1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/RegisterPressure.h"
33 #include "llvm/CodeGen/ScheduleDAG.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/raw_ostream.h"
46 #define DEBUG_TYPE "ppc-instr-info"
48 #define GET_INSTRMAP_INFO
49 #define GET_INSTRINFO_CTOR_DTOR
50 #include "PPCGenInstrInfo.inc"
52 STATISTIC(NumStoreSPILLVSRRCAsVec
,
53 "Number of spillvsrrc spilled to stack as vec");
54 STATISTIC(NumStoreSPILLVSRRCAsGpr
,
55 "Number of spillvsrrc spilled to stack as gpr");
56 STATISTIC(NumGPRtoVSRSpill
, "Number of gpr spills to spillvsrrc");
57 STATISTIC(CmpIselsConverted
,
58 "Number of ISELs that depend on comparison of constants converted");
59 STATISTIC(MissedConvertibleImmediateInstrs
,
60 "Number of compare-immediate instructions fed by constants");
61 STATISTIC(NumRcRotatesConvertedToRcAnd
,
62 "Number of record-form rotates converted to record-form andi");
65 opt
<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden
,
66 cl::desc("Disable analysis for CTR loops"));
68 static cl::opt
<bool> DisableCmpOpt("disable-ppc-cmp-opt",
69 cl::desc("Disable compare instruction optimization"), cl::Hidden
);
71 static cl::opt
<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden
,
77 cl::desc("Use the old (incorrect) instruction latency calculation"));
80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden
, cl::init(1.5),
81 cl::desc("register pressure factor for the transformations."));
83 static cl::opt
<bool> EnableFMARegPressureReduction(
84 "ppc-fma-rp-reduction", cl::Hidden
, cl::init(true),
85 cl::desc("enable register pressure reduce in machine combiner pass."));
87 // Pin the vtable to this file.
88 void PPCInstrInfo::anchor() {}
90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget
&STI
)
91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN
, PPC::ADJCALLSTACKUP
,
92 /* CatchRetOpcode */ -1,
93 STI
.isPPC64() ? PPC::BLR8
: PPC::BLR
),
94 Subtarget(STI
), RI(STI
.getTargetMachine()) {}
96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
97 /// this target when scheduling the DAG.
98 ScheduleHazardRecognizer
*
99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
100 const ScheduleDAG
*DAG
) const {
102 static_cast<const PPCSubtarget
*>(STI
)->getCPUDirective();
103 if (Directive
== PPC::DIR_440
|| Directive
== PPC::DIR_A2
||
104 Directive
== PPC::DIR_E500mc
|| Directive
== PPC::DIR_E5500
) {
105 const InstrItineraryData
*II
=
106 static_cast<const PPCSubtarget
*>(STI
)->getInstrItineraryData();
107 return new ScoreboardHazardRecognizer(II
, DAG
);
110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI
, DAG
);
113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
114 /// to use for this target when scheduling the DAG.
115 ScheduleHazardRecognizer
*
116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
117 const ScheduleDAG
*DAG
) const {
119 DAG
->MF
.getSubtarget
<PPCSubtarget
>().getCPUDirective();
121 // FIXME: Leaving this as-is until we have POWER9 scheduling info
122 if (Directive
== PPC::DIR_PWR7
|| Directive
== PPC::DIR_PWR8
)
123 return new PPCDispatchGroupSBHazardRecognizer(II
, DAG
);
125 // Most subtargets use a PPC970 recognizer.
126 if (Directive
!= PPC::DIR_440
&& Directive
!= PPC::DIR_A2
&&
127 Directive
!= PPC::DIR_E500mc
&& Directive
!= PPC::DIR_E5500
) {
128 assert(DAG
->TII
&& "No InstrInfo?");
130 return new PPCHazardRecognizer970(*DAG
);
133 return new ScoreboardHazardRecognizer(II
, DAG
);
136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
137 const MachineInstr
&MI
,
138 unsigned *PredCost
) const {
139 if (!ItinData
|| UseOldLatencyCalc
)
140 return PPCGenInstrInfo::getInstrLatency(ItinData
, MI
, PredCost
);
142 // The default implementation of getInstrLatency calls getStageLatency, but
143 // getStageLatency does not do the right thing for us. While we have
144 // itinerary, most cores are fully pipelined, and so the itineraries only
145 // express the first part of the pipeline, not every stage. Instead, we need
146 // to use the listed output operand cycle number (using operand 0 here, which
149 unsigned Latency
= 1;
150 unsigned DefClass
= MI
.getDesc().getSchedClass();
151 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
152 const MachineOperand
&MO
= MI
.getOperand(i
);
153 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
156 int Cycle
= ItinData
->getOperandCycle(DefClass
, i
);
160 Latency
= std::max(Latency
, (unsigned) Cycle
);
166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
167 const MachineInstr
&DefMI
, unsigned DefIdx
,
168 const MachineInstr
&UseMI
,
169 unsigned UseIdx
) const {
170 int Latency
= PPCGenInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
173 if (!DefMI
.getParent())
176 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
177 Register Reg
= DefMO
.getReg();
180 if (Register::isVirtualRegister(Reg
)) {
181 const MachineRegisterInfo
*MRI
=
182 &DefMI
.getParent()->getParent()->getRegInfo();
183 IsRegCR
= MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRRCRegClass
) ||
184 MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRBITRCRegClass
);
186 IsRegCR
= PPC::CRRCRegClass
.contains(Reg
) ||
187 PPC::CRBITRCRegClass
.contains(Reg
);
190 if (UseMI
.isBranch() && IsRegCR
) {
192 Latency
= getInstrLatency(ItinData
, DefMI
);
194 // On some cores, there is an additional delay between writing to a condition
195 // register, and using it from a branch.
196 unsigned Directive
= Subtarget
.getCPUDirective();
210 // FIXME: Is this needed for POWER9?
219 /// This is an architecture-specific helper function of reassociateOps.
220 /// Set special operand attributes for new instructions after reassociation.
221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr
&OldMI1
,
222 MachineInstr
&OldMI2
,
223 MachineInstr
&NewMI1
,
224 MachineInstr
&NewMI2
) const {
225 // Propagate FP flags from the original instructions.
226 // But clear poison-generating flags because those may not be valid now.
227 uint16_t IntersectedFlags
= OldMI1
.getFlags() & OldMI2
.getFlags();
228 NewMI1
.setFlags(IntersectedFlags
);
229 NewMI1
.clearFlag(MachineInstr::MIFlag::NoSWrap
);
230 NewMI1
.clearFlag(MachineInstr::MIFlag::NoUWrap
);
231 NewMI1
.clearFlag(MachineInstr::MIFlag::IsExact
);
233 NewMI2
.setFlags(IntersectedFlags
);
234 NewMI2
.clearFlag(MachineInstr::MIFlag::NoSWrap
);
235 NewMI2
.clearFlag(MachineInstr::MIFlag::NoUWrap
);
236 NewMI2
.clearFlag(MachineInstr::MIFlag::IsExact
);
239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr
&MI
,
240 uint16_t Flags
) const {
242 MI
.clearFlag(MachineInstr::MIFlag::NoSWrap
);
243 MI
.clearFlag(MachineInstr::MIFlag::NoUWrap
);
244 MI
.clearFlag(MachineInstr::MIFlag::IsExact
);
247 // This function does not list all associative and commutative operations, but
248 // only those worth feeding through the machine combiner in an attempt to
249 // reduce the critical path. Mostly, this means floating-point operations,
250 // because they have high latencies(>=5) (compared to other operations, such as
251 // and/or, which are also associative and commutative, but have low latencies).
252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
253 switch (Inst
.getOpcode()) {
273 return Inst
.getFlag(MachineInstr::MIFlag::FmReassoc
) &&
274 Inst
.getFlag(MachineInstr::MIFlag::FmNsz
);
287 #define InfoArrayIdxFMAInst 0
288 #define InfoArrayIdxFAddInst 1
289 #define InfoArrayIdxFMULInst 2
290 #define InfoArrayIdxAddOpIdx 3
291 #define InfoArrayIdxMULOpIdx 4
292 #define InfoArrayIdxFSubInst 5
293 // Array keeps info for FMA instructions:
294 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
299 // second MUL operand index is plus 1;
300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
301 static const uint16_t FMAOpIdxInfo
[][6] = {
302 // FIXME: Add more FMA instructions like XSNMADDADP and so on.
303 {PPC::XSMADDADP
, PPC::XSADDDP
, PPC::XSMULDP
, 1, 2, PPC::XSSUBDP
},
304 {PPC::XSMADDASP
, PPC::XSADDSP
, PPC::XSMULSP
, 1, 2, PPC::XSSUBSP
},
305 {PPC::XVMADDADP
, PPC::XVADDDP
, PPC::XVMULDP
, 1, 2, PPC::XVSUBDP
},
306 {PPC::XVMADDASP
, PPC::XVADDSP
, PPC::XVMULSP
, 1, 2, PPC::XVSUBSP
},
307 {PPC::FMADD
, PPC::FADD
, PPC::FMUL
, 3, 1, PPC::FSUB
},
308 {PPC::FMADDS
, PPC::FADDS
, PPC::FMULS
, 3, 1, PPC::FSUBS
}};
310 // Check if an opcode is a FMA instruction. If it is, return the index in array
311 // FMAOpIdxInfo. Otherwise, return -1.
312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode
) const {
313 for (unsigned I
= 0; I
< array_lengthof(FMAOpIdxInfo
); I
++)
314 if (FMAOpIdxInfo
[I
][InfoArrayIdxFMAInst
] == Opcode
)
319 // On PowerPC target, we have two kinds of patterns related to FMA:
321 // Try to reassociate FMA chains like below:
324 // A = FADD X, Y (Leaf)
325 // B = FMA A, M21, M22 (Prev)
326 // C = FMA B, M31, M32 (Root)
328 // A = FMA X, M21, M22
329 // B = FMA Y, M31, M32
333 // A = FMA X, M11, M12 (Leaf)
334 // B = FMA A, M21, M22 (Prev)
335 // C = FMA B, M31, M32 (Root)
338 // B = FMA X, M21, M22
339 // D = FMA A, M31, M32
342 // breaking the dependency between A and B, allowing FMA to be executed in
343 // parallel (or back-to-back in a pipeline) instead of depending on each other.
345 // 2: Reduce register pressure.
346 // Try to reassociate FMA with FSUB and a constant like below:
347 // C is a floating point const.
350 // A = FSUB X, Y (Leaf)
351 // D = FMA B, C, A (Root)
357 // A = FSUB X, Y (Leaf)
358 // D = FMA B, A, C (Root)
363 // Before the transformation, A must be assigned with different hardware
364 // register with D. After the transformation, A and D must be assigned with
365 // same hardware register due to TIE attribute of FMA instructions.
367 bool PPCInstrInfo::getFMAPatterns(
368 MachineInstr
&Root
, SmallVectorImpl
<MachineCombinerPattern
> &Patterns
,
369 bool DoRegPressureReduce
) const {
370 MachineBasicBlock
*MBB
= Root
.getParent();
371 const MachineRegisterInfo
*MRI
= &MBB
->getParent()->getRegInfo();
372 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
374 auto IsAllOpsVirtualReg
= [](const MachineInstr
&Instr
) {
375 for (const auto &MO
: Instr
.explicit_operands())
376 if (!(MO
.isReg() && Register::isVirtualRegister(MO
.getReg())))
381 auto IsReassociableAddOrSub
= [&](const MachineInstr
&Instr
,
383 if (Instr
.getOpcode() !=
384 FMAOpIdxInfo
[getFMAOpIdxInfo(Root
.getOpcode())][OpType
])
387 // Instruction can be reassociated.
388 // fast math flags may prohibit reassociation.
389 if (!(Instr
.getFlag(MachineInstr::MIFlag::FmReassoc
) &&
390 Instr
.getFlag(MachineInstr::MIFlag::FmNsz
)))
393 // Instruction operands are virtual registers for reassociation.
394 if (!IsAllOpsVirtualReg(Instr
))
397 // For register pressure reassociation, the FSub must have only one use as
398 // we want to delete the sub to save its def.
399 if (OpType
== InfoArrayIdxFSubInst
&&
400 !MRI
->hasOneNonDBGUse(Instr
.getOperand(0).getReg()))
406 auto IsReassociableFMA
= [&](const MachineInstr
&Instr
, int16_t &AddOpIdx
,
407 int16_t &MulOpIdx
, bool IsLeaf
) {
408 int16_t Idx
= getFMAOpIdxInfo(Instr
.getOpcode());
412 // Instruction can be reassociated.
413 // fast math flags may prohibit reassociation.
414 if (!(Instr
.getFlag(MachineInstr::MIFlag::FmReassoc
) &&
415 Instr
.getFlag(MachineInstr::MIFlag::FmNsz
)))
418 // Instruction operands are virtual registers for reassociation.
419 if (!IsAllOpsVirtualReg(Instr
))
422 MulOpIdx
= FMAOpIdxInfo
[Idx
][InfoArrayIdxMULOpIdx
];
426 AddOpIdx
= FMAOpIdxInfo
[Idx
][InfoArrayIdxAddOpIdx
];
428 const MachineOperand
&OpAdd
= Instr
.getOperand(AddOpIdx
);
429 MachineInstr
*MIAdd
= MRI
->getUniqueVRegDef(OpAdd
.getReg());
430 // If 'add' operand's def is not in current block, don't do ILP related opt.
431 if (!MIAdd
|| MIAdd
->getParent() != MBB
)
434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use
435 // as this fma will be changed later.
436 return IsLeaf
? true : MRI
->hasOneNonDBGUse(OpAdd
.getReg());
439 int16_t AddOpIdx
= -1;
440 int16_t MulOpIdx
= -1;
442 bool IsUsedOnceL
= false;
443 bool IsUsedOnceR
= false;
444 MachineInstr
*MULInstrL
= nullptr;
445 MachineInstr
*MULInstrR
= nullptr;
447 auto IsRPReductionCandidate
= [&]() {
448 // Currently, we only support float and double.
449 // FIXME: add support for other types.
450 unsigned Opcode
= Root
.getOpcode();
451 if (Opcode
!= PPC::XSMADDASP
&& Opcode
!= PPC::XSMADDADP
)
454 // Root must be a valid FMA like instruction.
455 // Treat it as leaf as we don't care its add operand.
456 if (IsReassociableFMA(Root
, AddOpIdx
, MulOpIdx
, true)) {
457 assert((MulOpIdx
>= 0) && "mul operand index not right!");
458 Register MULRegL
= TRI
->lookThruSingleUseCopyChain(
459 Root
.getOperand(MulOpIdx
).getReg(), MRI
);
460 Register MULRegR
= TRI
->lookThruSingleUseCopyChain(
461 Root
.getOperand(MulOpIdx
+ 1).getReg(), MRI
);
462 if (!MULRegL
&& !MULRegR
)
465 if (MULRegL
&& !MULRegR
) {
467 TRI
->lookThruCopyLike(Root
.getOperand(MulOpIdx
+ 1).getReg(), MRI
);
469 } else if (!MULRegL
&& MULRegR
) {
471 TRI
->lookThruCopyLike(Root
.getOperand(MulOpIdx
).getReg(), MRI
);
478 if (!Register::isVirtualRegister(MULRegL
) ||
479 !Register::isVirtualRegister(MULRegR
))
482 MULInstrL
= MRI
->getVRegDef(MULRegL
);
483 MULInstrR
= MRI
->getVRegDef(MULRegR
);
489 // Register pressure fma reassociation patterns.
490 if (DoRegPressureReduce
&& IsRPReductionCandidate()) {
491 assert((MULInstrL
&& MULInstrR
) && "wrong register preduction candidate!");
492 // Register pressure pattern 1
493 if (isLoadFromConstantPool(MULInstrL
) && IsUsedOnceR
&&
494 IsReassociableAddOrSub(*MULInstrR
, InfoArrayIdxFSubInst
)) {
495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
496 Patterns
.push_back(MachineCombinerPattern::REASSOC_XY_BCA
);
500 // Register pressure pattern 2
501 if ((isLoadFromConstantPool(MULInstrR
) && IsUsedOnceL
&&
502 IsReassociableAddOrSub(*MULInstrL
, InfoArrayIdxFSubInst
))) {
503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
504 Patterns
.push_back(MachineCombinerPattern::REASSOC_XY_BAC
);
509 // ILP fma reassociation patterns.
510 // Root must be a valid FMA like instruction.
512 if (!IsReassociableFMA(Root
, AddOpIdx
, MulOpIdx
, false))
515 assert((AddOpIdx
>= 0) && "add operand index not right!");
517 Register RegB
= Root
.getOperand(AddOpIdx
).getReg();
518 MachineInstr
*Prev
= MRI
->getUniqueVRegDef(RegB
);
520 // Prev must be a valid FMA like instruction.
522 if (!IsReassociableFMA(*Prev
, AddOpIdx
, MulOpIdx
, false))
525 assert((AddOpIdx
>= 0) && "add operand index not right!");
527 Register RegA
= Prev
->getOperand(AddOpIdx
).getReg();
528 MachineInstr
*Leaf
= MRI
->getUniqueVRegDef(RegA
);
530 if (IsReassociableFMA(*Leaf
, AddOpIdx
, MulOpIdx
, true)) {
531 Patterns
.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM
);
532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
535 if (IsReassociableAddOrSub(*Leaf
, InfoArrayIdxFAddInst
)) {
536 Patterns
.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM
);
537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
543 void PPCInstrInfo::finalizeInsInstrs(
544 MachineInstr
&Root
, MachineCombinerPattern
&P
,
545 SmallVectorImpl
<MachineInstr
*> &InsInstrs
) const {
546 assert(!InsInstrs
.empty() && "Instructions set to be inserted is empty!");
548 MachineFunction
*MF
= Root
.getMF();
549 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
550 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
551 MachineConstantPool
*MCP
= MF
->getConstantPool();
553 int16_t Idx
= getFMAOpIdxInfo(Root
.getOpcode());
557 uint16_t FirstMulOpIdx
= FMAOpIdxInfo
[Idx
][InfoArrayIdxMULOpIdx
];
559 // For now we only need to fix up placeholder for register pressure reduce
561 Register ConstReg
= 0;
563 case MachineCombinerPattern::REASSOC_XY_BCA
:
565 TRI
->lookThruCopyLike(Root
.getOperand(FirstMulOpIdx
).getReg(), MRI
);
567 case MachineCombinerPattern::REASSOC_XY_BAC
:
569 TRI
->lookThruCopyLike(Root
.getOperand(FirstMulOpIdx
+ 1).getReg(), MRI
);
572 // Not register pressure reduce patterns.
576 MachineInstr
*ConstDefInstr
= MRI
->getVRegDef(ConstReg
);
577 // Get const value from const pool.
578 const Constant
*C
= getConstantFromConstantPool(ConstDefInstr
);
579 assert(isa
<llvm::ConstantFP
>(C
) && "not a valid constant!");
581 // Get negative fp const.
582 APFloat
F1((dyn_cast
<ConstantFP
>(C
))->getValueAPF());
584 Constant
*NegC
= ConstantFP::get(dyn_cast
<ConstantFP
>(C
)->getContext(), F1
);
585 Align Alignment
= MF
->getDataLayout().getPrefTypeAlign(C
->getType());
587 // Put negative fp const into constant pool.
588 unsigned ConstPoolIdx
= MCP
->getConstantPoolIndex(NegC
, Alignment
);
590 MachineOperand
*Placeholder
= nullptr;
591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
592 for (auto *Inst
: InsInstrs
) {
593 for (MachineOperand
&Operand
: Inst
->explicit_operands()) {
594 assert(Operand
.isReg() && "Invalid instruction in InsInstrs!");
595 if (Operand
.getReg() == PPC::ZERO8
) {
596 Placeholder
= &Operand
;
602 assert(Placeholder
&& "Placeholder does not exist!");
604 // Generate instructions to load the const fp from constant pool.
605 // We only support PPC64 and medium code model.
606 Register LoadNewConst
=
607 generateLoadForNewConst(ConstPoolIdx
, &Root
, C
->getType(), InsInstrs
);
609 // Fill the placeholder with the new load from constant pool.
610 Placeholder
->setReg(LoadNewConst
);
613 bool PPCInstrInfo::shouldReduceRegisterPressure(
614 MachineBasicBlock
*MBB
, RegisterClassInfo
*RegClassInfo
) const {
616 if (!EnableFMARegPressureReduction
)
619 // Currently, we only enable register pressure reducing in machine combiner
620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
623 // So we need following instructions to access a TOC entry:
625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
629 // FIXME: add more supported targets, like Small and Large code model, PPC32,
631 if (!(Subtarget
.isPPC64() && Subtarget
.hasP9Vector() &&
632 Subtarget
.getTargetMachine().getCodeModel() == CodeModel::Medium
))
635 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
636 MachineFunction
*MF
= MBB
->getParent();
637 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
639 auto GetMBBPressure
= [&](MachineBasicBlock
*MBB
) -> std::vector
<unsigned> {
640 RegionPressure Pressure
;
641 RegPressureTracker
RPTracker(Pressure
);
643 // Initialize the register pressure tracker.
644 RPTracker
.init(MBB
->getParent(), RegClassInfo
, nullptr, MBB
, MBB
->end(),
645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
647 for (MachineBasicBlock::iterator MII
= MBB
->instr_end(),
648 MIE
= MBB
->instr_begin();
650 MachineInstr
&MI
= *std::prev(MII
);
651 if (MI
.isDebugValue() || MI
.isDebugLabel())
653 RegisterOperands RegOpers
;
654 RegOpers
.collect(MI
, *TRI
, *MRI
, false, false);
655 RPTracker
.recedeSkipDebugValues();
656 assert(&*RPTracker
.getPos() == &MI
&& "RPTracker sync error!");
657 RPTracker
.recede(RegOpers
);
660 // Close the RPTracker to finalize live ins.
661 RPTracker
.closeRegion();
663 return RPTracker
.getPressure().MaxSetPressure
;
666 // For now we only care about float and double type fma.
667 unsigned VSSRCLimit
= TRI
->getRegPressureSetLimit(
668 *MBB
->getParent(), PPC::RegisterPressureSets::VSSRC
);
670 // Only reduce register pressure when pressure is high.
671 return GetMBBPressure(MBB
)[PPC::RegisterPressureSets::VSSRC
] >
672 (float)VSSRCLimit
* FMARPFactor
;
675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr
*I
) const {
676 // I has only one memory operand which is load from constant pool.
677 if (!I
->hasOneMemOperand())
680 MachineMemOperand
*Op
= I
->memoperands()[0];
681 return Op
->isLoad() && Op
->getPseudoValue() &&
682 Op
->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool
;
685 Register
PPCInstrInfo::generateLoadForNewConst(
686 unsigned Idx
, MachineInstr
*MI
, Type
*Ty
,
687 SmallVectorImpl
<MachineInstr
*> &InsInstrs
) const {
688 // Now we only support PPC64, Medium code model and P9 with vector.
689 // We have immutable pattern to access const pool. See function
690 // shouldReduceRegisterPressure.
691 assert((Subtarget
.isPPC64() && Subtarget
.hasP9Vector() &&
692 Subtarget
.getTargetMachine().getCodeModel() == CodeModel::Medium
) &&
693 "Target not supported!\n");
695 MachineFunction
*MF
= MI
->getMF();
696 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
698 // Generate ADDIStocHA8
699 Register VReg1
= MRI
->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass
);
700 MachineInstrBuilder TOCOffset
=
701 BuildMI(*MF
, MI
->getDebugLoc(), get(PPC::ADDIStocHA8
), VReg1
)
703 .addConstantPoolIndex(Idx
);
705 assert((Ty
->isFloatTy() || Ty
->isDoubleTy()) &&
706 "Only float and double are supported!");
709 // Should be float type or double type.
711 LoadOpcode
= PPC::DFLOADf32
;
713 LoadOpcode
= PPC::DFLOADf64
;
715 const TargetRegisterClass
*RC
= MRI
->getRegClass(MI
->getOperand(0).getReg());
716 Register VReg2
= MRI
->createVirtualRegister(RC
);
717 MachineMemOperand
*MMO
= MF
->getMachineMemOperand(
718 MachinePointerInfo::getConstantPool(*MF
), MachineMemOperand::MOLoad
,
719 Ty
->getScalarSizeInBits() / 8, MF
->getDataLayout().getPrefTypeAlign(Ty
));
721 // Generate Load from constant pool.
722 MachineInstrBuilder Load
=
723 BuildMI(*MF
, MI
->getDebugLoc(), get(LoadOpcode
), VReg2
)
724 .addConstantPoolIndex(Idx
)
725 .addReg(VReg1
, getKillRegState(true))
728 Load
->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO
);
730 // Insert the toc load instructions into InsInstrs.
731 InsInstrs
.insert(InsInstrs
.begin(), Load
);
732 InsInstrs
.insert(InsInstrs
.begin(), TOCOffset
);
736 // This function returns the const value in constant pool if the \p I is a load
737 // from constant pool.
739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr
*I
) const {
740 MachineFunction
*MF
= I
->getMF();
741 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
742 MachineConstantPool
*MCP
= MF
->getConstantPool();
743 assert(I
->mayLoad() && "Should be a load instruction.\n");
744 for (auto MO
: I
->uses()) {
747 Register Reg
= MO
.getReg();
748 if (Reg
== 0 || !Register::isVirtualRegister(Reg
))
750 // Find the toc address.
751 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
752 for (auto MO2
: DefMI
->uses())
754 return (MCP
->getConstants())[MO2
.getIndex()].Val
.ConstVal
;
759 bool PPCInstrInfo::getMachineCombinerPatterns(
760 MachineInstr
&Root
, SmallVectorImpl
<MachineCombinerPattern
> &Patterns
,
761 bool DoRegPressureReduce
) const {
762 // Using the machine combiner in this way is potentially expensive, so
763 // restrict to when aggressive optimizations are desired.
764 if (Subtarget
.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive
)
767 if (getFMAPatterns(Root
, Patterns
, DoRegPressureReduce
))
770 return TargetInstrInfo::getMachineCombinerPatterns(Root
, Patterns
,
771 DoRegPressureReduce
);
774 void PPCInstrInfo::genAlternativeCodeSequence(
775 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
776 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
777 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
778 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM
:
781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM
:
782 case MachineCombinerPattern::REASSOC_XY_BCA
:
783 case MachineCombinerPattern::REASSOC_XY_BAC
:
784 reassociateFMA(Root
, Pattern
, InsInstrs
, DelInstrs
, InstrIdxForVirtReg
);
787 // Reassociate default patterns.
