[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / X86 / X86FloatingPoint.cpp
blobe0f30f090171003b04ec0bef2566c31d9c339e7b
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions. This pass uses live
11 // variable information to indicate where the FPn registers are used and their
12 // lifetimes.
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
23 //===----------------------------------------------------------------------===//
25 #include "X86.h"
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LivePhysRegs.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <bitset>
50 using namespace llvm;
52 #define DEBUG_TYPE "x86-codegen"
54 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
55 STATISTIC(NumFP , "Number of floating point instructions");
57 namespace {
58 const unsigned ScratchFPReg = 7;
60 struct FPS : public MachineFunctionPass {
61 static char ID;
62 FPS() : MachineFunctionPass(ID) {
63 // This is really only to keep valgrind quiet.
64 // The logic in isLive() is too much for it.
65 memset(Stack, 0, sizeof(Stack));
66 memset(RegMap, 0, sizeof(RegMap));
69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.setPreservesCFG();
71 AU.addRequired<EdgeBundles>();
72 AU.addPreservedID(MachineLoopInfoID);
73 AU.addPreservedID(MachineDominatorsID);
74 MachineFunctionPass::getAnalysisUsage(AU);
77 bool runOnMachineFunction(MachineFunction &MF) override;
79 MachineFunctionProperties getRequiredProperties() const override {
80 return MachineFunctionProperties().set(
81 MachineFunctionProperties::Property::NoVRegs);
84 StringRef getPassName() const override { return "X86 FP Stackifier"; }
86 private:
87 const TargetInstrInfo *TII = nullptr; // Machine instruction info.
89 // Two CFG edges are related if they leave the same block, or enter the same
90 // block. The transitive closure of an edge under this relation is a
91 // LiveBundle. It represents a set of CFG edges where the live FP stack
92 // registers must be allocated identically in the x87 stack.
94 // A LiveBundle is usually all the edges leaving a block, or all the edges
95 // entering a block, but it can contain more edges if critical edges are
96 // present.
98 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
99 // but the exact mapping of FP registers to stack slots is fixed later.
100 struct LiveBundle {
101 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
102 unsigned Mask;
104 // Number of pre-assigned live registers in FixStack. This is 0 when the
105 // stack order has not yet been fixed.
106 unsigned FixCount;
108 // Assigned stack order for live-in registers.
109 // FixStack[i] == getStackEntry(i) for all i < FixCount.
110 unsigned char FixStack[8];
112 LiveBundle() : Mask(0), FixCount(0) {}
114 // Have the live registers been assigned a stack order yet?
115 bool isFixed() const { return !Mask || FixCount; }
118 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
119 // with no live FP registers.
120 SmallVector<LiveBundle, 8> LiveBundles;
122 // The edge bundle analysis provides indices into the LiveBundles vector.
123 EdgeBundles *Bundles = nullptr;
125 // Return a bitmask of FP registers in block's live-in list.
126 static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
127 unsigned Mask = 0;
128 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
129 I != MBB->livein_end(); ) {
130 MCPhysReg Reg = I->PhysReg;
131 static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
132 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
133 Mask |= 1 << (Reg - X86::FP0);
134 if (RemoveFPs) {
135 I = MBB->removeLiveIn(I);
136 continue;
139 ++I;
141 return Mask;
144 // Partition all the CFG edges into LiveBundles.
145 void bundleCFGRecomputeKillFlags(MachineFunction &MF);
147 MachineBasicBlock *MBB = nullptr; // Current basic block
149 // The hardware keeps track of how many FP registers are live, so we have
150 // to model that exactly. Usually, each live register corresponds to an
151 // FP<n> register, but when dealing with calls, returns, and inline
152 // assembly, it is sometimes necessary to have live scratch registers.
153 unsigned Stack[8]; // FP<n> Registers in each stack slot...
154 unsigned StackTop = 0; // The current top of the FP stack.
156 enum {
157 NumFPRegs = 8 // Including scratch pseudo-registers.
160 // For each live FP<n> register, point to its Stack[] entry.
161 // The first entries correspond to FP0-FP6, the rest are scratch registers
162 // used when we need slightly different live registers than what the
163 // register allocator thinks.
164 unsigned RegMap[NumFPRegs];
166 // Set up our stack model to match the incoming registers to MBB.
167 void setupBlockStack();
169 // Shuffle live registers to match the expectations of successor blocks.
170 void finishBlockStack();
172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
173 void dumpStack() const {
174 dbgs() << "Stack contents:";
175 for (unsigned i = 0; i != StackTop; ++i) {
176 dbgs() << " FP" << Stack[i];
177 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
180 #endif
182 /// getSlot - Return the stack slot number a particular register number is
183 /// in.
184 unsigned getSlot(unsigned RegNo) const {
185 assert(RegNo < NumFPRegs && "Regno out of range!");
186 return RegMap[RegNo];
189 /// isLive - Is RegNo currently live in the stack?
190 bool isLive(unsigned RegNo) const {
191 unsigned Slot = getSlot(RegNo);
192 return Slot < StackTop && Stack[Slot] == RegNo;
195 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
196 unsigned getStackEntry(unsigned STi) const {
197 if (STi >= StackTop)
198 report_fatal_error("Access past stack top!");
199 return Stack[StackTop-1-STi];
202 /// getSTReg - Return the X86::ST(i) register which contains the specified
203 /// FP<RegNo> register.
204 unsigned getSTReg(unsigned RegNo) const {
205 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
208 // pushReg - Push the specified FP<n> register onto the stack.
209 void pushReg(unsigned Reg) {
210 assert(Reg < NumFPRegs && "Register number out of range!");
211 if (StackTop >= 8)
212 report_fatal_error("Stack overflow!");
213 Stack[StackTop] = Reg;
214 RegMap[Reg] = StackTop++;
217 // popReg - Pop a register from the stack.
218 void popReg() {
219 if (StackTop == 0)
220 report_fatal_error("Cannot pop empty stack!");
221 RegMap[Stack[--StackTop]] = ~0; // Update state
224 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
225 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
226 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
227 if (isAtTop(RegNo)) return;
229 unsigned STReg = getSTReg(RegNo);
230 unsigned RegOnTop = getStackEntry(0);
232 // Swap the slots the regs are in.
233 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
235 // Swap stack slot contents.
236 if (RegMap[RegOnTop] >= StackTop)
237 report_fatal_error("Access past stack top!");
238 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
240 // Emit an fxch to update the runtime processors version of the state.
241 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
242 ++NumFXCH;
245 void duplicateToTop(unsigned RegNo, unsigned AsReg,
246 MachineBasicBlock::iterator I) {
247 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
248 unsigned STReg = getSTReg(RegNo);
249 pushReg(AsReg); // New register on top of stack
251 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
254 /// popStackAfter - Pop the current value off of the top of the FP stack
255 /// after the specified instruction.
256 void popStackAfter(MachineBasicBlock::iterator &I);
258 /// freeStackSlotAfter - Free the specified register from the register
259 /// stack, so that it is no longer in a register. If the register is
260 /// currently at the top of the stack, we just pop the current instruction,
261 /// otherwise we store the current top-of-stack into the specified slot,
262 /// then pop the top of stack.
