1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions. This pass uses live
11 // variable information to indicate where the FPn registers are used and their
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
23 //===----------------------------------------------------------------------===//
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LivePhysRegs.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
52 #define DEBUG_TYPE "x86-codegen"
54 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
55 STATISTIC(NumFP
, "Number of floating point instructions");
58 const unsigned ScratchFPReg
= 7;
60 struct FPS
: public MachineFunctionPass
{
62 FPS() : MachineFunctionPass(ID
) {
63 // This is really only to keep valgrind quiet.
64 // The logic in isLive() is too much for it.
65 memset(Stack
, 0, sizeof(Stack
));
66 memset(RegMap
, 0, sizeof(RegMap
));
69 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
71 AU
.addRequired
<EdgeBundles
>();
72 AU
.addPreservedID(MachineLoopInfoID
);
73 AU
.addPreservedID(MachineDominatorsID
);
74 MachineFunctionPass::getAnalysisUsage(AU
);
77 bool runOnMachineFunction(MachineFunction
&MF
) override
;
79 MachineFunctionProperties
getRequiredProperties() const override
{
80 return MachineFunctionProperties().set(
81 MachineFunctionProperties::Property::NoVRegs
);
84 StringRef
getPassName() const override
{ return "X86 FP Stackifier"; }
87 const TargetInstrInfo
*TII
= nullptr; // Machine instruction info.
89 // Two CFG edges are related if they leave the same block, or enter the same
90 // block. The transitive closure of an edge under this relation is a
91 // LiveBundle. It represents a set of CFG edges where the live FP stack
92 // registers must be allocated identically in the x87 stack.
94 // A LiveBundle is usually all the edges leaving a block, or all the edges
95 // entering a block, but it can contain more edges if critical edges are
98 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
99 // but the exact mapping of FP registers to stack slots is fixed later.
101 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
104 // Number of pre-assigned live registers in FixStack. This is 0 when the
105 // stack order has not yet been fixed.
108 // Assigned stack order for live-in registers.
109 // FixStack[i] == getStackEntry(i) for all i < FixCount.
110 unsigned char FixStack
[8];
112 LiveBundle() : Mask(0), FixCount(0) {}
114 // Have the live registers been assigned a stack order yet?
115 bool isFixed() const { return !Mask
|| FixCount
; }
118 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
119 // with no live FP registers.
120 SmallVector
<LiveBundle
, 8> LiveBundles
;
122 // The edge bundle analysis provides indices into the LiveBundles vector.
123 EdgeBundles
*Bundles
= nullptr;
125 // Return a bitmask of FP registers in block's live-in list.
126 static unsigned calcLiveInMask(MachineBasicBlock
*MBB
, bool RemoveFPs
) {
128 for (MachineBasicBlock::livein_iterator I
= MBB
->livein_begin();
129 I
!= MBB
->livein_end(); ) {
130 MCPhysReg Reg
= I
->PhysReg
;
131 static_assert(X86::FP6
- X86::FP0
== 6, "sequential regnums");
132 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
133 Mask
|= 1 << (Reg
- X86::FP0
);
135 I
= MBB
->removeLiveIn(I
);
144 // Partition all the CFG edges into LiveBundles.
145 void bundleCFGRecomputeKillFlags(MachineFunction
&MF
);
147 MachineBasicBlock
*MBB
= nullptr; // Current basic block
149 // The hardware keeps track of how many FP registers are live, so we have
150 // to model that exactly. Usually, each live register corresponds to an
151 // FP<n> register, but when dealing with calls, returns, and inline
152 // assembly, it is sometimes necessary to have live scratch registers.
153 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
154 unsigned StackTop
= 0; // The current top of the FP stack.
157 NumFPRegs
= 8 // Including scratch pseudo-registers.
160 // For each live FP<n> register, point to its Stack[] entry.
161 // The first entries correspond to FP0-FP6, the rest are scratch registers
162 // used when we need slightly different live registers than what the
163 // register allocator thinks.
