[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / MVETailPredication.cpp
blobcf9e2484bab57f5db4f1638288a34fc5d219eae9
1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions,
12 /// combined with a new form of predication called tail-predication, can be used
13 /// to provide implicit vector predication within a low-overhead loop.
14 /// This is implicit because the predicate of active/inactive lanes is
15 /// calculated by hardware, and thus does not need to be explicitly passed
16 /// to vector instructions. The instructions responsible for this are the
17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18 /// the total number of data elements processed by the loop. The loop-end
19 /// LETP instruction is responsible for decrementing and setting the remaining
20 /// elements to be processed and generating the mask of active lanes.
21 ///
22 /// The HardwareLoops pass inserts intrinsics identifying loops that the
23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
24 /// responsible for generating a vectorized loop in which the lanes are
25 /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
26 /// get.active.lane.mask intrinsic and attempts to convert them to VCTP
27 /// instructions. This will be picked up by the ARM Low-overhead loop pass later
28 /// in the backend, which performs the final transformation to a DLSTP or WLSTP
29 /// tail-predicated loop.
31 //===----------------------------------------------------------------------===//
33 #include "ARM.h"
34 #include "ARMSubtarget.h"
35 #include "ARMTargetTransformInfo.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicsARM.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
54 using namespace llvm;
56 #define DEBUG_TYPE "mve-tail-predication"
57 #define DESC "Transform predicated vector loops to use MVE tail predication"
59 cl::opt<TailPredication::Mode> EnableTailPredication(
60 "tail-predication", cl::desc("MVE tail-predication pass options"),
61 cl::init(TailPredication::Enabled),
62 cl::values(clEnumValN(TailPredication::Disabled, "disabled",
63 "Don't tail-predicate loops"),
64 clEnumValN(TailPredication::EnabledNoReductions,
65 "enabled-no-reductions",
66 "Enable tail-predication, but not for reduction loops"),
67 clEnumValN(TailPredication::Enabled,
68 "enabled",
69 "Enable tail-predication, including reduction loops"),
70 clEnumValN(TailPredication::ForceEnabledNoReductions,
71 "force-enabled-no-reductions",
72 "Enable tail-predication, but not for reduction loops, "
73 "and force this which might be unsafe"),
74 clEnumValN(TailPredication::ForceEnabled,
75 "force-enabled",
76 "Enable tail-predication, including reduction loops, "
77 "and force this which might be unsafe")));
80 namespace {
82 class MVETailPredication : public LoopPass {
83 SmallVector<IntrinsicInst*, 4> MaskedInsts;
84 Loop *L = nullptr;
85 ScalarEvolution *SE = nullptr;
86 TargetTransformInfo *TTI = nullptr;
87 const ARMSubtarget *ST = nullptr;
89 public:
90 static char ID;
92 MVETailPredication() : LoopPass(ID) { }
94 void getAnalysisUsage(AnalysisUsage &AU) const override {
95 AU.addRequired<ScalarEvolutionWrapperPass>();
96 AU.addRequired<LoopInfoWrapperPass>();
97 AU.addRequired<TargetPassConfig>();
98 AU.addRequired<TargetTransformInfoWrapperPass>();
99 AU.addPreserved<LoopInfoWrapperPass>();
100 AU.setPreservesCFG();
103 bool runOnLoop(Loop *L, LPPassManager&) override;
105 private:
106 /// Perform the relevant checks on the loop and convert active lane masks if
107 /// possible.
108 bool TryConvertActiveLaneMask(Value *TripCount);
110 /// Perform several checks on the arguments of @llvm.get.active.lane.mask
111 /// intrinsic. E.g., check that the loop induction variable and the element
112 /// count are of the form we expect, and also perform overflow checks for
113 /// the new expressions that are created.
114 bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount);
116 /// Insert the intrinsic to represent the effect of tail predication.
117 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount);
119 /// Rematerialize the iteration count in exit blocks, which enables
120 /// ARMLowOverheadLoops to better optimise away loop update statements inside
121 /// hardware-loops.
122 void RematerializeIterCount();
125 } // end namespace
127 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
128 if (skipLoop(L) || !EnableTailPredication)
129 return false;
131 MaskedInsts.clear();
132 Function &F = *L->getHeader()->getParent();
133 auto &TPC = getAnalysis<TargetPassConfig>();
134 auto &TM = TPC.getTM<TargetMachine>();
135 ST = &TM.getSubtarget<ARMSubtarget>(F);
136 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
137 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
138 this->L = L;
140 // The MVE and LOB extensions are combined to enable tail-predication, but
141 // there's nothing preventing us from generating VCTP instructions for v8.1m.
