[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCInstrInfo.h
blob404156de232f52f2a6903adca73480f1b5e69236
1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
16 #include "PPCRegisterInfo.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #define GET_INSTRINFO_HEADER
20 #include "PPCGenInstrInfo.inc"
22 namespace llvm {
24 /// PPCII - This namespace holds all of the PowerPC target-specific
25 /// per-instruction flags. These must match the corresponding definitions in
26 /// PPC.td and PPCInstrFormats.td.
27 namespace PPCII {
28 enum {
29 // PPC970 Instruction Flags. These flags describe the characteristics of the
30 // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
31 // raw machine instructions.
33 /// PPC970_First - This instruction starts a new dispatch group, so it will
34 /// always be the first one in the group.
35 PPC970_First = 0x1,
37 /// PPC970_Single - This instruction starts a new dispatch group and
38 /// terminates it, so it will be the sole instruction in the group.
39 PPC970_Single = 0x2,
41 /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
42 /// two dispatch pipes to be available to issue.
43 PPC970_Cracked = 0x4,
45 /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
46 /// an instruction is issued to.
47 PPC970_Shift = 3,
48 PPC970_Mask = 0x07 << PPC970_Shift
50 enum PPC970_Unit {
51 /// These are the various PPC970 execution unit pipelines. Each instruction
52 /// is one of these.
53 PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
54 PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
55 PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
56 PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
57 PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
58 PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
59 PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
60 PPC970_BRU = 7 << PPC970_Shift // Branch Unit
63 enum {
64 /// Shift count to bypass PPC970 flags
65 NewDef_Shift = 6,
67 /// This instruction is an X-Form memory operation.
68 XFormMemOp = 0x1 << NewDef_Shift,
69 /// This instruction is prefixed.
70 Prefixed = 0x1 << (NewDef_Shift+1)
72 } // end namespace PPCII
74 // Instructions that have an immediate form might be convertible to that
75 // form if the correct input is a result of a load immediate. In order to
76 // know whether the transformation is special, we might need to know some
77 // of the details of the two forms.
78 struct ImmInstrInfo {
79 // Is the immediate field in the immediate form signed or unsigned?
80 uint64_t SignedImm : 1;
81 // Does the immediate need to be a multiple of some value?
82 uint64_t ImmMustBeMultipleOf : 5;
83 // Is R0/X0 treated specially by the original r+r instruction?
84 // If so, in which operand?
85 uint64_t ZeroIsSpecialOrig : 3;
86 // Is R0/X0 treated specially by the new r+i instruction?
87 // If so, in which operand?
88 uint64_t ZeroIsSpecialNew : 3;
89 // Is the operation commutative?
90 uint64_t IsCommutative : 1;
91 // The operand number to check for add-immediate def.
92 uint64_t OpNoForForwarding : 3;
93 // The operand number for the immediate.
94 uint64_t ImmOpNo : 3;
95 // The opcode of the new instruction.
96 uint64_t ImmOpcode : 16;
97 // The size of the immediate.
98 uint64_t ImmWidth : 5;
99 // The immediate should be truncated to N bits.
100 uint64_t TruncateImmTo : 5;
101 // Is the instruction summing the operand
102 uint64_t IsSummingOperands : 1;
105 // Information required to convert an instruction to just a materialized
106 // immediate.
107 struct LoadImmediateInfo {
108 unsigned Imm : 16;
109 unsigned Is64Bit : 1;
110 unsigned SetCR : 1;
113 // Index into the OpcodesForSpill array.
114 enum SpillOpcodeKey {
115 SOK_Int4Spill,
116 SOK_Int8Spill,
117 SOK_Float8Spill,
118 SOK_Float4Spill,
119 SOK_CRSpill,
120 SOK_CRBitSpill,
121 SOK_VRVectorSpill,
122 SOK_VSXVectorSpill,
123 SOK_VectorFloat8Spill,
124 SOK_VectorFloat4Spill,
125 SOK_SpillToVSR,
126 SOK_PairedVecSpill,
127 SOK_AccumulatorSpill,
128 SOK_UAccumulatorSpill,
129 SOK_SPESpill,
130 SOK_PairedG8Spill,
131 SOK_LastOpcodeSpill // This must be last on the enum.
134 // Define list of load and store spill opcodes.
