[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / MCTargetDesc / ARMTargetStreamer.cpp
blob3e4c97630af6494728e50641ffe505b747e3d1f4
1 //===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARMTargetStreamer class.
11 //===----------------------------------------------------------------------===//
13 #include "MCTargetDesc/ARMMCTargetDesc.h"
14 #include "llvm/MC/ConstantPools.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCStreamer.h"
19 #include "llvm/MC/MCSubtargetInfo.h"
20 #include "llvm/Support/ARMBuildAttributes.h"
21 #include "llvm/Support/TargetParser.h"
23 using namespace llvm;
26 // ARMTargetStreamer Implemenation
29 ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S)
30 : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {}
32 ARMTargetStreamer::~ARMTargetStreamer() = default;
34 // The constant pool handling is shared by all ARMTargetStreamer
35 // implementations.
36 const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr, SMLoc Loc) {
37 return ConstantPools->addEntry(Streamer, Expr, 4, Loc);
40 void ARMTargetStreamer::emitCurrentConstantPool() {
41 ConstantPools->emitForCurrentSection(Streamer);
42 ConstantPools->clearCacheForCurrentSection(Streamer);
45 // finish() - write out any non-empty assembler constant pools.
46 void ARMTargetStreamer::emitConstantPools() {
47 ConstantPools->emitAll(Streamer);
50 // reset() - Reset any state
51 void ARMTargetStreamer::reset() {}
53 void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) {
54 unsigned Size;
55 char Buffer[4];
56 const bool LittleEndian = getStreamer().getContext().getAsmInfo()->isLittleEndian();
58 switch (Suffix) {
59 case '\0':
60 Size = 4;
62 for (unsigned II = 0, IE = Size; II != IE; II++) {
63 const unsigned I = LittleEndian ? (Size - II - 1) : II;
64 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
67 break;
68 case 'n':
69 case 'w':
70 Size = (Suffix == 'n' ? 2 : 4);
72 // Thumb wide instructions are emitted as a pair of 16-bit words of the
73 // appropriate endianness.
74 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
75 const unsigned I0 = LittleEndian ? II + 0 : II + 1;
76 const unsigned I1 = LittleEndian ? II + 1 : II + 0;
77 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
78 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
81 break;
82 default:
83 llvm_unreachable("Invalid Suffix");
85 getStreamer().emitBytes(StringRef(Buffer, Size));
88 // The remaining callbacks should be handled separately by each
89 // streamer.
90 void ARMTargetStreamer::emitFnStart() {}
91 void ARMTargetStreamer::emitFnEnd() {}
92 void ARMTargetStreamer::emitCantUnwind() {}
93 void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {}
94 void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {}
95 void ARMTargetStreamer::emitHandlerData() {}
96 void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
97 int64_t Offset) {}
98 void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) {}
99 void ARMTargetStreamer::emitPad(int64_t Offset) {}
100 void ARMTargetStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
101 bool isVector) {}
102 void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset,
103 const SmallVectorImpl<uint8_t> &Opcodes) {
105 void ARMTargetStreamer::switchVendor(StringRef Vendor) {}
106 void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {}
107 void ARMTargetStreamer::emitTextAttribute(unsigned Attribute,
108 StringRef String) {}
109 void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute,
110 unsigned IntValue,
111 StringRef StringValue) {}
112 void ARMTargetStreamer::emitArch(ARM::ArchKind Arch) {}
113 void ARMTargetStreamer::emitArchExtension(uint64_t ArchExt) {}
114 void ARMTargetStreamer::emitObjectArch(ARM::ArchKind Arch) {}
115 void ARMTargetStreamer::emitFPU(unsigned FPU) {}
116 void ARMTargetStreamer::finishAttributeSection() {}
117 void
118 ARMTargetStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) {}
119 void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {}
121 static ARMBuildAttrs::CPUArch getArchForCPU(const MCSubtargetInfo &STI) {
122 if (STI.getCPU() == "xscale")
123 return ARMBuildAttrs::v5TEJ;
125 if (STI.hasFeature(ARM::HasV8Ops)) {
126 if (STI.hasFeature(ARM::FeatureRClass))
