1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
16 #include "PPCRegisterInfo.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #define GET_INSTRINFO_HEADER
20 #include "PPCGenInstrInfo.inc"
24 /// PPCII - This namespace holds all of the PowerPC target-specific
25 /// per-instruction flags. These must match the corresponding definitions in
26 /// PPC.td and PPCInstrFormats.td.
29 // PPC970 Instruction Flags. These flags describe the characteristics of the
30 // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
31 // raw machine instructions.
33 /// PPC970_First - This instruction starts a new dispatch group, so it will
34 /// always be the first one in the group.
37 /// PPC970_Single - This instruction starts a new dispatch group and
38 /// terminates it, so it will be the sole instruction in the group.
41 /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
42 /// two dispatch pipes to be available to issue.
45 /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
46 /// an instruction is issued to.
48 PPC970_Mask
= 0x07 << PPC970_Shift
51 /// These are the various PPC970 execution unit pipelines. Each instruction
53 PPC970_Pseudo
= 0 << PPC970_Shift
, // Pseudo instruction
54 PPC970_FXU
= 1 << PPC970_Shift
, // Fixed Point (aka Integer/ALU) Unit
55 PPC970_LSU
= 2 << PPC970_Shift
, // Load Store Unit
56 PPC970_FPU
= 3 << PPC970_Shift
, // Floating Point Unit
57 PPC970_CRU
= 4 << PPC970_Shift
, // Control Register Unit
58 PPC970_VALU
= 5 << PPC970_Shift
, // Vector ALU
59 PPC970_VPERM
= 6 << PPC970_Shift
, // Vector Permute Unit
60 PPC970_BRU
= 7 << PPC970_Shift
// Branch Unit
64 /// Shift count to bypass PPC970 flags
67 /// This instruction is an X-Form memory operation.
68 XFormMemOp
= 0x1 << NewDef_Shift
,
69 /// This instruction is prefixed.
70 Prefixed
= 0x1 << (NewDef_Shift
+1)
72 } // end namespace PPCII
74 // Instructions that have an immediate form might be convertible to that
75 // form if the correct input is a result of a load immediate. In order to
76 // know whether the transformation is special, we might need to know some
77 // of the details of the two forms.
79 // Is the immediate field in the immediate form signed or unsigned?
80 uint64_t SignedImm
: 1;
81 // Does the immediate need to be a multiple of some value?
82 uint64_t ImmMustBeMultipleOf
: 5;
83 // Is R0/X0 treated specially by the original r+r instruction?
84 // If so, in which operand?
85 uint64_t ZeroIsSpecialOrig
: 3;
86 // Is R0/X0 treated specially by the new r+i instruction?
87 // If so, in which operand?
88 uint64_t ZeroIsSpecialNew
: 3;
89 // Is the operation commutative?
90 uint64_t IsCommutative
: 1;
91 // The operand number to check for add-immediate def.
92 uint64_t OpNoForForwarding
: 3;
93 // The operand number for the immediate.
95 // The opcode of the new instruction.
96 uint64_t ImmOpcode
: 16;
97 // The size of the immediate.
98 uint64_t ImmWidth
: 5;
99 // The immediate should be truncated to N bits.
100 uint64_t TruncateImmTo
: 5;
101 // Is the instruction summing the operand
102 uint64_t IsSummingOperands
: 1;
105 // Information required to convert an instruction to just a materialized
107 struct LoadImmediateInfo
{
109 unsigned Is64Bit
: 1;
113 // Index into the OpcodesForSpill array.
114 enum SpillOpcodeKey
{
123 SOK_VectorFloat8Spill
,
124 SOK_VectorFloat4Spill
,
127 SOK_AccumulatorSpill
,
128 SOK_UAccumulatorSpill
,
131 SOK_LastOpcodeSpill
// This must be last on the enum.
134 // Define list of load and store spill opcodes.