788 TargetInstrInfo::genAlternativeCodeSequence(Root
, Pattern
, InsInstrs
,
789 DelInstrs
, InstrIdxForVirtReg
);
794 void PPCInstrInfo::reassociateFMA(
795 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
796 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
797 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
798 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
799 MachineFunction
*MF
= Root
.getMF();
800 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
801 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
802 MachineOperand
&OpC
= Root
.getOperand(0);
803 Register RegC
= OpC
.getReg();
804 const TargetRegisterClass
*RC
= MRI
.getRegClass(RegC
);
805 MRI
.constrainRegClass(RegC
, RC
);
807 unsigned FmaOp
= Root
.getOpcode();
808 int16_t Idx
= getFMAOpIdxInfo(FmaOp
);
809 assert(Idx
>= 0 && "Root must be a FMA instruction");
811 bool IsILPReassociate
=
812 (Pattern
== MachineCombinerPattern::REASSOC_XY_AMM_BMM
) ||
813 (Pattern
== MachineCombinerPattern::REASSOC_XMM_AMM_BMM
);
815 uint16_t AddOpIdx
= FMAOpIdxInfo
[Idx
][InfoArrayIdxAddOpIdx
];
816 uint16_t FirstMulOpIdx
= FMAOpIdxInfo
[Idx
][InfoArrayIdxMULOpIdx
];
818 MachineInstr
*Prev
= nullptr;
819 MachineInstr
*Leaf
= nullptr;
822 llvm_unreachable("not recognized pattern!");
823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM
:
824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM
:
825 Prev
= MRI
.getUniqueVRegDef(Root
.getOperand(AddOpIdx
).getReg());
826 Leaf
= MRI
.getUniqueVRegDef(Prev
->getOperand(AddOpIdx
).getReg());
828 case MachineCombinerPattern::REASSOC_XY_BAC
: {
830 TRI
->lookThruCopyLike(Root
.getOperand(FirstMulOpIdx
).getReg(), &MRI
);
831 Leaf
= MRI
.getVRegDef(MULReg
);
834 case MachineCombinerPattern::REASSOC_XY_BCA
: {
835 Register MULReg
= TRI
->lookThruCopyLike(
836 Root
.getOperand(FirstMulOpIdx
+ 1).getReg(), &MRI
);
837 Leaf
= MRI
.getVRegDef(MULReg
);
842 uint16_t IntersectedFlags
= 0;
843 if (IsILPReassociate
)
844 IntersectedFlags
= Root
.getFlags() & Prev
->getFlags() & Leaf
->getFlags();
846 IntersectedFlags
= Root
.getFlags() & Leaf
->getFlags();
848 auto GetOperandInfo
= [&](const MachineOperand
&Operand
, Register
&Reg
,
850 Reg
= Operand
.getReg();
851 MRI
.constrainRegClass(Reg
, RC
);
852 KillFlag
= Operand
.isKill();
855 auto GetFMAInstrInfo
= [&](const MachineInstr
&Instr
, Register
&MulOp1
,
856 Register
&MulOp2
, Register
&AddOp
,
857 bool &MulOp1KillFlag
, bool &MulOp2KillFlag
,
858 bool &AddOpKillFlag
) {
859 GetOperandInfo(Instr
.getOperand(FirstMulOpIdx
), MulOp1
, MulOp1KillFlag
);
860 GetOperandInfo(Instr
.getOperand(FirstMulOpIdx
+ 1), MulOp2
, MulOp2KillFlag
);
861 GetOperandInfo(Instr
.getOperand(AddOpIdx
), AddOp
, AddOpKillFlag
);
864 Register RegM11
, RegM12
, RegX
, RegY
, RegM21
, RegM22
, RegM31
, RegM32
, RegA11
,
866 bool KillX
= false, KillY
= false, KillM11
= false, KillM12
= false,
867 KillM21
= false, KillM22
= false, KillM31
= false, KillM32
= false,
868 KillA11
= false, KillA21
= false, KillB
= false;
870 GetFMAInstrInfo(Root
, RegM31
, RegM32
, RegB
, KillM31
, KillM32
, KillB
);
872 if (IsILPReassociate
)
873 GetFMAInstrInfo(*Prev
, RegM21
, RegM22
, RegA21
, KillM21
, KillM22
, KillA21
);
875 if (Pattern
== MachineCombinerPattern::REASSOC_XMM_AMM_BMM
) {
876 GetFMAInstrInfo(*Leaf
, RegM11
, RegM12
, RegA11
, KillM11
, KillM12
, KillA11
);
877 GetOperandInfo(Leaf
->getOperand(AddOpIdx
), RegX
, KillX
);
878 } else if (Pattern
== MachineCombinerPattern::REASSOC_XY_AMM_BMM
) {
879 GetOperandInfo(Leaf
->getOperand(1), RegX
, KillX
);
880 GetOperandInfo(Leaf
->getOperand(2), RegY
, KillY
);
882 // Get FSUB instruction info.
883 GetOperandInfo(Leaf
->getOperand(1), RegX
, KillX
);
884 GetOperandInfo(Leaf
->getOperand(2), RegY
, KillY
);
887 // Create new virtual registers for the new results instead of
888 // recycling legacy ones because the MachineCombiner's computation of the
889 // critical path requires a new register definition rather than an existing
891 // For register pressure reassociation, we only need create one virtual
892 // register for the new fma.
893 Register NewVRA
= MRI
.createVirtualRegister(RC
);
894 InstrIdxForVirtReg
.insert(std::make_pair(NewVRA
, 0));
897 if (IsILPReassociate
) {
898 NewVRB
= MRI
.createVirtualRegister(RC
);
899 InstrIdxForVirtReg
.insert(std::make_pair(NewVRB
, 1));
903 if (Pattern
== MachineCombinerPattern::REASSOC_XMM_AMM_BMM
) {
904 NewVRD
= MRI
.createVirtualRegister(RC
);
905 InstrIdxForVirtReg
.insert(std::make_pair(NewVRD
, 2));
908 auto AdjustOperandOrder
= [&](MachineInstr
*MI
, Register RegAdd
, bool KillAdd
,
909 Register RegMul1
, bool KillRegMul1
,
910 Register RegMul2
, bool KillRegMul2
) {
911 MI
->getOperand(AddOpIdx
).setReg(RegAdd
);
912 MI
->getOperand(AddOpIdx
).setIsKill(KillAdd
);
913 MI
->getOperand(FirstMulOpIdx
).setReg(RegMul1
);
914 MI
->getOperand(FirstMulOpIdx
).setIsKill(KillRegMul1
);
915 MI
->getOperand(FirstMulOpIdx
+ 1).setReg(RegMul2
);
916 MI
->getOperand(FirstMulOpIdx
+ 1).setIsKill(KillRegMul2
);
919 MachineInstrBuilder NewARegPressure
, NewCRegPressure
;
922 llvm_unreachable("not recognized pattern!");
923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM
: {
924 // Create new instructions for insertion.
925 MachineInstrBuilder MINewB
=
926 BuildMI(*MF
, Prev
->getDebugLoc(), get(FmaOp
), NewVRB
)
927 .addReg(RegX
, getKillRegState(KillX
))
928 .addReg(RegM21
, getKillRegState(KillM21
))
929 .addReg(RegM22
, getKillRegState(KillM22
));
930 MachineInstrBuilder MINewA
=
931 BuildMI(*MF
, Root
.getDebugLoc(), get(FmaOp
), NewVRA
)
932 .addReg(RegY
, getKillRegState(KillY
))
933 .addReg(RegM31
, getKillRegState(KillM31
))
934 .addReg(RegM32
, getKillRegState(KillM32
));
935 // If AddOpIdx is not 1, adjust the order.
937 AdjustOperandOrder(MINewB
, RegX
, KillX
, RegM21
, KillM21
, RegM22
, KillM22
);
938 AdjustOperandOrder(MINewA
, RegY
, KillY
, RegM31
, KillM31
, RegM32
, KillM32
);
941 MachineInstrBuilder MINewC
=
942 BuildMI(*MF
, Root
.getDebugLoc(),
943 get(FMAOpIdxInfo
[Idx
][InfoArrayIdxFAddInst
]), RegC
)
944 .addReg(NewVRB
, getKillRegState(true))
945 .addReg(NewVRA
, getKillRegState(true));
947 // Update flags for newly created instructions.
948 setSpecialOperandAttr(*MINewA
, IntersectedFlags
);
949 setSpecialOperandAttr(*MINewB
, IntersectedFlags
);
950 setSpecialOperandAttr(*MINewC
, IntersectedFlags
);
952 // Record new instructions for insertion.
953 InsInstrs
.push_back(MINewA
);
954 InsInstrs
.push_back(MINewB
);
955 InsInstrs
.push_back(MINewC
);
958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM
: {
959 assert(NewVRD
&& "new FMA register not created!");
960 // Create new instructions for insertion.
961 MachineInstrBuilder MINewA
=
962 BuildMI(*MF
, Leaf
->getDebugLoc(),
963 get(FMAOpIdxInfo
[Idx
][InfoArrayIdxFMULInst
]), NewVRA
)
964 .addReg(RegM11
, getKillRegState(KillM11
))
965 .addReg(RegM12
, getKillRegState(KillM12
));
966 MachineInstrBuilder MINewB
=
967 BuildMI(*MF
, Prev
->getDebugLoc(), get(FmaOp
), NewVRB
)
968 .addReg(RegX
, getKillRegState(KillX
))
969 .addReg(RegM21
, getKillRegState(KillM21
))
970 .addReg(RegM22
, getKillRegState(KillM22
));
971 MachineInstrBuilder MINewD
=
972 BuildMI(*MF
, Root
.getDebugLoc(), get(FmaOp
), NewVRD
)
973 .addReg(NewVRA
, getKillRegState(true))
974 .addReg(RegM31
, getKillRegState(KillM31
))
975 .addReg(RegM32
, getKillRegState(KillM32
));
976 // If AddOpIdx is not 1, adjust the order.
978 AdjustOperandOrder(MINewB
, RegX
, KillX
, RegM21
, KillM21
, RegM22
, KillM22
);
979 AdjustOperandOrder(MINewD
, NewVRA
, true, RegM31
, KillM31
, RegM32
,
983 MachineInstrBuilder MINewC
=
984 BuildMI(*MF
, Root
.getDebugLoc(),
985 get(FMAOpIdxInfo
[Idx
][InfoArrayIdxFAddInst
]), RegC
)
986 .addReg(NewVRB
, getKillRegState(true))
987 .addReg(NewVRD
, getKillRegState(true));
989 // Update flags for newly created instructions.
990 setSpecialOperandAttr(*MINewA
, IntersectedFlags
);
991 setSpecialOperandAttr(*MINewB
, IntersectedFlags
);
992 setSpecialOperandAttr(*MINewD
, IntersectedFlags
);
993 setSpecialOperandAttr(*MINewC
, IntersectedFlags
);
995 // Record new instructions for insertion.
996 InsInstrs
.push_back(MINewA
);
997 InsInstrs
.push_back(MINewB
);
998 InsInstrs
.push_back(MINewD
);
999 InsInstrs
.push_back(MINewC
);
1002 case MachineCombinerPattern::REASSOC_XY_BAC
:
1003 case MachineCombinerPattern::REASSOC_XY_BCA
: {
1005 bool KillVarReg
= false;
1006 if (Pattern
== MachineCombinerPattern::REASSOC_XY_BCA
) {
1008 KillVarReg
= KillM31
;
1011 KillVarReg
= KillM32
;
1013 // We don't want to get negative const from memory pool too early, as the
1014 // created entry will not be deleted even if it has no users. Since all
1015 // operand of Leaf and Root are virtual register, we use zero register
1016 // here as a placeholder. When the InsInstrs is selected in
1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1018 // with a virtual register which is a load from constant pool.
1019 NewARegPressure
= BuildMI(*MF
, Root
.getDebugLoc(), get(FmaOp
), NewVRA
)
1020 .addReg(RegB
, getKillRegState(RegB
))
1021 .addReg(RegY
, getKillRegState(KillY
))
1022 .addReg(PPC::ZERO8
);
1023 NewCRegPressure
= BuildMI(*MF
, Root
.getDebugLoc(), get(FmaOp
), RegC
)
1024 .addReg(NewVRA
, getKillRegState(true))
1025 .addReg(RegX
, getKillRegState(KillX
))
1026 .addReg(VarReg
, getKillRegState(KillVarReg
));
1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1028 // both at index 1, no need to adjust.
1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust
1030 // the operand index here.
1035 if (!IsILPReassociate
) {
1036 setSpecialOperandAttr(*NewARegPressure
, IntersectedFlags
);
1037 setSpecialOperandAttr(*NewCRegPressure
, IntersectedFlags
);
1039 InsInstrs
.push_back(NewARegPressure
);
1040 InsInstrs
.push_back(NewCRegPressure
);
1043 assert(!InsInstrs
.empty() &&
1044 "Insertion instructions set should not be empty!");
1046 // Record old instructions for deletion.
1047 DelInstrs
.push_back(Leaf
);
1048 if (IsILPReassociate
)
1049 DelInstrs
.push_back(Prev
);
1050 DelInstrs
.push_back(&Root
);
1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
1055 Register
&SrcReg
, Register
&DstReg
,
1056 unsigned &SubIdx
) const {
1057 switch (MI
.getOpcode()) {
1058 default: return false;
1061 case PPC::EXTSW_32_64
:
1062 SrcReg
= MI
.getOperand(1).getReg();
1063 DstReg
= MI
.getOperand(0).getReg();
1064 SubIdx
= PPC::sub_32
;
1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
1070 int &FrameIndex
) const {
1071 unsigned Opcode
= MI
.getOpcode();
1072 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
1073 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
1075 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
1076 // Check for the operands added by addFrameReference (the immediate is the
1077 // offset which defaults to 0).
1078 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
1079 MI
.getOperand(2).isFI()) {
1080 FrameIndex
= MI
.getOperand(2).getIndex();
1081 return MI
.getOperand(0).getReg();
1087 // For opcodes with the ReMaterializable flag set, this function is called to
1088 // verify the instruction is really rematable.
1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
1090 AliasAnalysis
*AA
) const {
1091 switch (MI
.getOpcode()) {
1093 // This function should only be called for opcodes with the ReMaterializable
1095 llvm_unreachable("Unknown rematerializable operation!");
1103 case PPC::ADDIStocHA
:
1104 case PPC::ADDIStocHA8
:
1106 case PPC::LOAD_STACK_GUARD
:
1108 case PPC::XXLXORspz
:
1109 case PPC::XXLXORdpz
:
1110 case PPC::XXLEQVOnes
:
1111 case PPC::XXSPLTI32DX
:
1115 case PPC::V_SETALLONESB
:
1116 case PPC::V_SETALLONESH
:
1117 case PPC::V_SETALLONES
:
1120 case PPC::XXSETACCZ
:
1126 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
1127 int &FrameIndex
) const {
1128 unsigned Opcode
= MI
.getOpcode();
1129 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
1130 const unsigned *End
= OpcodesForSpill
+ SOK_LastOpcodeSpill
;
1132 if (End
!= std::find(OpcodesForSpill
, End
, Opcode
)) {
1133 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
1134 MI
.getOperand(2).isFI()) {
1135 FrameIndex
= MI
.getOperand(2).getIndex();
1136 return MI
.getOperand(0).getReg();
1142 MachineInstr
*PPCInstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
1144 unsigned OpIdx2
) const {
1145 MachineFunction
&MF
= *MI
.getParent()->getParent();
1147 // Normal instructions can be commuted the obvious way.
1148 if (MI
.getOpcode() != PPC::RLWIMI
&& MI
.getOpcode() != PPC::RLWIMI_rec
)
1149 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
1150 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1151 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1152 // changing the relative order of the mask operands might change what happens
1153 // to the high-bits of the mask (and, thus, the result).
1155 // Cannot commute if it has a non-zero rotate count.
1156 if (MI
.getOperand(3).getImm() != 0)
1159 // If we have a zero rotate count, we have:
1161 // Op0 = (Op1 & ~M) | (Op2 & M)
1163 // M = mask((ME+1)&31, (MB-1)&31)
1164 // Op0 = (Op2 & ~M) | (Op1 & M)
1167 assert(((OpIdx1
== 1 && OpIdx2
== 2) || (OpIdx1
== 2 && OpIdx2
== 1)) &&
1168 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1169 Register Reg0
= MI
.getOperand(0).getReg();
1170 Register Reg1
= MI
.getOperand(1).getReg();
1171 Register Reg2
= MI
.getOperand(2).getReg();
1172 unsigned SubReg1
= MI
.getOperand(1).getSubReg();
1173 unsigned SubReg2
= MI
.getOperand(2).getSubReg();
1174 bool Reg1IsKill
= MI
.getOperand(1).isKill();
1175 bool Reg2IsKill
= MI
.getOperand(2).isKill();
1176 bool ChangeReg0
= false;
1177 // If machine instrs are no longer in two-address forms, update
1178 // destination register as well.
1180 // Must be two address instruction!
1181 assert(MI
.getDesc().getOperandConstraint(0, MCOI::TIED_TO
) &&
1182 "Expecting a two-address instruction!");
1183 assert(MI
.getOperand(0).getSubReg() == SubReg1
&& "Tied subreg mismatch");
1189 unsigned MB
= MI
.getOperand(4).getImm();
1190 unsigned ME
= MI
.getOperand(5).getImm();
1192 // We can't commute a trivial mask (there is no way to represent an all-zero
1194 if (MB
== 0 && ME
== 31)
1198 // Create a new instruction.
1199 Register Reg0
= ChangeReg0
? Reg2
: MI
.getOperand(0).getReg();
1200 bool Reg0IsDead
= MI
.getOperand(0).isDead();
1201 return BuildMI(MF
, MI
.getDebugLoc(), MI
.getDesc())
1202 .addReg(Reg0
, RegState::Define
| getDeadRegState(Reg0IsDead
))
1203 .addReg(Reg2
, getKillRegState(Reg2IsKill
))
1204 .addReg(Reg1
, getKillRegState(Reg1IsKill
))
1205 .addImm((ME
+ 1) & 31)
1206 .addImm((MB
- 1) & 31);
1210 MI
.getOperand(0).setReg(Reg2
);
1211 MI
.getOperand(0).setSubReg(SubReg2
);
1213 MI
.getOperand(2).setReg(Reg1
);
1214 MI
.getOperand(1).setReg(Reg2
);
1215 MI
.getOperand(2).setSubReg(SubReg1
);
1216 MI
.getOperand(1).setSubReg(SubReg2
);
1217 MI
.getOperand(2).setIsKill(Reg1IsKill
);
1218 MI
.getOperand(1).setIsKill(Reg2IsKill
);
1220 // Swap the mask around.
1221 MI
.getOperand(4).setImm((ME
+ 1) & 31);
1222 MI
.getOperand(5).setImm((MB
- 1) & 31);
1226 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr
&MI
,
1227 unsigned &SrcOpIdx1
,
1228 unsigned &SrcOpIdx2
) const {
1229 // For VSX A-Type FMA instructions, it is the first two operands that can be
1230 // commuted, however, because the non-encoded tied input operand is listed
1231 // first, the operands to swap are actually the second and third.
1233 int AltOpc
= PPC::getAltVSXFMAOpcode(MI
.getOpcode());
1235 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1237 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1239 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 2, 3);
1242 void PPCInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
1243 MachineBasicBlock::iterator MI
) const {
1244 // This function is used for scheduling, and the nop wanted here is the type
1245 // that terminates dispatch groups on the POWER cores.
1246 unsigned Directive
= Subtarget
.getCPUDirective();
1248 switch (Directive
) {
1249 default: Opcode
= PPC::NOP
; break;
1250 case PPC::DIR_PWR6
: Opcode
= PPC::NOP_GT_PWR6
; break;
1251 case PPC::DIR_PWR7
: Opcode
= PPC::NOP_GT_PWR7
; break;
1252 case PPC::DIR_PWR8
: Opcode
= PPC::NOP_GT_PWR7
; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1253 // FIXME: Update when POWER9 scheduling model is ready.
1254 case PPC::DIR_PWR9
: Opcode
= PPC::NOP_GT_PWR7
; break;
1258 BuildMI(MBB
, MI
, DL
, get(Opcode
));
1261 /// Return the noop instruction to use for a noop.
1262 MCInst
PPCInstrInfo::getNop() const {
1264 Nop
.setOpcode(PPC::NOP
);
1269 // Note: If the condition register is set to CTR or CTR8 then this is a
1270 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1271 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
1272 MachineBasicBlock
*&TBB
,
1273 MachineBasicBlock
*&FBB
,
1274 SmallVectorImpl
<MachineOperand
> &Cond
,
1275 bool AllowModify
) const {
1276 bool isPPC64
= Subtarget
.isPPC64();
1278 // If the block has no terminators, it just falls into the block after it.
1279 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
1283 if (!isUnpredicatedTerminator(*I
))
1287 // If the BB ends with an unconditional branch to the fallthrough BB,
1288 // we eliminate the branch instruction.
1289 if (I
->getOpcode() == PPC::B
&&
1290 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
1291 I
->eraseFromParent();
1293 // We update iterator after deleting the last branch.
1294 I
= MBB
.getLastNonDebugInstr();
1295 if (I
== MBB
.end() || !isUnpredicatedTerminator(*I
))
1300 // Get the last instruction in the block.
1301 MachineInstr
&LastInst
= *I
;
1303 // If there is only one terminator instruction, process it.
1304 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
1305 if (LastInst
.getOpcode() == PPC::B
) {
1306 if (!LastInst
.getOperand(0).isMBB())
1308 TBB
= LastInst
.getOperand(0).getMBB();
1310 } else if (LastInst
.getOpcode() == PPC::BCC
) {
1311 if (!LastInst
.getOperand(2).isMBB())
1313 // Block ends with fall-through condbranch.
1314 TBB
= LastInst
.getOperand(2).getMBB();
1315 Cond
.push_back(LastInst
.getOperand(0));
1316 Cond
.push_back(LastInst
.getOperand(1));
1318 } else if (LastInst
.getOpcode() == PPC::BC
) {
1319 if (!LastInst
.getOperand(1).isMBB())
1321 // Block ends with fall-through condbranch.
1322 TBB
= LastInst
.getOperand(1).getMBB();
1323 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
1324 Cond
.push_back(LastInst
.getOperand(0));
1326 } else if (LastInst
.getOpcode() == PPC::BCn
) {
1327 if (!LastInst
.getOperand(1).isMBB())
1329 // Block ends with fall-through condbranch.
1330 TBB
= LastInst
.getOperand(1).getMBB();
1331 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
1332 Cond
.push_back(LastInst
.getOperand(0));
1334 } else if (LastInst
.getOpcode() == PPC::BDNZ8
||
1335 LastInst
.getOpcode() == PPC::BDNZ
) {
1336 if (!LastInst
.getOperand(0).isMBB())
1338 if (DisableCTRLoopAnal
)
1340 TBB
= LastInst
.getOperand(0).getMBB();
1341 Cond
.push_back(MachineOperand::CreateImm(1));
1342 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
1345 } else if (LastInst
.getOpcode() == PPC::BDZ8
||
1346 LastInst
.getOpcode() == PPC::BDZ
) {
1347 if (!LastInst
.getOperand(0).isMBB())
1349 if (DisableCTRLoopAnal
)
1351 TBB
= LastInst
.getOperand(0).getMBB();
1352 Cond
.push_back(MachineOperand::CreateImm(0));
1353 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
1358 // Otherwise, don't know what this is.
1362 // Get the instruction before it if it's a terminator.
1363 MachineInstr
&SecondLastInst
= *I
;
1365 // If there are three terminators, we don't know what sort of block this is.
1366 if (I
!= MBB
.begin() && isUnpredicatedTerminator(*--I
))
1369 // If the block ends with PPC::B and PPC:BCC, handle it.
1370 if (SecondLastInst
.getOpcode() == PPC::BCC
&&
1371 LastInst
.getOpcode() == PPC::B
) {
1372 if (!SecondLastInst
.getOperand(2).isMBB() ||
1373 !LastInst
.getOperand(0).isMBB())
1375 TBB
= SecondLastInst
.getOperand(2).getMBB();
1376 Cond
.push_back(SecondLastInst
.getOperand(0));
1377 Cond
.push_back(SecondLastInst
.getOperand(1));
1378 FBB
= LastInst
.getOperand(0).getMBB();
1380 } else if (SecondLastInst
.getOpcode() == PPC::BC
&&
1381 LastInst
.getOpcode() == PPC::B
) {
1382 if (!SecondLastInst
.getOperand(1).isMBB() ||
1383 !LastInst
.getOperand(0).isMBB())
1385 TBB
= SecondLastInst
.getOperand(1).getMBB();
1386 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
1387 Cond
.push_back(SecondLastInst
.getOperand(0));
1388 FBB
= LastInst
.getOperand(0).getMBB();
1390 } else if (SecondLastInst
.getOpcode() == PPC::BCn
&&
1391 LastInst
.getOpcode() == PPC::B
) {
1392 if (!SecondLastInst
.getOperand(1).isMBB() ||
1393 !LastInst
.getOperand(0).isMBB())
1395 TBB
= SecondLastInst
.getOperand(1).getMBB();
1396 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
1397 Cond
.push_back(SecondLastInst
.getOperand(0));
1398 FBB
= LastInst
.getOperand(0).getMBB();
1400 } else if ((SecondLastInst
.getOpcode() == PPC::BDNZ8
||
1401 SecondLastInst
.getOpcode() == PPC::BDNZ
) &&
1402 LastInst
.getOpcode() == PPC::B
) {
1403 if (!SecondLastInst
.getOperand(0).isMBB() ||
1404 !LastInst
.getOperand(0).isMBB())
1406 if (DisableCTRLoopAnal
)
1408 TBB
= SecondLastInst
.getOperand(0).getMBB();
1409 Cond
.push_back(MachineOperand::CreateImm(1));
1410 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
1412 FBB
= LastInst
.getOperand(0).getMBB();
1414 } else if ((SecondLastInst
.getOpcode() == PPC::BDZ8
||
1415 SecondLastInst
.getOpcode() == PPC::BDZ
) &&
1416 LastInst
.getOpcode() == PPC::B
) {
1417 if (!SecondLastInst
.getOperand(0).isMBB() ||
1418 !LastInst
.getOperand(0).isMBB())
1420 if (DisableCTRLoopAnal
)
1422 TBB
= SecondLastInst
.getOperand(0).getMBB();
1423 Cond
.push_back(MachineOperand::CreateImm(0));
1424 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
1426 FBB
= LastInst
.getOperand(0).getMBB();
1430 // If the block ends with two PPC:Bs, handle it. The second one is not
1431 // executed, so remove it.
1432 if (SecondLastInst
.getOpcode() == PPC::B
&& LastInst
.getOpcode() == PPC::B
) {
1433 if (!SecondLastInst
.getOperand(0).isMBB())
1435 TBB
= SecondLastInst
.getOperand(0).getMBB();
1438 I
->eraseFromParent();
1442 // Otherwise, can't handle this.
1446 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
1447 int *BytesRemoved
) const {
1448 assert(!BytesRemoved
&& "code size not handled");
1450 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
1454 if (I
->getOpcode() != PPC::B
&& I
->getOpcode() != PPC::BCC
&&
1455 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
1456 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
1457 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
1460 // Remove the branch.
1461 I
->eraseFromParent();
1465 if (I
== MBB
.begin()) return 1;
1467 if (I
->getOpcode() != PPC::BCC
&&
1468 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
1469 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
1470 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
1473 // Remove the branch.
1474 I
->eraseFromParent();
1478 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
1479 MachineBasicBlock
*TBB
,
1480 MachineBasicBlock
*FBB
,
1481 ArrayRef
<MachineOperand
> Cond
,
1483 int *BytesAdded
) const {
1484 // Shouldn't be a fall through.
