1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
32 extern "C" LLVM_EXTERNAL_VISIBILITY
void LLVMInitializeSystemZTarget() {
33 // Register the target.
34 RegisterTargetMachine
<SystemZTargetMachine
> X(getTheSystemZTarget());
37 // Determine whether we use the vector ABI.
38 static bool UsesVectorABI(StringRef CPU
, StringRef FS
) {
39 // We use the vector ABI whenever the vector facility is avaiable.
40 // This is the case by default if CPU is z13 or later, and can be
41 // overridden via "[+-]vector" feature string elements.
42 bool VectorABI
= true;
43 bool SoftFloat
= false;
44 if (CPU
.empty() || CPU
== "generic" ||
45 CPU
== "z10" || CPU
== "z196" || CPU
== "zEC12" ||
46 CPU
== "arch8" || CPU
== "arch9" || CPU
== "arch10")
49 SmallVector
<StringRef
, 3> Features
;
50 FS
.split(Features
, ',', -1, false /* KeepEmpty */);
51 for (auto &Feature
: Features
) {
52 if (Feature
== "vector" || Feature
== "+vector")
54 if (Feature
== "-vector")
56 if (Feature
== "soft-float" || Feature
== "+soft-float")
58 if (Feature
== "-soft-float")
62 return VectorABI
&& !SoftFloat
;
65 static std::string
computeDataLayout(const Triple
&TT
, StringRef CPU
,
67 bool VectorABI
= UsesVectorABI(CPU
, FS
);
74 Ret
+= DataLayout::getManglingComponent(TT
);
76 // Make sure that global data has at least 16 bits of alignment by
77 // default, so that we can refer to it using LARL. We don't have any
78 // special requirements for stack variables though.
79 Ret
+= "-i1:8:16-i8:8:16";
81 // 64-bit integers are naturally aligned.
84 // 128-bit floats are aligned only to 64 bits.
87 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
91 // We prefer 16 bits of aligned for all globals; see above.
94 // Integer registers are 32 or 64 bits.
100 static std::unique_ptr
<TargetLoweringObjectFile
> createTLOF(const Triple
&TT
) {
102 return std::make_unique
<TargetLoweringObjectFileGOFF
>();
104 // Note: Some times run with -triple s390x-unknown.
105 // In this case, default to ELF unless z/OS specifically provided.
106 return std::make_unique
<TargetLoweringObjectFileELF
>();
109 static Reloc::Model
getEffectiveRelocModel(Optional
<Reloc::Model
> RM
) {
110 // Static code is suitable for use in a dynamic executable; there is no
111 // separate DynamicNoPIC model.
112 if (!RM
.hasValue() || *RM
== Reloc::DynamicNoPIC
)
113 return Reloc::Static
;
117 // For SystemZ we define the models as follows:
119 // Small: BRASL can call any function and will use a stub if necessary.
120 // Locally-binding symbols will always be in range of LARL.
122 // Medium: BRASL can call any function and will use a stub if necessary.
123 // GOT slots and locally-defined text will always be in range
124 // of LARL, but other symbols might not be.
126 // Large: Equivalent to Medium for now.
128 // Kernel: Equivalent to Medium for now.
130 // This means that any PIC module smaller than 4GB meets the
131 // requirements of Small, so Small seems like the best default there.
133 // All symbols bind locally in a non-PIC module, so the choice is less
134 // obvious. There are two cases:
136 // - When creating an executable, PLTs and copy relocations allow
137 // us to treat external symbols as part of the executable.
138 // Any executable smaller than 4GB meets the requirements of Small,
139 // so that seems like the best default.
141 // - When creating JIT code, stubs will be in range of BRASL if the
142 // image is less than 4GB in size. GOT entries will likewise be
143 // in range of LARL. However, the JIT environment has no equivalent
144 // of copy relocs, so locally-binding data symbols might not be in
145 // the range of LARL. We need the Medium model in that case.
146 static CodeModel::Model
147 getEffectiveSystemZCodeModel(Optional
<CodeModel::Model
> CM
, Reloc::Model RM
,
150 if (*CM
== CodeModel::Tiny
)
151 report_fatal_error("Target does not support the tiny CodeModel", false);
152 if (*CM
== CodeModel::Kernel
)
153 report_fatal_error("Target does not support the kernel CodeModel", false);
157 return RM
== Reloc::PIC_
? CodeModel::Small
: CodeModel::Medium
;
158 return CodeModel::Small
;
161 SystemZTargetMachine::SystemZTargetMachine(const Target
&T
, const Triple
&TT
,
162 StringRef CPU
, StringRef FS
,
163 const TargetOptions
&Options
,
164 Optional
<Reloc::Model
> RM
,
165 Optional
<CodeModel::Model
> CM
,
166 CodeGenOpt::Level OL
, bool JIT
)
168 T
, computeDataLayout(TT
, CPU
, FS
), TT
, CPU
, FS
, Options
,
169 getEffectiveRelocModel(RM
),
170 getEffectiveSystemZCodeModel(CM
, getEffectiveRelocModel(RM
), JIT
),
172 TLOF(createTLOF(getTargetTriple())) {
176 SystemZTargetMachine::~SystemZTargetMachine() = default;
178 const SystemZSubtarget
*
179 SystemZTargetMachine::getSubtargetImpl(const Function
&F
) const {
180 Attribute CPUAttr
= F
.getFnAttribute("target-cpu");
181 Attribute FSAttr
= F
.getFnAttribute("target-features");
184 CPUAttr
.isValid() ? CPUAttr
.getValueAsString().str() : TargetCPU
;
186 FSAttr
.isValid() ? FSAttr
.getValueAsString().str() : TargetFS
;
188 // FIXME: This is related to the code below to reset the target options,
189 // we need to know whether or not the soft float flag is set on the
190 // function, so we can enable it as a subtarget feature.
