[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCInstrInfo.cpp
blobe9804516006ee6d15723ce167b8f57717ea40777
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/RegisterPressure.h"
33 #include "llvm/CodeGen/ScheduleDAG.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/raw_ostream.h"
44 using namespace llvm;
46 #define DEBUG_TYPE "ppc-instr-info"
48 #define GET_INSTRMAP_INFO
49 #define GET_INSTRINFO_CTOR_DTOR
50 #include "PPCGenInstrInfo.inc"
52 STATISTIC(NumStoreSPILLVSRRCAsVec,
53 "Number of spillvsrrc spilled to stack as vec");
54 STATISTIC(NumStoreSPILLVSRRCAsGpr,
55 "Number of spillvsrrc spilled to stack as gpr");
56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
57 STATISTIC(CmpIselsConverted,
58 "Number of ISELs that depend on comparison of constants converted");
59 STATISTIC(MissedConvertibleImmediateInstrs,
60 "Number of compare-immediate instructions fed by constants");
61 STATISTIC(NumRcRotatesConvertedToRcAnd,
62 "Number of record-form rotates converted to record-form andi");
64 static cl::
65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
66 cl::desc("Disable analysis for CTR loops"));
68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
69 cl::desc("Disable compare instruction optimization"), cl::Hidden);
71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
73 cl::Hidden);
75 static cl::opt<bool>
76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
77 cl::desc("Use the old (incorrect) instruction latency calculation"));
79 static cl::opt<float>
80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
81 cl::desc("register pressure factor for the transformations."));
83 static cl::opt<bool> EnableFMARegPressureReduction(
84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
85 cl::desc("enable register pressure reduce in machine combiner pass."));
87 // Pin the vtable to this file.
88 void PPCInstrInfo::anchor() {}
90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
92 /* CatchRetOpcode */ -1,
93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
94 Subtarget(STI), RI(STI.getTargetMachine()) {}
96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
97 /// this target when scheduling the DAG.
98 ScheduleHazardRecognizer *
99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
100 const ScheduleDAG *DAG) const {
101 unsigned Directive =
102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
105 const InstrItineraryData *II =
106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
107 return new ScoreboardHazardRecognizer(II, DAG);
110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
114 /// to use for this target when scheduling the DAG.
115 ScheduleHazardRecognizer *
116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
117 const ScheduleDAG *DAG) const {
118 unsigned Directive =
119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
121 // FIXME: Leaving this as-is until we have POWER9 scheduling info
122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
125 // Most subtargets use a PPC970 recognizer.
126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
128 assert(DAG->TII && "No InstrInfo?");
130 return new PPCHazardRecognizer970(*DAG);
133 return new ScoreboardHazardRecognizer(II, DAG);
136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
137 const MachineInstr &MI,
138 unsigned *PredCost) const {
139 if (!ItinData || UseOldLatencyCalc)
140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
142 // The default implementation of getInstrLatency calls getStageLatency, but
143 // getStageLatency does not do the right thing for us. While we have
144 // itinerary, most cores are fully pipelined, and so the itineraries only
145 // express the first part of the pipeline, not every stage. Instead, we need
146 // to use the listed output operand cycle number (using operand 0 here, which
147 // is an output).
149 unsigned Latency = 1;
150 unsigned DefClass = MI.getDesc().getSchedClass();
151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
152 const MachineOperand &MO = MI.getOperand(i);
153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
154 continue;
156 int Cycle = ItinData->getOperandCycle(DefClass, i);
157 if (Cycle < 0)
158 continue;
160 Latency = std::max(Latency, (unsigned) Cycle);
163 return Latency;
166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
167 const MachineInstr &DefMI, unsigned DefIdx,
168 const MachineInstr &UseMI,
169 unsigned UseIdx) const {
170 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
171 UseMI, UseIdx);
173 if (!DefMI.getParent())
174 return Latency;
176 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
177 Register Reg = DefMO.getReg();
179 bool IsRegCR;
180 if (Register::isVirtualRegister(Reg)) {
181 const MachineRegisterInfo *MRI =
182 &DefMI.getParent()->getParent()->getRegInfo();
183 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
184 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
185 } else {
186 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
187 PPC::CRBITRCRegClass.contains(Reg);
190 if (UseMI.isBranch() && IsRegCR) {
191 if (Latency < 0)
192 Latency = getInstrLatency(ItinData, DefMI);
194 // On some cores, there is an additional delay between writing to a condition
195 // register, and using it from a branch.
196 unsigned Directive = Subtarget.getCPUDirective();
197 switch (Directive) {
198 default: break;
199 case PPC::DIR_7400:
200 case PPC::DIR_750:
201 case PPC::DIR_970:
202 case PPC::DIR_E5500:
203 case PPC::DIR_PWR4:
204 case PPC::DIR_PWR5:
205 case PPC::DIR_PWR5X:
206 case PPC::DIR_PWR6:
207 case PPC::DIR_PWR6X:
208 case PPC::DIR_PWR7:
209 case PPC::DIR_PWR8:
210 // FIXME: Is this needed for POWER9?
211 Latency += 2;
212 break;
216 return Latency;
219 /// This is an architecture-specific helper function of reassociateOps.
220 /// Set special operand attributes for new instructions after reassociation.
221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
222 MachineInstr &OldMI2,
223 MachineInstr &NewMI1,
224 MachineInstr &NewMI2) const {
225 // Propagate FP flags from the original instructions.
226 // But clear poison-generating flags because those may not be valid now.
227 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
228 NewMI1.setFlags(IntersectedFlags);
229 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
230 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
231 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
233 NewMI2.setFlags(IntersectedFlags);
234 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
235 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
236 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
240 uint16_t Flags) const {
241 MI.setFlags(Flags);
242 MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
243 MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
244 MI.clearFlag(MachineInstr::MIFlag::IsExact);
247 // This function does not list all associative and commutative operations, but
248 // only those worth feeding through the machine combiner in an attempt to
249 // reduce the critical path. Mostly, this means floating-point operations,
250 // because they have high latencies(>=5) (compared to other operations, such as
251 // and/or, which are also associative and commutative, but have low latencies).
252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
253 switch (Inst.getOpcode()) {
254 // Floating point:
255 // FP Add:
256 case PPC::FADD:
257 case PPC::FADDS:
258 // FP Multiply:
259 case PPC::FMUL:
260 case PPC::FMULS:
261 // Altivec Add:
262 case PPC::VADDFP:
263 // VSX Add:
264 case PPC::XSADDDP:
265 case PPC::XVADDDP:
266 case PPC::XVADDSP:
267 case PPC::XSADDSP:
268 // VSX Multiply:
269 case PPC::XSMULDP:
270 case PPC::XVMULDP:
271 case PPC::XVMULSP:
272 case PPC::XSMULSP:
273 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
274 Inst.getFlag(MachineInstr::MIFlag::FmNsz);
275 // Fixed point:
276 // Multiply:
277 case PPC::MULHD:
278 case PPC::MULLD:
279 case PPC::MULHW:
280 case PPC::MULLW:
281 return true;
282 default:
283 return false;
287 #define InfoArrayIdxFMAInst 0
288 #define InfoArrayIdxFAddInst 1
289 #define InfoArrayIdxFMULInst 2
290 #define InfoArrayIdxAddOpIdx 3
291 #define InfoArrayIdxMULOpIdx 4
292 #define InfoArrayIdxFSubInst 5
293 // Array keeps info for FMA instructions:
294 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
299 // second MUL operand index is plus 1;
300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
301 static const uint16_t FMAOpIdxInfo[][6] = {
302 // FIXME: Add more FMA instructions like XSNMADDADP and so on.
303 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
304 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
305 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
306 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
307 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
308 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
310 // Check if an opcode is a FMA instruction. If it is, return the index in array
311 // FMAOpIdxInfo. Otherwise, return -1.
312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
313 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
314 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
315 return I;
316 return -1;
319 // On PowerPC target, we have two kinds of patterns related to FMA:
320 // 1: Improve ILP.
321 // Try to reassociate FMA chains like below:
323 // Pattern 1:
324 // A = FADD X, Y (Leaf)
325 // B = FMA A, M21, M22 (Prev)
326 // C = FMA B, M31, M32 (Root)
327 // -->
328 // A = FMA X, M21, M22
329 // B = FMA Y, M31, M32
330 // C = FADD A, B
332 // Pattern 2:
333 // A = FMA X, M11, M12 (Leaf)
334 // B = FMA A, M21, M22 (Prev)
335 // C = FMA B, M31, M32 (Root)
336 // -->
337 // A = FMUL M11, M12
338 // B = FMA X, M21, M22
339 // D = FMA A, M31, M32
340 // C = FADD B, D
342 // breaking the dependency between A and B, allowing FMA to be executed in
343 // parallel (or back-to-back in a pipeline) instead of depending on each other.
345 // 2: Reduce register pressure.
346 // Try to reassociate FMA with FSUB and a constant like below:
347 // C is a floating point const.
349 // Pattern 1:
350 // A = FSUB X, Y (Leaf)
351 // D = FMA B, C, A (Root)
352 // -->
353 // A = FMA B, Y, -C
354 // D = FMA A, X, C
356 // Pattern 2:
357 // A = FSUB X, Y (Leaf)
358 // D = FMA B, A, C (Root)
359 // -->
360 // A = FMA B, Y, -C
361 // D = FMA A, X, C
363 // Before the transformation, A must be assigned with different hardware
364 // register with D. After the transformation, A and D must be assigned with
365 // same hardware register due to TIE attribute of FMA instructions.
367 bool PPCInstrInfo::getFMAPatterns(
368 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
369 bool DoRegPressureReduce) const {
370 MachineBasicBlock *MBB = Root.getParent();
371 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
372 const TargetRegisterInfo *TRI = &getRegisterInfo();
374 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
375 for (const auto &MO : Instr.explicit_operands())
376 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
377 return false;
378 return true;
381 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
382 unsigned OpType) {
383 if (Instr.getOpcode() !=
384 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
385 return false;
387 // Instruction can be reassociated.
388 // fast math flags may prohibit reassociation.
389 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
390 Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
391 return false;
393 // Instruction operands are virtual registers for reassociation.
394 if (!IsAllOpsVirtualReg(Instr))
395 return false;
397 // For register pressure reassociation, the FSub must have only one use as
398 // we want to delete the sub to save its def.
399 if (OpType == InfoArrayIdxFSubInst &&
400 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
401 return false;
403 return true;
406 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
407 int16_t &MulOpIdx, bool IsLeaf) {
408 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
409 if (Idx < 0)
410 return false;
412 // Instruction can be reassociated.
413 // fast math flags may prohibit reassociation.
414 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
415 Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
416 return false;
418 // Instruction operands are virtual registers for reassociation.
419 if (!IsAllOpsVirtualReg(Instr))
420 return false;
422 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
423 if (IsLeaf)
424 return true;
426 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
428 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
429 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
430 // If 'add' operand's def is not in current block, don't do ILP related opt.
431 if (!MIAdd || MIAdd->getParent() != MBB)
432 return false;
434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use
435 // as this fma will be changed later.
436 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
439 int16_t AddOpIdx = -1;
440 int16_t MulOpIdx = -1;
442 bool IsUsedOnceL = false;
443 bool IsUsedOnceR = false;
444 MachineInstr *MULInstrL = nullptr;
445 MachineInstr *MULInstrR = nullptr;
447 auto IsRPReductionCandidate = [&]() {
448 // Currently, we only support float and double.
449 // FIXME: add support for other types.
450 unsigned Opcode = Root.getOpcode();
451 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
452 return false;
454 // Root must be a valid FMA like instruction.
455 // Treat it as leaf as we don't care its add operand.
456 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
457 assert((MulOpIdx >= 0) && "mul operand index not right!");
458 Register MULRegL = TRI->lookThruSingleUseCopyChain(
459 Root.getOperand(MulOpIdx).getReg(), MRI);
460 Register MULRegR = TRI->lookThruSingleUseCopyChain(
461 Root.getOperand(MulOpIdx + 1).getReg(), MRI);
462 if (!MULRegL && !MULRegR)
463 return false;
465 if (MULRegL && !MULRegR) {
466 MULRegR =
467 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
468 IsUsedOnceL = true;
469 } else if (!MULRegL && MULRegR) {
470 MULRegL =
471 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
472 IsUsedOnceR = true;
473 } else {
474 IsUsedOnceL = true;
475 IsUsedOnceR = true;
478 if (!Register::isVirtualRegister(MULRegL) ||
479 !Register::isVirtualRegister(MULRegR))
480 return false;
482 MULInstrL = MRI->getVRegDef(MULRegL);
483 MULInstrR = MRI->getVRegDef(MULRegR);
484 return true;
486 return false;
489 // Register pressure fma reassociation patterns.
490 if (DoRegPressureReduce && IsRPReductionCandidate()) {
491 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
492 // Register pressure pattern 1
493 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
494 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
496 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
497 return true;
500 // Register pressure pattern 2
501 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
502 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
504 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
505 return true;
509 // ILP fma reassociation patterns.
510 // Root must be a valid FMA like instruction.
511 AddOpIdx = -1;
512 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
513 return false;
515 assert((AddOpIdx >= 0) && "add operand index not right!");
517 Register RegB = Root.getOperand(AddOpIdx).getReg();
518 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
520 // Prev must be a valid FMA like instruction.
521 AddOpIdx = -1;
522 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
523 return false;
525 assert((AddOpIdx >= 0) && "add operand index not right!");
527 Register RegA = Prev->getOperand(AddOpIdx).getReg();
528 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
529 AddOpIdx = -1;
530 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
531 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
533 return true;
535 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
536 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
538 return true;
540 return false;
543 void PPCInstrInfo::finalizeInsInstrs(
544 MachineInstr &Root, MachineCombinerPattern &P,
545 SmallVectorImpl<MachineInstr *> &InsInstrs) const {
546 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
548 MachineFunction *MF = Root.getMF();
549 MachineRegisterInfo *MRI = &MF->getRegInfo();
550 const TargetRegisterInfo *TRI = &getRegisterInfo();
551 MachineConstantPool *MCP = MF->getConstantPool();
553 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
554 if (Idx < 0)
555 return;
557 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
559 // For now we only need to fix up placeholder for register pressure reduce
560 // patterns.
561 Register ConstReg = 0;
562 switch (P) {
563 case MachineCombinerPattern::REASSOC_XY_BCA:
564 ConstReg =
565 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
566 break;
567 case MachineCombinerPattern::REASSOC_XY_BAC:
568 ConstReg =
569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
570 break;
571 default:
572 // Not register pressure reduce patterns.
573 return;
576 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
577 // Get const value from const pool.
578 const Constant *C = getConstantFromConstantPool(ConstDefInstr);
579 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
581 // Get negative fp const.
582 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
583 F1.changeSign();
584 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
585 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
587 // Put negative fp const into constant pool.
588 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
590 MachineOperand *Placeholder = nullptr;
591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
592 for (auto *Inst : InsInstrs) {
593 for (MachineOperand &Operand : Inst->explicit_operands()) {
594 assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
595 if (Operand.getReg() == PPC::ZERO8) {
596 Placeholder = &Operand;
597 break;
602 assert(Placeholder && "Placeholder does not exist!");
604 // Generate instructions to load the const fp from constant pool.
605 // We only support PPC64 and medium code model.
606 Register LoadNewConst =
607 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
609 // Fill the placeholder with the new load from constant pool.
610 Placeholder->setReg(LoadNewConst);
613 bool PPCInstrInfo::shouldReduceRegisterPressure(
614 MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
616 if (!EnableFMARegPressureReduction)
617 return false;
619 // Currently, we only enable register pressure reducing in machine combiner
620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
621 // support.
623 // So we need following instructions to access a TOC entry:
625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
629 // FIXME: add more supported targets, like Small and Large code model, PPC32,
630 // AIX.
631 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
632 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
633 return false;
635 const TargetRegisterInfo *TRI = &getRegisterInfo();
636 MachineFunction *MF = MBB->getParent();
637 MachineRegisterInfo *MRI = &MF->getRegInfo();
639 auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
640 RegionPressure Pressure;
641 RegPressureTracker RPTracker(Pressure);
643 // Initialize the register pressure tracker.
644 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
647 for (MachineBasicBlock::iterator MII = MBB->instr_end(),
648 MIE = MBB->instr_begin();
649 MII != MIE; --MII) {
650 MachineInstr &MI = *std::prev(MII);
651 if (MI.isDebugValue() || MI.isDebugLabel())
652 continue;
653 RegisterOperands RegOpers;
654 RegOpers.collect(MI, *TRI, *MRI, false, false);
655 RPTracker.recedeSkipDebugValues();
656 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
657 RPTracker.recede(RegOpers);
660 // Close the RPTracker to finalize live ins.
661 RPTracker.closeRegion();
663 return RPTracker.getPressure().MaxSetPressure;
666 // For now we only care about float and double type fma.
667 unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
668 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
670 // Only reduce register pressure when pressure is high.
671 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
672 (float)VSSRCLimit * FMARPFactor;
675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
676 // I has only one memory operand which is load from constant pool.
677 if (!I->hasOneMemOperand())
678 return false;
680 MachineMemOperand *Op = I->memoperands()[0];
681 return Op->isLoad() && Op->getPseudoValue() &&
682 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
685 Register PPCInstrInfo::generateLoadForNewConst(
686 unsigned Idx, MachineInstr *MI, Type *Ty,
687 SmallVectorImpl<MachineInstr *> &InsInstrs) const {
688 // Now we only support PPC64, Medium code model and P9 with vector.
689 // We have immutable pattern to access const pool. See function
690 // shouldReduceRegisterPressure.
691 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
692 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
693 "Target not supported!\n");
695 MachineFunction *MF = MI->getMF();
696 MachineRegisterInfo *MRI = &MF->getRegInfo();
698 // Generate ADDIStocHA8
699 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
700 MachineInstrBuilder TOCOffset =
701 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
702 .addReg(PPC::X2)
703 .addConstantPoolIndex(Idx);
705 assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
706 "Only float and double are supported!");
708 unsigned LoadOpcode;
709 // Should be float type or double type.
710 if (Ty->isFloatTy())
711 LoadOpcode = PPC::DFLOADf32;
712 else
713 LoadOpcode = PPC::DFLOADf64;
715 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
716 Register VReg2 = MRI->createVirtualRegister(RC);
717 MachineMemOperand *MMO = MF->getMachineMemOperand(
718 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
719 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
721 // Generate Load from constant pool.
722 MachineInstrBuilder Load =
723 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
724 .addConstantPoolIndex(Idx)
725 .addReg(VReg1, getKillRegState(true))
726 .addMemOperand(MMO);
728 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
730 // Insert the toc load instructions into InsInstrs.
731 InsInstrs.insert(InsInstrs.begin(), Load);
732 InsInstrs.insert(InsInstrs.begin(), TOCOffset);
733 return VReg2;
736 // This function returns the const value in constant pool if the \p I is a load
737 // from constant pool.
738 const Constant *
739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
740 MachineFunction *MF = I->getMF();
741 MachineRegisterInfo *MRI = &MF->getRegInfo();
742 MachineConstantPool *MCP = MF->getConstantPool();
743 assert(I->mayLoad() && "Should be a load instruction.\n");
744 for (auto MO : I->uses()) {
745 if (!MO.isReg())
746 continue;
747 Register Reg = MO.getReg();
748 if (Reg == 0 || !Register::isVirtualRegister(Reg))
749 continue;
750 // Find the toc address.
751 MachineInstr *DefMI = MRI->getVRegDef(Reg);
752 for (auto MO2 : DefMI->uses())
753 if (MO2.isCPI())
754 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
756 return nullptr;
759 bool PPCInstrInfo::getMachineCombinerPatterns(
760 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
761 bool DoRegPressureReduce) const {
762 // Using the machine combiner in this way is potentially expensive, so
763 // restrict to when aggressive optimizations are desired.
764 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
765 return false;
767 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
768 return true;
770 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
771 DoRegPressureReduce);
774 void PPCInstrInfo::genAlternativeCodeSequence(
775 MachineInstr &Root, MachineCombinerPattern Pattern,
776 SmallVectorImpl<MachineInstr *> &InsInstrs,
777 SmallVectorImpl<MachineInstr *> &DelInstrs,
778 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
779 switch (Pattern) {
780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
782 case MachineCombinerPattern::REASSOC_XY_BCA:
783 case MachineCombinerPattern::REASSOC_XY_BAC:
784 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
785 break;
786 default:
787 // Reassociate default patterns.