263 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
265 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
266 /// instruction.
267 MachineBasicBlock::iterator
268 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
270 /// Adjust the live registers to be the set in Mask.
271 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
273 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
274 /// st(0), FP reg FixStack[1] is st(1) etc.
275 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
276 MachineBasicBlock::iterator I);
278 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
280 void handleCall(MachineBasicBlock::iterator &I);
281 void handleReturn(MachineBasicBlock::iterator &I);
282 void handleZeroArgFP(MachineBasicBlock::iterator &I);
283 void handleOneArgFP(MachineBasicBlock::iterator &I);
284 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
285 void handleTwoArgFP(MachineBasicBlock::iterator &I);
286 void handleCompareFP(MachineBasicBlock::iterator &I);
287 void handleCondMovFP(MachineBasicBlock::iterator &I);
288 void handleSpecialFP(MachineBasicBlock::iterator &I);
290 // Check if a COPY instruction is using FP registers.
291 static bool isFPCopy(MachineInstr &MI) {
292 Register DstReg = MI.getOperand(0).getReg();
293 Register SrcReg = MI.getOperand(1).getReg();
295 return X86::RFP80RegClass.contains(DstReg) ||
296 X86::RFP80RegClass.contains(SrcReg);
299 void setKillFlags(MachineBasicBlock &MBB) const;
303 char FPS::ID = 0;
305 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
306 false, false)
307 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
308 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
309 false, false)
311 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
313 /// getFPReg - Return the X86::FPx register number for the specified operand.
314 /// For example, this returns 3 for X86::FP3.
315 static unsigned getFPReg(const MachineOperand &MO) {
316 assert(MO.isReg() && "Expected an FP register!");
317 Register Reg = MO.getReg();
318 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
319 return Reg - X86::FP0;
322 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
323 /// register references into FP stack references.
325 bool FPS::runOnMachineFunction(MachineFunction &MF) {
326 // We only need to run this pass if there are any FP registers used in this
327 // function. If it is all integer, there is nothing for us to do!
328 bool FPIsUsed = false;
330 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
331 const MachineRegisterInfo &MRI = MF.getRegInfo();
332 for (unsigned i = 0; i <= 6; ++i)
333 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
334 FPIsUsed = true;
335 break;
338 // Early exit.
339 if (!FPIsUsed) return false;
341 Bundles = &getAnalysis<EdgeBundles>();
342 TII = MF.getSubtarget().getInstrInfo();
344 // Prepare cross-MBB liveness.
345 bundleCFGRecomputeKillFlags(MF);
347 StackTop = 0;
349 // Process the function in depth first order so that we process at least one
350 // of the predecessors for every reachable block in the function.
351 df_iterator_default_set<MachineBasicBlock*> Processed;
352 MachineBasicBlock *Entry = &MF.front();
354 LiveBundle &Bundle =
355 LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
357 // In regcall convention, some FP registers may not be passed through
358 // the stack, so they will need to be assigned to the stack first
359 if ((Entry->getParent()->getFunction().getCallingConv() ==
360 CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
361 // In the register calling convention, up to one FP argument could be
362 // saved in the first FP register.
363 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
364 // that the FP registers contain arguments.
365 // The actual value is passed in FP0.
366 // Here we fix the stack and mark FP0 as pre-assigned register.
367 assert((Bundle.Mask & 0xFE) == 0 &&
368 "Only FP0 could be passed as an argument");
369 Bundle.FixCount = 1;
370 Bundle.FixStack[0] = 0;
373 bool Changed = false;
374 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
375 Changed |= processBasicBlock(MF, *BB);
377 // Process any unreachable blocks in arbitrary order now.
378 if (MF.size() != Processed.size())
379 for (MachineBasicBlock &BB : MF)
380 if (Processed.insert(&BB).second)
381 Changed |= processBasicBlock(MF, BB);
383 LiveBundles.clear();
385 return Changed;
388 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
389 /// live-out sets for the FP registers. Consistent means that the set of
390 /// registers live-out from a block is identical to the live-in set of all
391 /// successors. This is not enforced by the normal live-in lists since
392 /// registers may be implicitly defined, or not used by all successors.
393 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
394 assert(LiveBundles.empty() && "Stale data in LiveBundles");
395 LiveBundles.resize(Bundles->getNumBundles());
397 // Gather the actual live-in masks for all MBBs.
398 for (MachineBasicBlock &MBB : MF) {
399 setKillFlags(MBB);
401 const unsigned Mask = calcLiveInMask(&MBB, false);
402 if (!Mask)
403 continue;
404 // Update MBB ingoing bundle mask.
405 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
409 /// processBasicBlock - Loop over all of the instructions in the basic block,
410 /// transforming FP instructions into their stack form.
412 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
413 bool Changed = false;
414 MBB = &BB;
416 setupBlockStack();
418 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
419 MachineInstr &MI = *I;
420 uint64_t Flags = MI.getDesc().TSFlags;
422 unsigned FPInstClass = Flags & X86II::FPTypeMask;
423 if (MI.isInlineAsm())
424 FPInstClass = X86II::SpecialFP;
426 if (MI.isCopy() && isFPCopy(MI))
427 FPInstClass = X86II::SpecialFP;
429 if (MI.isImplicitDef() &&
430 X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
431 FPInstClass = X86II::SpecialFP;
433 if (MI.isCall())
434 FPInstClass = X86II::SpecialFP;
436 if (FPInstClass == X86II::NotFP)
437 continue; // Efficiently ignore non-fp insts!
439 MachineInstr *PrevMI = nullptr;
440 if (I != BB.begin())
441 PrevMI = &*std::prev(I);
443 ++NumFP; // Keep track of # of pseudo instrs
444 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
446 // Get dead variables list now because the MI pointer may be deleted as part
447 // of processing!
448 SmallVector<unsigned, 8> DeadRegs;
449 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
450 const MachineOperand &MO = MI.getOperand(i);
451 if (MO.isReg() && MO.isDead())
452 DeadRegs.push_back(MO.getReg());
455 switch (FPInstClass) {
456 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
457 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
458 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
459 case X86II::TwoArgFP: handleTwoArgFP(I); break;
460 case X86II::CompareFP: handleCompareFP(I); break;
461 case X86II::CondMovFP: handleCondMovFP(I); break;
462 case X86II::SpecialFP: handleSpecialFP(I); break;
463 default: llvm_unreachable("Unknown FP Type!");
466 // Check to see if any of the values defined by this instruction are dead
467 // after definition. If so, pop them.
468 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
469 unsigned Reg = DeadRegs[i];
470 // Check if Reg is live on the stack. An inline-asm register operand that
471 // is in the clobber list and marked dead might not be live on the stack.
472 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
473 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
474 LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
475 freeStackSlotAfter(I, Reg-X86::FP0);
479 // Print out all of the instructions expanded to if -debug
480 LLVM_DEBUG({
481 MachineBasicBlock::iterator PrevI = PrevMI;
482 if (I == PrevI) {
483 dbgs() << "Just deleted pseudo instruction\n";
484 } else {
485 MachineBasicBlock::iterator Start = I;
486 // Rewind to first instruction newly inserted.