135 #define NoInstr PPC::INSTRUCTION_LIST_END
136 #define Pwr8LoadOpcodes \
138 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
139 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, \
140 PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, PPC::EVLDD, \
141 PPC::RESTORE_QUADWORD \
144 #define Pwr9LoadOpcodes \
146 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
147 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
148 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, \
149 NoInstr, PPC::RESTORE_QUADWORD \
152 #define Pwr10LoadOpcodes \
154 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
155 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
156 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
157 PPC::RESTORE_UACC, NoInstr, PPC::RESTORE_QUADWORD \
160 #define Pwr8StoreOpcodes \
162 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
163 PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, \
164 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, PPC::EVSTDD, \
165 PPC::SPILL_QUADWORD \
168 #define Pwr9StoreOpcodes \
170 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
171 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
172 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, \
173 PPC::SPILL_QUADWORD \
176 #define Pwr10StoreOpcodes \
178 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
179 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
180 PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
181 NoInstr, PPC::SPILL_QUADWORD \
184 // Initialize arrays for load and store spill opcodes on supported subtargets.
185 #define StoreOpcodesForSpill \
186 { Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes }
187 #define LoadOpcodesForSpill \
188 { Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes }
190 class PPCSubtarget;
191 class PPCInstrInfo : public PPCGenInstrInfo {
192 PPCSubtarget &Subtarget;
193 const PPCRegisterInfo RI;
194 const unsigned StoreSpillOpcodesArray[3][SOK_LastOpcodeSpill] =
195 StoreOpcodesForSpill;
196 const unsigned LoadSpillOpcodesArray[3][SOK_LastOpcodeSpill] =
197 LoadOpcodesForSpill;
199 void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
200 int FrameIdx, const TargetRegisterClass *RC,
201 SmallVectorImpl<MachineInstr *> &NewMIs) const;
202 void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
203 unsigned DestReg, int FrameIdx,
204 const TargetRegisterClass *RC,
205 SmallVectorImpl<MachineInstr *> &NewMIs) const;
207 // Replace the instruction with single LI if possible. \p DefMI must be LI or
208 // LI8.
209 bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
210 unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
211 // If the inst is imm-form and its register operand is produced by a ADDI, put
212 // the imm into the inst directly and remove the ADDI if possible.
213 bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
214 unsigned OpNoForForwarding) const;
215 // If the inst is x-form and has imm-form and one of its operand is produced
216 // by a LI, put the imm into the inst directly and remove the LI if possible.
217 bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
218 unsigned ConstantOpNo,
219 MachineInstr &DefMI) const;
220 // If the inst is x-form and has imm-form and one of its operand is produced
221 // by an add-immediate, try to transform it when possible.
222 bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
223 unsigned ConstantOpNo, MachineInstr &DefMI,
224 bool KillDefMI) const;
225 // Try to find that, if the instruction 'MI' contains any operand that
226 // could be forwarded from some inst that feeds it. If yes, return the
227 // Def of that operand. And OpNoForForwarding is the operand index in
228 // the 'MI' for that 'Def'. If we see another use of this Def between
229 // the Def and the MI, SeenIntermediateUse becomes 'true'.
230 MachineInstr *getForwardingDefMI(MachineInstr &MI,
231 unsigned &OpNoForForwarding,
232 bool &SeenIntermediateUse) const;
234 // Can the user MI have it's source at index \p OpNoForForwarding
235 // forwarded from an add-immediate that feeds it?