1485 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
1486 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
1487 "PPC branch conditions have two components!");
1488 assert(!BytesAdded
&& "code size not handled");
1490 bool isPPC64
= Subtarget
.isPPC64();
1494 if (Cond
.empty()) // Unconditional branch
1495 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(TBB
);
1496 else if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
1497 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
1498 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
1499 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
1500 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
1501 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
1502 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
1503 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
1504 else // Conditional branch
1505 BuildMI(&MBB
, DL
, get(PPC::BCC
))
1506 .addImm(Cond
[0].getImm())
1512 // Two-way Conditional Branch.
1513 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
1514 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
1515 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
1516 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
1517 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
1518 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
1519 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
1520 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
1522 BuildMI(&MBB
, DL
, get(PPC::BCC
))
1523 .addImm(Cond
[0].getImm())
1526 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(FBB
);
1531 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
1532 ArrayRef
<MachineOperand
> Cond
,
1533 Register DstReg
, Register TrueReg
,
1534 Register FalseReg
, int &CondCycles
,
1535 int &TrueCycles
, int &FalseCycles
) const {
1536 if (Cond
.size() != 2)
1539 // If this is really a bdnz-like condition, then it cannot be turned into a
1541 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
1544 // Check register classes.
1545 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
1546 const TargetRegisterClass
*RC
=
1547 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
1551 // isel is for regular integer GPRs only.
1552 if (!PPC::GPRCRegClass
.hasSubClassEq(RC
) &&
1553 !PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
) &&
1554 !PPC::G8RCRegClass
.hasSubClassEq(RC
) &&
1555 !PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
))
1558 // FIXME: These numbers are for the A2, how well they work for other cores is
1559 // an open question. On the A2, the isel instruction has a 2-cycle latency
1560 // but single-cycle throughput. These numbers are used in combination with
1561 // the MispredictPenalty setting from the active SchedMachineModel.
1569 void PPCInstrInfo::insertSelect(MachineBasicBlock
&MBB
,
1570 MachineBasicBlock::iterator MI
,
1571 const DebugLoc
&dl
, Register DestReg
,
1572 ArrayRef
<MachineOperand
> Cond
, Register TrueReg
,
1573 Register FalseReg
) const {
1574 assert(Cond
.size() == 2 &&
1575 "PPC branch conditions have two components!");
1577 // Get the register classes.
1578 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
1579 const TargetRegisterClass
*RC
=
1580 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
1581 assert(RC
&& "TrueReg and FalseReg must have overlapping register classes");
1583 bool Is64Bit
= PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1584 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
);
1586 PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1587 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) &&
1588 "isel is for regular integer GPRs only");
1590 unsigned OpCode
= Is64Bit
? PPC::ISEL8
: PPC::ISEL
;
1591 auto SelectPred
= static_cast<PPC::Predicate
>(Cond
[0].getImm());
1593 unsigned SubIdx
= 0;
1594 bool SwapOps
= false;
1595 switch (SelectPred
) {
1597 case PPC::PRED_EQ_MINUS
:
1598 case PPC::PRED_EQ_PLUS
:
1599 SubIdx
= PPC::sub_eq
; SwapOps
= false; break;
1601 case PPC::PRED_NE_MINUS
:
1602 case PPC::PRED_NE_PLUS
:
1603 SubIdx
= PPC::sub_eq
; SwapOps
= true; break;
1605 case PPC::PRED_LT_MINUS
:
1606 case PPC::PRED_LT_PLUS
:
1607 SubIdx
= PPC::sub_lt
; SwapOps
= false; break;
1609 case PPC::PRED_GE_MINUS
:
1610 case PPC::PRED_GE_PLUS
:
1611 SubIdx
= PPC::sub_lt
; SwapOps
= true; break;
1613 case PPC::PRED_GT_MINUS
:
1614 case PPC::PRED_GT_PLUS
:
1615 SubIdx
= PPC::sub_gt
; SwapOps
= false; break;
1617 case PPC::PRED_LE_MINUS
:
1618 case PPC::PRED_LE_PLUS
:
1619 SubIdx
= PPC::sub_gt
; SwapOps
= true; break;
1621 case PPC::PRED_UN_MINUS
:
1622 case PPC::PRED_UN_PLUS
:
1623 SubIdx
= PPC::sub_un
; SwapOps
= false; break;
1625 case PPC::PRED_NU_MINUS
:
1626 case PPC::PRED_NU_PLUS
:
1627 SubIdx
= PPC::sub_un
; SwapOps
= true; break;
1628 case PPC::PRED_BIT_SET
: SubIdx
= 0; SwapOps
= false; break;
1629 case PPC::PRED_BIT_UNSET
: SubIdx
= 0; SwapOps
= true; break;
1632 Register FirstReg
= SwapOps
? FalseReg
: TrueReg
,
1633 SecondReg
= SwapOps
? TrueReg
: FalseReg
;
1635 // The first input register of isel cannot be r0. If it is a member
1636 // of a register class that can be r0, then copy it first (the
1637 // register allocator should eliminate the copy).
1638 if (MRI
.getRegClass(FirstReg
)->contains(PPC::R0
) ||
1639 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
)) {
1640 const TargetRegisterClass
*FirstRC
=
1641 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
) ?
1642 &PPC::G8RC_NOX0RegClass
: &PPC::GPRC_NOR0RegClass
;
1643 Register OldFirstReg
= FirstReg
;
1644 FirstReg
= MRI
.createVirtualRegister(FirstRC
);
1645 BuildMI(MBB
, MI
, dl
, get(TargetOpcode::COPY
), FirstReg
)
1646 .addReg(OldFirstReg
);
1649 BuildMI(MBB
, MI
, dl
, get(OpCode
), DestReg
)
1650 .addReg(FirstReg
).addReg(SecondReg
)
1651 .addReg(Cond
[1].getReg(), 0, SubIdx
);
1654 static unsigned getCRBitValue(unsigned CRBit
) {
1656 if (CRBit
== PPC::CR0LT
|| CRBit
== PPC::CR1LT
||
1657 CRBit
== PPC::CR2LT
|| CRBit
== PPC::CR3LT
||
1658 CRBit
== PPC::CR4LT
|| CRBit
== PPC::CR5LT
||
1659 CRBit
== PPC::CR6LT
|| CRBit
== PPC::CR7LT
)
1661 if (CRBit
== PPC::CR0GT
|| CRBit
== PPC::CR1GT
||
1662 CRBit
== PPC::CR2GT
|| CRBit
== PPC::CR3GT
||
1663 CRBit
== PPC::CR4GT
|| CRBit
== PPC::CR5GT
||
1664 CRBit
== PPC::CR6GT
|| CRBit
== PPC::CR7GT
)
1666 if (CRBit
== PPC::CR0EQ
|| CRBit
== PPC::CR1EQ
||
1667 CRBit
== PPC::CR2EQ
|| CRBit
== PPC::CR3EQ
||
1668 CRBit
== PPC::CR4EQ
|| CRBit
== PPC::CR5EQ
||
1669 CRBit
== PPC::CR6EQ
|| CRBit
== PPC::CR7EQ
)
1671 if (CRBit
== PPC::CR0UN
|| CRBit
== PPC::CR1UN
||
1672 CRBit
== PPC::CR2UN
|| CRBit
== PPC::CR3UN
||
1673 CRBit
== PPC::CR4UN
|| CRBit
== PPC::CR5UN
||
1674 CRBit
== PPC::CR6UN
|| CRBit
== PPC::CR7UN
)
1677 assert(Ret
!= 4 && "Invalid CR bit register");
1681 void PPCInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
1682 MachineBasicBlock::iterator I
,
1683 const DebugLoc
&DL
, MCRegister DestReg
,
1684 MCRegister SrcReg
, bool KillSrc
) const {
1685 // We can end up with self copies and similar things as a result of VSX copy
1686 // legalization. Promote them here.
1687 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1688 if (PPC::F8RCRegClass
.contains(DestReg
) &&
1689 PPC::VSRCRegClass
.contains(SrcReg
)) {
1690 MCRegister SuperReg
=
1691 TRI
->getMatchingSuperReg(DestReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
1693 if (VSXSelfCopyCrash
&& SrcReg
== SuperReg
)
1694 llvm_unreachable("nop VSX copy");
1697 } else if (PPC::F8RCRegClass
.contains(SrcReg
) &&
1698 PPC::VSRCRegClass
.contains(DestReg
)) {
1699 MCRegister SuperReg
=
1700 TRI
->getMatchingSuperReg(SrcReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
1702 if (VSXSelfCopyCrash
&& DestReg
== SuperReg
)
1703 llvm_unreachable("nop VSX copy");
1708 // Different class register copy
1709 if (PPC::CRBITRCRegClass
.contains(SrcReg
) &&
1710 PPC::GPRCRegClass
.contains(DestReg
)) {
1711 MCRegister CRReg
= getCRFromCRBit(SrcReg
);
1712 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(CRReg
);
1713 getKillRegState(KillSrc
);
1714 // Rotate the CR bit in the CR fields to be the least significant bit and
1715 // then mask with 0x1 (MB = ME = 31).
1716 BuildMI(MBB
, I
, DL
, get(PPC::RLWINM
), DestReg
)
1717 .addReg(DestReg
, RegState::Kill
)
1718 .addImm(TRI
->getEncodingValue(CRReg
) * 4 + (4 - getCRBitValue(SrcReg
)))
1722 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
1723 (PPC::G8RCRegClass
.contains(DestReg
) ||
1724 PPC::GPRCRegClass
.contains(DestReg
))) {
1725 bool Is64Bit
= PPC::G8RCRegClass
.contains(DestReg
);
1726 unsigned MvCode
= Is64Bit
? PPC::MFOCRF8
: PPC::MFOCRF
;
1727 unsigned ShCode
= Is64Bit
? PPC::RLWINM8
: PPC::RLWINM
;
1728 unsigned CRNum
= TRI
->getEncodingValue(SrcReg
);
1729 BuildMI(MBB
, I
, DL
, get(MvCode
), DestReg
).addReg(SrcReg
);
1730 getKillRegState(KillSrc
);
1733 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1734 BuildMI(MBB
, I
, DL
, get(ShCode
), DestReg
)
1735 .addReg(DestReg
, RegState::Kill
)
1736 .addImm(CRNum
* 4 + 4)
1740 } else if (PPC::G8RCRegClass
.contains(SrcReg
) &&
1741 PPC::VSFRCRegClass
.contains(DestReg
)) {
1742 assert(Subtarget
.hasDirectMove() &&
1743 "Subtarget doesn't support directmove, don't know how to copy.");
1744 BuildMI(MBB
, I
, DL
, get(PPC::MTVSRD
), DestReg
).addReg(SrcReg
);
1746 getKillRegState(KillSrc
);
1748 } else if (PPC::VSFRCRegClass
.contains(SrcReg
) &&
1749 PPC::G8RCRegClass
.contains(DestReg
)) {
1750 assert(Subtarget
.hasDirectMove() &&
1751 "Subtarget doesn't support directmove, don't know how to copy.");
1752 BuildMI(MBB
, I
, DL
, get(PPC::MFVSRD
), DestReg
).addReg(SrcReg
);
1753 getKillRegState(KillSrc
);
1755 } else if (PPC::SPERCRegClass
.contains(SrcReg
) &&
1756 PPC::GPRCRegClass
.contains(DestReg
)) {
1757 BuildMI(MBB
, I
, DL
, get(PPC::EFSCFD
), DestReg
).addReg(SrcReg
);
1758 getKillRegState(KillSrc
);
1760 } else if (PPC::GPRCRegClass
.contains(SrcReg
) &&
1761 PPC::SPERCRegClass
.contains(DestReg
)) {
1762 BuildMI(MBB
, I
, DL
, get(PPC::EFDCFS
), DestReg
).addReg(SrcReg
);
1763 getKillRegState(KillSrc
);
1768 if (PPC::GPRCRegClass
.contains(DestReg
, SrcReg
))
1770 else if (PPC::G8RCRegClass
.contains(DestReg
, SrcReg
))
1772 else if (PPC::F4RCRegClass
.contains(DestReg
, SrcReg
))
1774 else if (PPC::CRRCRegClass
.contains(DestReg
, SrcReg
))
1776 else if (PPC::VRRCRegClass
.contains(DestReg
, SrcReg
))
1778 else if (PPC::VSRCRegClass
.contains(DestReg
, SrcReg
))
1779 // There are two different ways this can be done:
1780 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1781 // issue in VSU pipeline 0.
1782 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1783 // can go to either pipeline.
1784 // We'll always use xxlor here, because in practically all cases where
1785 // copies are generated, they are close enough to some use that the
1786 // lower-latency form is preferable.
1788 else if (PPC::VSFRCRegClass
.contains(DestReg
, SrcReg
) ||
1789 PPC::VSSRCRegClass
.contains(DestReg
, SrcReg
))
1790 Opc
= (Subtarget
.hasP9Vector()) ? PPC::XSCPSGNDP
: PPC::XXLORf
;
1791 else if (Subtarget
.pairedVectorMemops() &&
1792 PPC::VSRpRCRegClass
.contains(DestReg
, SrcReg
)) {
1793 if (SrcReg
> PPC::VSRp15
)
1794 SrcReg
= PPC::V0
+ (SrcReg
- PPC::VSRp16
) * 2;
1796 SrcReg
= PPC::VSL0
+ (SrcReg
- PPC::VSRp0
) * 2;
1797 if (DestReg
> PPC::VSRp15
)
1798 DestReg
= PPC::V0
+ (DestReg
- PPC::VSRp16
) * 2;
1800 DestReg
= PPC::VSL0
+ (DestReg
- PPC::VSRp0
) * 2;
1801 BuildMI(MBB
, I
, DL
, get(PPC::XXLOR
), DestReg
).
1802 addReg(SrcReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1803 BuildMI(MBB
, I
, DL
, get(PPC::XXLOR
), DestReg
+ 1).
1804 addReg(SrcReg
+ 1).addReg(SrcReg
+ 1, getKillRegState(KillSrc
));
1807 else if (PPC::CRBITRCRegClass
.contains(DestReg
, SrcReg
))
1809 else if (PPC::SPERCRegClass
.contains(DestReg
, SrcReg
))
1811 else if ((PPC::ACCRCRegClass
.contains(DestReg
) ||
1812 PPC::UACCRCRegClass
.contains(DestReg
)) &&
1813 (PPC::ACCRCRegClass
.contains(SrcReg
) ||
1814 PPC::UACCRCRegClass
.contains(SrcReg
))) {
1815 // If primed, de-prime the source register, copy the individual registers
1816 // and prime the destination if needed. The vector subregisters are
1817 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1818 // source is primed, we need to re-prime it after the copy as well.
1819 PPCRegisterInfo::emitAccCopyInfo(MBB
, DestReg
, SrcReg
);
1820 bool DestPrimed
= PPC::ACCRCRegClass
.contains(DestReg
);
1821 bool SrcPrimed
= PPC::ACCRCRegClass
.contains(SrcReg
);
1822 MCRegister VSLSrcReg
=
1823 PPC::VSL0
+ (SrcReg
- (SrcPrimed
? PPC::ACC0
: PPC::UACC0
)) * 4;
1824 MCRegister VSLDestReg
=
1825 PPC::VSL0
+ (DestReg
- (DestPrimed
? PPC::ACC0
: PPC::UACC0
)) * 4;
1827 BuildMI(MBB
, I
, DL
, get(PPC::XXMFACC
), SrcReg
).addReg(SrcReg
);
1828 for (unsigned Idx
= 0; Idx
< 4; Idx
++)
1829 BuildMI(MBB
, I
, DL
, get(PPC::XXLOR
), VSLDestReg
+ Idx
)
1830 .addReg(VSLSrcReg
+ Idx
)
1831 .addReg(VSLSrcReg
+ Idx
, getKillRegState(KillSrc
));
1833 BuildMI(MBB
, I
, DL
, get(PPC::XXMTACC
), DestReg
).addReg(DestReg
);
1834 if (SrcPrimed
&& !KillSrc
)
1835 BuildMI(MBB
, I
, DL
, get(PPC::XXMTACC
), SrcReg
).addReg(SrcReg
);
1837 } else if (PPC::G8pRCRegClass
.contains(DestReg
) &&
1838 PPC::G8pRCRegClass
.contains(SrcReg
)) {
1839 // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1840 unsigned DestRegIdx
= DestReg
- PPC::G8p0
;
1841 MCRegister DestRegSub0
= PPC::X0
+ 2 * DestRegIdx
;
1842 MCRegister DestRegSub1
= PPC::X0
+ 2 * DestRegIdx
+ 1;
1843 unsigned SrcRegIdx
= SrcReg
- PPC::G8p0
;
1844 MCRegister SrcRegSub0
= PPC::X0
+ 2 * SrcRegIdx
;
1845 MCRegister SrcRegSub1
= PPC::X0
+ 2 * SrcRegIdx
+ 1;
1846 BuildMI(MBB
, I
, DL
, get(PPC::OR8
), DestRegSub0
)
1848 .addReg(SrcRegSub0
, getKillRegState(KillSrc
));
1849 BuildMI(MBB
, I
, DL
, get(PPC::OR8
), DestRegSub1
)
1851 .addReg(SrcRegSub1
, getKillRegState(KillSrc
));
1854 llvm_unreachable("Impossible reg-to-reg copy");
1856 const MCInstrDesc
&MCID
= get(Opc
);
1857 if (MCID
.getNumOperands() == 3)
1858 BuildMI(MBB
, I
, DL
, MCID
, DestReg
)
1859 .addReg(SrcReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1861 BuildMI(MBB
, I
, DL
, MCID
, DestReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1864 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass
*RC
) const {
1865 int OpcodeIndex
= 0;
1867 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1868 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1869 OpcodeIndex
= SOK_Int4Spill
;
1870 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1871 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1872 OpcodeIndex
= SOK_Int8Spill
;
1873 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1874 OpcodeIndex
= SOK_Float8Spill
;
1875 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1876 OpcodeIndex
= SOK_Float4Spill
;
1877 } else if (PPC::SPERCRegClass
.hasSubClassEq(RC
)) {
1878 OpcodeIndex
= SOK_SPESpill
;
1879 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1880 OpcodeIndex
= SOK_CRSpill
;
1881 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1882 OpcodeIndex
= SOK_CRBitSpill
;
1883 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1884 OpcodeIndex
= SOK_VRVectorSpill
;
1885 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1886 OpcodeIndex
= SOK_VSXVectorSpill
;
1887 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1888 OpcodeIndex
= SOK_VectorFloat8Spill
;
1889 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1890 OpcodeIndex
= SOK_VectorFloat4Spill
;
1891 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1892 OpcodeIndex
= SOK_SpillToVSR
;
1893 } else if (PPC::ACCRCRegClass
.hasSubClassEq(RC
)) {
1894 assert(Subtarget
.pairedVectorMemops() &&
1895 "Register unexpected when paired memops are disabled.");
1896 OpcodeIndex
= SOK_AccumulatorSpill
;
1897 } else if (PPC::UACCRCRegClass
.hasSubClassEq(RC
)) {
1898 assert(Subtarget
.pairedVectorMemops() &&
1899 "Register unexpected when paired memops are disabled.");
1900 OpcodeIndex
= SOK_UAccumulatorSpill
;
1901 } else if (PPC::VSRpRCRegClass
.hasSubClassEq(RC
)) {
1902 assert(Subtarget
.pairedVectorMemops() &&
1903 "Register unexpected when paired memops are disabled.");
1904 OpcodeIndex
= SOK_PairedVecSpill
;
1905 } else if (PPC::G8pRCRegClass
.hasSubClassEq(RC
)) {
1906 OpcodeIndex
= SOK_PairedG8Spill
;
1908 llvm_unreachable("Unknown regclass!");
1914 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass
*RC
) const {
1915 const unsigned *OpcodesForSpill
= getStoreOpcodesForSpillArray();
1916 return OpcodesForSpill
[getSpillIndex(RC
)];
1920 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass
*RC
) const {
1921 const unsigned *OpcodesForSpill
= getLoadOpcodesForSpillArray();
1922 return OpcodesForSpill
[getSpillIndex(RC
)];
1925 void PPCInstrInfo::StoreRegToStackSlot(
1926 MachineFunction
&MF
, unsigned SrcReg
, bool isKill
, int FrameIdx
,
1927 const TargetRegisterClass
*RC
,
1928 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1929 unsigned Opcode
= getStoreOpcodeForSpill(RC
);
1932 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1933 FuncInfo
->setHasSpills();
1935 NewMIs
.push_back(addFrameReference(
1936 BuildMI(MF
, DL
, get(Opcode
)).addReg(SrcReg
, getKillRegState(isKill
)),
1939 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1940 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1941 FuncInfo
->setSpillsCR();
1943 if (isXFormMemOp(Opcode
))
1944 FuncInfo
->setHasNonRISpills();
1947 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1948 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
, unsigned SrcReg
,
1949 bool isKill
, int FrameIdx
, const TargetRegisterClass
*RC
,
1950 const TargetRegisterInfo
*TRI
) const {
1951 MachineFunction
&MF
= *MBB
.getParent();
1952 SmallVector
<MachineInstr
*, 4> NewMIs
;
1954 StoreRegToStackSlot(MF
, SrcReg
, isKill
, FrameIdx
, RC
, NewMIs
);
1956 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1957 MBB
.insert(MI
, NewMIs
[i
]);
1959 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1960 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1961 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1962 MachineMemOperand::MOStore
, MFI
.getObjectSize(FrameIdx
),
1963 MFI
.getObjectAlign(FrameIdx
));
1964 NewMIs
.back()->addMemOperand(MF
, MMO
);
1967 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
1968 MachineBasicBlock::iterator MI
,
1969 Register SrcReg
, bool isKill
,
1971 const TargetRegisterClass
*RC
,
1972 const TargetRegisterInfo
*TRI
) const {
1973 // We need to avoid a situation in which the value from a VRRC register is
1974 // spilled using an Altivec instruction and reloaded into a VSRC register
1975 // using a VSX instruction. The issue with this is that the VSX
1976 // load/store instructions swap the doublewords in the vector and the Altivec
1977 // ones don't. The register classes on the spill/reload may be different if
1978 // the register is defined using an Altivec instruction and is then used by a
1981 storeRegToStackSlotNoUpd(MBB
, MI
, SrcReg
, isKill
, FrameIdx
, RC
, TRI
);
1984 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction
&MF
, const DebugLoc
&DL
,
1985 unsigned DestReg
, int FrameIdx
,
1986 const TargetRegisterClass
*RC
,
1987 SmallVectorImpl
<MachineInstr
*> &NewMIs
)
1989 unsigned Opcode
= getLoadOpcodeForSpill(RC
);
1990 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opcode
), DestReg
),
1992 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1994 if (PPC::CRRCRegClass
.hasSubClassEq(RC
) ||
1995 PPC::CRBITRCRegClass
.hasSubClassEq(RC
))
1996 FuncInfo
->setSpillsCR();
1998 if (isXFormMemOp(Opcode
))
1999 FuncInfo
->setHasNonRISpills();
2002 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
2003 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
, unsigned DestReg
,
2004 int FrameIdx
, const TargetRegisterClass
*RC
,
2005 const TargetRegisterInfo
*TRI
) const {
2006 MachineFunction
&MF
= *MBB
.getParent();
2007 SmallVector
<MachineInstr
*, 4> NewMIs
;
2009 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
2011 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
2012 FuncInfo
->setHasSpills();
2014 LoadRegFromStackSlot(MF
, DL
, DestReg
, FrameIdx
, RC
, NewMIs
);
2016 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
2017 MBB
.insert(MI
, NewMIs
[i
]);
2019 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2020 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
2021 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
2022 MachineMemOperand::MOLoad
, MFI
.getObjectSize(FrameIdx
),
2023 MFI
.getObjectAlign(FrameIdx
));
2024 NewMIs
.back()->addMemOperand(MF
, MMO
);
2027 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
2028 MachineBasicBlock::iterator MI
,
2029 Register DestReg
, int FrameIdx
,
2030 const TargetRegisterClass
*RC
,
2031 const TargetRegisterInfo
*TRI
) const {
2032 // We need to avoid a situation in which the value from a VRRC register is
2033 // spilled using an Altivec instruction and reloaded into a VSRC register
2034 // using a VSX instruction. The issue with this is that the VSX
2035 // load/store instructions swap the doublewords in the vector and the Altivec
2036 // ones don't. The register classes on the spill/reload may be different if
2037 // the register is defined using an Altivec instruction and is then used by a
2041 loadRegFromStackSlotNoUpd(MBB
, MI
, DestReg
, FrameIdx
, RC
, TRI
);
2045 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
2046 assert(Cond
.size() == 2 && "Invalid PPC branch opcode!");
2047 if (Cond
[1].getReg() == PPC::CTR8
|| Cond
[1].getReg() == PPC::CTR
)
2048 Cond
[0].setImm(Cond
[0].getImm() == 0 ? 1 : 0);
2050 // Leave the CR# the same, but invert the condition.
2051 Cond
[0].setImm(PPC::InvertPredicate((PPC::Predicate
)Cond
[0].getImm()));
2055 // For some instructions, it is legal to fold ZERO into the RA register field.
2056 // This function performs that fold by replacing the operand with PPC::ZERO,
2057 // it does not consider whether the load immediate zero is no longer in use.
2058 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
2059 Register Reg
) const {
2060 // A zero immediate should always be loaded with a single li.
2061 unsigned DefOpc
= DefMI
.getOpcode();
2062 if (DefOpc
!= PPC::LI
&& DefOpc
!= PPC::LI8
)
2064 if (!DefMI
.getOperand(1).isImm())
2066 if (DefMI
.getOperand(1).getImm() != 0)
2069 // Note that we cannot here invert the arguments of an isel in order to fold
2070 // a ZERO into what is presented as the second argument. All we have here
2071 // is the condition bit, and that might come from a CR-logical bit operation.
2073 const MCInstrDesc
&UseMCID
= UseMI
.getDesc();
2075 // Only fold into real machine instructions.
2076 if (UseMCID
.isPseudo())
2079 // We need to find which of the User's operands is to be folded, that will be
2080 // the operand that matches the given register ID.
2082 for (UseIdx
= 0; UseIdx
< UseMI
.getNumOperands(); ++UseIdx
)
2083 if (UseMI
.getOperand(UseIdx
).isReg() &&
2084 UseMI
.getOperand(UseIdx
).getReg() == Reg
)
2087 assert(UseIdx
< UseMI
.getNumOperands() && "Cannot find Reg in UseMI");
2088 assert(UseIdx
< UseMCID
.getNumOperands() && "No operand description for Reg");
2090 const MCOperandInfo
*UseInfo
= &UseMCID
.OpInfo
[UseIdx
];
2092 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2093 // register (which might also be specified as a pointer class kind).
2094 if (UseInfo
->isLookupPtrRegClass()) {
2095 if (UseInfo
->RegClass
/* Kind */ != 1)
2098 if (UseInfo
->RegClass
!= PPC::GPRC_NOR0RegClassID
&&
2099 UseInfo
->RegClass
!= PPC::G8RC_NOX0RegClassID
)
2103 // Make sure this is not tied to an output register (or otherwise
2104 // constrained). This is true for ST?UX registers, for example, which
2105 // are tied to their output registers.