487 while (Start != BB.begin() && std::prev(Start) != PrevI)
488 --Start;
489 dbgs() << "Inserted instructions:\n\t";
490 Start->print(dbgs());
491 while (++Start != std::next(I)) {
494 dumpStack();
496 (void)PrevMI;
498 Changed = true;
501 finishBlockStack();
503 return Changed;
506 /// setupBlockStack - Use the live bundles to set up our model of the stack
507 /// to match predecessors' live out stack.
508 void FPS::setupBlockStack() {
509 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
510 << " derived from " << MBB->getName() << ".\n");
511 StackTop = 0;
512 // Get the live-in bundle for MBB.
513 const LiveBundle &Bundle =
514 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
516 if (!Bundle.Mask) {
517 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
518 return;
521 // Depth-first iteration should ensure that we always have an assigned stack.
522 assert(Bundle.isFixed() && "Reached block before any predecessors");
524 // Push the fixed live-in registers.
525 for (unsigned i = Bundle.FixCount; i > 0; --i) {
526 LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
527 << unsigned(Bundle.FixStack[i - 1]) << '\n');
528 pushReg(Bundle.FixStack[i-1]);
531 // Kill off unwanted live-ins. This can happen with a critical edge.
532 // FIXME: We could keep these live registers around as zombies. They may need
533 // to be revived at the end of a short block. It might save a few instrs.
534 unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
535 adjustLiveRegs(Mask, MBB->begin());
536 LLVM_DEBUG(MBB->dump());
539 /// finishBlockStack - Revive live-outs that are implicitly defined out of
540 /// MBB. Shuffle live registers to match the expected fixed stack of any
541 /// predecessors, and ensure that all predecessors are expecting the same
542 /// stack.
543 void FPS::finishBlockStack() {
544 // The RET handling below takes care of return blocks for us.
545 if (MBB->succ_empty())
546 return;
548 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
549 << " derived from " << MBB->getName() << ".\n");
551 // Get MBB's live-out bundle.
552 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
553 LiveBundle &Bundle = LiveBundles[BundleIdx];
555 // We may need to kill and define some registers to match successors.
556 // FIXME: This can probably be combined with the shuffle below.
557 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
558 adjustLiveRegs(Bundle.Mask, Term);
560 if (!Bundle.Mask) {
561 LLVM_DEBUG(dbgs() << "No live-outs.\n");
562 return;
565 // Has the stack order been fixed yet?
566 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
567 if (Bundle.isFixed()) {
568 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
569 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
570 } else {
571 // Not fixed yet, we get to choose.
572 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
573 Bundle.FixCount = StackTop;
574 for (unsigned i = 0; i < StackTop; ++i)
575 Bundle.FixStack[i] = getStackEntry(i);
580 //===----------------------------------------------------------------------===//
581 // Efficient Lookup Table Support
582 //===----------------------------------------------------------------------===//
584 namespace {
585 struct TableEntry {
586 uint16_t from;
587 uint16_t to;
588 bool operator<(const TableEntry &TE) const { return from < TE.from; }
589 friend bool operator<(const TableEntry &TE, unsigned V) {
590 return TE.from < V;
592 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
593 const TableEntry &TE) {
594 return V < TE.from;
599 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
600 const TableEntry *I = llvm::lower_bound(Table, Opcode);
601 if (I != Table.end() && I->from == Opcode)
602 return I->to;
603 return -1;
606 #ifdef NDEBUG
607 #define ASSERT_SORTED(TABLE)
608 #else
609 #define ASSERT_SORTED(TABLE) \
611 static std::atomic<bool> TABLE##Checked(false); \
612 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
613 assert(is_sorted(TABLE) && \
614 "All lookup tables must be sorted for efficient access!"); \
615 TABLE##Checked.store(true, std::memory_order_relaxed); \
618 #endif
620 //===----------------------------------------------------------------------===//
621 // Register File -> Register Stack Mapping Methods
622 //===----------------------------------------------------------------------===//
624 // OpcodeTable - Sorted map of register instructions to their stack version.
625 // The first element is an register file pseudo instruction, the second is the
626 // concrete X86 instruction which uses the register stack.
628 static const TableEntry OpcodeTable[] = {
629 { X86::ABS_Fp32 , X86::ABS_F },
630 { X86::ABS_Fp64 , X86::ABS_F },
631 { X86::ABS_Fp80 , X86::ABS_F },
632 { X86::ADD_Fp32m , X86::ADD_F32m },
633 { X86::ADD_Fp64m , X86::ADD_F64m },
634 { X86::ADD_Fp64m32 , X86::ADD_F32m },
635 { X86::ADD_Fp80m32 , X86::ADD_F32m },
636 { X86::ADD_Fp80m64 , X86::ADD_F64m },
637 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
638 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
639 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
640 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
641 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
642 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
643 { X86::CHS_Fp32 , X86::CHS_F },
644 { X86::CHS_Fp64 , X86::CHS_F },
645 { X86::CHS_Fp80 , X86::CHS_F },
646 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
647 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
648 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
649 { X86::CMOVB_Fp32 , X86::CMOVB_F },
650 { X86::CMOVB_Fp64 , X86::CMOVB_F },
651 { X86::CMOVB_Fp80 , X86::CMOVB_F },
652 { X86::CMOVE_Fp32 , X86::CMOVE_F },
653 { X86::CMOVE_Fp64 , X86::CMOVE_F },
654 { X86::CMOVE_Fp80 , X86::CMOVE_F },
655 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
656 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
657 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
658 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
659 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
660 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
661 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
662 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
663 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
664 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
665 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
666 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
667 { X86::CMOVP_Fp32 , X86::CMOVP_F },
668 { X86::CMOVP_Fp64 , X86::CMOVP_F },
669 { X86::CMOVP_Fp80 , X86::CMOVP_F },
670 { X86::COM_FpIr32 , X86::COM_FIr },
671 { X86::COM_FpIr64 , X86::COM_FIr },
672 { X86::COM_FpIr80 , X86::COM_FIr },
673 { X86::COM_Fpr32 , X86::COM_FST0r },
674 { X86::COM_Fpr64 , X86::COM_FST0r },
675 { X86::COM_Fpr80 , X86::COM_FST0r },
676 { X86::DIVR_Fp32m , X86::DIVR_F32m },
677 { X86::DIVR_Fp64m , X86::DIVR_F64m },
678 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
679 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
680 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
681 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
682 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
683 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
684 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
685 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
686 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
687 { X86::DIV_Fp32m , X86::DIV_F32m },
688 { X86::DIV_Fp64m , X86::DIV_F64m },
689 { X86::DIV_Fp64m32 , X86::DIV_F32m },
690 { X86::DIV_Fp80m32 , X86::DIV_F32m },
691 { X86::DIV_Fp80m64 , X86::DIV_F64m },
692 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
