1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
42 class ARMELFObjectWriter
: public MCELFObjectTargetWriter
{
44 ARMELFObjectWriter(uint8_t OSABI
)
45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI
, ELF::EM_ARM
,
46 /*HasRelocationAddend*/ false) {}
48 } // end anonymous namespace
50 Optional
<MCFixupKind
> ARMAsmBackend::getFixupKind(StringRef Name
) const {
51 if (!STI
.getTargetTriple().isOSBinFormatELF())
54 unsigned Type
= llvm::StringSwitch
<unsigned>(Name
)
55 #define ELF_RELOC(X, Y) .Case(#X, Y)
56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
58 .Case("BFD_RELOC_NONE", ELF::R_ARM_NONE
)
59 .Case("BFD_RELOC_8", ELF::R_ARM_ABS8
)
60 .Case("BFD_RELOC_16", ELF::R_ARM_ABS16
)
61 .Case("BFD_RELOC_32", ELF::R_ARM_ABS32
)
65 return static_cast<MCFixupKind
>(FirstLiteralRelocationKind
+ Type
);
68 const MCFixupKindInfo
&ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind
) const {
69 unsigned IsPCRelConstant
=
70 MCFixupKindInfo::FKF_IsPCRel
| MCFixupKindInfo::FKF_Constant
;
71 const static MCFixupKindInfo InfosLE
[ARM::NumTargetFixupKinds
] = {
72 // This table *must* be in the order that the fixup_* kinds are defined in
75 // Name Offset (bits) Size (bits) Flags
76 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant
},
77 {"fixup_t2_ldst_pcrel_12", 0, 32,
78 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
79 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant
},
80 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant
},
81 {"fixup_t2_pcrel_10", 0, 32,
82 MCFixupKindInfo::FKF_IsPCRel
|
83 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
84 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
85 {"fixup_t2_pcrel_9", 0, 32,
86 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
87 {"fixup_arm_ldst_abs_12", 0, 32, 0},
88 {"fixup_thumb_adr_pcrel_10", 0, 8,
89 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
90 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant
},
91 {"fixup_t2_adr_pcrel_12", 0, 32,
92 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
93 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
94 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
95 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
96 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
97 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
98 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
99 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
100 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
101 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
102 {"fixup_arm_thumb_blx", 0, 32,
103 MCFixupKindInfo::FKF_IsPCRel
|
104 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
105 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
106 {"fixup_arm_thumb_cp", 0, 8,
107 MCFixupKindInfo::FKF_IsPCRel
|
108 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
109 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel
},
110 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
112 {"fixup_arm_movt_hi16", 0, 20, 0},
113 {"fixup_arm_movw_lo16", 0, 20, 0},
114 {"fixup_t2_movt_hi16", 0, 20, 0},
115 {"fixup_t2_movw_lo16", 0, 20, 0},
116 {"fixup_arm_mod_imm", 0, 12, 0},
117 {"fixup_t2_so_imm", 0, 26, 0},
118 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
119 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
120 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
121 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
122 {"fixup_bfcsel_else_target", 0, 32, 0},
123 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
124 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel
}};
125 const static MCFixupKindInfo InfosBE
[ARM::NumTargetFixupKinds
] = {
126 // This table *must* be in the order that the fixup_* kinds are defined in
129 // Name Offset (bits) Size (bits) Flags
130 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant
},
131 {"fixup_t2_ldst_pcrel_12", 0, 32,
132 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
133 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant
},
134 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant
},
135 {"fixup_t2_pcrel_10", 0, 32,
136 MCFixupKindInfo::FKF_IsPCRel
|
137 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
138 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
139 {"fixup_t2_pcrel_9", 0, 32,
140 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
141 {"fixup_arm_ldst_abs_12", 0, 32, 0},
142 {"fixup_thumb_adr_pcrel_10", 8, 8,
143 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
144 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant
},
145 {"fixup_t2_adr_pcrel_12", 0, 32,
146 IsPCRelConstant
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
147 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
148 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
149 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
150 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
151 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
152 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
153 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
154 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
155 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
156 {"fixup_arm_thumb_blx", 0, 32,
157 MCFixupKindInfo::FKF_IsPCRel
|
158 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
159 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
160 {"fixup_arm_thumb_cp", 8, 8,
161 MCFixupKindInfo::FKF_IsPCRel
|
162 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
163 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel
},
164 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
166 {"fixup_arm_movt_hi16", 12, 20, 0},
167 {"fixup_arm_movw_lo16", 12, 20, 0},
168 {"fixup_t2_movt_hi16", 12, 20, 0},
169 {"fixup_t2_movw_lo16", 12, 20, 0},
170 {"fixup_arm_mod_imm", 20, 12, 0},
171 {"fixup_t2_so_imm", 26, 6, 0},
172 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
173 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
174 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
175 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
176 {"fixup_bfcsel_else_target", 0, 32, 0},
177 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
178 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel
}};
180 // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require
181 // any extra processing.