788 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
789 DelInstrs, InstrIdxForVirtReg);
790 break;
794 void PPCInstrInfo::reassociateFMA(
795 MachineInstr &Root, MachineCombinerPattern Pattern,
796 SmallVectorImpl<MachineInstr *> &InsInstrs,
797 SmallVectorImpl<MachineInstr *> &DelInstrs,
798 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
799 MachineFunction *MF = Root.getMF();
800 MachineRegisterInfo &MRI = MF->getRegInfo();
801 const TargetRegisterInfo *TRI = &getRegisterInfo();
802 MachineOperand &OpC = Root.getOperand(0);
803 Register RegC = OpC.getReg();
804 const TargetRegisterClass *RC = MRI.getRegClass(RegC);
805 MRI.constrainRegClass(RegC, RC);
807 unsigned FmaOp = Root.getOpcode();
808 int16_t Idx = getFMAOpIdxInfo(FmaOp);
809 assert(Idx >= 0 && "Root must be a FMA instruction");
811 bool IsILPReassociate =
812 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
813 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
815 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
816 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
818 MachineInstr *Prev = nullptr;
819 MachineInstr *Leaf = nullptr;
820 switch (Pattern) {
821 default:
822 llvm_unreachable("not recognized pattern!");
823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
825 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
826 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
827 break;
828 case MachineCombinerPattern::REASSOC_XY_BAC: {
829 Register MULReg =
830 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
831 Leaf = MRI.getVRegDef(MULReg);
832 break;
834 case MachineCombinerPattern::REASSOC_XY_BCA: {
835 Register MULReg = TRI->lookThruCopyLike(
836 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
837 Leaf = MRI.getVRegDef(MULReg);
838 break;
842 uint16_t IntersectedFlags = 0;
843 if (IsILPReassociate)
844 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
845 else
846 IntersectedFlags = Root.getFlags() & Leaf->getFlags();
848 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
849 bool &KillFlag) {
850 Reg = Operand.getReg();
851 MRI.constrainRegClass(Reg, RC);
852 KillFlag = Operand.isKill();
855 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
856 Register &MulOp2, Register &AddOp,
857 bool &MulOp1KillFlag, bool &MulOp2KillFlag,
858 bool &AddOpKillFlag) {
859 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
860 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
861 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
864 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
865 RegA21, RegB;
866 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
867 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
868 KillA11 = false, KillA21 = false, KillB = false;
870 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
872 if (IsILPReassociate)
873 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
875 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
876 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
877 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
878 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
879 GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
880 GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
881 } else {
882 // Get FSUB instruction info.
883 GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
884 GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
887 // Create new virtual registers for the new results instead of
888 // recycling legacy ones because the MachineCombiner's computation of the
889 // critical path requires a new register definition rather than an existing
890 // one.
891 // For register pressure reassociation, we only need create one virtual
892 // register for the new fma.
893 Register NewVRA = MRI.createVirtualRegister(RC);
894 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
896 Register NewVRB = 0;
897 if (IsILPReassociate) {
898 NewVRB = MRI.createVirtualRegister(RC);
899 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
902 Register NewVRD = 0;
903 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
904 NewVRD = MRI.createVirtualRegister(RC);
905 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
908 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
909 Register RegMul1, bool KillRegMul1,
910 Register RegMul2, bool KillRegMul2) {
911 MI->getOperand(AddOpIdx).setReg(RegAdd);
912 MI->getOperand(AddOpIdx).setIsKill(KillAdd);
913 MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
914 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
915 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
916 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
919 MachineInstrBuilder NewARegPressure, NewCRegPressure;
920 switch (Pattern) {
921 default:
922 llvm_unreachable("not recognized pattern!");
923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
924 // Create new instructions for insertion.
925 MachineInstrBuilder MINewB =
926 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
927 .addReg(RegX, getKillRegState(KillX))
928 .addReg(RegM21, getKillRegState(KillM21))
929 .addReg(RegM22, getKillRegState(KillM22));
930 MachineInstrBuilder MINewA =
931 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
932 .addReg(RegY, getKillRegState(KillY))
933 .addReg(RegM31, getKillRegState(KillM31))
934 .addReg(RegM32, getKillRegState(KillM32));
935 // If AddOpIdx is not 1, adjust the order.
936 if (AddOpIdx != 1) {
937 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
938 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
941 MachineInstrBuilder MINewC =
942 BuildMI(*MF, Root.getDebugLoc(),
943 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
944 .addReg(NewVRB, getKillRegState(true))
945 .addReg(NewVRA, getKillRegState(true));
947 // Update flags for newly created instructions.
948 setSpecialOperandAttr(*MINewA, IntersectedFlags);
949 setSpecialOperandAttr(*MINewB, IntersectedFlags);
950 setSpecialOperandAttr(*MINewC, IntersectedFlags);
952 // Record new instructions for insertion.
953 InsInstrs.push_back(MINewA);
954 InsInstrs.push_back(MINewB);
955 InsInstrs.push_back(MINewC);
956 break;
958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
959 assert(NewVRD && "new FMA register not created!");
960 // Create new instructions for insertion.
961 MachineInstrBuilder MINewA =
962 BuildMI(*MF, Leaf->getDebugLoc(),
963 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
964 .addReg(RegM11, getKillRegState(KillM11))
965 .addReg(RegM12, getKillRegState(KillM12));
966 MachineInstrBuilder MINewB =
967 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
968 .addReg(RegX, getKillRegState(KillX))
969 .addReg(RegM21, getKillRegState(KillM21))
970 .addReg(RegM22, getKillRegState(KillM22));
971 MachineInstrBuilder MINewD =
972 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
973 .addReg(NewVRA, getKillRegState(true))
974 .addReg(RegM31, getKillRegState(KillM31))
975 .addReg(RegM32, getKillRegState(KillM32));
976 // If AddOpIdx is not 1, adjust the order.
977 if (AddOpIdx != 1) {
978 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
979 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
980 KillM32);
983 MachineInstrBuilder MINewC =
984 BuildMI(*MF, Root.getDebugLoc(),
985 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
986 .addReg(NewVRB, getKillRegState(true))
987 .addReg(NewVRD, getKillRegState(true));
989 // Update flags for newly created instructions.
990 setSpecialOperandAttr(*MINewA, IntersectedFlags);
991 setSpecialOperandAttr(*MINewB, IntersectedFlags);
992 setSpecialOperandAttr(*MINewD, IntersectedFlags);
993 setSpecialOperandAttr(*MINewC, IntersectedFlags);
995 // Record new instructions for insertion.
996 InsInstrs.push_back(MINewA);
997 InsInstrs.push_back(MINewB);
998 InsInstrs.push_back(MINewD);
999 InsInstrs.push_back(MINewC);
1000 break;
1002 case MachineCombinerPattern::REASSOC_XY_BAC:
1003 case MachineCombinerPattern::REASSOC_XY_BCA: {
1004 Register VarReg;
1005 bool KillVarReg = false;
1006 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
1007 VarReg = RegM31;
1008 KillVarReg = KillM31;
1009 } else {
1010 VarReg = RegM32;
1011 KillVarReg = KillM32;
1013 // We don't want to get negative const from memory pool too early, as the
1014 // created entry will not be deleted even if it has no users. Since all
1015 // operand of Leaf and Root are virtual register, we use zero register
1016 // here as a placeholder. When the InsInstrs is selected in
1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1018 // with a virtual register which is a load from constant pool.
1019 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1020 .addReg(RegB, getKillRegState(RegB))
1021 .addReg(RegY, getKillRegState(KillY))
1022 .addReg(PPC::ZERO8);
1023 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1024 .addReg(NewVRA, getKillRegState(true))
1025 .addReg(RegX, getKillRegState(KillX))
1026 .addReg(VarReg, getKillRegState(KillVarReg));
1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1028 // both at index 1, no need to adjust.
1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust
1030 // the operand index here.
1031 break;
1035 if (!IsILPReassociate) {
1036 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1037 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1039 InsInstrs.push_back(NewARegPressure);
1040 InsInstrs.push_back(NewCRegPressure);
1043 assert(!InsInstrs.empty() &&
1044 "Insertion instructions set should not be empty!");
1046 // Record old instructions for deletion.
1047 DelInstrs.push_back(Leaf);
1048 if (IsILPReassociate)
1049 DelInstrs.push_back(Prev);
1050 DelInstrs.push_back(&Root);
1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1055 Register &SrcReg, Register &DstReg,
1056 unsigned &SubIdx) const {
1057 switch (MI.getOpcode()) {
1058 default: return false;
1059 case PPC::EXTSW:
1060 case PPC::EXTSW_32:
1061 case PPC::EXTSW_32_64:
1062 SrcReg = MI.getOperand(1).getReg();
1063 DstReg = MI.getOperand(0).getReg();
1064 SubIdx = PPC::sub_32;
1065 return true;
1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1070 int &FrameIndex) const {
1071 unsigned Opcode = MI.getOpcode();
1072 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1073 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1075 if (End != std::find(OpcodesForSpill, End, Opcode)) {
1076 // Check for the operands added by addFrameReference (the immediate is the
1077 // offset which defaults to 0).
1078 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1079 MI.getOperand(2).isFI()) {
1080 FrameIndex = MI.getOperand(2).getIndex();
1081 return MI.getOperand(0).getReg();
1084 return 0;
1087 // For opcodes with the ReMaterializable flag set, this function is called to
1088 // verify the instruction is really rematable.
1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
1090 AliasAnalysis *AA) const {
1091 switch (MI.getOpcode()) {
1092 default:
1093 // This function should only be called for opcodes with the ReMaterializable
1094 // flag set.
1095 llvm_unreachable("Unknown rematerializable operation!");
1096 break;
1097 case PPC::LI:
1098 case PPC::LI8:
1099 case PPC::PLI:
1100 case PPC::PLI8:
1101 case PPC::LIS:
1102 case PPC::LIS8:
1103 case PPC::ADDIStocHA:
1104 case PPC::ADDIStocHA8:
1105 case PPC::ADDItocL:
1106 case PPC::LOAD_STACK_GUARD:
1107 case PPC::XXLXORz:
1108 case PPC::XXLXORspz:
1109 case PPC::XXLXORdpz:
1110 case PPC::XXLEQVOnes:
1111 case PPC::XXSPLTI32DX:
1112 case PPC::V_SET0B:
1113 case PPC::V_SET0H:
1114 case PPC::V_SET0:
1115 case PPC::V_SETALLONESB:
1116 case PPC::V_SETALLONESH:
1117 case PPC::V_SETALLONES:
1118 case PPC::CRSET:
1119 case PPC::CRUNSET:
1120 case PPC::XXSETACCZ:
1121 return true;
1123 return false;
1126 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1127 int &FrameIndex) const {
1128 unsigned Opcode = MI.getOpcode();
1129 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1130 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1132 if (End != std::find(OpcodesForSpill, End, Opcode)) {
1133 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1134 MI.getOperand(2).isFI()) {
1135 FrameIndex = MI.getOperand(2).getIndex();
1136 return MI.getOperand(0).getReg();
1139 return 0;
1142 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1143 unsigned OpIdx1,
1144 unsigned OpIdx2) const {
1145 MachineFunction &MF = *MI.getParent()->getParent();
1147 // Normal instructions can be commuted the obvious way.
1148 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1149 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1150 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1151 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1152 // changing the relative order of the mask operands might change what happens
1153 // to the high-bits of the mask (and, thus, the result).
1155 // Cannot commute if it has a non-zero rotate count.
1156 if (MI.getOperand(3).getImm() != 0)
1157 return nullptr;
1159 // If we have a zero rotate count, we have:
1160 // M = mask(MB,ME)
1161 // Op0 = (Op1 & ~M) | (Op2 & M)
1162 // Change this to:
1163 // M = mask((ME+1)&31, (MB-1)&31)
1164 // Op0 = (Op2 & ~M) | (Op1 & M)
1166 // Swap op1/op2
1167 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1168 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1169 Register Reg0 = MI.getOperand(0).getReg();
1170 Register Reg1 = MI.getOperand(1).getReg();
1171 Register Reg2 = MI.getOperand(2).getReg();
1172 unsigned SubReg1 = MI.getOperand(1).getSubReg();
1173 unsigned SubReg2 = MI.getOperand(2).getSubReg();
1174 bool Reg1IsKill = MI.getOperand(1).isKill();
1175 bool Reg2IsKill = MI.getOperand(2).isKill();
1176 bool ChangeReg0 = false;
1177 // If machine instrs are no longer in two-address forms, update
1178 // destination register as well.
1179 if (Reg0 == Reg1) {
1180 // Must be two address instruction!
1181 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
1182 "Expecting a two-address instruction!");
1183 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1184 Reg2IsKill = false;
1185 ChangeReg0 = true;
1188 // Masks.
1189 unsigned MB = MI.getOperand(4).getImm();
1190 unsigned ME = MI.getOperand(5).getImm();
1192 // We can't commute a trivial mask (there is no way to represent an all-zero
1193 // mask).
1194 if (MB == 0 && ME == 31)
1195 return nullptr;
1197 if (NewMI) {
1198 // Create a new instruction.
1199 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1200 bool Reg0IsDead = MI.getOperand(0).isDead();
1201 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1202 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1203 .addReg(Reg2, getKillRegState(Reg2IsKill))
1204 .addReg(Reg1, getKillRegState(Reg1IsKill))
1205 .addImm((ME + 1) & 31)
1206 .addImm((MB - 1) & 31);
1209 if (ChangeReg0) {
1210 MI.getOperand(0).setReg(Reg2);
1211 MI.getOperand(0).setSubReg(SubReg2);
1213 MI.getOperand(2).setReg(Reg1);
1214 MI.getOperand(1).setReg(Reg2);
1215 MI.getOperand(2).setSubReg(SubReg1);
1216 MI.getOperand(1).setSubReg(SubReg2);
1217 MI.getOperand(2).setIsKill(Reg1IsKill);
1218 MI.getOperand(1).setIsKill(Reg2IsKill);
1220 // Swap the mask around.
1221 MI.getOperand(4).setImm((ME + 1) & 31);
1222 MI.getOperand(5).setImm((MB - 1) & 31);
1223 return &MI;
1226 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1227 unsigned &SrcOpIdx1,
1228 unsigned &SrcOpIdx2) const {
1229 // For VSX A-Type FMA instructions, it is the first two operands that can be
1230 // commuted, however, because the non-encoded tied input operand is listed
1231 // first, the operands to swap are actually the second and third.
1233 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1234 if (AltOpc == -1)
1235 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1237 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1238 // and SrcOpIdx2.
1239 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1242 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1243 MachineBasicBlock::iterator MI) const {
1244 // This function is used for scheduling, and the nop wanted here is the type
1245 // that terminates dispatch groups on the POWER cores.
1246 unsigned Directive = Subtarget.getCPUDirective();
1247 unsigned Opcode;
1248 switch (Directive) {
1249 default: Opcode = PPC::NOP; break;
1250 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1251 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1252 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1253 // FIXME: Update when POWER9 scheduling model is ready.
1254 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1257 DebugLoc DL;
1258 BuildMI(MBB, MI, DL, get(Opcode));
1261 /// Return the noop instruction to use for a noop.
1262 MCInst PPCInstrInfo::getNop() const {
1263 MCInst Nop;
1264 Nop.setOpcode(PPC::NOP);
1265 return Nop;
1268 // Branch analysis.
1269 // Note: If the condition register is set to CTR or CTR8 then this is a
1270 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1271 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1272 MachineBasicBlock *&TBB,
1273 MachineBasicBlock *&FBB,
1274 SmallVectorImpl<MachineOperand> &Cond,
1275 bool AllowModify) const {
1276 bool isPPC64 = Subtarget.isPPC64();
1278 // If the block has no terminators, it just falls into the block after it.
1279 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1280 if (I == MBB.end())
1281 return false;
1283 if (!isUnpredicatedTerminator(*I))
1284 return false;
1286 if (AllowModify) {
1287 // If the BB ends with an unconditional branch to the fallthrough BB,
1288 // we eliminate the branch instruction.
1289 if (I->getOpcode() == PPC::B &&
1290 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1291 I->eraseFromParent();
1293 // We update iterator after deleting the last branch.
1294 I = MBB.getLastNonDebugInstr();
1295 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1296 return false;
1300 // Get the last instruction in the block.
1301 MachineInstr &LastInst = *I;
1303 // If there is only one terminator instruction, process it.
1304 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1305 if (LastInst.getOpcode() == PPC::B) {
1306 if (!LastInst.getOperand(0).isMBB())
1307 return true;
1308 TBB = LastInst.getOperand(0).getMBB();
1309 return false;
1310 } else if (LastInst.getOpcode() == PPC::BCC) {
1311 if (!LastInst.getOperand(2).isMBB())
1312 return true;
1313 // Block ends with fall-through condbranch.
1314 TBB = LastInst.getOperand(2).getMBB();
1315 Cond.push_back(LastInst.getOperand(0));
1316 Cond.push_back(LastInst.getOperand(1));
1317 return false;
1318 } else if (LastInst.getOpcode() == PPC::BC) {
1319 if (!LastInst.getOperand(1).isMBB())
1320 return true;
1321 // Block ends with fall-through condbranch.
1322 TBB = LastInst.getOperand(1).getMBB();
1323 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1324 Cond.push_back(LastInst.getOperand(0));
1325 return false;
1326 } else if (LastInst.getOpcode() == PPC::BCn) {
1327 if (!LastInst.getOperand(1).isMBB())
1328 return true;
1329 // Block ends with fall-through condbranch.
1330 TBB = LastInst.getOperand(1).getMBB();
1331 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1332 Cond.push_back(LastInst.getOperand(0));
1333 return false;
1334 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1335 LastInst.getOpcode() == PPC::BDNZ) {
1336 if (!LastInst.getOperand(0).isMBB())
1337 return true;
1338 if (DisableCTRLoopAnal)
1339 return true;
1340 TBB = LastInst.getOperand(0).getMBB();
1341 Cond.push_back(MachineOperand::CreateImm(1));
1342 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1343 true));
1344 return false;
1345 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1346 LastInst.getOpcode() == PPC::BDZ) {
1347 if (!LastInst.getOperand(0).isMBB())
1348 return true;
1349 if (DisableCTRLoopAnal)
1350 return true;
1351 TBB = LastInst.getOperand(0).getMBB();
1352 Cond.push_back(MachineOperand::CreateImm(0));
1353 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1354 true));
1355 return false;
1358 // Otherwise, don't know what this is.
1359 return true;
1362 // Get the instruction before it if it's a terminator.
1363 MachineInstr &SecondLastInst = *I;
1365 // If there are three terminators, we don't know what sort of block this is.
1366 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1367 return true;
1369 // If the block ends with PPC::B and PPC:BCC, handle it.
1370 if (SecondLastInst.getOpcode() == PPC::BCC &&
1371 LastInst.getOpcode() == PPC::B) {
1372 if (!SecondLastInst.getOperand(2).isMBB() ||
1373 !LastInst.getOperand(0).isMBB())
1374 return true;
1375 TBB = SecondLastInst.getOperand(2).getMBB();
1376 Cond.push_back(SecondLastInst.getOperand(0));
1377 Cond.push_back(SecondLastInst.getOperand(1));
1378 FBB = LastInst.getOperand(0).getMBB();
1379 return false;
1380 } else if (SecondLastInst.getOpcode() == PPC::BC &&
1381 LastInst.getOpcode() == PPC::B) {
1382 if (!SecondLastInst.getOperand(1).isMBB() ||
1383 !LastInst.getOperand(0).isMBB())
1384 return true;
1385 TBB = SecondLastInst.getOperand(1).getMBB();
1386 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1387 Cond.push_back(SecondLastInst.getOperand(0));
1388 FBB = LastInst.getOperand(0).getMBB();
1389 return false;
1390 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1391 LastInst.getOpcode() == PPC::B) {
1392 if (!SecondLastInst.getOperand(1).isMBB() ||
1393 !LastInst.getOperand(0).isMBB())
1394 return true;
1395 TBB = SecondLastInst.getOperand(1).getMBB();
1396 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1397 Cond.push_back(SecondLastInst.getOperand(0));
1398 FBB = LastInst.getOperand(0).getMBB();
1399 return false;
1400 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1401 SecondLastInst.getOpcode() == PPC::BDNZ) &&
1402 LastInst.getOpcode() == PPC::B) {
1403 if (!SecondLastInst.getOperand(0).isMBB() ||
1404 !LastInst.getOperand(0).isMBB())
1405 return true;
1406 if (DisableCTRLoopAnal)
1407 return true;
1408 TBB = SecondLastInst.getOperand(0).getMBB();
1409 Cond.push_back(MachineOperand::CreateImm(1));
1410 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1411 true));
1412 FBB = LastInst.getOperand(0).getMBB();
1413 return false;
1414 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1415 SecondLastInst.getOpcode() == PPC::BDZ) &&
1416 LastInst.getOpcode() == PPC::B) {
1417 if (!SecondLastInst.getOperand(0).isMBB() ||
1418 !LastInst.getOperand(0).isMBB())
1419 return true;
1420 if (DisableCTRLoopAnal)
1421 return true;
1422 TBB = SecondLastInst.getOperand(0).getMBB();
1423 Cond.push_back(MachineOperand::CreateImm(0));
1424 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1425 true));
1426 FBB = LastInst.getOperand(0).getMBB();
1427 return false;
1430 // If the block ends with two PPC:Bs, handle it. The second one is not
1431 // executed, so remove it.
1432 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1433 if (!SecondLastInst.getOperand(0).isMBB())
1434 return true;
1435 TBB = SecondLastInst.getOperand(0).getMBB();
1436 I = LastInst;
1437 if (AllowModify)
1438 I->eraseFromParent();
1439 return false;
1442 // Otherwise, can't handle this.