693 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
694 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
695 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
696 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
697 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
698 { X86::ILD_Fp16m32 , X86::ILD_F16m },
699 { X86::ILD_Fp16m64 , X86::ILD_F16m },
700 { X86::ILD_Fp16m80 , X86::ILD_F16m },
701 { X86::ILD_Fp32m32 , X86::ILD_F32m },
702 { X86::ILD_Fp32m64 , X86::ILD_F32m },
703 { X86::ILD_Fp32m80 , X86::ILD_F32m },
704 { X86::ILD_Fp64m32 , X86::ILD_F64m },
705 { X86::ILD_Fp64m64 , X86::ILD_F64m },
706 { X86::ILD_Fp64m80 , X86::ILD_F64m },
707 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
708 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
709 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
710 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
711 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
712 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
713 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
714 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
715 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
716 { X86::IST_Fp16m32 , X86::IST_F16m },
717 { X86::IST_Fp16m64 , X86::IST_F16m },
718 { X86::IST_Fp16m80 , X86::IST_F16m },
719 { X86::IST_Fp32m32 , X86::IST_F32m },
720 { X86::IST_Fp32m64 , X86::IST_F32m },
721 { X86::IST_Fp32m80 , X86::IST_F32m },
722 { X86::IST_Fp64m32 , X86::IST_FP64m },
723 { X86::IST_Fp64m64 , X86::IST_FP64m },
724 { X86::IST_Fp64m80 , X86::IST_FP64m },
725 { X86::LD_Fp032 , X86::LD_F0 },
726 { X86::LD_Fp064 , X86::LD_F0 },
727 { X86::LD_Fp080 , X86::LD_F0 },
728 { X86::LD_Fp132 , X86::LD_F1 },
729 { X86::LD_Fp164 , X86::LD_F1 },
730 { X86::LD_Fp180 , X86::LD_F1 },
731 { X86::LD_Fp32m , X86::LD_F32m },
732 { X86::LD_Fp32m64 , X86::LD_F32m },
733 { X86::LD_Fp32m80 , X86::LD_F32m },
734 { X86::LD_Fp64m , X86::LD_F64m },
735 { X86::LD_Fp64m80 , X86::LD_F64m },
736 { X86::LD_Fp80m , X86::LD_F80m },
737 { X86::MUL_Fp32m , X86::MUL_F32m },
738 { X86::MUL_Fp64m , X86::MUL_F64m },
739 { X86::MUL_Fp64m32 , X86::MUL_F32m },
740 { X86::MUL_Fp80m32 , X86::MUL_F32m },
741 { X86::MUL_Fp80m64 , X86::MUL_F64m },
742 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
743 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
744 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
745 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
746 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
747 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
748 { X86::SQRT_Fp32 , X86::SQRT_F },
749 { X86::SQRT_Fp64 , X86::SQRT_F },
750 { X86::SQRT_Fp80 , X86::SQRT_F },
751 { X86::ST_Fp32m , X86::ST_F32m },
752 { X86::ST_Fp64m , X86::ST_F64m },
753 { X86::ST_Fp64m32 , X86::ST_F32m },
754 { X86::ST_Fp80m32 , X86::ST_F32m },
755 { X86::ST_Fp80m64 , X86::ST_F64m },
756 { X86::ST_FpP80m , X86::ST_FP80m },
757 { X86::SUBR_Fp32m , X86::SUBR_F32m },
758 { X86::SUBR_Fp64m , X86::SUBR_F64m },
759 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
760 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
761 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
762 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
763 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
764 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
765 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
766 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
767 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
768 { X86::SUB_Fp32m , X86::SUB_F32m },
769 { X86::SUB_Fp64m , X86::SUB_F64m },
770 { X86::SUB_Fp64m32 , X86::SUB_F32m },
771 { X86::SUB_Fp80m32 , X86::SUB_F32m },
772 { X86::SUB_Fp80m64 , X86::SUB_F64m },
773 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
774 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
775 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
776 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
777 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
778 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
779 { X86::TST_Fp32 , X86::TST_F },
780 { X86::TST_Fp64 , X86::TST_F },
781 { X86::TST_Fp80 , X86::TST_F },
782 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
783 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
784 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
785 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
786 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
787 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
788 { X86::XAM_Fp32 , X86::XAM_F },
789 { X86::XAM_Fp64 , X86::XAM_F },
790 { X86::XAM_Fp80 , X86::XAM_F },
793 static unsigned getConcreteOpcode(unsigned Opcode) {
794 ASSERT_SORTED(OpcodeTable);
795 int Opc = Lookup(OpcodeTable, Opcode);
796 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
797 return Opc;
800 //===----------------------------------------------------------------------===//
801 // Helper Methods
802 //===----------------------------------------------------------------------===//
804 // PopTable - Sorted map of instructions to their popping version. The first
805 // element is an instruction, the second is the version which pops.
807 static const TableEntry PopTable[] = {
808 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
810 { X86::COMP_FST0r, X86::FCOMPP },
811 { X86::COM_FIr , X86::COM_FIPr },
812 { X86::COM_FST0r , X86::COMP_FST0r },
814 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
815 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
817 { X86::IST_F16m , X86::IST_FP16m },
818 { X86::IST_F32m , X86::IST_FP32m },
820 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
822 { X86::ST_F32m , X86::ST_FP32m },
823 { X86::ST_F64m , X86::ST_FP64m },
824 { X86::ST_Frr , X86::ST_FPrr },
826 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
827 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
829 { X86::UCOM_FIr , X86::UCOM_FIPr },
831 { X86::UCOM_FPr , X86::UCOM_FPPr },
832 { X86::UCOM_Fr , X86::UCOM_FPr },
835 /// popStackAfter - Pop the current value off of the top of the FP stack after
836 /// the specified instruction. This attempts to be sneaky and combine the pop
837 /// into the instruction itself if possible. The iterator is left pointing to
838 /// the last instruction, be it a new pop instruction inserted, or the old
839 /// instruction if it was modified in place.
841 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
842 MachineInstr &MI = *I;
843 const DebugLoc &dl = MI.getDebugLoc();
844 ASSERT_SORTED(PopTable);
846 popReg();
848 // Check to see if there is a popping version of this instruction...
849 int Opcode = Lookup(PopTable, I->getOpcode());
850 if (Opcode != -1) {
851 I->setDesc(TII->get(Opcode));
852 if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
853 I->RemoveOperand(0);
854 MI.dropDebugNumber();
855 } else { // Insert an explicit pop
856 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
860 /// freeStackSlotAfter - Free the specified register from the register stack, so
861 /// that it is no longer in a register. If the register is currently at the top
862 /// of the stack, we just pop the current instruction, otherwise we store the
863 /// current top-of-stack into the specified slot, then pop the top of stack.
864 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
865 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
866 popStackAfter(I);
867 return;
870 // Otherwise, store the top of stack into the dead slot, killing the operand
871 // without having to add in an explicit xchg then pop.
873 I = freeStackSlotBefore(++I, FPRegNo);
876 /// freeStackSlotBefore - Free the specified register without trying any
877 /// folding.