135 #define NoInstr PPC::INSTRUCTION_LIST_END
136 #define Pwr8LoadOpcodes \
138 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
139 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, \
140 PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, PPC::EVLDD, \
141 PPC::RESTORE_QUADWORD \
144 #define Pwr9LoadOpcodes \
146 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
147 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
148 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, \
149 NoInstr, PPC::RESTORE_QUADWORD \
152 #define Pwr10LoadOpcodes \
154 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
155 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
156 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
157 PPC::RESTORE_UACC, NoInstr, PPC::RESTORE_QUADWORD \
160 #define Pwr8StoreOpcodes \
162 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
163 PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, \
164 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, PPC::EVSTDD, \
165 PPC::SPILL_QUADWORD \
168 #define Pwr9StoreOpcodes \
170 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
171 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
172 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, \
173 PPC::SPILL_QUADWORD \
176 #define Pwr10StoreOpcodes \
178 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
179 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
180 PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
181 NoInstr, PPC::SPILL_QUADWORD \
184 // Initialize arrays for load and store spill opcodes on supported subtargets.
185 #define StoreOpcodesForSpill \
186 { Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes }
187 #define LoadOpcodesForSpill \
188 { Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes }
191 class PPCInstrInfo
: public PPCGenInstrInfo
{
192 PPCSubtarget
&Subtarget
;
193 const PPCRegisterInfo RI
;
194 const unsigned StoreSpillOpcodesArray
[3][SOK_LastOpcodeSpill
] =
195 StoreOpcodesForSpill
;
196 const unsigned LoadSpillOpcodesArray
[3][SOK_LastOpcodeSpill
] =
199 void StoreRegToStackSlot(MachineFunction
&MF
, unsigned SrcReg
, bool isKill
,
200 int FrameIdx
, const TargetRegisterClass
*RC
,
201 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const;
202 void LoadRegFromStackSlot(MachineFunction
&MF
, const DebugLoc
&DL
,
203 unsigned DestReg
, int FrameIdx
,
204 const TargetRegisterClass
*RC
,
205 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const;
207 // Replace the instruction with single LI if possible. \p DefMI must be LI or
209 bool simplifyToLI(MachineInstr
&MI
, MachineInstr
&DefMI
,
210 unsigned OpNoForForwarding
, MachineInstr
**KilledDef
) const;
211 // If the inst is imm-form and its register operand is produced by a ADDI, put
212 // the imm into the inst directly and remove the ADDI if possible.
213 bool transformToNewImmFormFedByAdd(MachineInstr
&MI
, MachineInstr
&DefMI
,
214 unsigned OpNoForForwarding
) const;
215 // If the inst is x-form and has imm-form and one of its operand is produced
216 // by a LI, put the imm into the inst directly and remove the LI if possible.
217 bool transformToImmFormFedByLI(MachineInstr
&MI
, const ImmInstrInfo
&III
,
218 unsigned ConstantOpNo
,
219 MachineInstr
&DefMI
) const;
220 // If the inst is x-form and has imm-form and one of its operand is produced
221 // by an add-immediate, try to transform it when possible.
222 bool transformToImmFormFedByAdd(MachineInstr
&MI
, const ImmInstrInfo
&III
,
223 unsigned ConstantOpNo
, MachineInstr
&DefMI
,
224 bool KillDefMI
) const;
225 // Try to find that, if the instruction 'MI' contains any operand that
226 // could be forwarded from some inst that feeds it. If yes, return the
227 // Def of that operand. And OpNoForForwarding is the operand index in
228 // the 'MI' for that 'Def'. If we see another use of this Def between
229 // the Def and the MI, SeenIntermediateUse becomes 'true'.
230 MachineInstr
*getForwardingDefMI(MachineInstr
&MI
,
231 unsigned &OpNoForForwarding
,
232 bool &SeenIntermediateUse
) const;
234 // Can the user MI have it's source at index \p OpNoForForwarding
235 // forwarded from an add-immediate that feeds it?
