1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions,
12 /// combined with a new form of predication called tail-predication, can be used
13 /// to provide implicit vector predication within a low-overhead loop.
14 /// This is implicit because the predicate of active/inactive lanes is
15 /// calculated by hardware, and thus does not need to be explicitly passed
16 /// to vector instructions. The instructions responsible for this are the
17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18 /// the total number of data elements processed by the loop. The loop-end
19 /// LETP instruction is responsible for decrementing and setting the remaining
20 /// elements to be processed and generating the mask of active lanes.
22 /// The HardwareLoops pass inserts intrinsics identifying loops that the
23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
24 /// responsible for generating a vectorized loop in which the lanes are
25 /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
26 /// get.active.lane.mask intrinsic and attempts to convert them to VCTP
27 /// instructions. This will be picked up by the ARM Low-overhead loop pass later
28 /// in the backend, which performs the final transformation to a DLSTP or WLSTP
29 /// tail-predicated loop.
31 //===----------------------------------------------------------------------===//
34 #include "ARMSubtarget.h"
35 #include "ARMTargetTransformInfo.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicsARM.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
56 #define DEBUG_TYPE "mve-tail-predication"
57 #define DESC "Transform predicated vector loops to use MVE tail predication"
59 cl::opt
<TailPredication::Mode
> EnableTailPredication(
60 "tail-predication", cl::desc("MVE tail-predication pass options"),
61 cl::init(TailPredication::Enabled
),
62 cl::values(clEnumValN(TailPredication::Disabled
, "disabled",
63 "Don't tail-predicate loops"),
64 clEnumValN(TailPredication::EnabledNoReductions
,
65 "enabled-no-reductions",
66 "Enable tail-predication, but not for reduction loops"),
67 clEnumValN(TailPredication::Enabled
,
69 "Enable tail-predication, including reduction loops"),
70 clEnumValN(TailPredication::ForceEnabledNoReductions
,
71 "force-enabled-no-reductions",
72 "Enable tail-predication, but not for reduction loops, "
73 "and force this which might be unsafe"),
74 clEnumValN(TailPredication::ForceEnabled
,
76 "Enable tail-predication, including reduction loops, "
77 "and force this which might be unsafe")));
82 class MVETailPredication
: public LoopPass
{
83 SmallVector
<IntrinsicInst
*, 4> MaskedInsts
;
85 ScalarEvolution
*SE
= nullptr;
86 TargetTransformInfo
*TTI
= nullptr;
87 const ARMSubtarget
*ST
= nullptr;
92 MVETailPredication() : LoopPass(ID
) { }
94 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
95 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
96 AU
.addRequired
<LoopInfoWrapperPass
>();
97 AU
.addRequired
<TargetPassConfig
>();
98 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
99 AU
.addPreserved
<LoopInfoWrapperPass
>();
100 AU
.setPreservesCFG();
103 bool runOnLoop(Loop
*L
, LPPassManager
&) override
;
106 /// Perform the relevant checks on the loop and convert active lane masks if
108 bool TryConvertActiveLaneMask(Value
*TripCount
);
110 /// Perform several checks on the arguments of @llvm.get.active.lane.mask
111 /// intrinsic. E.g., check that the loop induction variable and the element
112 /// count are of the form we expect, and also perform overflow checks for
113 /// the new expressions that are created.
114 bool IsSafeActiveMask(IntrinsicInst
*ActiveLaneMask
, Value
*TripCount
);
116 /// Insert the intrinsic to represent the effect of tail predication.
117 void InsertVCTPIntrinsic(IntrinsicInst
*ActiveLaneMask
, Value
*TripCount
);
119 /// Rematerialize the iteration count in exit blocks, which enables
120 /// ARMLowOverheadLoops to better optimise away loop update statements inside
122 void RematerializeIterCount();
127 bool MVETailPredication::runOnLoop(Loop
*L
, LPPassManager
&) {
128 if (skipLoop(L
) || !EnableTailPredication
)
132 Function
&F
= *L
->getHeader()->getParent();
133 auto &TPC
= getAnalysis
<TargetPassConfig
>();
134 auto &TM
= TPC
.getTM
<TargetMachine
>();
135 ST
= &TM
.getSubtarget
<ARMSubtarget
>(F
);
136 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
137 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
140 // The MVE and LOB extensions are combined to enable tail-predication, but
141 // there's nothing preventing us from generating VCTP instructions for v8.1m.
142 if (!ST
->hasMVEIntegerOps() || !ST
->hasV8_1MMainlineOps()) {
143 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
147 BasicBlock
*Preheader
= L
->getLoopPreheader();
151 auto FindLoopIterations
= [](BasicBlock
*BB
) -> IntrinsicInst
* {
152 for (auto &I
: *BB
) {
153 auto *Call
= dyn_cast
<IntrinsicInst
>(&I
);
157 Intrinsic::ID ID
= Call
->getIntrinsicID();
158 if (ID
== Intrinsic::start_loop_iterations
||
159 ID
== Intrinsic::test_start_loop_iterations
)
160 return cast
<IntrinsicInst
>(&I
);
165 // Look for the hardware loop intrinsic that sets the iteration count.