2106 if (UseInfo
->Constraints
!= 0)
2110 if (UseInfo
->isLookupPtrRegClass()) {
2111 bool isPPC64
= Subtarget
.isPPC64();
2112 ZeroReg
= isPPC64
? PPC::ZERO8
: PPC::ZERO
;
2114 ZeroReg
= UseInfo
->RegClass
== PPC::G8RC_NOX0RegClassID
?
2115 PPC::ZERO8
: PPC::ZERO
;
2118 UseMI
.getOperand(UseIdx
).setReg(ZeroReg
);
2122 // Folds zero into instructions which have a load immediate zero as an operand
2123 // but also recognize zero as immediate zero. If the definition of the load
2124 // has no more users it is deleted.
2125 bool PPCInstrInfo::FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
2126 Register Reg
, MachineRegisterInfo
*MRI
) const {
2127 bool Changed
= onlyFoldImmediate(UseMI
, DefMI
, Reg
);
2128 if (MRI
->use_nodbg_empty(Reg
))
2129 DefMI
.eraseFromParent();
2133 static bool MBBDefinesCTR(MachineBasicBlock
&MBB
) {
2134 for (MachineBasicBlock::iterator I
= MBB
.begin(), IE
= MBB
.end();
2136 if (I
->definesRegister(PPC::CTR
) || I
->definesRegister(PPC::CTR8
))
2141 // We should make sure that, if we're going to predicate both sides of a
2142 // condition (a diamond), that both sides don't define the counter register. We
2143 // can predicate counter-decrement-based branches, but while that predicates
2144 // the branching, it does not predicate the counter decrement. If we tried to
2145 // merge the triangle into one predicated block, we'd decrement the counter
2147 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
2148 unsigned NumT
, unsigned ExtraT
,
2149 MachineBasicBlock
&FMBB
,
2150 unsigned NumF
, unsigned ExtraF
,
2151 BranchProbability Probability
) const {
2152 return !(MBBDefinesCTR(TMBB
) && MBBDefinesCTR(FMBB
));
2156 bool PPCInstrInfo::isPredicated(const MachineInstr
&MI
) const {
2157 // The predicated branches are identified by their type, not really by the
2158 // explicit presence of a predicate. Furthermore, some of them can be
2159 // predicated more than once. Because if conversion won't try to predicate
2160 // any instruction which already claims to be predicated (by returning true
2161 // here), always return false. In doing so, we let isPredicable() be the
2162 // final word on whether not the instruction can be (further) predicated.
2167 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
2168 const MachineBasicBlock
*MBB
,
2169 const MachineFunction
&MF
) const {
2170 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2171 // across them, since some FP operations may change content of FPSCR.
2172 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2173 if (MI
.getOpcode() == PPC::MFFS
|| MI
.getOpcode() == PPC::MTFSF
)
2175 return TargetInstrInfo::isSchedulingBoundary(MI
, MBB
, MF
);
2178 bool PPCInstrInfo::PredicateInstruction(MachineInstr
&MI
,
2179 ArrayRef
<MachineOperand
> Pred
) const {
2180 unsigned OpC
= MI
.getOpcode();
2181 if (OpC
== PPC::BLR
|| OpC
== PPC::BLR8
) {
2182 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
2183 bool isPPC64
= Subtarget
.isPPC64();
2184 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZLR8
: PPC::BDNZLR
)
2185 : (isPPC64
? PPC::BDZLR8
: PPC::BDZLR
)));
2186 // Need add Def and Use for CTR implicit operand.
2187 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2188 .addReg(Pred
[1].getReg(), RegState::Implicit
)
2189 .addReg(Pred
[1].getReg(), RegState::ImplicitDefine
);
2190 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
2191 MI
.setDesc(get(PPC::BCLR
));
2192 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
2193 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
2194 MI
.setDesc(get(PPC::BCLRn
));
2195 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
2197 MI
.setDesc(get(PPC::BCCLR
));
2198 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2199 .addImm(Pred
[0].getImm())
2204 } else if (OpC
== PPC::B
) {
2205 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
2206 bool isPPC64
= Subtarget
.isPPC64();
2207 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
)
2208 : (isPPC64
? PPC::BDZ8
: PPC::BDZ
)));
2209 // Need add Def and Use for CTR implicit operand.
2210 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2211 .addReg(Pred
[1].getReg(), RegState::Implicit
)
2212 .addReg(Pred
[1].getReg(), RegState::ImplicitDefine
);
2213 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
2214 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
2215 MI
.RemoveOperand(0);
2217 MI
.setDesc(get(PPC::BC
));
2218 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2221 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
2222 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
2223 MI
.RemoveOperand(0);
2225 MI
.setDesc(get(PPC::BCn
));
2226 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2230 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
2231 MI
.RemoveOperand(0);
2233 MI
.setDesc(get(PPC::BCC
));
2234 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2235 .addImm(Pred
[0].getImm())
2241 } else if (OpC
== PPC::BCTR
|| OpC
== PPC::BCTR8
|| OpC
== PPC::BCTRL
||
2242 OpC
== PPC::BCTRL8
) {
2243 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
)
2244 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2246 bool setLR
= OpC
== PPC::BCTRL
|| OpC
== PPC::BCTRL8
;
2247 bool isPPC64
= Subtarget
.isPPC64();
2249 if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
2250 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8
: PPC::BCCTR8
)
2251 : (setLR
? PPC::BCCTRL
: PPC::BCCTR
)));
2252 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
2253 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
2254 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8n
: PPC::BCCTR8n
)
2255 : (setLR
? PPC::BCCTRLn
: PPC::BCCTRn
)));
2256 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).add(Pred
[1]);
2258 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCCTRL8
: PPC::BCCCTR8
)
2259 : (setLR
? PPC::BCCCTRL
: PPC::BCCCTR
)));
2260 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2261 .addImm(Pred
[0].getImm())
2265 // Need add Def and Use for LR implicit operand.
2267 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2268 .addReg(isPPC64
? PPC::LR8
: PPC::LR
, RegState::Implicit
)
2269 .addReg(isPPC64
? PPC::LR8
: PPC::LR
, RegState::ImplicitDefine
);
2277 bool PPCInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
2278 ArrayRef
<MachineOperand
> Pred2
) const {
2279 assert(Pred1
.size() == 2 && "Invalid PPC first predicate");
2280 assert(Pred2
.size() == 2 && "Invalid PPC second predicate");
2282 if (Pred1
[1].getReg() == PPC::CTR8
|| Pred1
[1].getReg() == PPC::CTR
)
2284 if (Pred2
[1].getReg() == PPC::CTR8
|| Pred2
[1].getReg() == PPC::CTR
)
2287 // P1 can only subsume P2 if they test the same condition register.
2288 if (Pred1
[1].getReg() != Pred2
[1].getReg())
2291 PPC::Predicate P1
= (PPC::Predicate
) Pred1
[0].getImm();
2292 PPC::Predicate P2
= (PPC::Predicate
) Pred2
[0].getImm();
2297 // Does P1 subsume P2, e.g. GE subsumes GT.
2298 if (P1
== PPC::PRED_LE
&&
2299 (P2
== PPC::PRED_LT
|| P2
== PPC::PRED_EQ
))
2301 if (P1
== PPC::PRED_GE
&&
2302 (P2
== PPC::PRED_GT
|| P2
== PPC::PRED_EQ
))
2308 bool PPCInstrInfo::ClobbersPredicate(MachineInstr
&MI
,
2309 std::vector
<MachineOperand
> &Pred
,
2310 bool SkipDead
) const {
2311 // Note: At the present time, the contents of Pred from this function is
2312 // unused by IfConversion. This implementation follows ARM by pushing the
2313 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2314 // predicate, instructions defining CTR or CTR8 are also included as
2315 // predicate-defining instructions.
2317 const TargetRegisterClass
*RCs
[] =
2318 { &PPC::CRRCRegClass
, &PPC::CRBITRCRegClass
,
2319 &PPC::CTRRCRegClass
, &PPC::CTRRC8RegClass
};
2322 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
2323 const MachineOperand
&MO
= MI
.getOperand(i
);
2324 for (unsigned c
= 0; c
< array_lengthof(RCs
) && !Found
; ++c
) {
2325 const TargetRegisterClass
*RC
= RCs
[c
];
2327 if (MO
.isDef() && RC
->contains(MO
.getReg())) {
2331 } else if (MO
.isRegMask()) {
2332 for (TargetRegisterClass::iterator I
= RC
->begin(),
2333 IE
= RC
->end(); I
!= IE
; ++I
)
2334 if (MO
.clobbersPhysReg(*I
)) {
2345 bool PPCInstrInfo::analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
2346 Register
&SrcReg2
, int &Mask
,
2348 unsigned Opc
= MI
.getOpcode();
2351 default: return false;
2356 SrcReg
= MI
.getOperand(1).getReg();
2358 Value
= MI
.getOperand(2).getImm();
2367 SrcReg
= MI
.getOperand(1).getReg();
2368 SrcReg2
= MI
.getOperand(2).getReg();
2375 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, Register SrcReg
,
2376 Register SrcReg2
, int Mask
, int Value
,
2377 const MachineRegisterInfo
*MRI
) const {
2381 int OpC
= CmpInstr
.getOpcode();
2382 Register CRReg
= CmpInstr
.getOperand(0).getReg();
2384 // FP record forms set CR1 based on the exception status bits, not a
2385 // comparison with zero.
2386 if (OpC
== PPC::FCMPUS
|| OpC
== PPC::FCMPUD
)
2389 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2390 // The record forms set the condition register based on a signed comparison
2391 // with zero (so says the ISA manual). This is not as straightforward as it
2392 // seems, however, because this is always a 64-bit comparison on PPC64, even
2393 // for instructions that are 32-bit in nature (like slw for example).
2394 // So, on PPC32, for unsigned comparisons, we can use the record forms only
2395 // for equality checks (as those don't depend on the sign). On PPC64,
2396 // we are restricted to equality for unsigned 64-bit comparisons and for
2397 // signed 32-bit comparisons the applicability is more restricted.
2398 bool isPPC64
= Subtarget
.isPPC64();
2399 bool is32BitSignedCompare
= OpC
== PPC::CMPWI
|| OpC
== PPC::CMPW
;
2400 bool is32BitUnsignedCompare
= OpC
== PPC::CMPLWI
|| OpC
== PPC::CMPLW
;
2401 bool is64BitUnsignedCompare
= OpC
== PPC::CMPLDI
|| OpC
== PPC::CMPLD
;
2403 // Look through copies unless that gets us to a physical register.
2404 Register ActualSrc
= TRI
->lookThruCopyLike(SrcReg
, MRI
);
2405 if (ActualSrc
.isVirtual())
2408 // Get the unique definition of SrcReg.
2409 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
2410 if (!MI
) return false;
2412 bool equalityOnly
= false;
2415 if (is32BitSignedCompare
) {
2416 // We can perform this optimization only if MI is sign-extending.
2417 if (isSignExtended(*MI
))
2421 } else if (is32BitUnsignedCompare
) {
2422 // We can perform this optimization, equality only, if MI is
2424 if (isZeroExtended(*MI
)) {
2426 equalityOnly
= true;
2430 equalityOnly
= is64BitUnsignedCompare
;
2432 equalityOnly
= is32BitUnsignedCompare
;
2435 // We need to check the uses of the condition register in order to reject
2436 // non-equality comparisons.
2437 for (MachineRegisterInfo::use_instr_iterator
2438 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
2440 MachineInstr
*UseMI
= &*I
;
2441 if (UseMI
->getOpcode() == PPC::BCC
) {
2442 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
2443 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
2444 // We ignore hint bits when checking for non-equality comparisons.
2445 if (PredCond
!= PPC::PRED_EQ
&& PredCond
!= PPC::PRED_NE
)
2447 } else if (UseMI
->getOpcode() == PPC::ISEL
||
2448 UseMI
->getOpcode() == PPC::ISEL8
) {
2449 unsigned SubIdx
= UseMI
->getOperand(3).getSubReg();
2450 if (SubIdx
!= PPC::sub_eq
)
2457 MachineBasicBlock::iterator I
= CmpInstr
;
2459 // Scan forward to find the first use of the compare.
2460 for (MachineBasicBlock::iterator EL
= CmpInstr
.getParent()->end(); I
!= EL
;
2462 bool FoundUse
= false;
2463 for (MachineRegisterInfo::use_instr_iterator
2464 J
= MRI
->use_instr_begin(CRReg
), JE
= MRI
->use_instr_end();
2475 SmallVector
<std::pair
<MachineOperand
*, PPC::Predicate
>, 4> PredsToUpdate
;
2476 SmallVector
<std::pair
<MachineOperand
*, unsigned>, 4> SubRegsToUpdate
;
2478 // There are two possible candidates which can be changed to set CR[01].
2479 // One is MI, the other is a SUB instruction.
2480 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2481 MachineInstr
*Sub
= nullptr;
2483 // MI is not a candidate for CMPrr.
2485 // FIXME: Conservatively refuse to convert an instruction which isn't in the
2486 // same BB as the comparison. This is to allow the check below to avoid calls
2487 // (and other explicit clobbers); instead we should really check for these
2488 // more explicitly (in at least a few predecessors).
2489 else if (MI
->getParent() != CmpInstr
.getParent())
2491 else if (Value
!= 0) {
2492 // The record-form instructions set CR bit based on signed comparison
2493 // against 0. We try to convert a compare against 1 or -1 into a compare
2494 // against 0 to exploit record-form instructions. For example, we change
2495 // the condition "greater than -1" into "greater than or equal to 0"
2496 // and "less than 1" into "less than or equal to 0".
2498 // Since we optimize comparison based on a specific branch condition,
2499 // we don't optimize if condition code is used by more than once.
2500 if (equalityOnly
|| !MRI
->hasOneUse(CRReg
))
2503 MachineInstr
*UseMI
= &*MRI
->use_instr_begin(CRReg
);
2504 if (UseMI
->getOpcode() != PPC::BCC
)
2507 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
2508 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
2509 unsigned PredHint
= PPC::getPredicateHint(Pred
);
2510 int16_t Immed
= (int16_t)Value
;
2512 // When modifying the condition in the predicate, we propagate hint bits
2513 // from the original predicate to the new one.
2514 if (Immed
== -1 && PredCond
== PPC::PRED_GT
)
2515 // We convert "greater than -1" into "greater than or equal to 0",
2516 // since we are assuming signed comparison by !equalityOnly
2517 Pred
= PPC::getPredicate(PPC::PRED_GE
, PredHint
);
2518 else if (Immed
== -1 && PredCond
== PPC::PRED_LE
)
2519 // We convert "less than or equal to -1" into "less than 0".
2520 Pred
= PPC::getPredicate(PPC::PRED_LT
, PredHint
);
2521 else if (Immed
== 1 && PredCond
== PPC::PRED_LT
)
2522 // We convert "less than 1" into "less than or equal to 0".
2523 Pred
= PPC::getPredicate(PPC::PRED_LE
, PredHint
);
2524 else if (Immed
== 1 && PredCond
== PPC::PRED_GE
)
2525 // We convert "greater than or equal to 1" into "greater than 0".
2526 Pred
= PPC::getPredicate(PPC::PRED_GT
, PredHint
);
2530 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)), Pred
));
2536 // Get ready to iterate backward from CmpInstr.
2537 MachineBasicBlock::iterator E
= MI
, B
= CmpInstr
.getParent()->begin();
2539 for (; I
!= E
&& !noSub
; --I
) {
2540 const MachineInstr
&Instr
= *I
;
2541 unsigned IOpC
= Instr
.getOpcode();
2543 if (&*I
!= &CmpInstr
&& (Instr
.modifiesRegister(PPC::CR0
, TRI
) ||
2544 Instr
.readsRegister(PPC::CR0
, TRI
)))
2545 // This instruction modifies or uses the record condition register after
2546 // the one we want to change. While we could do this transformation, it
2547 // would likely not be profitable. This transformation removes one
2548 // instruction, and so even forcing RA to generate one move probably
2549 // makes it unprofitable.
2552 // Check whether CmpInstr can be made redundant by the current instruction.
2553 if ((OpC
== PPC::CMPW
|| OpC
== PPC::CMPLW
||
2554 OpC
== PPC::CMPD
|| OpC
== PPC::CMPLD
) &&
2555 (IOpC
== PPC::SUBF
|| IOpC
== PPC::SUBF8
) &&
2556 ((Instr
.getOperand(1).getReg() == SrcReg
&&
2557 Instr
.getOperand(2).getReg() == SrcReg2
) ||
2558 (Instr
.getOperand(1).getReg() == SrcReg2
&&
2559 Instr
.getOperand(2).getReg() == SrcReg
))) {
2565 // The 'and' is below the comparison instruction.
2569 // Return false if no candidates exist.
2573 // The single candidate is called MI.
2577 int MIOpC
= MI
->getOpcode();
2578 if (MIOpC
== PPC::ANDI_rec
|| MIOpC
== PPC::ANDI8_rec
||
2579 MIOpC
== PPC::ANDIS_rec
|| MIOpC
== PPC::ANDIS8_rec
)
2582 NewOpC
= PPC::getRecordFormOpcode(MIOpC
);
2583 if (NewOpC
== -1 && PPC::getNonRecordFormOpcode(MIOpC
) != -1)
2587 // FIXME: On the non-embedded POWER architectures, only some of the record
2588 // forms are fast, and we should use only the fast ones.
2590 // The defining instruction has a record form (or is already a record
2591 // form). It is possible, however, that we'll need to reverse the condition
2592 // code of the users.
2596 // This transformation should not be performed if `nsw` is missing and is not
2597 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2598 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2599 // CRReg can reflect if compared values are equal, this optz is still valid.
2600 if (!equalityOnly
&& (NewOpC
== PPC::SUBF_rec
|| NewOpC
== PPC::SUBF8_rec
) &&
2601 Sub
&& !Sub
->getFlag(MachineInstr::NoSWrap
))
2604 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2605 // needs to be updated to be based on SUB. Push the condition code
2606 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
2607 // condition code of these operands will be modified.
2608 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2609 // comparison against 0, which may modify predicate.
2610 bool ShouldSwap
= false;
2611 if (Sub
&& Value
== 0) {
2612 ShouldSwap
= SrcReg2
!= 0 && Sub
->getOperand(1).getReg() == SrcReg2
&&
2613 Sub
->getOperand(2).getReg() == SrcReg
;
2615 // The operands to subf are the opposite of sub, so only in the fixed-point
2616 // case, invert the order.
2617 ShouldSwap
= !ShouldSwap
;
2621 for (MachineRegisterInfo::use_instr_iterator
2622 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
2624 MachineInstr
*UseMI
= &*I
;
2625 if (UseMI
->getOpcode() == PPC::BCC
) {
2626 PPC::Predicate Pred
= (PPC::Predicate
) UseMI
->getOperand(0).getImm();
2627 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
2628 assert((!equalityOnly
||
2629 PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
) &&
2630 "Invalid predicate for equality-only optimization");
2631 (void)PredCond
; // To suppress warning in release build.
2632 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)),
2633 PPC::getSwappedPredicate(Pred
)));
2634 } else if (UseMI
->getOpcode() == PPC::ISEL
||
2635 UseMI
->getOpcode() == PPC::ISEL8
) {
2636 unsigned NewSubReg
= UseMI
->getOperand(3).getSubReg();
2637 assert((!equalityOnly
|| NewSubReg
== PPC::sub_eq
) &&
2638 "Invalid CR bit for equality-only optimization");
2640 if (NewSubReg
== PPC::sub_lt
)
2641 NewSubReg
= PPC::sub_gt
;
2642 else if (NewSubReg
== PPC::sub_gt
)
2643 NewSubReg
= PPC::sub_lt
;
2645 SubRegsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(3)),
2647 } else // We need to abort on a user we don't understand.
2650 assert(!(Value
!= 0 && ShouldSwap
) &&
2651 "Non-zero immediate support and ShouldSwap"
2652 "may conflict in updating predicate");
2654 // Create a new virtual register to hold the value of the CR set by the
2655 // record-form instruction. If the instruction was not previously in
2656 // record form, then set the kill flag on the CR.
2657 CmpInstr
.eraseFromParent();
2659 MachineBasicBlock::iterator MII
= MI
;
2660 BuildMI(*MI
->getParent(), std::next(MII
), MI
->getDebugLoc(),
2661 get(TargetOpcode::COPY
), CRReg
)
2662 .addReg(PPC::CR0
, MIOpC
!= NewOpC
? RegState::Kill
: 0);
2664 // Even if CR0 register were dead before, it is alive now since the
2665 // instruction we just built uses it.
2666 MI
->clearRegisterDeads(PPC::CR0
);
2668 if (MIOpC
!= NewOpC
) {
2669 // We need to be careful here: we're replacing one instruction with
2670 // another, and we need to make sure that we get all of the right
2671 // implicit uses and defs. On the other hand, the caller may be holding
2672 // an iterator to this instruction, and so we can't delete it (this is
2673 // specifically the case if this is the instruction directly after the
2676 // Rotates are expensive instructions. If we're emitting a record-form
2677 // rotate that can just be an andi/andis, we should just emit that.
2678 if (MIOpC
== PPC::RLWINM
|| MIOpC
== PPC::RLWINM8
) {
2679 Register GPRRes
= MI
->getOperand(0).getReg();
2680 int64_t SH
= MI
->getOperand(2).getImm();
2681 int64_t MB
= MI
->getOperand(3).getImm();
2682 int64_t ME
= MI
->getOperand(4).getImm();
2683 // We can only do this if both the start and end of the mask are in the
2685 bool MBInLoHWord
= MB
>= 16;
2686 bool MEInLoHWord
= ME
>= 16;
2687 uint64_t Mask
= ~0LLU;
2689 if (MB
<= ME
&& MBInLoHWord
== MEInLoHWord
&& SH
== 0) {
2690 Mask
= ((1LLU << (32 - MB
)) - 1) & ~((1LLU << (31 - ME
)) - 1);
2691 // The mask value needs to shift right 16 if we're emitting andis.
2692 Mask
>>= MBInLoHWord
? 0 : 16;
2693 NewOpC
= MIOpC
== PPC::RLWINM
2694 ? (MBInLoHWord
? PPC::ANDI_rec
: PPC::ANDIS_rec
)
2695 : (MBInLoHWord
? PPC::ANDI8_rec
: PPC::ANDIS8_rec
);
2696 } else if (MRI
->use_empty(GPRRes
) && (ME
== 31) &&
2697 (ME
- MB
+ 1 == SH
) && (MB
>= 16)) {
2698 // If we are rotating by the exact number of bits as are in the mask
2699 // and the mask is in the least significant bits of the register,
2700 // that's just an andis. (as long as the GPR result has no uses).
2701 Mask
= ((1LLU << 32) - 1) & ~((1LLU << (32 - SH
)) - 1);
2703 NewOpC
= MIOpC
== PPC::RLWINM
? PPC::ANDIS_rec
: PPC::ANDIS8_rec
;
2705 // If we've set the mask, we can transform.
2706 if (Mask
!= ~0LLU) {
2707 MI
->RemoveOperand(4);
2708 MI
->RemoveOperand(3);
2709 MI
->getOperand(2).setImm(Mask
);
2710 NumRcRotatesConvertedToRcAnd
++;
2712 } else if (MIOpC
== PPC::RLDICL
&& MI
->getOperand(2).getImm() == 0) {
2713 int64_t MB
= MI
->getOperand(3).getImm();
2715 uint64_t Mask
= (1LLU << (63 - MB
+ 1)) - 1;
2716 NewOpC
= PPC::ANDI8_rec
;
2717 MI
->RemoveOperand(3);
2718 MI
->getOperand(2).setImm(Mask
);
2719 NumRcRotatesConvertedToRcAnd
++;
2723 const MCInstrDesc
&NewDesc
= get(NewOpC
);
2724 MI
->setDesc(NewDesc
);
2726 if (NewDesc
.ImplicitDefs
)
2727 for (const MCPhysReg
*ImpDefs
= NewDesc
.getImplicitDefs();
2728 *ImpDefs
; ++ImpDefs
)
2729 if (!MI
->definesRegister(*ImpDefs
))
2730 MI
->addOperand(*MI
->getParent()->getParent(),
2731 MachineOperand::CreateReg(*ImpDefs
, true, true));
2732 if (NewDesc
.ImplicitUses
)
2733 for (const MCPhysReg
*ImpUses
= NewDesc
.getImplicitUses();
2734 *ImpUses
; ++ImpUses
)
2735 if (!MI
->readsRegister(*ImpUses
))
2736 MI
->addOperand(*MI
->getParent()->getParent(),
2737 MachineOperand::CreateReg(*ImpUses
, false, true));
2739 assert(MI
->definesRegister(PPC::CR0
) &&
2740 "Record-form instruction does not define cr0?");
2742 // Modify the condition code of operands in OperandsToUpdate.
2743 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2744 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2745 for (unsigned i
= 0, e
= PredsToUpdate
.size(); i
< e
; i
++)
2746 PredsToUpdate
[i
].first
->setImm(PredsToUpdate
[i
].second
);
2748 for (unsigned i
= 0, e
= SubRegsToUpdate
.size(); i
< e
; i
++)
2749 SubRegsToUpdate
[i
].first
->setSubReg(SubRegsToUpdate
[i
].second
);
2754 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2755 const MachineInstr
&LdSt
, SmallVectorImpl
<const MachineOperand
*> &BaseOps
,
2756 int64_t &Offset
, bool &OffsetIsScalable
, unsigned &Width
,
2757 const TargetRegisterInfo
*TRI
) const {
2758 const MachineOperand
*BaseOp
;
2759 OffsetIsScalable
= false;
2760 if (!getMemOperandWithOffsetWidth(LdSt
, BaseOp
, Offset
, Width
, TRI
))
2762 BaseOps
.push_back(BaseOp
);
2766 static bool isLdStSafeToCluster(const MachineInstr
&LdSt
,
2767 const TargetRegisterInfo
*TRI
) {
2768 // If this is a volatile load/store, don't mess with it.
2769 if (LdSt
.hasOrderedMemoryRef() || LdSt
.getNumExplicitOperands() != 3)
2772 if (LdSt
.getOperand(2).isFI())
2775 assert(LdSt
.getOperand(2).isReg() && "Expected a reg operand.");
2776 // Can't cluster if the instruction modifies the base register
2777 // or it is update form. e.g. ld r2,3(r2)
2778 if (LdSt
.modifiesRegister(LdSt
.getOperand(2).getReg(), TRI
))
2784 // Only cluster instruction pair that have the same opcode, and they are
2785 // clusterable according to PowerPC specification.
2786 static bool isClusterableLdStOpcPair(unsigned FirstOpc
, unsigned SecondOpc
,
2787 const PPCSubtarget
&Subtarget
) {
2794 case PPC::DFSTOREf64
:
2795 return FirstOpc
== SecondOpc
;
2796 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2797 // 32bit and 64bit instruction selection. They are clusterable pair though
2798 // they are different opcode.