191 bool softFloat
= F
.getFnAttribute("use-soft-float").getValueAsBool();
194 FS
+= FS
.empty() ? "+soft-float" : ",+soft-float";
196 auto &I
= SubtargetMap
[CPU
+ FS
];
198 // This needs to be done before we create a new subtarget since any
199 // creation will depend on the TM and the code generation flags on the
200 // function that reside in TargetOptions.
201 resetTargetOptions(F
);
202 I
= std::make_unique
<SystemZSubtarget
>(TargetTriple
, CPU
, FS
, *this);
210 /// SystemZ Code Generator Pass Configuration Options.
211 class SystemZPassConfig
: public TargetPassConfig
{
213 SystemZPassConfig(SystemZTargetMachine
&TM
, PassManagerBase
&PM
)
214 : TargetPassConfig(TM
, PM
) {}
216 SystemZTargetMachine
&getSystemZTargetMachine() const {
217 return getTM
<SystemZTargetMachine
>();
221 createPostMachineScheduler(MachineSchedContext
*C
) const override
{
222 return new ScheduleDAGMI(C
,
223 std::make_unique
<SystemZPostRASchedStrategy
>(C
),
224 /*RemoveKillFlags=*/true);
227 void addIRPasses() override
;
228 bool addInstSelector() override
;
229 bool addILPOpts() override
;
230 void addPreRegAlloc() override
;
231 void addPostRewrite() override
;
232 void addPostRegAlloc() override
;
233 void addPreSched2() override
;
234 void addPreEmitPass() override
;
237 } // end anonymous namespace
239 void SystemZPassConfig::addIRPasses() {
240 if (getOptLevel() != CodeGenOpt::None
) {
241 addPass(createSystemZTDCPass());
242 addPass(createLoopDataPrefetchPass());
245 TargetPassConfig::addIRPasses();
248 bool SystemZPassConfig::addInstSelector() {
249 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
251 if (getOptLevel() != CodeGenOpt::None
)
252 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
257 bool SystemZPassConfig::addILPOpts() {
258 addPass(&EarlyIfConverterID
);
262 void SystemZPassConfig::addPreRegAlloc() {
263 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
266 void SystemZPassConfig::addPostRewrite() {
267 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
270 void SystemZPassConfig::addPostRegAlloc() {
271 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
273 if (getOptLevel() == CodeGenOpt::None
)
274 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
277 void SystemZPassConfig::addPreSched2() {
278 if (getOptLevel() != CodeGenOpt::None
)
279 addPass(&IfConverterID
);
282 void SystemZPassConfig::addPreEmitPass() {
283 // Do instruction shortening before compare elimination because some
284 // vector instructions will be shortened into opcodes that compare
285 // elimination recognizes.
286 if (getOptLevel() != CodeGenOpt::None
)
287 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
289 // We eliminate comparisons here rather than earlier because some
290 // transformations can change the set of available CC values and we
291 // generally want those transformations to have priority. This is
292 // especially true in the commonest case where the result of the comparison
293 // is used by a single in-range branch instruction, since we will then
294 // be able to fuse the compare and the branch instead.
296 // For example, two-address NILF can sometimes be converted into
297 // three-address RISBLG. NILF produces a CC value that indicates whether
298 // the low word is zero, but RISBLG does not modify CC at all. On the
299 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
300 // The CC value produced by NILL isn't useful for our purposes, but the
301 // value produced by RISBG can be used for any comparison with zero
302 // (not just equality). So there are some transformations that lose
303 // CC values (while still being worthwhile) and others that happen to make
304 // the CC result more useful than it was originally.
306 // Another reason is that we only want to use BRANCH ON COUNT in cases
307 // where we know that the count register is not going to be spilled.
309 // Doing it so late makes it more likely that a register will be reused
310 // between the comparison and the branch, but it isn't clear whether
311 // preventing that would be a win or not.
312 if (getOptLevel() != CodeGenOpt::None
)
313 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
314 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
316 // Do final scheduling after all other optimizations, to get an
317 // optimal input for the decoder (branch relaxation must happen
318 // after block placement).
319 if (getOptLevel() != CodeGenOpt::None
)
320 addPass(&PostMachineSchedulerID
);
323 TargetPassConfig
*SystemZTargetMachine::createPassConfig(PassManagerBase
&PM
) {
324 return new SystemZPassConfig(*this, PM
);
328 SystemZTargetMachine::getTargetTransformInfo(const Function
&F
) {
329 return TargetTransformInfo(SystemZTTIImpl(this, F
));