127 return ARMBuildAttrs::v8_R;
128 return ARMBuildAttrs::v8_A;
129 } else if (STI.hasFeature(ARM::HasV8_1MMainlineOps))
130 return ARMBuildAttrs::v8_1_M_Main;
131 else if (STI.hasFeature(ARM::HasV8MMainlineOps))
132 return ARMBuildAttrs::v8_M_Main;
133 else if (STI.hasFeature(ARM::HasV7Ops)) {
134 if (STI.hasFeature(ARM::FeatureMClass) && STI.hasFeature(ARM::FeatureDSP))
135 return ARMBuildAttrs::v7E_M;
136 return ARMBuildAttrs::v7;
137 } else if (STI.hasFeature(ARM::HasV6T2Ops))
138 return ARMBuildAttrs::v6T2;
139 else if (STI.hasFeature(ARM::HasV8MBaselineOps))
140 return ARMBuildAttrs::v8_M_Base;
141 else if (STI.hasFeature(ARM::HasV6MOps))
142 return ARMBuildAttrs::v6S_M;
143 else if (STI.hasFeature(ARM::HasV6Ops))
144 return ARMBuildAttrs::v6;
145 else if (STI.hasFeature(ARM::HasV5TEOps))
146 return ARMBuildAttrs::v5TE;
147 else if (STI.hasFeature(ARM::HasV5TOps))
148 return ARMBuildAttrs::v5T;
149 else if (STI.hasFeature(ARM::HasV4TOps))
150 return ARMBuildAttrs::v4T;
151 else
152 return ARMBuildAttrs::v4;
155 static bool isV8M(const MCSubtargetInfo &STI) {
156 // Note that v8M Baseline is a subset of v6T2!
157 return (STI.hasFeature(ARM::HasV8MBaselineOps) &&
158 !STI.hasFeature(ARM::HasV6T2Ops)) ||
159 STI.hasFeature(ARM::HasV8MMainlineOps);
162 /// Emit the build attributes that only depend on the hardware that we expect
163 // /to be available, and not on the ABI, or any source-language choices.
164 void ARMTargetStreamer::emitTargetAttributes(const MCSubtargetInfo &STI) {
165 switchVendor("aeabi");
167 const StringRef CPUString = STI.getCPU();
168 if (!CPUString.empty() && !CPUString.startswith("generic")) {
169 // FIXME: remove krait check when GNU tools support krait cpu
170 if (STI.hasFeature(ARM::ProcKrait)) {
171 emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
172 // We consider krait as a "cortex-a9" + hwdiv CPU
173 // Enable hwdiv through ".arch_extension idiv"
174 if (STI.hasFeature(ARM::FeatureHWDivThumb) ||
175 STI.hasFeature(ARM::FeatureHWDivARM))
176 emitArchExtension(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM);
177 } else {
178 emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
182 emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(STI));
184 if (STI.hasFeature(ARM::FeatureAClass)) {
185 emitAttribute(ARMBuildAttrs::CPU_arch_profile,
186 ARMBuildAttrs::ApplicationProfile);
187 } else if (STI.hasFeature(ARM::FeatureRClass)) {
188 emitAttribute(ARMBuildAttrs::CPU_arch_profile,
189 ARMBuildAttrs::RealTimeProfile);
190 } else if (STI.hasFeature(ARM::FeatureMClass)) {
191 emitAttribute(ARMBuildAttrs::CPU_arch_profile,
192 ARMBuildAttrs::MicroControllerProfile);
195 emitAttribute(ARMBuildAttrs::ARM_ISA_use, STI.hasFeature(ARM::FeatureNoARM)
196 ? ARMBuildAttrs::Not_Allowed
197 : ARMBuildAttrs::Allowed);
199 if (isV8M(STI)) {
200 emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
201 ARMBuildAttrs::AllowThumbDerived);
202 } else if (STI.hasFeature(ARM::FeatureThumb2)) {
203 emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
204 ARMBuildAttrs::AllowThumb32);
205 } else if (STI.hasFeature(ARM::HasV4TOps)) {
206 emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
209 if (STI.hasFeature(ARM::FeatureNEON)) {
210 /* NEON is not exactly a VFP architecture, but GAS emit one of
211 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
212 if (STI.hasFeature(ARM::FeatureFPARMv8)) {
213 if (STI.hasFeature(ARM::FeatureCrypto))
214 emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
215 else
216 emitFPU(ARM::FK_NEON_FP_ARMV8);
217 } else if (STI.hasFeature(ARM::FeatureVFP4))
218 emitFPU(ARM::FK_NEON_VFPV4);
219 else
220 emitFPU(STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_NEON_FP16
221 : ARM::FK_NEON);
222 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
223 if (STI.hasFeature(ARM::HasV8Ops))
224 emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
225 STI.hasFeature(ARM::HasV8_1aOps)
226 ? ARMBuildAttrs::AllowNeonARMv8_1a
227 : ARMBuildAttrs::AllowNeonARMv8);
228 } else {
229 if (STI.hasFeature(ARM::FeatureFPARMv8_D16_SP))
230 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
231 // FPU, but there are two different names for it depending on the CPU.