1443 return true;
1446 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1447 int *BytesRemoved) const {
1448 assert(!BytesRemoved && "code size not handled");
1450 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1451 if (I == MBB.end())
1452 return 0;
1454 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1455 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1456 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1457 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
1458 return 0;
1460 // Remove the branch.
1461 I->eraseFromParent();
1463 I = MBB.end();
1465 if (I == MBB.begin()) return 1;
1466 --I;
1467 if (I->getOpcode() != PPC::BCC &&
1468 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1469 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1470 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
1471 return 1;
1473 // Remove the branch.
1474 I->eraseFromParent();
1475 return 2;
1478 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1479 MachineBasicBlock *TBB,
1480 MachineBasicBlock *FBB,
1481 ArrayRef<MachineOperand> Cond,
1482 const DebugLoc &DL,
1483 int *BytesAdded) const {
1484 // Shouldn't be a fall through.
1485 assert(TBB && "insertBranch must not be told to insert a fallthrough");
1486 assert((Cond.size() == 2 || Cond.size() == 0) &&
1487 "PPC branch conditions have two components!");
1488 assert(!BytesAdded && "code size not handled");
1490 bool isPPC64 = Subtarget.isPPC64();
1492 // One-way branch.
1493 if (!FBB) {
1494 if (Cond.empty()) // Unconditional branch
1495 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1496 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1497 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1498 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1499 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
1500 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1501 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1502 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1503 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1504 else // Conditional branch
1505 BuildMI(&MBB, DL, get(PPC::BCC))
1506 .addImm(Cond[0].getImm())
1507 .add(Cond[1])
1508 .addMBB(TBB);
1509 return 1;
1512 // Two-way Conditional Branch.
1513 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1514 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1515 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1516 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
1517 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1518 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1519 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1520 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1521 else
1522 BuildMI(&MBB, DL, get(PPC::BCC))
1523 .addImm(Cond[0].getImm())
1524 .add(Cond[1])
1525 .addMBB(TBB);
1526 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1527 return 2;
1530 // Select analysis.
1531 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1532 ArrayRef<MachineOperand> Cond,
1533 Register DstReg, Register TrueReg,
1534 Register FalseReg, int &CondCycles,
1535 int &TrueCycles, int &FalseCycles) const {
1536 if (Cond.size() != 2)
1537 return false;
1539 // If this is really a bdnz-like condition, then it cannot be turned into a
1540 // select.
1541 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1542 return false;
1544 // Check register classes.
1545 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1546 const TargetRegisterClass *RC =
1547 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1548 if (!RC)
1549 return false;
1551 // isel is for regular integer GPRs only.
1552 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1553 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1554 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1555 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1556 return false;
1558 // FIXME: These numbers are for the A2, how well they work for other cores is
1559 // an open question. On the A2, the isel instruction has a 2-cycle latency
1560 // but single-cycle throughput. These numbers are used in combination with
1561 // the MispredictPenalty setting from the active SchedMachineModel.
1562 CondCycles = 1;
1563 TrueCycles = 1;
1564 FalseCycles = 1;
1566 return true;
1569 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1570 MachineBasicBlock::iterator MI,
1571 const DebugLoc &dl, Register DestReg,
1572 ArrayRef<MachineOperand> Cond, Register TrueReg,
1573 Register FalseReg) const {
1574 assert(Cond.size() == 2 &&
1575 "PPC branch conditions have two components!");
1577 // Get the register classes.
1578 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1579 const TargetRegisterClass *RC =
1580 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1581 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1583 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1584 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1585 assert((Is64Bit ||
1586 PPC::GPRCRegClass.hasSubClassEq(RC) ||
1587 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1588 "isel is for regular integer GPRs only");
1590 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1591 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1593 unsigned SubIdx = 0;
1594 bool SwapOps = false;
1595 switch (SelectPred) {
1596 case PPC::PRED_EQ:
1597 case PPC::PRED_EQ_MINUS:
1598 case PPC::PRED_EQ_PLUS:
1599 SubIdx = PPC::sub_eq; SwapOps = false; break;
1600 case PPC::PRED_NE:
1601 case PPC::PRED_NE_MINUS:
1602 case PPC::PRED_NE_PLUS:
1603 SubIdx = PPC::sub_eq; SwapOps = true; break;
1604 case PPC::PRED_LT:
1605 case PPC::PRED_LT_MINUS:
1606 case PPC::PRED_LT_PLUS:
1607 SubIdx = PPC::sub_lt; SwapOps = false; break;
1608 case PPC::PRED_GE:
1609 case PPC::PRED_GE_MINUS:
1610 case PPC::PRED_GE_PLUS:
1611 SubIdx = PPC::sub_lt; SwapOps = true; break;
1612 case PPC::PRED_GT:
1613 case PPC::PRED_GT_MINUS:
1614 case PPC::PRED_GT_PLUS:
1615 SubIdx = PPC::sub_gt; SwapOps = false; break;
1616 case PPC::PRED_LE:
1617 case PPC::PRED_LE_MINUS:
1618 case PPC::PRED_LE_PLUS:
1619 SubIdx = PPC::sub_gt; SwapOps = true; break;
1620 case PPC::PRED_UN:
1621 case PPC::PRED_UN_MINUS:
1622 case PPC::PRED_UN_PLUS:
1623 SubIdx = PPC::sub_un; SwapOps = false; break;
1624 case PPC::PRED_NU:
1625 case PPC::PRED_NU_MINUS:
1626 case PPC::PRED_NU_PLUS:
1627 SubIdx = PPC::sub_un; SwapOps = true; break;
1628 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
1629 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1632 Register FirstReg = SwapOps ? FalseReg : TrueReg,
1633 SecondReg = SwapOps ? TrueReg : FalseReg;
1635 // The first input register of isel cannot be r0. If it is a member
1636 // of a register class that can be r0, then copy it first (the
1637 // register allocator should eliminate the copy).
1638 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1639 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1640 const TargetRegisterClass *FirstRC =
1641 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1642 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1643 Register OldFirstReg = FirstReg;
1644 FirstReg = MRI.createVirtualRegister(FirstRC);
1645 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1646 .addReg(OldFirstReg);
1649 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1650 .addReg(FirstReg).addReg(SecondReg)
1651 .addReg(Cond[1].getReg(), 0, SubIdx);
1654 static unsigned getCRBitValue(unsigned CRBit) {
1655 unsigned Ret = 4;
1656 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1657 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1658 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1659 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1660 Ret = 3;
1661 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1662 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1663 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1664 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1665 Ret = 2;
1666 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1667 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1668 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1669 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1670 Ret = 1;
1671 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1672 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1673 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1674 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1675 Ret = 0;
1677 assert(Ret != 4 && "Invalid CR bit register");
1678 return Ret;
1681 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1682 MachineBasicBlock::iterator I,
1683 const DebugLoc &DL, MCRegister DestReg,
1684 MCRegister SrcReg, bool KillSrc) const {
1685 // We can end up with self copies and similar things as a result of VSX copy
1686 // legalization. Promote them here.
1687 const TargetRegisterInfo *TRI = &getRegisterInfo();
1688 if (PPC::F8RCRegClass.contains(DestReg) &&
1689 PPC::VSRCRegClass.contains(SrcReg)) {
1690 MCRegister SuperReg =
1691 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1693 if (VSXSelfCopyCrash && SrcReg == SuperReg)
1694 llvm_unreachable("nop VSX copy");
1696 DestReg = SuperReg;
1697 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1698 PPC::VSRCRegClass.contains(DestReg)) {
1699 MCRegister SuperReg =
1700 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1702 if (VSXSelfCopyCrash && DestReg == SuperReg)
1703 llvm_unreachable("nop VSX copy");
1705 SrcReg = SuperReg;
1708 // Different class register copy
1709 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1710 PPC::GPRCRegClass.contains(DestReg)) {
1711 MCRegister CRReg = getCRFromCRBit(SrcReg);
1712 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1713 getKillRegState(KillSrc);
1714 // Rotate the CR bit in the CR fields to be the least significant bit and
1715 // then mask with 0x1 (MB = ME = 31).
1716 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1717 .addReg(DestReg, RegState::Kill)
1718 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1719 .addImm(31)
1720 .addImm(31);
1721 return;
1722 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1723 (PPC::G8RCRegClass.contains(DestReg) ||
1724 PPC::GPRCRegClass.contains(DestReg))) {
1725 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1726 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1727 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1728 unsigned CRNum = TRI->getEncodingValue(SrcReg);
1729 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1730 getKillRegState(KillSrc);
1731 if (CRNum == 7)
1732 return;
1733 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1734 BuildMI(MBB, I, DL, get(ShCode), DestReg)
1735 .addReg(DestReg, RegState::Kill)
1736 .addImm(CRNum * 4 + 4)
1737 .addImm(28)
1738 .addImm(31);
1739 return;
1740 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1741 PPC::VSFRCRegClass.contains(DestReg)) {
1742 assert(Subtarget.hasDirectMove() &&
1743 "Subtarget doesn't support directmove, don't know how to copy.");
1744 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1745 NumGPRtoVSRSpill++;
1746 getKillRegState(KillSrc);
1747 return;
1748 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1749 PPC::G8RCRegClass.contains(DestReg)) {
1750 assert(Subtarget.hasDirectMove() &&
1751 "Subtarget doesn't support directmove, don't know how to copy.");
1752 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1753 getKillRegState(KillSrc);
1754 return;
1755 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1756 PPC::GPRCRegClass.contains(DestReg)) {
1757 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1758 getKillRegState(KillSrc);
1759 return;
1760 } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1761 PPC::SPERCRegClass.contains(DestReg)) {
1762 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1763 getKillRegState(KillSrc);
1764 return;
1767 unsigned Opc;
1768 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1769 Opc = PPC::OR;
1770 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1771 Opc = PPC::OR8;
1772 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1773 Opc = PPC::FMR;
1774 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1775 Opc = PPC::MCRF;
1776 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1777 Opc = PPC::VOR;
1778 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1779 // There are two different ways this can be done:
1780 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1781 // issue in VSU pipeline 0.
1782 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1783 // can go to either pipeline.
1784 // We'll always use xxlor here, because in practically all cases where
1785 // copies are generated, they are close enough to some use that the
1786 // lower-latency form is preferable.
1787 Opc = PPC::XXLOR;
1788 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1789 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1790 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1791 else if (Subtarget.pairedVectorMemops() &&
1792 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1793 if (SrcReg > PPC::VSRp15)
1794 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1795 else
1796 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1797 if (DestReg > PPC::VSRp15)
1798 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1799 else
1800 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1801 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1802 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1803 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1804 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1805 return;
1807 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1808 Opc = PPC::CROR;
1809 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1810 Opc = PPC::EVOR;
1811 else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1812 PPC::UACCRCRegClass.contains(DestReg)) &&
1813 (PPC::ACCRCRegClass.contains(SrcReg) ||
1814 PPC::UACCRCRegClass.contains(SrcReg))) {
1815 // If primed, de-prime the source register, copy the individual registers
1816 // and prime the destination if needed. The vector subregisters are
1817 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1818 // source is primed, we need to re-prime it after the copy as well.
1819 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1820 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1821 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1822 MCRegister VSLSrcReg =
1823 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1824 MCRegister VSLDestReg =
1825 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1826 if (SrcPrimed)
1827 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1828 for (unsigned Idx = 0; Idx < 4; Idx++)
1829 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1830 .addReg(VSLSrcReg + Idx)
1831 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1832 if (DestPrimed)
1833 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1834 if (SrcPrimed && !KillSrc)
1835 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1836 return;
1837 } else if (PPC::G8pRCRegClass.contains(DestReg) &&
1838 PPC::G8pRCRegClass.contains(SrcReg)) {
1839 // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1840 unsigned DestRegIdx = DestReg - PPC::G8p0;
1841 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1842 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1843 unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1844 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1845 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1846 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1847 .addReg(SrcRegSub0)
1848 .addReg(SrcRegSub0, getKillRegState(KillSrc));
1849 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1850 .addReg(SrcRegSub1)
1851 .addReg(SrcRegSub1, getKillRegState(KillSrc));
1852 return;
1853 } else
1854 llvm_unreachable("Impossible reg-to-reg copy");
1856 const MCInstrDesc &MCID = get(Opc);
1857 if (MCID.getNumOperands() == 3)
1858 BuildMI(MBB, I, DL, MCID, DestReg)
1859 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1860 else
1861 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1864 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1865 int OpcodeIndex = 0;
1867 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1868 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1869 OpcodeIndex = SOK_Int4Spill;
1870 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1871 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1872 OpcodeIndex = SOK_Int8Spill;
1873 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1874 OpcodeIndex = SOK_Float8Spill;
1875 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1876 OpcodeIndex = SOK_Float4Spill;
1877 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1878 OpcodeIndex = SOK_SPESpill;
1879 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1880 OpcodeIndex = SOK_CRSpill;
1881 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1882 OpcodeIndex = SOK_CRBitSpill;
1883 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1884 OpcodeIndex = SOK_VRVectorSpill;
1885 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1886 OpcodeIndex = SOK_VSXVectorSpill;
1887 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1888 OpcodeIndex = SOK_VectorFloat8Spill;
1889 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1890 OpcodeIndex = SOK_VectorFloat4Spill;
1891 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1892 OpcodeIndex = SOK_SpillToVSR;
1893 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1894 assert(Subtarget.pairedVectorMemops() &&
1895 "Register unexpected when paired memops are disabled.");
1896 OpcodeIndex = SOK_AccumulatorSpill;
1897 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1898 assert(Subtarget.pairedVectorMemops() &&
1899 "Register unexpected when paired memops are disabled.");
1900 OpcodeIndex = SOK_UAccumulatorSpill;
1901 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1902 assert(Subtarget.pairedVectorMemops() &&
1903 "Register unexpected when paired memops are disabled.");
1904 OpcodeIndex = SOK_PairedVecSpill;
1905 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1906 OpcodeIndex = SOK_PairedG8Spill;
1907 } else {
1908 llvm_unreachable("Unknown regclass!");
1910 return OpcodeIndex;
1913 unsigned
1914 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1915 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1916 return OpcodesForSpill[getSpillIndex(RC)];
1919 unsigned
1920 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1921 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1922 return OpcodesForSpill[getSpillIndex(RC)];
1925 void PPCInstrInfo::StoreRegToStackSlot(
1926 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1927 const TargetRegisterClass *RC,
1928 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1929 unsigned Opcode = getStoreOpcodeForSpill(RC);
1930 DebugLoc DL;
1932 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1933 FuncInfo->setHasSpills();
1935 NewMIs.push_back(addFrameReference(
1936 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1937 FrameIdx));
1939 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1940 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1941 FuncInfo->setSpillsCR();
1943 if (isXFormMemOp(Opcode))
1944 FuncInfo->setHasNonRISpills();
1947 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1948 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1949 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1950 const TargetRegisterInfo *TRI) const {
1951 MachineFunction &MF = *MBB.getParent();
1952 SmallVector<MachineInstr *, 4> NewMIs;
1954 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1956 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1957 MBB.insert(MI, NewMIs[i]);
1959 const MachineFrameInfo &MFI = MF.getFrameInfo();
1960 MachineMemOperand *MMO = MF.getMachineMemOperand(
1961 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1962 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1963 MFI.getObjectAlign(FrameIdx));
1964 NewMIs.back()->addMemOperand(MF, MMO);
1967 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1968 MachineBasicBlock::iterator MI,
1969 Register SrcReg, bool isKill,
1970 int FrameIdx,
1971 const TargetRegisterClass *RC,
1972 const TargetRegisterInfo *TRI) const {
1973 // We need to avoid a situation in which the value from a VRRC register is
1974 // spilled using an Altivec instruction and reloaded into a VSRC register
1975 // using a VSX instruction. The issue with this is that the VSX
1976 // load/store instructions swap the doublewords in the vector and the Altivec
1977 // ones don't. The register classes on the spill/reload may be different if
1978 // the register is defined using an Altivec instruction and is then used by a
1979 // VSX instruction.
1980 RC = updatedRC(RC);
1981 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1984 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1985 unsigned DestReg, int FrameIdx,
1986 const TargetRegisterClass *RC,
1987 SmallVectorImpl<MachineInstr *> &NewMIs)
1988 const {
1989 unsigned Opcode = getLoadOpcodeForSpill(RC);
1990 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1991 FrameIdx));
1992 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1994 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1995 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1996 FuncInfo->setSpillsCR();
1998 if (isXFormMemOp(Opcode))
1999 FuncInfo->setHasNonRISpills();
2002 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
2003 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
2004 int FrameIdx, const TargetRegisterClass *RC,
2005 const TargetRegisterInfo *TRI) const {
2006 MachineFunction &MF = *MBB.getParent();
2007 SmallVector<MachineInstr*, 4> NewMIs;
2008 DebugLoc DL;
2009 if (MI != MBB.end()) DL = MI->getDebugLoc();
2011 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2012 FuncInfo->setHasSpills();
2014 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2016 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
2017 MBB.insert(MI, NewMIs[i]);
2019 const MachineFrameInfo &MFI = MF.getFrameInfo();
2020 MachineMemOperand *MMO = MF.getMachineMemOperand(
2021 MachinePointerInfo::getFixedStack(MF, FrameIdx),
2022 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2023 MFI.getObjectAlign(FrameIdx));
2024 NewMIs.back()->addMemOperand(MF, MMO);
2027 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2028 MachineBasicBlock::iterator MI,
2029 Register DestReg, int FrameIdx,
2030 const TargetRegisterClass *RC,
2031 const TargetRegisterInfo *TRI) const {
2032 // We need to avoid a situation in which the value from a VRRC register is
2033 // spilled using an Altivec instruction and reloaded into a VSRC register
2034 // using a VSX instruction. The issue with this is that the VSX
2035 // load/store instructions swap the doublewords in the vector and the Altivec
2036 // ones don't. The register classes on the spill/reload may be different if
2037 // the register is defined using an Altivec instruction and is then used by a
2038 // VSX instruction.
2039 RC = updatedRC(RC);
2041 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2044 bool PPCInstrInfo::
2045 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2046 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2047 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2048 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2049 else
2050 // Leave the CR# the same, but invert the condition.
2051 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2052 return false;
2055 // For some instructions, it is legal to fold ZERO into the RA register field.
2056 // This function performs that fold by replacing the operand with PPC::ZERO,
2057 // it does not consider whether the load immediate zero is no longer in use.
2058 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2059 Register Reg) const {
2060 // A zero immediate should always be loaded with a single li.
2061 unsigned DefOpc = DefMI.getOpcode();
2062 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2063 return false;
2064 if (!DefMI.getOperand(1).isImm())
2065 return false;
2066 if (DefMI.getOperand(1).getImm() != 0)
2067 return false;
2069 // Note that we cannot here invert the arguments of an isel in order to fold
2070 // a ZERO into what is presented as the second argument. All we have here
2071 // is the condition bit, and that might come from a CR-logical bit operation.
2073 const MCInstrDesc &UseMCID = UseMI.getDesc();
2075 // Only fold into real machine instructions.
2076 if (UseMCID.isPseudo())
2077 return false;
2079 // We need to find which of the User's operands is to be folded, that will be
2080 // the operand that matches the given register ID.
2081 unsigned UseIdx;
2082 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2083 if (UseMI.getOperand(UseIdx).isReg() &&
2084 UseMI.getOperand(UseIdx).getReg() == Reg)
2085 break;
2087 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2088 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2090 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
2092 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2093 // register (which might also be specified as a pointer class kind).
2094 if (UseInfo->isLookupPtrRegClass()) {
2095 if (UseInfo->RegClass /* Kind */ != 1)
2096 return false;
2097 } else {
2098 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2099 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2100 return false;
2103 // Make sure this is not tied to an output register (or otherwise
2104 // constrained). This is true for ST?UX registers, for example, which
2105 // are tied to their output registers.
2106 if (UseInfo->Constraints != 0)
2107 return false;
2109 MCRegister ZeroReg;
2110 if (UseInfo->isLookupPtrRegClass()) {
2111 bool isPPC64 = Subtarget.isPPC64();
2112 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2113 } else {
2114 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2115 PPC::ZERO8 : PPC::ZERO;
2118 UseMI.getOperand(UseIdx).setReg(ZeroReg);
2119 return true;
2122 // Folds zero into instructions which have a load immediate zero as an operand
2123 // but also recognize zero as immediate zero. If the definition of the load
2124 // has no more users it is deleted.
2125 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2126 Register Reg, MachineRegisterInfo *MRI) const {
2127 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2128 if (MRI->use_nodbg_empty(Reg))
2129 DefMI.eraseFromParent();
2130 return Changed;
2133 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2134 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2135 I != IE; ++I)
2136 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
2137 return true;
2138 return false;
2141 // We should make sure that, if we're going to predicate both sides of a
2142 // condition (a diamond), that both sides don't define the counter register. We
2143 // can predicate counter-decrement-based branches, but while that predicates
2144 // the branching, it does not predicate the counter decrement. If we tried to
2145 // merge the triangle into one predicated block, we'd decrement the counter
2146 // twice.
