup_t2_so_imm: {
806 Value = ARM_AM::getT2SOImmVal(Value);
807 if ((int64_t)Value < 0) {
808 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
809 return 0;
811 // Value will contain a 12-bit value broken up into a 4-bit shift in bits
812 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
813 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
814 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
815 // half-word.
816 uint64_t EncValue = 0;
817 EncValue |= (Value & 0x800) << 15;
818 EncValue |= (Value & 0x700) << 4;
819 EncValue |= (Value & 0xff);
820 return swapHalfWords(EncValue, Endian == support::little);
822 case ARM::fixup_bf_branch: {
823 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
824 if (FixupDiagnostic) {
825 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
826 return 0;
828 uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
829 return swapHalfWords(out, Endian == support::little);
831 case ARM::fixup_bf_target:
832 case ARM::fixup_bfl_target:
833 case ARM::fixup_bfc_target: {
834 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
835 if (FixupDiagnostic) {
836 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
837 return 0;
839 uint32_t out = 0;
840 uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
841 Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
842 out |= (((Value - 4) >> 1) & 0x1) << 11;
843 out |= (((Value - 4) >> 1) & 0x7fe);
844 out |= (((Value - 4) >> 1) & HighBitMask) << 5;
845 return swapHalfWords(out, Endian == support::little);
847 case ARM::fixup_bfcsel_else_target: {
848 // If this is a fixup of a branch future's else target then it should be a
849 // constant MCExpr representing the distance between the branch targetted
850 // and the instruction after that same branch.
851 Value = Target.getConstant();
853 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
854 if (FixupDiagnostic) {
855 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
856 return 0;
858 uint32_t out = ((Value >> 2) & 1) << 17;
859 return swapHalfWords(out, Endian == support::little);
861 case ARM::fixup_wls:
862 case ARM::fixup_le: {
863 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
864 if (FixupDiagnostic) {
865 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
866 return 0;
868 uint64_t real_value = Value - 4;
869 uint32_t out = 0;
870 if (Kind == ARM::fixup_le)
871 real_value = -real_value;
872 out |= ((real_value >> 1) & 0x1) << 11;
873 out |= ((real_value >> 1) & 0x7fe);
874 return swapHalfWords(out, Endian == support::little);
879 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
880 const MCFixup &Fixup,
881 const MCValue &Target) {
882 const MCSymbolRefExpr *A = Target.getSymA();
883 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
884 const unsigned FixupKind = Fixup.getKind();
885 if (FixupKind >= FirstLiteralRelocationKind)
886 return true;
887 if (FixupKind == ARM::fixup_arm_thumb_bl) {
888 assert(Sym && "How did we resolve this?");
890 // If the symbol is external the linker will handle it.
891 // FIXME: Should we handle it as an optimization?
893 // If the symbol is out of range, produce a relocation and hope the
894 // linker can handle it. GNU AS produces an error in this case.
895 if (Sym->isExternal())
896 return true;
898 // Create relocations for unconditional branches to function symbols with
899 // different execution mode in ELF binaries.
900 if (Sym && Sym->isELF()) {
901 unsigned Type = cast<MCSymbolELF>(Sym)->getType();
902 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
903 if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
904 return true;
905 if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
906 FixupKind == ARM::fixup_arm_thumb_bl ||
907 FixupKind == ARM::fixup_t2_condbranch ||
908 FixupKind == ARM::fixup_t2_uncondbranch))
909 return true;
912 // We must always generate a relocation for BL/BLX instructions if we have
913 // a symbol to reference, as the linker relies on knowing the destination
914 // symbol's thumb-ness to get interworking right.
915 if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
916 FixupKind == ARM::fixup_arm_blx ||
917 FixupKind == ARM::fixup_arm_uncondbl ||
918 FixupKind == ARM::fixup_arm_condbl))
919 return true;
920 return false;
923 /// getFixupKindNumBytes - The number of bytes the fixup may change.