182 if (Kind
>= FirstLiteralRelocationKind
)
183 return MCAsmBackend::getFixupKindInfo(FK_NONE
);
185 if (Kind
< FirstTargetFixupKind
)
186 return MCAsmBackend::getFixupKindInfo(Kind
);
188 assert(unsigned(Kind
- FirstTargetFixupKind
) < getNumFixupKinds() &&
190 return (Endian
== support::little
? InfosLE
191 : InfosBE
)[Kind
- FirstTargetFixupKind
];
194 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag
) {
207 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op
,
208 const MCSubtargetInfo
&STI
) const {
209 bool HasThumb2
= STI
.getFeatureBits()[ARM::FeatureThumb2
];
210 bool HasV8MBaselineOps
= STI
.getFeatureBits()[ARM::HasV8MBaselineOps
];
216 return HasThumb2
? (unsigned)ARM::t2Bcc
: Op
;
218 return HasThumb2
? (unsigned)ARM::t2LDRpci
: Op
;
220 return HasThumb2
? (unsigned)ARM::t2ADR
: Op
;
222 return HasV8MBaselineOps
? (unsigned)ARM::t2B
: Op
;
230 bool ARMAsmBackend::mayNeedRelaxation(const MCInst
&Inst
,
231 const MCSubtargetInfo
&STI
) const {
232 if (getRelaxedOpcode(Inst
.getOpcode(), STI
) != Inst
.getOpcode())
237 static const char *checkPCRelOffset(uint64_t Value
, int64_t Min
, int64_t Max
) {
238 int64_t Offset
= int64_t(Value
) - 4;
239 if (Offset
< Min
|| Offset
> Max
)
240 return "out of range pc-relative fixup value";
244 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup
&Fixup
,
245 uint64_t Value
) const {
246 switch (Fixup
.getTargetKind()) {
247 case ARM::fixup_arm_thumb_br
: {
248 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
249 // low bit being an implied zero. There's an implied +4 offset for the
250 // branch, so we adjust the other way here to determine what's
253 // Relax if the value is too big for a (signed) i8.
254 int64_t Offset
= int64_t(Value
) - 4;
255 if (Offset
> 2046 || Offset
< -2048)
256 return "out of range pc-relative fixup value";
259 case ARM::fixup_arm_thumb_bcc
: {
260 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
261 // low bit being an implied zero. There's an implied +4 offset for the
262 // branch, so we adjust the other way here to determine what's
265 // Relax if the value is too big for a (signed) i8.
266 int64_t Offset
= int64_t(Value
) - 4;
267 if (Offset
> 254 || Offset
< -256)
268 return "out of range pc-relative fixup value";
271 case ARM::fixup_thumb_adr_pcrel_10
:
272 case ARM::fixup_arm_thumb_cp
: {
273 // If the immediate is negative, greater than 1020, or not a multiple
274 // of four, the wide version of the instruction must be used.
275 int64_t Offset
= int64_t(Value
) - 4;
277 return "misaligned pc-relative fixup value";
278 else if (Offset
> 1020 || Offset
< 0)
279 return "out of range pc-relative fixup value";
282 case ARM::fixup_arm_thumb_cb
: {
283 // If we have a Thumb CBZ or CBNZ instruction and its target is the next
284 // instruction it is actually out of range for the instruction.
285 // It will be changed to a NOP.
286 int64_t Offset
= (Value
& ~1);
288 return "will be converted to nop";
291 case ARM::fixup_bf_branch
:
292 return checkPCRelOffset(Value
, 0, 30);
293 case ARM::fixup_bf_target
:
294 return checkPCRelOffset(Value
, -0x10000, +0xfffe);
295 case ARM::fixup_bfl_target
:
296 return checkPCRelOffset(Value
, -0x40000, +0x3fffe);
297 case ARM::fixup_bfc_target
:
298 return checkPCRelOffset(Value
, -0x1000, +0xffe);
300 return checkPCRelOffset(Value
, 0, +0xffe);
302 // The offset field in the LE and LETP instructions is an 11-bit
303 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
304 // interpreted as a negative offset from the value read from pc,
305 // i.e. from instruction_address+4.
307 // So an LE instruction can in principle address the instruction
308 // immediately after itself, or (not very usefully) the address
309 // half way through the 4-byte LE.
310 return checkPCRelOffset(Value
, -0xffe, 0);
311 case ARM::fixup_bfcsel_else_target
: {
312 if (Value
!= 2 && Value
!= 4)
313 return "out of range label-relative fixup value";
318 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
323 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup
&Fixup
, uint64_t Value
,
324 const MCRelaxableFragment
*DF
,
325 const MCAsmLayout
&Layout
) const {
326 return reasonForFixupRelaxation(Fixup
, Value
);
329 void ARMAsmBackend::relaxInstruction(MCInst
&Inst
,
330 const MCSubtargetInfo
&STI
) const {
331 unsigned RelaxedOp
= getRelaxedOpcode(Inst
.getOpcode(), STI
);
333 // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
334 if (RelaxedOp
== Inst
.getOpcode()) {
335 SmallString
<256> Tmp
;
336 raw_svector_ostream
OS(Tmp
);
337 Inst
.dump_pretty(OS
);
339 report_fatal_error("unexpected instruction to relax: " + OS
.str());
342 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
343 // have to change the operands too.
344 if ((Inst
.getOpcode() == ARM::tCBZ
|| Inst
.getOpcode() == ARM::tCBNZ
) &&
345 RelaxedOp
== ARM::tHINT
) {
347 Res
.setOpcode(RelaxedOp
);
348 Res
.addOperand(MCOperand::createImm(0));
349 Res
.addOperand(MCOperand::createImm(14));
350 Res
.addOperand(MCOperand::createReg(0));
351 Inst
= std::move(Res
);
355 // The rest of instructions we're relaxing have the same operands.
356 // We just need to update to the proper opcode.
357 Inst
.setOpcode(RelaxedOp
);
360 bool ARMAsmBackend::writeNopData(raw_ostream
&OS
, uint64_t Count
) const {
361 const uint16_t Thumb1_16bitNopEncoding
= 0x46c0; // using MOV r8,r8
362 const uint16_t Thumb2_16bitNopEncoding
= 0xbf00; // NOP
363 const uint32_t ARMv4_NopEncoding
= 0xe1a00000; // using MOV r0,r0
364 const uint32_t ARMv6T2_NopEncoding
= 0xe320f000; // NOP
366 const uint16_t nopEncoding
=
367 hasNOP() ? Thumb2_16bitNopEncoding
: Thumb1_16bitNopEncoding
;
368 uint64_t NumNops
= Count
/ 2;
369 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
370 support::endian::write(OS
, nopEncoding
, Endian
);
376 const uint32_t nopEncoding
=
377 hasNOP() ? ARMv6T2_NopEncoding
: ARMv4_NopEncoding
;
378 uint64_t NumNops
= Count
/ 4;
379 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
380 support::endian::write(OS
, nopEncoding
, Endian
);
381 // FIXME: should this function return false when unable to write exactly
382 // 'Count' bytes with NOP encodings?
