[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCAsmPrinter.cpp
blobd0109f96844621e5a58394586000f49ff7fbb3ef
1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is
11 // the output mechanism used by `llc'.
13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/
14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
16 //===----------------------------------------------------------------------===//
18 #include "MCTargetDesc/PPCInstPrinter.h"
19 #include "MCTargetDesc/PPCMCExpr.h"
20 #include "MCTargetDesc/PPCMCTargetDesc.h"
21 #include "MCTargetDesc/PPCPredicates.h"
22 #include "PPC.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCSubtarget.h"
26 #include "PPCTargetMachine.h"
27 #include "PPCTargetStreamer.h"
28 #include "TargetInfo/PowerPCTargetInfo.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/Triple.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/BinaryFormat/ELF.h"
35 #include "llvm/CodeGen/AsmPrinter.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/StackMaps.h"
43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/MC/MCAsmInfo.h"
49 #include "llvm/MC/MCContext.h"
50 #include "llvm/MC/MCDirectives.h"
51 #include "llvm/MC/MCExpr.h"
52 #include "llvm/MC/MCInst.h"
53 #include "llvm/MC/MCInstBuilder.h"
54 #include "llvm/MC/MCSectionELF.h"
55 #include "llvm/MC/MCSectionXCOFF.h"
56 #include "llvm/MC/MCStreamer.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/MCSymbolELF.h"
59 #include "llvm/MC/MCSymbolXCOFF.h"
60 #include "llvm/MC/SectionKind.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/Error.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/Process.h"
67 #include "llvm/Support/TargetRegistry.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Transforms/Utils/ModuleUtils.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <memory>
75 #include <new>
77 using namespace llvm;
78 using namespace llvm::XCOFF;
80 #define DEBUG_TYPE "asmprinter"
82 static cl::opt<bool> EnableSSPCanaryBitInTB(
83 "aix-ssp-tb-bit", cl::init(false),
84 cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
86 // Specialize DenseMapInfo to allow
87 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap.
88 // This specialization is needed here because that type is used as keys in the
89 // map representing TOC entries.
90 namespace llvm {
91 template <>
92 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> {
93 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>;
95 static inline TOCKey getEmptyKey() {
96 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None};
98 static inline TOCKey getTombstoneKey() {
99 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid};
101 static unsigned getHashValue(const TOCKey &PairVal) {
102 return detail::combineHashValue(
103 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
104 DenseMapInfo<int>::getHashValue(PairVal.second));
106 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
108 } // end namespace llvm
110 namespace {
112 class PPCAsmPrinter : public AsmPrinter {
113 protected:
114 // For TLS on AIX, we need to be able to identify TOC entries of specific
115 // VariantKind so we can add the right relocations when we generate the
116 // entries. So each entry is represented by a pair of MCSymbol and
117 // VariantKind. For example, we need to be able to identify the following
118 // entry as a TLSGD entry so we can add the @m relocation:
119 // .tc .i[TC],i[TL]@m
120 // By default, VK_None is used for the VariantKind.
121 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>,
122 MCSymbol *>
123 TOC;
124 const PPCSubtarget *Subtarget = nullptr;
125 StackMaps SM;
127 public:
128 explicit PPCAsmPrinter(TargetMachine &TM,
129 std::unique_ptr<MCStreamer> Streamer)
130 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {}
132 StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
134 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym,
135 MCSymbolRefExpr::VariantKind Kind =
136 MCSymbolRefExpr::VariantKind::VK_None);
138 bool doInitialization(Module &M) override {
139 if (!TOC.empty())
140 TOC.clear();
141 return AsmPrinter::doInitialization(M);
144 void emitInstruction(const MachineInstr *MI) override;
146 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
147 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
148 /// The \p MI would be INLINEASM ONLY.
149 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
151 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
152 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
153 const char *ExtraCode, raw_ostream &O) override;
154 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
155 const char *ExtraCode, raw_ostream &O) override;
157 void emitEndOfAsmFile(Module &M) override;
159 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
160 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
161 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
162 bool runOnMachineFunction(MachineFunction &MF) override {
163 Subtarget = &MF.getSubtarget<PPCSubtarget>();
164 bool Changed = AsmPrinter::runOnMachineFunction(MF);
165 emitXRayTable();
166 return Changed;
170 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
171 class PPCLinuxAsmPrinter : public PPCAsmPrinter {
172 public:
173 explicit PPCLinuxAsmPrinter(TargetMachine &TM,
174 std::unique_ptr<MCStreamer> Streamer)
175 : PPCAsmPrinter(TM, std::move(Streamer)) {}
177 StringRef getPassName() const override {
178 return "Linux PPC Assembly Printer";
181 void emitStartOfAsmFile(Module &M) override;
182 void emitEndOfAsmFile(Module &) override;
184 void emitFunctionEntryLabel() override;
186 void emitFunctionBodyStart() override;
187 void emitFunctionBodyEnd() override;
188 void emitInstruction(const MachineInstr *MI) override;
191 class PPCAIXAsmPrinter : public PPCAsmPrinter {
192 private:
193 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
194 /// linkage for them in AIX.
195 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols;
197 /// A format indicator and unique trailing identifier to form part of the
198 /// sinit/sterm function names.
199 std::string FormatIndicatorAndUniqueModId;
201 // Record a list of GlobalAlias associated with a GlobalObject.
202 // This is used for AIX's extra-label-at-definition aliasing strategy.
203 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
204 GOAliasMap;
206 uint16_t getNumberOfVRSaved();
207 void emitTracebackTable();
209 SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
211 void emitGlobalVariableHelper(const GlobalVariable *);
213 public:
214 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
215 : PPCAsmPrinter(TM, std::move(Streamer)) {
216 if (MAI->isLittleEndian())
217 report_fatal_error(
218 "cannot create AIX PPC Assembly Printer for a little-endian target");
221 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
223 bool doInitialization(Module &M) override;
225 void emitXXStructorList(const DataLayout &DL, const Constant *List,
226 bool IsCtor) override;
228 void SetupMachineFunction(MachineFunction &MF) override;
230 void emitGlobalVariable(const GlobalVariable *GV) override;
232 void emitFunctionDescriptor() override;
234 void emitFunctionEntryLabel() override;
236 void emitFunctionBodyEnd() override;
238 void emitEndOfAsmFile(Module &) override;
240 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
242 void emitInstruction(const MachineInstr *MI) override;
244 bool doFinalization(Module &M) override;
246 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
249 } // end anonymous namespace
251 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
252 raw_ostream &O) {
253 // Computing the address of a global symbol, not calling it.
254 const GlobalValue *GV = MO.getGlobal();
255 getSymbol(GV)->print(O, MAI);
256 printOffset(MO.getOffset(), O);
259 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
260 raw_ostream &O) {
261 const DataLayout &DL = getDataLayout();
262 const MachineOperand &MO = MI->getOperand(OpNo);
264 switch (MO.getType()) {
265 case MachineOperand::MO_Register: {
266 // The MI is INLINEASM ONLY and UseVSXReg is always false.
267 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
269 // Linux assembler (Others?) does not take register mnemonics.
270 // FIXME - What about special registers used in mfspr/mtspr?
271 O << PPCRegisterInfo::stripRegisterPrefix(RegName);
272 return;
274 case MachineOperand::MO_Immediate:
275 O << MO.getImm();
276 return;
278 case MachineOperand::MO_MachineBasicBlock:
279 MO.getMBB()->getSymbol()->print(O, MAI);
280 return;
281 case MachineOperand::MO_ConstantPoolIndex:
282 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
283 << MO.getIndex();
284 return;
285 case MachineOperand::MO_BlockAddress:
286 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
287 return;
288 case MachineOperand::MO_GlobalAddress: {
289 PrintSymbolOperand(MO, O);
290 return;
293 default:
294 O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
295 return;
299 /// PrintAsmOperand - Print out an operand for an inline asm expression.
301 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
302 const char *ExtraCode, raw_ostream &O) {
303 // Does this asm operand have a single letter operand modifier?
304 if (ExtraCode && ExtraCode[0]) {
305 if (ExtraCode[1] != 0) return true; // Unknown modifier.
307 switch (ExtraCode[0]) {
308 default:
309 // See if this is a generic print operand
310 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
311 case 'L': // Write second word of DImode reference.
312 // Verify that this operand has two consecutive registers.
313 if (!MI->getOperand(OpNo).isReg() ||
314 OpNo+1 == MI->getNumOperands() ||
315 !MI->getOperand(OpNo+1).isReg())
316 return true;
317 ++OpNo; // Return the high-part.
318 break;
319 case 'I':
320 // Write 'i' if an integer constant, otherwise nothing. Used to print
321 // addi vs add, etc.
322 if (MI->getOperand(OpNo).isImm())
323 O << "i";
324 return false;
325 case 'x':
326 if(!MI->getOperand(OpNo).isReg())
327 return true;
328 // This operand uses VSX numbering.
329 // If the operand is a VMX register, convert it to a VSX register.
330 Register Reg = MI->getOperand(OpNo).getReg();
331 if (PPCInstrInfo::isVRRegister(Reg))
332 Reg = PPC::VSX32 + (Reg - PPC::V0);
333 else if (PPCInstrInfo::isVFRegister(Reg))
334 Reg = PPC::VSX32 + (Reg - PPC::VF0);
335 const char *RegName;
336 RegName = PPCInstPrinter::getRegisterName(Reg);
337 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
338 O << RegName;
339 return false;
343 printOperand(MI, OpNo, O);
344 return false;
347 // At the moment, all inline asm memory operands are a single register.
348 // In any case, the output of this routine should always be just one
349 // assembler operand.
351 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
352 const char *ExtraCode,
353 raw_ostream &O) {
354 if (ExtraCode && ExtraCode[0]) {
355 if (ExtraCode[1] != 0) return true; // Unknown modifier.
357 switch (ExtraCode[0]) {
358 default: return true; // Unknown modifier.
359 case 'L': // A memory reference to the upper word of a double word op.
360 O << getDataLayout().getPointerSize() << "(";
361 printOperand(MI, OpNo, O);
362 O << ")";
363 return false;
364 case 'y': // A memory reference for an X-form instruction
365 O << "0, ";
366 printOperand(MI, OpNo, O);
367 return false;
368 case 'I':
369 // Write 'i' if an integer constant, otherwise nothing. Used to print
370 // addi vs add, etc.
371 if (MI->getOperand(OpNo).isImm())
372 O << "i";
373 return false;
374 case 'U': // Print 'u' for update form.
375 case 'X': // Print 'x' for indexed form.
376 // FIXME: Currently for PowerPC memory operands are always loaded
377 // into a register, so we never get an update or indexed form.