236 bool isUseMIElgibleForForwarding(MachineInstr
&MI
, const ImmInstrInfo
&III
,
237 unsigned OpNoForForwarding
) const;
238 bool isDefMIElgibleForForwarding(MachineInstr
&DefMI
,
239 const ImmInstrInfo
&III
,
240 MachineOperand
*&ImmMO
,
241 MachineOperand
*&RegMO
) const;
242 bool isImmElgibleForForwarding(const MachineOperand
&ImmMO
,
243 const MachineInstr
&DefMI
,
244 const ImmInstrInfo
&III
,
246 int64_t BaseImm
= 0) const;
247 bool isRegElgibleForForwarding(const MachineOperand
&RegMO
,
248 const MachineInstr
&DefMI
,
249 const MachineInstr
&MI
, bool KillDefMI
,
250 bool &IsFwdFeederRegKilled
) const;
251 unsigned getSpillTarget() const;
252 const unsigned *getStoreOpcodesForSpillArray() const;
253 const unsigned *getLoadOpcodesForSpillArray() const;
254 unsigned getSpillIndex(const TargetRegisterClass
*RC
) const;
255 int16_t getFMAOpIdxInfo(unsigned Opcode
) const;
256 void reassociateFMA(MachineInstr
&Root
, MachineCombinerPattern Pattern
,
257 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
258 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
259 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const;
260 bool isLoadFromConstantPool(MachineInstr
*I
) const;
262 generateLoadForNewConst(unsigned Idx
, MachineInstr
*MI
, Type
*Ty
,
263 SmallVectorImpl
<MachineInstr
*> &InsInstrs
) const;
264 const Constant
*getConstantFromConstantPool(MachineInstr
*I
) const;
265 virtual void anchor();
268 /// Commutes the operands in the given instruction.
269 /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
271 /// Do not call this method for a non-commutable instruction or for
272 /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
273 /// Even though the instruction is commutable, the method may still
274 /// fail to commute the operands, null pointer is returned in such cases.
276 /// For example, we can commute rlwimi instructions, but only if the
277 /// rotate amt is zero. We also have to munge the immediates a bit.
278 MachineInstr
*commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
280 unsigned OpIdx2
) const override
;
283 explicit PPCInstrInfo(PPCSubtarget
&STI
);
285 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
286 /// such, whenever a client has an instance of instruction info, it should
287 /// always be able to get register info as well (through this method).
289 const PPCRegisterInfo
&getRegisterInfo() const { return RI
; }
291 bool isXFormMemOp(unsigned Opcode
) const {
292 return get(Opcode
).TSFlags
& PPCII::XFormMemOp
;
294 bool isPrefixed(unsigned Opcode
) const {
295 return get(Opcode
).TSFlags
& PPCII::Prefixed
;
298 static bool isSameClassPhysRegCopy(unsigned Opcode
) {
299 unsigned CopyOpcodes
[] = {PPC::OR
, PPC::OR8
, PPC::FMR
,
300 PPC::VOR
, PPC::XXLOR
, PPC::XXLORf
,
301 PPC::XSCPSGNDP
, PPC::MCRF
, PPC::CROR
,
303 for (int i
= 0; CopyOpcodes
[i
] != -1U; i
++)
304 if (Opcode
== CopyOpcodes
[i
])
309 ScheduleHazardRecognizer
*
310 CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
311 const ScheduleDAG
*DAG
) const override
;
312 ScheduleHazardRecognizer
*
313 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
314 const ScheduleDAG
*DAG
) const override
;
316 unsigned getInstrLatency(const InstrItineraryData
*ItinData
,
317 const MachineInstr
&MI
,
318 unsigned *PredCost
= nullptr) const override
;
320 int getOperandLatency(const InstrItineraryData
*ItinData
,
321 const MachineInstr
&DefMI
, unsigned DefIdx
,
322 const MachineInstr
&UseMI
,
323 unsigned UseIdx
) const override
;
324 int getOperandLatency(const InstrItineraryData
*ItinData
,
325 SDNode
*DefNode
, unsigned DefIdx
,
326 SDNode
*UseNode
, unsigned UseIdx
) const override
{
327 return PPCGenInstrInfo::getOperandLatency(ItinData
, DefNode
, DefIdx
,
331 bool hasLowDefLatency(const TargetSchedModel
&SchedModel
,
332 const MachineInstr
&DefMI
,
333 unsigned DefIdx
) const override
{
334 // Machine LICM should hoist all instructions in low-register-pressure
335 // situations; none are sufficiently free to justify leaving in a loop
340 bool useMachineCombiner() const override
{
344 /// When getMachineCombinerPatterns() finds patterns, this function generates
345 /// the instructions that could replace the original code sequence
346 void genAlternativeCodeSequence(
347 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
348 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
349 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
350 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const override
;
352 /// Return true when there is potentially a faster code sequence for a fma
353 /// chain ending in \p Root. All potential patterns are output in the \p
355 bool getFMAPatterns(MachineInstr
&Root
,
356 SmallVectorImpl
<MachineCombinerPattern
> &P
,
357 bool DoRegPressureReduce
) const;
359 /// Return true when there is potentially a faster code sequence
360 /// for an instruction chain ending in <Root>. All potential patterns are
361 /// output in the <Pattern> array.