385 break; // No leftover bytes to write
393 OS
.write("\0\0\xa0", 3);
400 static uint32_t swapHalfWords(uint32_t Value
, bool IsLittleEndian
) {
401 if (IsLittleEndian
) {
402 // Note that the halfwords are stored high first and low second in thumb;
403 // so we need to swap the fixup value here to map properly.
404 uint32_t Swapped
= (Value
& 0xFFFF0000) >> 16;
405 Swapped
|= (Value
& 0x0000FFFF) << 16;
411 static uint32_t joinHalfWords(uint32_t FirstHalf
, uint32_t SecondHalf
,
412 bool IsLittleEndian
) {
415 if (IsLittleEndian
) {
416 Value
= (SecondHalf
& 0xFFFF) << 16;
417 Value
|= (FirstHalf
& 0xFFFF);
419 Value
= (SecondHalf
& 0xFFFF);
420 Value
|= (FirstHalf
& 0xFFFF) << 16;
426 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler
&Asm
,
427 const MCFixup
&Fixup
,
428 const MCValue
&Target
, uint64_t Value
,
429 bool IsResolved
, MCContext
&Ctx
,
430 const MCSubtargetInfo
* STI
) const {
431 unsigned Kind
= Fixup
.getKind();
433 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
434 // and .word relocations they put the Thumb bit into the addend if possible.
435 // Other relocation types don't want this bit though (branches couldn't encode
436 // it if it *was* present, and no other relocations exist) and it can
437 // interfere with checking valid expressions.
438 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
439 if (A
->hasSubsectionsViaSymbols() && Asm
.isThumbFunc(&A
->getSymbol()) &&
440 A
->getSymbol().isExternal() &&
441 (Kind
== FK_Data_4
|| Kind
== ARM::fixup_arm_movw_lo16
||
442 Kind
== ARM::fixup_arm_movt_hi16
|| Kind
== ARM::fixup_t2_movw_lo16
||
443 Kind
== ARM::fixup_t2_movt_hi16
))
449 Ctx
.reportError(Fixup
.getLoc(), "bad relocation fixup type");
459 case ARM::fixup_arm_movt_hi16
:
460 assert(STI
!= nullptr);
461 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
464 case ARM::fixup_arm_movw_lo16
: {
465 unsigned Hi4
= (Value
& 0xF000) >> 12;
466 unsigned Lo12
= Value
& 0x0FFF;
467 // inst{19-16} = Hi4;
468 // inst{11-0} = Lo12;
469 Value
= (Hi4
<< 16) | (Lo12
);
472 case ARM::fixup_t2_movt_hi16
:
473 assert(STI
!= nullptr);
474 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
477 case ARM::fixup_t2_movw_lo16
: {
478 unsigned Hi4
= (Value
& 0xF000) >> 12;
479 unsigned i
= (Value
& 0x800) >> 11;
480 unsigned Mid3
= (Value
& 0x700) >> 8;
481 unsigned Lo8
= Value
& 0x0FF;
482 // inst{19-16} = Hi4;
484 // inst{14-12} = Mid3;
486 Value
= (Hi4
<< 16) | (i
<< 26) | (Mid3
<< 12) | (Lo8
);
487 return swapHalfWords(Value
, Endian
== support::little
);
489 case ARM::fixup_arm_ldst_pcrel_12
:
490 // ARM PC-relative values are offset by 8.
493 case ARM::fixup_t2_ldst_pcrel_12
:
494 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
497 case ARM::fixup_arm_ldst_abs_12
: {
499 if ((int64_t)Value
< 0) {
504 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
507 Value
|= isAdd
<< 23;
509 // Same addressing mode as fixup_arm_pcrel_10,
510 // but with 16-bit halfwords swapped.
511 if (Kind
== ARM::fixup_t2_ldst_pcrel_12
)
512 return swapHalfWords(Value
, Endian
== support::little
);
516 case ARM::fixup_arm_adr_pcrel_12
: {
517 // ARM PC-relative values are offset by 8.
519 unsigned opc
= 4; // bits {24-21}. Default to add: 0b0100
520 if ((int64_t)Value
< 0) {
524 if (ARM_AM::getSOImmVal(Value
) == -1) {
525 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
528 // Encode the immediate and shift the opcode into place.
529 return ARM_AM::getSOImmVal(Value
) | (opc
<< 21);
532 case ARM::fixup_t2_adr_pcrel_12
: {
535 if ((int64_t)Value
< 0) {
540 uint32_t out
= (opc
<< 21);
541 out
|= (Value
& 0x800) << 15;
542 out
|= (Value
& 0x700) << 4;
543 out
|= (Value
& 0x0FF);
545 return swapHalfWords(out
, Endian
== support::little
);
548 case ARM::fixup_arm_condbranch
:
549 case ARM::fixup_arm_uncondbranch
:
550 case ARM::fixup_arm_uncondbl
:
551 case ARM::fixup_arm_condbl
:
552 case ARM::fixup_arm_blx
:
553 // These values don't encode the low two bits since they're always zero.
554 // Offset by 8 just as above.