378 // This is bad even for offset forms, since even if we know we
379 // have a value in -16(r1), we will generate a load into r<n>
380 // and then load from 0(r<n>). Until that issue is fixed,
381 // tolerate 'U' and 'X' but don't output anything.
382 assert(MI->getOperand(OpNo).isReg());
383 return false;
387 assert(MI->getOperand(OpNo).isReg());
388 O << "0(";
389 printOperand(MI, OpNo, O);
390 O << ")";
391 return false;
394 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
395 /// exists for it. If not, create one. Then return a symbol that references
396 /// the TOC entry.
397 MCSymbol *
398 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym,
399 MCSymbolRefExpr::VariantKind Kind) {
400 MCSymbol *&TOCEntry = TOC[{Sym, Kind}];
401 if (!TOCEntry)
402 TOCEntry = createTempSymbol("C");
403 return TOCEntry;
406 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) {
407 emitStackMaps(SM);
410 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
411 unsigned NumNOPBytes = MI.getOperand(1).getImm();
413 auto &Ctx = OutStreamer->getContext();
414 MCSymbol *MILabel = Ctx.createTempSymbol();
415 OutStreamer->emitLabel(MILabel);
417 SM.recordStackMap(*MILabel, MI);
418 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
420 // Scan ahead to trim the shadow.
421 const MachineBasicBlock &MBB = *MI.getParent();
422 MachineBasicBlock::const_iterator MII(MI);
423 ++MII;
424 while (NumNOPBytes > 0) {
425 if (MII == MBB.end() || MII->isCall() ||
426 MII->getOpcode() == PPC::DBG_VALUE ||
427 MII->getOpcode() == TargetOpcode::PATCHPOINT ||
428 MII->getOpcode() == TargetOpcode::STACKMAP)
429 break;
430 ++MII;
431 NumNOPBytes -= 4;
434 // Emit nops.
435 for (unsigned i = 0; i < NumNOPBytes; i += 4)
436 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
439 // Lower a patchpoint of the form:
440 // [<def>], <id>, <numBytes>, <target>, <numArgs>
441 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
442 auto &Ctx = OutStreamer->getContext();
443 MCSymbol *MILabel = Ctx.createTempSymbol();
444 OutStreamer->emitLabel(MILabel);
446 SM.recordPatchPoint(*MILabel, MI);
447 PatchPointOpers Opers(&MI);
449 unsigned EncodedBytes = 0;
450 const MachineOperand &CalleeMO = Opers.getCallTarget();
452 if (CalleeMO.isImm()) {
453 int64_t CallTarget = CalleeMO.getImm();
454 if (CallTarget) {
455 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
456 "High 16 bits of call target should be zero.");
457 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
458 EncodedBytes = 0;
459 // Materialize the jump address:
460 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
461 .addReg(ScratchReg)
462 .addImm((CallTarget >> 32) & 0xFFFF));
463 ++EncodedBytes;
464 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
465 .addReg(ScratchReg)
466 .addReg(ScratchReg)
467 .addImm(32).addImm(16));
468 ++EncodedBytes;
469 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
470 .addReg(ScratchReg)
471 .addReg(ScratchReg)
472 .addImm((CallTarget >> 16) & 0xFFFF));
473 ++EncodedBytes;
474 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
475 .addReg(ScratchReg)
476 .addReg(ScratchReg)
477 .addImm(CallTarget & 0xFFFF));
479 // Save the current TOC pointer before the remote call.
480 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
481 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
482 .addReg(PPC::X2)
483 .addImm(TOCSaveOffset)
484 .addReg(PPC::X1));
485 ++EncodedBytes;
487 // If we're on ELFv1, then we need to load the actual function pointer
488 // from the function descriptor.
489 if (!Subtarget->isELFv2ABI()) {
490 // Load the new TOC pointer and the function address, but not r11
491 // (needing this is rare, and loading it here would prevent passing it
492 // via a 'nest' parameter.
493 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
494 .addReg(PPC::X2)
495 .addImm(8)
496 .addReg(ScratchReg));
497 ++EncodedBytes;
498 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
499 .addReg(ScratchReg)
500 .addImm(0)
501 .addReg(ScratchReg));
502 ++EncodedBytes;
505 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
506 .addReg(ScratchReg));
507 ++EncodedBytes;
508 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
509 ++EncodedBytes;
511 // Restore the TOC pointer after the call.
512 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
513 .addReg(PPC::X2)
514 .addImm(TOCSaveOffset)
515 .addReg(PPC::X1));
516 ++EncodedBytes;
518 } else if (CalleeMO.isGlobal()) {
519 const GlobalValue *GValue = CalleeMO.getGlobal();
520 MCSymbol *MOSymbol = getSymbol(GValue);
521 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
523 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
524 .addExpr(SymVar));
525 EncodedBytes += 2;
528 // Each instruction is 4 bytes.
529 EncodedBytes *= 4;
531 // Emit padding.
532 unsigned NumBytes = Opers.getNumPatchBytes();
533 assert(NumBytes >= EncodedBytes &&
534 "Patchpoint can't request size less than the length of a call.");
535 assert((NumBytes - EncodedBytes) % 4 == 0 &&
536 "Invalid number of NOP bytes requested!");
537 for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
538 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
541 /// This helper function creates the TlsGetAddr MCSymbol for AIX. We will
542 /// create the csect and use the qual-name symbol instead of creating just the
543 /// external symbol.
544 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx) {
545 return Ctx
546 .getXCOFFSection(".__tls_get_addr", SectionKind::getText(),
547 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
548 ->getQualNameSymbol();
551 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
552 /// call to __tls_get_addr to the current output stream.
553 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
554 MCSymbolRefExpr::VariantKind VK) {
555 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
556 unsigned Opcode = PPC::BL8_NOP_TLS;
558 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
559 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
560 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
561 Kind = MCSymbolRefExpr::VK_PPC_NOTOC;
562 Opcode = PPC::BL8_NOTOC_TLS;
564 const Module *M = MF->getFunction().getParent();
566 assert(MI->getOperand(0).isReg() &&
567 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
568 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
569 "GETtls[ld]ADDR[32] must define GPR3");
570 assert(MI->getOperand(1).isReg() &&
571 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
572 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
573 "GETtls[ld]ADDR[32] must read GPR3");
575 if (Subtarget->isAIXABI()) {
576 // On AIX, the variable offset should already be in R4 and the region handle
577 // should already be in R3.
578 // For TLSGD, which currently is the only supported access model, we only
579 // need to generate an absolute branch to .__tls_get_addr.
580 Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
581 (void)VarOffsetReg;
582 assert(MI->getOperand(2).isReg() &&
583 MI->getOperand(2).getReg() == VarOffsetReg &&
584 "GETtls[ld]ADDR[32] must read GPR4");
585 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
586 const MCExpr *TlsRef = MCSymbolRefExpr::create(
587 TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext);
588 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
589 return;
592 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
594 if (Subtarget->is32BitELFABI() && isPositionIndependent())
595 Kind = MCSymbolRefExpr::VK_PLT;
597 const MCExpr *TlsRef =
598 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
600 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
601 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() &&
602 M->getPICLevel() == PICLevel::BigPIC)
603 TlsRef = MCBinaryExpr::createAdd(
604 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
605 const MachineOperand &MO = MI->getOperand(2);
606 const GlobalValue *GValue = MO.getGlobal();
607 MCSymbol *MOSymbol = getSymbol(GValue);
608 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
609 EmitToStreamer(*OutStreamer,
610 MCInstBuilder(Subtarget->isPPC64() ? Opcode
611 : (unsigned)PPC::BL_TLS)
612 .addExpr(TlsRef)
613 .addExpr(SymVar));
616 /// Map a machine operand for a TOC pseudo-machine instruction to its
617 /// corresponding MCSymbol.
618 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
619 AsmPrinter &AP) {
620 switch (MO.getType()) {
621 case MachineOperand::MO_GlobalAddress:
622 return AP.getSymbol(MO.getGlobal());
623 case MachineOperand::MO_ConstantPoolIndex:
624 return AP.GetCPISymbol(MO.getIndex());
625 case MachineOperand::MO_JumpTableIndex:
626 return AP.GetJTISymbol(MO.getIndex());
627 case MachineOperand::MO_BlockAddress:
628 return AP.GetBlockAddressSymbol(MO.getBlockAddress());
629 default:
630 llvm_unreachable("Unexpected operand type to get symbol.");
634 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
635 /// the current output stream.
637 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
638 MCInst TmpInst;
639 const bool IsPPC64 = Subtarget->isPPC64();
640 const bool IsAIX = Subtarget->isAIXABI();
641 const Module *M = MF->getFunction().getParent();
642 PICLevel::Level PL = M->getPICLevel();
644 #ifndef NDEBUG
645 // Validate that SPE and FPU are mutually exclusive in codegen
646 if (!MI->isInlineAsm()) {
647 for (const MachineOperand &MO: MI->operands()) {
648 if (MO.isReg()) {
649 Register Reg = MO.getReg();
650 if (Subtarget->hasSPE()) {
651 if (PPC::F4RCRegClass.contains(Reg) ||
652 PPC::F8RCRegClass.contains(Reg) ||
653 PPC::VFRCRegClass.contains(Reg) ||
654 PPC::VRRCRegClass.contains(Reg) ||
655 PPC::VSFRCRegClass.contains(Reg) ||
656 PPC::VSSRCRegClass.contains(Reg)
658 llvm_unreachable("SPE targets cannot have FPRegs!");
659 } else {
660 if (PPC::SPERCRegClass.contains(Reg))
661 llvm_unreachable("SPE register found in FPU-targeted code!");
666 #endif
668 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
669 ptrdiff_t OriginalOffset) {
670 // Apply an offset to the TOC-based expression such that the adjusted
671 // notional offset from the TOC base (to be encoded into the instruction's D
672 // or DS field) is the signed 16-bit truncation of the original notional
673 // offset from the TOC base.
674 // This is consistent with the treatment used both by XL C/C++ and
675 // by AIX ld -r.
676 ptrdiff_t Adjustment =
677 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
678 return MCBinaryExpr::createAdd(
679 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
682 auto getTOCEntryLoadingExprForXCOFF =
683 [IsPPC64, getTOCRelocAdjustedExprForXCOFF,
684 this](const MCSymbol *MOSymbol, const MCExpr *Expr,
685 MCSymbolRefExpr::VariantKind VK =
686 MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * {
687 const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
688 const auto TOCEntryIter = TOC.find({MOSymbol, VK});
689 assert(TOCEntryIter != TOC.end() &&
690 "Could not find the TOC entry for this symbol.");
691 const ptrdiff_t EntryDistanceFromTOCBase =
692 (TOCEntryIter - TOC.begin()) * EntryByteSize;
693 constexpr int16_t PositiveTOCRange = INT16_MAX;
695 if (EntryDistanceFromTOCBase > PositiveTOCRange)
696 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
698 return Expr;
700 auto GetVKForMO = [&](const MachineOperand &MO) {
701 // For GD TLS access on AIX, we have two TOC entries for the symbol (one for
702 // the variable offset and the other for the region handle). They are
703 // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
704 if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG)
705 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM;
706 if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG)
707 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD;
708 return MCSymbolRefExpr::VariantKind::VK_None;
711 // Lower multi-instruction pseudo operations.