236 bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
237 unsigned OpNoForForwarding) const;
238 bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
239 const ImmInstrInfo &III,
240 MachineOperand *&ImmMO,
241 MachineOperand *&RegMO) const;
242 bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
243 const MachineInstr &DefMI,
244 const ImmInstrInfo &III,
245 int64_t &Imm,
246 int64_t BaseImm = 0) const;
247 bool isRegElgibleForForwarding(const MachineOperand &RegMO,
248 const MachineInstr &DefMI,
249 const MachineInstr &MI, bool KillDefMI,
250 bool &IsFwdFeederRegKilled) const;
251 unsigned getSpillTarget() const;
252 const unsigned *getStoreOpcodesForSpillArray() const;
253 const unsigned *getLoadOpcodesForSpillArray() const;
254 unsigned getSpillIndex(const TargetRegisterClass *RC) const;
255 int16_t getFMAOpIdxInfo(unsigned Opcode) const;
256 void reassociateFMA(MachineInstr &Root, MachineCombinerPattern Pattern,
257 SmallVectorImpl<MachineInstr *> &InsInstrs,
258 SmallVectorImpl<MachineInstr *> &DelInstrs,
259 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
260 bool isLoadFromConstantPool(MachineInstr *I) const;
261 Register
262 generateLoadForNewConst(unsigned Idx, MachineInstr *MI, Type *Ty,
263 SmallVectorImpl<MachineInstr *> &InsInstrs) const;
264 const Constant *getConstantFromConstantPool(MachineInstr *I) const;
265 virtual void anchor();
267 protected:
268 /// Commutes the operands in the given instruction.
269 /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
271 /// Do not call this method for a non-commutable instruction or for
272 /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
273 /// Even though the instruction is commutable, the method may still
274 /// fail to commute the operands, null pointer is returned in such cases.
276 /// For example, we can commute rlwimi instructions, but only if the
277 /// rotate amt is zero. We also have to munge the immediates a bit.
278 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
279 unsigned OpIdx1,
280 unsigned OpIdx2) const override;
282 public:
283 explicit PPCInstrInfo(PPCSubtarget &STI);
285 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
286 /// such, whenever a client has an instance of instruction info, it should
287 /// always be able to get register info as well (through this method).
289 const PPCRegisterInfo &getRegisterInfo() const { return RI; }
291 bool isXFormMemOp(unsigned Opcode) const {
292 return get(Opcode).TSFlags & PPCII::XFormMemOp;
294 bool isPrefixed(unsigned Opcode) const {
295 return get(Opcode).TSFlags & PPCII::Prefixed;
298 static bool isSameClassPhysRegCopy(unsigned Opcode) {
299 unsigned CopyOpcodes[] = {PPC::OR, PPC::OR8, PPC::FMR,
300 PPC::VOR, PPC::XXLOR, PPC::XXLORf,
301 PPC::XSCPSGNDP, PPC::MCRF, PPC::CROR,
302 PPC::EVOR, -1U};
303 for (int i = 0; CopyOpcodes[i] != -1U; i++)
304 if (Opcode == CopyOpcodes[i])
305 return true;
306 return false;
309 ScheduleHazardRecognizer *
310 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
311 const ScheduleDAG *DAG) const override;
312 ScheduleHazardRecognizer *
313 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
314 const ScheduleDAG *DAG) const override;
316 unsigned getInstrLatency(const InstrItineraryData *ItinData,
317 const MachineInstr &MI,
318 unsigned *PredCost = nullptr) const override;
320 int getOperandLatency(const InstrItineraryData *ItinData,
321 const MachineInstr &DefMI, unsigned DefIdx,
322 const MachineInstr &UseMI,
323 unsigned UseIdx) const override;
324 int getOperandLatency(const InstrItineraryData *ItinData,
325 SDNode *DefNode, unsigned DefIdx,
326 SDNode *UseNode, unsigned UseIdx) const override {
327 return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
328 UseNode, UseIdx);
331 bool hasLowDefLatency(const TargetSchedModel &SchedModel,
332 const MachineInstr &DefMI,
333 unsigned DefIdx) const override {
334 // Machine LICM should hoist all instructions in low-register-pressure
335 // situations; none are sufficiently free to justify leaving in a loop
336 // body.
337 return false;
340 bool useMachineCombiner() const override {
341 return true;
344 /// When getMachineCombinerPatterns() finds patterns, this function generates
345 /// the instructions that could replace the original code sequence
346 void genAlternativeCodeSequence(
347 MachineInstr &Root, MachineCombinerPattern Pattern,
348 SmallVectorImpl<MachineInstr *> &InsInstrs,
349 SmallVectorImpl<MachineInstr *> &DelInstrs,
350 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
352 /// Return true when there is potentially a faster code sequence for a fma
353 /// chain ending in \p Root. All potential patterns are output in the \p
354 /// P array.