555 if (const MCSymbolRefExpr
*SRE
=
556 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
557 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
559 return 0xffffff & ((Value
- 8) >> 2);
560 case ARM::fixup_t2_uncondbranch
: {
562 if (!isInt
<25>(Value
)) {
563 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
567 Value
>>= 1; // Low bit is not encoded.
570 bool I
= Value
& 0x800000;
571 bool J1
= Value
& 0x400000;
572 bool J2
= Value
& 0x200000;
576 out
|= I
<< 26; // S bit
577 out
|= !J1
<< 13; // J1 bit
578 out
|= !J2
<< 11; // J2 bit
579 out
|= (Value
& 0x1FF800) << 5; // imm6 field
580 out
|= (Value
& 0x0007FF); // imm11 field
582 return swapHalfWords(out
, Endian
== support::little
);
584 case ARM::fixup_t2_condbranch
: {
586 if (!isInt
<21>(Value
)) {
587 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
591 Value
>>= 1; // Low bit is not encoded.
594 out
|= (Value
& 0x80000) << 7; // S bit
595 out
|= (Value
& 0x40000) >> 7; // J2 bit
596 out
|= (Value
& 0x20000) >> 4; // J1 bit
597 out
|= (Value
& 0x1F800) << 5; // imm6 field
598 out
|= (Value
& 0x007FF); // imm11 field
600 return swapHalfWords(out
, Endian
== support::little
);
602 case ARM::fixup_arm_thumb_bl
: {
603 if (!isInt
<25>(Value
- 4) ||
604 (!STI
->getFeatureBits()[ARM::FeatureThumb2
] &&
605 !STI
->getFeatureBits()[ARM::HasV8MBaselineOps
] &&
606 !STI
->getFeatureBits()[ARM::HasV6MOps
] &&
607 !isInt
<23>(Value
- 4))) {
608 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
612 // The value doesn't encode the low bit (always zero) and is offset by
613 // four. The 32-bit immediate value is encoded as
614 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
615 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
616 // The value is encoded into disjoint bit positions in the destination
617 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
618 // J = either J1 or J2 bit
620 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
622 // Note that the halfwords are stored high first, low second; so we need
623 // to transpose the fixup value here to map properly.
624 uint32_t offset
= (Value
- 4) >> 1;
625 uint32_t signBit
= (offset
& 0x800000) >> 23;
626 uint32_t I1Bit
= (offset
& 0x400000) >> 22;
627 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
628 uint32_t I2Bit
= (offset
& 0x200000) >> 21;
629 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
630 uint32_t imm10Bits
= (offset
& 0x1FF800) >> 11;
631 uint32_t imm11Bits
= (offset
& 0x000007FF);
633 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10Bits
);
634 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
635 (uint16_t)imm11Bits
);
636 return joinHalfWords(FirstHalf
, SecondHalf
, Endian
== support::little
);
638 case ARM::fixup_arm_thumb_blx
: {
639 // The value doesn't encode the low two bits (always zero) and is offset by
640 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
641 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
642 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
643 // The value is encoded into disjoint bit positions in the destination
644 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
645 // J = either J1 or J2 bit, 0 = zero.
647 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
649 // Note that the halfwords are stored high first, low second; so we need
650 // to transpose the fixup value here to map properly.
651 if (Value
% 4 != 0) {
652 Ctx
.reportError(Fixup
.getLoc(), "misaligned ARM call destination");
656 uint32_t offset
= (Value
- 4) >> 2;
657 if (const MCSymbolRefExpr
*SRE
=
658 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
659 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
661 uint32_t signBit
= (offset
& 0x400000) >> 22;
662 uint32_t I1Bit
= (offset
& 0x200000) >> 21;
663 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
664 uint32_t I2Bit
= (offset
& 0x100000) >> 20;
665 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
666 uint32_t imm10HBits
= (offset
& 0xFFC00) >> 10;
667 uint32_t imm10LBits
= (offset
& 0x3FF);
669 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10HBits
);
670 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
671 ((uint16_t)imm10LBits
) << 1);
672 return joinHalfWords(FirstHalf
, SecondHalf
, Endian
== support::little
);
674 case ARM::fixup_thumb_adr_pcrel_10
:
675 case ARM::fixup_arm_thumb_cp
:
676 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
677 // could have an error on our hands.
678 assert(STI
!= nullptr);
679 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
] && IsResolved
) {
680 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
681 if (FixupDiagnostic
) {
682 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
686 // Offset by 4, and don't encode the low two bits.
687 return ((Value
- 4) >> 2) & 0xff;
688 case ARM::fixup_arm_thumb_cb
: {
689 // CB instructions can only branch to offsets in [4, 126] in multiples of 2
690 // so ensure that the raw value LSB is zero and it lies in [2, 130].
691 // An offset of 2 will be relaxed to a NOP.
692 if ((int64_t)Value
< 2 || Value
> 0x82 || Value
& 1) {
693 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
696 // Offset by 4 and don't encode the lower bit, which is always 0.
697 // FIXME: diagnose if no Thumb2
698 uint32_t Binary
= (Value
- 4) >> 1;
699 return ((Binary
& 0x20) << 4) | ((Binary
& 0x1f) << 3);
701 case ARM::fixup_arm_thumb_br
:
702 // Offset by 4 and don't encode the lower bit, which is always 0.
703 assert(STI
!= nullptr);
704 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
] &&
705 !STI
->getFeatureBits()[ARM::HasV8MBaselineOps
]) {
706 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
707 if (FixupDiagnostic
) {
708 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
712 return ((Value
- 4) >> 1) & 0x7ff;
713 case ARM::fixup_arm_thumb_bcc
:
714 // Offset by 4 and don't encode the lower bit, which is always 0.