142 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
143 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
144 return false;
147 BasicBlock *Preheader = L->getLoopPreheader();
148 if (!Preheader)
149 return false;
151 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
152 for (auto &I : *BB) {
153 auto *Call = dyn_cast<IntrinsicInst>(&I);
154 if (!Call)
155 continue;
157 Intrinsic::ID ID = Call->getIntrinsicID();
158 if (ID == Intrinsic::start_loop_iterations ||
159 ID == Intrinsic::test_start_loop_iterations)
160 return cast<IntrinsicInst>(&I);
162 return nullptr;
165 // Look for the hardware loop intrinsic that sets the iteration count.
166 IntrinsicInst *Setup = FindLoopIterations(Preheader);
168 // The test.set iteration could live in the pre-preheader.
169 if (!Setup) {
170 if (!Preheader->getSinglePredecessor())
171 return false;
172 Setup = FindLoopIterations(Preheader->getSinglePredecessor());
173 if (!Setup)
174 return false;
177 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n");
179 bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0));
181 return Changed;
184 // The active lane intrinsic has this form:
186 // @llvm.get.active.lane.mask(IV, TC)
188 // Here we perform checks that this intrinsic behaves as expected,
189 // which means:
191 // 1) Check that the TripCount (TC) belongs to this loop (originally).
192 // 2) The element count (TC) needs to be sufficiently large that the decrement
193 // of element counter doesn't overflow, which means that we need to prove:
194 // ceil(ElementCount / VectorWidth) >= TripCount
195 // by rounding up ElementCount up:
196 // ((ElementCount + (VectorWidth - 1)) / VectorWidth
197 // and evaluate if expression isKnownNonNegative:
198 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
199 // 3) The IV must be an induction phi with an increment equal to the
200 // vector width.
201 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
202 Value *TripCount) {
203 bool ForceTailPredication =
204 EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
205 EnableTailPredication == TailPredication::ForceEnabled;
207 Value *ElemCount = ActiveLaneMask->getOperand(1);
208 bool Changed = false;
209 if (!L->makeLoopInvariant(ElemCount, Changed))
210 return false;
212 auto *EC= SE->getSCEV(ElemCount);
213 auto *TC = SE->getSCEV(TripCount);
214 int VectorWidth =
215 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
216 if (VectorWidth != 4 && VectorWidth != 8 && VectorWidth != 16)
217 return false;
218 ConstantInt *ConstElemCount = nullptr;
220 // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
221 // this loop. The scalar tripcount corresponds the number of elements
222 // processed by the loop, so we will refer to that from this point on.
223 if (!SE->isLoopInvariant(EC, L)) {
224 LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
225 return false;
228 if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
229 ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
230 if (!TC) {
231 LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
232 "set.loop.iterations\n");
233 return false;
236 // Calculate 2 tripcount values and check that they are consistent with
237 // each other. The TripCount for a predicated vector loop body is
238 // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
239 // work it out here.
240 uint64_t TC1 = TC->getZExtValue();
241 uint64_t TC2 =
242 (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth;
244 // If the tripcount values are inconsistent, we can't insert the VCTP and
245 // trigger tail-predication; keep the intrinsic as a get.active.lane.mask
246 // and legalize this.
247 if (TC1 != TC2) {
248 LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
249 << TC1 << " from set.loop.iterations, and "
250 << TC2 << " from get.active.lane.mask\n");
251 return false;
253 } else if (!ForceTailPredication) {
254 // 2) We need to prove that the sub expression that we create in the
255 // tail-predicated loop body, which calculates the remaining elements to be
256 // processed, is non-negative, i.e. it doesn't overflow:
258 // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
260 // This is true if:
262 // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
264 // which what we will be using here.