164 unsigned RegMap
[NumFPRegs
];
166 // Set up our stack model to match the incoming registers to MBB.
167 void setupBlockStack();
169 // Shuffle live registers to match the expectations of successor blocks.
170 void finishBlockStack();
172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
173 void dumpStack() const {
174 dbgs() << "Stack contents:";
175 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
176 dbgs() << " FP" << Stack
[i
];
177 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
182 /// getSlot - Return the stack slot number a particular register number is
184 unsigned getSlot(unsigned RegNo
) const {
185 assert(RegNo
< NumFPRegs
&& "Regno out of range!");
186 return RegMap
[RegNo
];
189 /// isLive - Is RegNo currently live in the stack?
190 bool isLive(unsigned RegNo
) const {
191 unsigned Slot
= getSlot(RegNo
);
192 return Slot
< StackTop
&& Stack
[Slot
] == RegNo
;
195 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
196 unsigned getStackEntry(unsigned STi
) const {
198 report_fatal_error("Access past stack top!");
199 return Stack
[StackTop
-1-STi
];
202 /// getSTReg - Return the X86::ST(i) register which contains the specified
203 /// FP<RegNo> register.
204 unsigned getSTReg(unsigned RegNo
) const {
205 return StackTop
- 1 - getSlot(RegNo
) + X86::ST0
;
208 // pushReg - Push the specified FP<n> register onto the stack.
209 void pushReg(unsigned Reg
) {
210 assert(Reg
< NumFPRegs
&& "Register number out of range!");
212 report_fatal_error("Stack overflow!");
213 Stack
[StackTop
] = Reg
;
214 RegMap
[Reg
] = StackTop
++;
217 // popReg - Pop a register from the stack.
220 report_fatal_error("Cannot pop empty stack!");
221 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
224 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
225 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator I
) {
226 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
227 if (isAtTop(RegNo
)) return;
229 unsigned STReg
= getSTReg(RegNo
);
230 unsigned RegOnTop
= getStackEntry(0);
232 // Swap the slots the regs are in.
233 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
235 // Swap stack slot contents.
236 if (RegMap
[RegOnTop
] >= StackTop
)
237 report_fatal_error("Access past stack top!");
238 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
240 // Emit an fxch to update the runtime processors version of the state.
241 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(STReg
);
245 void duplicateToTop(unsigned RegNo
, unsigned AsReg
,
246 MachineBasicBlock::iterator I
) {
247 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
248 unsigned STReg
= getSTReg(RegNo
);
249 pushReg(AsReg
); // New register on top of stack
251 BuildMI(*MBB
, I
, dl
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
254 /// popStackAfter - Pop the current value off of the top of the FP stack
255 /// after the specified instruction.
256 void popStackAfter(MachineBasicBlock::iterator
&I
);
258 /// freeStackSlotAfter - Free the specified register from the register
259 /// stack, so that it is no longer in a register. If the register is
260 /// currently at the top of the stack, we just pop the current instruction,
261 /// otherwise we store the current top-of-stack into the specified slot,
262 /// then pop the top of stack.
263 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
265 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
267 MachineBasicBlock::iterator
268 freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
);
270 /// Adjust the live registers to be the set in Mask.
271 void adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
);
273 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
274 /// st(0), FP reg FixStack[1] is st(1) etc.
275 void shuffleStackTop(const unsigned char *FixStack
, unsigned FixCount
,
276 MachineBasicBlock::iterator I
);
278 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
280 void handleCall(MachineBasicBlock::iterator
&I
);
281 void handleReturn(MachineBasicBlock::iterator
&I
);
282 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
283 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
284 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
285 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
286 void handleCompareFP(MachineBasicBlock::iterator
&I
);
287 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
288 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
290 // Check if a COPY instruction is using FP registers.