2801 return SecondOpc
== PPC::STW
|| SecondOpc
== PPC::STW8
;
2805 bool PPCInstrInfo::shouldClusterMemOps(
2806 ArrayRef
<const MachineOperand
*> BaseOps1
,
2807 ArrayRef
<const MachineOperand
*> BaseOps2
, unsigned NumLoads
,
2808 unsigned NumBytes
) const {
2810 assert(BaseOps1
.size() == 1 && BaseOps2
.size() == 1);
2811 const MachineOperand
&BaseOp1
= *BaseOps1
.front();
2812 const MachineOperand
&BaseOp2
= *BaseOps2
.front();
2813 assert((BaseOp1
.isReg() || BaseOp1
.isFI()) &&
2814 "Only base registers and frame indices are supported.");
2816 // The NumLoads means the number of loads that has been clustered.
2817 // Don't cluster memory op if there are already two ops clustered at least.
2821 // Cluster the load/store only when they have the same base
2823 if ((BaseOp1
.isReg() != BaseOp2
.isReg()) ||
2824 (BaseOp1
.isReg() && BaseOp1
.getReg() != BaseOp2
.getReg()) ||
2825 (BaseOp1
.isFI() && BaseOp1
.getIndex() != BaseOp2
.getIndex()))
2828 // Check if the load/store are clusterable according to the PowerPC
2830 const MachineInstr
&FirstLdSt
= *BaseOp1
.getParent();
2831 const MachineInstr
&SecondLdSt
= *BaseOp2
.getParent();
2832 unsigned FirstOpc
= FirstLdSt
.getOpcode();
2833 unsigned SecondOpc
= SecondLdSt
.getOpcode();
2834 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2835 // Cluster the load/store only when they have the same opcode, and they are
2836 // clusterable opcode according to PowerPC specification.
2837 if (!isClusterableLdStOpcPair(FirstOpc
, SecondOpc
, Subtarget
))
2840 // Can't cluster load/store that have ordered or volatile memory reference.
2841 if (!isLdStSafeToCluster(FirstLdSt
, TRI
) ||
2842 !isLdStSafeToCluster(SecondLdSt
, TRI
))
2845 int64_t Offset1
= 0, Offset2
= 0;
2846 unsigned Width1
= 0, Width2
= 0;
2847 const MachineOperand
*Base1
= nullptr, *Base2
= nullptr;
2848 if (!getMemOperandWithOffsetWidth(FirstLdSt
, Base1
, Offset1
, Width1
, TRI
) ||
2849 !getMemOperandWithOffsetWidth(SecondLdSt
, Base2
, Offset2
, Width2
, TRI
) ||
2853 assert(Base1
== &BaseOp1
&& Base2
== &BaseOp2
&&
2854 "getMemOperandWithOffsetWidth return incorrect base op");
2855 // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2856 assert(Offset1
<= Offset2
&& "Caller should have ordered offsets.");
2857 return Offset1
+ Width1
== Offset2
;
2860 /// GetInstSize - Return the number of bytes of code the specified
2861 /// instruction may be. This returns the maximum number of bytes.
2863 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
2864 unsigned Opcode
= MI
.getOpcode();
2866 if (Opcode
== PPC::INLINEASM
|| Opcode
== PPC::INLINEASM_BR
) {
2867 const MachineFunction
*MF
= MI
.getParent()->getParent();
2868 const char *AsmStr
= MI
.getOperand(0).getSymbolName();
2869 return getInlineAsmLength(AsmStr
, *MF
->getTarget().getMCAsmInfo());
2870 } else if (Opcode
== TargetOpcode::STACKMAP
) {
2871 StackMapOpers
Opers(&MI
);
2872 return Opers
.getNumPatchBytes();
2873 } else if (Opcode
== TargetOpcode::PATCHPOINT
) {
2874 PatchPointOpers
Opers(&MI
);
2875 return Opers
.getNumPatchBytes();
2877 return get(Opcode
).getSize();
2881 std::pair
<unsigned, unsigned>
2882 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
2883 const unsigned Mask
= PPCII::MO_ACCESS_MASK
;
2884 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
2887 ArrayRef
<std::pair
<unsigned, const char *>>
2888 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2889 using namespace PPCII
;
2890 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2893 {MO_TPREL_LO
, "ppc-tprel-lo"},
2894 {MO_TPREL_HA
, "ppc-tprel-ha"},
2895 {MO_DTPREL_LO
, "ppc-dtprel-lo"},
2896 {MO_TLSLD_LO
, "ppc-tlsld-lo"},
2897 {MO_TOC_LO
, "ppc-toc-lo"},
2898 {MO_TLS
, "ppc-tls"}};
2899 return makeArrayRef(TargetFlags
);
2902 ArrayRef
<std::pair
<unsigned, const char *>>
2903 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2904 using namespace PPCII
;
2905 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
2906 {MO_PLT
, "ppc-plt"},
2907 {MO_PIC_FLAG
, "ppc-pic"},
2908 {MO_PCREL_FLAG
, "ppc-pcrel"},
2909 {MO_GOT_FLAG
, "ppc-got"},
2910 {MO_PCREL_OPT_FLAG
, "ppc-opt-pcrel"},
2911 {MO_TLSGD_FLAG
, "ppc-tlsgd"},
2912 {MO_TLSLD_FLAG
, "ppc-tlsld"},
2913 {MO_TPREL_FLAG
, "ppc-tprel"},
2914 {MO_TLSGDM_FLAG
, "ppc-tlsgdm"},
2915 {MO_GOT_TLSGD_PCREL_FLAG
, "ppc-got-tlsgd-pcrel"},
2916 {MO_GOT_TLSLD_PCREL_FLAG
, "ppc-got-tlsld-pcrel"},
2917 {MO_GOT_TPREL_PCREL_FLAG
, "ppc-got-tprel-pcrel"}};
2918 return makeArrayRef(TargetFlags
);
2921 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2922 // The VSX versions have the advantage of a full 64-register target whereas
2923 // the FP ones have the advantage of lower latency and higher throughput. So
2924 // what we are after is using the faster instructions in low register pressure
2925 // situations and using the larger register file in high register pressure
2927 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr
&MI
) const {
2928 unsigned UpperOpcode
, LowerOpcode
;
2929 switch (MI
.getOpcode()) {
2930 case PPC::DFLOADf32
:
2931 UpperOpcode
= PPC::LXSSP
;
2932 LowerOpcode
= PPC::LFS
;
2934 case PPC::DFLOADf64
:
2935 UpperOpcode
= PPC::LXSD
;
2936 LowerOpcode
= PPC::LFD
;
2938 case PPC::DFSTOREf32
:
2939 UpperOpcode
= PPC::STXSSP
;
2940 LowerOpcode
= PPC::STFS
;
2942 case PPC::DFSTOREf64
:
2943 UpperOpcode
= PPC::STXSD
;
2944 LowerOpcode
= PPC::STFD
;
2946 case PPC::XFLOADf32
:
2947 UpperOpcode
= PPC::LXSSPX
;
2948 LowerOpcode
= PPC::LFSX
;
2950 case PPC::XFLOADf64
:
2951 UpperOpcode
= PPC::LXSDX
;
2952 LowerOpcode
= PPC::LFDX
;
2954 case PPC::XFSTOREf32
:
2955 UpperOpcode
= PPC::STXSSPX
;
2956 LowerOpcode
= PPC::STFSX
;
2958 case PPC::XFSTOREf64
:
2959 UpperOpcode
= PPC::STXSDX
;
2960 LowerOpcode
= PPC::STFDX
;
2963 UpperOpcode
= PPC::LXSIWAX
;
2964 LowerOpcode
= PPC::LFIWAX
;
2967 UpperOpcode
= PPC::LXSIWZX
;
2968 LowerOpcode
= PPC::LFIWZX
;
2971 UpperOpcode
= PPC::STXSIWX
;
2972 LowerOpcode
= PPC::STFIWX
;
2975 llvm_unreachable("Unknown Operation!");
2978 Register TargetReg
= MI
.getOperand(0).getReg();
2980 if ((TargetReg
>= PPC::F0
&& TargetReg
<= PPC::F31
) ||
2981 (TargetReg
>= PPC::VSL0
&& TargetReg
<= PPC::VSL31
))
2982 Opcode
= LowerOpcode
;
2984 Opcode
= UpperOpcode
;
2985 MI
.setDesc(get(Opcode
));
2989 static bool isAnImmediateOperand(const MachineOperand
&MO
) {
2990 return MO
.isCPI() || MO
.isGlobal() || MO
.isImm();
2993 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
2994 auto &MBB
= *MI
.getParent();
2995 auto DL
= MI
.getDebugLoc();
2997 switch (MI
.getOpcode()) {
2998 case PPC::BUILD_UACC
: {
2999 MCRegister ACC
= MI
.getOperand(0).getReg();
3000 MCRegister UACC
= MI
.getOperand(1).getReg();
3001 if (ACC
- PPC::ACC0
!= UACC
- PPC::UACC0
) {
3002 MCRegister SrcVSR
= PPC::VSL0
+ (UACC
- PPC::UACC0
) * 4;
3003 MCRegister DstVSR
= PPC::VSL0
+ (ACC
- PPC::ACC0
) * 4;
3004 // FIXME: This can easily be improved to look up to the top of the MBB
3005 // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3006 // we can just re-target any such XXLOR's to DstVSR + offset.
3007 for (int VecNo
= 0; VecNo
< 4; VecNo
++)
3008 BuildMI(MBB
, MI
, DL
, get(PPC::XXLOR
), DstVSR
+ VecNo
)
3009 .addReg(SrcVSR
+ VecNo
)
3010 .addReg(SrcVSR
+ VecNo
);
3012 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers.
3013 // So after building the 4 copies, we can replace the BUILD_UACC instruction
3017 case PPC::KILL_PAIR
: {
3018 MI
.setDesc(get(PPC::UNENCODED_NOP
));
3019 MI
.RemoveOperand(1);
3020 MI
.RemoveOperand(0);
3023 case TargetOpcode::LOAD_STACK_GUARD
: {
3024 assert(Subtarget
.isTargetLinux() &&
3025 "Only Linux target is expected to contain LOAD_STACK_GUARD");
3026 const int64_t Offset
= Subtarget
.isPPC64() ? -0x7010 : -0x7008;
3027 const unsigned Reg
= Subtarget
.isPPC64() ? PPC::X13
: PPC::R2
;
3028 MI
.setDesc(get(Subtarget
.isPPC64() ? PPC::LD
: PPC::LWZ
));
3029 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
3034 case PPC::DFLOADf32
:
3035 case PPC::DFLOADf64
:
3036 case PPC::DFSTOREf32
:
3037 case PPC::DFSTOREf64
: {
3038 assert(Subtarget
.hasP9Vector() &&
3039 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3040 assert(MI
.getOperand(2).isReg() &&
3041 isAnImmediateOperand(MI
.getOperand(1)) &&
3042 "D-form op must have register and immediate operands");
3043 return expandVSXMemPseudo(MI
);
3045 case PPC::XFLOADf32
:
3046 case PPC::XFSTOREf32
:
3050 assert(Subtarget
.hasP8Vector() &&
3051 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3052 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
3053 "X-form op must have register and register operands");
3054 return expandVSXMemPseudo(MI
);
3056 case PPC::XFLOADf64
:
3057 case PPC::XFSTOREf64
: {
3058 assert(Subtarget
.hasVSX() &&
3059 "Invalid X-Form Pseudo-ops on target that has no VSX.");
3060 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
3061 "X-form op must have register and register operands");
3062 return expandVSXMemPseudo(MI
);
3064 case PPC::SPILLTOVSR_LD
: {
3065 Register TargetReg
= MI
.getOperand(0).getReg();
3066 if (PPC::VSFRCRegClass
.contains(TargetReg
)) {
3067 MI
.setDesc(get(PPC::DFLOADf64
));
3068 return expandPostRAPseudo(MI
);
3071 MI
.setDesc(get(PPC::LD
));
3074 case PPC::SPILLTOVSR_ST
: {
3075 Register SrcReg
= MI
.getOperand(0).getReg();
3076 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
3077 NumStoreSPILLVSRRCAsVec
++;
3078 MI
.setDesc(get(PPC::DFSTOREf64
));
3079 return expandPostRAPseudo(MI
);
3081 NumStoreSPILLVSRRCAsGpr
++;
3082 MI
.setDesc(get(PPC::STD
));
3086 case PPC::SPILLTOVSR_LDX
: {
3087 Register TargetReg
= MI
.getOperand(0).getReg();
3088 if (PPC::VSFRCRegClass
.contains(TargetReg
))
3089 MI
.setDesc(get(PPC::LXSDX
));
3091 MI
.setDesc(get(PPC::LDX
));
3094 case PPC::SPILLTOVSR_STX
: {
3095 Register SrcReg
= MI
.getOperand(0).getReg();
3096 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
3097 NumStoreSPILLVSRRCAsVec
++;
3098 MI
.setDesc(get(PPC::STXSDX
));
3100 NumStoreSPILLVSRRCAsGpr
++;
3101 MI
.setDesc(get(PPC::STDX
));
3106 case PPC::CFENCE8
: {
3107 auto Val
= MI
.getOperand(0).getReg();
3108 BuildMI(MBB
, MI
, DL
, get(PPC::CMPD
), PPC::CR7
).addReg(Val
).addReg(Val
);
3109 BuildMI(MBB
, MI
, DL
, get(PPC::CTRL_DEP
))
3110 .addImm(PPC::PRED_NE_MINUS
)
3113 MI
.setDesc(get(PPC::ISYNC
));
3114 MI
.RemoveOperand(0);
3121 // Essentially a compile-time implementation of a compare->isel sequence.
3122 // It takes two constants to compare, along with the true/false registers
3123 // and the comparison type (as a subreg to a CR field) and returns one
3124 // of the true/false registers, depending on the comparison results.
3125 static unsigned selectReg(int64_t Imm1
, int64_t Imm2
, unsigned CompareOpc
,
3126 unsigned TrueReg
, unsigned FalseReg
,
3127 unsigned CRSubReg
) {
3128 // Signed comparisons. The immediates are assumed to be sign-extended.
3129 if (CompareOpc
== PPC::CMPWI
|| CompareOpc
== PPC::CMPDI
) {
3131 default: llvm_unreachable("Unknown integer comparison type.");
3133 return Imm1
< Imm2
? TrueReg
: FalseReg
;
3135 return Imm1
> Imm2
? TrueReg
: FalseReg
;
3137 return Imm1
== Imm2
? TrueReg
: FalseReg
;
3140 // Unsigned comparisons.
3141 else if (CompareOpc
== PPC::CMPLWI
|| CompareOpc
== PPC::CMPLDI
) {
3143 default: llvm_unreachable("Unknown integer comparison type.");
3145 return (uint64_t)Imm1
< (uint64_t)Imm2
? TrueReg
: FalseReg
;
3147 return (uint64_t)Imm1
> (uint64_t)Imm2
? TrueReg
: FalseReg
;
3149 return Imm1
== Imm2
? TrueReg
: FalseReg
;
3152 return PPC::NoRegister
;
3155 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr
&MI
,
3157 int64_t Imm
) const {
3158 assert(MI
.getOperand(OpNo
).isReg() && "Operand must be a REG");
3159 // Replace the REG with the Immediate.
3160 Register InUseReg
= MI
.getOperand(OpNo
).getReg();
3161 MI
.getOperand(OpNo
).ChangeToImmediate(Imm
);
3163 // We need to make sure that the MI didn't have any implicit use
3164 // of this REG any more. We don't call MI.implicit_operands().empty() to
3165 // return early, since MI's MCID might be changed in calling context, as a
3166 // result its number of explicit operands may be changed, thus the begin of
3167 // implicit operand is changed.
3168 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3169 int UseOpIdx
= MI
.findRegisterUseOperandIdx(InUseReg
, false, TRI
);
3170 if (UseOpIdx
>= 0) {
3171 MachineOperand
&MO
= MI
.getOperand(UseOpIdx
);
3172 if (MO
.isImplicit())
3173 // The operands must always be in the following order:
3174 // - explicit reg defs,
3175 // - other explicit operands (reg uses, immediates, etc.),
3176 // - implicit reg defs
3177 // - implicit reg uses
3178 // Therefore, removing the implicit operand won't change the explicit
3180 MI
.RemoveOperand(UseOpIdx
);
3184 // Replace an instruction with one that materializes a constant (and sets
3185 // CR0 if the original instruction was a record-form instruction).
3186 void PPCInstrInfo::replaceInstrWithLI(MachineInstr
&MI
,
3187 const LoadImmediateInfo
&LII
) const {
3188 // Remove existing operands.
3189 int OperandToKeep
= LII
.SetCR
? 1 : 0;
3190 for (int i
= MI
.getNumOperands() - 1; i
> OperandToKeep
; i
--)
3191 MI
.RemoveOperand(i
);
3193 // Replace the instruction.
3195 MI
.setDesc(get(LII
.Is64Bit
? PPC::ANDI8_rec
: PPC::ANDI_rec
));
3196 // Set the immediate.
3197 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
3198 .addImm(LII
.Imm
).addReg(PPC::CR0
, RegState::ImplicitDefine
);
3202 MI
.setDesc(get(LII
.Is64Bit
? PPC::LI8
: PPC::LI
));
3204 // Set the immediate.
3205 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
3209 MachineInstr
*PPCInstrInfo::getDefMIPostRA(unsigned Reg
, MachineInstr
&MI
,
3210 bool &SeenIntermediateUse
) const {
3211 assert(!MI
.getParent()->getParent()->getRegInfo().isSSA() &&
3212 "Should be called after register allocation.");
3213 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3214 MachineBasicBlock::reverse_iterator E
= MI
.getParent()->rend(), It
= MI
;
3216 SeenIntermediateUse
= false;
3217 for (; It
!= E
; ++It
) {
3218 if (It
->modifiesRegister(Reg
, TRI
))
3220 if (It
->readsRegister(Reg
, TRI
))
3221 SeenIntermediateUse
= true;
3226 MachineInstr
*PPCInstrInfo::getForwardingDefMI(
3228 unsigned &OpNoForForwarding
,
3229 bool &SeenIntermediateUse
) const {
3230 OpNoForForwarding
= ~0U;
3231 MachineInstr
*DefMI
= nullptr;
3232 MachineRegisterInfo
*MRI
= &MI
.getParent()->getParent()->getRegInfo();
3233 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3234 // If we're in SSA, get the defs through the MRI. Otherwise, only look
3235 // within the basic block to see if the register is defined using an
3236 // LI/LI8/ADDI/ADDI8.
3238 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
3239 if (!MI
.getOperand(i
).isReg())
3241 Register Reg
= MI
.getOperand(i
).getReg();
3242 if (!Register::isVirtualRegister(Reg
))
3244 unsigned TrueReg
= TRI
->lookThruCopyLike(Reg
, MRI
);
3245 if (Register::isVirtualRegister(TrueReg
)) {
3246 DefMI
= MRI
->getVRegDef(TrueReg
);
3247 if (DefMI
->getOpcode() == PPC::LI
|| DefMI
->getOpcode() == PPC::LI8
||
3248 DefMI
->getOpcode() == PPC::ADDI
||
3249 DefMI
->getOpcode() == PPC::ADDI8
) {
3250 OpNoForForwarding
= i
;
3251 // The ADDI and LI operand maybe exist in one instruction at same
3252 // time. we prefer to fold LI operand as LI only has one Imm operand
3253 // and is more possible to be converted. So if current DefMI is
3254 // ADDI/ADDI8, we continue to find possible LI/LI8.
3255 if (DefMI
->getOpcode() == PPC::LI
|| DefMI
->getOpcode() == PPC::LI8
)
3261 // Looking back through the definition for each operand could be expensive,
3262 // so exit early if this isn't an instruction that either has an immediate
3263 // form or is already an immediate form that we can handle.
3265 unsigned Opc
= MI
.getOpcode();
3266 bool ConvertibleImmForm
=
3267 Opc
== PPC::CMPWI
|| Opc
== PPC::CMPLWI
|| Opc
== PPC::CMPDI
||
3268 Opc
== PPC::CMPLDI
|| Opc
== PPC::ADDI
|| Opc
== PPC::ADDI8
||
3269 Opc
== PPC::ORI
|| Opc
== PPC::ORI8
|| Opc
== PPC::XORI
||
3270 Opc
== PPC::XORI8
|| Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICL_rec
||
3271 Opc
== PPC::RLDICL_32
|| Opc
== PPC::RLDICL_32_64
||
3272 Opc
== PPC::RLWINM
|| Opc
== PPC::RLWINM_rec
|| Opc
== PPC::RLWINM8
||
3273 Opc
== PPC::RLWINM8_rec
;
3274 bool IsVFReg
= (MI
.getNumOperands() && MI
.getOperand(0).isReg())
3275 ? isVFRegister(MI
.getOperand(0).getReg())
3277 if (!ConvertibleImmForm
&& !instrHasImmForm(Opc
, IsVFReg
, III
, true))
3280 // Don't convert or %X, %Y, %Y since that's just a register move.
3281 if ((Opc
== PPC::OR
|| Opc
== PPC::OR8
) &&
3282 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
3284 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
3285 MachineOperand
&MO
= MI
.getOperand(i
);
3286 SeenIntermediateUse
= false;
3287 if (MO
.isReg() && MO
.isUse() && !MO
.isImplicit()) {
3288 Register Reg
= MI
.getOperand(i
).getReg();
3289 // If we see another use of this reg between the def and the MI,
3290 // we want to flat it so the def isn't deleted.
3291 MachineInstr
*DefMI
= getDefMIPostRA(Reg
, MI
, SeenIntermediateUse
);
3293 // Is this register defined by some form of add-immediate (including
3294 // load-immediate) within this basic block?
3295 switch (DefMI
->getOpcode()) {
3303 OpNoForForwarding
= i
;
3310 return OpNoForForwarding
== ~0U ? nullptr : DefMI
;
3313 unsigned PPCInstrInfo::getSpillTarget() const {
3314 // With P10, we may need to spill paired vector registers or accumulator
3315 // registers. MMA implies paired vectors, so we can just check that.
3316 bool IsP10Variant
= Subtarget
.isISA3_1() || Subtarget
.pairedVectorMemops();
3317 return IsP10Variant
? 2 : Subtarget
.hasP9Vector() ? 1 : 0;
3320 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3321 return StoreSpillOpcodesArray
[getSpillTarget()];
3324 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3325 return LoadSpillOpcodesArray
[getSpillTarget()];
3328 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr
*StartMI
, MachineInstr
*EndMI
,
3329 unsigned RegNo
) const {
3330 // Conservatively clear kill flag for the register if the instructions are in
3331 // different basic blocks and in SSA form, because the kill flag may no longer
3332 // be right. There is no need to bother with dead flags since defs with no
3333 // uses will be handled by DCE.
3334 MachineRegisterInfo
&MRI
= StartMI
->getParent()->getParent()->getRegInfo();
3335 if (MRI
.isSSA() && (StartMI
->getParent() != EndMI
->getParent())) {
3336 MRI
.clearKillFlags(RegNo
);
3340 // Instructions between [StartMI, EndMI] should be in same basic block.
3341 assert((StartMI
->getParent() == EndMI
->getParent()) &&
3342 "Instructions are not in same basic block");
3344 // If before RA, StartMI may be def through COPY, we need to adjust it to the
3345 // real def. See function getForwardingDefMI.
3348 std::tie(Reads
, Writes
) = StartMI
->readsWritesVirtualRegister(RegNo
);
3349 if (!Reads
&& !Writes
) {
3350 assert(Register::isVirtualRegister(RegNo
) &&
3351 "Must be a virtual register");
3352 // Get real def and ignore copies.
3353 StartMI
= MRI
.getVRegDef(RegNo
);
3357 bool IsKillSet
= false;
3359 auto clearOperandKillInfo
= [=] (MachineInstr
&MI
, unsigned Index
) {
3360 MachineOperand
&MO
= MI
.getOperand(Index
);
3361 if (MO
.isReg() && MO
.isUse() && MO
.isKill() &&
3362 getRegisterInfo().regsOverlap(MO
.getReg(), RegNo
))
3363 MO
.setIsKill(false);
3366 // Set killed flag for EndMI.
3367 // No need to do anything if EndMI defines RegNo.
3369 EndMI
->findRegisterUseOperandIdx(RegNo
, false, &getRegisterInfo());
3370 if (UseIndex
!= -1) {
3371 EndMI
->getOperand(UseIndex
).setIsKill(true);
3373 // Clear killed flag for other EndMI operands related to RegNo. In some
3374 // upexpected cases, killed may be set multiple times for same register
3375 // operand in same MI.
3376 for (int i
= 0, e
= EndMI
->getNumOperands(); i
!= e
; ++i
)
3378 clearOperandKillInfo(*EndMI
, i
);
3381 // Walking the inst in reverse order (EndMI -> StartMI].
3382 MachineBasicBlock::reverse_iterator It
= *EndMI
;
3383 MachineBasicBlock::reverse_iterator E
= EndMI
->getParent()->rend();
3384 // EndMI has been handled above, skip it here.
3386 MachineOperand
*MO
= nullptr;
3387 for (; It
!= E
; ++It
) {
3388 // Skip insturctions which could not be a def/use of RegNo.
3389 if (It
->isDebugInstr() || It
->isPosition())
3392 // Clear killed flag for all It operands related to RegNo. In some
3393 // upexpected cases, killed may be set multiple times for same register
3394 // operand in same MI.
3395 for (int i
= 0, e
= It
->getNumOperands(); i
!= e
; ++i
)
3396 clearOperandKillInfo(*It
, i
);
3398 // If killed is not set, set killed for its last use or set dead for its def
3401 if ((MO
= It
->findRegisterUseOperand(RegNo
, false, &getRegisterInfo()))) {
3402 // Use found, set it killed.
3404 MO
->setIsKill(true);
3406 } else if ((MO
= It
->findRegisterDefOperand(RegNo
, false, true,
3407 &getRegisterInfo()))) {
3408 // No use found, set dead for its def.
3409 assert(&*It
== StartMI
&& "No new def between StartMI and EndMI.");
3410 MO
->setIsDead(true);
3415 if ((&*It
) == StartMI
)
3418 // Ensure RegMo liveness is killed after EndMI.
3419 assert((IsKillSet
|| (MO
&& MO
->isDead())) &&
3420 "RegNo should be killed or dead");
3423 // This opt tries to convert the following imm form to an index form to save an
3424 // add for stack variables.
3425 // Return false if no such pattern found.
3427 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3428 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3429 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed)
3431 // can be converted to:
3433 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3434 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed)
3436 // In order to eliminate ADD instr, make sure that:
3437 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3438 // new ADDI instr and ADDI can only take int16 Imm.
3439 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3440 // between ADDI and ADD instr since its original def in ADDI will be changed
3441 // in new ADDI instr. And also there should be no new def for it between
3442 // ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3443 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3444 // between ADD and Imm instr since ADD instr will be eliminated.
3445 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3446 // moved to Index instr.