712 switch (MI->getOpcode()) {
713 default: break;
714 case TargetOpcode::DBG_VALUE:
715 llvm_unreachable("Should be handled target independently");
716 case TargetOpcode::STACKMAP:
717 return LowerSTACKMAP(SM, *MI);
718 case TargetOpcode::PATCHPOINT:
719 return LowerPATCHPOINT(SM, *MI);
721 case PPC::MoveGOTtoLR: {
722 // Transform %lr = MoveGOTtoLR
723 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
724 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
725 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
726 // blrl
727 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
728 MCSymbol *GOTSymbol =
729 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
730 const MCExpr *OffsExpr =
731 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
732 MCSymbolRefExpr::VK_PPC_LOCAL,
733 OutContext),
734 MCConstantExpr::create(4, OutContext),
735 OutContext);
737 // Emit the 'bl'.
738 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
739 return;
741 case PPC::MovePCtoLR:
742 case PPC::MovePCtoLR8: {
743 // Transform %lr = MovePCtoLR
744 // Into this, where the label is the PIC base:
745 // bl L1$pb
746 // L1$pb:
747 MCSymbol *PICBase = MF->getPICBaseSymbol();
749 // Emit the 'bl'.
750 EmitToStreamer(*OutStreamer,
751 MCInstBuilder(PPC::BL)
752 // FIXME: We would like an efficient form for this, so we
753 // don't have to do a lot of extra uniquing.
754 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
756 // Emit the label.
757 OutStreamer->emitLabel(PICBase);
758 return;
760 case PPC::UpdateGBR: {
761 // Transform %rd = UpdateGBR(%rt, %ri)
762 // Into: lwz %rt, .L0$poff - .L0$pb(%ri)
763 // add %rd, %rt, %ri
764 // or into (if secure plt mode is on):
765 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
766 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
767 // Get the offset from the GOT Base Register to the GOT
768 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
769 if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
770 unsigned PICR = TmpInst.getOperand(0).getReg();
771 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
772 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
773 : ".LTOC");
774 const MCExpr *PB =
775 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
777 const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
778 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
780 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
781 EmitToStreamer(
782 *OutStreamer,
783 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
785 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
786 EmitToStreamer(
787 *OutStreamer,
788 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
789 return;
790 } else {
791 MCSymbol *PICOffset =
792 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
793 TmpInst.setOpcode(PPC::LWZ);
794 const MCExpr *Exp =
795 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
796 const MCExpr *PB =
797 MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
798 MCSymbolRefExpr::VK_None,
799 OutContext);
800 const MCOperand TR = TmpInst.getOperand(1);
801 const MCOperand PICR = TmpInst.getOperand(0);
803 // Step 1: lwz %rt, .L$poff - .L$pb(%ri)
804 TmpInst.getOperand(1) =
805 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
806 TmpInst.getOperand(0) = TR;
807 TmpInst.getOperand(2) = PICR;
808 EmitToStreamer(*OutStreamer, TmpInst);
810 TmpInst.setOpcode(PPC::ADD4);
811 TmpInst.getOperand(0) = PICR;
812 TmpInst.getOperand(1) = TR;
813 TmpInst.getOperand(2) = PICR;
814 EmitToStreamer(*OutStreamer, TmpInst);
815 return;
818 case PPC::LWZtoc: {
819 // Transform %rN = LWZtoc @op1, %r2
820 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
822 // Change the opcode to LWZ.
823 TmpInst.setOpcode(PPC::LWZ);
825 const MachineOperand &MO = MI->getOperand(1);
826 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
827 "Invalid operand for LWZtoc.");
829 // Map the operand to its corresponding MCSymbol.
830 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
832 // Create a reference to the GOT entry for the symbol. The GOT entry will be
833 // synthesized later.
834 if (PL == PICLevel::SmallPIC && !IsAIX) {
835 const MCExpr *Exp =
836 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
837 OutContext);
838 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
839 EmitToStreamer(*OutStreamer, TmpInst);
840 return;
843 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
845 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
846 // storage allocated in the TOC which contains the address of
847 // 'MOSymbol'. Said TOC entry will be synthesized later.
848 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
849 const MCExpr *Exp =
850 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext);
852 // AIX uses the label directly as the lwz displacement operand for
853 // references into the toc section. The displacement value will be generated
854 // relative to the toc-base.
855 if (IsAIX) {
856 assert(
857 TM.getCodeModel() == CodeModel::Small &&
858 "This pseudo should only be selected for 32-bit small code model.");
859 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
860 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
862 // Print MO for better readability
863 if (isVerbose())
864 OutStreamer->GetCommentOS() << MO << '\n';
865 EmitToStreamer(*OutStreamer, TmpInst);
866 return;
869 // Create an explicit subtract expression between the local symbol and
870 // '.LTOC' to manifest the toc-relative offset.
871 const MCExpr *PB = MCSymbolRefExpr::create(
872 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
873 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
874 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
875 EmitToStreamer(*OutStreamer, TmpInst);
876 return;
878 case PPC::ADDItoc: {
879 assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
880 "Operand only valid in AIX 32 bit mode");
882 // Transform %rN = ADDItoc @op1, %r2.
883 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
885 // Change the opcode to load address.
886 TmpInst.setOpcode(PPC::LA);
888 const MachineOperand &MO = MI->getOperand(1);
889 assert(MO.isGlobal() && "Invalid operand for ADDItoc.");
891 // Map the operand to its corresponding MCSymbol.
892 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
894 const MCExpr *Exp =
895 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext);
897 TmpInst.getOperand(1) = TmpInst.getOperand(2);
898 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
899 EmitToStreamer(*OutStreamer, TmpInst);
900 return;
902 case PPC::LDtocJTI:
903 case PPC::LDtocCPT:
904 case PPC::LDtocBA:
905 case PPC::LDtoc: {
906 // Transform %x3 = LDtoc @min1, %x2
907 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
909 // Change the opcode to LD.
910 TmpInst.setOpcode(PPC::LD);
912 const MachineOperand &MO = MI->getOperand(1);
913 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
914 "Invalid operand!");
916 // Map the operand to its corresponding MCSymbol.
917 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
919 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
921 // Map the machine operand to its corresponding MCSymbol, then map the
922 // global address operand to be a reference to the TOC entry we will
923 // synthesize later.
924 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
926 MCSymbolRefExpr::VariantKind VKExpr =
927 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC;
928 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext);
929 TmpInst.getOperand(1) = MCOperand::createExpr(
930 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
932 // Print MO for better readability
933 if (isVerbose() && IsAIX)
934 OutStreamer->GetCommentOS() << MO << '\n';
935 EmitToStreamer(*OutStreamer, TmpInst);
936 return;
938 case PPC::ADDIStocHA: {
939 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) &&
940 "This pseudo should only be selected for 32-bit large code model on"
941 " AIX.");
943 // Transform %rd = ADDIStocHA %rA, @sym(%r2)
944 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
946 // Change the opcode to ADDIS.
947 TmpInst.setOpcode(PPC::ADDIS);
949 const MachineOperand &MO = MI->getOperand(2);
950 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
951 "Invalid operand for ADDIStocHA.");
953 // Map the machine operand to its corresponding MCSymbol.
954 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
956 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
958 // Always use TOC on AIX. Map the global address operand to be a reference
959 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
960 // reference the storage allocated in the TOC which contains the address of
961 // 'MOSymbol'.
962 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
963 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
964 MCSymbolRefExpr::VK_PPC_U,
965 OutContext);
966 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
967 EmitToStreamer(*OutStreamer, TmpInst);
968 return;
970 case PPC::LWZtocL: {
971 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large &&
972 "This pseudo should only be selected for 32-bit large code model on"
973 " AIX.");
975 // Transform %rd = LWZtocL @sym, %rs.
976 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
978 // Change the opcode to lwz.
979 TmpInst.setOpcode(PPC::LWZ);
981 const MachineOperand &MO = MI->getOperand(1);
982 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
983 "Invalid operand for LWZtocL.");
985 // Map the machine operand to its corresponding MCSymbol.
986 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
988 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
990 // Always use TOC on AIX. Map the global address operand to be a reference
991 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
992 // reference the storage allocated in the TOC which contains the address of
993 // 'MOSymbol'.
994 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK);
995 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
996 MCSymbolRefExpr::VK_PPC_L,
997 OutContext);
998 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
999 EmitToStreamer(*OutStreamer, TmpInst);
1000 return;
1002 case PPC::ADDIStocHA8: {
1003 // Transform %xd = ADDIStocHA8 %x2, @sym
1004 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1006 // Change the opcode to ADDIS8. If the global address is the address of
1007 // an external symbol, is a jump table address, is a block address, or is a
1008 // constant pool index with large code model enabled, then generate a TOC
1009 // entry and reference that. Otherwise, reference the symbol directly.
1010 TmpInst.setOpcode(PPC::ADDIS8);
1012 const MachineOperand &MO = MI->getOperand(2);
1013 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1014 "Invalid operand for ADDIStocHA8!");
1016 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1018 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1020 const bool GlobalToc =
1021 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
1022 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
1023 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large))
1024 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
1026 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA;
1028 const MCExpr *Exp =
1029 MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1031 if (!MO.isJTI() && MO.getOffset())
1032 Exp = MCBinaryExpr::createAdd(Exp,
1033 MCConstantExpr::create(MO.getOffset(),
1034 OutContext),
1035 OutContext);
1037 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1038 EmitToStreamer(*OutStreamer, TmpInst);
1039 return;
1041 case PPC::LDtocL: {
1042 // Transform %xd = LDtocL @sym, %xs
1043 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1045 // Change the opcode to LD. If the global address is the address of
1046 // an external symbol, is a jump table address, is a block address, or is
1047 // a constant pool index with large code model enabled, then generate a
1048 // TOC entry and reference that. Otherwise, reference the symbol directly.