355 bool getFMAPatterns(MachineInstr &Root,
356 SmallVectorImpl<MachineCombinerPattern> &P,
357 bool DoRegPressureReduce) const;
359 /// Return true when there is potentially a faster code sequence
360 /// for an instruction chain ending in <Root>. All potential patterns are
361 /// output in the <Pattern> array.
362 bool getMachineCombinerPatterns(MachineInstr &Root,
363 SmallVectorImpl<MachineCombinerPattern> &P,
364 bool DoRegPressureReduce) const override;
366 /// On PowerPC, we leverage machine combiner pass to reduce register pressure
367 /// when the register pressure is high for one BB.
368 /// Return true if register pressure for \p MBB is high and ABI is supported
369 /// to reduce register pressure. Otherwise return false.
370 bool
371 shouldReduceRegisterPressure(MachineBasicBlock *MBB,
372 RegisterClassInfo *RegClassInfo) const override;
374 /// Fixup the placeholders we put in genAlternativeCodeSequence() for
375 /// MachineCombiner.
376 void
377 finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
378 SmallVectorImpl<MachineInstr *> &InsInstrs) const override;
380 bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
382 /// On PowerPC, we try to reassociate FMA chain which will increase
383 /// instruction size. Set extension resource length limit to 1 for edge case.
384 /// Resource Length is calculated by scaled resource usage in getCycles().
385 /// Because of the division in getCycles(), it returns different cycles due to
386 /// legacy scaled resource usage. So new resource length may be same with
387 /// legacy or 1 bigger than legacy.
388 /// We need to execlude the 1 bigger case even the resource length is not
389 /// perserved for more FMA chain reassociations on PowerPC.
390 int getExtendResourceLenLimit() const override { return 1; }
392 void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
393 MachineInstr &NewMI1,
394 MachineInstr &NewMI2) const override;
396 void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const override;
398 bool isCoalescableExtInstr(const MachineInstr &MI,
399 Register &SrcReg, Register &DstReg,
400 unsigned &SubIdx) const override;
401 unsigned isLoadFromStackSlot(const MachineInstr &MI,
402 int &FrameIndex) const override;
403 bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
404 AAResults *AA) const override;
405 unsigned isStoreToStackSlot(const MachineInstr &MI,
406 int &FrameIndex) const override;
408 bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
409 unsigned &SrcOpIdx2) const override;
411 void insertNoop(MachineBasicBlock &MBB,
412 MachineBasicBlock::iterator MI) const override;
415 // Branch analysis.
416 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
417 MachineBasicBlock *&FBB,
418 SmallVectorImpl<MachineOperand> &Cond,
419 bool AllowModify) const override;
420 unsigned removeBranch(MachineBasicBlock &MBB,
421 int *BytesRemoved = nullptr) const override;
422 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
423 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
424 const DebugLoc &DL,
425 int *BytesAdded = nullptr) const override;
427 // Select analysis.
428 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
429 Register, Register, Register, int &, int &,
430 int &) const override;
431 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
432 const DebugLoc &DL, Register DstReg,
433 ArrayRef<MachineOperand> Cond, Register TrueReg,
434 Register FalseReg) const override;
436 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
437 const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
438 bool KillSrc) const override;
440 void storeRegToStackSlot(MachineBasicBlock &MBB,
441 MachineBasicBlock::iterator MBBI,
442 Register SrcReg, bool isKill, int FrameIndex,
443 const TargetRegisterClass *RC,
444 const TargetRegisterInfo *TRI) const override;
446 // Emits a register spill without updating the register class for vector
447 // registers. This ensures that when we spill a vector register the
448 // element order in the register is the same as it was in memory.