3447 bool PPCInstrInfo::foldFrameOffset(MachineInstr
&MI
) const {
3448 MachineFunction
*MF
= MI
.getParent()->getParent();
3449 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
3450 bool PostRA
= !MRI
->isSSA();
3451 // Do this opt after PEI which is after RA. The reason is stack slot expansion
3452 // in PEI may expose such opportunities since in PEI, stack slot offsets to
3453 // frame base(OffsetAddi) are determined.
3456 unsigned ToBeDeletedReg
= 0;
3457 int64_t OffsetImm
= 0;
3458 unsigned XFormOpcode
= 0;
3461 // Check if Imm instr meets requirement.
3462 if (!isImmInstrEligibleForFolding(MI
, ToBeDeletedReg
, XFormOpcode
, OffsetImm
,
3466 bool OtherIntermediateUse
= false;
3467 MachineInstr
*ADDMI
= getDefMIPostRA(ToBeDeletedReg
, MI
, OtherIntermediateUse
);
3469 // Exit if there is other use between ADD and Imm instr or no def found.
3470 if (OtherIntermediateUse
|| !ADDMI
)
3473 // Check if ADD instr meets requirement.
3474 if (!isADDInstrEligibleForFolding(*ADDMI
))
3477 unsigned ScaleRegIdx
= 0;
3478 int64_t OffsetAddi
= 0;
3479 MachineInstr
*ADDIMI
= nullptr;
3481 // Check if there is a valid ToBeChangedReg in ADDMI.
3482 // 1: It must be killed.
3483 // 2: Its definition must be a valid ADDIMI.
3484 // 3: It must satify int16 offset requirement.
3485 if (isValidToBeChangedReg(ADDMI
, 1, ADDIMI
, OffsetAddi
, OffsetImm
))
3487 else if (isValidToBeChangedReg(ADDMI
, 2, ADDIMI
, OffsetAddi
, OffsetImm
))
3492 assert(ADDIMI
&& "There should be ADDIMI for valid ToBeChangedReg.");
3493 unsigned ToBeChangedReg
= ADDIMI
->getOperand(0).getReg();
3494 unsigned ScaleReg
= ADDMI
->getOperand(ScaleRegIdx
).getReg();
3495 auto NewDefFor
= [&](unsigned Reg
, MachineBasicBlock::iterator Start
,
3496 MachineBasicBlock::iterator End
) {
3497 for (auto It
= ++Start
; It
!= End
; It
++)
3498 if (It
->modifiesRegister(Reg
, &getRegisterInfo()))
3503 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3504 // treated as special zero when ScaleReg is R0/X0 register.
3505 if (III
.ZeroIsSpecialOrig
== III
.ImmOpNo
&&
3506 (ScaleReg
== PPC::R0
|| ScaleReg
== PPC::X0
))
3509 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3511 if (NewDefFor(ToBeChangedReg
, *ADDMI
, MI
) || NewDefFor(ScaleReg
, *ADDMI
, MI
))
3514 // Now start to do the transformation.
3515 LLVM_DEBUG(dbgs() << "Replace instruction: "
3517 LLVM_DEBUG(ADDIMI
->dump());
3518 LLVM_DEBUG(ADDMI
->dump());
3519 LLVM_DEBUG(MI
.dump());
3520 LLVM_DEBUG(dbgs() << "with: "
3523 // Update ADDI instr.
3524 ADDIMI
->getOperand(2).setImm(OffsetAddi
+ OffsetImm
);
3526 // Update Imm instr.
3527 MI
.setDesc(get(XFormOpcode
));
3528 MI
.getOperand(III
.ImmOpNo
)
3529 .ChangeToRegister(ScaleReg
, false, false,
3530 ADDMI
->getOperand(ScaleRegIdx
).isKill());
3532 MI
.getOperand(III
.OpNoForForwarding
)
3533 .ChangeToRegister(ToBeChangedReg
, false, false, true);
3535 // Eliminate ADD instr.
3536 ADDMI
->eraseFromParent();
3538 LLVM_DEBUG(ADDIMI
->dump());
3539 LLVM_DEBUG(MI
.dump());
3544 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr
&ADDIMI
,
3545 int64_t &Imm
) const {
3546 unsigned Opc
= ADDIMI
.getOpcode();
3548 // Exit if the instruction is not ADDI.
3549 if (Opc
!= PPC::ADDI
&& Opc
!= PPC::ADDI8
)
3552 // The operand may not necessarily be an immediate - it could be a relocation.
3553 if (!ADDIMI
.getOperand(2).isImm())
3556 Imm
= ADDIMI
.getOperand(2).getImm();
3561 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr
&ADDMI
) const {
3562 unsigned Opc
= ADDMI
.getOpcode();
3564 // Exit if the instruction is not ADD.
3565 return Opc
== PPC::ADD4
|| Opc
== PPC::ADD8
;
3568 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr
&MI
,
3569 unsigned &ToBeDeletedReg
,
3570 unsigned &XFormOpcode
,
3572 ImmInstrInfo
&III
) const {
3573 // Only handle load/store.
3574 if (!MI
.mayLoadOrStore())
3577 unsigned Opc
= MI
.getOpcode();
3579 XFormOpcode
= RI
.getMappedIdxOpcForImmOpc(Opc
);
3581 // Exit if instruction has no index form.
3582 if (XFormOpcode
== PPC::INSTRUCTION_LIST_END
)
3585 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3586 if (!instrHasImmForm(XFormOpcode
, isVFRegister(MI
.getOperand(0).getReg()),
3590 if (!III
.IsSummingOperands
)
3593 MachineOperand ImmOperand
= MI
.getOperand(III
.ImmOpNo
);
3594 MachineOperand RegOperand
= MI
.getOperand(III
.OpNoForForwarding
);
3595 // Only support imm operands, not relocation slots or others.
3596 if (!ImmOperand
.isImm())
3599 assert(RegOperand
.isReg() && "Instruction format is not right");
3601 // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3602 if (!RegOperand
.isKill())
3605 ToBeDeletedReg
= RegOperand
.getReg();
3606 OffsetImm
= ImmOperand
.getImm();
3611 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr
*ADDMI
, unsigned Index
,
3612 MachineInstr
*&ADDIMI
,
3613 int64_t &OffsetAddi
,
3614 int64_t OffsetImm
) const {
3615 assert((Index
== 1 || Index
== 2) && "Invalid operand index for add.");
3616 MachineOperand
&MO
= ADDMI
->getOperand(Index
);
3621 bool OtherIntermediateUse
= false;
3623 ADDIMI
= getDefMIPostRA(MO
.getReg(), *ADDMI
, OtherIntermediateUse
);
3624 // Currently handle only one "add + Imminstr" pair case, exit if other
3625 // intermediate use for ToBeChangedReg found.
3626 // TODO: handle the cases where there are other "add + Imminstr" pairs
3627 // with same offset in Imminstr which is like:
3629 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3630 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3631 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed)
3632 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3633 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed)
3635 // can be converted to:
3637 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3638 // (OffsetAddi + OffsetImm)
3639 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg
3640 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed)
3642 if (OtherIntermediateUse
|| !ADDIMI
)
3644 // Check if ADDI instr meets requirement.
3645 if (!isADDIInstrEligibleForFolding(*ADDIMI
, OffsetAddi
))
3648 if (isInt
<16>(OffsetAddi
+ OffsetImm
))
3653 // If this instruction has an immediate form and one of its operands is a
3654 // result of a load-immediate or an add-immediate, convert it to
3655 // the immediate form if the constant is in range.
3656 bool PPCInstrInfo::convertToImmediateForm(MachineInstr
&MI
,
3657 MachineInstr
**KilledDef
) const {
3658 MachineFunction
*MF
= MI
.getParent()->getParent();
3659 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
3660 bool PostRA
= !MRI
->isSSA();
3661 bool SeenIntermediateUse
= true;
3662 unsigned ForwardingOperand
= ~0U;
3663 MachineInstr
*DefMI
= getForwardingDefMI(MI
, ForwardingOperand
,
3664 SeenIntermediateUse
);
3667 assert(ForwardingOperand
< MI
.getNumOperands() &&
3668 "The forwarding operand needs to be valid at this point");
3669 bool IsForwardingOperandKilled
= MI
.getOperand(ForwardingOperand
).isKill();
3670 bool KillFwdDefMI
= !SeenIntermediateUse
&& IsForwardingOperandKilled
;
3671 if (KilledDef
&& KillFwdDefMI
)
3674 // If this is a imm instruction and its register operands is produced by ADDI,
3675 // put the imm into imm inst directly.
3676 if (RI
.getMappedIdxOpcForImmOpc(MI
.getOpcode()) !=
3677 PPC::INSTRUCTION_LIST_END
&&
3678 transformToNewImmFormFedByAdd(MI
, *DefMI
, ForwardingOperand
))
3682 bool IsVFReg
= MI
.getOperand(0).isReg()
3683 ? isVFRegister(MI
.getOperand(0).getReg())
3685 bool HasImmForm
= instrHasImmForm(MI
.getOpcode(), IsVFReg
, III
, PostRA
);
3686 // If this is a reg+reg instruction that has a reg+imm form,
3687 // and one of the operands is produced by an add-immediate,
3688 // try to convert it.
3690 transformToImmFormFedByAdd(MI
, III
, ForwardingOperand
, *DefMI
,
3694 // If this is a reg+reg instruction that has a reg+imm form,
3695 // and one of the operands is produced by LI, convert it now.
3697 transformToImmFormFedByLI(MI
, III
, ForwardingOperand
, *DefMI
))
3700 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3701 // can be simpified to LI.
3702 if (!HasImmForm
&& simplifyToLI(MI
, *DefMI
, ForwardingOperand
, KilledDef
))
3708 bool PPCInstrInfo::combineRLWINM(MachineInstr
&MI
,
3709 MachineInstr
**ToErase
) const {
3710 MachineRegisterInfo
*MRI
= &MI
.getParent()->getParent()->getRegInfo();
3711 unsigned FoldingReg
= MI
.getOperand(1).getReg();
3712 if (!Register::isVirtualRegister(FoldingReg
))
3714 MachineInstr
*SrcMI
= MRI
->getVRegDef(FoldingReg
);
3715 if (SrcMI
->getOpcode() != PPC::RLWINM
&&
3716 SrcMI
->getOpcode() != PPC::RLWINM_rec
&&
3717 SrcMI
->getOpcode() != PPC::RLWINM8
&&
3718 SrcMI
->getOpcode() != PPC::RLWINM8_rec
)
3720 assert((MI
.getOperand(2).isImm() && MI
.getOperand(3).isImm() &&
3721 MI
.getOperand(4).isImm() && SrcMI
->getOperand(2).isImm() &&
3722 SrcMI
->getOperand(3).isImm() && SrcMI
->getOperand(4).isImm()) &&
3723 "Invalid PPC::RLWINM Instruction!");
3724 uint64_t SHSrc
= SrcMI
->getOperand(2).getImm();
3725 uint64_t SHMI
= MI
.getOperand(2).getImm();
3726 uint64_t MBSrc
= SrcMI
->getOperand(3).getImm();
3727 uint64_t MBMI
= MI
.getOperand(3).getImm();
3728 uint64_t MESrc
= SrcMI
->getOperand(4).getImm();
3729 uint64_t MEMI
= MI
.getOperand(4).getImm();
3731 assert((MEMI
< 32 && MESrc
< 32 && MBMI
< 32 && MBSrc
< 32) &&
3732 "Invalid PPC::RLWINM Instruction!");
3733 // If MBMI is bigger than MEMI, we always can not get run of ones.
3734 // RotatedSrcMask non-wrap:
3735 // 0........31|32........63
3736 // RotatedSrcMask: B---E B---E
3737 // MaskMI: -----------|--E B------
3738 // Result: ----- --- (Bad candidate)
3740 // RotatedSrcMask wrap:
3741 // 0........31|32........63
3742 // RotatedSrcMask: --E B----|--E B----
3743 // MaskMI: -----------|--E B------
3744 // Result: --- -----|--- ----- (Bad candidate)
3746 // One special case is RotatedSrcMask is a full set mask.
3747 // RotatedSrcMask full:
3748 // 0........31|32........63
3749 // RotatedSrcMask: ------EB---|-------EB---
3750 // MaskMI: -----------|--E B------
3751 // Result: -----------|--- ------- (Good candidate)
3753 // Mark special case.
3754 bool SrcMaskFull
= (MBSrc
- MESrc
== 1) || (MBSrc
== 0 && MESrc
== 31);
3756 // For other MBMI > MEMI cases, just return.
3757 if ((MBMI
> MEMI
) && !SrcMaskFull
)
3760 // Handle MBMI <= MEMI cases.
3761 APInt MaskMI
= APInt::getBitsSetWithWrap(32, 32 - MEMI
- 1, 32 - MBMI
);
3762 // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3763 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3764 // while in PowerPC ISA, lowerest bit is at index 63.
3765 APInt MaskSrc
= APInt::getBitsSetWithWrap(32, 32 - MESrc
- 1, 32 - MBSrc
);
3767 APInt RotatedSrcMask
= MaskSrc
.rotl(SHMI
);
3768 APInt FinalMask
= RotatedSrcMask
& MaskMI
;
3769 uint32_t NewMB
, NewME
;
3770 bool Simplified
= false;
3772 // If final mask is 0, MI result should be 0 too.
3773 if (FinalMask
.isNullValue()) {
3775 (MI
.getOpcode() == PPC::RLWINM8
|| MI
.getOpcode() == PPC::RLWINM8_rec
);
3777 LLVM_DEBUG(dbgs() << "Replace Instr: ");
3778 LLVM_DEBUG(MI
.dump());
3780 if (MI
.getOpcode() == PPC::RLWINM
|| MI
.getOpcode() == PPC::RLWINM8
) {
3781 // Replace MI with "LI 0"
3782 MI
.RemoveOperand(4);
3783 MI
.RemoveOperand(3);
3784 MI
.RemoveOperand(2);
3785 MI
.getOperand(1).ChangeToImmediate(0);
3786 MI
.setDesc(get(Is64Bit
? PPC::LI8
: PPC::LI
));
3788 // Replace MI with "ANDI_rec reg, 0"
3789 MI
.RemoveOperand(4);
3790 MI
.RemoveOperand(3);
3791 MI
.getOperand(2).setImm(0);
3792 MI
.setDesc(get(Is64Bit
? PPC::ANDI8_rec
: PPC::ANDI_rec
));
3793 MI
.getOperand(1).setReg(SrcMI
->getOperand(1).getReg());
3794 if (SrcMI
->getOperand(1).isKill()) {
3795 MI
.getOperand(1).setIsKill(true);
3796 SrcMI
->getOperand(1).setIsKill(false);
3798 // About to replace MI.getOperand(1), clear its kill flag.
3799 MI
.getOperand(1).setIsKill(false);
3802 LLVM_DEBUG(dbgs() << "With: ");
3803 LLVM_DEBUG(MI
.dump());
3805 } else if ((isRunOfOnes((unsigned)(FinalMask
.getZExtValue()), NewMB
, NewME
) &&
3808 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3809 // than NewME. Otherwise we get a 64 bit value after folding, but MI
3810 // return a 32 bit value.
3812 LLVM_DEBUG(dbgs() << "Converting Instr: ");
3813 LLVM_DEBUG(MI
.dump());
3815 uint16_t NewSH
= (SHSrc
+ SHMI
) % 32;
3816 MI
.getOperand(2).setImm(NewSH
);
3817 // If SrcMI mask is full, no need to update MBMI and MEMI.
3819 MI
.getOperand(3).setImm(NewMB
);
3820 MI
.getOperand(4).setImm(NewME
);
3822 MI
.getOperand(1).setReg(SrcMI
->getOperand(1).getReg());
3823 if (SrcMI
->getOperand(1).isKill()) {
3824 MI
.getOperand(1).setIsKill(true);
3825 SrcMI
->getOperand(1).setIsKill(false);
3827 // About to replace MI.getOperand(1), clear its kill flag.
3828 MI
.getOperand(1).setIsKill(false);
3830 LLVM_DEBUG(dbgs() << "To: ");
3831 LLVM_DEBUG(MI
.dump());
3833 if (Simplified
& MRI
->use_nodbg_empty(FoldingReg
) &&
3834 !SrcMI
->hasImplicitDef()) {
3835 // If FoldingReg has no non-debug use and it has no implicit def (it
3836 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3837 // Otherwise keep it.
3839 LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3840 LLVM_DEBUG(SrcMI
->dump());
3845 bool PPCInstrInfo::instrHasImmForm(unsigned Opc
, bool IsVFReg
,
3846 ImmInstrInfo
&III
, bool PostRA
) const {
3847 // The vast majority of the instructions would need their operand 2 replaced
3848 // with an immediate when switching to the reg+imm form. A marked exception
3849 // are the update form loads/stores for which a constant operand 2 would need
3850 // to turn into a displacement and move operand 1 to the operand 2 position.
3852 III
.OpNoForForwarding
= 2;
3854 III
.ImmMustBeMultipleOf
= 1;
3855 III
.TruncateImmTo
= 0;
3856 III
.IsSummingOperands
= false;
3858 default: return false;
3861 III
.SignedImm
= true;
3862 III
.ZeroIsSpecialOrig
= 0;
3863 III
.ZeroIsSpecialNew
= 1;
3864 III
.IsCommutative
= true;
3865 III
.IsSummingOperands
= true;
3866 III
.ImmOpcode
= Opc
== PPC::ADD4
? PPC::ADDI
: PPC::ADDI8
;
3870 III
.SignedImm
= true;
3871 III
.ZeroIsSpecialOrig
= 0;
3872 III
.ZeroIsSpecialNew
= 0;
3873 III
.IsCommutative
= true;
3874 III
.IsSummingOperands
= true;
3875 III
.ImmOpcode
= Opc
== PPC::ADDC
? PPC::ADDIC
: PPC::ADDIC8
;
3878 III
.SignedImm
= true;
3879 III
.ZeroIsSpecialOrig
= 0;
3880 III
.ZeroIsSpecialNew
= 0;
3881 III
.IsCommutative
= true;
3882 III
.IsSummingOperands
= true;
3883 III
.ImmOpcode
= PPC::ADDIC_rec
;
3887 III
.SignedImm
= true;
3888 III
.ZeroIsSpecialOrig
= 0;
3889 III
.ZeroIsSpecialNew
= 0;
3890 III
.IsCommutative
= false;
3891 III
.ImmOpcode
= Opc
== PPC::SUBFC
? PPC::SUBFIC
: PPC::SUBFIC8
;
3895 III
.SignedImm
= true;
3896 III
.ZeroIsSpecialOrig
= 0;
3897 III
.ZeroIsSpecialNew
= 0;
3898 III
.IsCommutative
= false;
3899 III
.ImmOpcode
= Opc
== PPC::CMPW
? PPC::CMPWI
: PPC::CMPDI
;
3903 III
.SignedImm
= false;
3904 III
.ZeroIsSpecialOrig
= 0;
3905 III
.ZeroIsSpecialNew
= 0;
3906 III
.IsCommutative
= false;
3907 III
.ImmOpcode
= Opc
== PPC::CMPLW
? PPC::CMPLWI
: PPC::CMPLDI
;
3915 III
.SignedImm
= false;
3916 III
.ZeroIsSpecialOrig
= 0;
3917 III
.ZeroIsSpecialNew
= 0;
3918 III
.IsCommutative
= true;
3920 default: llvm_unreachable("Unknown opcode");
3922 III
.ImmOpcode
= PPC::ANDI_rec
;
3925 III
.ImmOpcode
= PPC::ANDI8_rec
;
3927 case PPC::OR
: III
.ImmOpcode
= PPC::ORI
; break;
3928 case PPC::OR8
: III
.ImmOpcode
= PPC::ORI8
; break;
3929 case PPC::XOR
: III
.ImmOpcode
= PPC::XORI
; break;
3930 case PPC::XOR8
: III
.ImmOpcode
= PPC::XORI8
; break;
3935 case PPC::RLWNM_rec
:
3936 case PPC::RLWNM8_rec
:
3947 III
.SignedImm
= false;
3948 III
.ZeroIsSpecialOrig
= 0;
3949 III
.ZeroIsSpecialNew
= 0;
3950 III
.IsCommutative
= false;
3951 // This isn't actually true, but the instructions ignore any of the
3952 // upper bits, so any immediate loaded with an LI is acceptable.
3953 // This does not apply to shift right algebraic because a value
3954 // out of range will produce a -1/0.
3956 if (Opc
== PPC::RLWNM
|| Opc
== PPC::RLWNM8
|| Opc
== PPC::RLWNM_rec
||
3957 Opc
== PPC::RLWNM8_rec
)
3958 III
.TruncateImmTo
= 5;
3960 III
.TruncateImmTo
= 6;
3962 default: llvm_unreachable("Unknown opcode");
3963 case PPC::RLWNM
: III
.ImmOpcode
= PPC::RLWINM
; break;
3964 case PPC::RLWNM8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
3965 case PPC::RLWNM_rec
:
3966 III
.ImmOpcode
= PPC::RLWINM_rec
;
3968 case PPC::RLWNM8_rec
:
3969 III
.ImmOpcode
= PPC::RLWINM8_rec
;
3971 case PPC::SLW
: III
.ImmOpcode
= PPC::RLWINM
; break;
3972 case PPC::SLW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
3974 III
.ImmOpcode
= PPC::RLWINM_rec
;
3977 III
.ImmOpcode
= PPC::RLWINM8_rec
;
3979 case PPC::SRW
: III
.ImmOpcode
= PPC::RLWINM
; break;
3980 case PPC::SRW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
3982 III
.ImmOpcode
= PPC::RLWINM_rec
;
3985 III
.ImmOpcode
= PPC::RLWINM8_rec
;
3989 III
.TruncateImmTo
= 0;
3990 III
.ImmOpcode
= PPC::SRAWI
;
3994 III
.TruncateImmTo
= 0;
3995 III
.ImmOpcode
= PPC::SRAWI_rec
;
4000 case PPC::RLDCL_rec
:
4002 case PPC::RLDCR_rec
:
4009 III
.SignedImm
= false;
4010 III
.ZeroIsSpecialOrig
= 0;
4011 III
.ZeroIsSpecialNew
= 0;
4012 III
.IsCommutative
= false;
4013 // This isn't actually true, but the instructions ignore any of the
4014 // upper bits, so any immediate loaded with an LI is acceptable.
4015 // This does not apply to shift right algebraic because a value
4016 // out of range will produce a -1/0.
4018 if (Opc
== PPC::RLDCL
|| Opc
== PPC::RLDCL_rec
|| Opc
== PPC::RLDCR
||
4019 Opc
== PPC::RLDCR_rec
)
4020 III
.TruncateImmTo
= 6;
4022 III
.TruncateImmTo
= 7;
4024 default: llvm_unreachable("Unknown opcode");
4025 case PPC::RLDCL
: III
.ImmOpcode
= PPC::RLDICL
; break;
4026 case PPC::RLDCL_rec
:
4027 III
.ImmOpcode
= PPC::RLDICL_rec
;
4029 case PPC::RLDCR
: III
.ImmOpcode
= PPC::RLDICR
; break;
4030 case PPC::RLDCR_rec
:
4031 III
.ImmOpcode
= PPC::RLDICR_rec
;
4033 case PPC::SLD
: III
.ImmOpcode
= PPC::RLDICR
; break;
4035 III
.ImmOpcode
= PPC::RLDICR_rec
;
4037 case PPC::SRD
: III
.ImmOpcode
= PPC::RLDICL
; break;
4039 III
.ImmOpcode
= PPC::RLDICL_rec
;
4043 III
.TruncateImmTo
= 0;
4044 III
.ImmOpcode
= PPC::SRADI
;
4048 III
.TruncateImmTo
= 0;
4049 III
.ImmOpcode
= PPC::SRADI_rec
;
4053 // Loads and stores:
4075 III
.SignedImm
= true;
4076 III
.ZeroIsSpecialOrig
= 1;
4077 III
.ZeroIsSpecialNew
= 2;
4078 III
.IsCommutative
= true;
4079 III
.IsSummingOperands
= true;
4081 III
.OpNoForForwarding
= 2;
4083 default: llvm_unreachable("Unknown opcode");
4084 case PPC::LBZX
: III
.ImmOpcode
= PPC::LBZ
; break;
4085 case PPC::LBZX8
: III
.ImmOpcode
= PPC::LBZ8
; break;
4086 case PPC::LHZX
: III
.ImmOpcode
= PPC::LHZ
; break;
4087 case PPC::LHZX8
: III
.ImmOpcode
= PPC::LHZ8
; break;
4088 case PPC::LHAX
: III
.ImmOpcode
= PPC::LHA
; break;
4089 case PPC::LHAX8
: III
.ImmOpcode
= PPC::LHA8
; break;
4090 case PPC::LWZX
: III
.ImmOpcode
= PPC::LWZ
; break;
4091 case PPC::LWZX8
: III
.ImmOpcode
= PPC::LWZ8
; break;
4093 III
.ImmOpcode
= PPC::LWA
;
4094 III
.ImmMustBeMultipleOf
= 4;
4096 case PPC::LDX
: III
.ImmOpcode
= PPC::LD
; III
.ImmMustBeMultipleOf
= 4; break;
4097 case PPC::LFSX
: III
.ImmOpcode
= PPC::LFS
; break;
4098 case PPC::LFDX
: III
.ImmOpcode
= PPC::LFD
; break;
4099 case PPC::STBX
: III
.ImmOpcode
= PPC::STB
; break;
4100 case PPC::STBX8
: III
.ImmOpcode
= PPC::STB8
; break;
4101 case PPC::STHX
: III
.ImmOpcode
= PPC::STH
; break;
4102 case PPC::STHX8
: III
.ImmOpcode
= PPC::STH8
; break;
4103 case PPC::STWX
: III
.ImmOpcode
= PPC::STW
; break;
4104 case PPC::STWX8
: III
.ImmOpcode
= PPC::STW8
; break;
4106 III
.ImmOpcode
= PPC::STD
;
4107 III
.ImmMustBeMultipleOf
= 4;
4109 case PPC::STFSX
: III
.ImmOpcode
= PPC::STFS
; break;
4110 case PPC::STFDX
: III
.ImmOpcode
= PPC::STFD
; break;
4133 III
.SignedImm
= true;
4134 III
.ZeroIsSpecialOrig
= 2;
4135 III
.ZeroIsSpecialNew
= 3;
4136 III
.IsCommutative
= false;
4137 III
.IsSummingOperands
= true;
4139 III
.OpNoForForwarding
= 3;
4141 default: llvm_unreachable("Unknown opcode");
4142 case PPC::LBZUX
: III
.ImmOpcode
= PPC::LBZU
; break;
4143 case PPC::LBZUX8
: III
.ImmOpcode
= PPC::LBZU8
; break;
4144 case PPC::LHZUX
: III
.ImmOpcode
= PPC::LHZU
; break;
4145 case PPC::LHZUX8
: III
.ImmOpcode
= PPC::LHZU8
; break;
4146 case PPC::LHAUX
: III
.ImmOpcode
= PPC::LHAU
; break;
4147 case PPC::LHAUX8
: III
.ImmOpcode
= PPC::LHAU8
; break;
4148 case PPC::LWZUX
: III
.ImmOpcode
= PPC::LWZU
; break;
4149 case PPC::LWZUX8
: III
.ImmOpcode
= PPC::LWZU8
; break;
4151 III
.ImmOpcode
= PPC::LDU
;
4152 III
.ImmMustBeMultipleOf
= 4;
4154 case PPC::LFSUX
: III
.ImmOpcode
= PPC::LFSU
; break;
4155 case PPC::LFDUX
: III
.ImmOpcode
= PPC::LFDU
; break;
4156 case PPC::STBUX
: III
.ImmOpcode
= PPC::STBU
; break;
4157 case PPC::STBUX8
: III
.ImmOpcode
= PPC::STBU8
; break;
4158 case PPC::STHUX
: III
.ImmOpcode
= PPC::STHU
; break;
4159 case PPC::STHUX8
: III
.ImmOpcode
= PPC::STHU8
; break;
4160 case PPC::STWUX
: III
.ImmOpcode
= PPC::STWU
; break;
4161 case PPC::STWUX8
: III
.ImmOpcode
= PPC::STWU8
; break;
4163 III
.ImmOpcode
= PPC::STDU
;
4164 III
.ImmMustBeMultipleOf
= 4;
4166 case PPC::STFSUX
: III
.ImmOpcode
= PPC::STFSU
; break;
4167 case PPC::STFDUX
: III
.ImmOpcode
= PPC::STFDU
; break;
4170 // Power9 and up only. For some of these, the X-Form version has access to all
4171 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4172 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4173 // into or stored from is one of the VR registers.