2147 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2148 unsigned NumT, unsigned ExtraT,
2149 MachineBasicBlock &FMBB,
2150 unsigned NumF, unsigned ExtraF,
2151 BranchProbability Probability) const {
2152 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2156 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2157 // The predicated branches are identified by their type, not really by the
2158 // explicit presence of a predicate. Furthermore, some of them can be
2159 // predicated more than once. Because if conversion won't try to predicate
2160 // any instruction which already claims to be predicated (by returning true
2161 // here), always return false. In doing so, we let isPredicable() be the
2162 // final word on whether not the instruction can be (further) predicated.
2164 return false;
2167 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2168 const MachineBasicBlock *MBB,
2169 const MachineFunction &MF) const {
2170 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2171 // across them, since some FP operations may change content of FPSCR.
2172 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2173 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
2174 return true;
2175 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2178 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2179 ArrayRef<MachineOperand> Pred) const {
2180 unsigned OpC = MI.getOpcode();
2181 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2182 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2183 bool isPPC64 = Subtarget.isPPC64();
2184 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2185 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2186 // Need add Def and Use for CTR implicit operand.
2187 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2188 .addReg(Pred[1].getReg(), RegState::Implicit)
2189 .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2190 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2191 MI.setDesc(get(PPC::BCLR));
2192 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2193 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2194 MI.setDesc(get(PPC::BCLRn));
2195 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2196 } else {
2197 MI.setDesc(get(PPC::BCCLR));
2198 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2199 .addImm(Pred[0].getImm())
2200 .add(Pred[1]);
2203 return true;
2204 } else if (OpC == PPC::B) {
2205 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2206 bool isPPC64 = Subtarget.isPPC64();
2207 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2208 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2209 // Need add Def and Use for CTR implicit operand.
2210 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2211 .addReg(Pred[1].getReg(), RegState::Implicit)
2212 .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2213 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2214 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2215 MI.RemoveOperand(0);
2217 MI.setDesc(get(PPC::BC));
2218 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2219 .add(Pred[1])
2220 .addMBB(MBB);
2221 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2222 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2223 MI.RemoveOperand(0);
2225 MI.setDesc(get(PPC::BCn));
2226 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2227 .add(Pred[1])
2228 .addMBB(MBB);
2229 } else {
2230 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2231 MI.RemoveOperand(0);
2233 MI.setDesc(get(PPC::BCC));
2234 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2235 .addImm(Pred[0].getImm())
2236 .add(Pred[1])
2237 .addMBB(MBB);
2240 return true;
2241 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2242 OpC == PPC::BCTRL8) {
2243 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2244 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2246 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
2247 bool isPPC64 = Subtarget.isPPC64();
2249 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2250 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2251 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2252 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2253 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2254 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2255 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2256 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2257 } else {
2258 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2259 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2260 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2261 .addImm(Pred[0].getImm())
2262 .add(Pred[1]);
2265 // Need add Def and Use for LR implicit operand.
2266 if (setLR)
2267 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2268 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2269 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2271 return true;
2274 return false;
2277 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2278 ArrayRef<MachineOperand> Pred2) const {
2279 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2280 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2282 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2283 return false;
2284 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2285 return false;
2287 // P1 can only subsume P2 if they test the same condition register.
2288 if (Pred1[1].getReg() != Pred2[1].getReg())
2289 return false;
2291 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2292 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2294 if (P1 == P2)
2295 return true;
2297 // Does P1 subsume P2, e.g. GE subsumes GT.
2298 if (P1 == PPC::PRED_LE &&
2299 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2300 return true;
2301 if (P1 == PPC::PRED_GE &&
2302 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2303 return true;
2305 return false;
2308 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2309 std::vector<MachineOperand> &Pred,
2310 bool SkipDead) const {
2311 // Note: At the present time, the contents of Pred from this function is
2312 // unused by IfConversion. This implementation follows ARM by pushing the
2313 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2314 // predicate, instructions defining CTR or CTR8 are also included as
2315 // predicate-defining instructions.
2317 const TargetRegisterClass *RCs[] =
2318 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2319 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2321 bool Found = false;
2322 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2323 const MachineOperand &MO = MI.getOperand(i);
2324 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
2325 const TargetRegisterClass *RC = RCs[c];
2326 if (MO.isReg()) {
2327 if (MO.isDef() && RC->contains(MO.getReg())) {
2328 Pred.push_back(MO);
2329 Found = true;
2331 } else if (MO.isRegMask()) {
2332 for (TargetRegisterClass::iterator I = RC->begin(),
2333 IE = RC->end(); I != IE; ++I)
2334 if (MO.clobbersPhysReg(*I)) {
2335 Pred.push_back(MO);
2336 Found = true;
2342 return Found;
2345 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2346 Register &SrcReg2, int &Mask,
2347 int &Value) const {
2348 unsigned Opc = MI.getOpcode();
2350 switch (Opc) {
2351 default: return false;
2352 case PPC::CMPWI:
2353 case PPC::CMPLWI:
2354 case PPC::CMPDI:
2355 case PPC::CMPLDI:
2356 SrcReg = MI.getOperand(1).getReg();
2357 SrcReg2 = 0;
2358 Value = MI.getOperand(2).getImm();
2359 Mask = 0xFFFF;
2360 return true;
2361 case PPC::CMPW:
2362 case PPC::CMPLW:
2363 case PPC::CMPD:
2364 case PPC::CMPLD:
2365 case PPC::FCMPUS:
2366 case PPC::FCMPUD:
2367 SrcReg = MI.getOperand(1).getReg();
2368 SrcReg2 = MI.getOperand(2).getReg();
2369 Value = 0;
2370 Mask = 0;
2371 return true;
2375 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2376 Register SrcReg2, int Mask, int Value,
2377 const MachineRegisterInfo *MRI) const {
2378 if (DisableCmpOpt)
2379 return false;
2381 int OpC = CmpInstr.getOpcode();
2382 Register CRReg = CmpInstr.getOperand(0).getReg();
2384 // FP record forms set CR1 based on the exception status bits, not a
2385 // comparison with zero.
2386 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2387 return false;
2389 const TargetRegisterInfo *TRI = &getRegisterInfo();
2390 // The record forms set the condition register based on a signed comparison
2391 // with zero (so says the ISA manual). This is not as straightforward as it
2392 // seems, however, because this is always a 64-bit comparison on PPC64, even
2393 // for instructions that are 32-bit in nature (like slw for example).
2394 // So, on PPC32, for unsigned comparisons, we can use the record forms only
2395 // for equality checks (as those don't depend on the sign). On PPC64,
2396 // we are restricted to equality for unsigned 64-bit comparisons and for
2397 // signed 32-bit comparisons the applicability is more restricted.
2398 bool isPPC64 = Subtarget.isPPC64();
2399 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
2400 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2401 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2403 // Look through copies unless that gets us to a physical register.
2404 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2405 if (ActualSrc.isVirtual())
2406 SrcReg = ActualSrc;
2408 // Get the unique definition of SrcReg.
2409 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2410 if (!MI) return false;
2412 bool equalityOnly = false;
2413 bool noSub = false;
2414 if (isPPC64) {
2415 if (is32BitSignedCompare) {
2416 // We can perform this optimization only if MI is sign-extending.
2417 if (isSignExtended(*MI))
2418 noSub = true;
2419 else
2420 return false;
2421 } else if (is32BitUnsignedCompare) {
2422 // We can perform this optimization, equality only, if MI is
2423 // zero-extending.
2424 if (isZeroExtended(*MI)) {
2425 noSub = true;
2426 equalityOnly = true;
2427 } else
2428 return false;
2429 } else
2430 equalityOnly = is64BitUnsignedCompare;
2431 } else
2432 equalityOnly = is32BitUnsignedCompare;
2434 if (equalityOnly) {
2435 // We need to check the uses of the condition register in order to reject
2436 // non-equality comparisons.
2437 for (MachineRegisterInfo::use_instr_iterator
2438 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2439 I != IE; ++I) {
2440 MachineInstr *UseMI = &*I;
2441 if (UseMI->getOpcode() == PPC::BCC) {
2442 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2443 unsigned PredCond = PPC::getPredicateCondition(Pred);
2444 // We ignore hint bits when checking for non-equality comparisons.
2445 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2446 return false;
2447 } else if (UseMI->getOpcode() == PPC::ISEL ||
2448 UseMI->getOpcode() == PPC::ISEL8) {
2449 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2450 if (SubIdx != PPC::sub_eq)
2451 return false;
2452 } else
2453 return false;
2457 MachineBasicBlock::iterator I = CmpInstr;
2459 // Scan forward to find the first use of the compare.
2460 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2461 ++I) {
2462 bool FoundUse = false;
2463 for (MachineRegisterInfo::use_instr_iterator
2464 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2465 J != JE; ++J)
2466 if (&*J == &*I) {
2467 FoundUse = true;
2468 break;
2471 if (FoundUse)
2472 break;
2475 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2476 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2478 // There are two possible candidates which can be changed to set CR[01].
2479 // One is MI, the other is a SUB instruction.
2480 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2481 MachineInstr *Sub = nullptr;
2482 if (SrcReg2 != 0)
2483 // MI is not a candidate for CMPrr.
2484 MI = nullptr;
2485 // FIXME: Conservatively refuse to convert an instruction which isn't in the
2486 // same BB as the comparison. This is to allow the check below to avoid calls
2487 // (and other explicit clobbers); instead we should really check for these
2488 // more explicitly (in at least a few predecessors).
2489 else if (MI->getParent() != CmpInstr.getParent())
2490 return false;
2491 else if (Value != 0) {
2492 // The record-form instructions set CR bit based on signed comparison
2493 // against 0. We try to convert a compare against 1 or -1 into a compare
2494 // against 0 to exploit record-form instructions. For example, we change
2495 // the condition "greater than -1" into "greater than or equal to 0"
2496 // and "less than 1" into "less than or equal to 0".
2498 // Since we optimize comparison based on a specific branch condition,
2499 // we don't optimize if condition code is used by more than once.
2500 if (equalityOnly || !MRI->hasOneUse(CRReg))
2501 return false;
2503 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2504 if (UseMI->getOpcode() != PPC::BCC)
2505 return false;
2507 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2508 unsigned PredCond = PPC::getPredicateCondition(Pred);
2509 unsigned PredHint = PPC::getPredicateHint(Pred);
2510 int16_t Immed = (int16_t)Value;
2512 // When modifying the condition in the predicate, we propagate hint bits
2513 // from the original predicate to the new one.
2514 if (Immed == -1 && PredCond == PPC::PRED_GT)
2515 // We convert "greater than -1" into "greater than or equal to 0",
2516 // since we are assuming signed comparison by !equalityOnly
2517 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2518 else if (Immed == -1 && PredCond == PPC::PRED_LE)
2519 // We convert "less than or equal to -1" into "less than 0".
2520 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2521 else if (Immed == 1 && PredCond == PPC::PRED_LT)
2522 // We convert "less than 1" into "less than or equal to 0".
2523 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2524 else if (Immed == 1 && PredCond == PPC::PRED_GE)
2525 // We convert "greater than or equal to 1" into "greater than 0".
2526 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2527 else
2528 return false;
2530 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2533 // Search for Sub.
2534 --I;
2536 // Get ready to iterate backward from CmpInstr.
2537 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2539 for (; I != E && !noSub; --I) {
2540 const MachineInstr &Instr = *I;
2541 unsigned IOpC = Instr.getOpcode();
2543 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2544 Instr.readsRegister(PPC::CR0, TRI)))
2545 // This instruction modifies or uses the record condition register after
2546 // the one we want to change. While we could do this transformation, it
2547 // would likely not be profitable. This transformation removes one
2548 // instruction, and so even forcing RA to generate one move probably
2549 // makes it unprofitable.
2550 return false;
2552 // Check whether CmpInstr can be made redundant by the current instruction.
2553 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2554 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2555 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2556 ((Instr.getOperand(1).getReg() == SrcReg &&
2557 Instr.getOperand(2).getReg() == SrcReg2) ||
2558 (Instr.getOperand(1).getReg() == SrcReg2 &&
2559 Instr.getOperand(2).getReg() == SrcReg))) {
2560 Sub = &*I;
2561 break;
2564 if (I == B)
2565 // The 'and' is below the comparison instruction.
2566 return false;
2569 // Return false if no candidates exist.
2570 if (!MI && !Sub)
2571 return false;
2573 // The single candidate is called MI.
2574 if (!MI) MI = Sub;
2576 int NewOpC = -1;
2577 int MIOpC = MI->getOpcode();
2578 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2579 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2580 NewOpC = MIOpC;
2581 else {
2582 NewOpC = PPC::getRecordFormOpcode(MIOpC);
2583 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2584 NewOpC = MIOpC;
2587 // FIXME: On the non-embedded POWER architectures, only some of the record
2588 // forms are fast, and we should use only the fast ones.
2590 // The defining instruction has a record form (or is already a record
2591 // form). It is possible, however, that we'll need to reverse the condition
2592 // code of the users.
2593 if (NewOpC == -1)
2594 return false;
2596 // This transformation should not be performed if `nsw` is missing and is not
2597 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2598 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2599 // CRReg can reflect if compared values are equal, this optz is still valid.
2600 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2601 Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2602 return false;
2604 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2605 // needs to be updated to be based on SUB. Push the condition code
2606 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
2607 // condition code of these operands will be modified.
2608 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2609 // comparison against 0, which may modify predicate.
2610 bool ShouldSwap = false;
2611 if (Sub && Value == 0) {
2612 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2613 Sub->getOperand(2).getReg() == SrcReg;
2615 // The operands to subf are the opposite of sub, so only in the fixed-point
2616 // case, invert the order.
2617 ShouldSwap = !ShouldSwap;
2620 if (ShouldSwap)
2621 for (MachineRegisterInfo::use_instr_iterator
2622 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2623 I != IE; ++I) {
2624 MachineInstr *UseMI = &*I;
2625 if (UseMI->getOpcode() == PPC::BCC) {
2626 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2627 unsigned PredCond = PPC::getPredicateCondition(Pred);
2628 assert((!equalityOnly ||
2629 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2630 "Invalid predicate for equality-only optimization");
2631 (void)PredCond; // To suppress warning in release build.
2632 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2633 PPC::getSwappedPredicate(Pred)));
2634 } else if (UseMI->getOpcode() == PPC::ISEL ||
2635 UseMI->getOpcode() == PPC::ISEL8) {
2636 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2637 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2638 "Invalid CR bit for equality-only optimization");
2640 if (NewSubReg == PPC::sub_lt)
2641 NewSubReg = PPC::sub_gt;
2642 else if (NewSubReg == PPC::sub_gt)
2643 NewSubReg = PPC::sub_lt;
2645 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2646 NewSubReg));
2647 } else // We need to abort on a user we don't understand.
2648 return false;
2650 assert(!(Value != 0 && ShouldSwap) &&
2651 "Non-zero immediate support and ShouldSwap"
2652 "may conflict in updating predicate");
2654 // Create a new virtual register to hold the value of the CR set by the
2655 // record-form instruction. If the instruction was not previously in
2656 // record form, then set the kill flag on the CR.
2657 CmpInstr.eraseFromParent();
2659 MachineBasicBlock::iterator MII = MI;
2660 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2661 get(TargetOpcode::COPY), CRReg)
2662 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2664 // Even if CR0 register were dead before, it is alive now since the
2665 // instruction we just built uses it.
2666 MI->clearRegisterDeads(PPC::CR0);
2668 if (MIOpC != NewOpC) {
2669 // We need to be careful here: we're replacing one instruction with
2670 // another, and we need to make sure that we get all of the right
2671 // implicit uses and defs. On the other hand, the caller may be holding
2672 // an iterator to this instruction, and so we can't delete it (this is
2673 // specifically the case if this is the instruction directly after the
2674 // compare).
2676 // Rotates are expensive instructions. If we're emitting a record-form
2677 // rotate that can just be an andi/andis, we should just emit that.
2678 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2679 Register GPRRes = MI->getOperand(0).getReg();
2680 int64_t SH = MI->getOperand(2).getImm();
2681 int64_t MB = MI->getOperand(3).getImm();
2682 int64_t ME = MI->getOperand(4).getImm();
2683 // We can only do this if both the start and end of the mask are in the
2684 // same halfword.
2685 bool MBInLoHWord = MB >= 16;
2686 bool MEInLoHWord = ME >= 16;
2687 uint64_t Mask = ~0LLU;
2689 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2690 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2691 // The mask value needs to shift right 16 if we're emitting andis.
2692 Mask >>= MBInLoHWord ? 0 : 16;
2693 NewOpC = MIOpC == PPC::RLWINM
2694 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2695 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2696 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2697 (ME - MB + 1 == SH) && (MB >= 16)) {
2698 // If we are rotating by the exact number of bits as are in the mask
2699 // and the mask is in the least significant bits of the register,
2700 // that's just an andis. (as long as the GPR result has no uses).
2701 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2702 Mask >>= 16;
2703 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2705 // If we've set the mask, we can transform.
2706 if (Mask != ~0LLU) {
2707 MI->RemoveOperand(4);
2708 MI->RemoveOperand(3);
2709 MI->getOperand(2).setImm(Mask);
2710 NumRcRotatesConvertedToRcAnd++;
2712 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2713 int64_t MB = MI->getOperand(3).getImm();
2714 if (MB >= 48) {
2715 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2716 NewOpC = PPC::ANDI8_rec;
2717 MI->RemoveOperand(3);
2718 MI->getOperand(2).setImm(Mask);
2719 NumRcRotatesConvertedToRcAnd++;
2723 const MCInstrDesc &NewDesc = get(NewOpC);
2724 MI->setDesc(NewDesc);
2726 if (NewDesc.ImplicitDefs)
2727 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2728 *ImpDefs; ++ImpDefs)
2729 if (!MI->definesRegister(*ImpDefs))
2730 MI->addOperand(*MI->getParent()->getParent(),
2731 MachineOperand::CreateReg(*ImpDefs, true, true));
2732 if (NewDesc.ImplicitUses)
2733 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2734 *ImpUses; ++ImpUses)
2735 if (!MI->readsRegister(*ImpUses))
2736 MI->addOperand(*MI->getParent()->getParent(),
2737 MachineOperand::CreateReg(*ImpUses, false, true));
2739 assert(MI->definesRegister(PPC::CR0) &&
2740 "Record-form instruction does not define cr0?");
2742 // Modify the condition code of operands in OperandsToUpdate.
2743 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2744 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2745 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2746 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2748 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2749 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2751 return true;
2754 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2755 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2756 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2757 const TargetRegisterInfo *TRI) const {
2758 const MachineOperand *BaseOp;
2759 OffsetIsScalable = false;
2760 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2761 return false;
2762 BaseOps.push_back(BaseOp);
2763 return true;
2766 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2767 const TargetRegisterInfo *TRI) {
2768 // If this is a volatile load/store, don't mess with it.
2769 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2770 return false;
2772 if (LdSt.getOperand(2).isFI())
2773 return true;
2775 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2776 // Can't cluster if the instruction modifies the base register
2777 // or it is update form. e.g. ld r2,3(r2)
2778 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2779 return false;
2781 return true;
2784 // Only cluster instruction pair that have the same opcode, and they are
2785 // clusterable according to PowerPC specification.
2786 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2787 const PPCSubtarget &Subtarget) {
2788 switch (FirstOpc) {
2789 default:
2790 return false;
2791 case PPC::STD:
2792 case PPC::STFD:
2793 case PPC::STXSD:
2794 case PPC::DFSTOREf64:
2795 return FirstOpc == SecondOpc;
2796 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2797 // 32bit and 64bit instruction selection. They are clusterable pair though
2798 // they are different opcode.
2799 case PPC::STW:
2800 case PPC::STW8:
2801 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2805 bool PPCInstrInfo::shouldClusterMemOps(
2806 ArrayRef<const MachineOperand *> BaseOps1,
2807 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2808 unsigned NumBytes) const {
2810 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2811 const MachineOperand &BaseOp1 = *BaseOps1.front();
2812 const MachineOperand &BaseOp2 = *BaseOps2.front();
2813 assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2814 "Only base registers and frame indices are supported.");
2816 // The NumLoads means the number of loads that has been clustered.
2817 // Don't cluster memory op if there are already two ops clustered at least.
2818 if (NumLoads > 2)
2819 return false;
2821 // Cluster the load/store only when they have the same base
2822 // register or FI.
2823 if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2824 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2825 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2826 return false;
2828 // Check if the load/store are clusterable according to the PowerPC
2829 // specification.
2830 const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2831 const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2832 unsigned FirstOpc = FirstLdSt.getOpcode();
2833 unsigned SecondOpc = SecondLdSt.getOpcode();
2834 const TargetRegisterInfo *TRI = &getRegisterInfo();
2835 // Cluster the load/store only when they have the same opcode, and they are
2836 // clusterable opcode according to PowerPC specification.
2837 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2838 return false;
2840 // Can't cluster load/store that have ordered or volatile memory reference.