166 IntrinsicInst
*Setup
= FindLoopIterations(Preheader
);
168 // The test.set iteration could live in the pre-preheader.
170 if (!Preheader
->getSinglePredecessor())
172 Setup
= FindLoopIterations(Preheader
->getSinglePredecessor());
177 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L
<< *Setup
<< "\n");
179 bool Changed
= TryConvertActiveLaneMask(Setup
->getArgOperand(0));
184 // The active lane intrinsic has this form:
186 // @llvm.get.active.lane.mask(IV, TC)
188 // Here we perform checks that this intrinsic behaves as expected,
191 // 1) Check that the TripCount (TC) belongs to this loop (originally).
192 // 2) The element count (TC) needs to be sufficiently large that the decrement
193 // of element counter doesn't overflow, which means that we need to prove:
194 // ceil(ElementCount / VectorWidth) >= TripCount
195 // by rounding up ElementCount up:
196 // ((ElementCount + (VectorWidth - 1)) / VectorWidth
197 // and evaluate if expression isKnownNonNegative:
198 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
199 // 3) The IV must be an induction phi with an increment equal to the
201 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst
*ActiveLaneMask
,
203 bool ForceTailPredication
=
204 EnableTailPredication
== TailPredication::ForceEnabledNoReductions
||
205 EnableTailPredication
== TailPredication::ForceEnabled
;
207 Value
*ElemCount
= ActiveLaneMask
->getOperand(1);
208 bool Changed
= false;
209 if (!L
->makeLoopInvariant(ElemCount
, Changed
))
212 auto *EC
= SE
->getSCEV(ElemCount
);
213 auto *TC
= SE
->getSCEV(TripCount
);
215 cast
<FixedVectorType
>(ActiveLaneMask
->getType())->getNumElements();
216 if (VectorWidth
!= 4 && VectorWidth
!= 8 && VectorWidth
!= 16)
218 ConstantInt
*ConstElemCount
= nullptr;
220 // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
221 // this loop. The scalar tripcount corresponds the number of elements
222 // processed by the loop, so we will refer to that from this point on.
223 if (!SE
->isLoopInvariant(EC
, L
)) {
224 LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
228 if ((ConstElemCount
= dyn_cast
<ConstantInt
>(ElemCount
))) {
229 ConstantInt
*TC
= dyn_cast
<ConstantInt
>(TripCount
);
231 LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
232 "set.loop.iterations\n");
236 // Calculate 2 tripcount values and check that they are consistent with
237 // each other. The TripCount for a predicated vector loop body is
238 // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
240 uint64_t TC1
= TC
->getZExtValue();
242 (ConstElemCount
->getZExtValue() + VectorWidth
- 1) / VectorWidth
;
244 // If the tripcount values are inconsistent, we can't insert the VCTP and
245 // trigger tail-predication; keep the intrinsic as a get.active.lane.mask
246 // and legalize this.
248 LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
249 << TC1
<< " from set.loop.iterations, and "
250 << TC2
<< " from get.active.lane.mask\n");
253 } else if (!ForceTailPredication
) {
254 // 2) We need to prove that the sub expression that we create in the
255 // tail-predicated loop body, which calculates the remaining elements to be
256 // processed, is non-negative, i.e. it doesn't overflow:
258 // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
262 // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
264 // which what we will be using here.
266 auto *VW
= SE
->getSCEV(ConstantInt::get(TripCount
->getType(), VectorWidth
));
267 // ElementCount + (VW-1):
268 auto *ECPlusVWMinus1
= SE
->getAddExpr(EC
,
269 SE
->getSCEV(ConstantInt::get(TripCount
->getType(), VectorWidth
- 1)));
271 // Ceil = ElementCount + (VW-1) / VW
272 auto *Ceil
= SE
->getUDivExpr(ECPlusVWMinus1
, VW
);
274 // Prevent unused variable warnings with TC
277 dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
278 dbgs() << "ARM TP: - TripCount = "; TC
->dump();
279 dbgs() << "ARM TP: - ElemCount = "; EC
->dump();
280 dbgs() << "ARM TP: - VecWidth = " << VectorWidth
<< "\n";
281 dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil
->dump();
284 // As an example, almost all the tripcount expressions (produced by the
285 // vectoriser) look like this:
287 // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw>) /u 4)
289 // and "ElementCount + (VW-1) / VW":
291 // Ceil = ((3 + %N) /u 4)
293 // Check for equality of TC and Ceil by calculating SCEV expression
294 // TC - Ceil and test it for zero.