291 static bool isFPCopy(MachineInstr
&MI
) {
292 Register DstReg
= MI
.getOperand(0).getReg();
293 Register SrcReg
= MI
.getOperand(1).getReg();
295 return X86::RFP80RegClass
.contains(DstReg
) ||
296 X86::RFP80RegClass
.contains(SrcReg
);
299 void setKillFlags(MachineBasicBlock
&MBB
) const;
305 INITIALIZE_PASS_BEGIN(FPS
, DEBUG_TYPE
, "X86 FP Stackifier",
307 INITIALIZE_PASS_DEPENDENCY(EdgeBundles
)
308 INITIALIZE_PASS_END(FPS
, DEBUG_TYPE
, "X86 FP Stackifier",
311 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
313 /// getFPReg - Return the X86::FPx register number for the specified operand.
314 /// For example, this returns 3 for X86::FP3.
315 static unsigned getFPReg(const MachineOperand
&MO
) {
316 assert(MO
.isReg() && "Expected an FP register!");
317 Register Reg
= MO
.getReg();
318 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
319 return Reg
- X86::FP0
;
322 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
323 /// register references into FP stack references.
325 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
326 // We only need to run this pass if there are any FP registers used in this
327 // function. If it is all integer, there is nothing for us to do!
328 bool FPIsUsed
= false;
330 static_assert(X86::FP6
== X86::FP0
+6, "Register enums aren't sorted right!");
331 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
332 for (unsigned i
= 0; i
<= 6; ++i
)
333 if (!MRI
.reg_nodbg_empty(X86::FP0
+ i
)) {
339 if (!FPIsUsed
) return false;
341 Bundles
= &getAnalysis
<EdgeBundles
>();
342 TII
= MF
.getSubtarget().getInstrInfo();
344 // Prepare cross-MBB liveness.
345 bundleCFGRecomputeKillFlags(MF
);
349 // Process the function in depth first order so that we process at least one
350 // of the predecessors for every reachable block in the function.
351 df_iterator_default_set
<MachineBasicBlock
*> Processed
;
352 MachineBasicBlock
*Entry
= &MF
.front();
355 LiveBundles
[Bundles
->getBundle(Entry
->getNumber(), false)];
357 // In regcall convention, some FP registers may not be passed through
358 // the stack, so they will need to be assigned to the stack first
359 if ((Entry
->getParent()->getFunction().getCallingConv() ==
360 CallingConv::X86_RegCall
) && (Bundle
.Mask
&& !Bundle
.FixCount
)) {
361 // In the register calling convention, up to one FP argument could be
362 // saved in the first FP register.
363 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
364 // that the FP registers contain arguments.
365 // The actual value is passed in FP0.
366 // Here we fix the stack and mark FP0 as pre-assigned register.
367 assert((Bundle
.Mask
& 0xFE) == 0 &&
368 "Only FP0 could be passed as an argument");
370 Bundle
.FixStack
[0] = 0;
373 bool Changed
= false;
374 for (MachineBasicBlock
*BB
: depth_first_ext(Entry
, Processed
))
375 Changed
|= processBasicBlock(MF
, *BB
);
377 // Process any unreachable blocks in arbitrary order now.
378 if (MF
.size() != Processed
.size())
379 for (MachineBasicBlock
&BB
: MF
)
380 if (Processed
.insert(&BB
).second
)
381 Changed
|= processBasicBlock(MF
, BB
);
388 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
389 /// live-out sets for the FP registers. Consistent means that the set of
390 /// registers live-out from a block is identical to the live-in set of all
391 /// successors. This is not enforced by the normal live-in lists since
392 /// registers may be implicitly defined, or not used by all successors.
393 void FPS::bundleCFGRecomputeKillFlags(MachineFunction
&MF
) {
394 assert(LiveBundles
.empty() && "Stale data in LiveBundles");
395 LiveBundles
.resize(Bundles
->getNumBundles());
397 // Gather the actual live-in masks for all MBBs.
398 for (MachineBasicBlock
&MBB
: MF
) {
401 const unsigned Mask
= calcLiveInMask(&MBB
, false);
404 // Update MBB ingoing bundle mask.
405 LiveBundles
[Bundles
->getBundle(MBB
.getNumber(), false)].Mask
|= Mask
;
409 /// processBasicBlock - Loop over all of the instructions in the basic block,
410 /// transforming FP instructions into their stack form.