362 bool getMachineCombinerPatterns(MachineInstr
&Root
,
363 SmallVectorImpl
<MachineCombinerPattern
> &P
,
364 bool DoRegPressureReduce
) const override
;
366 /// On PowerPC, we leverage machine combiner pass to reduce register pressure
367 /// when the register pressure is high for one BB.
368 /// Return true if register pressure for \p MBB is high and ABI is supported
369 /// to reduce register pressure. Otherwise return false.
371 shouldReduceRegisterPressure(MachineBasicBlock
*MBB
,
372 RegisterClassInfo
*RegClassInfo
) const override
;
374 /// Fixup the placeholders we put in genAlternativeCodeSequence() for
377 finalizeInsInstrs(MachineInstr
&Root
, MachineCombinerPattern
&P
,
378 SmallVectorImpl
<MachineInstr
*> &InsInstrs
) const override
;
380 bool isAssociativeAndCommutative(const MachineInstr
&Inst
) const override
;
382 /// On PowerPC, we try to reassociate FMA chain which will increase
383 /// instruction size. Set extension resource length limit to 1 for edge case.
384 /// Resource Length is calculated by scaled resource usage in getCycles().
385 /// Because of the division in getCycles(), it returns different cycles due to
386 /// legacy scaled resource usage. So new resource length may be same with
387 /// legacy or 1 bigger than legacy.
388 /// We need to execlude the 1 bigger case even the resource length is not
389 /// perserved for more FMA chain reassociations on PowerPC.
390 int getExtendResourceLenLimit() const override
{ return 1; }
392 void setSpecialOperandAttr(MachineInstr
&OldMI1
, MachineInstr
&OldMI2
,
393 MachineInstr
&NewMI1
,
394 MachineInstr
&NewMI2
) const override
;
396 void setSpecialOperandAttr(MachineInstr
&MI
, uint16_t Flags
) const override
;
398 bool isCoalescableExtInstr(const MachineInstr
&MI
,
399 Register
&SrcReg
, Register
&DstReg
,
400 unsigned &SubIdx
) const override
;
401 unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
402 int &FrameIndex
) const override
;
403 bool isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
404 AAResults
*AA
) const override
;
405 unsigned isStoreToStackSlot(const MachineInstr
&MI
,
406 int &FrameIndex
) const override
;
408 bool findCommutedOpIndices(const MachineInstr
&MI
, unsigned &SrcOpIdx1
,
409 unsigned &SrcOpIdx2
) const override
;
411 void insertNoop(MachineBasicBlock
&MBB
,
412 MachineBasicBlock::iterator MI
) const override
;
416 bool analyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
417 MachineBasicBlock
*&FBB
,
418 SmallVectorImpl
<MachineOperand
> &Cond
,
419 bool AllowModify
) const override
;
420 unsigned removeBranch(MachineBasicBlock
&MBB
,
421 int *BytesRemoved
= nullptr) const override
;
422 unsigned insertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
423 MachineBasicBlock
*FBB
, ArrayRef
<MachineOperand
> Cond
,
425 int *BytesAdded
= nullptr) const override
;
428 bool canInsertSelect(const MachineBasicBlock
&, ArrayRef
<MachineOperand
> Cond
,
429 Register
, Register
, Register
, int &, int &,
430 int &) const override
;
431 void insertSelect(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
432 const DebugLoc
&DL
, Register DstReg
,
433 ArrayRef
<MachineOperand
> Cond
, Register TrueReg
,
434 Register FalseReg
) const override
;
436 void copyPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
437 const DebugLoc
&DL
, MCRegister DestReg
, MCRegister SrcReg
,
438 bool KillSrc
) const override
;
440 void storeRegToStackSlot(MachineBasicBlock
&MBB
,
441 MachineBasicBlock::iterator MBBI
,
442 Register SrcReg
, bool isKill
, int FrameIndex
,
443 const TargetRegisterClass
*RC
,
444 const TargetRegisterInfo
*TRI
) const override
;
446 // Emits a register spill without updating the register class for vector
447 // registers. This ensures that when we spill a vector register the
448 // element order in the register is the same as it was in memory.