2841 if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2842 !isLdStSafeToCluster(SecondLdSt, TRI))
2843 return false;
2845 int64_t Offset1 = 0, Offset2 = 0;
2846 unsigned Width1 = 0, Width2 = 0;
2847 const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2848 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2849 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2850 Width1 != Width2)
2851 return false;
2853 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2854 "getMemOperandWithOffsetWidth return incorrect base op");
2855 // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2856 assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2857 return Offset1 + Width1 == Offset2;
2860 /// GetInstSize - Return the number of bytes of code the specified
2861 /// instruction may be. This returns the maximum number of bytes.
2863 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2864 unsigned Opcode = MI.getOpcode();
2866 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2867 const MachineFunction *MF = MI.getParent()->getParent();
2868 const char *AsmStr = MI.getOperand(0).getSymbolName();
2869 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2870 } else if (Opcode == TargetOpcode::STACKMAP) {
2871 StackMapOpers Opers(&MI);
2872 return Opers.getNumPatchBytes();
2873 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2874 PatchPointOpers Opers(&MI);
2875 return Opers.getNumPatchBytes();
2876 } else {
2877 return get(Opcode).getSize();
2881 std::pair<unsigned, unsigned>
2882 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2883 const unsigned Mask = PPCII::MO_ACCESS_MASK;
2884 return std::make_pair(TF & Mask, TF & ~Mask);
2887 ArrayRef<std::pair<unsigned, const char *>>
2888 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2889 using namespace PPCII;
2890 static const std::pair<unsigned, const char *> TargetFlags[] = {
2891 {MO_LO, "ppc-lo"},
2892 {MO_HA, "ppc-ha"},
2893 {MO_TPREL_LO, "ppc-tprel-lo"},
2894 {MO_TPREL_HA, "ppc-tprel-ha"},
2895 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2896 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2897 {MO_TOC_LO, "ppc-toc-lo"},
2898 {MO_TLS, "ppc-tls"}};
2899 return makeArrayRef(TargetFlags);
2902 ArrayRef<std::pair<unsigned, const char *>>
2903 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2904 using namespace PPCII;
2905 static const std::pair<unsigned, const char *> TargetFlags[] = {
2906 {MO_PLT, "ppc-plt"},
2907 {MO_PIC_FLAG, "ppc-pic"},
2908 {MO_PCREL_FLAG, "ppc-pcrel"},
2909 {MO_GOT_FLAG, "ppc-got"},
2910 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2911 {MO_TLSGD_FLAG, "ppc-tlsgd"},
2912 {MO_TLSLD_FLAG, "ppc-tlsld"},
2913 {MO_TPREL_FLAG, "ppc-tprel"},
2914 {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
2915 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2916 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2917 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2918 return makeArrayRef(TargetFlags);
2921 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2922 // The VSX versions have the advantage of a full 64-register target whereas
2923 // the FP ones have the advantage of lower latency and higher throughput. So
2924 // what we are after is using the faster instructions in low register pressure
2925 // situations and using the larger register file in high register pressure
2926 // situations.
2927 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2928 unsigned UpperOpcode, LowerOpcode;
2929 switch (MI.getOpcode()) {
2930 case PPC::DFLOADf32:
2931 UpperOpcode = PPC::LXSSP;
2932 LowerOpcode = PPC::LFS;
2933 break;
2934 case PPC::DFLOADf64:
2935 UpperOpcode = PPC::LXSD;
2936 LowerOpcode = PPC::LFD;
2937 break;
2938 case PPC::DFSTOREf32:
2939 UpperOpcode = PPC::STXSSP;
2940 LowerOpcode = PPC::STFS;
2941 break;
2942 case PPC::DFSTOREf64:
2943 UpperOpcode = PPC::STXSD;
2944 LowerOpcode = PPC::STFD;
2945 break;
2946 case PPC::XFLOADf32:
2947 UpperOpcode = PPC::LXSSPX;
2948 LowerOpcode = PPC::LFSX;
2949 break;
2950 case PPC::XFLOADf64:
2951 UpperOpcode = PPC::LXSDX;
2952 LowerOpcode = PPC::LFDX;
2953 break;
2954 case PPC::XFSTOREf32:
2955 UpperOpcode = PPC::STXSSPX;
2956 LowerOpcode = PPC::STFSX;
2957 break;
2958 case PPC::XFSTOREf64:
2959 UpperOpcode = PPC::STXSDX;
2960 LowerOpcode = PPC::STFDX;
2961 break;
2962 case PPC::LIWAX:
2963 UpperOpcode = PPC::LXSIWAX;
2964 LowerOpcode = PPC::LFIWAX;
2965 break;
2966 case PPC::LIWZX:
2967 UpperOpcode = PPC::LXSIWZX;
2968 LowerOpcode = PPC::LFIWZX;
2969 break;
2970 case PPC::STIWX:
2971 UpperOpcode = PPC::STXSIWX;
2972 LowerOpcode = PPC::STFIWX;
2973 break;
2974 default:
2975 llvm_unreachable("Unknown Operation!");
2978 Register TargetReg = MI.getOperand(0).getReg();
2979 unsigned Opcode;
2980 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2981 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2982 Opcode = LowerOpcode;
2983 else
2984 Opcode = UpperOpcode;
2985 MI.setDesc(get(Opcode));
2986 return true;
2989 static bool isAnImmediateOperand(const MachineOperand &MO) {
2990 return MO.isCPI() || MO.isGlobal() || MO.isImm();
2993 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2994 auto &MBB = *MI.getParent();
2995 auto DL = MI.getDebugLoc();
2997 switch (MI.getOpcode()) {
2998 case PPC::BUILD_UACC: {
2999 MCRegister ACC = MI.getOperand(0).getReg();
3000 MCRegister UACC = MI.getOperand(1).getReg();
3001 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3002 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3003 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3004 // FIXME: This can easily be improved to look up to the top of the MBB
3005 // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3006 // we can just re-target any such XXLOR's to DstVSR + offset.
3007 for (int VecNo = 0; VecNo < 4; VecNo++)
3008 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3009 .addReg(SrcVSR + VecNo)
3010 .addReg(SrcVSR + VecNo);
3012 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers.
3013 // So after building the 4 copies, we can replace the BUILD_UACC instruction
3014 // with a NOP.
3015 LLVM_FALLTHROUGH;
3017 case PPC::KILL_PAIR: {
3018 MI.setDesc(get(PPC::UNENCODED_NOP));
3019 MI.RemoveOperand(1);
3020 MI.RemoveOperand(0);
3021 return true;
3023 case TargetOpcode::LOAD_STACK_GUARD: {
3024 assert(Subtarget.isTargetLinux() &&
3025 "Only Linux target is expected to contain LOAD_STACK_GUARD");
3026 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3027 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3028 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3029 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3030 .addImm(Offset)
3031 .addReg(Reg);
3032 return true;
3034 case PPC::DFLOADf32:
3035 case PPC::DFLOADf64:
3036 case PPC::DFSTOREf32:
3037 case PPC::DFSTOREf64: {
3038 assert(Subtarget.hasP9Vector() &&
3039 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3040 assert(MI.getOperand(2).isReg() &&
3041 isAnImmediateOperand(MI.getOperand(1)) &&
3042 "D-form op must have register and immediate operands");
3043 return expandVSXMemPseudo(MI);
3045 case PPC::XFLOADf32:
3046 case PPC::XFSTOREf32:
3047 case PPC::LIWAX:
3048 case PPC::LIWZX:
3049 case PPC::STIWX: {
3050 assert(Subtarget.hasP8Vector() &&
3051 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3052 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3053 "X-form op must have register and register operands");
3054 return expandVSXMemPseudo(MI);
3056 case PPC::XFLOADf64:
3057 case PPC::XFSTOREf64: {
3058 assert(Subtarget.hasVSX() &&
3059 "Invalid X-Form Pseudo-ops on target that has no VSX.");
3060 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3061 "X-form op must have register and register operands");
3062 return expandVSXMemPseudo(MI);
3064 case PPC::SPILLTOVSR_LD: {
3065 Register TargetReg = MI.getOperand(0).getReg();
3066 if (PPC::VSFRCRegClass.contains(TargetReg)) {
3067 MI.setDesc(get(PPC::DFLOADf64));
3068 return expandPostRAPseudo(MI);
3070 else
3071 MI.setDesc(get(PPC::LD));
3072 return true;
3074 case PPC::SPILLTOVSR_ST: {
3075 Register SrcReg = MI.getOperand(0).getReg();
3076 if (PPC::VSFRCRegClass.contains(SrcReg)) {
3077 NumStoreSPILLVSRRCAsVec++;
3078 MI.setDesc(get(PPC::DFSTOREf64));
3079 return expandPostRAPseudo(MI);
3080 } else {
3081 NumStoreSPILLVSRRCAsGpr++;
3082 MI.setDesc(get(PPC::STD));
3084 return true;
3086 case PPC::SPILLTOVSR_LDX: {
3087 Register TargetReg = MI.getOperand(0).getReg();
3088 if (PPC::VSFRCRegClass.contains(TargetReg))
3089 MI.setDesc(get(PPC::LXSDX));
3090 else
3091 MI.setDesc(get(PPC::LDX));
3092 return true;
3094 case PPC::SPILLTOVSR_STX: {
3095 Register SrcReg = MI.getOperand(0).getReg();
3096 if (PPC::VSFRCRegClass.contains(SrcReg)) {
3097 NumStoreSPILLVSRRCAsVec++;
3098 MI.setDesc(get(PPC::STXSDX));
3099 } else {
3100 NumStoreSPILLVSRRCAsGpr++;
3101 MI.setDesc(get(PPC::STDX));
3103 return true;
3106 case PPC::CFENCE8: {
3107 auto Val = MI.getOperand(0).getReg();
3108 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
3109 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3110 .addImm(PPC::PRED_NE_MINUS)
3111 .addReg(PPC::CR7)
3112 .addImm(1);
3113 MI.setDesc(get(PPC::ISYNC));
3114 MI.RemoveOperand(0);
3115 return true;
3118 return false;
3121 // Essentially a compile-time implementation of a compare->isel sequence.
3122 // It takes two constants to compare, along with the true/false registers
3123 // and the comparison type (as a subreg to a CR field) and returns one
3124 // of the true/false registers, depending on the comparison results.
3125 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3126 unsigned TrueReg, unsigned FalseReg,
3127 unsigned CRSubReg) {
3128 // Signed comparisons. The immediates are assumed to be sign-extended.
3129 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3130 switch (CRSubReg) {
3131 default: llvm_unreachable("Unknown integer comparison type.");
3132 case PPC::sub_lt:
3133 return Imm1 < Imm2 ? TrueReg : FalseReg;
3134 case PPC::sub_gt:
3135 return Imm1 > Imm2 ? TrueReg : FalseReg;
3136 case PPC::sub_eq:
3137 return Imm1 == Imm2 ? TrueReg : FalseReg;
3140 // Unsigned comparisons.
3141 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3142 switch (CRSubReg) {
3143 default: llvm_unreachable("Unknown integer comparison type.");
3144 case PPC::sub_lt:
3145 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3146 case PPC::sub_gt:
3147 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3148 case PPC::sub_eq:
3149 return Imm1 == Imm2 ? TrueReg : FalseReg;
3152 return PPC::NoRegister;
3155 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3156 unsigned OpNo,
3157 int64_t Imm) const {
3158 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3159 // Replace the REG with the Immediate.
3160 Register InUseReg = MI.getOperand(OpNo).getReg();
3161 MI.getOperand(OpNo).ChangeToImmediate(Imm);
3163 // We need to make sure that the MI didn't have any implicit use
3164 // of this REG any more. We don't call MI.implicit_operands().empty() to
3165 // return early, since MI's MCID might be changed in calling context, as a
3166 // result its number of explicit operands may be changed, thus the begin of
3167 // implicit operand is changed.
3168 const TargetRegisterInfo *TRI = &getRegisterInfo();
3169 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
3170 if (UseOpIdx >= 0) {
3171 MachineOperand &MO = MI.getOperand(UseOpIdx);
3172 if (MO.isImplicit())
3173 // The operands must always be in the following order:
3174 // - explicit reg defs,
3175 // - other explicit operands (reg uses, immediates, etc.),
3176 // - implicit reg defs
3177 // - implicit reg uses
3178 // Therefore, removing the implicit operand won't change the explicit
3179 // operands layout.
3180 MI.RemoveOperand(UseOpIdx);
3184 // Replace an instruction with one that materializes a constant (and sets
3185 // CR0 if the original instruction was a record-form instruction).
3186 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3187 const LoadImmediateInfo &LII) const {
3188 // Remove existing operands.
3189 int OperandToKeep = LII.SetCR ? 1 : 0;
3190 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3191 MI.RemoveOperand(i);
3193 // Replace the instruction.
3194 if (LII.SetCR) {
3195 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3196 // Set the immediate.
3197 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3198 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3199 return;
3201 else
3202 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3204 // Set the immediate.
3205 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3206 .addImm(LII.Imm);
3209 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3210 bool &SeenIntermediateUse) const {
3211 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3212 "Should be called after register allocation.");
3213 const TargetRegisterInfo *TRI = &getRegisterInfo();
3214 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3215 It++;
3216 SeenIntermediateUse = false;
3217 for (; It != E; ++It) {
3218 if (It->modifiesRegister(Reg, TRI))
3219 return &*It;
3220 if (It->readsRegister(Reg, TRI))
3221 SeenIntermediateUse = true;
3223 return nullptr;
3226 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3227 MachineInstr &MI,
3228 unsigned &OpNoForForwarding,
3229 bool &SeenIntermediateUse) const {
3230 OpNoForForwarding = ~0U;
3231 MachineInstr *DefMI = nullptr;
3232 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3233 const TargetRegisterInfo *TRI = &getRegisterInfo();
3234 // If we're in SSA, get the defs through the MRI. Otherwise, only look
3235 // within the basic block to see if the register is defined using an
3236 // LI/LI8/ADDI/ADDI8.
3237 if (MRI->isSSA()) {
3238 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3239 if (!MI.getOperand(i).isReg())
3240 continue;
3241 Register Reg = MI.getOperand(i).getReg();
3242 if (!Register::isVirtualRegister(Reg))
3243 continue;
3244 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3245 if (Register::isVirtualRegister(TrueReg)) {
3246 DefMI = MRI->getVRegDef(TrueReg);
3247 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
3248 DefMI->getOpcode() == PPC::ADDI ||
3249 DefMI->getOpcode() == PPC::ADDI8) {
3250 OpNoForForwarding = i;
3251 // The ADDI and LI operand maybe exist in one instruction at same
3252 // time. we prefer to fold LI operand as LI only has one Imm operand
3253 // and is more possible to be converted. So if current DefMI is
3254 // ADDI/ADDI8, we continue to find possible LI/LI8.
3255 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3256 break;
3260 } else {
3261 // Looking back through the definition for each operand could be expensive,
3262 // so exit early if this isn't an instruction that either has an immediate
3263 // form or is already an immediate form that we can handle.
3264 ImmInstrInfo III;
3265 unsigned Opc = MI.getOpcode();
3266 bool ConvertibleImmForm =
3267 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3268 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3269 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3270 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3271 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3272 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3273 Opc == PPC::RLWINM8_rec;
3274 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3275 ? isVFRegister(MI.getOperand(0).getReg())
3276 : false;
3277 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3278 return nullptr;
3280 // Don't convert or %X, %Y, %Y since that's just a register move.
3281 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3282 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3283 return nullptr;
3284 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3285 MachineOperand &MO = MI.getOperand(i);
3286 SeenIntermediateUse = false;
3287 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3288 Register Reg = MI.getOperand(i).getReg();
3289 // If we see another use of this reg between the def and the MI,
3290 // we want to flat it so the def isn't deleted.
3291 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3292 if (DefMI) {
3293 // Is this register defined by some form of add-immediate (including
3294 // load-immediate) within this basic block?
3295 switch (DefMI->getOpcode()) {
3296 default:
3297 break;
3298 case PPC::LI:
3299 case PPC::LI8:
3300 case PPC::ADDItocL:
3301 case PPC::ADDI:
3302 case PPC::ADDI8:
3303 OpNoForForwarding = i;
3304 return DefMI;
3310 return OpNoForForwarding == ~0U ? nullptr : DefMI;
3313 unsigned PPCInstrInfo::getSpillTarget() const {
3314 // With P10, we may need to spill paired vector registers or accumulator
3315 // registers. MMA implies paired vectors, so we can just check that.
3316 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3317 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
3320 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3321 return StoreSpillOpcodesArray[getSpillTarget()];
3324 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3325 return LoadSpillOpcodesArray[getSpillTarget()];
3328 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
3329 unsigned RegNo) const {
3330 // Conservatively clear kill flag for the register if the instructions are in
3331 // different basic blocks and in SSA form, because the kill flag may no longer
3332 // be right. There is no need to bother with dead flags since defs with no
3333 // uses will be handled by DCE.
3334 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
3335 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
3336 MRI.clearKillFlags(RegNo);
3337 return;
3340 // Instructions between [StartMI, EndMI] should be in same basic block.
3341 assert((StartMI->getParent() == EndMI->getParent()) &&
3342 "Instructions are not in same basic block");
3344 // If before RA, StartMI may be def through COPY, we need to adjust it to the
3345 // real def. See function getForwardingDefMI.
3346 if (MRI.isSSA()) {
3347 bool Reads, Writes;
3348 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
3349 if (!Reads && !Writes) {
3350 assert(Register::isVirtualRegister(RegNo) &&
3351 "Must be a virtual register");
3352 // Get real def and ignore copies.
3353 StartMI = MRI.getVRegDef(RegNo);
3357 bool IsKillSet = false;
3359 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
3360 MachineOperand &MO = MI.getOperand(Index);
3361 if (MO.isReg() && MO.isUse() && MO.isKill() &&
3362 getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
3363 MO.setIsKill(false);
3366 // Set killed flag for EndMI.
3367 // No need to do anything if EndMI defines RegNo.
3368 int UseIndex =
3369 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
3370 if (UseIndex != -1) {
3371 EndMI->getOperand(UseIndex).setIsKill(true);
3372 IsKillSet = true;
3373 // Clear killed flag for other EndMI operands related to RegNo. In some
3374 // upexpected cases, killed may be set multiple times for same register
3375 // operand in same MI.
3376 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
3377 if (i != UseIndex)
3378 clearOperandKillInfo(*EndMI, i);
3381 // Walking the inst in reverse order (EndMI -> StartMI].
3382 MachineBasicBlock::reverse_iterator It = *EndMI;
3383 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
3384 // EndMI has been handled above, skip it here.
3385 It++;
3386 MachineOperand *MO = nullptr;
3387 for (; It != E; ++It) {
3388 // Skip insturctions which could not be a def/use of RegNo.
3389 if (It->isDebugInstr() || It->isPosition())
3390 continue;
3392 // Clear killed flag for all It operands related to RegNo. In some
3393 // upexpected cases, killed may be set multiple times for same register
3394 // operand in same MI.
3395 for (int i = 0, e = It->getNumOperands(); i != e; ++i)
3396 clearOperandKillInfo(*It, i);
3398 // If killed is not set, set killed for its last use or set dead for its def
3399 // if no use found.
3400 if (!IsKillSet) {
3401 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
3402 // Use found, set it killed.
3403 IsKillSet = true;
3404 MO->setIsKill(true);
3405 continue;
3406 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
3407 &getRegisterInfo()))) {
3408 // No use found, set dead for its def.
3409 assert(&*It == StartMI && "No new def between StartMI and EndMI.");
3410 MO->setIsDead(true);
3411 break;
3415 if ((&*It) == StartMI)
3416 break;
3418 // Ensure RegMo liveness is killed after EndMI.
3419 assert((IsKillSet || (MO && MO->isDead())) &&
3420 "RegNo should be killed or dead");
3423 // This opt tries to convert the following imm form to an index form to save an
3424 // add for stack variables.
3425 // Return false if no such pattern found.
3427 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3428 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3429 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed)
3431 // can be converted to:
3433 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3434 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed)
3436 // In order to eliminate ADD instr, make sure that:
3437 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3438 // new ADDI instr and ADDI can only take int16 Imm.
3439 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3440 // between ADDI and ADD instr since its original def in ADDI will be changed
3441 // in new ADDI instr. And also there should be no new def for it between
3442 // ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3443 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3444 // between ADD and Imm instr since ADD instr will be eliminated.
3445 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3446 // moved to Index instr.
3447 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3448 MachineFunction *MF = MI.getParent()->getParent();
3449 MachineRegisterInfo *MRI = &MF->getRegInfo();
3450 bool PostRA = !MRI->isSSA();
3451 // Do this opt after PEI which is after RA. The reason is stack slot expansion
3452 // in PEI may expose such opportunities since in PEI, stack slot offsets to
3453 // frame base(OffsetAddi) are determined.
3454 if (!PostRA)
3455 return false;
3456 unsigned ToBeDeletedReg = 0;
3457 int64_t OffsetImm = 0;
3458 unsigned XFormOpcode = 0;
3459 ImmInstrInfo III;
3461 // Check if Imm instr meets requirement.
3462 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3463 III))
3464 return false;
3466 bool OtherIntermediateUse = false;
3467 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3469 // Exit if there is other use between ADD and Imm instr or no def found.