1049 TmpInst.setOpcode(PPC::LD);
1051 const MachineOperand &MO = MI->getOperand(1);
1052 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
1053 MO.isBlockAddress()) &&
1054 "Invalid operand for LDtocL!");
1056 LLVM_DEBUG(assert(
1057 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1058 "LDtocL used on symbol that could be accessed directly is "
1059 "invalid. Must match ADDIStocHA8."));
1061 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1063 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1065 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large)
1066 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK);
1068 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO;
1069 const MCExpr *Exp =
1070 MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1071 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1072 EmitToStreamer(*OutStreamer, TmpInst);
1073 return;
1075 case PPC::ADDItocL: {
1076 // Transform %xd = ADDItocL %xs, @sym
1077 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1079 // Change the opcode to ADDI8. If the global address is external, then
1080 // generate a TOC entry and reference that. Otherwise, reference the
1081 // symbol directly.
1082 TmpInst.setOpcode(PPC::ADDI8);
1084 const MachineOperand &MO = MI->getOperand(2);
1085 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL.");
1087 LLVM_DEBUG(assert(
1088 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1089 "Interposable definitions must use indirect access."));
1091 const MCExpr *Exp =
1092 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this),
1093 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext);
1094 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1095 EmitToStreamer(*OutStreamer, TmpInst);
1096 return;
1098 case PPC::ADDISgotTprelHA: {
1099 // Transform: %xd = ADDISgotTprelHA %x2, @sym
1100 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1101 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1102 const MachineOperand &MO = MI->getOperand(2);
1103 const GlobalValue *GValue = MO.getGlobal();
1104 MCSymbol *MOSymbol = getSymbol(GValue);
1105 const MCExpr *SymGotTprel =
1106 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
1107 OutContext);
1108 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1109 .addReg(MI->getOperand(0).getReg())
1110 .addReg(MI->getOperand(1).getReg())
1111 .addExpr(SymGotTprel));
1112 return;
1114 case PPC::LDgotTprelL:
1115 case PPC::LDgotTprelL32: {
1116 // Transform %xd = LDgotTprelL @sym, %xs
1117 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1119 // Change the opcode to LD.
1120 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
1121 const MachineOperand &MO = MI->getOperand(1);
1122 const GlobalValue *GValue = MO.getGlobal();
1123 MCSymbol *MOSymbol = getSymbol(GValue);
1124 const MCExpr *Exp = MCSymbolRefExpr::create(
1125 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO
1126 : MCSymbolRefExpr::VK_PPC_GOT_TPREL,
1127 OutContext);
1128 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1129 EmitToStreamer(*OutStreamer, TmpInst);
1130 return;
1133 case PPC::PPC32PICGOT: {
1134 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1135 MCSymbol *GOTRef = OutContext.createTempSymbol();
1136 MCSymbol *NextInstr = OutContext.createTempSymbol();
1138 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
1139 // FIXME: We would like an efficient form for this, so we don't have to do
1140 // a lot of extra uniquing.
1141 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
1142 const MCExpr *OffsExpr =
1143 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
1144 MCSymbolRefExpr::create(GOTRef, OutContext),
1145 OutContext);
1146 OutStreamer->emitLabel(GOTRef);
1147 OutStreamer->emitValue(OffsExpr, 4);
1148 OutStreamer->emitLabel(NextInstr);
1149 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
1150 .addReg(MI->getOperand(0).getReg()));
1151 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
1152 .addReg(MI->getOperand(1).getReg())
1153 .addImm(0)
1154 .addReg(MI->getOperand(0).getReg()));
1155 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
1156 .addReg(MI->getOperand(0).getReg())
1157 .addReg(MI->getOperand(1).getReg())
1158 .addReg(MI->getOperand(0).getReg()));
1159 return;
1161 case PPC::PPC32GOT: {
1162 MCSymbol *GOTSymbol =
1163 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1164 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
1165 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
1166 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
1167 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
1168 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
1169 .addReg(MI->getOperand(0).getReg())
1170 .addExpr(SymGotTlsL));
1171 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1172 .addReg(MI->getOperand(0).getReg())
1173 .addReg(MI->getOperand(0).getReg())
1174 .addExpr(SymGotTlsHA));
1175 return;
1177 case PPC::ADDIStlsgdHA: {
1178 // Transform: %xd = ADDIStlsgdHA %x2, @sym
1179 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1180 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1181 const MachineOperand &MO = MI->getOperand(2);
1182 const GlobalValue *GValue = MO.getGlobal();
1183 MCSymbol *MOSymbol = getSymbol(GValue);
1184 const MCExpr *SymGotTlsGD =
1185 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
1186 OutContext);
1187 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1188 .addReg(MI->getOperand(0).getReg())
1189 .addReg(MI->getOperand(1).getReg())
1190 .addExpr(SymGotTlsGD));
1191 return;
1193 case PPC::ADDItlsgdL:
1194 // Transform: %xd = ADDItlsgdL %xs, @sym
1195 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
1196 case PPC::ADDItlsgdL32: {
1197 // Transform: %rd = ADDItlsgdL32 %rs, @sym
1198 // Into: %rd = ADDI %rs, sym@got@tlsgd
1199 const MachineOperand &MO = MI->getOperand(2);
1200 const GlobalValue *GValue = MO.getGlobal();
1201 MCSymbol *MOSymbol = getSymbol(GValue);
1202 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
1203 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
1204 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
1205 OutContext);
1206 EmitToStreamer(*OutStreamer,
1207 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1208 .addReg(MI->getOperand(0).getReg())
1209 .addReg(MI->getOperand(1).getReg())
1210 .addExpr(SymGotTlsGD));
1211 return;
1213 case PPC::GETtlsADDR:
1214 // Transform: %x3 = GETtlsADDR %x3, @sym
1215 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
1216 case PPC::GETtlsADDRPCREL:
1217 case PPC::GETtlsADDR32AIX:
1218 case PPC::GETtlsADDR64AIX:
1219 // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
1220 // Into: BLA .__tls_get_addr()
1221 // Unlike on Linux, there is no symbol or relocation needed for this call.
1222 case PPC::GETtlsADDR32: {
1223 // Transform: %r3 = GETtlsADDR32 %r3, @sym
1224 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
1225 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
1226 return;
1228 case PPC::ADDIStlsldHA: {
1229 // Transform: %xd = ADDIStlsldHA %x2, @sym
1230 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
1231 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1232 const MachineOperand &MO = MI->getOperand(2);
1233 const GlobalValue *GValue = MO.getGlobal();
1234 MCSymbol *MOSymbol = getSymbol(GValue);
1235 const MCExpr *SymGotTlsLD =
1236 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
1237 OutContext);
1238 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1239 .addReg(MI->getOperand(0).getReg())
1240 .addReg(MI->getOperand(1).getReg())
1241 .addExpr(SymGotTlsLD));
1242 return;
1244 case PPC::ADDItlsldL:
1245 // Transform: %xd = ADDItlsldL %xs, @sym
1246 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l
1247 case PPC::ADDItlsldL32: {
1248 // Transform: %rd = ADDItlsldL32 %rs, @sym
1249 // Into: %rd = ADDI %rs, sym@got@tlsld
1250 const MachineOperand &MO = MI->getOperand(2);
1251 const GlobalValue *GValue = MO.getGlobal();
1252 MCSymbol *MOSymbol = getSymbol(GValue);
1253 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
1254 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
1255 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
1256 OutContext);
1257 EmitToStreamer(*OutStreamer,
1258 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1259 .addReg(MI->getOperand(0).getReg())
1260 .addReg(MI->getOperand(1).getReg())
1261 .addExpr(SymGotTlsLD));
1262 return;
1264 case PPC::GETtlsldADDR:
1265 // Transform: %x3 = GETtlsldADDR %x3, @sym
1266 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
1267 case PPC::GETtlsldADDRPCREL:
1268 case PPC::GETtlsldADDR32: {
1269 // Transform: %r3 = GETtlsldADDR32 %r3, @sym
1270 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
1271 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
1272 return;
1274 case PPC::ADDISdtprelHA:
1275 // Transform: %xd = ADDISdtprelHA %xs, @sym
1276 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha
1277 case PPC::ADDISdtprelHA32: {
1278 // Transform: %rd = ADDISdtprelHA32 %rs, @sym
1279 // Into: %rd = ADDIS %rs, sym@dtprel@ha
1280 const MachineOperand &MO = MI->getOperand(2);
1281 const GlobalValue *GValue = MO.getGlobal();
1282 MCSymbol *MOSymbol = getSymbol(GValue);
1283 const MCExpr *SymDtprel =
1284 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
1285 OutContext);
1286 EmitToStreamer(
1287 *OutStreamer,
1288 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
1289 .addReg(MI->getOperand(0).getReg())
1290 .addReg(MI->getOperand(1).getReg())
1291 .addExpr(SymDtprel));
1292 return;
1294 case PPC::PADDIdtprel: {
1295 // Transform: %rd = PADDIdtprel %rs, @sym
1296 // Into: %rd = PADDI8 %rs, sym@dtprel
1297 const MachineOperand &MO = MI->getOperand(2);
1298 const GlobalValue *GValue = MO.getGlobal();
1299 MCSymbol *MOSymbol = getSymbol(GValue);
1300 const MCExpr *SymDtprel = MCSymbolRefExpr::create(
1301 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext);
1302 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
1303 .addReg(MI->getOperand(0).getReg())
1304 .addReg(MI->getOperand(1).getReg())
1305 .addExpr(SymDtprel));
1306 return;
1309 case PPC::ADDIdtprelL:
1310 // Transform: %xd = ADDIdtprelL %xs, @sym
1311 // Into: %xd = ADDI8 %xs, sym@dtprel@l
1312 case PPC::ADDIdtprelL32: {
1313 // Transform: %rd = ADDIdtprelL32 %rs, @sym
1314 // Into: %rd = ADDI %rs, sym@dtprel@l
1315 const MachineOperand &MO = MI->getOperand(2);
1316 const GlobalValue *GValue = MO.getGlobal();
1317 MCSymbol *MOSymbol = getSymbol(GValue);
1318 const MCExpr *SymDtprel =
1319 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
1320 OutContext);
1321 EmitToStreamer(*OutStreamer,
1322 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1323 .addReg(MI->getOperand(0).getReg())
1324 .addReg(MI->getOperand(1).getReg())
1325 .addExpr(SymDtprel));
1326 return;
1328 case PPC::MFOCRF:
1329 case PPC::MFOCRF8:
1330 if (!Subtarget->hasMFOCRF()) {
1331 // Transform: %r3 = MFOCRF %cr7
1332 // Into: %r3 = MFCR ;; cr7
1333 unsigned NewOpcode =
1334 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
1335 OutStreamer->AddComment(PPCInstPrinter::
1336 getRegisterName(MI->getOperand(1).getReg()));
1337 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1338 .addReg(MI->getOperand(0).getReg()));
1339 return;
1341 break;
1342 case PPC::MTOCRF:
1343 case PPC::MTOCRF8:
1344 if (!Subtarget->hasMFOCRF()) {
1345 // Transform: %cr7 = MTOCRF %r3
1346 // Into: MTCRF mask, %r3 ;; cr7
1347 unsigned NewOpcode =
1348 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
1349 unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
1350 ->getEncodingValue(MI->getOperand(0).getReg());
1351 OutStreamer->AddComment(PPCInstPrinter::
1352 getRegisterName(MI->getOperand(0).getReg()));
1353 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1354 .addImm(Mask)
1355 .addReg(MI->getOperand(1).getReg()));
1356 return;
1358 break;
1359 case PPC::LD:
1360 case PPC::STD:
1361 case PPC::LWA_32:
1362 case PPC::LWA: {
1363 // Verify alignment is legal, so we don't create relocations
1364 // that can't be supported.