449 void storeRegToStackSlotNoUpd(MachineBasicBlock
&MBB
,
450 MachineBasicBlock::iterator MBBI
,
451 unsigned SrcReg
, bool isKill
, int FrameIndex
,
452 const TargetRegisterClass
*RC
,
453 const TargetRegisterInfo
*TRI
) const;
455 void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
456 MachineBasicBlock::iterator MBBI
,
457 Register DestReg
, int FrameIndex
,
458 const TargetRegisterClass
*RC
,
459 const TargetRegisterInfo
*TRI
) const override
;
461 // Emits a register reload without updating the register class for vector
462 // registers. This ensures that when we reload a vector register the
463 // element order in the register is the same as it was in memory.
464 void loadRegFromStackSlotNoUpd(MachineBasicBlock
&MBB
,
465 MachineBasicBlock::iterator MBBI
,
466 unsigned DestReg
, int FrameIndex
,
467 const TargetRegisterClass
*RC
,
468 const TargetRegisterInfo
*TRI
) const;
470 unsigned getStoreOpcodeForSpill(const TargetRegisterClass
*RC
) const;
472 unsigned getLoadOpcodeForSpill(const TargetRegisterClass
*RC
) const;
475 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const override
;
477 bool FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
, Register Reg
,
478 MachineRegisterInfo
*MRI
) const override
;
480 bool onlyFoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
483 // If conversion by predication (only supported by some branch instructions).
484 // All of the profitability checks always return true; it is always
485 // profitable to use the predicated branches.
486 bool isProfitableToIfCvt(MachineBasicBlock
&MBB
,
487 unsigned NumCycles
, unsigned ExtraPredCycles
,
488 BranchProbability Probability
) const override
{
492 bool isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
493 unsigned NumT
, unsigned ExtraT
,
494 MachineBasicBlock
&FMBB
,
495 unsigned NumF
, unsigned ExtraF
,
496 BranchProbability Probability
) const override
;
498 bool isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
, unsigned NumCycles
,
499 BranchProbability Probability
) const override
{
503 bool isProfitableToUnpredicate(MachineBasicBlock
&TMBB
,
504 MachineBasicBlock
&FMBB
) const override
{
508 // Predication support.
509 bool isPredicated(const MachineInstr
&MI
) const override
;
511 bool isSchedulingBoundary(const MachineInstr
&MI
,
512 const MachineBasicBlock
*MBB
,
513 const MachineFunction
&MF
) const override
;
515 bool PredicateInstruction(MachineInstr
&MI
,
516 ArrayRef
<MachineOperand
> Pred
) const override
;
518 bool SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
519 ArrayRef
<MachineOperand
> Pred2
) const override
;
521 bool ClobbersPredicate(MachineInstr
&MI
, std::vector
<MachineOperand
> &Pred
,
522 bool SkipDead
) const override
;
524 // Comparison optimization.
526 bool analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
527 Register
&SrcReg2
, int &Mask
, int &Value
) const override
;
529 bool optimizeCompareInstr(MachineInstr
&CmpInstr
, Register SrcReg
,
530 Register SrcReg2
, int Mask
, int Value
,
531 const MachineRegisterInfo
*MRI
) const override
;
534 /// Return true if get the base operand, byte offset of an instruction and
535 /// the memory width. Width is the size of memory that is being
536 /// loaded/stored (e.g. 1, 2, 4, 8).