3470 if (OtherIntermediateUse || !ADDMI)
3471 return false;
3473 // Check if ADD instr meets requirement.
3474 if (!isADDInstrEligibleForFolding(*ADDMI))
3475 return false;
3477 unsigned ScaleRegIdx = 0;
3478 int64_t OffsetAddi = 0;
3479 MachineInstr *ADDIMI = nullptr;
3481 // Check if there is a valid ToBeChangedReg in ADDMI.
3482 // 1: It must be killed.
3483 // 2: Its definition must be a valid ADDIMI.
3484 // 3: It must satify int16 offset requirement.
3485 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3486 ScaleRegIdx = 2;
3487 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3488 ScaleRegIdx = 1;
3489 else
3490 return false;
3492 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3493 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3494 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3495 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3496 MachineBasicBlock::iterator End) {
3497 for (auto It = ++Start; It != End; It++)
3498 if (It->modifiesRegister(Reg, &getRegisterInfo()))
3499 return true;
3500 return false;
3503 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3504 // treated as special zero when ScaleReg is R0/X0 register.
3505 if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3506 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3507 return false;
3509 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3510 // and Imm Instr.
3511 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3512 return false;
3514 // Now start to do the transformation.
3515 LLVM_DEBUG(dbgs() << "Replace instruction: "
3516 << "\n");
3517 LLVM_DEBUG(ADDIMI->dump());
3518 LLVM_DEBUG(ADDMI->dump());
3519 LLVM_DEBUG(MI.dump());
3520 LLVM_DEBUG(dbgs() << "with: "
3521 << "\n");
3523 // Update ADDI instr.
3524 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3526 // Update Imm instr.
3527 MI.setDesc(get(XFormOpcode));
3528 MI.getOperand(III.ImmOpNo)
3529 .ChangeToRegister(ScaleReg, false, false,
3530 ADDMI->getOperand(ScaleRegIdx).isKill());
3532 MI.getOperand(III.OpNoForForwarding)
3533 .ChangeToRegister(ToBeChangedReg, false, false, true);
3535 // Eliminate ADD instr.
3536 ADDMI->eraseFromParent();
3538 LLVM_DEBUG(ADDIMI->dump());
3539 LLVM_DEBUG(MI.dump());
3541 return true;
3544 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3545 int64_t &Imm) const {
3546 unsigned Opc = ADDIMI.getOpcode();
3548 // Exit if the instruction is not ADDI.
3549 if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3550 return false;
3552 // The operand may not necessarily be an immediate - it could be a relocation.
3553 if (!ADDIMI.getOperand(2).isImm())
3554 return false;
3556 Imm = ADDIMI.getOperand(2).getImm();
3558 return true;
3561 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3562 unsigned Opc = ADDMI.getOpcode();
3564 // Exit if the instruction is not ADD.
3565 return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3568 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3569 unsigned &ToBeDeletedReg,
3570 unsigned &XFormOpcode,
3571 int64_t &OffsetImm,
3572 ImmInstrInfo &III) const {
3573 // Only handle load/store.
3574 if (!MI.mayLoadOrStore())
3575 return false;
3577 unsigned Opc = MI.getOpcode();
3579 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3581 // Exit if instruction has no index form.
3582 if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3583 return false;
3585 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3586 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3587 III, true))
3588 return false;
3590 if (!III.IsSummingOperands)
3591 return false;
3593 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3594 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3595 // Only support imm operands, not relocation slots or others.
3596 if (!ImmOperand.isImm())
3597 return false;
3599 assert(RegOperand.isReg() && "Instruction format is not right");
3601 // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3602 if (!RegOperand.isKill())
3603 return false;
3605 ToBeDeletedReg = RegOperand.getReg();
3606 OffsetImm = ImmOperand.getImm();
3608 return true;
3611 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3612 MachineInstr *&ADDIMI,
3613 int64_t &OffsetAddi,
3614 int64_t OffsetImm) const {
3615 assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3616 MachineOperand &MO = ADDMI->getOperand(Index);
3618 if (!MO.isKill())
3619 return false;
3621 bool OtherIntermediateUse = false;
3623 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3624 // Currently handle only one "add + Imminstr" pair case, exit if other
3625 // intermediate use for ToBeChangedReg found.
3626 // TODO: handle the cases where there are other "add + Imminstr" pairs
3627 // with same offset in Imminstr which is like:
3629 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3630 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3631 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed)
3632 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3633 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed)
3635 // can be converted to:
3637 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3638 // (OffsetAddi + OffsetImm)
3639 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg
3640 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed)
3642 if (OtherIntermediateUse || !ADDIMI)
3643 return false;
3644 // Check if ADDI instr meets requirement.
3645 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3646 return false;
3648 if (isInt<16>(OffsetAddi + OffsetImm))
3649 return true;
3650 return false;
3653 // If this instruction has an immediate form and one of its operands is a
3654 // result of a load-immediate or an add-immediate, convert it to
3655 // the immediate form if the constant is in range.
3656 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3657 MachineInstr **KilledDef) const {
3658 MachineFunction *MF = MI.getParent()->getParent();
3659 MachineRegisterInfo *MRI = &MF->getRegInfo();
3660 bool PostRA = !MRI->isSSA();
3661 bool SeenIntermediateUse = true;
3662 unsigned ForwardingOperand = ~0U;
3663 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3664 SeenIntermediateUse);
3665 if (!DefMI)
3666 return false;
3667 assert(ForwardingOperand < MI.getNumOperands() &&
3668 "The forwarding operand needs to be valid at this point");
3669 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3670 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3671 if (KilledDef && KillFwdDefMI)
3672 *KilledDef = DefMI;
3674 // If this is a imm instruction and its register operands is produced by ADDI,
3675 // put the imm into imm inst directly.
3676 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3677 PPC::INSTRUCTION_LIST_END &&
3678 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3679 return true;
3681 ImmInstrInfo III;
3682 bool IsVFReg = MI.getOperand(0).isReg()
3683 ? isVFRegister(MI.getOperand(0).getReg())
3684 : false;
3685 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3686 // If this is a reg+reg instruction that has a reg+imm form,
3687 // and one of the operands is produced by an add-immediate,
3688 // try to convert it.
3689 if (HasImmForm &&
3690 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3691 KillFwdDefMI))
3692 return true;
3694 // If this is a reg+reg instruction that has a reg+imm form,
3695 // and one of the operands is produced by LI, convert it now.
3696 if (HasImmForm &&
3697 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3698 return true;
3700 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3701 // can be simpified to LI.
3702 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3703 return true;
3705 return false;
3708 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3709 MachineInstr **ToErase) const {
3710 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3711 unsigned FoldingReg = MI.getOperand(1).getReg();
3712 if (!Register::isVirtualRegister(FoldingReg))
3713 return false;
3714 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3715 if (SrcMI->getOpcode() != PPC::RLWINM &&
3716 SrcMI->getOpcode() != PPC::RLWINM_rec &&
3717 SrcMI->getOpcode() != PPC::RLWINM8 &&
3718 SrcMI->getOpcode() != PPC::RLWINM8_rec)
3719 return false;
3720 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3721 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3722 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3723 "Invalid PPC::RLWINM Instruction!");
3724 uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3725 uint64_t SHMI = MI.getOperand(2).getImm();
3726 uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3727 uint64_t MBMI = MI.getOperand(3).getImm();
3728 uint64_t MESrc = SrcMI->getOperand(4).getImm();
3729 uint64_t MEMI = MI.getOperand(4).getImm();
3731 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3732 "Invalid PPC::RLWINM Instruction!");
3733 // If MBMI is bigger than MEMI, we always can not get run of ones.
3734 // RotatedSrcMask non-wrap:
3735 // 0........31|32........63
3736 // RotatedSrcMask: B---E B---E
3737 // MaskMI: -----------|--E B------
3738 // Result: ----- --- (Bad candidate)
3740 // RotatedSrcMask wrap:
3741 // 0........31|32........63
3742 // RotatedSrcMask: --E B----|--E B----
3743 // MaskMI: -----------|--E B------
3744 // Result: --- -----|--- ----- (Bad candidate)
3746 // One special case is RotatedSrcMask is a full set mask.
3747 // RotatedSrcMask full:
3748 // 0........31|32........63
3749 // RotatedSrcMask: ------EB---|-------EB---
3750 // MaskMI: -----------|--E B------
3751 // Result: -----------|--- ------- (Good candidate)
3753 // Mark special case.
3754 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3756 // For other MBMI > MEMI cases, just return.
3757 if ((MBMI > MEMI) && !SrcMaskFull)
3758 return false;
3760 // Handle MBMI <= MEMI cases.
3761 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3762 // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3763 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3764 // while in PowerPC ISA, lowerest bit is at index 63.
3765 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3767 APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3768 APInt FinalMask = RotatedSrcMask & MaskMI;
3769 uint32_t NewMB, NewME;
3770 bool Simplified = false;
3772 // If final mask is 0, MI result should be 0 too.
3773 if (FinalMask.isNullValue()) {
3774 bool Is64Bit =
3775 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3776 Simplified = true;
3777 LLVM_DEBUG(dbgs() << "Replace Instr: ");
3778 LLVM_DEBUG(MI.dump());
3780 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3781 // Replace MI with "LI 0"
3782 MI.RemoveOperand(4);
3783 MI.RemoveOperand(3);
3784 MI.RemoveOperand(2);
3785 MI.getOperand(1).ChangeToImmediate(0);
3786 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3787 } else {
3788 // Replace MI with "ANDI_rec reg, 0"
3789 MI.RemoveOperand(4);
3790 MI.RemoveOperand(3);
3791 MI.getOperand(2).setImm(0);
3792 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3793 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3794 if (SrcMI->getOperand(1).isKill()) {
3795 MI.getOperand(1).setIsKill(true);
3796 SrcMI->getOperand(1).setIsKill(false);
3797 } else
3798 // About to replace MI.getOperand(1), clear its kill flag.
3799 MI.getOperand(1).setIsKill(false);
3802 LLVM_DEBUG(dbgs() << "With: ");
3803 LLVM_DEBUG(MI.dump());
3805 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3806 NewMB <= NewME) ||
3807 SrcMaskFull) {
3808 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3809 // than NewME. Otherwise we get a 64 bit value after folding, but MI
3810 // return a 32 bit value.
3811 Simplified = true;
3812 LLVM_DEBUG(dbgs() << "Converting Instr: ");
3813 LLVM_DEBUG(MI.dump());
3815 uint16_t NewSH = (SHSrc + SHMI) % 32;
3816 MI.getOperand(2).setImm(NewSH);
3817 // If SrcMI mask is full, no need to update MBMI and MEMI.
3818 if (!SrcMaskFull) {
3819 MI.getOperand(3).setImm(NewMB);
3820 MI.getOperand(4).setImm(NewME);
3822 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3823 if (SrcMI->getOperand(1).isKill()) {
3824 MI.getOperand(1).setIsKill(true);
3825 SrcMI->getOperand(1).setIsKill(false);
3826 } else
3827 // About to replace MI.getOperand(1), clear its kill flag.
3828 MI.getOperand(1).setIsKill(false);
3830 LLVM_DEBUG(dbgs() << "To: ");
3831 LLVM_DEBUG(MI.dump());
3833 if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3834 !SrcMI->hasImplicitDef()) {
3835 // If FoldingReg has no non-debug use and it has no implicit def (it
3836 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3837 // Otherwise keep it.
3838 *ToErase = SrcMI;
3839 LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3840 LLVM_DEBUG(SrcMI->dump());
3842 return Simplified;
3845 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3846 ImmInstrInfo &III, bool PostRA) const {
3847 // The vast majority of the instructions would need their operand 2 replaced
3848 // with an immediate when switching to the reg+imm form. A marked exception
3849 // are the update form loads/stores for which a constant operand 2 would need
3850 // to turn into a displacement and move operand 1 to the operand 2 position.
3851 III.ImmOpNo = 2;
3852 III.OpNoForForwarding = 2;
3853 III.ImmWidth = 16;
3854 III.ImmMustBeMultipleOf = 1;
3855 III.TruncateImmTo = 0;
3856 III.IsSummingOperands = false;
3857 switch (Opc) {
3858 default: return false;
3859 case PPC::ADD4:
3860 case PPC::ADD8:
3861 III.SignedImm = true;
3862 III.ZeroIsSpecialOrig = 0;
3863 III.ZeroIsSpecialNew = 1;
3864 III.IsCommutative = true;
3865 III.IsSummingOperands = true;
3866 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3867 break;
3868 case PPC::ADDC:
3869 case PPC::ADDC8:
3870 III.SignedImm = true;
3871 III.ZeroIsSpecialOrig = 0;
3872 III.ZeroIsSpecialNew = 0;
3873 III.IsCommutative = true;
3874 III.IsSummingOperands = true;
3875 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3876 break;
3877 case PPC::ADDC_rec:
3878 III.SignedImm = true;
3879 III.ZeroIsSpecialOrig = 0;
3880 III.ZeroIsSpecialNew = 0;
3881 III.IsCommutative = true;
3882 III.IsSummingOperands = true;
3883 III.ImmOpcode = PPC::ADDIC_rec;
3884 break;
3885 case PPC::SUBFC:
3886 case PPC::SUBFC8:
3887 III.SignedImm = true;
3888 III.ZeroIsSpecialOrig = 0;
3889 III.ZeroIsSpecialNew = 0;
3890 III.IsCommutative = false;
3891 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3892 break;
3893 case PPC::CMPW:
3894 case PPC::CMPD:
3895 III.SignedImm = true;
3896 III.ZeroIsSpecialOrig = 0;
3897 III.ZeroIsSpecialNew = 0;
3898 III.IsCommutative = false;
3899 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3900 break;
3901 case PPC::CMPLW:
3902 case PPC::CMPLD:
3903 III.SignedImm = false;
3904 III.ZeroIsSpecialOrig = 0;
3905 III.ZeroIsSpecialNew = 0;
3906 III.IsCommutative = false;
3907 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3908 break;
3909 case PPC::AND_rec:
3910 case PPC::AND8_rec:
3911 case PPC::OR:
3912 case PPC::OR8:
3913 case PPC::XOR:
3914 case PPC::XOR8:
3915 III.SignedImm = false;
3916 III.ZeroIsSpecialOrig = 0;
3917 III.ZeroIsSpecialNew = 0;
3918 III.IsCommutative = true;
3919 switch(Opc) {
3920 default: llvm_unreachable("Unknown opcode");
3921 case PPC::AND_rec:
3922 III.ImmOpcode = PPC::ANDI_rec;
3923 break;
3924 case PPC::AND8_rec:
3925 III.ImmOpcode = PPC::ANDI8_rec;
3926 break;
3927 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3928 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3929 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3930 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3932 break;
3933 case PPC::RLWNM:
3934 case PPC::RLWNM8:
3935 case PPC::RLWNM_rec:
3936 case PPC::RLWNM8_rec:
3937 case PPC::SLW:
3938 case PPC::SLW8:
3939 case PPC::SLW_rec:
3940 case PPC::SLW8_rec:
3941 case PPC::SRW:
3942 case PPC::SRW8:
3943 case PPC::SRW_rec:
3944 case PPC::SRW8_rec:
3945 case PPC::SRAW:
3946 case PPC::SRAW_rec:
3947 III.SignedImm = false;
3948 III.ZeroIsSpecialOrig = 0;
3949 III.ZeroIsSpecialNew = 0;
3950 III.IsCommutative = false;
3951 // This isn't actually true, but the instructions ignore any of the
3952 // upper bits, so any immediate loaded with an LI is acceptable.
3953 // This does not apply to shift right algebraic because a value
3954 // out of range will produce a -1/0.
3955 III.ImmWidth = 16;
3956 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3957 Opc == PPC::RLWNM8_rec)
3958 III.TruncateImmTo = 5;
3959 else
3960 III.TruncateImmTo = 6;
3961 switch(Opc) {
3962 default: llvm_unreachable("Unknown opcode");
3963 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3964 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3965 case PPC::RLWNM_rec:
3966 III.ImmOpcode = PPC::RLWINM_rec;
3967 break;
3968 case PPC::RLWNM8_rec:
3969 III.ImmOpcode = PPC::RLWINM8_rec;
3970 break;
3971 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3972 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3973 case PPC::SLW_rec:
3974 III.ImmOpcode = PPC::RLWINM_rec;
3975 break;
3976 case PPC::SLW8_rec:
3977 III.ImmOpcode = PPC::RLWINM8_rec;
3978 break;
3979 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3980 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3981 case PPC::SRW_rec:
3982 III.ImmOpcode = PPC::RLWINM_rec;
3983 break;
3984 case PPC::SRW8_rec:
3985 III.ImmOpcode = PPC::RLWINM8_rec;
3986 break;
3987 case PPC::SRAW:
3988 III.ImmWidth = 5;
3989 III.TruncateImmTo = 0;
3990 III.ImmOpcode = PPC::SRAWI;
3991 break;
3992 case PPC::SRAW_rec:
3993 III.ImmWidth = 5;
3994 III.TruncateImmTo = 0;
3995 III.ImmOpcode = PPC::SRAWI_rec;
3996 break;
3998 break;
3999 case PPC::RLDCL:
4000 case PPC::RLDCL_rec:
4001 case PPC::RLDCR:
4002 case PPC::RLDCR_rec:
4003 case PPC::SLD:
4004 case PPC::SLD_rec:
4005 case PPC::SRD:
4006 case PPC::SRD_rec:
4007 case PPC::SRAD:
4008 case PPC::SRAD_rec:
4009 III.SignedImm = false;
4010 III.ZeroIsSpecialOrig = 0;
4011 III.ZeroIsSpecialNew = 0;
4012 III.IsCommutative = false;
4013 // This isn't actually true, but the instructions ignore any of the
4014 // upper bits, so any immediate loaded with an LI is acceptable.
4015 // This does not apply to shift right algebraic because a value
4016 // out of range will produce a -1/0.
4017 III.ImmWidth = 16;
4018 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4019 Opc == PPC::RLDCR_rec)
4020 III.TruncateImmTo = 6;
4021 else
4022 III.TruncateImmTo = 7;
4023 switch(Opc) {
4024 default: llvm_unreachable("Unknown opcode");
4025 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4026 case PPC::RLDCL_rec:
4027 III.ImmOpcode = PPC::RLDICL_rec;
4028 break;
4029 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4030 case PPC::RLDCR_rec:
4031 III.ImmOpcode = PPC::RLDICR_rec;
4032 break;
4033 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4034 case PPC::SLD_rec:
4035 III.ImmOpcode = PPC::RLDICR_rec;
4036 break;
4037 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4038 case PPC::SRD_rec:
4039 III.ImmOpcode = PPC::RLDICL_rec;
4040 break;
4041 case PPC::SRAD:
4042 III.ImmWidth = 6;
4043 III.TruncateImmTo = 0;
4044 III.ImmOpcode = PPC::SRADI;
4045 break;
4046 case PPC::SRAD_rec:
4047 III.ImmWidth = 6;
4048 III.TruncateImmTo = 0;
4049 III.ImmOpcode = PPC::SRADI_rec;
4050 break;
4052 break;
4053 // Loads and stores:
4054 case PPC::LBZX:
4055 case PPC::LBZX8:
4056 case PPC::LHZX:
4057 case PPC::LHZX8:
4058 case PPC::LHAX:
4059 case PPC::LHAX8:
4060 case PPC::LWZX:
4061 case PPC::LWZX8:
4062 case PPC::LWAX:
4063 case PPC::LDX:
4064 case PPC::LFSX:
4065 case PPC::LFDX:
4066 case PPC::STBX:
4067 case PPC::STBX8:
4068 case PPC::STHX:
4069 case PPC::STHX8:
4070 case PPC::STWX:
4071 case PPC::STWX8:
4072 case PPC::STDX:
4073 case PPC::STFSX:
4074 case PPC::STFDX:
4075 III.SignedImm = true;
4076 III.ZeroIsSpecialOrig = 1;
4077 III.ZeroIsSpecialNew = 2;
4078 III.IsCommutative = true;
4079 III.IsSummingOperands = true;
4080 III.ImmOpNo = 1;
4081 III.OpNoForForwarding = 2;
4082 switch(Opc) {
4083 default: llvm_unreachable("Unknown opcode");
4084 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4085 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4086 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4087 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4088 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4089 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4090 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4091 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4092 case PPC::LWAX:
4093 III.ImmOpcode = PPC::LWA;
4094 III.ImmMustBeMultipleOf = 4;
4095 break;
4096 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4097 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4098 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4099 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4100 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4101 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4102 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4103 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4104 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4105 case PPC::STDX:
4106 III.ImmOpcode = PPC::STD;
4107 III.ImmMustBeMultipleOf = 4;
4108 break;
4109 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4110 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4112 break;
4113 case PPC::LBZUX:
4114 case PPC::LBZUX8:
4115 case PPC::LHZUX:
4116 case PPC::LHZUX8:
4117 case PPC::LHAUX:
4118 case PPC::LHAUX8:
4119 case PPC::LWZUX:
4120 case PPC::LWZUX8:
4121 case PPC::LDUX:
4122 case PPC::LFSUX:
4123 case PPC::LFDUX:
4124 case PPC::STBUX:
4125 case PPC::STBUX8:
4126 case PPC::STHUX:
4127 case PPC::STHUX8:
4128 case PPC::STWUX:
4129 case PPC::STWUX8:
4130 case PPC::STDUX:
4131 case PPC::STFSUX:
4132 case PPC::STFDUX:
4133 III.SignedImm = true;
4134 III.ZeroIsSpecialOrig = 2;
4135 III.ZeroIsSpecialNew = 3;
4136 III.IsCommutative = false;
4137 III.IsSummingOperands = true;
4138 III.ImmOpNo = 2;
4139 III.OpNoForForwarding = 3;
4140 switch(Opc) {
4141 default: llvm_unreachable("Unknown opcode");
4142 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4143 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4144 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4145 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4146 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4147 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4148 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4149 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4150 case PPC::LDUX:
4151 III.ImmOpcode = PPC::LDU;
4152 III.ImmMustBeMultipleOf = 4;
4153 break;
4154 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4155 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4156 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4157 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4158 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4159 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4160 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4161 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4162 case PPC::STDUX:
4163 III.ImmOpcode = PPC::STDU;
4164 III.ImmMustBeMultipleOf = 4;
4165 break;
4166 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4167 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4169 break;
4170 // Power9 and up only. For some of these, the X-Form version has access to all
4171 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4172 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4173 // into or stored from is one of the VR registers.