1365 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
1366 const MachineOperand &MO = MI->getOperand(OpNum);
1367 if (MO.isGlobal()) {
1368 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout();
1369 if (MO.getGlobal()->getPointerAlignment(DL) < 4)
1370 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
1372 // Now process the instruction normally.
1373 break;
1375 case PPC::PseudoEIEIO: {
1376 EmitToStreamer(
1377 *OutStreamer,
1378 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1379 EmitToStreamer(
1380 *OutStreamer,
1381 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1382 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
1383 return;
1387 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1388 EmitToStreamer(*OutStreamer, TmpInst);
1391 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
1392 if (!Subtarget->isPPC64())
1393 return PPCAsmPrinter::emitInstruction(MI);
1395 switch (MI->getOpcode()) {
1396 default:
1397 return PPCAsmPrinter::emitInstruction(MI);
1398 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
1399 // .begin:
1400 // b .end # lis 0, FuncId[16..32]
1401 // nop # li 0, FuncId[0..15]
1402 // std 0, -8(1)
1403 // mflr 0
1404 // bl __xray_FunctionEntry
1405 // mtlr 0
1406 // .end:
1408 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1409 // of instructions change.
1410 MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1411 MCSymbol *EndOfSled = OutContext.createTempSymbol();
1412 OutStreamer->emitLabel(BeginOfSled);
1413 EmitToStreamer(*OutStreamer,
1414 MCInstBuilder(PPC::B).addExpr(
1415 MCSymbolRefExpr::create(EndOfSled, OutContext)));
1416 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1417 EmitToStreamer(
1418 *OutStreamer,
1419 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1420 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1421 EmitToStreamer(*OutStreamer,
1422 MCInstBuilder(PPC::BL8_NOP)
1423 .addExpr(MCSymbolRefExpr::create(
1424 OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
1425 OutContext)));
1426 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1427 OutStreamer->emitLabel(EndOfSled);
1428 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
1429 break;
1431 case TargetOpcode::PATCHABLE_RET: {
1432 unsigned RetOpcode = MI->getOperand(0).getImm();
1433 MCInst RetInst;
1434 RetInst.setOpcode(RetOpcode);
1435 for (const auto &MO : llvm::drop_begin(MI->operands())) {
1436 MCOperand MCOp;
1437 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
1438 RetInst.addOperand(MCOp);
1441 bool IsConditional;
1442 if (RetOpcode == PPC::BCCLR) {
1443 IsConditional = true;
1444 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
1445 RetOpcode == PPC::TCRETURNai8) {
1446 break;
1447 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
1448 IsConditional = false;
1449 } else {
1450 EmitToStreamer(*OutStreamer, RetInst);
1451 break;
1454 MCSymbol *FallthroughLabel;
1455 if (IsConditional) {
1456 // Before:
1457 // bgtlr cr0
1459 // After:
1460 // ble cr0, .end
1461 // .p2align 3
1462 // .begin:
1463 // blr # lis 0, FuncId[16..32]
1464 // nop # li 0, FuncId[0..15]
1465 // std 0, -8(1)
1466 // mflr 0
1467 // bl __xray_FunctionExit
1468 // mtlr 0
1469 // blr
1470 // .end:
1472 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1473 // of instructions change.
1474 FallthroughLabel = OutContext.createTempSymbol();
1475 EmitToStreamer(
1476 *OutStreamer,
1477 MCInstBuilder(PPC::BCC)
1478 .addImm(PPC::InvertPredicate(
1479 static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
1480 .addReg(MI->getOperand(2).getReg())
1481 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
1482 RetInst = MCInst();
1483 RetInst.setOpcode(PPC::BLR8);
1485 // .p2align 3
1486 // .begin:
1487 // b(lr)? # lis 0, FuncId[16..32]
1488 // nop # li 0, FuncId[0..15]
1489 // std 0, -8(1)
1490 // mflr 0
1491 // bl __xray_FunctionExit
1492 // mtlr 0
1493 // b(lr)?
1495 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1496 // of instructions change.
1497 OutStreamer->emitCodeAlignment(8);
1498 MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1499 OutStreamer->emitLabel(BeginOfSled);
1500 EmitToStreamer(*OutStreamer, RetInst);
1501 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1502 EmitToStreamer(
1503 *OutStreamer,
1504 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1505 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1506 EmitToStreamer(*OutStreamer,
1507 MCInstBuilder(PPC::BL8_NOP)
1508 .addExpr(MCSymbolRefExpr::create(
1509 OutContext.getOrCreateSymbol("__xray_FunctionExit"),
1510 OutContext)));
1511 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1512 EmitToStreamer(*OutStreamer, RetInst);
1513 if (IsConditional)
1514 OutStreamer->emitLabel(FallthroughLabel);
1515 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
1516 break;
1518 case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1519 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
1520 case TargetOpcode::PATCHABLE_TAIL_CALL:
1521 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
1522 // normal function exit from a tail exit.
1523 llvm_unreachable("Tail call is handled in the normal case. See comments "
1524 "around this assert.");
1528 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
1529 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
1530 PPCTargetStreamer *TS =
1531 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1533 if (TS)
1534 TS->emitAbiVersion(2);
1537 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
1538 !isPositionIndependent())
1539 return AsmPrinter::emitStartOfAsmFile(M);
1541 if (M.getPICLevel() == PICLevel::SmallPIC)
1542 return AsmPrinter::emitStartOfAsmFile(M);
1544 OutStreamer->SwitchSection(OutContext.getELFSection(
1545 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
1547 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
1548 MCSymbol *CurrentPos = OutContext.createTempSymbol();
1550 OutStreamer->emitLabel(CurrentPos);
1552 // The GOT pointer points to the middle of the GOT, in order to reference the
1553 // entire 64kB range. 0x8000 is the midpoint.
1554 const MCExpr *tocExpr =
1555 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
1556 MCConstantExpr::create(0x8000, OutContext),
1557 OutContext);
1559 OutStreamer->emitAssignment(TOCSym, tocExpr);
1561 OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
1564 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
1565 // linux/ppc32 - Normal entry label.
1566 if (!Subtarget->isPPC64() &&
1567 (!isPositionIndependent() ||
1568 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
1569 return AsmPrinter::emitFunctionEntryLabel();
1571 if (!Subtarget->isPPC64()) {
1572 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1573 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
1574 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
1575 MCSymbol *PICBase = MF->getPICBaseSymbol();
1576 OutStreamer->emitLabel(RelocSymbol);
1578 const MCExpr *OffsExpr =
1579 MCBinaryExpr::createSub(
1580 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
1581 OutContext),
1582 MCSymbolRefExpr::create(PICBase, OutContext),
1583 OutContext);
1584 OutStreamer->emitValue(OffsExpr, 4);
1585 OutStreamer->emitLabel(CurrentFnSym);
1586 return;
1587 } else
1588 return AsmPrinter::emitFunctionEntryLabel();
1591 // ELFv2 ABI - Normal entry label.
1592 if (Subtarget->isELFv2ABI()) {
1593 // In the Large code model, we allow arbitrary displacements between
1594 // the text section and its associated TOC section. We place the
1595 // full 8-byte offset to the TOC in memory immediately preceding
1596 // the function global entry point.
1597 if (TM.getCodeModel() == CodeModel::Large
1598 && !MF->getRegInfo().use_empty(PPC::X2)) {
1599 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1601 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1602 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
1603 const MCExpr *TOCDeltaExpr =
1604 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
1605 MCSymbolRefExpr::create(GlobalEPSymbol,
1606 OutContext),
1607 OutContext);
1609 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
1610 OutStreamer->emitValue(TOCDeltaExpr, 8);
1612 return AsmPrinter::emitFunctionEntryLabel();
1615 // Emit an official procedure descriptor.
1616 MCSectionSubPair Current = OutStreamer->getCurrentSection();
1617 MCSectionELF *Section = OutStreamer->getContext().getELFSection(
1618 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
1619 OutStreamer->SwitchSection(Section);
1620 OutStreamer->emitLabel(CurrentFnSym);
1621 OutStreamer->emitValueToAlignment(8);
1622 MCSymbol *Symbol1 = CurrentFnSymForSize;
1623 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
1624 // entry point.
1625 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
1626 8 /*size*/);
1627 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1628 // Generates a R_PPC64_TOC relocation for TOC base insertion.
1629 OutStreamer->emitValue(
1630 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
1631 8/*size*/);
1632 // Emit a null environment pointer.
1633 OutStreamer->emitIntValue(0, 8 /* size */);
1634 OutStreamer->SwitchSection(Current.first, Current.second);
1637 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
1638 const DataLayout &DL = getDataLayout();
1640 bool isPPC64 = DL.getPointerSizeInBits() == 64;
1642 PPCTargetStreamer *TS =
1643 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1645 if (!TOC.empty()) {
1646 const char *Name = isPPC64 ? ".toc" : ".got2";
1647 MCSectionELF *Section = OutContext.getELFSection(
1648 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
1649 OutStreamer->SwitchSection(Section);
1650 if (!isPPC64)
1651 OutStreamer->emitValueToAlignment(4);
1653 for (const auto &TOCMapPair : TOC) {
1654 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
1655 MCSymbol *const TOCEntryLabel = TOCMapPair.second;
1657 OutStreamer->emitLabel(TOCEntryLabel);
1658 if (isPPC64 && TS != nullptr)
1659 TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
1660 else
1661 OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
1665 PPCAsmPrinter::emitEndOfAsmFile(M);
1668 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
1669 void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
1670 // In the ELFv2 ABI, in functions that use the TOC register, we need to
1671 // provide two entry points. The ABI guarantees that when calling the
1672 // local entry point, r2 is set up by the caller to contain the TOC base
1673 // for this function, and when calling the global entry point, r12 is set
1674 // up by the caller to hold the address of the global entry point. We
1675 // thus emit a prefix sequence along the following lines:
1677 // func:
1678 // .Lfunc_gepNN:
1679 // # global entry point
1680 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
1681 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
1682 // .Lfunc_lepNN:
1683 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
1684 // # local entry point, followed by function body
1686 // For the Large code model, we create
1688 // .Lfunc_tocNN:
1689 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
1690 // func:
1691 // .Lfunc_gepNN:
1692 // # global entry point
1693 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
1694 // add r2,r2,r12
1695 // .Lfunc_lepNN:
1696 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
1697 // # local entry point, followed by function body
1699 // This ensures we have r2 set up correctly while executing the function
1700 // body, no matter which entry point is called.