412 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
413 bool Changed
= false;
418 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
419 MachineInstr
&MI
= *I
;
420 uint64_t Flags
= MI
.getDesc().TSFlags
;
422 unsigned FPInstClass
= Flags
& X86II::FPTypeMask
;
423 if (MI
.isInlineAsm())
424 FPInstClass
= X86II::SpecialFP
;
426 if (MI
.isCopy() && isFPCopy(MI
))
427 FPInstClass
= X86II::SpecialFP
;
429 if (MI
.isImplicitDef() &&
430 X86::RFP80RegClass
.contains(MI
.getOperand(0).getReg()))
431 FPInstClass
= X86II::SpecialFP
;
434 FPInstClass
= X86II::SpecialFP
;
436 if (FPInstClass
== X86II::NotFP
)
437 continue; // Efficiently ignore non-fp insts!
439 MachineInstr
*PrevMI
= nullptr;
441 PrevMI
= &*std::prev(I
);
443 ++NumFP
; // Keep track of # of pseudo instrs
444 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI
);
446 // Get dead variables list now because the MI pointer may be deleted as part
448 SmallVector
<unsigned, 8> DeadRegs
;
449 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
450 const MachineOperand
&MO
= MI
.getOperand(i
);
451 if (MO
.isReg() && MO
.isDead())
452 DeadRegs
.push_back(MO
.getReg());
455 switch (FPInstClass
) {
456 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
457 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
458 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
459 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
460 case X86II::CompareFP
: handleCompareFP(I
); break;
461 case X86II::CondMovFP
: handleCondMovFP(I
); break;
462 case X86II::SpecialFP
: handleSpecialFP(I
); break;
463 default: llvm_unreachable("Unknown FP Type!");
466 // Check to see if any of the values defined by this instruction are dead
467 // after definition. If so, pop them.
468 for (unsigned i
= 0, e
= DeadRegs
.size(); i
!= e
; ++i
) {
469 unsigned Reg
= DeadRegs
[i
];
470 // Check if Reg is live on the stack. An inline-asm register operand that
471 // is in the clobber list and marked dead might not be live on the stack.
472 static_assert(X86::FP7
- X86::FP0
== 7, "sequential FP regnumbers");
473 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& isLive(Reg
-X86::FP0
)) {
474 LLVM_DEBUG(dbgs() << "Register FP#" << Reg
- X86::FP0
<< " is dead!\n");
475 freeStackSlotAfter(I
, Reg
-X86::FP0
);
479 // Print out all of the instructions expanded to if -debug
481 MachineBasicBlock::iterator PrevI
= PrevMI
;
483 dbgs() << "Just deleted pseudo instruction\n";
485 MachineBasicBlock::iterator Start
= I
;
486 // Rewind to first instruction newly inserted.
487 while (Start
!= BB
.begin() && std::prev(Start
) != PrevI
)
489 dbgs() << "Inserted instructions:\n\t";
490 Start
->print(dbgs());
491 while (++Start
!= std::next(I
)) {
506 /// setupBlockStack - Use the live bundles to set up our model of the stack
507 /// to match predecessors' live out stack.
508 void FPS::setupBlockStack() {
509 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB
)
510 << " derived from " << MBB
->getName() << ".\n");
512 // Get the live-in bundle for MBB.
513 const LiveBundle
&Bundle
=
514 LiveBundles
[Bundles
->getBundle(MBB
->getNumber(), false)];
517 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
521 // Depth-first iteration should ensure that we always have an assigned stack.
522 assert(Bundle
.isFixed() && "Reached block before any predecessors");
524 // Push the fixed live-in registers.
525 for (unsigned i
= Bundle
.FixCount
; i
> 0; --i
) {
526 LLVM_DEBUG(dbgs() << "Live-in st(" << (i
- 1) << "): %fp"
527 << unsigned(Bundle
.FixStack
[i
- 1]) << '\n');
528 pushReg(Bundle
.FixStack
[i
-1]);
531 // Kill off unwanted live-ins. This can happen with a critical edge.