878 MachineBasicBlock::iterator
879 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
880 unsigned STReg = getSTReg(FPRegNo);
881 unsigned OldSlot = getSlot(FPRegNo);
882 unsigned TopReg = Stack[StackTop-1];
883 Stack[OldSlot] = TopReg;
884 RegMap[TopReg] = OldSlot;
885 RegMap[FPRegNo] = ~0;
886 Stack[--StackTop] = ~0;
887 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
888 .addReg(STReg)
889 .getInstr();
892 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
893 /// registers with a bit in Mask are live.
894 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
895 unsigned Defs = Mask;
896 unsigned Kills = 0;
897 for (unsigned i = 0; i < StackTop; ++i) {
898 unsigned RegNo = Stack[i];
899 if (!(Defs & (1 << RegNo)))
900 // This register is live, but we don't want it.
901 Kills |= (1 << RegNo);
902 else
903 // We don't need to imp-def this live register.
904 Defs &= ~(1 << RegNo);
906 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
908 // Produce implicit-defs for free by using killed registers.
909 while (Kills && Defs) {
910 unsigned KReg = countTrailingZeros(Kills);
911 unsigned DReg = countTrailingZeros(Defs);
912 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
913 << "\n");
914 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
915 std::swap(RegMap[KReg], RegMap[DReg]);
916 Kills &= ~(1 << KReg);
917 Defs &= ~(1 << DReg);
920 // Kill registers by popping.
921 if (Kills && I != MBB->begin()) {
922 MachineBasicBlock::iterator I2 = std::prev(I);
923 while (StackTop) {
924 unsigned KReg = getStackEntry(0);
925 if (!(Kills & (1 << KReg)))
926 break;
927 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
928 popStackAfter(I2);
929 Kills &= ~(1 << KReg);
933 // Manually kill the rest.
934 while (Kills) {
935 unsigned KReg = countTrailingZeros(Kills);
936 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
937 freeStackSlotBefore(I, KReg);
938 Kills &= ~(1 << KReg);
941 // Load zeros for all the imp-defs.
942 while(Defs) {
943 unsigned DReg = countTrailingZeros(Defs);
944 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
945 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
946 pushReg(DReg);
947 Defs &= ~(1 << DReg);
950 // Now we should have the correct registers live.
951 LLVM_DEBUG(dumpStack());
952 assert(StackTop == countPopulation(Mask) && "Live count mismatch");
955 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
956 /// FixCount entries into the order given by FixStack.
957 /// FIXME: Is there a better algorithm than insertion sort?
958 void FPS::shuffleStackTop(const unsigned char *FixStack,
959 unsigned FixCount,
960 MachineBasicBlock::iterator I) {
961 // Move items into place, starting from the desired stack bottom.
962 while (FixCount--) {
963 // Old register at position FixCount.
964 unsigned OldReg = getStackEntry(FixCount);
965 // Desired register at position FixCount.
966 unsigned Reg = FixStack[FixCount];
967 if (Reg == OldReg)
968 continue;
969 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
970 moveToTop(Reg, I);
971 if (FixCount > 0)
972 moveToTop(OldReg, I);
974 LLVM_DEBUG(dumpStack());
978 //===----------------------------------------------------------------------===//
979 // Instruction transformation implementation
980 //===----------------------------------------------------------------------===//
982 void FPS::handleCall(MachineBasicBlock::iterator &I) {
983 MachineInstr &MI = *I;
984 unsigned STReturns = 0;
986 bool ClobbersFPStack = false;
987 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
988 MachineOperand &Op = MI.getOperand(i);
989 // Check if this call clobbers the FP stack.
990 // is sufficient.
991 if (Op.isRegMask()) {
992 bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
993 #ifndef NDEBUG
994 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
995 for (unsigned i = 1; i != 8; ++i)
996 assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
997 "Inconsistent FP register clobber");
998 #endif
1000 if (ClobbersFP0)
1001 ClobbersFPStack = true;
1004 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1005 continue;
1007 assert(Op.isImplicit() && "Expected implicit def/use");
1009 if (Op.isDef())
1010 STReturns |= 1 << getFPReg(Op);
1012 // Remove the operand so that later passes don't see it.
1013 MI.RemoveOperand(i);
1014 --i;
1015 --e;
1018 // Most calls should have a regmask that clobbers the FP registers. If it
1019 // isn't present then the register allocator didn't spill the FP registers
1020 // so they are still on the stack.
1021 assert((ClobbersFPStack || STReturns == 0) &&
1022 "ST returns without FP stack clobber");
1023 if (!ClobbersFPStack)
1024 return;
1026 unsigned N = countTrailingOnes(STReturns);
1028 // FP registers used for function return must be consecutive starting at
1029 // FP0
1030 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
1032 // Reset the FP Stack - It is required because of possible leftovers from
1033 // passed arguments. The caller should assume that the FP stack is
1034 // returned empty (unless the callee returns values on FP stack).
1035 while (StackTop > 0)
1036 popReg();
1038 for (unsigned I = 0; I < N; ++I)
1039 pushReg(N - I - 1);
1041 // Drop all variable values defined by this call -- we can't track them
1042 // once they've been stackified.
1043 I->dropDebugNumber();
1046 /// If RET has an FP register use operand, pass the first one in ST(0) and
1047 /// the second one in ST(1).
1048 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1049 MachineInstr &MI = *I;
1051 // Find the register operands.
1052 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1053 unsigned LiveMask = 0;
1055 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1056 MachineOperand &Op = MI.getOperand(i);
1057 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1058 continue;
1059 // FP Register uses must be kills unless there are two uses of the same
1060 // register, in which case only one will be a kill.
1061 assert(Op.isUse() &&
1062 (Op.isKill() || // Marked kill.
1063 getFPReg(Op) == FirstFPRegOp || // Second instance.
1064 MI.killsRegister(Op.getReg())) && // Later use is marked kill.
1065 "Ret only defs operands, and values aren't live beyond it");
1067 if (FirstFPRegOp == ~0U)
1068 FirstFPRegOp = getFPReg(Op);
1069 else {
1070 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1071 SecondFPRegOp = getFPReg(Op);
1073 LiveMask |= (1 << getFPReg(Op));
1075 // Remove the operand so that later passes don't see it.
1076 MI.RemoveOperand(i);
1077 --i;
1078 --e;
1081 // We may have been carrying spurious live-ins, so make sure only the
1082 // returned registers are left live.
1083 adjustLiveRegs(LiveMask, MI);
1084 if (!LiveMask) return; // Quick check to see if any are possible.
1086 // There are only four possibilities here:
1087 // 1) we are returning a single FP value. In this case, it has to be in
1088 // ST(0) already, so just declare success by removing the value from the
1089 // FP Stack.
1090 if (SecondFPRegOp == ~0U) {
1091 // Assert that the top of stack contains the right FP register.
1092 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1093 "Top of stack not the right register for RET!");
1095 // Ok, everything is good, mark the value as not being on the stack
1096 // anymore so that our assertion about the stack being empty at end of
1097 // block doesn't fire.
