[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZTargetMachine.cpp
bloba886f9b9d814961fd9fcb02eeeb12299cb9a85d3
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include <string>
30 using namespace llvm;
32 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
33 // Register the target.
34 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
37 // Determine whether we use the vector ABI.
38 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
39 // We use the vector ABI whenever the vector facility is avaiable.
40 // This is the case by default if CPU is z13 or later, and can be
41 // overridden via "[+-]vector" feature string elements.
42 bool VectorABI = true;
43 bool SoftFloat = false;
44 if (CPU.empty() || CPU == "generic" ||
45 CPU == "z10" || CPU == "z196" || CPU == "zEC12" ||
46 CPU == "arch8" || CPU == "arch9" || CPU == "arch10")
47 VectorABI = false;
49 SmallVector<StringRef, 3> Features;
50 FS.split(Features, ',', -1, false /* KeepEmpty */);
51 for (auto &Feature : Features) {
52 if (Feature == "vector" || Feature == "+vector")
53 VectorABI = true;
54 if (Feature == "-vector")
55 VectorABI = false;
56 if (Feature == "soft-float" || Feature == "+soft-float")
57 SoftFloat = true;
58 if (Feature == "-soft-float")
59 SoftFloat = false;
62 return VectorABI && !SoftFloat;
65 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
66 StringRef FS) {
67 bool VectorABI = UsesVectorABI(CPU, FS);
68 std::string Ret;
70 // Big endian.
71 Ret += "E";
73 // Data mangling.
74 Ret += DataLayout::getManglingComponent(TT);
76 // Make sure that global data has at least 16 bits of alignment by
77 // default, so that we can refer to it using LARL. We don't have any
78 // special requirements for stack variables though.
79 Ret += "-i1:8:16-i8:8:16";
81 // 64-bit integers are naturally aligned.
82 Ret += "-i64:64";
84 // 128-bit floats are aligned only to 64 bits.
85 Ret += "-f128:64";
87 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
88 if (VectorABI)
89 Ret += "-v128:64";
91 // We prefer 16 bits of aligned for all globals; see above.
92 Ret += "-a:8:16";
94 // Integer registers are 32 or 64 bits.
95 Ret += "-n32:64";
97 return Ret;
100 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
101 if (TT.isOSzOS())
102 return std::make_unique<TargetLoweringObjectFileGOFF>();
104 // Note: Some times run with -triple s390x-unknown.
105 // In this case, default to ELF unless z/OS specifically provided.
106 return std::make_unique<TargetLoweringObjectFileELF>();
109 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
110 // Static code is suitable for use in a dynamic executable; there is no
111 // separate DynamicNoPIC model.
112 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
113 return Reloc::Static;
114 return *RM;
117 // For SystemZ we define the models as follows:
119 // Small: BRASL can call any function and will use a stub if necessary.
120 // Locally-binding symbols will always be in range of LARL.
122 // Medium: BRASL can call any function and will use a stub if necessary.
123 // GOT slots and locally-defined text will always be in range
124 // of LARL, but other symbols might not be.
126 // Large: Equivalent to Medium for now.
128 // Kernel: Equivalent to Medium for now.
130 // This means that any PIC module smaller than 4GB meets the
131 // requirements of Small, so Small seems like the best default there.
133 // All symbols bind locally in a non-PIC module, so the choice is less
134 // obvious. There are two cases:
136 // - When creating an executable, PLTs and copy relocations allow
137 // us to treat external symbols as part of the executable.
138 // Any executable smaller than 4GB meets the requirements of Small,
139 // so that seems like the best default.
141 // - When creating JIT code, stubs will be in range of BRASL if the
142 // image is less than 4GB in size. GOT entries will likewise be
143 // in range of LARL. However, the JIT environment has no equivalent
144 // of copy relocs, so locally-binding data symbols might not be in
145 // the range of LARL. We need the Medium model in that case.
146 static CodeModel::Model
147 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
148 bool JIT) {
149 if (CM) {
150 if (*CM == CodeModel::Tiny)
151 report_fatal_error("Target does not support the tiny CodeModel", false);
152 if (*CM == CodeModel::Kernel)
153 report_fatal_error("Target does not support the kernel CodeModel", false);
154 return *CM;
156 if (JIT)
157 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
158 return CodeModel::Small;
161 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
162 StringRef CPU, StringRef FS,
163 const TargetOptions &Options,
164 Optional<Reloc::Model> RM,
165 Optional<CodeModel::Model> CM,
166 CodeGenOpt::Level OL, bool JIT)
167 : LLVMTargetMachine(
168 T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
169 getEffectiveRelocModel(RM),
170 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
171 OL),
172 TLOF(createTLOF(getTargetTriple())) {
173 initAsmInfo();
176 SystemZTargetMachine::~SystemZTargetMachine() = default;
178 const SystemZSubtarget *
179 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
180 Attribute CPUAttr = F.getFnAttribute("target-cpu");
181 Attribute FSAttr = F.getFnAttribute("target-features");
183 std::string CPU =
184 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
185 std::string FS =
186 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
188 // FIXME: This is related to the code below to reset the target options,
189 // we need to know whether or not the soft float flag is set on the
190 // function, so we can enable it as a subtarget feature.