537 bool getMemOperandWithOffsetWidth(const MachineInstr
&LdSt
,
538 const MachineOperand
*&BaseOp
,
539 int64_t &Offset
, unsigned &Width
,
540 const TargetRegisterInfo
*TRI
) const;
542 /// Get the base operand and byte offset of an instruction that reads/writes
544 bool getMemOperandsWithOffsetWidth(
545 const MachineInstr
&LdSt
,
546 SmallVectorImpl
<const MachineOperand
*> &BaseOps
, int64_t &Offset
,
547 bool &OffsetIsScalable
, unsigned &Width
,
548 const TargetRegisterInfo
*TRI
) const override
;
550 /// Returns true if the two given memory operations should be scheduled
552 bool shouldClusterMemOps(ArrayRef
<const MachineOperand
*> BaseOps1
,
553 ArrayRef
<const MachineOperand
*> BaseOps2
,
554 unsigned NumLoads
, unsigned NumBytes
) const override
;
556 /// Return true if two MIs access different memory addresses and false
559 areMemAccessesTriviallyDisjoint(const MachineInstr
&MIa
,
560 const MachineInstr
&MIb
) const override
;
562 /// GetInstSize - Return the number of bytes of code the specified
563 /// instruction may be. This returns the maximum number of bytes.
565 unsigned getInstSizeInBytes(const MachineInstr
&MI
) const override
;
567 MCInst
getNop() const override
;
569 std::pair
<unsigned, unsigned>
570 decomposeMachineOperandsTargetFlags(unsigned TF
) const override
;
572 ArrayRef
<std::pair
<unsigned, const char *>>
573 getSerializableDirectMachineOperandTargetFlags() const override
;
575 ArrayRef
<std::pair
<unsigned, const char *>>
576 getSerializableBitmaskMachineOperandTargetFlags() const override
;
578 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
579 bool expandVSXMemPseudo(MachineInstr
&MI
) const;
581 // Lower pseudo instructions after register allocation.
582 bool expandPostRAPseudo(MachineInstr
&MI
) const override
;
584 static bool isVFRegister(unsigned Reg
) {
585 return Reg
>= PPC::VF0
&& Reg
<= PPC::VF31
;
587 static bool isVRRegister(unsigned Reg
) {
588 return Reg
>= PPC::V0
&& Reg
<= PPC::V31
;
590 const TargetRegisterClass
*updatedRC(const TargetRegisterClass
*RC
) const;
591 static int getRecordFormOpcode(unsigned Opcode
);
593 bool isTOCSaveMI(const MachineInstr
&MI
) const;
595 bool isSignOrZeroExtended(const MachineInstr
&MI
, bool SignExt
,
596 const unsigned PhiDepth
) const;
598 /// Return true if the output of the instruction is always a sign-extended,
599 /// i.e. 0 to 31-th bits are same as 32-th bit.
600 bool isSignExtended(const MachineInstr
&MI
, const unsigned depth
= 0) const {
601 return isSignOrZeroExtended(MI
, true, depth
);
604 /// Return true if the output of the instruction is always zero-extended,
605 /// i.e. 0 to 31-th bits are all zeros
606 bool isZeroExtended(const MachineInstr
&MI
, const unsigned depth
= 0) const {
607 return isSignOrZeroExtended(MI
, false, depth
);
610 bool convertToImmediateForm(MachineInstr
&MI
,
611 MachineInstr
**KilledDef
= nullptr) const;
612 bool foldFrameOffset(MachineInstr
&MI
) const;
613 bool combineRLWINM(MachineInstr
&MI
, MachineInstr
**ToErase
= nullptr) const;
614 bool isADDIInstrEligibleForFolding(MachineInstr
&ADDIMI
, int64_t &Imm
) const;
615 bool isADDInstrEligibleForFolding(MachineInstr
&ADDMI
) const;
616 bool isImmInstrEligibleForFolding(MachineInstr
&MI
, unsigned &BaseReg
,
617 unsigned &XFormOpcode
,
618 int64_t &OffsetOfImmInstr
,
619 ImmInstrInfo
&III
) const;
620 bool isValidToBeChangedReg(MachineInstr
*ADDMI
, unsigned Index
,
621 MachineInstr
*&ADDIMI
, int64_t &OffsetAddi
,
622 int64_t OffsetImm
) const;
624 /// Fixup killed/dead flag for register \p RegNo between instructions [\p
625 /// StartMI, \p EndMI]. Some pre-RA or post-RA transformations may violate
626 /// register killed/dead flags semantics, this function can be called to fix
627 /// up. Before calling this function,
628 /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
629 /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
630 /// and possible definition for \p RegNo is \p StartMI or \p EndMI. For
631 /// pre-RA cases, definition may be \p StartMI through COPY, \p StartMI
632 /// will be adjust to true definition.