1098 StackTop = 0;
1099 return;
1102 // Otherwise, we are returning two values:
1103 // 2) If returning the same value for both, we only have one thing in the FP
1104 // stack. Consider: RET FP1, FP1
1105 if (StackTop == 1) {
1106 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1107 "Stack misconfiguration for RET!");
1109 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1110 // register to hold it.
1111 unsigned NewReg = ScratchFPReg;
1112 duplicateToTop(FirstFPRegOp, NewReg, MI);
1113 FirstFPRegOp = NewReg;
1116 /// Okay we know we have two different FPx operands now:
1117 assert(StackTop == 2 && "Must have two values live!");
1119 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1120 /// in ST(1). In this case, emit an fxch.
1121 if (getStackEntry(0) == SecondFPRegOp) {
1122 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1123 moveToTop(FirstFPRegOp, MI);
1126 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1127 /// ST(1). Just remove both from our understanding of the stack and return.
1128 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1129 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1130 StackTop = 0;
1133 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1135 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1136 MachineInstr &MI = *I;
1137 unsigned DestReg = getFPReg(MI.getOperand(0));
1139 // Change from the pseudo instruction to the concrete instruction.
1140 MI.RemoveOperand(0); // Remove the explicit ST(0) operand
1141 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1142 MI.addOperand(
1143 MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
1145 // Result gets pushed on the stack.
1146 pushReg(DestReg);
1148 MI.dropDebugNumber();
1151 /// handleOneArgFP - fst <mem>, ST(0)
1153 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1154 MachineInstr &MI = *I;
1155 unsigned NumOps = MI.getDesc().getNumOperands();
1156 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1157 "Can only handle fst* & ftst instructions!");
1159 // Is this the last use of the source register?
1160 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1161 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1163 // FISTP64m is strange because there isn't a non-popping versions.
1164 // If we have one _and_ we don't want to pop the operand, duplicate the value
1165 // on the stack instead of moving it. This ensure that popping the value is
1166 // always ok.
1167 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1169 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1170 MI.getOpcode() == X86::ISTT_Fp16m32 ||
1171 MI.getOpcode() == X86::ISTT_Fp32m32 ||
1172 MI.getOpcode() == X86::ISTT_Fp64m32 ||
1173 MI.getOpcode() == X86::IST_Fp64m64 ||
1174 MI.getOpcode() == X86::ISTT_Fp16m64 ||
1175 MI.getOpcode() == X86::ISTT_Fp32m64 ||
1176 MI.getOpcode() == X86::ISTT_Fp64m64 ||
1177 MI.getOpcode() == X86::IST_Fp64m80 ||
1178 MI.getOpcode() == X86::ISTT_Fp16m80 ||
1179 MI.getOpcode() == X86::ISTT_Fp32m80 ||
1180 MI.getOpcode() == X86::ISTT_Fp64m80 ||
1181 MI.getOpcode() == X86::ST_FpP80m)) {
1182 duplicateToTop(Reg, ScratchFPReg, I);
1183 } else {
1184 moveToTop(Reg, I); // Move to the top of the stack...
1187 // Convert from the pseudo instruction to the concrete instruction.
1188 MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
1189 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1190 MI.addOperand(
1191 MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
1193 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1194 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1195 MI.getOpcode() == X86::ST_FP80m) {
1196 if (StackTop == 0)
1197 report_fatal_error("Stack empty??");
1198 --StackTop;
1199 } else if (KillsSrc) { // Last use of operand?
1200 popStackAfter(I);
1203 MI.dropDebugNumber();
1207 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1208 /// replace the value with a newly computed value. These instructions may have
1209 /// non-fp operands after their FP operands.
1211 /// Examples:
1212 /// R1 = fchs R2
1213 /// R1 = fadd R2, [mem]
1215 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1216 MachineInstr &MI = *I;
1217 #ifndef NDEBUG
1218 unsigned NumOps = MI.getDesc().getNumOperands();
1219 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1220 #endif
1222 // Is this the last use of the source register?
1223 unsigned Reg = getFPReg(MI.getOperand(1));
1224 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1226 if (KillsSrc) {
1227 // If this is the last use of the source register, just make sure it's on
1228 // the top of the stack.
1229 moveToTop(Reg, I);
1230 if (StackTop == 0)
1231 report_fatal_error("Stack cannot be empty!");
1232 --StackTop;
1233 pushReg(getFPReg(MI.getOperand(0)));
1234 } else {
1235 // If this is not the last use of the source register, _copy_ it to the top
1236 // of the stack.
1237 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1240 // Change from the pseudo instruction to the concrete instruction.
1241 MI.RemoveOperand(1); // Drop the source operand.
1242 MI.RemoveOperand(0); // Drop the destination operand.
1243 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1244 MI.dropDebugNumber();
1248 //===----------------------------------------------------------------------===//
1249 // Define tables of various ways to map pseudo instructions
1252 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1253 static const TableEntry ForwardST0Table[] = {
1254 { X86::ADD_Fp32 , X86::ADD_FST0r },
1255 { X86::ADD_Fp64 , X86::ADD_FST0r },
1256 { X86::ADD_Fp80 , X86::ADD_FST0r },
1257 { X86::DIV_Fp32 , X86::DIV_FST0r },
1258 { X86::DIV_Fp64 , X86::DIV_FST0r },
1259 { X86::DIV_Fp80 , X86::DIV_FST0r },
1260 { X86::MUL_Fp32 , X86::MUL_FST0r },
1261 { X86::MUL_Fp64 , X86::MUL_FST0r },
1262 { X86::MUL_Fp80 , X86::MUL_FST0r },
1263 { X86::SUB_Fp32 , X86::SUB_FST0r },
1264 { X86::SUB_Fp64 , X86::SUB_FST0r },
1265 { X86::SUB_Fp80 , X86::SUB_FST0r },
1268 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1269 static const TableEntry ReverseST0Table[] = {
1270 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1271 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1272 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1273 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1274 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1275 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1276 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1277 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1278 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1279 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1280 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1281 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1284 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1285 static const TableEntry ForwardSTiTable[] = {
1286 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1287 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1288 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1289 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1290 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1291 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1292 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1293 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1294 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1295 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1296 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1297 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1300 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1301 static const TableEntry ReverseSTiTable[] = {
1302 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1303 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1304 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1305 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1306 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1307 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1308 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1309 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1310 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1311 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1312 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1313 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1317 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1318 /// instructions which need to be simplified and possibly transformed.
1320 /// Result: ST(0) = fsub ST(0), ST(i)
1321 /// ST(i) = fsub ST(0), ST(i)
1322 /// ST(0) = fsubr ST(0), ST(i)
1323 /// ST(i) = fsubr ST(0), ST(i)
1325 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1326 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1327 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1328 MachineInstr &MI = *I;
1330 unsigned NumOperands = MI.getDesc().getNumOperands();
1331 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1332 unsigned Dest = getFPReg(MI.getOperand(0));
1333 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1334 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1335 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1336 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1337 const DebugLoc &dl = MI.getDebugLoc();
1339 unsigned TOS = getStackEntry(0);
1341 // One of our operands must be on the top of the stack. If neither is yet, we
1342 // need to move one.