266 auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth));
267 // ElementCount + (VW-1):
268 auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
269 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
271 // Ceil = ElementCount + (VW-1) / VW
272 auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW);
274 // Prevent unused variable warnings with TC
275 (void)TC;
276 LLVM_DEBUG(
277 dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
278 dbgs() << "ARM TP: - TripCount = "; TC->dump();
279 dbgs() << "ARM TP: - ElemCount = "; EC->dump();
280 dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n";
281 dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil->dump();
284 // As an example, almost all the tripcount expressions (produced by the
285 // vectoriser) look like this:
287 // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw>) /u 4)
289 // and "ElementCount + (VW-1) / VW":
291 // Ceil = ((3 + %N) /u 4)
293 // Check for equality of TC and Ceil by calculating SCEV expression
294 // TC - Ceil and test it for zero.
296 bool Zero = SE->getMinusSCEV(
297 SE->getBackedgeTakenCount(L),
298 SE->getUDivExpr(SE->getAddExpr(SE->getMulExpr(Ceil, VW),
299 SE->getNegativeSCEV(VW)),
300 VW))
301 ->isZero();
303 if (!Zero) {
304 LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
305 return false;
309 // 3) Find out if IV is an induction phi. Note that we can't use Loop
310 // helpers here to get the induction variable, because the hardware loop is
311 // no longer in loopsimplify form, and also the hwloop intrinsic uses a
312 // different counter. Using SCEV, we check that the induction is of the
313 // form i = i + 4, where the increment must be equal to the VectorWidth.
314 auto *IV = ActiveLaneMask->getOperand(0);
315 auto *IVExpr = SE->getSCEV(IV);
316 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
318 if (!AddExpr) {
319 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
320 return false;
322 // Check that this AddRec is associated with this loop.
323 if (AddExpr->getLoop() != L) {
324 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
325 return false;
327 auto *Base = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
328 if (!Base || !Base->isZero()) {
329 LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n");
330 return false;
332 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
333 if (!Step) {
334 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
335 AddExpr->getOperand(1)->dump());
336 return false;
338 auto StepValue = Step->getValue()->getSExtValue();
339 if (VectorWidth == StepValue)
340 return true;
342 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
343 << " doesn't match vector width " << VectorWidth << "\n");
345 return false;
348 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
349 Value *TripCount) {
350 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
351 Module *M = L->getHeader()->getModule();
352 Type *Ty = IntegerType::get(M->getContext(), 32);
353 unsigned VectorWidth =
354 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
356 // Insert a phi to count the number of elements processed by the loop.
357 Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI());
358 PHINode *Processed = Builder.CreatePHI(Ty, 2);
359 Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader());
361 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
362 // thus represent the effect of tail predication.
363 Builder.SetInsertPoint(ActiveLaneMask);
364 ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
366 Intrinsic::ID VCTPID;
367 switch (VectorWidth) {
368 default:
369 llvm_unreachable("unexpected number of lanes");
370 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
371 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
372 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
374 // FIXME: vctp64 currently not supported because the predicate
375 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
376 // type, so problems happen at isel time.
377 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
378 // purposes, but takes a v4i1 instead of a v2i1.
380 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
381 Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
382 ActiveLaneMask->replaceAllUsesWith(VCTPCall);
384 // Add the incoming value to the new phi.
385 // TODO: This add likely already exists in the loop.
386 Value *Remaining = Builder.CreateSub(Processed, Factor);
387 Processed->addIncoming(Remaining, L->getLoopLatch());
388 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
389 << *Processed << "\n"
390 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
393 bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) {
394 SmallVector<IntrinsicInst *, 4> ActiveLaneMasks;
395 for (auto *BB : L->getBlocks())
396 for (auto &I : *BB)
397 if (auto *Int = dyn_cast<IntrinsicInst>(&I))
398 if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask)
399 ActiveLaneMasks.push_back(Int);
401 if (ActiveLaneMasks.empty())
402 return false;
404 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
406 for (auto *ActiveLaneMask : ActiveLaneMasks) {
407 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
408 << *ActiveLaneMask << "\n");
410 if (!IsSafeActiveMask(ActiveLaneMask, TripCount)) {
411 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
412 return false;
414 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
415 InsertVCTPIntrinsic(ActiveLaneMask, TripCount);
418 // Remove dead instructions and now dead phis.
419 for (auto *II : ActiveLaneMasks)
420 RecursivelyDeleteTriviallyDeadInstructions(II);
421 for (auto I : L->blocks())
422 DeleteDeadPHIs(I);
423 return true;
426 Pass *llvm::createMVETailPredicationPass() {
427 return new MVETailPredication();
430 char MVETailPredication::ID = 0;
432 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
433 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)