532 // FIXME: We could keep these live registers around as zombies. They may need
533 // to be revived at the end of a short block. It might save a few instrs.
534 unsigned Mask
= calcLiveInMask(MBB
, /*RemoveFPs=*/true);
535 adjustLiveRegs(Mask
, MBB
->begin());
536 LLVM_DEBUG(MBB
->dump());
539 /// finishBlockStack - Revive live-outs that are implicitly defined out of
540 /// MBB. Shuffle live registers to match the expected fixed stack of any
541 /// predecessors, and ensure that all predecessors are expecting the same
543 void FPS::finishBlockStack() {
544 // The RET handling below takes care of return blocks for us.
545 if (MBB
->succ_empty())
548 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB
)
549 << " derived from " << MBB
->getName() << ".\n");
551 // Get MBB's live-out bundle.
552 unsigned BundleIdx
= Bundles
->getBundle(MBB
->getNumber(), true);
553 LiveBundle
&Bundle
= LiveBundles
[BundleIdx
];
555 // We may need to kill and define some registers to match successors.
556 // FIXME: This can probably be combined with the shuffle below.
557 MachineBasicBlock::iterator Term
= MBB
->getFirstTerminator();
558 adjustLiveRegs(Bundle
.Mask
, Term
);
561 LLVM_DEBUG(dbgs() << "No live-outs.\n");
565 // Has the stack order been fixed yet?
566 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx
<< ": ");
567 if (Bundle
.isFixed()) {
568 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
569 shuffleStackTop(Bundle
.FixStack
, Bundle
.FixCount
, Term
);
571 // Not fixed yet, we get to choose.
572 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
573 Bundle
.FixCount
= StackTop
;
574 for (unsigned i
= 0; i
< StackTop
; ++i
)
575 Bundle
.FixStack
[i
] = getStackEntry(i
);
580 //===----------------------------------------------------------------------===//
581 // Efficient Lookup Table Support
582 //===----------------------------------------------------------------------===//
588 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
589 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
592 friend bool LLVM_ATTRIBUTE_UNUSED
operator<(unsigned V
,
593 const TableEntry
&TE
) {
599 static int Lookup(ArrayRef
<TableEntry
> Table
, unsigned Opcode
) {
600 const TableEntry
*I
= llvm::lower_bound(Table
, Opcode
);
601 if (I
!= Table
.end() && I
->from
== Opcode
)
607 #define ASSERT_SORTED(TABLE)
609 #define ASSERT_SORTED(TABLE) \
611 static std::atomic<bool> TABLE##Checked(false); \
612 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
613 assert(is_sorted(TABLE) && \
614 "All lookup tables must be sorted for efficient access!"); \
615 TABLE##Checked.store(true, std::memory_order_relaxed); \
620 //===----------------------------------------------------------------------===//
621 // Register File -> Register Stack Mapping Methods
622 //===----------------------------------------------------------------------===//
624 // OpcodeTable - Sorted map of register instructions to their stack version.
625 // The first element is an register file pseudo instruction, the second is the
626 // concrete X86 instruction which uses the register stack.