924 static unsigned getFixupKindNumBytes(unsigned Kind) {
925 switch (Kind) {
926 default:
927 llvm_unreachable("Unknown fixup kind!");
929 case FK_Data_1:
930 case ARM::fixup_arm_thumb_bcc:
931 case ARM::fixup_arm_thumb_cp:
932 case ARM::fixup_thumb_adr_pcrel_10:
933 return 1;
935 case FK_Data_2:
936 case ARM::fixup_arm_thumb_br:
937 case ARM::fixup_arm_thumb_cb:
938 case ARM::fixup_arm_mod_imm:
939 return 2;
941 case ARM::fixup_arm_pcrel_10_unscaled:
942 case ARM::fixup_arm_ldst_pcrel_12:
943 case ARM::fixup_arm_pcrel_10:
944 case ARM::fixup_arm_pcrel_9:
945 case ARM::fixup_arm_ldst_abs_12:
946 case ARM::fixup_arm_adr_pcrel_12:
947 case ARM::fixup_arm_uncondbl:
948 case ARM::fixup_arm_condbl:
949 case ARM::fixup_arm_blx:
950 case ARM::fixup_arm_condbranch:
951 case ARM::fixup_arm_uncondbranch:
952 return 3;
954 case FK_Data_4:
955 case ARM::fixup_t2_ldst_pcrel_12:
956 case ARM::fixup_t2_condbranch:
957 case ARM::fixup_t2_uncondbranch:
958 case ARM::fixup_t2_pcrel_10:
959 case ARM::fixup_t2_pcrel_9:
960 case ARM::fixup_t2_adr_pcrel_12:
961 case ARM::fixup_arm_thumb_bl:
962 case ARM::fixup_arm_thumb_blx:
963 case ARM::fixup_arm_movt_hi16:
964 case ARM::fixup_arm_movw_lo16:
965 case ARM::fixup_t2_movt_hi16:
966 case ARM::fixup_t2_movw_lo16:
967 case ARM::fixup_t2_so_imm:
968 case ARM::fixup_bf_branch:
969 case ARM::fixup_bf_target:
970 case ARM::fixup_bfl_target:
971 case ARM::fixup_bfc_target:
972 case ARM::fixup_bfcsel_else_target:
973 case ARM::fixup_wls:
974 case ARM::fixup_le:
975 return 4;
977 case FK_SecRel_2:
978 return 2;
979 case FK_SecRel_4:
980 return 4;
984 /// getFixupKindContainerSizeBytes - The number of bytes of the
985 /// container involved in big endian.
986 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
987 switch (Kind) {
988 default:
989 llvm_unreachable("Unknown fixup kind!");
991 case FK_Data_1:
992 return 1;
993 case FK_Data_2:
994 return 2;
995 case FK_Data_4:
996 return 4;
998 case ARM::fixup_arm_thumb_bcc:
999 case ARM::fixup_arm_thumb_cp:
1000 case ARM::fixup_thumb_adr_pcrel_10:
1001 case ARM::fixup_arm_thumb_br:
1002 case ARM::fixup_arm_thumb_cb:
1003 // Instruction size is 2 bytes.
1004 return 2;
1006 case ARM::fixup_arm_pcrel_10_unscaled:
1007 case ARM::fixup_arm_ldst_pcrel_12:
1008 case ARM::fixup_arm_pcrel_10:
1009 case ARM::fixup_arm_pcrel_9:
1010 case ARM::fixup_arm_adr_pcrel_12:
1011 case ARM::fixup_arm_uncondbl:
1012 case ARM::fixup_arm_condbl:
1013 case ARM::fixup_arm_blx:
1014 case ARM::fixup_arm_condbranch:
1015 case ARM::fixup_arm_uncondbranch:
1016 case ARM::fixup_t2_ldst_pcrel_12:
1017 case ARM::fixup_t2_condbranch:
1018 case ARM::fixup_t2_uncondbranch:
1019 case ARM::fixup_t2_pcrel_10:
1020 case ARM::fixup_t2_pcrel_9:
1021 case ARM::fixup_t2_adr_pcrel_12:
1022 case ARM::fixup_arm_thumb_bl:
1023 case ARM::fixup_arm_thumb_blx:
1024 case ARM::fixup_arm_movt_hi16:
1025 case ARM::fixup_arm_movw_lo16:
1026 case ARM::fixup_t2_movt_hi16:
1027 case ARM::fixup_t2_movw_lo16:
1028 case ARM::fixup_arm_mod_imm:
1029 case ARM::fixup_t2_so_imm:
1030 case ARM::fixup_bf_branch:
1031 case ARM::fixup_bf_target:
1032 case ARM::fixup_bfl_target:
1033 case ARM::fixup_bfc_target:
1034 case ARM::fixup_bfcsel_else_target:
1035 case ARM::fixup_wls:
1036 case ARM::fixup_le:
1037 // Instruction size is 4 bytes.