1343 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1344 // We can choose to move either operand to the top of the stack. If one of
1345 // the operands is killed by this instruction, we want that one so that we
1346 // can update right on top of the old version.
1347 if (KillsOp0) {
1348 moveToTop(Op0, I); // Move dead operand to TOS.
1349 TOS = Op0;
1350 } else if (KillsOp1) {
1351 moveToTop(Op1, I);
1352 TOS = Op1;
1353 } else {
1354 // All of the operands are live after this instruction executes, so we
1355 // cannot update on top of any operand. Because of this, we must
1356 // duplicate one of the stack elements to the top. It doesn't matter
1357 // which one we pick.
1359 duplicateToTop(Op0, Dest, I);
1360 Op0 = TOS = Dest;
1361 KillsOp0 = true;
1363 } else if (!KillsOp0 && !KillsOp1) {
1364 // If we DO have one of our operands at the top of the stack, but we don't
1365 // have a dead operand, we must duplicate one of the operands to a new slot
1366 // on the stack.
1367 duplicateToTop(Op0, Dest, I);
1368 Op0 = TOS = Dest;
1369 KillsOp0 = true;
1372 // Now we know that one of our operands is on the top of the stack, and at
1373 // least one of our operands is killed by this instruction.
1374 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1375 "Stack conditions not set up right!");
1377 // We decide which form to use based on what is on the top of the stack, and
1378 // which operand is killed by this instruction.
1379 ArrayRef<TableEntry> InstTable;
1380 bool isForward = TOS == Op0;
1381 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1382 if (updateST0) {
1383 if (isForward)
1384 InstTable = ForwardST0Table;
1385 else
1386 InstTable = ReverseST0Table;
1387 } else {
1388 if (isForward)
1389 InstTable = ForwardSTiTable;
1390 else
1391 InstTable = ReverseSTiTable;
1394 int Opcode = Lookup(InstTable, MI.getOpcode());
1395 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1397 // NotTOS - The register which is not on the top of stack...
1398 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1400 // Replace the old instruction with a new instruction
1401 MBB->remove(&*I++);
1402 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1404 if (!MI.mayRaiseFPException())
1405 I->setFlag(MachineInstr::MIFlag::NoFPExcept);
1407 // If both operands are killed, pop one off of the stack in addition to
1408 // overwriting the other one.
1409 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1410 assert(!updateST0 && "Should have updated other operand!");
1411 popStackAfter(I); // Pop the top of stack
1414 // Update stack information so that we know the destination register is now on
1415 // the stack.
1416 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1417 assert(UpdatedSlot < StackTop && Dest < 7);
1418 Stack[UpdatedSlot] = Dest;
1419 RegMap[Dest] = UpdatedSlot;
1420 MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
1423 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1424 /// register arguments and no explicit destinations.
1426 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1427 MachineInstr &MI = *I;
1429 unsigned NumOperands = MI.getDesc().getNumOperands();
1430 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1431 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1432 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1433 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1434 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1436 // Make sure the first operand is on the top of stack, the other one can be
1437 // anywhere.
1438 moveToTop(Op0, I);
1440 // Change from the pseudo instruction to the concrete instruction.
1441 MI.getOperand(0).setReg(getSTReg(Op1));
1442 MI.RemoveOperand(1);
1443 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1444 MI.dropDebugNumber();
1446 // If any of the operands are killed by this instruction, free them.
1447 if (KillsOp0) freeStackSlotAfter(I, Op0);
1448 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1451 /// handleCondMovFP - Handle two address conditional move instructions. These
1452 /// instructions move a st(i) register to st(0) iff a condition is true. These
1453 /// instructions require that the first operand is at the top of the stack, but
1454 /// otherwise don't modify the stack at all.
1455 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1456 MachineInstr &MI = *I;
1458 unsigned Op0 = getFPReg(MI.getOperand(0));
1459 unsigned Op1 = getFPReg(MI.getOperand(2));
1460 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1462 // The first operand *must* be on the top of the stack.
1463 moveToTop(Op0, I);
1465 // Change the second operand to the stack register that the operand is in.
1466 // Change from the pseudo instruction to the concrete instruction.
1467 MI.RemoveOperand(0);
1468 MI.RemoveOperand(1);
1469 MI.getOperand(0).setReg(getSTReg(Op1));
1470 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1471 MI.dropDebugNumber();
1473 // If we kill the second operand, make sure to pop it from the stack.
1474 if (Op0 != Op1 && KillsOp1) {
1475 // Get this value off of the register stack.
1476 freeStackSlotAfter(I, Op1);
1481 /// handleSpecialFP - Handle special instructions which behave unlike other
1482 /// floating point instructions. This is primarily intended for use by pseudo
1483 /// instructions.
1485 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1486 MachineInstr &MI = *Inst;
1488 if (MI.isCall()) {
1489 handleCall(Inst);
1490 return;
1493 if (MI.isReturn()) {
1494 handleReturn(Inst);
1495 return;
1498 switch (MI.getOpcode()) {
1499 default: llvm_unreachable("Unknown SpecialFP instruction!");
1500 case TargetOpcode::COPY: {
1501 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1502 const MachineOperand &MO1 = MI.getOperand(1);
1503 const MachineOperand &MO0 = MI.getOperand(0);
1504 bool KillsSrc = MI.killsRegister(MO1.getReg());
1506 // FP <- FP copy.
1507 unsigned DstFP = getFPReg(MO0);
1508 unsigned SrcFP = getFPReg(MO1);
1509 assert(isLive(SrcFP) && "Cannot copy dead register");
1510 if (KillsSrc) {
1511 // If the input operand is killed, we can just change the owner of the
1512 // incoming stack slot into the result.
1513 unsigned Slot = getSlot(SrcFP);
1514 Stack[Slot] = DstFP;
1515 RegMap[DstFP] = Slot;
1516 } else {
1517 // For COPY we just duplicate the specified value to a new stack slot.
1518 // This could be made better, but would require substantial changes.
1519 duplicateToTop(SrcFP, DstFP, Inst);
1521 break;
1524 case TargetOpcode::IMPLICIT_DEF: {
1525 // All FP registers must be explicitly defined, so load a 0 instead.
1526 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1527 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1528 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1529 pushReg(Reg);
1530 break;
1533 case TargetOpcode::INLINEASM:
1534 case TargetOpcode::INLINEASM_BR: {
1535 // The inline asm MachineInstr currently only *uses* FP registers for the
1536 // 'f' constraint. These should be turned into the current ST(x) register
1537 // in the machine instr.
1539 // There are special rules for x87 inline assembly. The compiler must know
1540 // exactly how many registers are popped and pushed implicitly by the asm.
1541 // Otherwise it is not possible to restore the stack state after the inline
1542 // asm.
1544 // There are 3 kinds of input operands:
1546 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1547 // popped input operand must be in a fixed stack slot, and it is either
1548 // tied to an output operand, or in the clobber list. The MI has ST use
1549 // and def operands for these inputs.
1551 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1552 // preserved by the inline asm. The fixed stack slots must be STn-STm
1553 // following the popped inputs. A fixed input operand cannot be tied to
1554 // an output or appear in the clobber list. The MI has ST use operands
1555 // and no defs for these inputs.