4174 case PPC::LXVX:
4175 case PPC::LXSSPX:
4176 case PPC::LXSDX:
4177 case PPC::STXVX:
4178 case PPC::STXSSPX:
4179 case PPC::STXSDX:
4180 case PPC::XFLOADf32:
4181 case PPC::XFLOADf64:
4182 case PPC::XFSTOREf32:
4183 case PPC::XFSTOREf64:
4184 if (!Subtarget.hasP9Vector())
4185 return false;
4186 III.SignedImm = true;
4187 III.ZeroIsSpecialOrig = 1;
4188 III.ZeroIsSpecialNew = 2;
4189 III.IsCommutative = true;
4190 III.IsSummingOperands = true;
4191 III.ImmOpNo = 1;
4192 III.OpNoForForwarding = 2;
4193 III.ImmMustBeMultipleOf = 4;
4194 switch(Opc) {
4195 default: llvm_unreachable("Unknown opcode");
4196 case PPC::LXVX:
4197 III.ImmOpcode = PPC::LXV;
4198 III.ImmMustBeMultipleOf = 16;
4199 break;
4200 case PPC::LXSSPX:
4201 if (PostRA) {
4202 if (IsVFReg)
4203 III.ImmOpcode = PPC::LXSSP;
4204 else {
4205 III.ImmOpcode = PPC::LFS;
4206 III.ImmMustBeMultipleOf = 1;
4208 break;
4210 LLVM_FALLTHROUGH;
4211 case PPC::XFLOADf32:
4212 III.ImmOpcode = PPC::DFLOADf32;
4213 break;
4214 case PPC::LXSDX:
4215 if (PostRA) {
4216 if (IsVFReg)
4217 III.ImmOpcode = PPC::LXSD;
4218 else {
4219 III.ImmOpcode = PPC::LFD;
4220 III.ImmMustBeMultipleOf = 1;
4222 break;
4224 LLVM_FALLTHROUGH;
4225 case PPC::XFLOADf64:
4226 III.ImmOpcode = PPC::DFLOADf64;
4227 break;
4228 case PPC::STXVX:
4229 III.ImmOpcode = PPC::STXV;
4230 III.ImmMustBeMultipleOf = 16;
4231 break;
4232 case PPC::STXSSPX:
4233 if (PostRA) {
4234 if (IsVFReg)
4235 III.ImmOpcode = PPC::STXSSP;
4236 else {
4237 III.ImmOpcode = PPC::STFS;
4238 III.ImmMustBeMultipleOf = 1;
4240 break;
4242 LLVM_FALLTHROUGH;
4243 case PPC::XFSTOREf32:
4244 III.ImmOpcode = PPC::DFSTOREf32;
4245 break;
4246 case PPC::STXSDX:
4247 if (PostRA) {
4248 if (IsVFReg)
4249 III.ImmOpcode = PPC::STXSD;
4250 else {
4251 III.ImmOpcode = PPC::STFD;
4252 III.ImmMustBeMultipleOf = 1;
4254 break;
4256 LLVM_FALLTHROUGH;
4257 case PPC::XFSTOREf64:
4258 III.ImmOpcode = PPC::DFSTOREf64;
4259 break;
4261 break;
4263 return true;
4266 // Utility function for swaping two arbitrary operands of an instruction.
4267 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4268 assert(Op1 != Op2 && "Cannot swap operand with itself.");
4270 unsigned MaxOp = std::max(Op1, Op2);
4271 unsigned MinOp = std::min(Op1, Op2);
4272 MachineOperand MOp1 = MI.getOperand(MinOp);
4273 MachineOperand MOp2 = MI.getOperand(MaxOp);
4274 MI.RemoveOperand(std::max(Op1, Op2));
4275 MI.RemoveOperand(std::min(Op1, Op2));
4277 // If the operands we are swapping are the two at the end (the common case)
4278 // we can just remove both and add them in the opposite order.
4279 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4280 MI.addOperand(MOp2);
4281 MI.addOperand(MOp1);
4282 } else {
4283 // Store all operands in a temporary vector, remove them and re-add in the
4284 // right order.
4285 SmallVector<MachineOperand, 2> MOps;
4286 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4287 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4288 MOps.push_back(MI.getOperand(i));
4289 MI.RemoveOperand(i);
4291 // MOp2 needs to be added next.
4292 MI.addOperand(MOp2);
4293 // Now add the rest.
4294 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4295 if (i == MaxOp)
4296 MI.addOperand(MOp1);
4297 else {
4298 MI.addOperand(MOps.back());
4299 MOps.pop_back();
4305 // Check if the 'MI' that has the index OpNoForForwarding
4306 // meets the requirement described in the ImmInstrInfo.
4307 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4308 const ImmInstrInfo &III,
4309 unsigned OpNoForForwarding
4310 ) const {
4311 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4312 // would not work pre-RA, we can only do the check post RA.
4313 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4314 if (MRI.isSSA())
4315 return false;
4317 // Cannot do the transform if MI isn't summing the operands.
4318 if (!III.IsSummingOperands)
4319 return false;
4321 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4322 if (!III.ZeroIsSpecialOrig)
4323 return false;
4325 // We cannot do the transform if the operand we are trying to replace
4326 // isn't the same as the operand the instruction allows.
4327 if (OpNoForForwarding != III.OpNoForForwarding)
4328 return false;
4330 // Check if the instruction we are trying to transform really has
4331 // the special zero register as its operand.
4332 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4333 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4334 return false;
4336 // This machine instruction is convertible if it is,
4337 // 1. summing the operands.
4338 // 2. one of the operands is special zero register.
4339 // 3. the operand we are trying to replace is allowed by the MI.
4340 return true;
4343 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4344 // accordingly.
4345 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4346 const ImmInstrInfo &III,
4347 MachineOperand *&ImmMO,
4348 MachineOperand *&RegMO) const {
4349 unsigned Opc = DefMI.getOpcode();
4350 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4351 return false;
4353 assert(DefMI.getNumOperands() >= 3 &&
4354 "Add inst must have at least three operands");
4355 RegMO = &DefMI.getOperand(1);
4356 ImmMO = &DefMI.getOperand(2);
4358 // Before RA, ADDI first operand could be a frame index.
4359 if (!RegMO->isReg())
4360 return false;
4362 // This DefMI is elgible for forwarding if it is:
4363 // 1. add inst
4364 // 2. one of the operands is Imm/CPI/Global.
4365 return isAnImmediateOperand(*ImmMO);
4368 bool PPCInstrInfo::isRegElgibleForForwarding(
4369 const MachineOperand &RegMO, const MachineInstr &DefMI,
4370 const MachineInstr &MI, bool KillDefMI,
4371 bool &IsFwdFeederRegKilled) const {
4372 // x = addi y, imm
4373 // ...
4374 // z = lfdx 0, x -> z = lfd imm(y)
4375 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4376 // of "y" between the DEF of "x" and "z".
4377 // The query is only valid post RA.
4378 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4379 if (MRI.isSSA())
4380 return false;
4382 Register Reg = RegMO.getReg();
4384 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4385 MachineBasicBlock::const_reverse_iterator It = MI;
4386 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4387 It++;
4388 for (; It != E; ++It) {
4389 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4390 return false;
4391 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4392 IsFwdFeederRegKilled = true;
4393 // Made it to DefMI without encountering a clobber.
4394 if ((&*It) == &DefMI)
4395 break;
4397 assert((&*It) == &DefMI && "DefMI is missing");
4399 // If DefMI also defines the register to be forwarded, we can only forward it
4400 // if DefMI is being erased.
4401 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4402 return KillDefMI;
4404 return true;
4407 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4408 const MachineInstr &DefMI,
4409 const ImmInstrInfo &III,
4410 int64_t &Imm,
4411 int64_t BaseImm) const {
4412 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4413 if (DefMI.getOpcode() == PPC::ADDItocL) {
4414 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
4415 // However, we know that, it is 16-bit width, and has the alignment of 4.
4416 // Check if the instruction met the requirement.
4417 if (III.ImmMustBeMultipleOf > 4 ||
4418 III.TruncateImmTo || III.ImmWidth != 16)
4419 return false;
4421 // Going from XForm to DForm loads means that the displacement needs to be
4422 // not just an immediate but also a multiple of 4, or 16 depending on the
4423 // load. A DForm load cannot be represented if it is a multiple of say 2.
4424 // XForm loads do not have this restriction.
4425 if (ImmMO.isGlobal()) {
4426 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
4427 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4428 return false;
4431 return true;
4434 if (ImmMO.isImm()) {
4435 // It is Imm, we need to check if the Imm fit the range.
4436 // Sign-extend to 64-bits.
4437 // DefMI may be folded with another imm form instruction, the result Imm is
4438 // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4439 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4440 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4441 return false;
4442 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4443 return false;
4444 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4446 if (Imm % III.ImmMustBeMultipleOf)
4447 return false;
4448 if (III.TruncateImmTo)
4449 Imm &= ((1 << III.TruncateImmTo) - 1);
4451 else
4452 return false;
4454 // This ImmMO is forwarded if it meets the requriement describle
4455 // in ImmInstrInfo
4456 return true;
4459 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4460 unsigned OpNoForForwarding,
4461 MachineInstr **KilledDef) const {
4462 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4463 !DefMI.getOperand(1).isImm())
4464 return false;
4466 MachineFunction *MF = MI.getParent()->getParent();
4467 MachineRegisterInfo *MRI = &MF->getRegInfo();
4468 bool PostRA = !MRI->isSSA();
4470 int64_t Immediate = DefMI.getOperand(1).getImm();
4471 // Sign-extend to 64-bits.
4472 int64_t SExtImm = SignExtend64<16>(Immediate);
4474 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
4475 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4477 bool ReplaceWithLI = false;
4478 bool Is64BitLI = false;
4479 int64_t NewImm = 0;
4480 bool SetCR = false;
4481 unsigned Opc = MI.getOpcode();
4482 switch (Opc) {
4483 default:
4484 return false;
4486 // FIXME: Any branches conditional on such a comparison can be made
4487 // unconditional. At this time, this happens too infrequently to be worth
4488 // the implementation effort, but if that ever changes, we could convert
4489 // such a pattern here.
4490 case PPC::CMPWI:
4491 case PPC::CMPLWI:
4492 case PPC::CMPDI:
4493 case PPC::CMPLDI: {
4494 // Doing this post-RA would require dataflow analysis to reliably find uses
4495 // of the CR register set by the compare.
4496 // No need to fixup killed/dead flag since this transformation is only valid
4497 // before RA.
4498 if (PostRA)
4499 return false;
4500 // If a compare-immediate is fed by an immediate and is itself an input of
4501 // an ISEL (the most common case) into a COPY of the correct register.
4502 bool Changed = false;
4503 Register DefReg = MI.getOperand(0).getReg();
4504 int64_t Comparand = MI.getOperand(2).getImm();
4505 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4506 ? (Comparand | 0xFFFFFFFFFFFF0000)
4507 : Comparand;
4509 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4510 unsigned UseOpc = CompareUseMI.getOpcode();
4511 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4512 continue;
4513 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4514 Register TrueReg = CompareUseMI.getOperand(1).getReg();
4515 Register FalseReg = CompareUseMI.getOperand(2).getReg();
4516 unsigned RegToCopy =
4517 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4518 if (RegToCopy == PPC::NoRegister)
4519 continue;
4520 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4521 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4522 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4523 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4524 CompareUseMI.RemoveOperand(3);
4525 CompareUseMI.RemoveOperand(2);
4526 continue;
4528 LLVM_DEBUG(
4529 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4530 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4531 LLVM_DEBUG(dbgs() << "Is converted to:\n");
4532 // Convert to copy and remove unneeded operands.
4533 CompareUseMI.setDesc(get(PPC::COPY));
4534 CompareUseMI.RemoveOperand(3);
4535 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
4536 CmpIselsConverted++;
4537 Changed = true;
4538 LLVM_DEBUG(CompareUseMI.dump());
4540 if (Changed)
4541 return true;
4542 // This may end up incremented multiple times since this function is called
4543 // during a fixed-point transformation, but it is only meant to indicate the
4544 // presence of this opportunity.
4545 MissedConvertibleImmediateInstrs++;
4546 return false;
4549 // Immediate forms - may simply be convertable to an LI.
4550 case PPC::ADDI:
4551 case PPC::ADDI8: {
4552 // Does the sum fit in a 16-bit signed field?
4553 int64_t Addend = MI.getOperand(2).getImm();
4554 if (isInt<16>(Addend + SExtImm)) {
4555 ReplaceWithLI = true;
4556 Is64BitLI = Opc == PPC::ADDI8;
4557 NewImm = Addend + SExtImm;
4558 break;
4560 return false;
4562 case PPC::SUBFIC:
4563 case PPC::SUBFIC8: {
4564 // Only transform this if the CARRY implicit operand is dead.
4565 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4566 return false;
4567 int64_t Minuend = MI.getOperand(2).getImm();
4568 if (isInt<16>(Minuend - SExtImm)) {
4569 ReplaceWithLI = true;
4570 Is64BitLI = Opc == PPC::SUBFIC8;
4571 NewImm = Minuend - SExtImm;
4572 break;
4574 return false;
4576 case PPC::RLDICL:
4577 case PPC::RLDICL_rec:
4578 case PPC::RLDICL_32:
4579 case PPC::RLDICL_32_64: {
4580 // Use APInt's rotate function.
4581 int64_t SH = MI.getOperand(2).getImm();
4582 int64_t MB = MI.getOperand(3).getImm();
4583 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4584 SExtImm, true);
4585 InVal = InVal.rotl(SH);
4586 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4587 InVal &= Mask;
4588 // Can't replace negative values with an LI as that will sign-extend
4589 // and not clear the left bits. If we're setting the CR bit, we will use
4590 // ANDI_rec which won't sign extend, so that's safe.
4591 if (isUInt<15>(InVal.getSExtValue()) ||
4592 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4593 ReplaceWithLI = true;
4594 Is64BitLI = Opc != PPC::RLDICL_32;
4595 NewImm = InVal.getSExtValue();
4596 SetCR = Opc == PPC::RLDICL_rec;
4597 break;
4599 return false;
4601 case PPC::RLWINM:
4602 case PPC::RLWINM8:
4603 case PPC::RLWINM_rec:
4604 case PPC::RLWINM8_rec: {
4605 int64_t SH = MI.getOperand(2).getImm();
4606 int64_t MB = MI.getOperand(3).getImm();
4607 int64_t ME = MI.getOperand(4).getImm();
4608 APInt InVal(32, SExtImm, true);
4609 InVal = InVal.rotl(SH);
4610 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4611 InVal &= Mask;
4612 // Can't replace negative values with an LI as that will sign-extend
4613 // and not clear the left bits. If we're setting the CR bit, we will use
4614 // ANDI_rec which won't sign extend, so that's safe.
4615 bool ValueFits = isUInt<15>(InVal.getSExtValue());
4616 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4617 isUInt<16>(InVal.getSExtValue()));
4618 if (ValueFits) {
4619 ReplaceWithLI = true;
4620 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4621 NewImm = InVal.getSExtValue();
4622 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4623 break;
4625 return false;
4627 case PPC::ORI:
4628 case PPC::ORI8:
4629 case PPC::XORI:
4630 case PPC::XORI8: {
4631 int64_t LogicalImm = MI.getOperand(2).getImm();
4632 int64_t Result = 0;
4633 if (Opc == PPC::ORI || Opc == PPC::ORI8)
4634 Result = LogicalImm | SExtImm;
4635 else
4636 Result = LogicalImm ^ SExtImm;
4637 if (isInt<16>(Result)) {
4638 ReplaceWithLI = true;
4639 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4640 NewImm = Result;
4641 break;
4643 return false;
4647 if (ReplaceWithLI) {
4648 // We need to be careful with CR-setting instructions we're replacing.
4649 if (SetCR) {
4650 // We don't know anything about uses when we're out of SSA, so only
4651 // replace if the new immediate will be reproduced.
4652 bool ImmChanged = (SExtImm & NewImm) != NewImm;
4653 if (PostRA && ImmChanged)
4654 return false;
4656 if (!PostRA) {
4657 // If the defining load-immediate has no other uses, we can just replace
4658 // the immediate with the new immediate.
4659 if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4660 DefMI.getOperand(1).setImm(NewImm);
4662 // If we're not using the GPR result of the CR-setting instruction, we
4663 // just need to and with zero/non-zero depending on the new immediate.
4664 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4665 if (NewImm) {
4666 assert(Immediate && "Transformation converted zero to non-zero?");
4667 NewImm = Immediate;
4669 } else if (ImmChanged)
4670 return false;
4674 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4675 LLVM_DEBUG(MI.dump());
4676 LLVM_DEBUG(dbgs() << "Fed by:\n");
4677 LLVM_DEBUG(DefMI.dump());
4678 LoadImmediateInfo LII;
4679 LII.Imm = NewImm;
4680 LII.Is64Bit = Is64BitLI;
4681 LII.SetCR = SetCR;
4682 // If we're setting the CR, the original load-immediate must be kept (as an
4683 // operand to ANDI_rec/ANDI8_rec).
4684 if (KilledDef && SetCR)
4685 *KilledDef = nullptr;
4686 replaceInstrWithLI(MI, LII);
4688 // Fixup killed/dead flag after transformation.
4689 // Pattern:
4690 // ForwardingOperandReg = LI imm1
4691 // y = op2 imm2, ForwardingOperandReg(killed)
4692 if (IsForwardingOperandKilled)
4693 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4695 LLVM_DEBUG(dbgs() << "With:\n");
4696 LLVM_DEBUG(MI.dump());
4697 return true;
4699 return false;
4702 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4703 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4704 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4705 bool PostRA = !MRI->isSSA();
4706 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4707 // for post-ra.
4708 if (PostRA)
4709 return false;
4711 // Only handle load/store.
4712 if (!MI.mayLoadOrStore())
4713 return false;
4715 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4717 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4718 "MI must have x-form opcode");
4720 // get Imm Form info.
4721 ImmInstrInfo III;
4722 bool IsVFReg = MI.getOperand(0).isReg()
4723 ? isVFRegister(MI.getOperand(0).getReg())
4724 : false;
4726 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4727 return false;
4729 if (!III.IsSummingOperands)
4730 return false;
4732 if (OpNoForForwarding != III.OpNoForForwarding)
4733 return false;
4735 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4736 if (!ImmOperandMI.isImm())
4737 return false;
4739 // Check DefMI.
4740 MachineOperand *ImmMO = nullptr;
4741 MachineOperand *RegMO = nullptr;
4742 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4743 return false;
4744 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4746 // Check Imm.
4747 // Set ImmBase from imm instruction as base and get new Imm inside
4748 // isImmElgibleForForwarding.
4749 int64_t ImmBase = ImmOperandMI.getImm();
4750 int64_t Imm = 0;
4751 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4752 return false;
4754 // Get killed info in case fixup needed after transformation.
4755 unsigned ForwardKilledOperandReg = ~0U;
4756 if (MI.getOperand(III.OpNoForForwarding).isKill())
4757 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4759 // Do the transform
4760 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4761 LLVM_DEBUG(MI.dump());
4762 LLVM_DEBUG(dbgs() << "Fed by:\n");
4763 LLVM_DEBUG(DefMI.dump());
4765 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4766 if (RegMO->isKill()) {
4767 MI.getOperand(III.OpNoForForwarding).setIsKill(true);
4768 // Clear the killed flag in RegMO. Doing this here can handle some cases
4769 // that DefMI and MI are not in same basic block.
4770 RegMO->setIsKill(false);
4772 MI.getOperand(III.ImmOpNo).setImm(Imm);
4774 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4775 if (DefMI.getParent() == MI.getParent()) {
4776 // Check if reg is killed between MI and DefMI.