1038 return 4;
1042 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
1043 const MCValue &Target,
1044 MutableArrayRef<char> Data, uint64_t Value,
1045 bool IsResolved,
1046 const MCSubtargetInfo* STI) const {
1047 unsigned Kind = Fixup.getKind();
1048 if (Kind >= FirstLiteralRelocationKind)
1049 return;
1050 unsigned NumBytes = getFixupKindNumBytes(Kind);
1051 MCContext &Ctx = Asm.getContext();
1052 Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
1053 if (!Value)
1054 return; // Doesn't change encoding.
1056 unsigned Offset = Fixup.getOffset();
1057 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
1059 // Used to point to big endian bytes.
1060 unsigned FullSizeBytes;
1061 if (Endian == support::big) {
1062 FullSizeBytes = getFixupKindContainerSizeBytes(Kind);
1063 assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
1064 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
1067 // For each byte of the fragment that the fixup touches, mask in the bits from
1068 // the fixup value. The Value has been "split up" into the appropriate
1069 // bitfields above.
1070 for (unsigned i = 0; i != NumBytes; ++i) {
1071 unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
1072 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
1076 namespace CU {
1078 /// Compact unwind encoding values.
1079 enum CompactUnwindEncodings {
1080 UNWIND_ARM_MODE_MASK = 0x0F000000,
1081 UNWIND_ARM_MODE_FRAME = 0x01000000,
1082 UNWIND_ARM_MODE_FRAME_D = 0x02000000,
1083 UNWIND_ARM_MODE_DWARF = 0x04000000,
1085 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000,
1087 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001,
1088 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002,
1089 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004,
1091 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008,
1092 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010,
1093 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020,
1094 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040,
1095 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080,
1097 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00,
1099 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF
1102 } // end CU namespace
1104 /// Generate compact unwind encoding for the function based on the CFI
1105 /// instructions. If the CFI instructions describe a frame that cannot be
1106 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1107 /// tells the runtime to fallback and unwind using dwarf.
1108 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1109 ArrayRef<MCCFIInstruction> Instrs) const {
1110 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1111 // Only armv7k uses CFI based unwinding.
1112 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
1113 return 0;
1114 // No .cfi directives means no frame.
1115 if (Instrs.empty())
1116 return 0;
1117 // Start off assuming CFA is at SP+0.
1118 unsigned CFARegister = ARM::SP;
1119 int CFARegisterOffset = 0;
1120 // Mark savable registers as initially unsaved
1121 DenseMap<unsigned, int> RegOffsets;
1122 int FloatRegCount = 0;
1123 // Process each .cfi directive and build up compact unwind info.
1124 for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
1125 unsigned Reg;
1126 const MCCFIInstruction &Inst = Instrs[i];
1127 switch (Inst.getOperation()) {
1128 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1129 CFARegisterOffset = Inst.getOffset();
1130 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1131 break;
1132 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1133 CFARegisterOffset = Inst.getOffset();
1134 break;
1135 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1136 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1137 break;
1138 case MCCFIInstruction::OpOffset: // DW_CFA_offset
1139 Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1140 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1141 RegOffsets[Reg] = Inst.getOffset();
1142 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1143 RegOffsets[Reg] = Inst.getOffset();
1144 ++FloatRegCount;
1145 } else {
1146 DEBUG_WITH_TYPE("compact-unwind",
1147 llvm::dbgs() << ".cfi_offset on unknown register="
1148 << Inst.getRegister() << "\n");
1149 return CU::UNWIND_ARM_MODE_DWARF;
1151 break;
1152 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1153 // Ignore
1154 break;
1155 default:
1156 // Directive not convertable to compact unwind, bail out.
1157 DEBUG_WITH_TYPE("compact-unwind",
1158 llvm::dbgs()
1159 << "CFI directive not compatiable with comact "
1160 "unwind encoding, opcode=" << Inst.getOperation()
1161 << "\n");
1162 return CU::UNWIND_ARM_MODE_DWARF;
1163 break;
1167 // If no frame set up, return no unwind info.
1168 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1169 return 0;
1171 // Verify standard frame (lr/r7) was used.
1172 if (CFARegister != ARM::R7) {
1173 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1174 << CFARegister
1175 << " instead of r7\n");
1176 return CU::UNWIND_ARM_MODE_DWARF;
1178 int StackAdjust = CFARegisterOffset - 8;
1179 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1180 DEBUG_WITH_TYPE("compact-unwind",
1181 llvm::dbgs()
1182 << "LR not saved as standard frame, StackAdjust="
1183 << StackAdjust
1184 << ", CFARegisterOffset=" << CFARegisterOffset
1185 << ", lr save at offset=" << RegOffsets[14] << "\n");
1186 return CU::UNWIND_ARM_MODE_DWARF;
1188 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1189 DEBUG_WITH_TYPE("compact-unwind",
1190 llvm::dbgs() << "r7 not saved as standard frame\n");
1191 return CU::UNWIND_ARM_MODE_DWARF;
1193 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1195 // If var-args are used, there may be a stack adjust required.