449 void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
450 MachineBasicBlock::iterator MBBI,
451 unsigned SrcReg, bool isKill, int FrameIndex,
452 const TargetRegisterClass *RC,
453 const TargetRegisterInfo *TRI) const;
455 void loadRegFromStackSlot(MachineBasicBlock &MBB,
456 MachineBasicBlock::iterator MBBI,
457 Register DestReg, int FrameIndex,
458 const TargetRegisterClass *RC,
459 const TargetRegisterInfo *TRI) const override;
461 // Emits a register reload without updating the register class for vector
462 // registers. This ensures that when we reload a vector register the
463 // element order in the register is the same as it was in memory.
464 void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
465 MachineBasicBlock::iterator MBBI,
466 unsigned DestReg, int FrameIndex,
467 const TargetRegisterClass *RC,
468 const TargetRegisterInfo *TRI) const;
470 unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
472 unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
474 bool
475 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
477 bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
478 MachineRegisterInfo *MRI) const override;
480 bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
481 Register Reg) const;
483 // If conversion by predication (only supported by some branch instructions).
484 // All of the profitability checks always return true; it is always
485 // profitable to use the predicated branches.
486 bool isProfitableToIfCvt(MachineBasicBlock &MBB,
487 unsigned NumCycles, unsigned ExtraPredCycles,
488 BranchProbability Probability) const override {
489 return true;
492 bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
493 unsigned NumT, unsigned ExtraT,
494 MachineBasicBlock &FMBB,
495 unsigned NumF, unsigned ExtraF,
496 BranchProbability Probability) const override;
498 bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
499 BranchProbability Probability) const override {
500 return true;
503 bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
504 MachineBasicBlock &FMBB) const override {
505 return false;
508 // Predication support.
509 bool isPredicated(const MachineInstr &MI) const override;
511 bool isSchedulingBoundary(const MachineInstr &MI,
512 const MachineBasicBlock *MBB,
513 const MachineFunction &MF) const override;
515 bool PredicateInstruction(MachineInstr &MI,
516 ArrayRef<MachineOperand> Pred) const override;
518 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
519 ArrayRef<MachineOperand> Pred2) const override;
521 bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
522 bool SkipDead) const override;
524 // Comparison optimization.
526 bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
527 Register &SrcReg2, int &Mask, int &Value) const override;
529 bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
530 Register SrcReg2, int Mask, int Value,
531 const MachineRegisterInfo *MRI) const override;
534 /// Return true if get the base operand, byte offset of an instruction and
535 /// the memory width. Width is the size of memory that is being
536 /// loaded/stored (e.g. 1, 2, 4, 8).
537 bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
538 const MachineOperand *&BaseOp,
539 int64_t &Offset, unsigned &Width,
540 const TargetRegisterInfo *TRI) const;
542 /// Get the base operand and byte offset of an instruction that reads/writes
543 /// memory.
544 bool getMemOperandsWithOffsetWidth(
545 const MachineInstr &LdSt,
546 SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
547 bool &OffsetIsScalable, unsigned &Width,
548 const TargetRegisterInfo *TRI) const override;
550 /// Returns true if the two given memory operations should be scheduled
551 /// adjacent.
552 bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
553 ArrayRef<const MachineOperand *> BaseOps2,
554 unsigned NumLoads, unsigned NumBytes) const override;
556 /// Return true if two MIs access different memory addresses and false
557 /// otherwise
558 bool
559 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
560 const MachineInstr &MIb) const override;
562 /// GetInstSize - Return the number of bytes of code the specified
563 /// instruction may be. This returns the maximum number of bytes.
565 unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
567 MCInst getNop() const override;
569 std::pair<unsigned, unsigned>
570 decomposeMachineOperandsTargetFlags(unsigned TF) const override;
572 ArrayRef<std::pair<unsigned, const char *>>
573 getSerializableDirectMachineOperandTargetFlags() const override;
575 ArrayRef<std::pair<unsigned, const char *>>
576 getSerializableBitmaskMachineOperandTargetFlags() const override;
578 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
579 bool expandVSXMemPseudo(MachineInstr &MI) const;
581 // Lower pseudo instructions after register allocation.