633 /// 3. We can do accurate fixup for the case when all instructions between
634 /// [\p StartMI, \p EndMI] are in same basic block.
635 /// 4. For the case when \p StartMI and \p EndMI are not in same basic block,
636 /// we conservatively clear kill flag for all uses of \p RegNo for pre-RA
637 /// and for post-RA, we give an assertion as without reaching definition
638 /// analysis post-RA, \p StartMI and \p EndMI are hard to keep right.
639 void fixupIsDeadOrKill(MachineInstr
*StartMI
, MachineInstr
*EndMI
,
640 unsigned RegNo
) const;
641 void replaceInstrWithLI(MachineInstr
&MI
, const LoadImmediateInfo
&LII
) const;
642 void replaceInstrOperandWithImm(MachineInstr
&MI
, unsigned OpNo
,
645 bool instrHasImmForm(unsigned Opc
, bool IsVFReg
, ImmInstrInfo
&III
,
648 // In PostRA phase, try to find instruction defines \p Reg before \p MI.
649 // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
650 MachineInstr
*getDefMIPostRA(unsigned Reg
, MachineInstr
&MI
,
651 bool &SeenIntermediateUse
) const;
653 /// getRegNumForOperand - some operands use different numbering schemes
654 /// for the same registers. For example, a VSX instruction may have any of
655 /// vs0-vs63 allocated whereas an Altivec instruction could only have
656 /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
657 /// register number needed for the opcode/operand number combination.
658 /// The operand number argument will be useful when we need to extend this
659 /// to instructions that use both Altivec and VSX numbering (for different
661 static unsigned getRegNumForOperand(const MCInstrDesc
&Desc
, unsigned Reg
,
663 int16_t regClass
= Desc
.OpInfo
[OpNo
].RegClass
;
665 // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
666 // VSX32-VSX63 during encoding/disassembling
667 case PPC::VSSRCRegClassID
:
668 case PPC::VSFRCRegClassID
:
669 if (isVFRegister(Reg
))
670 return PPC::VSX32
+ (Reg
- PPC::VF0
);
672 // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
673 // VSX32-VSX63 during encoding/disassembling
674 case PPC::VSRCRegClassID
:
675 if (isVRRegister(Reg
))
676 return PPC::VSX32
+ (Reg
- PPC::V0
);
678 // Other RegClass doesn't need mapping
685 /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
686 bool isBDNZ(unsigned Opcode
) const;
688 /// Find the hardware loop instruction used to set-up the specified loop.
689 /// On PPC, we have two instructions used to set-up the hardware loop
690 /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
691 /// instructions to indicate the end of a loop.
693 findLoopInstr(MachineBasicBlock
&PreHeader
,
694 SmallPtrSet
<MachineBasicBlock
*, 8> &Visited
) const;
696 /// Analyze loop L, which must be a single-basic-block loop, and if the
697 /// conditions can be understood enough produce a PipelinerLoopInfo object.
698 std::unique_ptr
<TargetInstrInfo::PipelinerLoopInfo
>
699 analyzeLoopForPipelining(MachineBasicBlock
*LoopBB
) const override
;