191 bool softFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
193 if (softFloat)
194 FS += FS.empty() ? "+soft-float" : ",+soft-float";
196 auto &I = SubtargetMap[CPU + FS];
197 if (!I) {
198 // This needs to be done before we create a new subtarget since any
199 // creation will depend on the TM and the code generation flags on the
200 // function that reside in TargetOptions.
201 resetTargetOptions(F);
202 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, FS, *this);
205 return I.get();
208 namespace {
210 /// SystemZ Code Generator Pass Configuration Options.
211 class SystemZPassConfig : public TargetPassConfig {
212 public:
213 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
214 : TargetPassConfig(TM, PM) {}
216 SystemZTargetMachine &getSystemZTargetMachine() const {
217 return getTM<SystemZTargetMachine>();
220 ScheduleDAGInstrs *
221 createPostMachineScheduler(MachineSchedContext *C) const override {
222 return new ScheduleDAGMI(C,
223 std::make_unique<SystemZPostRASchedStrategy>(C),
224 /*RemoveKillFlags=*/true);
227 void addIRPasses() override;
228 bool addInstSelector() override;
229 bool addILPOpts() override;
230 void addPreRegAlloc() override;
231 void addPostRewrite() override;
232 void addPostRegAlloc() override;
233 void addPreSched2() override;
234 void addPreEmitPass() override;
237 } // end anonymous namespace
239 void SystemZPassConfig::addIRPasses() {
240 if (getOptLevel() != CodeGenOpt::None) {
241 addPass(createSystemZTDCPass());
242 addPass(createLoopDataPrefetchPass());
245 TargetPassConfig::addIRPasses();
248 bool SystemZPassConfig::addInstSelector() {
249 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
251 if (getOptLevel() != CodeGenOpt::None)
252 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
254 return false;
257 bool SystemZPassConfig::addILPOpts() {
258 addPass(&EarlyIfConverterID);
259 return true;
262 void SystemZPassConfig::addPreRegAlloc() {
263 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
266 void SystemZPassConfig::addPostRewrite() {
267 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
270 void SystemZPassConfig::addPostRegAlloc() {
271 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
272 // is not called).
273 if (getOptLevel() == CodeGenOpt::None)
274 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
277 void SystemZPassConfig::addPreSched2() {
278 if (getOptLevel() != CodeGenOpt::None)
279 addPass(&IfConverterID);
282 void SystemZPassConfig::addPreEmitPass() {
283 // Do instruction shortening before compare elimination because some
284 // vector instructions will be shortened into opcodes that compare
285 // elimination recognizes.
286 if (getOptLevel() != CodeGenOpt::None)
287 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
289 // We eliminate comparisons here rather than earlier because some
290 // transformations can change the set of available CC values and we
291 // generally want those transformations to have priority. This is
292 // especially true in the commonest case where the result of the comparison
293 // is used by a single in-range branch instruction, since we will then
294 // be able to fuse the compare and the branch instead.
296 // For example, two-address NILF can sometimes be converted into
297 // three-address RISBLG. NILF produces a CC value that indicates whether
298 // the low word is zero, but RISBLG does not modify CC at all. On the
299 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
300 // The CC value produced by NILL isn't useful for our purposes, but the
301 // value produced by RISBG can be used for any comparison with zero
302 // (not just equality). So there are some transformations that lose
303 // CC values (while still being worthwhile) and others that happen to make
304 // the CC result more useful than it was originally.
306 // Another reason is that we only want to use BRANCH ON COUNT in cases
307 // where we know that the count register is not going to be spilled.
309 // Doing it so late makes it more likely that a register will be reused
310 // between the comparison and the branch, but it isn't clear whether
311 // preventing that would be a win or not.
312 if (getOptLevel() != CodeGenOpt::None)
313 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
314 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
316 // Do final scheduling after all other optimizations, to get an
317 // optimal input for the decoder (branch relaxation must happen
318 // after block placement).
319 if (getOptLevel() != CodeGenOpt::None)
320 addPass(&PostMachineSchedulerID);
323 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
324 return new SystemZPassConfig(*this, PM);
327 TargetTransformInfo
328 SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
329 return TargetTransformInfo(SystemZTTIImpl(this, F));