1557 // 3. Preserved inputs. These inputs use the "f" constraint which is
1558 // represented as an FP register. The inline asm won't change these
1559 // stack slots.
1561 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1562 // registers do not count as output operands. The inline asm changes the
1563 // stack as if it popped all the popped inputs and then pushed all the
1564 // output operands.
1566 // Scan the assembly for ST registers used, defined and clobbered. We can
1567 // only tell clobbers from defs by looking at the asm descriptor.
1568 unsigned STUses = 0, STDefs = 0, STClobbers = 0;
1569 unsigned NumOps = 0;
1570 SmallSet<unsigned, 1> FRegIdx;
1571 unsigned RCID;
1573 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1574 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1575 unsigned Flags = MI.getOperand(i).getImm();
1577 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1578 if (NumOps != 1)
1579 continue;
1580 const MachineOperand &MO = MI.getOperand(i + 1);
1581 if (!MO.isReg())
1582 continue;
1583 unsigned STReg = MO.getReg() - X86::FP0;
1584 if (STReg >= 8)
1585 continue;
1587 // If the flag has a register class constraint, this must be an operand
1588 // with constraint "f". Record its index and continue.
1589 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1590 FRegIdx.insert(i + 1);
1591 continue;
1594 switch (InlineAsm::getKind(Flags)) {
1595 case InlineAsm::Kind_RegUse:
1596 STUses |= (1u << STReg);
1597 break;
1598 case InlineAsm::Kind_RegDef:
1599 case InlineAsm::Kind_RegDefEarlyClobber:
1600 STDefs |= (1u << STReg);
1601 break;
1602 case InlineAsm::Kind_Clobber:
1603 STClobbers |= (1u << STReg);
1604 break;
1605 default:
1606 break;
1610 if (STUses && !isMask_32(STUses))
1611 MI.emitError("fixed input regs must be last on the x87 stack");
1612 unsigned NumSTUses = countTrailingOnes(STUses);
1614 // Defs must be contiguous from the stack top. ST0-STn.
1615 if (STDefs && !isMask_32(STDefs)) {
1616 MI.emitError("output regs must be last on the x87 stack");
1617 STDefs = NextPowerOf2(STDefs) - 1;
1619 unsigned NumSTDefs = countTrailingOnes(STDefs);
1621 // So must the clobbered stack slots. ST0-STm, m >= n.
1622 if (STClobbers && !isMask_32(STDefs | STClobbers))
1623 MI.emitError("clobbers must be last on the x87 stack");
1625 // Popped inputs are the ones that are also clobbered or defined.
1626 unsigned STPopped = STUses & (STDefs | STClobbers);
1627 if (STPopped && !isMask_32(STPopped))
1628 MI.emitError("implicitly popped regs must be last on the x87 stack");
1629 unsigned NumSTPopped = countTrailingOnes(STPopped);
1631 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1632 << NumSTPopped << ", and defines " << NumSTDefs
1633 << " regs.\n");
1635 #ifndef NDEBUG
1636 // If any input operand uses constraint "f", all output register
1637 // constraints must be early-clobber defs.
1638 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1639 if (FRegIdx.count(I)) {
1640 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1641 "Operands with constraint \"f\" cannot overlap with defs");
1643 #endif
1645 // Collect all FP registers (register operands with constraints "t", "u",
1646 // and "f") to kill afer the instruction.
1647 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1648 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1649 MachineOperand &Op = MI.getOperand(i);
1650 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1651 continue;
1652 unsigned FPReg = getFPReg(Op);
1654 // If we kill this operand, make sure to pop it from the stack after the
1655 // asm. We just remember it for now, and pop them all off at the end in
1656 // a batch.
1657 if (Op.isUse() && Op.isKill())
1658 FPKills |= 1U << FPReg;
1661 // Do not include registers that are implicitly popped by defs/clobbers.
1662 FPKills &= ~(STDefs | STClobbers);
1664 // Now we can rearrange the live registers to match what was requested.
1665 unsigned char STUsesArray[8];
1667 for (unsigned I = 0; I < NumSTUses; ++I)
1668 STUsesArray[I] = I;
1670 shuffleStackTop(STUsesArray, NumSTUses, Inst);
1671 LLVM_DEBUG({
1672 dbgs() << "Before asm: ";
1673 dumpStack();
1676 // With the stack layout fixed, rewrite the FP registers.
1677 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1678 MachineOperand &Op = MI.getOperand(i);
1679 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1680 continue;
1682 unsigned FPReg = getFPReg(Op);
1684 if (FRegIdx.count(i))
1685 // Operand with constraint "f".
1686 Op.setReg(getSTReg(FPReg));
1687 else
1688 // Operand with a single register class constraint ("t" or "u").
1689 Op.setReg(X86::ST0 + FPReg);
1692 // Simulate the inline asm popping its inputs and pushing its outputs.
1693 StackTop -= NumSTPopped;
1695 for (unsigned i = 0; i < NumSTDefs; ++i)
1696 pushReg(NumSTDefs - i - 1);
1698 // If this asm kills any FP registers (is the last use of them) we must
1699 // explicitly emit pop instructions for them. Do this now after the asm has
1700 // executed so that the ST(x) numbers are not off (which would happen if we
1701 // did this inline with operand rewriting).
1703 // Note: this might be a non-optimal pop sequence. We might be able to do
1704 // better by trying to pop in stack order or something.
1705 while (FPKills) {
1706 unsigned FPReg = countTrailingZeros(FPKills);
1707 if (isLive(FPReg))
1708 freeStackSlotAfter(Inst, FPReg);
1709 FPKills &= ~(1U << FPReg);
1712 // Don't delete the inline asm!
1713 return;
1717 Inst = MBB->erase(Inst); // Remove the pseudo instruction
1719 // We want to leave I pointing to the previous instruction, but what if we
1720 // just erased the first instruction?
1721 if (Inst == MBB->begin()) {
1722 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1723 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1724 } else
1725 --Inst;
1728 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1729 const TargetRegisterInfo &TRI =
1730 *MBB.getParent()->getSubtarget().getRegisterInfo();
1731 LivePhysRegs LPR(TRI);
1733 LPR.addLiveOuts(MBB);
1735 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1736 I != E; ++I) {
1737 if (I->isDebugInstr())
1738 continue;
1740 std::bitset<8> Defs;
1741 SmallVector<MachineOperand *, 2> Uses;
1742 MachineInstr &MI = *I;
1744 for (auto &MO : I->operands()) {
1745 if (!MO.isReg())
1746 continue;
1748 unsigned Reg = MO.getReg() - X86::FP0;
1750 if (Reg >= 8)
1751 continue;
1753 if (MO.isDef()) {
1754 Defs.set(Reg);
1755 if (!LPR.contains(MO.getReg()))
1756 MO.setIsDead();
1757 } else
1758 Uses.push_back(&MO);
1761 for (auto *MO : Uses)
1762 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1763 MO->setIsKill();
1765 LPR.stepBackward(MI);