628 static const TableEntry OpcodeTable
[] = {
629 { X86::ABS_Fp32
, X86::ABS_F
},
630 { X86::ABS_Fp64
, X86::ABS_F
},
631 { X86::ABS_Fp80
, X86::ABS_F
},
632 { X86::ADD_Fp32m
, X86::ADD_F32m
},
633 { X86::ADD_Fp64m
, X86::ADD_F64m
},
634 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
635 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
636 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
637 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
638 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
639 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
640 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
641 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
642 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
643 { X86::CHS_Fp32
, X86::CHS_F
},
644 { X86::CHS_Fp64
, X86::CHS_F
},
645 { X86::CHS_Fp80
, X86::CHS_F
},
646 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
647 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
648 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
649 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
650 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
651 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
652 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
653 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
654 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
655 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
656 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
657 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
658 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
659 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
660 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
661 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
662 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
663 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
664 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
665 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
666 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
667 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
668 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
669 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
670 { X86::COM_FpIr32
, X86::COM_FIr
},
671 { X86::COM_FpIr64
, X86::COM_FIr
},
672 { X86::COM_FpIr80
, X86::COM_FIr
},
673 { X86::COM_Fpr32
, X86::COM_FST0r
},
674 { X86::COM_Fpr64
, X86::COM_FST0r
},
675 { X86::COM_Fpr80
, X86::COM_FST0r
},
676 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
677 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
678 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
679 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
680 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
681 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
682 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
683 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
684 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
685 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
686 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
687 { X86::DIV_Fp32m
, X86::DIV_F32m
},
688 { X86::DIV_Fp64m
, X86::DIV_F64m
},
689 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
690 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
691 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
692 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
693 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
694 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
695 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
696 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
697 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
698 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
699 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
700 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
701 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
702 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
703 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
704 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
705 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
706 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
707 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
708 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
709 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
710 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
711 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
712 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
713 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
714 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
715 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
716 { X86::IST_Fp16m32
, X86::IST_F16m
},
717 { X86::IST_Fp16m64
, X86::IST_F16m
},
718 { X86::IST_Fp16m80
, X86::IST_F16m
},
719 { X86::IST_Fp32m32
, X86::IST_F32m
},
720 { X86::IST_Fp32m64
, X86::IST_F32m
},
721 { X86::IST_Fp32m80
, X86::IST_F32m
},
722 { X86::IST_Fp64m32
, X86::IST_FP64m
},
723 { X86::IST_Fp64m64
, X86::IST_FP64m
},
724 { X86::IST_Fp64m80
, X86::IST_FP64m
},
725 { X86::LD_Fp032
, X86::LD_F0
},
726 { X86::LD_Fp064
, X86::LD_F0
},
727 { X86::LD_Fp080
, X86::LD_F0
},
728 { X86::LD_Fp132
, X86::LD_F1
},
729 { X86::LD_Fp164
, X86::LD_F1
},
730 { X86::LD_Fp180
, X86::LD_F1
},
731 { X86::LD_Fp32m
, X86::LD_F32m
},
732 { X86::LD_Fp32m64
, X86::LD_F32m
},
733 { X86::LD_Fp32m80
, X86::LD_F32m
},
734 { X86::LD_Fp64m
, X86::LD_F64m
},
735 { X86::LD_Fp64m80
, X86::LD_F64m
},
736 { X86::LD_Fp80m
, X86::LD_F80m
},
737 { X86::MUL_Fp32m
, X86::MUL_F32m
},
738 { X86::MUL_Fp64m
, X86::MUL_F64m
},
739 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
740 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
741 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
742 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
743 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
744 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
745 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
746 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
747 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
748 { X86::SQRT_Fp32
, X86::SQRT_F
},
749 { X86::SQRT_Fp64
, X86::SQRT_F
},
750 { X86::SQRT_Fp80
, X86::SQRT_F
},
751 { X86::ST_Fp32m
, X86::ST_F32m
},
752 { X86::ST_Fp64m
, X86::ST_F64m
},
753 { X86::ST_Fp64m32
, X86::ST_F32m
},
754 { X86::ST_Fp80m32
, X86::ST_F32m
},
755 { X86::ST_Fp80m64
, X86::ST_F64m
},
756 { X86::ST_FpP80m
, X86::ST_FP80m
},
757 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
758 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
759 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
760 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
761 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
762 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
763 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
764 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
765 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
766 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
767 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
768 { X86::SUB_Fp32m
, X86::SUB_F32m
},
769 { X86::SUB_Fp64m
, X86::SUB_F64m
},
770 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
771 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
772 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
773 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
774 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
775 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
776 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
777 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
778 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
779 { X86::TST_Fp32
, X86::TST_F
},
780 { X86::TST_Fp64
, X86::TST_F
},
781 { X86::TST_Fp80
, X86::TST_F
},
782 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
783 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
784 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
785 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
786 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
787 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
788 { X86::XAM_Fp32
, X86::XAM_F
},
789 { X86::XAM_Fp64
, X86::XAM_F
},
790 { X86::XAM_Fp80
, X86::XAM_F
},
793 static unsigned getConcreteOpcode(unsigned Opcode
) {
794 ASSERT_SORTED(OpcodeTable
);
795 int Opc
= Lookup(OpcodeTable
, Opcode
);
796 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
800 //===----------------------------------------------------------------------===//
802 //===----------------------------------------------------------------------===//
804 // PopTable - Sorted map of instructions to their popping version. The first
805 // element is an instruction, the second is the version which pops.