715 assert(STI
!= nullptr);
716 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
]) {
717 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
718 if (FixupDiagnostic
) {
719 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
723 return ((Value
- 4) >> 1) & 0xff;
724 case ARM::fixup_arm_pcrel_10_unscaled
: {
725 Value
= Value
- 8; // ARM fixups offset by an additional word and don't
726 // need to adjust for the half-word ordering.
728 if ((int64_t)Value
< 0) {
732 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
734 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
737 Value
= (Value
& 0xf) | ((Value
& 0xf0) << 4);
738 return Value
| (isAdd
<< 23);
740 case ARM::fixup_arm_pcrel_10
:
741 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
742 // need to adjust for the half-word ordering.
744 case ARM::fixup_t2_pcrel_10
: {
745 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
748 if ((int64_t)Value
< 0) {
752 // These values don't encode the low two bits since they're always zero.
755 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
758 Value
|= isAdd
<< 23;
760 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
762 if (Kind
== ARM::fixup_t2_pcrel_10
)
763 return swapHalfWords(Value
, Endian
== support::little
);
767 case ARM::fixup_arm_pcrel_9
:
768 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
769 // need to adjust for the half-word ordering.
771 case ARM::fixup_t2_pcrel_9
: {
772 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
775 if ((int64_t)Value
< 0) {
779 // These values don't encode the low bit since it's always zero.
781 Ctx
.reportError(Fixup
.getLoc(), "invalid value for this fixup");
786 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
789 Value
|= isAdd
<< 23;
791 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
793 if (Kind
== ARM::fixup_t2_pcrel_9
)
794 return swapHalfWords(Value
, Endian
== support::little
);
798 case ARM::fixup_arm_mod_imm
:
799 Value
= ARM_AM::getSOImmVal(Value
);
801 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
805 case ARM::fixup_t2_so_imm
: {
806 Value
= ARM_AM::getT2SOImmVal(Value
);
807 if ((int64_t)Value
< 0) {
808 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
811 // Value will contain a 12-bit value broken up into a 4-bit shift in bits
812 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
813 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
814 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
816 uint64_t EncValue
= 0;
817 EncValue
|= (Value
& 0x800) << 15;
818 EncValue
|= (Value
& 0x700) << 4;
819 EncValue
|= (Value
& 0xff);
820 return swapHalfWords(EncValue
, Endian
== support::little
);
822 case ARM::fixup_bf_branch
: {
823 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
824 if (FixupDiagnostic
) {
825 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
828 uint32_t out
= (((Value
- 4) >> 1) & 0xf) << 23;
829 return swapHalfWords(out
, Endian
== support::little
);
831 case ARM::fixup_bf_target
:
832 case ARM::fixup_bfl_target
:
833 case ARM::fixup_bfc_target
: {
834 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
835 if (FixupDiagnostic
) {
836 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
840 uint32_t HighBitMask
= (Kind
== ARM::fixup_bf_target
? 0xf800 :
841 Kind
== ARM::fixup_bfl_target
? 0x3f800 : 0x800);
842 out
|= (((Value
- 4) >> 1) & 0x1) << 11;
843 out
|= (((Value
- 4) >> 1) & 0x7fe);
844 out
|= (((Value
- 4) >> 1) & HighBitMask
) << 5;
845 return swapHalfWords(out
, Endian
== support::little
);
847 case ARM::fixup_bfcsel_else_target
: {
848 // If this is a fixup of a branch future's else target then it should be a
849 // constant MCExpr representing the distance between the branch targetted
850 // and the instruction after that same branch.
851 Value
= Target
.getConstant();
853 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
854 if (FixupDiagnostic
) {
855 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
858 uint32_t out
= ((Value
>> 2) & 1) << 17;
859 return swapHalfWords(out
, Endian
== support::little
);
862 case ARM::fixup_le
: {
863 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
864 if (FixupDiagnostic
) {
865 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
868 uint64_t real_value
= Value
- 4;
870 if (Kind
== ARM::fixup_le
)
871 real_value
= -real_value
;
872 out
|= ((real_value
>> 1) & 0x1) << 11;
873 out
|= ((real_value
>> 1) & 0x7fe);
874 return swapHalfWords(out
, Endian
== support::little
);
879 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler
&Asm
,
880 const MCFixup
&Fixup
,
881 const MCValue
&Target
) {
882 const MCSymbolRefExpr
*A
= Target
.getSymA();
883 const MCSymbol
*Sym
= A
? &A
->getSymbol() : nullptr;
884 const unsigned FixupKind
= Fixup
.getKind();
885 if (FixupKind
>= FirstLiteralRelocationKind
)
887 if (FixupKind
== ARM::fixup_arm_thumb_bl
) {
888 assert(Sym
&& "How did we resolve this?");
890 // If the symbol is external the linker will handle it.
891 // FIXME: Should we handle it as an optimization?
893 // If the symbol is out of range, produce a relocation and hope the
894 // linker can handle it. GNU AS produces an error in this case.
895 if (Sym
->isExternal())
898 // Create relocations for unconditional branches to function symbols with
899 // different execution mode in ELF binaries.
900 if (Sym
&& Sym
->isELF()) {
901 unsigned Type
= cast
<MCSymbolELF
>(Sym
)->getType();
902 if ((Type
== ELF::STT_FUNC
|| Type
== ELF::STT_GNU_IFUNC
)) {
903 if (Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_uncondbranch
))
905 if (!Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_thumb_br
||
906 FixupKind
== ARM::fixup_arm_thumb_bl
||
907 FixupKind
== ARM::fixup_t2_condbranch
||
908 FixupKind
== ARM::fixup_t2_uncondbranch
))
912 // We must always generate a relocation for BL/BLX instructions if we have
913 // a symbol to reference, as the linker relies on knowing the destination
914 // symbol's thumb-ness to get interworking right.