1701 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1702 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
1703 !MF->getRegInfo().use_empty(PPC::R2);
1704 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
1705 UsesX2OrR2 && PPCFI->usesTOCBasePtr();
1706 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
1707 Subtarget->isELFv2ABI() && UsesX2OrR2;
1709 // Only do all that if the function uses R2 as the TOC pointer
1710 // in the first place. We don't need the global entry point if the
1711 // function uses R2 as an allocatable register.
1712 if (NonPCrelGEPRequired || PCrelGEPRequired) {
1713 // Note: The logic here must be synchronized with the code in the
1714 // branch-selection pass which sets the offset of the first block in the
1715 // function. This matters because it affects the alignment.
1716 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
1717 OutStreamer->emitLabel(GlobalEntryLabel);
1718 const MCSymbolRefExpr *GlobalEntryLabelExp =
1719 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
1721 if (TM.getCodeModel() != CodeModel::Large) {
1722 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
1723 const MCExpr *TOCDeltaExpr =
1724 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
1725 GlobalEntryLabelExp, OutContext);
1727 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
1728 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1729 .addReg(PPC::X2)
1730 .addReg(PPC::X12)
1731 .addExpr(TOCDeltaHi));
1733 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
1734 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
1735 .addReg(PPC::X2)
1736 .addReg(PPC::X2)
1737 .addExpr(TOCDeltaLo));
1738 } else {
1739 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
1740 const MCExpr *TOCOffsetDeltaExpr =
1741 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
1742 GlobalEntryLabelExp, OutContext);
1744 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
1745 .addReg(PPC::X2)
1746 .addExpr(TOCOffsetDeltaExpr)
1747 .addReg(PPC::X12));
1748 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
1749 .addReg(PPC::X2)
1750 .addReg(PPC::X2)
1751 .addReg(PPC::X12));
1754 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
1755 OutStreamer->emitLabel(LocalEntryLabel);
1756 const MCSymbolRefExpr *LocalEntryLabelExp =
1757 MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
1758 const MCExpr *LocalOffsetExp =
1759 MCBinaryExpr::createSub(LocalEntryLabelExp,
1760 GlobalEntryLabelExp, OutContext);
1762 PPCTargetStreamer *TS =
1763 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1765 if (TS)
1766 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
1767 } else if (Subtarget->isUsingPCRelativeCalls()) {
1768 // When generating the entry point for a function we have a few scenarios
1769 // based on whether or not that function uses R2 and whether or not that
1770 // function makes calls (or is a leaf function).
1771 // 1) A leaf function that does not use R2 (or treats it as callee-saved
1772 // and preserves it). In this case st_other=0 and both
1773 // the local and global entry points for the function are the same.
1774 // No special entry point code is required.
1775 // 2) A function uses the TOC pointer R2. This function may or may not have
1776 // calls. In this case st_other=[2,6] and the global and local entry
1777 // points are different. Code to correctly setup the TOC pointer in R2
1778 // is put between the global and local entry points. This case is
1779 // covered by the if statatement above.
1780 // 3) A function does not use the TOC pointer R2 but does have calls.
1781 // In this case st_other=1 since we do not know whether or not any
1782 // of the callees clobber R2. This case is dealt with in this else if
1783 // block. Tail calls are considered calls and the st_other should also
1784 // be set to 1 in that case as well.
1785 // 4) The function does not use the TOC pointer but R2 is used inside
1786 // the function. In this case st_other=1 once again.
1787 // 5) This function uses inline asm. We mark R2 as reserved if the function
1788 // has inline asm as we have to assume that it may be used.
1789 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
1790 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
1791 PPCTargetStreamer *TS =
1792 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1793 if (TS)
1794 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
1795 MCConstantExpr::create(1, OutContext));
1800 /// EmitFunctionBodyEnd - Print the traceback table before the .size
1801 /// directive.
1803 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
1804 // Only the 64-bit target requires a traceback table. For now,
1805 // we only emit the word of zeroes that GDB requires to find
1806 // the end of the function, and zeroes for the eight-byte
1807 // mandatory fields.
1808 // FIXME: We should fill in the eight-byte mandatory fields as described in
1809 // the PPC64 ELF ABI (this is a low-priority item because GDB does not
1810 // currently make use of these fields).
1811 if (Subtarget->isPPC64()) {
1812 OutStreamer->emitIntValue(0, 4/*size*/);
1813 OutStreamer->emitIntValue(0, 8/*size*/);
1817 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
1818 MCSymbol *GVSym) const {
1820 assert(MAI->hasVisibilityOnlyWithLinkage() &&
1821 "AIX's linkage directives take a visibility setting.");
1823 MCSymbolAttr LinkageAttr = MCSA_Invalid;
1824 switch (GV->getLinkage()) {
1825 case GlobalValue::ExternalLinkage:
1826 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
1827 break;
1828 case GlobalValue::LinkOnceAnyLinkage:
1829 case GlobalValue::LinkOnceODRLinkage:
1830 case GlobalValue::WeakAnyLinkage:
1831 case GlobalValue::WeakODRLinkage:
1832 case GlobalValue::ExternalWeakLinkage:
1833 LinkageAttr = MCSA_Weak;
1834 break;
1835 case GlobalValue::AvailableExternallyLinkage:
1836 LinkageAttr = MCSA_Extern;
1837 break;
1838 case GlobalValue::PrivateLinkage:
1839 return;
1840 case GlobalValue::InternalLinkage:
1841 assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
1842 "InternalLinkage should not have other visibility setting.");
1843 LinkageAttr = MCSA_LGlobal;
1844 break;
1845 case GlobalValue::AppendingLinkage:
1846 llvm_unreachable("Should never emit this");
1847 case GlobalValue::CommonLinkage:
1848 llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
1851 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
1853 MCSymbolAttr VisibilityAttr = MCSA_Invalid;
1854 if (!TM.getIgnoreXCOFFVisibility()) {
1855 switch (GV->getVisibility()) {
1857 // TODO: "exported" and "internal" Visibility needs to go here.
1858 case GlobalValue::DefaultVisibility:
1859 break;
1860 case GlobalValue::HiddenVisibility:
1861 VisibilityAttr = MAI->getHiddenVisibilityAttr();
1862 break;
1863 case GlobalValue::ProtectedVisibility:
1864 VisibilityAttr = MAI->getProtectedVisibilityAttr();
1865 break;
1869 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
1870 VisibilityAttr);
1873 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1874 // Setup CurrentFnDescSym and its containing csect.
1875 MCSectionXCOFF *FnDescSec =
1876 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
1877 &MF.getFunction(), TM));
1878 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
1880 CurrentFnDescSym = FnDescSec->getQualNameSymbol();
1882 return AsmPrinter::SetupMachineFunction(MF);
1885 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
1886 // Calculate the number of VRs be saved.
1887 // Vector registers 20 through 31 are marked as reserved and cannot be used
1888 // in the default ABI.
1889 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
1890 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
1891 TM.getAIXExtendedAltivecABI()) {
1892 const MachineRegisterInfo &MRI = MF->getRegInfo();
1893 for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
1894 if (MRI.isPhysRegModified(Reg))
1895 // Number of VRs saved.
1896 return PPC::V31 - Reg + 1;
1898 return 0;
1901 void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
1903 if (!TM.getXCOFFTracebackTable())
1904 return;
1906 emitTracebackTable();
1908 // If ShouldEmitEHBlock returns true, then the eh info table
1909 // will be emitted via `AIXException::endFunction`. Otherwise, we
1910 // need to emit a dumy eh info table when VRs are saved. We could not
1911 // consolidate these two places into one because there is no easy way
1912 // to access register information in `AIXException` class.
1913 if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
1914 (getNumberOfVRSaved() > 0)) {
1915 // Emit dummy EH Info Table.
1916 OutStreamer->SwitchSection(getObjFileLowering().getCompactUnwindSection());
1917 MCSymbol *EHInfoLabel =
1918 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
1919 OutStreamer->emitLabel(EHInfoLabel);
1921 // Version number.
1922 OutStreamer->emitInt32(0);
1924 const DataLayout &DL = MMI->getModule()->getDataLayout();
1925 const unsigned PointerSize = DL.getPointerSize();
1926 // Add necessary paddings in 64 bit mode.
1927 OutStreamer->emitValueToAlignment(PointerSize);
1929 OutStreamer->emitIntValue(0, PointerSize);
1930 OutStreamer->emitIntValue(0, PointerSize);
1931 OutStreamer->SwitchSection(MF->getSection());
1935 void PPCAIXAsmPrinter::emitTracebackTable() {
1937 // Create a symbol for the end of function.
1938 MCSymbol *FuncEnd = createTempSymbol(MF->getName());
1939 OutStreamer->emitLabel(FuncEnd);
1941 OutStreamer->AddComment("Traceback table begin");
1942 // Begin with a fullword of zero.
1943 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
1945 SmallString<128> CommentString;
1946 raw_svector_ostream CommentOS(CommentString);
1948 auto EmitComment = [&]() {
1949 OutStreamer->AddComment(CommentOS.str());
1950 CommentString.clear();
1953 auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
1954 EmitComment();
1955 OutStreamer->emitIntValueInHexWithPadding(Value, Size);
1958 unsigned int Version = 0;
1959 CommentOS << "Version = " << Version;
1960 EmitCommentAndValue(Version, 1);
1962 // There is a lack of information in the IR to assist with determining the
1963 // source language. AIX exception handling mechanism would only search for
1964 // personality routine and LSDA area when such language supports exception
1965 // handling. So to be conservatively correct and allow runtime to do its job,
1966 // we need to set it to C++ for now.
1967 TracebackTable::LanguageID LanguageIdentifier =
1968 TracebackTable::CPlusPlus; // C++
1970 CommentOS << "Language = "
1971 << getNameForTracebackTableLanguageId(LanguageIdentifier);
1972 EmitCommentAndValue(LanguageIdentifier, 1);
1974 // This is only populated for the third and fourth bytes.
1975 uint32_t FirstHalfOfMandatoryField = 0;
1977 // Emit the 3rd byte of the mandatory field.
1979 // We always set traceback offset bit to true.