4777 auto IsKilledFor = [&](unsigned Reg) {
4778 MachineBasicBlock::const_reverse_iterator It = MI;
4779 MachineBasicBlock::const_reverse_iterator E = DefMI;
4780 It++;
4781 for (; It != E; ++It) {
4782 if (It->killsRegister(Reg))
4783 return true;
4785 return false;
4788 // Update kill flag
4789 if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4790 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4791 if (ForwardKilledOperandReg != ~0U)
4792 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4795 LLVM_DEBUG(dbgs() << "With:\n");
4796 LLVM_DEBUG(MI.dump());
4797 return true;
4800 // If an X-Form instruction is fed by an add-immediate and one of its operands
4801 // is the literal zero, attempt to forward the source of the add-immediate to
4802 // the corresponding D-Form instruction with the displacement coming from
4803 // the immediate being added.
4804 bool PPCInstrInfo::transformToImmFormFedByAdd(
4805 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4806 MachineInstr &DefMI, bool KillDefMI) const {
4807 // RegMO ImmMO
4808 // | |
4809 // x = addi reg, imm <----- DefMI
4810 // y = op 0 , x <----- MI
4811 // |
4812 // OpNoForForwarding
4813 // Check if the MI meet the requirement described in the III.
4814 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4815 return false;
4817 // Check if the DefMI meet the requirement
4818 // described in the III. If yes, set the ImmMO and RegMO accordingly.
4819 MachineOperand *ImmMO = nullptr;
4820 MachineOperand *RegMO = nullptr;
4821 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4822 return false;
4823 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4825 // As we get the Imm operand now, we need to check if the ImmMO meet
4826 // the requirement described in the III. If yes set the Imm.
4827 int64_t Imm = 0;
4828 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4829 return false;
4831 bool IsFwdFeederRegKilled = false;
4832 // Check if the RegMO can be forwarded to MI.
4833 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4834 IsFwdFeederRegKilled))
4835 return false;
4837 // Get killed info in case fixup needed after transformation.
4838 unsigned ForwardKilledOperandReg = ~0U;
4839 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4840 bool PostRA = !MRI.isSSA();
4841 if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4842 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4844 // We know that, the MI and DefMI both meet the pattern, and
4845 // the Imm also meet the requirement with the new Imm-form.
4846 // It is safe to do the transformation now.
4847 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4848 LLVM_DEBUG(MI.dump());
4849 LLVM_DEBUG(dbgs() << "Fed by:\n");
4850 LLVM_DEBUG(DefMI.dump());
4852 // Update the base reg first.
4853 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4854 false, false,
4855 RegMO->isKill());
4857 // Then, update the imm.
4858 if (ImmMO->isImm()) {
4859 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4860 // directly.
4861 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4863 else {
4864 // Otherwise, it is Constant Pool Index(CPI) or Global,
4865 // which is relocation in fact. We need to replace the special zero
4866 // register with ImmMO.
4867 // Before that, we need to fixup the target flags for imm.
4868 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4869 if (DefMI.getOpcode() == PPC::ADDItocL)
4870 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4872 // MI didn't have the interface such as MI.setOperand(i) though
4873 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4874 // ImmMO, we need to remove ZERO operand and all the operands behind it,
4875 // and, add the ImmMO, then, move back all the operands behind ZERO.
4876 SmallVector<MachineOperand, 2> MOps;
4877 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4878 MOps.push_back(MI.getOperand(i));
4879 MI.RemoveOperand(i);
4882 // Remove the last MO in the list, which is ZERO operand in fact.
4883 MOps.pop_back();
4884 // Add the imm operand.
4885 MI.addOperand(*ImmMO);
4886 // Now add the rest back.
4887 for (auto &MO : MOps)
4888 MI.addOperand(MO);
4891 // Update the opcode.
4892 MI.setDesc(get(III.ImmOpcode));
4894 // Fix up killed/dead flag after transformation.
4895 // Pattern 1:
4896 // x = ADD KilledFwdFeederReg, imm
4897 // n = opn KilledFwdFeederReg(killed), regn
4898 // y = XOP 0, x
4899 // Pattern 2:
4900 // x = ADD reg(killed), imm
4901 // y = XOP 0, x
4902 if (IsFwdFeederRegKilled || RegMO->isKill())
4903 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4904 // Pattern 3:
4905 // ForwardKilledOperandReg = ADD reg, imm
4906 // y = XOP 0, ForwardKilledOperandReg(killed)
4907 if (ForwardKilledOperandReg != ~0U)
4908 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4910 LLVM_DEBUG(dbgs() << "With:\n");
4911 LLVM_DEBUG(MI.dump());
4913 return true;
4916 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4917 const ImmInstrInfo &III,
4918 unsigned ConstantOpNo,
4919 MachineInstr &DefMI) const {
4920 // DefMI must be LI or LI8.
4921 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4922 !DefMI.getOperand(1).isImm())
4923 return false;
4925 // Get Imm operand and Sign-extend to 64-bits.
4926 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4928 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4929 bool PostRA = !MRI.isSSA();
4930 // Exit early if we can't convert this.
4931 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4932 return false;
4933 if (Imm % III.ImmMustBeMultipleOf)
4934 return false;
4935 if (III.TruncateImmTo)
4936 Imm &= ((1 << III.TruncateImmTo) - 1);
4937 if (III.SignedImm) {
4938 APInt ActualValue(64, Imm, true);
4939 if (!ActualValue.isSignedIntN(III.ImmWidth))
4940 return false;
4941 } else {
4942 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4943 if ((uint64_t)Imm > UnsignedMax)
4944 return false;
4947 // If we're post-RA, the instructions don't agree on whether register zero is
4948 // special, we can transform this as long as the register operand that will
4949 // end up in the location where zero is special isn't R0.
4950 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4951 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4952 III.ZeroIsSpecialNew + 1;
4953 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4954 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4955 // If R0 is in the operand where zero is special for the new instruction,
4956 // it is unsafe to transform if the constant operand isn't that operand.
4957 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4958 ConstantOpNo != III.ZeroIsSpecialNew)
4959 return false;
4960 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4961 ConstantOpNo != PosForOrigZero)
4962 return false;
4965 // Get killed info in case fixup needed after transformation.
4966 unsigned ForwardKilledOperandReg = ~0U;
4967 if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4968 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4970 unsigned Opc = MI.getOpcode();
4971 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4972 Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4973 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4974 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4975 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4976 Opc == PPC::SRD || Opc == PPC::SRD_rec;
4977 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4978 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4979 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4980 Opc == PPC::SRD_rec;
4982 MI.setDesc(get(III.ImmOpcode));
4983 if (ConstantOpNo == III.OpNoForForwarding) {
4984 // Converting shifts to immediate form is a bit tricky since they may do
4985 // one of three things:
4986 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4987 // 2. If the shift amount is zero, the result is unchanged (save for maybe
4988 // setting CR0)
4989 // 3. If the shift amount is in [1, OpSize), it's just a shift
4990 if (SpecialShift32 || SpecialShift64) {
4991 LoadImmediateInfo LII;
4992 LII.Imm = 0;
4993 LII.SetCR = SetCR;
4994 LII.Is64Bit = SpecialShift64;
4995 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4996 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4997 replaceInstrWithLI(MI, LII);
4998 // Shifts by zero don't change the value. If we don't need to set CR0,
4999 // just convert this to a COPY. Can't do this post-RA since we've already
5000 // cleaned up the copies.
5001 else if (!SetCR && ShAmt == 0 && !PostRA) {
5002 MI.RemoveOperand(2);
5003 MI.setDesc(get(PPC::COPY));
5004 } else {
5005 // The 32 bit and 64 bit instructions are quite different.
5006 if (SpecialShift32) {
5007 // Left shifts use (N, 0, 31-N).
5008 // Right shifts use (32-N, N, 31) if 0 < N < 32.
5009 // use (0, 0, 31) if N == 0.
5010 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5011 uint64_t MB = RightShift ? ShAmt : 0;
5012 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5013 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5014 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5015 .addImm(ME);
5016 } else {
5017 // Left shifts use (N, 63-N).
5018 // Right shifts use (64-N, N) if 0 < N < 64.
5019 // use (0, 0) if N == 0.
5020 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5021 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5022 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5023 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5026 } else
5027 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5029 // Convert commutative instructions (switch the operands and convert the
5030 // desired one to an immediate.
5031 else if (III.IsCommutative) {
5032 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5033 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5034 } else
5035 llvm_unreachable("Should have exited early!");
5037 // For instructions for which the constant register replaces a different
5038 // operand than where the immediate goes, we need to swap them.
5039 if (III.OpNoForForwarding != III.ImmOpNo)
5040 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5042 // If the special R0/X0 register index are different for original instruction
5043 // and new instruction, we need to fix up the register class in new
5044 // instruction.
5045 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5046 if (III.ZeroIsSpecialNew) {
5047 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5048 // need to fix up register class.
5049 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5050 if (Register::isVirtualRegister(RegToModify)) {
5051 const TargetRegisterClass *NewRC =
5052 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5053 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5054 MRI.setRegClass(RegToModify, NewRC);
5059 // Fix up killed/dead flag after transformation.
5060 // Pattern:
5061 // ForwardKilledOperandReg = LI imm
5062 // y = XOP reg, ForwardKilledOperandReg(killed)
5063 if (ForwardKilledOperandReg != ~0U)
5064 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
5065 return true;
5068 const TargetRegisterClass *
5069 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5070 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5071 return &PPC::VSRCRegClass;
5072 return RC;
5075 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5076 return PPC::getRecordFormOpcode(Opcode);
5079 // This function returns true if the machine instruction
5080 // always outputs a value by sign-extending a 32 bit value,
5081 // i.e. 0 to 31-th bits are same as 32-th bit.
5082 static bool isSignExtendingOp(const MachineInstr &MI) {
5083 int Opcode = MI.getOpcode();
5084 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
5085 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
5086 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
5087 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
5088 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
5089 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
5090 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
5091 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5092 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
5093 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
5094 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
5095 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
5096 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
5097 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
5098 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
5099 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
5100 Opcode == PPC::EXTSB8_32_64)
5101 return true;
5103 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
5104 return true;
5106 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5107 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5108 MI.getOperand(3).getImm() > 0 &&
5109 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5110 return true;
5112 return false;
5115 // This function returns true if the machine instruction
5116 // always outputs zeros in higher 32 bits.
5117 static bool isZeroExtendingOp(const MachineInstr &MI) {
5118 int Opcode = MI.getOpcode();
5119 // The 16-bit immediate is sign-extended in li/lis.
5120 // If the most significant bit is zero, all higher bits are zero.
5121 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
5122 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5123 int64_t Imm = MI.getOperand(1).getImm();
5124 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5125 return true;
5128 // We have some variations of rotate-and-mask instructions
5129 // that clear higher 32-bits.
5130 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5131 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5132 Opcode == PPC::RLDICL_32_64) &&
5133 MI.getOperand(3).getImm() >= 32)
5134 return true;
5136 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5137 MI.getOperand(3).getImm() >= 32 &&
5138 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
5139 return true;
5141 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5142 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5143 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5144 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5145 return true;
5147 // There are other instructions that clear higher 32-bits.
5148 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
5149 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
5150 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
5151 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
5152 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
5153 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
5154 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
5155 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
5156 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
5157 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
5158 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
5159 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
5160 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
5161 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
5162 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
5163 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
5164 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
5165 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
5166 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5167 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
5168 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
5169 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
5170 Opcode == PPC::MFVSRWZ)
5171 return true;
5173 return false;
5176 // This function returns true if the input MachineInstr is a TOC save
5177 // instruction.
5178 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5179 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5180 return false;
5181 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5182 unsigned StackOffset = MI.getOperand(1).getImm();
5183 Register StackReg = MI.getOperand(2).getReg();
5184 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5185 if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5186 return true;
5188 return false;
5191 // We limit the max depth to track incoming values of PHIs or binary ops
5192 // (e.g. AND) to avoid excessive cost.
5193 const unsigned MAX_DEPTH = 1;
5195 bool
5196 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
5197 const unsigned Depth) const {
5198 const MachineFunction *MF = MI.getParent()->getParent();
5199 const MachineRegisterInfo *MRI = &MF->getRegInfo();
5201 // If we know this instruction returns sign- or zero-extended result,
5202 // return true.
5203 if (SignExt ? isSignExtendingOp(MI):
5204 isZeroExtendingOp(MI))
5205 return true;
5207 switch (MI.getOpcode()) {
5208 case PPC::COPY: {
5209 Register SrcReg = MI.getOperand(1).getReg();
5211 // In both ELFv1 and v2 ABI, method parameters and the return value
5212 // are sign- or zero-extended.
5213 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5214 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5215 // We check the ZExt/SExt flags for a method parameter.
5216 if (MI.getParent()->getBasicBlock() ==
5217 &MF->getFunction().getEntryBlock()) {
5218 Register VReg = MI.getOperand(0).getReg();
5219 if (MF->getRegInfo().isLiveIn(VReg))
5220 return SignExt ? FuncInfo->isLiveInSExt(VReg) :
5221 FuncInfo->isLiveInZExt(VReg);
5224 // For a method return value, we check the ZExt/SExt flags in attribute.
5225 // We assume the following code sequence for method call.
5226 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5227 // BL8_NOP @func,...
5228 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5229 // %5 = COPY %x3; G8RC:%5
5230 if (SrcReg == PPC::X3) {
5231 const MachineBasicBlock *MBB = MI.getParent();
5232 MachineBasicBlock::const_instr_iterator II =
5233 MachineBasicBlock::const_instr_iterator(&MI);
5234 if (II != MBB->instr_begin() &&
5235 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
5236 const MachineInstr &CallMI = *(--II);
5237 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
5238 const Function *CalleeFn =
5239 dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
5240 if (!CalleeFn)
5241 return false;
5242 const IntegerType *IntTy =
5243 dyn_cast<IntegerType>(CalleeFn->getReturnType());
5244 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
5245 if (IntTy && IntTy->getBitWidth() <= 32)
5246 return Attrs.hasAttribute(SignExt ? Attribute::SExt :
5247 Attribute::ZExt);
5253 // If this is a copy from another register, we recursively check source.
5254 if (!Register::isVirtualRegister(SrcReg))
5255 return false;
5256 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5257 if (SrcMI != NULL)
5258 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5260 return false;
5263 case PPC::ANDI_rec:
5264 case PPC::ANDIS_rec:
5265 case PPC::ORI:
5266 case PPC::ORIS:
5267 case PPC::XORI:
5268 case PPC::XORIS:
5269 case PPC::ANDI8_rec:
5270 case PPC::ANDIS8_rec:
5271 case PPC::ORI8:
5272 case PPC::ORIS8:
5273 case PPC::XORI8:
5274 case PPC::XORIS8: {
5275 // logical operation with 16-bit immediate does not change the upper bits.
5276 // So, we track the operand register as we do for register copy.
5277 Register SrcReg = MI.getOperand(1).getReg();
5278 if (!Register::isVirtualRegister(SrcReg))
5279 return false;
5280 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5281 if (SrcMI != NULL)
5282 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5284 return false;
5287 // If all incoming values are sign-/zero-extended,
5288 // the output of OR, ISEL or PHI is also sign-/zero-extended.
5289 case PPC::OR:
5290 case PPC::OR8:
5291 case PPC::ISEL:
5292 case PPC::PHI: {
5293 if (Depth >= MAX_DEPTH)
5294 return false;
5296 // The input registers for PHI are operand 1, 3, ...
5297 // The input registers for others are operand 1 and 2.
5298 unsigned E = 3, D = 1;
5299 if (MI.getOpcode() == PPC::PHI) {
5300 E = MI.getNumOperands();
5301 D = 2;
5304 for (unsigned I = 1; I != E; I += D) {
5305 if (MI.getOperand(I).isReg()) {
5306 Register SrcReg = MI.getOperand(I).getReg();
5307 if (!Register::isVirtualRegister(SrcReg))
5308 return false;
5309 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5310 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
5311 return false;
5313 else
5314 return false;
5316 return true;
5319 // If at least one of the incoming values of an AND is zero extended
5320 // then the output is also zero-extended. If both of the incoming values
5321 // are sign-extended then the output is also sign extended.
5322 case PPC::AND:
5323 case PPC::AND8: {
5324 if (Depth >= MAX_DEPTH)
5325 return false;
5327 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
5329 Register SrcReg1 = MI.getOperand(1).getReg();
5330 Register SrcReg2 = MI.getOperand(2).getReg();
5332 if (!Register::isVirtualRegister(SrcReg1) ||
5333 !Register::isVirtualRegister(SrcReg2))
5334 return false;
5336 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
5337 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
5338 if (!MISrc1 || !MISrc2)
5339 return false;
5341 if(SignExt)
5342 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
5343 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5344 else
5345 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
5346 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5349 default:
5350 break;
5352 return false;
5355 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5356 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5359 namespace {
5360 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5361 MachineInstr *Loop, *EndLoop, *LoopCount;
5362 MachineFunction *MF;
5363 const TargetInstrInfo *TII;
5364 int64_t TripCount;
5366 public:
5367 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5368 MachineInstr *LoopCount)
5369 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5370 MF(Loop->getParent()->getParent()),
5371 TII(MF->getSubtarget().getInstrInfo()) {
5372 // Inspect the Loop instruction up-front, as it may be deleted when we call
5373 // createTripCountGreaterCondition.
5374 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5375 TripCount = LoopCount->getOperand(1).getImm();
5376 else
5377 TripCount = -1;
5380 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5381 // Only ignore the terminator.
5382 return MI == EndLoop;
5385 Optional<bool>
5386 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
5387 SmallVectorImpl<MachineOperand> &Cond) override {
5388 if (TripCount == -1) {
5389 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5390 // so we don't need to generate any thing here.
5391 Cond.push_back(MachineOperand::CreateImm(0));
5392 Cond.push_back(MachineOperand::CreateReg(
5393 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5394 true));
5395 return {};
5398 return TripCount > TC;
5401 void setPreheader(MachineBasicBlock *NewPreheader) override {
5402 // Do nothing. We want the LOOP setup instruction to stay in the *old*
5403 // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5406 void adjustTripCount(int TripCountAdjust) override {
5407 // If the loop trip count is a compile-time value, then just change the
5408 // value.
5409 if (LoopCount->getOpcode() == PPC::LI8 ||
5410 LoopCount->getOpcode() == PPC::LI) {
5411 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5412 LoopCount->getOperand(1).setImm(TripCount);
5413 return;
5416 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5417 // so we don't need to generate any thing here.
5420 void disposed() override {
5421 Loop->eraseFromParent();
5422 // Ensure the loop setup instruction is deleted too.
5423 LoopCount->eraseFromParent();
5426 } // namespace
5428 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5429 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5430 // We really "analyze" only hardware loops right now.
5431 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5432 MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5433 if (Preheader == LoopBB)
5434 Preheader = *std::next(LoopBB->pred_begin());
5435 MachineFunction *MF = Preheader->getParent();
5437 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5438 SmallPtrSet<MachineBasicBlock *, 8> Visited;
5439 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5440 Register LoopCountReg = LoopInst->getOperand(0).getReg();
5441 MachineRegisterInfo &MRI = MF->getRegInfo();
5442 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5443 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5446 return nullptr;
5449 MachineInstr *PPCInstrInfo::findLoopInstr(
5450 MachineBasicBlock &PreHeader,
5451 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5453 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5455 // The loop set-up instruction should be in preheader
5456 for (auto &I : PreHeader.instrs())
5457 if (I.getOpcode() == LOOPi)
5458 return &I;
5459 return nullptr;
5462 // Return true if get the base operand, byte offset of an instruction and the
5463 // memory width. Width is the size of memory that is being loaded/stored.
5464 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5465 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5466 unsigned &Width, const TargetRegisterInfo *TRI) const {
5467 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5468 return false;
5470 // Handle only loads/stores with base register followed by immediate offset.
5471 if (!LdSt.getOperand(1).isImm() ||
5472 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5473 return false;
5474 if (!LdSt.getOperand(1).isImm() ||
5475 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5476 return false;
5478 if (!LdSt.hasOneMemOperand())
5479 return false;
5481 Width = (*LdSt.memoperands_begin())->getSize();
5482 Offset = LdSt.getOperand(1).getImm();
5483 BaseReg = &LdSt.getOperand(2);
5484 return true;
5487 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5488 const MachineInstr &MIa, const MachineInstr &MIb) const {
5489 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5490 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5492 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5493 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5494 return false;
5496 // Retrieve the base register, offset from the base register and width. Width
5497 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
5498 // base registers are identical, and the offset of a lower memory access +
5499 // the width doesn't overlap the offset of a higher memory access,
5500 // then the memory accesses are different.
5501 const TargetRegisterInfo *TRI = &getRegisterInfo();
5502 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5503 int64_t OffsetA = 0, OffsetB = 0;
5504 unsigned int WidthA = 0, WidthB = 0;
5505 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5506 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5507 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5508 int LowOffset = std::min(OffsetA, OffsetB);
5509 int HighOffset = std::max(OffsetA, OffsetB);
5510 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5511 if (LowOffset + LowWidth <= HighOffset)
5512 return true;
5515 return false;