4180 case PPC::XFLOADf32
:
4181 case PPC::XFLOADf64
:
4182 case PPC::XFSTOREf32
:
4183 case PPC::XFSTOREf64
:
4184 if (!Subtarget
.hasP9Vector())
4186 III
.SignedImm
= true;
4187 III
.ZeroIsSpecialOrig
= 1;
4188 III
.ZeroIsSpecialNew
= 2;
4189 III
.IsCommutative
= true;
4190 III
.IsSummingOperands
= true;
4192 III
.OpNoForForwarding
= 2;
4193 III
.ImmMustBeMultipleOf
= 4;
4195 default: llvm_unreachable("Unknown opcode");
4197 III
.ImmOpcode
= PPC::LXV
;
4198 III
.ImmMustBeMultipleOf
= 16;
4203 III
.ImmOpcode
= PPC::LXSSP
;
4205 III
.ImmOpcode
= PPC::LFS
;
4206 III
.ImmMustBeMultipleOf
= 1;
4211 case PPC::XFLOADf32
:
4212 III
.ImmOpcode
= PPC::DFLOADf32
;
4217 III
.ImmOpcode
= PPC::LXSD
;
4219 III
.ImmOpcode
= PPC::LFD
;
4220 III
.ImmMustBeMultipleOf
= 1;
4225 case PPC::XFLOADf64
:
4226 III
.ImmOpcode
= PPC::DFLOADf64
;
4229 III
.ImmOpcode
= PPC::STXV
;
4230 III
.ImmMustBeMultipleOf
= 16;
4235 III
.ImmOpcode
= PPC::STXSSP
;
4237 III
.ImmOpcode
= PPC::STFS
;
4238 III
.ImmMustBeMultipleOf
= 1;
4243 case PPC::XFSTOREf32
:
4244 III
.ImmOpcode
= PPC::DFSTOREf32
;
4249 III
.ImmOpcode
= PPC::STXSD
;
4251 III
.ImmOpcode
= PPC::STFD
;
4252 III
.ImmMustBeMultipleOf
= 1;
4257 case PPC::XFSTOREf64
:
4258 III
.ImmOpcode
= PPC::DFSTOREf64
;
4266 // Utility function for swaping two arbitrary operands of an instruction.
4267 static void swapMIOperands(MachineInstr
&MI
, unsigned Op1
, unsigned Op2
) {
4268 assert(Op1
!= Op2
&& "Cannot swap operand with itself.");
4270 unsigned MaxOp
= std::max(Op1
, Op2
);
4271 unsigned MinOp
= std::min(Op1
, Op2
);
4272 MachineOperand MOp1
= MI
.getOperand(MinOp
);
4273 MachineOperand MOp2
= MI
.getOperand(MaxOp
);
4274 MI
.RemoveOperand(std::max(Op1
, Op2
));
4275 MI
.RemoveOperand(std::min(Op1
, Op2
));
4277 // If the operands we are swapping are the two at the end (the common case)
4278 // we can just remove both and add them in the opposite order.
4279 if (MaxOp
- MinOp
== 1 && MI
.getNumOperands() == MinOp
) {
4280 MI
.addOperand(MOp2
);
4281 MI
.addOperand(MOp1
);
4283 // Store all operands in a temporary vector, remove them and re-add in the
4285 SmallVector
<MachineOperand
, 2> MOps
;
4286 unsigned TotalOps
= MI
.getNumOperands() + 2; // We've already removed 2 ops.
4287 for (unsigned i
= MI
.getNumOperands() - 1; i
>= MinOp
; i
--) {
4288 MOps
.push_back(MI
.getOperand(i
));
4289 MI
.RemoveOperand(i
);
4291 // MOp2 needs to be added next.
4292 MI
.addOperand(MOp2
);
4293 // Now add the rest.
4294 for (unsigned i
= MI
.getNumOperands(); i
< TotalOps
; i
++) {
4296 MI
.addOperand(MOp1
);
4298 MI
.addOperand(MOps
.back());
4305 // Check if the 'MI' that has the index OpNoForForwarding
4306 // meets the requirement described in the ImmInstrInfo.
4307 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr
&MI
,
4308 const ImmInstrInfo
&III
,
4309 unsigned OpNoForForwarding
4311 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4312 // would not work pre-RA, we can only do the check post RA.
4313 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
4317 // Cannot do the transform if MI isn't summing the operands.
4318 if (!III
.IsSummingOperands
)
4321 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4322 if (!III
.ZeroIsSpecialOrig
)
4325 // We cannot do the transform if the operand we are trying to replace
4326 // isn't the same as the operand the instruction allows.
4327 if (OpNoForForwarding
!= III
.OpNoForForwarding
)
4330 // Check if the instruction we are trying to transform really has
4331 // the special zero register as its operand.
4332 if (MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO
&&
4333 MI
.getOperand(III
.ZeroIsSpecialOrig
).getReg() != PPC::ZERO8
)
4336 // This machine instruction is convertible if it is,
4337 // 1. summing the operands.
4338 // 2. one of the operands is special zero register.
4339 // 3. the operand we are trying to replace is allowed by the MI.
4343 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4345 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr
&DefMI
,
4346 const ImmInstrInfo
&III
,
4347 MachineOperand
*&ImmMO
,
4348 MachineOperand
*&RegMO
) const {
4349 unsigned Opc
= DefMI
.getOpcode();
4350 if (Opc
!= PPC::ADDItocL
&& Opc
!= PPC::ADDI
&& Opc
!= PPC::ADDI8
)
4353 assert(DefMI
.getNumOperands() >= 3 &&
4354 "Add inst must have at least three operands");
4355 RegMO
= &DefMI
.getOperand(1);
4356 ImmMO
= &DefMI
.getOperand(2);
4358 // Before RA, ADDI first operand could be a frame index.
4359 if (!RegMO
->isReg())
4362 // This DefMI is elgible for forwarding if it is:
4364 // 2. one of the operands is Imm/CPI/Global.
4365 return isAnImmediateOperand(*ImmMO
);
4368 bool PPCInstrInfo::isRegElgibleForForwarding(
4369 const MachineOperand
&RegMO
, const MachineInstr
&DefMI
,
4370 const MachineInstr
&MI
, bool KillDefMI
,
4371 bool &IsFwdFeederRegKilled
) const {
4374 // z = lfdx 0, x -> z = lfd imm(y)
4375 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4376 // of "y" between the DEF of "x" and "z".
4377 // The query is only valid post RA.
4378 const MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
4382 Register Reg
= RegMO
.getReg();
4384 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4385 MachineBasicBlock::const_reverse_iterator It
= MI
;
4386 MachineBasicBlock::const_reverse_iterator E
= MI
.getParent()->rend();
4388 for (; It
!= E
; ++It
) {
4389 if (It
->modifiesRegister(Reg
, &getRegisterInfo()) && (&*It
) != &DefMI
)
4391 else if (It
->killsRegister(Reg
, &getRegisterInfo()) && (&*It
) != &DefMI
)
4392 IsFwdFeederRegKilled
= true;
4393 // Made it to DefMI without encountering a clobber.
4394 if ((&*It
) == &DefMI
)
4397 assert((&*It
) == &DefMI
&& "DefMI is missing");
4399 // If DefMI also defines the register to be forwarded, we can only forward it
4400 // if DefMI is being erased.
4401 if (DefMI
.modifiesRegister(Reg
, &getRegisterInfo()))
4407 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand
&ImmMO
,
4408 const MachineInstr
&DefMI
,
4409 const ImmInstrInfo
&III
,
4411 int64_t BaseImm
) const {
4412 assert(isAnImmediateOperand(ImmMO
) && "ImmMO is NOT an immediate");
4413 if (DefMI
.getOpcode() == PPC::ADDItocL
) {
4414 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
4415 // However, we know that, it is 16-bit width, and has the alignment of 4.
4416 // Check if the instruction met the requirement.
4417 if (III
.ImmMustBeMultipleOf
> 4 ||
4418 III
.TruncateImmTo
|| III
.ImmWidth
!= 16)
4421 // Going from XForm to DForm loads means that the displacement needs to be
4422 // not just an immediate but also a multiple of 4, or 16 depending on the
4423 // load. A DForm load cannot be represented if it is a multiple of say 2.
4424 // XForm loads do not have this restriction.
4425 if (ImmMO
.isGlobal()) {
4426 const DataLayout
&DL
= ImmMO
.getGlobal()->getParent()->getDataLayout();
4427 if (ImmMO
.getGlobal()->getPointerAlignment(DL
) < III
.ImmMustBeMultipleOf
)
4434 if (ImmMO
.isImm()) {
4435 // It is Imm, we need to check if the Imm fit the range.
4436 // Sign-extend to 64-bits.
4437 // DefMI may be folded with another imm form instruction, the result Imm is
4438 // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4439 APInt
ActualValue(64, ImmMO
.getImm() + BaseImm
, true);
4440 if (III
.SignedImm
&& !ActualValue
.isSignedIntN(III
.ImmWidth
))
4442 if (!III
.SignedImm
&& !ActualValue
.isIntN(III
.ImmWidth
))
4444 Imm
= SignExtend64
<16>(ImmMO
.getImm() + BaseImm
);
4446 if (Imm
% III
.ImmMustBeMultipleOf
)
4448 if (III
.TruncateImmTo
)
4449 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
4454 // This ImmMO is forwarded if it meets the requriement describle
4459 bool PPCInstrInfo::simplifyToLI(MachineInstr
&MI
, MachineInstr
&DefMI
,
4460 unsigned OpNoForForwarding
,
4461 MachineInstr
**KilledDef
) const {
4462 if ((DefMI
.getOpcode() != PPC::LI
&& DefMI
.getOpcode() != PPC::LI8
) ||
4463 !DefMI
.getOperand(1).isImm())
4466 MachineFunction
*MF
= MI
.getParent()->getParent();
4467 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
4468 bool PostRA
= !MRI
->isSSA();
4470 int64_t Immediate
= DefMI
.getOperand(1).getImm();
4471 // Sign-extend to 64-bits.
4472 int64_t SExtImm
= SignExtend64
<16>(Immediate
);
4474 bool IsForwardingOperandKilled
= MI
.getOperand(OpNoForForwarding
).isKill();
4475 Register ForwardingOperandReg
= MI
.getOperand(OpNoForForwarding
).getReg();
4477 bool ReplaceWithLI
= false;
4478 bool Is64BitLI
= false;
4481 unsigned Opc
= MI
.getOpcode();
4486 // FIXME: Any branches conditional on such a comparison can be made
4487 // unconditional. At this time, this happens too infrequently to be worth
4488 // the implementation effort, but if that ever changes, we could convert
4489 // such a pattern here.
4494 // Doing this post-RA would require dataflow analysis to reliably find uses
4495 // of the CR register set by the compare.
4496 // No need to fixup killed/dead flag since this transformation is only valid
4500 // If a compare-immediate is fed by an immediate and is itself an input of
4501 // an ISEL (the most common case) into a COPY of the correct register.
4502 bool Changed
= false;
4503 Register DefReg
= MI
.getOperand(0).getReg();
4504 int64_t Comparand
= MI
.getOperand(2).getImm();
4505 int64_t SExtComparand
= ((uint64_t)Comparand
& ~0x7FFFuLL
) != 0
4506 ? (Comparand
| 0xFFFFFFFFFFFF0000)
4509 for (auto &CompareUseMI
: MRI
->use_instructions(DefReg
)) {
4510 unsigned UseOpc
= CompareUseMI
.getOpcode();
4511 if (UseOpc
!= PPC::ISEL
&& UseOpc
!= PPC::ISEL8
)
4513 unsigned CRSubReg
= CompareUseMI
.getOperand(3).getSubReg();
4514 Register TrueReg
= CompareUseMI
.getOperand(1).getReg();
4515 Register FalseReg
= CompareUseMI
.getOperand(2).getReg();
4516 unsigned RegToCopy
=
4517 selectReg(SExtImm
, SExtComparand
, Opc
, TrueReg
, FalseReg
, CRSubReg
);
4518 if (RegToCopy
== PPC::NoRegister
)
4520 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4521 if (RegToCopy
== PPC::ZERO
|| RegToCopy
== PPC::ZERO8
) {
4522 CompareUseMI
.setDesc(get(UseOpc
== PPC::ISEL8
? PPC::LI8
: PPC::LI
));
4523 replaceInstrOperandWithImm(CompareUseMI
, 1, 0);
4524 CompareUseMI
.RemoveOperand(3);
4525 CompareUseMI
.RemoveOperand(2);
4529 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4530 LLVM_DEBUG(DefMI
.dump(); MI
.dump(); CompareUseMI
.dump());
4531 LLVM_DEBUG(dbgs() << "Is converted to:\n");
4532 // Convert to copy and remove unneeded operands.
4533 CompareUseMI
.setDesc(get(PPC::COPY
));
4534 CompareUseMI
.RemoveOperand(3);
4535 CompareUseMI
.RemoveOperand(RegToCopy
== TrueReg
? 2 : 1);
4536 CmpIselsConverted
++;
4538 LLVM_DEBUG(CompareUseMI
.dump());
4542 // This may end up incremented multiple times since this function is called
4543 // during a fixed-point transformation, but it is only meant to indicate the
4544 // presence of this opportunity.
4545 MissedConvertibleImmediateInstrs
++;
4549 // Immediate forms - may simply be convertable to an LI.
4552 // Does the sum fit in a 16-bit signed field?
4553 int64_t Addend
= MI
.getOperand(2).getImm();
4554 if (isInt
<16>(Addend
+ SExtImm
)) {
4555 ReplaceWithLI
= true;
4556 Is64BitLI
= Opc
== PPC::ADDI8
;
4557 NewImm
= Addend
+ SExtImm
;
4563 case PPC::SUBFIC8
: {
4564 // Only transform this if the CARRY implicit operand is dead.
4565 if (MI
.getNumOperands() > 3 && !MI
.getOperand(3).isDead())
4567 int64_t Minuend
= MI
.getOperand(2).getImm();
4568 if (isInt
<16>(Minuend
- SExtImm
)) {
4569 ReplaceWithLI
= true;
4570 Is64BitLI
= Opc
== PPC::SUBFIC8
;
4571 NewImm
= Minuend
- SExtImm
;
4577 case PPC::RLDICL_rec
:
4578 case PPC::RLDICL_32
:
4579 case PPC::RLDICL_32_64
: {
4580 // Use APInt's rotate function.
4581 int64_t SH
= MI
.getOperand(2).getImm();
4582 int64_t MB
= MI
.getOperand(3).getImm();
4583 APInt
InVal((Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICL_rec
) ? 64 : 32,
4585 InVal
= InVal
.rotl(SH
);
4586 uint64_t Mask
= MB
== 0 ? -1LLU : (1LLU << (63 - MB
+ 1)) - 1;
4588 // Can't replace negative values with an LI as that will sign-extend
4589 // and not clear the left bits. If we're setting the CR bit, we will use
4590 // ANDI_rec which won't sign extend, so that's safe.
4591 if (isUInt
<15>(InVal
.getSExtValue()) ||
4592 (Opc
== PPC::RLDICL_rec
&& isUInt
<16>(InVal
.getSExtValue()))) {
4593 ReplaceWithLI
= true;
4594 Is64BitLI
= Opc
!= PPC::RLDICL_32
;
4595 NewImm
= InVal
.getSExtValue();
4596 SetCR
= Opc
== PPC::RLDICL_rec
;
4603 case PPC::RLWINM_rec
:
4604 case PPC::RLWINM8_rec
: {
4605 int64_t SH
= MI
.getOperand(2).getImm();
4606 int64_t MB
= MI
.getOperand(3).getImm();
4607 int64_t ME
= MI
.getOperand(4).getImm();
4608 APInt
InVal(32, SExtImm
, true);
4609 InVal
= InVal
.rotl(SH
);
4610 APInt Mask
= APInt::getBitsSetWithWrap(32, 32 - ME
- 1, 32 - MB
);
4612 // Can't replace negative values with an LI as that will sign-extend
4613 // and not clear the left bits. If we're setting the CR bit, we will use
4614 // ANDI_rec which won't sign extend, so that's safe.
4615 bool ValueFits
= isUInt
<15>(InVal
.getSExtValue());
4616 ValueFits
|= ((Opc
== PPC::RLWINM_rec
|| Opc
== PPC::RLWINM8_rec
) &&
4617 isUInt
<16>(InVal
.getSExtValue()));
4619 ReplaceWithLI
= true;
4620 Is64BitLI
= Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8_rec
;
4621 NewImm
= InVal
.getSExtValue();
4622 SetCR
= Opc
== PPC::RLWINM_rec
|| Opc
== PPC::RLWINM8_rec
;
4631 int64_t LogicalImm
= MI
.getOperand(2).getImm();
4633 if (Opc
== PPC::ORI
|| Opc
== PPC::ORI8
)
4634 Result
= LogicalImm
| SExtImm
;
4636 Result
= LogicalImm
^ SExtImm
;
4637 if (isInt
<16>(Result
)) {
4638 ReplaceWithLI
= true;
4639 Is64BitLI
= Opc
== PPC::ORI8
|| Opc
== PPC::XORI8
;
4647 if (ReplaceWithLI
) {
4648 // We need to be careful with CR-setting instructions we're replacing.
4650 // We don't know anything about uses when we're out of SSA, so only
4651 // replace if the new immediate will be reproduced.
4652 bool ImmChanged
= (SExtImm
& NewImm
) != NewImm
;
4653 if (PostRA
&& ImmChanged
)
4657 // If the defining load-immediate has no other uses, we can just replace
4658 // the immediate with the new immediate.
4659 if (MRI
->hasOneUse(DefMI
.getOperand(0).getReg()))
4660 DefMI
.getOperand(1).setImm(NewImm
);
4662 // If we're not using the GPR result of the CR-setting instruction, we
4663 // just need to and with zero/non-zero depending on the new immediate.
4664 else if (MRI
->use_empty(MI
.getOperand(0).getReg())) {
4666 assert(Immediate
&& "Transformation converted zero to non-zero?");
4669 } else if (ImmChanged
)
4674 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4675 LLVM_DEBUG(MI
.dump());
4676 LLVM_DEBUG(dbgs() << "Fed by:\n");
4677 LLVM_DEBUG(DefMI
.dump());
4678 LoadImmediateInfo LII
;
4680 LII
.Is64Bit
= Is64BitLI
;
4682 // If we're setting the CR, the original load-immediate must be kept (as an
4683 // operand to ANDI_rec/ANDI8_rec).
4684 if (KilledDef
&& SetCR
)
4685 *KilledDef
= nullptr;
4686 replaceInstrWithLI(MI
, LII
);
4688 // Fixup killed/dead flag after transformation.
4690 // ForwardingOperandReg = LI imm1
4691 // y = op2 imm2, ForwardingOperandReg(killed)
4692 if (IsForwardingOperandKilled
)
4693 fixupIsDeadOrKill(&DefMI
, &MI
, ForwardingOperandReg
);
4695 LLVM_DEBUG(dbgs() << "With:\n");
4696 LLVM_DEBUG(MI
.dump());
4702 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4703 MachineInstr
&MI
, MachineInstr
&DefMI
, unsigned OpNoForForwarding
) const {
4704 MachineRegisterInfo
*MRI
= &MI
.getParent()->getParent()->getRegInfo();
4705 bool PostRA
= !MRI
->isSSA();
4706 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4711 // Only handle load/store.
4712 if (!MI
.mayLoadOrStore())
4715 unsigned XFormOpcode
= RI
.getMappedIdxOpcForImmOpc(MI
.getOpcode());
4717 assert((XFormOpcode
!= PPC::INSTRUCTION_LIST_END
) &&
4718 "MI must have x-form opcode");
4720 // get Imm Form info.
4722 bool IsVFReg
= MI
.getOperand(0).isReg()
4723 ? isVFRegister(MI
.getOperand(0).getReg())
4726 if (!instrHasImmForm(XFormOpcode
, IsVFReg
, III
, PostRA
))
4729 if (!III
.IsSummingOperands
)
4732 if (OpNoForForwarding
!= III
.OpNoForForwarding
)
4735 MachineOperand ImmOperandMI
= MI
.getOperand(III
.ImmOpNo
);
4736 if (!ImmOperandMI
.isImm())
4740 MachineOperand
*ImmMO
= nullptr;
4741 MachineOperand
*RegMO
= nullptr;
4742 if (!isDefMIElgibleForForwarding(DefMI
, III
, ImmMO
, RegMO
))
4744 assert(ImmMO
&& RegMO
&& "Imm and Reg operand must have been set");
4747 // Set ImmBase from imm instruction as base and get new Imm inside
4748 // isImmElgibleForForwarding.
4749 int64_t ImmBase
= ImmOperandMI
.getImm();
4751 if (!isImmElgibleForForwarding(*ImmMO
, DefMI
, III
, Imm
, ImmBase
))
4754 // Get killed info in case fixup needed after transformation.
4755 unsigned ForwardKilledOperandReg
= ~0U;
4756 if (MI
.getOperand(III
.OpNoForForwarding
).isKill())
4757 ForwardKilledOperandReg
= MI
.getOperand(III
.OpNoForForwarding
).getReg();
4760 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4761 LLVM_DEBUG(MI
.dump());
4762 LLVM_DEBUG(dbgs() << "Fed by:\n");
4763 LLVM_DEBUG(DefMI
.dump());
4765 MI
.getOperand(III
.OpNoForForwarding
).setReg(RegMO
->getReg());
4766 if (RegMO
->isKill()) {
4767 MI
.getOperand(III
.OpNoForForwarding
).setIsKill(true);
4768 // Clear the killed flag in RegMO. Doing this here can handle some cases
4769 // that DefMI and MI are not in same basic block.
4770 RegMO
->setIsKill(false);
4772 MI
.getOperand(III
.ImmOpNo
).setImm(Imm
);
4774 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4775 if (DefMI
.getParent() == MI
.getParent()) {
4776 // Check if reg is killed between MI and DefMI.
4777 auto IsKilledFor
= [&](unsigned Reg
) {
4778 MachineBasicBlock::const_reverse_iterator It
= MI
;
4779 MachineBasicBlock::const_reverse_iterator E
= DefMI
;
4781 for (; It
!= E
; ++It
) {
4782 if (It
->killsRegister(Reg
))
4789 if (RegMO
->isKill() || IsKilledFor(RegMO
->getReg()))
4790 fixupIsDeadOrKill(&DefMI
, &MI
, RegMO
->getReg());
4791 if (ForwardKilledOperandReg
!= ~0U)
4792 fixupIsDeadOrKill(&DefMI
, &MI
, ForwardKilledOperandReg
);
4795 LLVM_DEBUG(dbgs() << "With:\n");
4796 LLVM_DEBUG(MI
.dump());
4800 // If an X-Form instruction is fed by an add-immediate and one of its operands
4801 // is the literal zero, attempt to forward the source of the add-immediate to
4802 // the corresponding D-Form instruction with the displacement coming from
4803 // the immediate being added.
4804 bool PPCInstrInfo::transformToImmFormFedByAdd(
4805 MachineInstr
&MI
, const ImmInstrInfo
&III
, unsigned OpNoForForwarding
,
4806 MachineInstr
&DefMI
, bool KillDefMI
) const {
4809 // x = addi reg, imm <----- DefMI
4810 // y = op 0 , x <----- MI
4812 // OpNoForForwarding
4813 // Check if the MI meet the requirement described in the III.
4814 if (!isUseMIElgibleForForwarding(MI
, III
, OpNoForForwarding
))
4817 // Check if the DefMI meet the requirement
4818 // described in the III. If yes, set the ImmMO and RegMO accordingly.
4819 MachineOperand
*ImmMO
= nullptr;
4820 MachineOperand
*RegMO
= nullptr;
4821 if (!isDefMIElgibleForForwarding(DefMI
, III
, ImmMO
, RegMO
))
4823 assert(ImmMO
&& RegMO
&& "Imm and Reg operand must have been set");
4825 // As we get the Imm operand now, we need to check if the ImmMO meet
4826 // the requirement described in the III. If yes set the Imm.
4828 if (!isImmElgibleForForwarding(*ImmMO
, DefMI
, III
, Imm
))
4831 bool IsFwdFeederRegKilled
= false;
4832 // Check if the RegMO can be forwarded to MI.
4833 if (!isRegElgibleForForwarding(*RegMO
, DefMI
, MI
, KillDefMI
,
4834 IsFwdFeederRegKilled
))
4837 // Get killed info in case fixup needed after transformation.
4838 unsigned ForwardKilledOperandReg
= ~0U;
4839 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
4840 bool PostRA
= !MRI
.isSSA();
4841 if (PostRA
&& MI
.getOperand(OpNoForForwarding
).isKill())
4842 ForwardKilledOperandReg
= MI
.getOperand(OpNoForForwarding
).getReg();
4844 // We know that, the MI and DefMI both meet the pattern, and
4845 // the Imm also meet the requirement with the new Imm-form.
4846 // It is safe to do the transformation now.
4847 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4848 LLVM_DEBUG(MI
.dump());
4849 LLVM_DEBUG(dbgs() << "Fed by:\n");
4850 LLVM_DEBUG(DefMI
.dump());
4852 // Update the base reg first.
4853 MI
.getOperand(III
.OpNoForForwarding
).ChangeToRegister(RegMO
->getReg(),
4857 // Then, update the imm.
4858 if (ImmMO
->isImm()) {
4859 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4861 replaceInstrOperandWithImm(MI
, III
.ZeroIsSpecialOrig
, Imm
);
4864 // Otherwise, it is Constant Pool Index(CPI) or Global,
4865 // which is relocation in fact. We need to replace the special zero
4866 // register with ImmMO.
4867 // Before that, we need to fixup the target flags for imm.