915 if (A
&& (FixupKind
== ARM::fixup_arm_thumb_blx
||
916 FixupKind
== ARM::fixup_arm_blx
||
917 FixupKind
== ARM::fixup_arm_uncondbl
||
918 FixupKind
== ARM::fixup_arm_condbl
))
923 /// getFixupKindNumBytes - The number of bytes the fixup may change.
924 static unsigned getFixupKindNumBytes(unsigned Kind
) {
927 llvm_unreachable("Unknown fixup kind!");
930 case ARM::fixup_arm_thumb_bcc
:
931 case ARM::fixup_arm_thumb_cp
:
932 case ARM::fixup_thumb_adr_pcrel_10
:
936 case ARM::fixup_arm_thumb_br
:
937 case ARM::fixup_arm_thumb_cb
:
938 case ARM::fixup_arm_mod_imm
:
941 case ARM::fixup_arm_pcrel_10_unscaled
:
942 case ARM::fixup_arm_ldst_pcrel_12
:
943 case ARM::fixup_arm_pcrel_10
:
944 case ARM::fixup_arm_pcrel_9
:
945 case ARM::fixup_arm_ldst_abs_12
:
946 case ARM::fixup_arm_adr_pcrel_12
:
947 case ARM::fixup_arm_uncondbl
:
948 case ARM::fixup_arm_condbl
:
949 case ARM::fixup_arm_blx
:
950 case ARM::fixup_arm_condbranch
:
951 case ARM::fixup_arm_uncondbranch
:
955 case ARM::fixup_t2_ldst_pcrel_12
:
956 case ARM::fixup_t2_condbranch
:
957 case ARM::fixup_t2_uncondbranch
:
958 case ARM::fixup_t2_pcrel_10
:
959 case ARM::fixup_t2_pcrel_9
:
960 case ARM::fixup_t2_adr_pcrel_12
:
961 case ARM::fixup_arm_thumb_bl
:
962 case ARM::fixup_arm_thumb_blx
:
963 case ARM::fixup_arm_movt_hi16
:
964 case ARM::fixup_arm_movw_lo16
:
965 case ARM::fixup_t2_movt_hi16
:
966 case ARM::fixup_t2_movw_lo16
:
967 case ARM::fixup_t2_so_imm
:
968 case ARM::fixup_bf_branch
:
969 case ARM::fixup_bf_target
:
970 case ARM::fixup_bfl_target
:
971 case ARM::fixup_bfc_target
:
972 case ARM::fixup_bfcsel_else_target
:
984 /// getFixupKindContainerSizeBytes - The number of bytes of the
985 /// container involved in big endian.
986 static unsigned getFixupKindContainerSizeBytes(unsigned Kind
) {
989 llvm_unreachable("Unknown fixup kind!");
998 case ARM::fixup_arm_thumb_bcc
:
999 case ARM::fixup_arm_thumb_cp
:
1000 case ARM::fixup_thumb_adr_pcrel_10
:
1001 case ARM::fixup_arm_thumb_br
:
1002 case ARM::fixup_arm_thumb_cb
:
1003 // Instruction size is 2 bytes.
1006 case ARM::fixup_arm_pcrel_10_unscaled
:
1007 case ARM::fixup_arm_ldst_pcrel_12
:
1008 case ARM::fixup_arm_pcrel_10
:
1009 case ARM::fixup_arm_pcrel_9
:
1010 case ARM::fixup_arm_adr_pcrel_12
:
1011 case ARM::fixup_arm_uncondbl
:
1012 case ARM::fixup_arm_condbl
:
1013 case ARM::fixup_arm_blx
:
1014 case ARM::fixup_arm_condbranch
:
1015 case ARM::fixup_arm_uncondbranch
:
1016 case ARM::fixup_t2_ldst_pcrel_12
:
1017 case ARM::fixup_t2_condbranch
:
1018 case ARM::fixup_t2_uncondbranch
:
1019 case ARM::fixup_t2_pcrel_10
:
1020 case ARM::fixup_t2_pcrel_9
:
1021 case ARM::fixup_t2_adr_pcrel_12
:
1022 case ARM::fixup_arm_thumb_bl
:
1023 case ARM::fixup_arm_thumb_blx
:
1024 case ARM::fixup_arm_movt_hi16
:
1025 case ARM::fixup_arm_movw_lo16
:
1026 case ARM::fixup_t2_movt_hi16
:
1027 case ARM::fixup_t2_movw_lo16
:
1028 case ARM::fixup_arm_mod_imm
:
1029 case ARM::fixup_t2_so_imm
:
1030 case ARM::fixup_bf_branch
:
1031 case ARM::fixup_bf_target
:
1032 case ARM::fixup_bfl_target
:
1033 case ARM::fixup_bfc_target
:
1034 case ARM::fixup_bfcsel_else_target
:
1035 case ARM::fixup_wls
:
1037 // Instruction size is 4 bytes.
1042 void ARMAsmBackend::applyFixup(const MCAssembler
&Asm
, const MCFixup
&Fixup
,
1043 const MCValue
&Target
,
1044 MutableArrayRef
<char> Data
, uint64_t Value
,
1046 const MCSubtargetInfo
* STI
) const {
1047 unsigned Kind
= Fixup
.getKind();
1048 if (Kind
>= FirstLiteralRelocationKind
)
1050 unsigned NumBytes
= getFixupKindNumBytes(Kind
);
1051 MCContext
&Ctx
= Asm
.getContext();
1052 Value
= adjustFixupValue(Asm
, Fixup
, Target
, Value
, IsResolved
, Ctx
, STI
);
1054 return; // Doesn't change encoding.
1056 unsigned Offset
= Fixup
.getOffset();
1057 assert(Offset
+ NumBytes
<= Data
.size() && "Invalid fixup offset!");
1059 // Used to point to big endian bytes.