1196 switch (StackAdjust) {
1197 case 0:
1198 break;
1199 case 4:
1200 CompactUnwindEncoding |= 0x00400000;
1201 break;
1202 case 8:
1203 CompactUnwindEncoding |= 0x00800000;
1204 break;
1205 case 12:
1206 CompactUnwindEncoding |= 0x00C00000;
1207 break;
1208 default:
1209 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1210 << ".cfi_def_cfa stack adjust ("
1211 << StackAdjust << ") out of range\n");
1212 return CU::UNWIND_ARM_MODE_DWARF;
1215 // If r6 is saved, it must be right below r7.
1216 static struct {
1217 unsigned Reg;
1218 unsigned Encoding;
1219 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1220 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1221 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1222 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1223 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1224 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1225 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1226 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1228 int CurOffset = -8 - StackAdjust;
1229 for (auto CSReg : GPRCSRegs) {
1230 auto Offset = RegOffsets.find(CSReg.Reg);
1231 if (Offset == RegOffsets.end())
1232 continue;
1234 int RegOffset = Offset->second;
1235 if (RegOffset != CurOffset - 4) {
1236 DEBUG_WITH_TYPE("compact-unwind",
1237 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1238 << RegOffset << " but only supported at "
1239 << CurOffset << "\n");
1240 return CU::UNWIND_ARM_MODE_DWARF;
1242 CompactUnwindEncoding |= CSReg.Encoding;
1243 CurOffset -= 4;
1246 // If no floats saved, we are done.
1247 if (FloatRegCount == 0)
1248 return CompactUnwindEncoding;
1250 // Switch mode to include D register saving.
1251 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1252 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1254 // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1255 // but needs coordination with the linker and libunwind.
1256 if (FloatRegCount > 4) {
1257 DEBUG_WITH_TYPE("compact-unwind",
1258 llvm::dbgs() << "unsupported number of D registers saved ("
1259 << FloatRegCount << ")\n");
1260 return CU::UNWIND_ARM_MODE_DWARF;
1263 // Floating point registers must either be saved sequentially, or we defer to
1264 // DWARF. No gaps allowed here so check that each saved d-register is
1265 // precisely where it should be.
1266 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1267 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1268 auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1269 if (Offset == RegOffsets.end()) {
1270 DEBUG_WITH_TYPE("compact-unwind",
1271 llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1272 << MRI.getName(FPRCSRegs[Idx])
1273 << " not saved\n");
1274 return CU::UNWIND_ARM_MODE_DWARF;
1275 } else if (Offset->second != CurOffset - 8) {
1276 DEBUG_WITH_TYPE("compact-unwind",
1277 llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1278 << MRI.getName(FPRCSRegs[Idx])
1279 << " saved at " << Offset->second
1280 << ", expected at " << CurOffset - 8
1281 << "\n");
1282 return CU::UNWIND_ARM_MODE_DWARF;
1284 CurOffset -= 8;
1287 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1290 static MCAsmBackend *createARMAsmBackend(const Target &T,
1291 const MCSubtargetInfo &STI,
1292 const MCRegisterInfo &MRI,
1293 const MCTargetOptions &Options,
1294 support::endianness Endian) {
1295 const Triple &TheTriple = STI.getTargetTriple();
1296 switch (TheTriple.getObjectFormat()) {
1297 default:
1298 llvm_unreachable("unsupported object format");
1299 case Triple::MachO:
1300 return new ARMAsmBackendDarwin(T, STI, MRI);
1301 case Triple::COFF:
1302 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1303 return new ARMAsmBackendWinCOFF(T, STI);
1304 case Triple::ELF:
1305 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1306 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1307 return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1311 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1312 const MCSubtargetInfo &STI,
1313 const MCRegisterInfo &MRI,
1314 const MCTargetOptions &Options) {
1315 return createARMAsmBackend(T, STI, MRI, Options, support::little);
1318 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1319 const MCSubtargetInfo &STI,
1320 const MCRegisterInfo &MRI,
1321 const MCTargetOptions &Options) {
1322 return createARMAsmBackend(T, STI, MRI, Options, support::big);