232 emitFPU(STI.hasFeature(ARM::FeatureD32)
233 ? ARM::FK_FP_ARMV8
234 : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_FPV5_D16
235 : ARM::FK_FPV5_SP_D16));
236 else if (STI.hasFeature(ARM::FeatureVFP4_D16_SP))
237 emitFPU(STI.hasFeature(ARM::FeatureD32)
238 ? ARM::FK_VFPV4
239 : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_VFPV4_D16
240 : ARM::FK_FPV4_SP_D16));
241 else if (STI.hasFeature(ARM::FeatureVFP3_D16_SP))
242 emitFPU(
243 STI.hasFeature(ARM::FeatureD32)
244 // +d32
245 ? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_FP16
246 : ARM::FK_VFPV3)
247 // -d32
248 : (STI.hasFeature(ARM::FeatureFP64)
249 ? (STI.hasFeature(ARM::FeatureFP16)
250 ? ARM::FK_VFPV3_D16_FP16
251 : ARM::FK_VFPV3_D16)
252 : (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3XD_FP16
253 : ARM::FK_VFPV3XD)));
254 else if (STI.hasFeature(ARM::FeatureVFP2_SP))
255 emitFPU(ARM::FK_VFPV2);
258 // ABI_HardFP_use attribute to indicate single precision FP.
259 if (STI.hasFeature(ARM::FeatureVFP2_SP) && !STI.hasFeature(ARM::FeatureFP64))
260 emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
261 ARMBuildAttrs::HardFPSinglePrecision);
263 if (STI.hasFeature(ARM::FeatureFP16))
264 emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
266 if (STI.hasFeature(ARM::FeatureMP))
267 emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
269 if (STI.hasFeature(ARM::HasMVEFloatOps))
270 emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEIntegerAndFloat);
271 else if (STI.hasFeature(ARM::HasMVEIntegerOps))
272 emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEInteger);
274 // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
275 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
276 // It is not possible to produce DisallowDIV: if hwdiv is present in the base
277 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
278 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
279 // otherwise, the default value (AllowDIVIfExists) applies.
280 if (STI.hasFeature(ARM::FeatureHWDivARM) && !STI.hasFeature(ARM::HasV8Ops))
281 emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
283 if (STI.hasFeature(ARM::FeatureDSP) && isV8M(STI))
284 emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
286 if (STI.hasFeature(ARM::FeatureStrictAlign))
287 emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
288 ARMBuildAttrs::Not_Allowed);
289 else
290 emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
291 ARMBuildAttrs::Allowed);
293 if (STI.hasFeature(ARM::FeatureTrustZone) &&
294 STI.hasFeature(ARM::FeatureVirtualization))
295 emitAttribute(ARMBuildAttrs::Virtualization_use,
296 ARMBuildAttrs::AllowTZVirtualization);
297 else if (STI.hasFeature(ARM::FeatureTrustZone))
298 emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ);
299 else if (STI.hasFeature(ARM::FeatureVirtualization))
300 emitAttribute(ARMBuildAttrs::Virtualization_use,
301 ARMBuildAttrs::AllowVirtualization);