1980 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
1982 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1983 const MachineRegisterInfo &MRI = MF->getRegInfo();
1985 // Check the function uses floating-point processor instructions or not
1986 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
1987 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
1988 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
1989 break;
1993 #define GENBOOLCOMMENT(Prefix, V, Field) \
1994 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \
1995 << #Field
1997 #define GENVALUECOMMENT(PrefixAndName, V, Field) \
1998 CommentOS << (PrefixAndName) << " = " \
1999 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \
2000 (TracebackTable::Field##Shift))
2002 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
2003 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
2004 EmitComment();
2006 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
2007 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
2008 EmitComment();
2010 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
2011 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
2012 EmitComment();
2014 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
2015 EmitComment();
2016 GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
2017 IsFloatingPointOperationLogOrAbortEnabled);
2018 EmitComment();
2020 OutStreamer->emitIntValueInHexWithPadding(
2021 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2023 // Set the 4th byte of the mandatory field.
2024 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
2026 static_assert(XCOFF::AllocRegNo == 31, "Unexpected register usage!");
2027 if (MRI.isPhysRegUsed(Subtarget->isPPC64() ? PPC::X31 : PPC::R31,
2028 /* SkipRegMaskTest */ true))
2029 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
2031 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
2032 if (!MustSaveCRs.empty())
2033 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
2035 if (FI->mustSaveLR())
2036 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
2038 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
2039 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
2040 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
2041 EmitComment();
2042 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
2043 OnConditionDirective);
2044 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
2045 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
2046 EmitComment();
2047 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
2050 // Set the 5th byte of mandatory field.
2051 uint32_t SecondHalfOfMandatoryField = 0;
2053 // Always store back chain.
2054 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask;
2056 uint32_t FPRSaved = 0;
2057 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
2058 if (MRI.isPhysRegModified(Reg)) {
2059 FPRSaved = PPC::F31 - Reg + 1;
2060 break;
2063 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
2064 TracebackTable::FPRSavedMask;
2065 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
2066 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
2067 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
2068 EmitComment();
2069 OutStreamer->emitIntValueInHexWithPadding(
2070 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
2072 // Set the 6th byte of mandatory field.
2074 // Check whether has Vector Instruction,We only treat instructions uses vector
2075 // register as vector instructions.
2076 bool HasVectorInst = false;
2077 for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
2078 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2079 // Has VMX instruction.
2080 HasVectorInst = true;
2081 break;
2084 if (FI->hasVectorParms() || HasVectorInst)
2085 SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
2087 uint16_t NumOfVRSaved = getNumberOfVRSaved();
2088 bool ShouldEmitEHBlock =
2089 TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
2091 if (ShouldEmitEHBlock)
2092 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
2094 uint32_t GPRSaved = 0;
2096 // X13 is reserved under 64-bit environment.
2097 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
2098 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
2100 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
2101 if (MRI.isPhysRegModified(Reg)) {
2102 GPRSaved = GPREnd - Reg + 1;
2103 break;
2107 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
2108 TracebackTable::GPRSavedMask;
2110 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
2111 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
2112 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
2113 EmitComment();
2114 OutStreamer->emitIntValueInHexWithPadding(
2115 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
2117 // Set the 7th byte of mandatory field.
2118 uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
2119 SecondHalfOfMandatoryField |=
2120 (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
2121 TracebackTable::NumberOfFixedParmsMask;
2122 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
2123 NumberOfFixedParms);
2124 EmitComment();
2125 OutStreamer->emitIntValueInHexWithPadding(
2126 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2128 // Set the 8th byte of mandatory field.
2130 // Always set parameter on stack.
2131 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
2133 uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
2134 SecondHalfOfMandatoryField |=
2135 (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
2136 TracebackTable::NumberOfFloatingPointParmsMask;
2138 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
2139 NumberOfFloatingPointParms);
2140 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
2141 EmitComment();
2142 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
2145 // Generate the optional fields of traceback table.
2147 // Parameter type.
2148 if (NumberOfFixedParms || NumberOfFPParms) {
2149 uint32_t ParmsTypeValue = FI->getParmsType();
2151 Expected<SmallString<32>> ParmsType =
2152 FI->hasVectorParms()
2153 ? XCOFF::parseParmsTypeWithVecInfo(
2154 ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
2155 FI->getVectorParmsNum())
2156 : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
2157 NumberOfFPParms);
2159 assert(ParmsType && toString(ParmsType.takeError()).c_str());
2160 if (ParmsType) {
2161 CommentOS << "Parameter type = " << ParmsType.get();
2162 EmitComment();
2164 OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
2165 sizeof(ParmsTypeValue));
2167 // Traceback table offset.
2168 OutStreamer->AddComment("Function size");
2169 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
2170 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
2171 &(MF->getFunction()), TM);
2172 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
2175 // Since we unset the Int_Handler.
2176 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
2177 report_fatal_error("Hand_Mask not implement yet");
2179 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
2180 report_fatal_error("Ctl_Info not implement yet");
2182 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
2183 StringRef Name = MF->getName().substr(0, INT16_MAX);
2184 int16_t NameLength = Name.size();
2185 CommentOS << "Function name len = "
2186 << static_cast<unsigned int>(NameLength);
2187 EmitCommentAndValue(NameLength, 2);
2188 OutStreamer->AddComment("Function Name");
2189 OutStreamer->emitBytes(Name);
2192 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
2193 uint8_t AllocReg = XCOFF::AllocRegNo;
2194 OutStreamer->AddComment("AllocaUsed");
2195 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
2198 if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
2199 uint16_t VRData = 0;
2200 if (NumOfVRSaved) {
2201 // Number of VRs saved.
2202 VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
2203 TracebackTable::NumberOfVRSavedMask;
2204 // This bit is supposed to set only when the special register
2205 // VRSAVE is saved on stack.
2206 // However, IBM XL compiler sets the bit when any vector registers
2207 // are saved on the stack. We will follow XL's behavior on AIX
2208 // so that we don't get surprise behavior change for C code.
2209 VRData |= TracebackTable::IsVRSavedOnStackMask;
2212 // Set has_varargs.
2213 if (FI->getVarArgsFrameIndex())
2214 VRData |= TracebackTable::HasVarArgsMask;
2216 // Vector parameters number.
2217 unsigned VectorParmsNum = FI->getVectorParmsNum();
2218 VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
2219 TracebackTable::NumberOfVectorParmsMask;
2221 if (HasVectorInst)
2222 VRData |= TracebackTable::HasVMXInstructionMask;
2224 GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
2225 GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
2226 GENBOOLCOMMENT(", ", VRData, HasVarArgs);
2227 EmitComment();
2228 OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
2230 GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
2231 GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
2232 EmitComment();
2233 OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
2235 uint32_t VecParmTypeValue = FI->getVecExtParmsType();
2237 Expected<SmallString<32>> VecParmsType =
2238 XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
2239 assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
2240 if (VecParmsType) {
2241 CommentOS << "Vector Parameter type = " << VecParmsType.get();
2242 EmitComment();
2244 OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
2245 sizeof(VecParmTypeValue));
2246 // Padding 2 bytes.
2247 CommentOS << "Padding";
2248 EmitCommentAndValue(0, 2);
2251 uint8_t ExtensionTableFlag = 0;
2252 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
2253 if (ShouldEmitEHBlock)
2254 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
2255 if (EnableSSPCanaryBitInTB &&
2256 TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
2257 ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
2259 CommentOS << "ExtensionTableFlag = "
2260 << getExtendedTBTableFlagString(ExtensionTableFlag);
2261 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
2264 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
2265 auto &Ctx = OutStreamer->getContext();
2266 MCSymbol *EHInfoSym =
2267 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2268 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym);
2269 const MCSymbol *TOCBaseSym =
2270 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2271 ->getQualNameSymbol();
2272 const MCExpr *Exp =
2273 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2274 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2276 const DataLayout &DL = getDataLayout();
2277 OutStreamer->emitValueToAlignment(4);
2278 OutStreamer->AddComment("EHInfo Table");
2279 OutStreamer->emitValue(Exp, DL.getPointerSize());
2281 #undef GENBOOLCOMMENT
2282 #undef GENVALUECOMMENT
2285 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
2286 return GV->hasAppendingLinkage() &&
2287 StringSwitch<bool>(GV->getName())
2288 // TODO: Linker could still eliminate the GV if we just skip
2289 // handling llvm.used array. Skipping them for now until we or the
2290 // AIX OS team come up with a good solution.
2291 .Case("llvm.used", true)
2292 // It's correct to just skip llvm.compiler.used array here.
2293 .Case("llvm.compiler.used", true)
2294 .Default(false);
2297 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
2298 return StringSwitch<bool>(GV->getName())
2299 .Cases("llvm.global_ctors", "llvm.global_dtors", true)
2300 .Default(false);
2303 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
2304 // Special LLVM global arrays have been handled at the initialization.
2305 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
2306 return;
2308 // If the Global Variable has the toc-data attribute, it needs to be emitted
2309 // when we emit the .toc section.
2310 if (GV->hasAttribute("toc-data")) {
2311 TOCDataGlobalVars.push_back(GV);
2312 return;
2315 emitGlobalVariableHelper(GV);
2318 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
2319 assert(!GV->getName().startswith("llvm.") &&
2320 "Unhandled intrinsic global variable.");
2322 if (GV->hasComdat())
2323 report_fatal_error("COMDAT not yet supported by AIX.");
2325 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
2327 if (GV->isDeclarationForLinker()) {
2328 emitLinkage(GV, GVSym);
2329 return;
2332 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
2333 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
2334 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
2335 report_fatal_error("Encountered a global variable kind that is "
2336 "not supported yet.");
2338 // Print GV in verbose mode
2339 if (isVerbose()) {
2340 if (GV->hasInitializer()) {
2341 GV->printAsOperand(OutStreamer->GetCommentOS(),
2342 /*PrintType=*/false, GV->getParent());
2343 OutStreamer->GetCommentOS() << '\n';
2347 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2348 getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
2350 // Switch to the containing csect.
2351 OutStreamer->SwitchSection(Csect);
2353 const DataLayout &DL = GV->getParent()->getDataLayout();
2355 // Handle common and zero-initialized local symbols.
2356 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
2357 GVKind.isThreadBSSLocal()) {
2358 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV));
2359 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
2360 GVSym->setStorageClass(
2361 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
2363 if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal())
2364 OutStreamer->emitXCOFFLocalCommonSymbol(
2365 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
2366 GVSym, Alignment.value());
2367 else
2368 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value());
2369 return;
2372 MCSymbol *EmittedInitSym = GVSym;
2373 emitLinkage(GV, EmittedInitSym);
2374 emitAlignment(getGVAlignment(GV, DL), GV);
2376 // When -fdata-sections is enabled, every GlobalVariable will
2377 // be put into its own csect; therefore, label is not necessary here.