807 static const TableEntry PopTable
[] = {
808 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
810 { X86::COMP_FST0r
, X86::FCOMPP
},
811 { X86::COM_FIr
, X86::COM_FIPr
},
812 { X86::COM_FST0r
, X86::COMP_FST0r
},
814 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
815 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
817 { X86::IST_F16m
, X86::IST_FP16m
},
818 { X86::IST_F32m
, X86::IST_FP32m
},
820 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
822 { X86::ST_F32m
, X86::ST_FP32m
},
823 { X86::ST_F64m
, X86::ST_FP64m
},
824 { X86::ST_Frr
, X86::ST_FPrr
},
826 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
827 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
829 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
831 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
832 { X86::UCOM_Fr
, X86::UCOM_FPr
},
835 /// popStackAfter - Pop the current value off of the top of the FP stack after
836 /// the specified instruction. This attempts to be sneaky and combine the pop
837 /// into the instruction itself if possible. The iterator is left pointing to
838 /// the last instruction, be it a new pop instruction inserted, or the old
839 /// instruction if it was modified in place.
841 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
842 MachineInstr
&MI
= *I
;
843 const DebugLoc
&dl
= MI
.getDebugLoc();
844 ASSERT_SORTED(PopTable
);
848 // Check to see if there is a popping version of this instruction...
849 int Opcode
= Lookup(PopTable
, I
->getOpcode());
851 I
->setDesc(TII
->get(Opcode
));
852 if (Opcode
== X86::FCOMPP
|| Opcode
== X86::UCOM_FPPr
)
854 MI
.dropDebugNumber();
855 } else { // Insert an explicit pop
856 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
860 /// freeStackSlotAfter - Free the specified register from the register stack, so
861 /// that it is no longer in a register. If the register is currently at the top
862 /// of the stack, we just pop the current instruction, otherwise we store the
863 /// current top-of-stack into the specified slot, then pop the top of stack.
864 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
865 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
870 // Otherwise, store the top of stack into the dead slot, killing the operand
871 // without having to add in an explicit xchg then pop.
873 I
= freeStackSlotBefore(++I
, FPRegNo
);
876 /// freeStackSlotBefore - Free the specified register without trying any
878 MachineBasicBlock::iterator
879 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
) {
880 unsigned STReg
= getSTReg(FPRegNo
);
881 unsigned OldSlot
= getSlot(FPRegNo
);
882 unsigned TopReg
= Stack
[StackTop
-1];
883 Stack
[OldSlot
] = TopReg
;
884 RegMap
[TopReg
] = OldSlot
;
885 RegMap
[FPRegNo
] = ~0;
886 Stack
[--StackTop
] = ~0;
887 return BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::ST_FPrr
))
892 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
893 /// registers with a bit in Mask are live.
894 void FPS::adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
) {
895 unsigned Defs
= Mask
;
897 for (unsigned i
= 0; i
< StackTop
; ++i
) {
898 unsigned RegNo
= Stack
[i
];
899 if (!(Defs
& (1 << RegNo
)))
900 // This register is live, but we don't want it.
901 Kills
|= (1 << RegNo
);
903 // We don't need to imp-def this live register.
904 Defs
&= ~(1 << RegNo
);
906 assert((Kills
& Defs
) == 0 && "Register needs killing and def'ing?");
908 // Produce implicit-defs for free by using killed registers.