582 bool expandPostRAPseudo(MachineInstr &MI) const override;
584 static bool isVFRegister(unsigned Reg) {
585 return Reg >= PPC::VF0 && Reg <= PPC::VF31;
587 static bool isVRRegister(unsigned Reg) {
588 return Reg >= PPC::V0 && Reg <= PPC::V31;
590 const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
591 static int getRecordFormOpcode(unsigned Opcode);
593 bool isTOCSaveMI(const MachineInstr &MI) const;
595 bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
596 const unsigned PhiDepth) const;
598 /// Return true if the output of the instruction is always a sign-extended,
599 /// i.e. 0 to 31-th bits are same as 32-th bit.
600 bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
601 return isSignOrZeroExtended(MI, true, depth);
604 /// Return true if the output of the instruction is always zero-extended,
605 /// i.e. 0 to 31-th bits are all zeros
606 bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
607 return isSignOrZeroExtended(MI, false, depth);
610 bool convertToImmediateForm(MachineInstr &MI,
611 MachineInstr **KilledDef = nullptr) const;
612 bool foldFrameOffset(MachineInstr &MI) const;
613 bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
614 bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
615 bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
616 bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
617 unsigned &XFormOpcode,
618 int64_t &OffsetOfImmInstr,
619 ImmInstrInfo &III) const;
620 bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
621 MachineInstr *&ADDIMI, int64_t &OffsetAddi,
622 int64_t OffsetImm) const;
624 /// Fixup killed/dead flag for register \p RegNo between instructions [\p
625 /// StartMI, \p EndMI]. Some pre-RA or post-RA transformations may violate
626 /// register killed/dead flags semantics, this function can be called to fix
627 /// up. Before calling this function,
628 /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
629 /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
630 /// and possible definition for \p RegNo is \p StartMI or \p EndMI. For
631 /// pre-RA cases, definition may be \p StartMI through COPY, \p StartMI
632 /// will be adjust to true definition.
633 /// 3. We can do accurate fixup for the case when all instructions between
634 /// [\p StartMI, \p EndMI] are in same basic block.
635 /// 4. For the case when \p StartMI and \p EndMI are not in same basic block,
636 /// we conservatively clear kill flag for all uses of \p RegNo for pre-RA
637 /// and for post-RA, we give an assertion as without reaching definition
638 /// analysis post-RA, \p StartMI and \p EndMI are hard to keep right.
639 void fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
640 unsigned RegNo) const;
641 void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
642 void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
643 int64_t Imm) const;
645 bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
646 bool PostRA) const;
648 // In PostRA phase, try to find instruction defines \p Reg before \p MI.
649 // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
650 MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
651 bool &SeenIntermediateUse) const;
653 /// getRegNumForOperand - some operands use different numbering schemes
654 /// for the same registers. For example, a VSX instruction may have any of
655 /// vs0-vs63 allocated whereas an Altivec instruction could only have
656 /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
657 /// register number needed for the opcode/operand number combination.
658 /// The operand number argument will be useful when we need to extend this
659 /// to instructions that use both Altivec and VSX numbering (for different
660 /// operands).
661 static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
662 unsigned OpNo) {
663 int16_t regClass = Desc.OpInfo[OpNo].RegClass;
664 switch (regClass) {
665 // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
666 // VSX32-VSX63 during encoding/disassembling
667 case PPC::VSSRCRegClassID:
668 case PPC::VSFRCRegClassID:
669 if (isVFRegister(Reg))
670 return PPC::VSX32 + (Reg - PPC::VF0);
671 break;
672 // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
673 // VSX32-VSX63 during encoding/disassembling
674 case PPC::VSRCRegClassID:
675 if (isVRRegister(Reg))
676 return PPC::VSX32 + (Reg - PPC::V0);
677 break;
678 // Other RegClass doesn't need mapping
679 default:
680 break;
682 return Reg;
685 /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
686 bool isBDNZ(unsigned Opcode) const;
688 /// Find the hardware loop instruction used to set-up the specified loop.
689 /// On PPC, we have two instructions used to set-up the hardware loop
690 /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
691 /// instructions to indicate the end of a loop.
692 MachineInstr *
693 findLoopInstr(MachineBasicBlock &PreHeader,
694 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
696 /// Analyze loop L, which must be a single-basic-block loop, and if the
697 /// conditions can be understood enough produce a PipelinerLoopInfo object.
698 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
699 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
704 #endif