296 bool Zero
= SE
->getMinusSCEV(
297 SE
->getBackedgeTakenCount(L
),
298 SE
->getUDivExpr(SE
->getAddExpr(SE
->getMulExpr(Ceil
, VW
),
299 SE
->getNegativeSCEV(VW
)),
304 LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
309 // 3) Find out if IV is an induction phi. Note that we can't use Loop
310 // helpers here to get the induction variable, because the hardware loop is
311 // no longer in loopsimplify form, and also the hwloop intrinsic uses a
312 // different counter. Using SCEV, we check that the induction is of the
313 // form i = i + 4, where the increment must be equal to the VectorWidth.
314 auto *IV
= ActiveLaneMask
->getOperand(0);
315 auto *IVExpr
= SE
->getSCEV(IV
);
316 auto *AddExpr
= dyn_cast
<SCEVAddRecExpr
>(IVExpr
);
319 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr
->dump());
322 // Check that this AddRec is associated with this loop.
323 if (AddExpr
->getLoop() != L
) {
324 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
327 auto *Base
= dyn_cast
<SCEVConstant
>(AddExpr
->getOperand(0));
328 if (!Base
|| !Base
->isZero()) {
329 LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n");
332 auto *Step
= dyn_cast
<SCEVConstant
>(AddExpr
->getOperand(1));
334 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
335 AddExpr
->getOperand(1)->dump());
338 auto StepValue
= Step
->getValue()->getSExtValue();
339 if (VectorWidth
== StepValue
)
342 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
343 << " doesn't match vector width " << VectorWidth
<< "\n");
348 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst
*ActiveLaneMask
,
350 IRBuilder
<> Builder(L
->getLoopPreheader()->getTerminator());
351 Module
*M
= L
->getHeader()->getModule();
352 Type
*Ty
= IntegerType::get(M
->getContext(), 32);
353 unsigned VectorWidth
=
354 cast
<FixedVectorType
>(ActiveLaneMask
->getType())->getNumElements();
356 // Insert a phi to count the number of elements processed by the loop.
357 Builder
.SetInsertPoint(L
->getHeader()->getFirstNonPHI());
358 PHINode
*Processed
= Builder
.CreatePHI(Ty
, 2);
359 Processed
->addIncoming(ActiveLaneMask
->getOperand(1), L
->getLoopPreheader());
361 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
362 // thus represent the effect of tail predication.
363 Builder
.SetInsertPoint(ActiveLaneMask
);
364 ConstantInt
*Factor
= ConstantInt::get(cast
<IntegerType
>(Ty
), VectorWidth
);
366 Intrinsic::ID VCTPID
;
367 switch (VectorWidth
) {
369 llvm_unreachable("unexpected number of lanes");
370 case 4: VCTPID
= Intrinsic::arm_mve_vctp32
; break;
371 case 8: VCTPID
= Intrinsic::arm_mve_vctp16
; break;
372 case 16: VCTPID
= Intrinsic::arm_mve_vctp8
; break;
374 // FIXME: vctp64 currently not supported because the predicate
375 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
376 // type, so problems happen at isel time.
377 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
378 // purposes, but takes a v4i1 instead of a v2i1.
380 Function
*VCTP
= Intrinsic::getDeclaration(M
, VCTPID
);
381 Value
*VCTPCall
= Builder
.CreateCall(VCTP
, Processed
);
382 ActiveLaneMask
->replaceAllUsesWith(VCTPCall
);
384 // Add the incoming value to the new phi.
385 // TODO: This add likely already exists in the loop.
386 Value
*Remaining
= Builder
.CreateSub(Processed
, Factor
);
387 Processed
->addIncoming(Remaining
, L
->getLoopLatch());
388 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
389 << *Processed
<< "\n"
390 << "ARM TP: Inserted VCTP: " << *VCTPCall
<< "\n");
393 bool MVETailPredication::TryConvertActiveLaneMask(Value
*TripCount
) {
394 SmallVector
<IntrinsicInst
*, 4> ActiveLaneMasks
;
395 for (auto *BB
: L
->getBlocks())
397 if (auto *Int
= dyn_cast
<IntrinsicInst
>(&I
))
398 if (Int
->getIntrinsicID() == Intrinsic::get_active_lane_mask
)
399 ActiveLaneMasks
.push_back(Int
);
401 if (ActiveLaneMasks
.empty())
404 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
406 for (auto *ActiveLaneMask
: ActiveLaneMasks
) {
407 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
408 << *ActiveLaneMask
<< "\n");
410 if (!IsSafeActiveMask(ActiveLaneMask
, TripCount
)) {
411 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
414 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
415 InsertVCTPIntrinsic(ActiveLaneMask
, TripCount
);
418 // Remove dead instructions and now dead phis.
419 for (auto *II
: ActiveLaneMasks
)
420 RecursivelyDeleteTriviallyDeadInstructions(II
);
421 for (auto I
: L
->blocks())
426 Pass
*llvm::createMVETailPredicationPass() {
427 return new MVETailPredication();
430 char MVETailPredication::ID
= 0;
432 INITIALIZE_PASS_BEGIN(MVETailPredication
, DEBUG_TYPE
, DESC
, false, false)
433 INITIALIZE_PASS_END(MVETailPredication
, DEBUG_TYPE
, DESC
, false, false)