2378 if (!TM.getDataSections() || GV->hasSection()) {
2379 OutStreamer->emitLabel(EmittedInitSym);
2382 // Emit aliasing label for global variable.
2383 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) {
2384 OutStreamer->emitLabel(getSymbol(Alias));
2387 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
2390 void PPCAIXAsmPrinter::emitFunctionDescriptor() {
2391 const DataLayout &DL = getDataLayout();
2392 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
2394 MCSectionSubPair Current = OutStreamer->getCurrentSection();
2395 // Emit function descriptor.
2396 OutStreamer->SwitchSection(
2397 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
2399 // Emit aliasing label for function descriptor csect.
2400 llvm::for_each(GOAliasMap[&MF->getFunction()],
2401 [this](const GlobalAlias *Alias) {
2402 OutStreamer->emitLabel(getSymbol(Alias));
2405 // Emit function entry point address.
2406 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
2407 PointerSize);
2408 // Emit TOC base address.
2409 const MCSymbol *TOCBaseSym =
2410 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2411 ->getQualNameSymbol();
2412 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
2413 PointerSize);
2414 // Emit a null environment pointer.
2415 OutStreamer->emitIntValue(0, PointerSize);
2417 OutStreamer->SwitchSection(Current.first, Current.second);
2420 void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
2421 // It's not necessary to emit the label when we have individual
2422 // function in its own csect.
2423 if (!TM.getFunctionSections())
2424 PPCAsmPrinter::emitFunctionEntryLabel();
2426 // Emit aliasing label for function entry point label.
2427 llvm::for_each(
2428 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) {
2429 OutStreamer->emitLabel(
2430 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
2434 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
2435 // If there are no functions and there are no toc-data definitions in this
2436 // module, we will never need to reference the TOC base.
2437 if (M.empty() && TOCDataGlobalVars.empty())
2438 return;
2440 // Switch to section to emit TOC base.
2441 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection());
2443 PPCTargetStreamer *TS =
2444 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2446 for (auto &I : TOC) {
2447 MCSectionXCOFF *TCEntry;
2448 // Setup the csect for the current TC entry. If the variant kind is
2449 // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a
2450 // new symbol to prefix the name with a dot.
2451 if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) {
2452 SmallString<128> Name;
2453 StringRef Prefix = ".";
2454 Name += Prefix;
2455 Name += I.first.first->getName();
2456 MCSymbol *S = OutContext.getOrCreateSymbol(Name);
2457 TCEntry = cast<MCSectionXCOFF>(
2458 getObjFileLowering().getSectionForTOCEntry(S, TM));
2459 } else {
2460 TCEntry = cast<MCSectionXCOFF>(
2461 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
2463 OutStreamer->SwitchSection(TCEntry);
2465 OutStreamer->emitLabel(I.second);
2466 if (TS != nullptr)
2467 TS->emitTCEntry(*I.first.first, I.first.second);
2470 for (const auto *GV : TOCDataGlobalVars)
2471 emitGlobalVariableHelper(GV);
2474 bool PPCAIXAsmPrinter::doInitialization(Module &M) {
2475 const bool Result = PPCAsmPrinter::doInitialization(M);
2477 auto setCsectAlignment = [this](const GlobalObject *GO) {
2478 // Declarations have 0 alignment which is set by default.
2479 if (GO->isDeclarationForLinker())
2480 return;
2482 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
2483 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2484 getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
2486 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout());
2487 if (GOAlign > Csect->getAlignment())
2488 Csect->setAlignment(GOAlign);
2491 // We need to know, up front, the alignment of csects for the assembly path,
2492 // because once a .csect directive gets emitted, we could not change the
2493 // alignment value on it.
2494 for (const auto &G : M.globals()) {
2495 if (isSpecialLLVMGlobalArrayToSkip(&G))
2496 continue;
2498 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
2499 // Generate a format indicator and a unique module id to be a part of
2500 // the sinit and sterm function names.
2501 if (FormatIndicatorAndUniqueModId.empty()) {
2502 std::string UniqueModuleId = getUniqueModuleId(&M);
2503 if (UniqueModuleId != "")
2504 // TODO: Use source file full path to generate the unique module id
2505 // and add a format indicator as a part of function name in case we
2506 // will support more than one format.
2507 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
2508 else
2509 // Use the Pid and current time as the unique module id when we cannot
2510 // generate one based on a module's strong external symbols.
2511 // FIXME: Adjust the comment accordingly after we use source file full
2512 // path instead.
2513 FormatIndicatorAndUniqueModId =
2514 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) +
2515 "_" + llvm::itostr(time(nullptr));
2518 emitSpecialLLVMGlobal(&G);
2519 continue;
2522 setCsectAlignment(&G);
2525 for (const auto &F : M)
2526 setCsectAlignment(&F);
2528 // Construct an aliasing list for each GlobalObject.
2529 for (const auto &Alias : M.aliases()) {
2530 const GlobalObject *Base = Alias.getBaseObject();
2531 if (!Base)
2532 report_fatal_error(
2533 "alias without a base object is not yet supported on AIX");
2534 GOAliasMap[Base].push_back(&Alias);
2537 return Result;
2540 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
2541 switch (MI->getOpcode()) {
2542 default:
2543 break;
2544 case PPC::GETtlsADDR64AIX:
2545 case PPC::GETtlsADDR32AIX: {
2546 // The reference to .__tls_get_addr is unknown to the assembler
2547 // so we need to emit an external symbol reference.
2548 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext);
2549 ExtSymSDNodeSymbols.insert(TlsGetAddr);
2550 break;
2552 case PPC::BL8:
2553 case PPC::BL:
2554 case PPC::BL8_NOP:
2555 case PPC::BL_NOP: {
2556 const MachineOperand &MO = MI->getOperand(0);
2557 if (MO.isSymbol()) {
2558 MCSymbolXCOFF *S =
2559 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
2560 ExtSymSDNodeSymbols.insert(S);
2562 } break;
2563 case PPC::BL_TLS:
2564 case PPC::BL8_TLS:
2565 case PPC::BL8_TLS_:
2566 case PPC::BL8_NOP_TLS:
2567 report_fatal_error("TLS call not yet implemented");
2568 case PPC::TAILB:
2569 case PPC::TAILB8:
2570 case PPC::TAILBA:
2571 case PPC::TAILBA8:
2572 case PPC::TAILBCTR:
2573 case PPC::TAILBCTR8:
2574 if (MI->getOperand(0).isSymbol())
2575 report_fatal_error("Tail call for extern symbol not yet supported.");
2576 break;
2577 case PPC::DST:
2578 case PPC::DST64:
2579 case PPC::DSTT:
2580 case PPC::DSTT64:
2581 case PPC::DSTST:
2582 case PPC::DSTST64:
2583 case PPC::DSTSTT:
2584 case PPC::DSTSTT64:
2585 EmitToStreamer(
2586 *OutStreamer,
2587 MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
2588 return;
2590 return PPCAsmPrinter::emitInstruction(MI);
2593 bool PPCAIXAsmPrinter::doFinalization(Module &M) {
2594 // Do streamer related finalization for DWARF.
2595 if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo())
2596 OutStreamer->doFinalizationAtSectionEnd(
2597 OutStreamer->getContext().getObjectFileInfo()->getTextSection());
2599 for (MCSymbol *Sym : ExtSymSDNodeSymbols)
2600 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
2601 return PPCAsmPrinter::doFinalization(M);
2604 static unsigned mapToSinitPriority(int P) {
2605 if (P < 0 || P > 65535)
2606 report_fatal_error("invalid init priority");
2608 if (P <= 20)
2609 return P;
2611 if (P < 81)
2612 return 20 + (P - 20) * 16;
2614 if (P <= 1124)
2615 return 1004 + (P - 81);
2617 if (P < 64512)
2618 return 2047 + (P - 1124) * 33878;
2620 return 2147482625u + (P - 64512);
2623 static std::string convertToSinitPriority(int Priority) {
2624 // This helper function converts clang init priority to values used in sinit
2625 // and sterm functions.
2627 // The conversion strategies are:
2628 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
2629 // reserved priority range [0, 1023] by
2630 // - directly mapping the first 21 and the last 20 elements of the ranges
2631 // - linear interpolating the intermediate values with a step size of 16.
2633 // We map the non reserved clang/gnu priority range of [101, 65535] into the
2634 // sinit/sterm priority range [1024, 2147483648] by:
2635 // - directly mapping the first and the last 1024 elements of the ranges
2636 // - linear interpolating the intermediate values with a step size of 33878.
2637 unsigned int P = mapToSinitPriority(Priority);
2639 std::string PrioritySuffix;
2640 llvm::raw_string_ostream os(PrioritySuffix);
2641 os << llvm::format_hex_no_prefix(P, 8);
2642 os.flush();
2643 return PrioritySuffix;
2646 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
2647 const Constant *List, bool IsCtor) {
2648 SmallVector<Structor, 8> Structors;
2649 preprocessXXStructorList(DL, List, Structors);
2650 if (Structors.empty())
2651 return;
2653 unsigned Index = 0;
2654 for (Structor &S : Structors) {
2655 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
2656 S.Func = CE->getOperand(0);
2658 llvm::GlobalAlias::create(
2659 GlobalValue::ExternalLinkage,
2660 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
2661 llvm::Twine(convertToSinitPriority(S.Priority)) +
2662 llvm::Twine("_", FormatIndicatorAndUniqueModId) +
2663 llvm::Twine("_", llvm::utostr(Index++)),
2664 cast<Function>(S.Func));
2668 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
2669 unsigned Encoding) {
2670 if (GV) {
2671 MCSymbol *TypeInfoSym = TM.getSymbol(GV);
2672 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym);
2673 const MCSymbol *TOCBaseSym =
2674 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2675 ->getQualNameSymbol();
2676 auto &Ctx = OutStreamer->getContext();
2677 const MCExpr *Exp =
2678 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2679 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2680 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
2681 } else
2682 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
2685 // Return a pass that prints the PPC assembly code for a MachineFunction to the
2686 // given output stream.
2687 static AsmPrinter *
2688 createPPCAsmPrinterPass(TargetMachine &tm,
2689 std::unique_ptr<MCStreamer> &&Streamer) {
2690 if (tm.getTargetTriple().isOSAIX())
2691 return new PPCAIXAsmPrinter(tm, std::move(Streamer));
2693 return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
2696 // Force static initialization.
2697 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
2698 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
2699 createPPCAsmPrinterPass);
2700 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
2701 createPPCAsmPrinterPass);
2702 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
2703 createPPCAsmPrinterPass);
2704 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
2705 createPPCAsmPrinterPass);