4868 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4869 if (DefMI
.getOpcode() == PPC::ADDItocL
)
4870 ImmMO
->setTargetFlags(PPCII::MO_TOC_LO
);
4872 // MI didn't have the interface such as MI.setOperand(i) though
4873 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4874 // ImmMO, we need to remove ZERO operand and all the operands behind it,
4875 // and, add the ImmMO, then, move back all the operands behind ZERO.
4876 SmallVector
<MachineOperand
, 2> MOps
;
4877 for (unsigned i
= MI
.getNumOperands() - 1; i
>= III
.ZeroIsSpecialOrig
; i
--) {
4878 MOps
.push_back(MI
.getOperand(i
));
4879 MI
.RemoveOperand(i
);
4882 // Remove the last MO in the list, which is ZERO operand in fact.
4884 // Add the imm operand.
4885 MI
.addOperand(*ImmMO
);
4886 // Now add the rest back.
4887 for (auto &MO
: MOps
)
4891 // Update the opcode.
4892 MI
.setDesc(get(III
.ImmOpcode
));
4894 // Fix up killed/dead flag after transformation.
4896 // x = ADD KilledFwdFeederReg, imm
4897 // n = opn KilledFwdFeederReg(killed), regn
4900 // x = ADD reg(killed), imm
4902 if (IsFwdFeederRegKilled
|| RegMO
->isKill())
4903 fixupIsDeadOrKill(&DefMI
, &MI
, RegMO
->getReg());
4905 // ForwardKilledOperandReg = ADD reg, imm
4906 // y = XOP 0, ForwardKilledOperandReg(killed)
4907 if (ForwardKilledOperandReg
!= ~0U)
4908 fixupIsDeadOrKill(&DefMI
, &MI
, ForwardKilledOperandReg
);
4910 LLVM_DEBUG(dbgs() << "With:\n");
4911 LLVM_DEBUG(MI
.dump());
4916 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr
&MI
,
4917 const ImmInstrInfo
&III
,
4918 unsigned ConstantOpNo
,
4919 MachineInstr
&DefMI
) const {
4920 // DefMI must be LI or LI8.
4921 if ((DefMI
.getOpcode() != PPC::LI
&& DefMI
.getOpcode() != PPC::LI8
) ||
4922 !DefMI
.getOperand(1).isImm())
4925 // Get Imm operand and Sign-extend to 64-bits.
4926 int64_t Imm
= SignExtend64
<16>(DefMI
.getOperand(1).getImm());
4928 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
4929 bool PostRA
= !MRI
.isSSA();
4930 // Exit early if we can't convert this.
4931 if ((ConstantOpNo
!= III
.OpNoForForwarding
) && !III
.IsCommutative
)
4933 if (Imm
% III
.ImmMustBeMultipleOf
)
4935 if (III
.TruncateImmTo
)
4936 Imm
&= ((1 << III
.TruncateImmTo
) - 1);
4937 if (III
.SignedImm
) {
4938 APInt
ActualValue(64, Imm
, true);
4939 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
4942 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
4943 if ((uint64_t)Imm
> UnsignedMax
)
4947 // If we're post-RA, the instructions don't agree on whether register zero is
4948 // special, we can transform this as long as the register operand that will
4949 // end up in the location where zero is special isn't R0.
4950 if (PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
4951 unsigned PosForOrigZero
= III
.ZeroIsSpecialOrig
? III
.ZeroIsSpecialOrig
:
4952 III
.ZeroIsSpecialNew
+ 1;
4953 Register OrigZeroReg
= MI
.getOperand(PosForOrigZero
).getReg();
4954 Register NewZeroReg
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
4955 // If R0 is in the operand where zero is special for the new instruction,
4956 // it is unsafe to transform if the constant operand isn't that operand.
4957 if ((NewZeroReg
== PPC::R0
|| NewZeroReg
== PPC::X0
) &&
4958 ConstantOpNo
!= III
.ZeroIsSpecialNew
)
4960 if ((OrigZeroReg
== PPC::R0
|| OrigZeroReg
== PPC::X0
) &&
4961 ConstantOpNo
!= PosForOrigZero
)
4965 // Get killed info in case fixup needed after transformation.
4966 unsigned ForwardKilledOperandReg
= ~0U;
4967 if (PostRA
&& MI
.getOperand(ConstantOpNo
).isKill())
4968 ForwardKilledOperandReg
= MI
.getOperand(ConstantOpNo
).getReg();
4970 unsigned Opc
= MI
.getOpcode();
4971 bool SpecialShift32
= Opc
== PPC::SLW
|| Opc
== PPC::SLW_rec
||
4972 Opc
== PPC::SRW
|| Opc
== PPC::SRW_rec
||
4973 Opc
== PPC::SLW8
|| Opc
== PPC::SLW8_rec
||
4974 Opc
== PPC::SRW8
|| Opc
== PPC::SRW8_rec
;
4975 bool SpecialShift64
= Opc
== PPC::SLD
|| Opc
== PPC::SLD_rec
||
4976 Opc
== PPC::SRD
|| Opc
== PPC::SRD_rec
;
4977 bool SetCR
= Opc
== PPC::SLW_rec
|| Opc
== PPC::SRW_rec
||
4978 Opc
== PPC::SLD_rec
|| Opc
== PPC::SRD_rec
;
4979 bool RightShift
= Opc
== PPC::SRW
|| Opc
== PPC::SRW_rec
|| Opc
== PPC::SRD
||
4980 Opc
== PPC::SRD_rec
;
4982 MI
.setDesc(get(III
.ImmOpcode
));
4983 if (ConstantOpNo
== III
.OpNoForForwarding
) {
4984 // Converting shifts to immediate form is a bit tricky since they may do
4985 // one of three things:
4986 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4987 // 2. If the shift amount is zero, the result is unchanged (save for maybe
4989 // 3. If the shift amount is in [1, OpSize), it's just a shift
4990 if (SpecialShift32
|| SpecialShift64
) {
4991 LoadImmediateInfo LII
;
4994 LII
.Is64Bit
= SpecialShift64
;
4995 uint64_t ShAmt
= Imm
& (SpecialShift32
? 0x1F : 0x3F);
4996 if (Imm
& (SpecialShift32
? 0x20 : 0x40))
4997 replaceInstrWithLI(MI
, LII
);
4998 // Shifts by zero don't change the value. If we don't need to set CR0,
4999 // just convert this to a COPY. Can't do this post-RA since we've already
5000 // cleaned up the copies.
5001 else if (!SetCR
&& ShAmt
== 0 && !PostRA
) {
5002 MI
.RemoveOperand(2);
5003 MI
.setDesc(get(PPC::COPY
));
5005 // The 32 bit and 64 bit instructions are quite different.
5006 if (SpecialShift32
) {
5007 // Left shifts use (N, 0, 31-N).
5008 // Right shifts use (32-N, N, 31) if 0 < N < 32.
5009 // use (0, 0, 31) if N == 0.
5010 uint64_t SH
= ShAmt
== 0 ? 0 : RightShift
? 32 - ShAmt
: ShAmt
;
5011 uint64_t MB
= RightShift
? ShAmt
: 0;
5012 uint64_t ME
= RightShift
? 31 : 31 - ShAmt
;
5013 replaceInstrOperandWithImm(MI
, III
.OpNoForForwarding
, SH
);
5014 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(MB
)
5017 // Left shifts use (N, 63-N).
5018 // Right shifts use (64-N, N) if 0 < N < 64.
5019 // use (0, 0) if N == 0.
5020 uint64_t SH
= ShAmt
== 0 ? 0 : RightShift
? 64 - ShAmt
: ShAmt
;
5021 uint64_t ME
= RightShift
? ShAmt
: 63 - ShAmt
;
5022 replaceInstrOperandWithImm(MI
, III
.OpNoForForwarding
, SH
);
5023 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(ME
);
5027 replaceInstrOperandWithImm(MI
, ConstantOpNo
, Imm
);
5029 // Convert commutative instructions (switch the operands and convert the
5030 // desired one to an immediate.
5031 else if (III
.IsCommutative
) {
5032 replaceInstrOperandWithImm(MI
, ConstantOpNo
, Imm
);
5033 swapMIOperands(MI
, ConstantOpNo
, III
.OpNoForForwarding
);
5035 llvm_unreachable("Should have exited early!");
5037 // For instructions for which the constant register replaces a different
5038 // operand than where the immediate goes, we need to swap them.
5039 if (III
.OpNoForForwarding
!= III
.ImmOpNo
)
5040 swapMIOperands(MI
, III
.OpNoForForwarding
, III
.ImmOpNo
);
5042 // If the special R0/X0 register index are different for original instruction
5043 // and new instruction, we need to fix up the register class in new
5045 if (!PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
5046 if (III
.ZeroIsSpecialNew
) {
5047 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5048 // need to fix up register class.
5049 Register RegToModify
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
5050 if (Register::isVirtualRegister(RegToModify
)) {
5051 const TargetRegisterClass
*NewRC
=
5052 MRI
.getRegClass(RegToModify
)->hasSuperClassEq(&PPC::GPRCRegClass
) ?
5053 &PPC::GPRC_and_GPRC_NOR0RegClass
: &PPC::G8RC_and_G8RC_NOX0RegClass
;
5054 MRI
.setRegClass(RegToModify
, NewRC
);
5059 // Fix up killed/dead flag after transformation.
5061 // ForwardKilledOperandReg = LI imm
5062 // y = XOP reg, ForwardKilledOperandReg(killed)
5063 if (ForwardKilledOperandReg
!= ~0U)
5064 fixupIsDeadOrKill(&DefMI
, &MI
, ForwardKilledOperandReg
);
5068 const TargetRegisterClass
*
5069 PPCInstrInfo::updatedRC(const TargetRegisterClass
*RC
) const {
5070 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
5071 return &PPC::VSRCRegClass
;
5075 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode
) {
5076 return PPC::getRecordFormOpcode(Opcode
);
5079 // This function returns true if the machine instruction
5080 // always outputs a value by sign-extending a 32 bit value,
5081 // i.e. 0 to 31-th bits are same as 32-th bit.
5082 static bool isSignExtendingOp(const MachineInstr
&MI
) {
5083 int Opcode
= MI
.getOpcode();
5084 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
|| Opcode
== PPC::LIS
||
5085 Opcode
== PPC::LIS8
|| Opcode
== PPC::SRAW
|| Opcode
== PPC::SRAW_rec
||
5086 Opcode
== PPC::SRAWI
|| Opcode
== PPC::SRAWI_rec
|| Opcode
== PPC::LWA
||
5087 Opcode
== PPC::LWAX
|| Opcode
== PPC::LWA_32
|| Opcode
== PPC::LWAX_32
||
5088 Opcode
== PPC::LHA
|| Opcode
== PPC::LHAX
|| Opcode
== PPC::LHA8
||
5089 Opcode
== PPC::LHAX8
|| Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
5090 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
|| Opcode
== PPC::LBZU
||
5091 Opcode
== PPC::LBZUX
|| Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
5092 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
|| Opcode
== PPC::LHZ8
||
5093 Opcode
== PPC::LHZX8
|| Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
5094 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
|| Opcode
== PPC::EXTSB
||
5095 Opcode
== PPC::EXTSB_rec
|| Opcode
== PPC::EXTSH
||
5096 Opcode
== PPC::EXTSH_rec
|| Opcode
== PPC::EXTSB8
||
5097 Opcode
== PPC::EXTSH8
|| Opcode
== PPC::EXTSW
||
5098 Opcode
== PPC::EXTSW_rec
|| Opcode
== PPC::SETB
|| Opcode
== PPC::SETB8
||
5099 Opcode
== PPC::EXTSH8_32_64
|| Opcode
== PPC::EXTSW_32_64
||
5100 Opcode
== PPC::EXTSB8_32_64
)
5103 if (Opcode
== PPC::RLDICL
&& MI
.getOperand(3).getImm() >= 33)
5106 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINM_rec
||
5107 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNM_rec
) &&
5108 MI
.getOperand(3).getImm() > 0 &&
5109 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
5115 // This function returns true if the machine instruction
5116 // always outputs zeros in higher 32 bits.
5117 static bool isZeroExtendingOp(const MachineInstr
&MI
) {
5118 int Opcode
= MI
.getOpcode();
5119 // The 16-bit immediate is sign-extended in li/lis.
5120 // If the most significant bit is zero, all higher bits are zero.
5121 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
5122 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
) {
5123 int64_t Imm
= MI
.getOperand(1).getImm();
5124 if (((uint64_t)Imm
& ~0x7FFFuLL
) == 0)
5128 // We have some variations of rotate-and-mask instructions
5129 // that clear higher 32-bits.
5130 if ((Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICL_rec
||
5131 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCL_rec
||
5132 Opcode
== PPC::RLDICL_32_64
) &&
5133 MI
.getOperand(3).getImm() >= 32)
5136 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDIC_rec
) &&
5137 MI
.getOperand(3).getImm() >= 32 &&
5138 MI
.getOperand(3).getImm() <= 63 - MI
.getOperand(2).getImm())
5141 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINM_rec
||
5142 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNM_rec
||
5143 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
5144 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
5147 // There are other instructions that clear higher 32-bits.
5148 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZW_rec
||
5149 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZW_rec
||
5150 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
||
5151 Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZD_rec
||
5152 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZD_rec
||
5153 Opcode
== PPC::POPCNTD
|| Opcode
== PPC::POPCNTW
|| Opcode
== PPC::SLW
||
5154 Opcode
== PPC::SLW_rec
|| Opcode
== PPC::SRW
|| Opcode
== PPC::SRW_rec
||
5155 Opcode
== PPC::SLW8
|| Opcode
== PPC::SRW8
|| Opcode
== PPC::SLWI
||
5156 Opcode
== PPC::SLWI_rec
|| Opcode
== PPC::SRWI
||
5157 Opcode
== PPC::SRWI_rec
|| Opcode
== PPC::LWZ
|| Opcode
== PPC::LWZX
||
5158 Opcode
== PPC::LWZU
|| Opcode
== PPC::LWZUX
|| Opcode
== PPC::LWBRX
||
5159 Opcode
== PPC::LHBRX
|| Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
5160 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
|| Opcode
== PPC::LBZ
||
5161 Opcode
== PPC::LBZX
|| Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
5162 Opcode
== PPC::LWZ8
|| Opcode
== PPC::LWZX8
|| Opcode
== PPC::LWZU8
||
5163 Opcode
== PPC::LWZUX8
|| Opcode
== PPC::LWBRX8
|| Opcode
== PPC::LHBRX8
||
5164 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
|| Opcode
== PPC::LHZU8
||
5165 Opcode
== PPC::LHZUX8
|| Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
5166 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
5167 Opcode
== PPC::ANDI_rec
|| Opcode
== PPC::ANDIS_rec
||
5168 Opcode
== PPC::ROTRWI
|| Opcode
== PPC::ROTRWI_rec
||
5169 Opcode
== PPC::EXTLWI
|| Opcode
== PPC::EXTLWI_rec
||
5170 Opcode
== PPC::MFVSRWZ
)
5176 // This function returns true if the input MachineInstr is a TOC save
5178 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr
&MI
) const {
5179 if (!MI
.getOperand(1).isImm() || !MI
.getOperand(2).isReg())
5181 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
5182 unsigned StackOffset
= MI
.getOperand(1).getImm();
5183 Register StackReg
= MI
.getOperand(2).getReg();
5184 Register SPReg
= Subtarget
.isPPC64() ? PPC::X1
: PPC::R1
;
5185 if (StackReg
== SPReg
&& StackOffset
== TOCSaveOffset
)
5191 // We limit the max depth to track incoming values of PHIs or binary ops
5192 // (e.g. AND) to avoid excessive cost.
5193 const unsigned MAX_DEPTH
= 1;
5196 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr
&MI
, bool SignExt
,
5197 const unsigned Depth
) const {
5198 const MachineFunction
*MF
= MI
.getParent()->getParent();
5199 const MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
5201 // If we know this instruction returns sign- or zero-extended result,
5203 if (SignExt
? isSignExtendingOp(MI
):
5204 isZeroExtendingOp(MI
))
5207 switch (MI
.getOpcode()) {
5209 Register SrcReg
= MI
.getOperand(1).getReg();
5211 // In both ELFv1 and v2 ABI, method parameters and the return value
5212 // are sign- or zero-extended.
5213 if (MF
->getSubtarget
<PPCSubtarget
>().isSVR4ABI()) {
5214 const PPCFunctionInfo
*FuncInfo
= MF
->getInfo
<PPCFunctionInfo
>();
5215 // We check the ZExt/SExt flags for a method parameter.
5216 if (MI
.getParent()->getBasicBlock() ==
5217 &MF
->getFunction().getEntryBlock()) {
5218 Register VReg
= MI
.getOperand(0).getReg();
5219 if (MF
->getRegInfo().isLiveIn(VReg
))
5220 return SignExt
? FuncInfo
->isLiveInSExt(VReg
) :
5221 FuncInfo
->isLiveInZExt(VReg
);
5224 // For a method return value, we check the ZExt/SExt flags in attribute.
5225 // We assume the following code sequence for method call.
5226 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5227 // BL8_NOP @func,...
5228 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5229 // %5 = COPY %x3; G8RC:%5
5230 if (SrcReg
== PPC::X3
) {
5231 const MachineBasicBlock
*MBB
= MI
.getParent();
5232 MachineBasicBlock::const_instr_iterator II
=
5233 MachineBasicBlock::const_instr_iterator(&MI
);
5234 if (II
!= MBB
->instr_begin() &&
5235 (--II
)->getOpcode() == PPC::ADJCALLSTACKUP
) {
5236 const MachineInstr
&CallMI
= *(--II
);
5237 if (CallMI
.isCall() && CallMI
.getOperand(0).isGlobal()) {
5238 const Function
*CalleeFn
=
5239 dyn_cast
<Function
>(CallMI
.getOperand(0).getGlobal());
5242 const IntegerType
*IntTy
=
5243 dyn_cast
<IntegerType
>(CalleeFn
->getReturnType());
5244 const AttributeSet
&Attrs
= CalleeFn
->getAttributes().getRetAttrs();
5245 if (IntTy
&& IntTy
->getBitWidth() <= 32)
5246 return Attrs
.hasAttribute(SignExt
? Attribute::SExt
:
5253 // If this is a copy from another register, we recursively check source.
5254 if (!Register::isVirtualRegister(SrcReg
))
5256 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
5258 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
5264 case PPC::ANDIS_rec
:
5269 case PPC::ANDI8_rec
:
5270 case PPC::ANDIS8_rec
:
5275 // logical operation with 16-bit immediate does not change the upper bits.
5276 // So, we track the operand register as we do for register copy.
5277 Register SrcReg
= MI
.getOperand(1).getReg();
5278 if (!Register::isVirtualRegister(SrcReg
))
5280 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
5282 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
5287 // If all incoming values are sign-/zero-extended,
5288 // the output of OR, ISEL or PHI is also sign-/zero-extended.
5293 if (Depth
>= MAX_DEPTH
)
5296 // The input registers for PHI are operand 1, 3, ...
5297 // The input registers for others are operand 1 and 2.
5298 unsigned E
= 3, D
= 1;
5299 if (MI
.getOpcode() == PPC::PHI
) {
5300 E
= MI
.getNumOperands();
5304 for (unsigned I
= 1; I
!= E
; I
+= D
) {
5305 if (MI
.getOperand(I
).isReg()) {
5306 Register SrcReg
= MI
.getOperand(I
).getReg();
5307 if (!Register::isVirtualRegister(SrcReg
))
5309 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
5310 if (SrcMI
== NULL
|| !isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
+1))
5319 // If at least one of the incoming values of an AND is zero extended
5320 // then the output is also zero-extended. If both of the incoming values
5321 // are sign-extended then the output is also sign extended.
5324 if (Depth
>= MAX_DEPTH
)
5327 assert(MI
.getOperand(1).isReg() && MI
.getOperand(2).isReg());
5329 Register SrcReg1
= MI
.getOperand(1).getReg();
5330 Register SrcReg2
= MI
.getOperand(2).getReg();
5332 if (!Register::isVirtualRegister(SrcReg1
) ||
5333 !Register::isVirtualRegister(SrcReg2
))
5336 const MachineInstr
*MISrc1
= MRI
->getVRegDef(SrcReg1
);
5337 const MachineInstr
*MISrc2
= MRI
->getVRegDef(SrcReg2
);
5338 if (!MISrc1
|| !MISrc2
)
5342 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) &&
5343 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
5345 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) ||
5346 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
5355 bool PPCInstrInfo::isBDNZ(unsigned Opcode
) const {
5356 return (Opcode
== (Subtarget
.isPPC64() ? PPC::BDNZ8
: PPC::BDNZ
));
5360 class PPCPipelinerLoopInfo
: public TargetInstrInfo::PipelinerLoopInfo
{
5361 MachineInstr
*Loop
, *EndLoop
, *LoopCount
;
5362 MachineFunction
*MF
;
5363 const TargetInstrInfo
*TII
;
5367 PPCPipelinerLoopInfo(MachineInstr
*Loop
, MachineInstr
*EndLoop
,
5368 MachineInstr
*LoopCount
)
5369 : Loop(Loop
), EndLoop(EndLoop
), LoopCount(LoopCount
),
5370 MF(Loop
->getParent()->getParent()),
5371 TII(MF
->getSubtarget().getInstrInfo()) {
5372 // Inspect the Loop instruction up-front, as it may be deleted when we call
5373 // createTripCountGreaterCondition.
5374 if (LoopCount
->getOpcode() == PPC::LI8
|| LoopCount
->getOpcode() == PPC::LI
)
5375 TripCount
= LoopCount
->getOperand(1).getImm();
5380 bool shouldIgnoreForPipelining(const MachineInstr
*MI
) const override
{
5381 // Only ignore the terminator.
5382 return MI
== EndLoop
;
5386 createTripCountGreaterCondition(int TC
, MachineBasicBlock
&MBB
,
5387 SmallVectorImpl
<MachineOperand
> &Cond
) override
{
5388 if (TripCount
== -1) {
5389 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5390 // so we don't need to generate any thing here.
5391 Cond
.push_back(MachineOperand::CreateImm(0));
5392 Cond
.push_back(MachineOperand::CreateReg(
5393 MF
->getSubtarget
<PPCSubtarget
>().isPPC64() ? PPC::CTR8
: PPC::CTR
,
5398 return TripCount
> TC
;
5401 void setPreheader(MachineBasicBlock
*NewPreheader
) override
{
5402 // Do nothing. We want the LOOP setup instruction to stay in the *old*
5403 // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5406 void adjustTripCount(int TripCountAdjust
) override
{
5407 // If the loop trip count is a compile-time value, then just change the
5409 if (LoopCount
->getOpcode() == PPC::LI8
||
5410 LoopCount
->getOpcode() == PPC::LI
) {
5411 int64_t TripCount
= LoopCount
->getOperand(1).getImm() + TripCountAdjust
;
5412 LoopCount
->getOperand(1).setImm(TripCount
);
5416 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5417 // so we don't need to generate any thing here.
5420 void disposed() override
{
5421 Loop
->eraseFromParent();
5422 // Ensure the loop setup instruction is deleted too.
5423 LoopCount
->eraseFromParent();
5428 std::unique_ptr
<TargetInstrInfo::PipelinerLoopInfo
>
5429 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock
*LoopBB
) const {
5430 // We really "analyze" only hardware loops right now.
5431 MachineBasicBlock::iterator I
= LoopBB
->getFirstTerminator();
5432 MachineBasicBlock
*Preheader
= *LoopBB
->pred_begin();
5433 if (Preheader
== LoopBB
)
5434 Preheader
= *std::next(LoopBB
->pred_begin());
5435 MachineFunction
*MF
= Preheader
->getParent();
5437 if (I
!= LoopBB
->end() && isBDNZ(I
->getOpcode())) {
5438 SmallPtrSet
<MachineBasicBlock
*, 8> Visited
;
5439 if (MachineInstr
*LoopInst
= findLoopInstr(*Preheader
, Visited
)) {
5440 Register LoopCountReg
= LoopInst
->getOperand(0).getReg();
5441 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
5442 MachineInstr
*LoopCount
= MRI
.getUniqueVRegDef(LoopCountReg
);
5443 return std::make_unique
<PPCPipelinerLoopInfo
>(LoopInst
, &*I
, LoopCount
);
5449 MachineInstr
*PPCInstrInfo::findLoopInstr(
5450 MachineBasicBlock
&PreHeader
,
5451 SmallPtrSet
<MachineBasicBlock
*, 8> &Visited
) const {
5453 unsigned LOOPi
= (Subtarget
.isPPC64() ? PPC::MTCTR8loop
: PPC::MTCTRloop
);
5455 // The loop set-up instruction should be in preheader
5456 for (auto &I
: PreHeader
.instrs())
5457 if (I
.getOpcode() == LOOPi
)
5462 // Return true if get the base operand, byte offset of an instruction and the
5463 // memory width. Width is the size of memory that is being loaded/stored.
5464 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5465 const MachineInstr
&LdSt
, const MachineOperand
*&BaseReg
, int64_t &Offset
,
5466 unsigned &Width
, const TargetRegisterInfo
*TRI
) const {
5467 if (!LdSt
.mayLoadOrStore() || LdSt
.getNumExplicitOperands() != 3)
5470 // Handle only loads/stores with base register followed by immediate offset.
5471 if (!LdSt
.getOperand(1).isImm() ||
5472 (!LdSt
.getOperand(2).isReg() && !LdSt
.getOperand(2).isFI()))
5474 if (!LdSt
.getOperand(1).isImm() ||
5475 (!LdSt
.getOperand(2).isReg() && !LdSt
.getOperand(2).isFI()))
5478 if (!LdSt
.hasOneMemOperand())
5481 Width
= (*LdSt
.memoperands_begin())->getSize();
5482 Offset
= LdSt
.getOperand(1).getImm();
5483 BaseReg
= &LdSt
.getOperand(2);
5487 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5488 const MachineInstr
&MIa
, const MachineInstr
&MIb
) const {
5489 assert(MIa
.mayLoadOrStore() && "MIa must be a load or store.");
5490 assert(MIb
.mayLoadOrStore() && "MIb must be a load or store.");
5492 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
5493 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
5496 // Retrieve the base register, offset from the base register and width. Width
5497 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
5498 // base registers are identical, and the offset of a lower memory access +
5499 // the width doesn't overlap the offset of a higher memory access,
5500 // then the memory accesses are different.
5501 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
5502 const MachineOperand
*BaseOpA
= nullptr, *BaseOpB
= nullptr;
5503 int64_t OffsetA
= 0, OffsetB
= 0;
5504 unsigned int WidthA
= 0, WidthB
= 0;
5505 if (getMemOperandWithOffsetWidth(MIa
, BaseOpA
, OffsetA
, WidthA
, TRI
) &&
5506 getMemOperandWithOffsetWidth(MIb
, BaseOpB
, OffsetB
, WidthB
, TRI
)) {
5507 if (BaseOpA
->isIdenticalTo(*BaseOpB
)) {
5508 int LowOffset
= std::min(OffsetA
, OffsetB
);
5509 int HighOffset
= std::max(OffsetA
, OffsetB
);
5510 int LowWidth
= (LowOffset
== OffsetA
) ? WidthA
: WidthB
;
5511 if (LowOffset
+ LowWidth
<= HighOffset
)