1060 unsigned FullSizeBytes
;
1061 if (Endian
== support::big
) {
1062 FullSizeBytes
= getFixupKindContainerSizeBytes(Kind
);
1063 assert((Offset
+ FullSizeBytes
) <= Data
.size() && "Invalid fixup size!");
1064 assert(NumBytes
<= FullSizeBytes
&& "Invalid fixup size!");
1067 // For each byte of the fragment that the fixup touches, mask in the bits from
1068 // the fixup value. The Value has been "split up" into the appropriate
1070 for (unsigned i
= 0; i
!= NumBytes
; ++i
) {
1071 unsigned Idx
= Endian
== support::little
? i
: (FullSizeBytes
- 1 - i
);
1072 Data
[Offset
+ Idx
] |= uint8_t((Value
>> (i
* 8)) & 0xff);
1078 /// Compact unwind encoding values.
1079 enum CompactUnwindEncodings
{
1080 UNWIND_ARM_MODE_MASK
= 0x0F000000,
1081 UNWIND_ARM_MODE_FRAME
= 0x01000000,
1082 UNWIND_ARM_MODE_FRAME_D
= 0x02000000,
1083 UNWIND_ARM_MODE_DWARF
= 0x04000000,
1085 UNWIND_ARM_FRAME_STACK_ADJUST_MASK
= 0x00C00000,
1087 UNWIND_ARM_FRAME_FIRST_PUSH_R4
= 0x00000001,
1088 UNWIND_ARM_FRAME_FIRST_PUSH_R5
= 0x00000002,
1089 UNWIND_ARM_FRAME_FIRST_PUSH_R6
= 0x00000004,
1091 UNWIND_ARM_FRAME_SECOND_PUSH_R8
= 0x00000008,
1092 UNWIND_ARM_FRAME_SECOND_PUSH_R9
= 0x00000010,
1093 UNWIND_ARM_FRAME_SECOND_PUSH_R10
= 0x00000020,
1094 UNWIND_ARM_FRAME_SECOND_PUSH_R11
= 0x00000040,
1095 UNWIND_ARM_FRAME_SECOND_PUSH_R12
= 0x00000080,
1097 UNWIND_ARM_FRAME_D_REG_COUNT_MASK
= 0x00000F00,
1099 UNWIND_ARM_DWARF_SECTION_OFFSET
= 0x00FFFFFF
1102 } // end CU namespace
1104 /// Generate compact unwind encoding for the function based on the CFI
1105 /// instructions. If the CFI instructions describe a frame that cannot be
1106 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1107 /// tells the runtime to fallback and unwind using dwarf.
1108 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1109 ArrayRef
<MCCFIInstruction
> Instrs
) const {
1110 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1111 // Only armv7k uses CFI based unwinding.
1112 if (Subtype
!= MachO::CPU_SUBTYPE_ARM_V7K
)
1114 // No .cfi directives means no frame.
1117 // Start off assuming CFA is at SP+0.
1118 unsigned CFARegister
= ARM::SP
;
1119 int CFARegisterOffset
= 0;
1120 // Mark savable registers as initially unsaved
1121 DenseMap
<unsigned, int> RegOffsets
;
1122 int FloatRegCount
= 0;
1123 // Process each .cfi directive and build up compact unwind info.
1124 for (size_t i
= 0, e
= Instrs
.size(); i
!= e
; ++i
) {
1126 const MCCFIInstruction
&Inst
= Instrs
[i
];
1127 switch (Inst
.getOperation()) {
1128 case MCCFIInstruction::OpDefCfa
: // DW_CFA_def_cfa
1129 CFARegisterOffset
= Inst
.getOffset();
1130 CFARegister
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1132 case MCCFIInstruction::OpDefCfaOffset
: // DW_CFA_def_cfa_offset
1133 CFARegisterOffset
= Inst
.getOffset();
1135 case MCCFIInstruction::OpDefCfaRegister
: // DW_CFA_def_cfa_register
1136 CFARegister
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1138 case MCCFIInstruction::OpOffset
: // DW_CFA_offset
1139 Reg
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1140 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
1141 RegOffsets
[Reg
] = Inst
.getOffset();
1142 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
1143 RegOffsets
[Reg
] = Inst
.getOffset();
1146 DEBUG_WITH_TYPE("compact-unwind",
1147 llvm::dbgs() << ".cfi_offset on unknown register="
1148 << Inst
.getRegister() << "\n");
1149 return CU::UNWIND_ARM_MODE_DWARF
;
1152 case MCCFIInstruction::OpRelOffset
: // DW_CFA_advance_loc
1156 // Directive not convertable to compact unwind, bail out.
1157 DEBUG_WITH_TYPE("compact-unwind",
1159 << "CFI directive not compatiable with comact "
1160 "unwind encoding, opcode=" << Inst
.getOperation()
1162 return CU::UNWIND_ARM_MODE_DWARF
;
1167 // If no frame set up, return no unwind info.
1168 if ((CFARegister
== ARM::SP
) && (CFARegisterOffset
== 0))
1171 // Verify standard frame (lr/r7) was used.
1172 if (CFARegister
!= ARM::R7
) {
1173 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1175 << " instead of r7\n");
1176 return CU::UNWIND_ARM_MODE_DWARF
;
1178 int StackAdjust
= CFARegisterOffset
- 8;
1179 if (RegOffsets
.lookup(ARM::LR
) != (-4 - StackAdjust
)) {
1180 DEBUG_WITH_TYPE("compact-unwind",
1182 << "LR not saved as standard frame, StackAdjust="
1184 << ", CFARegisterOffset=" << CFARegisterOffset
1185 << ", lr save at offset=" << RegOffsets
[14] << "\n");
1186 return CU::UNWIND_ARM_MODE_DWARF
;
1188 if (RegOffsets
.lookup(ARM::R7
) != (-8 - StackAdjust
)) {
1189 DEBUG_WITH_TYPE("compact-unwind",
1190 llvm::dbgs() << "r7 not saved as standard frame\n");
1191 return CU::UNWIND_ARM_MODE_DWARF
;
1193 uint32_t CompactUnwindEncoding
= CU::UNWIND_ARM_MODE_FRAME
;
1195 // If var-args are used, there may be a stack adjust required.
1196 switch (StackAdjust
) {
1200 CompactUnwindEncoding
|= 0x00400000;
1203 CompactUnwindEncoding
|= 0x00800000;
1206 CompactUnwindEncoding
|= 0x00C00000;
1209 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1210 << ".cfi_def_cfa stack adjust ("
1211 << StackAdjust
<< ") out of range\n");
1212 return CU::UNWIND_ARM_MODE_DWARF
;
1215 // If r6 is saved, it must be right below r7.
1219 } GPRCSRegs
[] = {{ARM::R6
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6
},
1220 {ARM::R5
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5
},
1221 {ARM::R4
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4
},
1222 {ARM::R12
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12
},
1223 {ARM::R11
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11
},
1224 {ARM::R10
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10
},
1225 {ARM::R9
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9
},
1226 {ARM::R8
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8
}};
1228 int CurOffset
= -8 - StackAdjust
;
1229 for (auto CSReg
: GPRCSRegs
) {
1230 auto Offset
= RegOffsets
.find(CSReg
.Reg
);
1231 if (Offset
== RegOffsets
.end())
1234 int RegOffset
= Offset
->second
;
1235 if (RegOffset
!= CurOffset
- 4) {
1236 DEBUG_WITH_TYPE("compact-unwind",
1237 llvm::dbgs() << MRI
.getName(CSReg
.Reg
) << " saved at "
1238 << RegOffset
<< " but only supported at "
1239 << CurOffset
<< "\n");
1240 return CU::UNWIND_ARM_MODE_DWARF
;
1242 CompactUnwindEncoding
|= CSReg
.Encoding
;
1246 // If no floats saved, we are done.
1247 if (FloatRegCount
== 0)
1248 return CompactUnwindEncoding
;
1250 // Switch mode to include D register saving.
1251 CompactUnwindEncoding
&= ~CU::UNWIND_ARM_MODE_MASK
;
1252 CompactUnwindEncoding
|= CU::UNWIND_ARM_MODE_FRAME_D
;
1254 // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1255 // but needs coordination with the linker and libunwind.
1256 if (FloatRegCount
> 4) {
1257 DEBUG_WITH_TYPE("compact-unwind",
1258 llvm::dbgs() << "unsupported number of D registers saved ("
1259 << FloatRegCount
<< ")\n");
1260 return CU::UNWIND_ARM_MODE_DWARF
;
1263 // Floating point registers must either be saved sequentially, or we defer to
1264 // DWARF. No gaps allowed here so check that each saved d-register is
1265 // precisely where it should be.
1266 static unsigned FPRCSRegs
[] = { ARM::D8
, ARM::D10
, ARM::D12
, ARM::D14
};
1267 for (int Idx
= FloatRegCount
- 1; Idx
>= 0; --Idx
) {
1268 auto Offset
= RegOffsets
.find(FPRCSRegs
[Idx
]);
1269 if (Offset
== RegOffsets
.end()) {
1270 DEBUG_WITH_TYPE("compact-unwind",
1271 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1272 << MRI
.getName(FPRCSRegs
[Idx
])
1274 return CU::UNWIND_ARM_MODE_DWARF
;
1275 } else if (Offset
->second
!= CurOffset
- 8) {
1276 DEBUG_WITH_TYPE("compact-unwind",
1277 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1278 << MRI
.getName(FPRCSRegs
[Idx
])
1279 << " saved at " << Offset
->second
1280 << ", expected at " << CurOffset
- 8
1282 return CU::UNWIND_ARM_MODE_DWARF
;
1287 return CompactUnwindEncoding
| ((FloatRegCount
- 1) << 8);
1290 static MCAsmBackend
*createARMAsmBackend(const Target
&T
,
1291 const MCSubtargetInfo
&STI
,
1292 const MCRegisterInfo
&MRI
,
1293 const MCTargetOptions
&Options
,
1294 support::endianness Endian
) {
1295 const Triple
&TheTriple
= STI
.getTargetTriple();
1296 switch (TheTriple
.getObjectFormat()) {
1298 llvm_unreachable("unsupported object format");
1300 return new ARMAsmBackendDarwin(T
, STI
, MRI
);
1302 assert(TheTriple
.isOSWindows() && "non-Windows ARM COFF is not supported");
1303 return new ARMAsmBackendWinCOFF(T
, STI
);
1305 assert(TheTriple
.isOSBinFormatELF() && "using ELF for non-ELF target");
1306 uint8_t OSABI
= MCELFObjectTargetWriter::getOSABI(TheTriple
.getOS());
1307 return new ARMAsmBackendELF(T
, STI
, OSABI
, Endian
);
1311 MCAsmBackend
*llvm::createARMLEAsmBackend(const Target
&T
,
1312 const MCSubtargetInfo
&STI
,
1313 const MCRegisterInfo
&MRI
,
1314 const MCTargetOptions
&Options
) {
1315 return createARMAsmBackend(T
, STI
, MRI
, Options
, support::little
);
1318 MCAsmBackend
*llvm::createARMBEAsmBackend(const Target
&T
,
1319 const MCSubtargetInfo
&STI
,
1320 const MCRegisterInfo
&MRI
,
1321 const MCTargetOptions
&Options
) {
1322 return createARMAsmBackend(T
, STI
, MRI
, Options
, support::big
);