909 while (Kills
&& Defs
) {
910 unsigned KReg
= countTrailingZeros(Kills
);
911 unsigned DReg
= countTrailingZeros(Defs
);
912 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg
<< " as imp %fp" << DReg
914 std::swap(Stack
[getSlot(KReg
)], Stack
[getSlot(DReg
)]);
915 std::swap(RegMap
[KReg
], RegMap
[DReg
]);
916 Kills
&= ~(1 << KReg
);
917 Defs
&= ~(1 << DReg
);
920 // Kill registers by popping.
921 if (Kills
&& I
!= MBB
->begin()) {
922 MachineBasicBlock::iterator I2
= std::prev(I
);
924 unsigned KReg
= getStackEntry(0);
925 if (!(Kills
& (1 << KReg
)))
927 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg
<< "\n");
929 Kills
&= ~(1 << KReg
);
933 // Manually kill the rest.
935 unsigned KReg
= countTrailingZeros(Kills
);
936 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg
<< "\n");
937 freeStackSlotBefore(I
, KReg
);
938 Kills
&= ~(1 << KReg
);
941 // Load zeros for all the imp-defs.
943 unsigned DReg
= countTrailingZeros(Defs
);
944 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg
<< " as 0\n");
945 BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::LD_F0
));
947 Defs
&= ~(1 << DReg
);
950 // Now we should have the correct registers live.
951 LLVM_DEBUG(dumpStack());
952 assert(StackTop
== countPopulation(Mask
) && "Live count mismatch");
955 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
956 /// FixCount entries into the order given by FixStack.
957 /// FIXME: Is there a better algorithm than insertion sort?
958 void FPS::shuffleStackTop(const unsigned char *FixStack
,
960 MachineBasicBlock::iterator I
) {
961 // Move items into place, starting from the desired stack bottom.
963 // Old register at position FixCount.
964 unsigned OldReg
= getStackEntry(FixCount
);
965 // Desired register at position FixCount.
966 unsigned Reg
= FixStack
[FixCount
];
969 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
972 moveToTop(OldReg
, I
);
974 LLVM_DEBUG(dumpStack());
978 //===----------------------------------------------------------------------===//
979 // Instruction transformation implementation
980 //===----------------------------------------------------------------------===//
982 void FPS::handleCall(MachineBasicBlock::iterator
&I
) {
983 MachineInstr
&MI
= *I
;
984 unsigned STReturns
= 0;
986 bool ClobbersFPStack
= false;
987 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
988 MachineOperand
&Op
= MI
.getOperand(i
);
989 // Check if this call clobbers the FP stack.
991 if (Op
.isRegMask()) {
992 bool ClobbersFP0
= Op
.clobbersPhysReg(X86::FP0
);
994 static_assert(X86::FP7
- X86::FP0
== 7, "sequential FP regnumbers");
995 for (unsigned i
= 1; i
!= 8; ++i
)
996 assert(Op
.clobbersPhysReg(X86::FP0
+ i
) == ClobbersFP0
&&
997 "Inconsistent FP register clobber");
1001 ClobbersFPStack
= true;
1004 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1007 assert(Op
.isImplicit() && "Expected implicit def/use");
1010 STReturns
|= 1 << getFPReg(Op
);
1012 // Remove the operand so that later passes don't see it.
1013 MI
.RemoveOperand(i
);
1018 // Most calls should have a regmask that clobbers the FP registers. If it
1019 // isn't present then the register allocator didn't spill the FP registers
1020 // so they are still on the stack.
1021 assert((ClobbersFPStack
|| STReturns
== 0) &&
1022 "ST returns without FP stack clobber");
1023 if (!ClobbersFPStack
)
1026 unsigned N
= countTrailingOnes(STReturns
);
1028 // FP registers used for function return must be consecutive starting at
1030 assert(STReturns
== 0 || (isMask_32(STReturns
) && N
<= 2));
1032 // Reset the FP Stack - It is required because of possible leftovers from
1033 // passed arguments. The caller should assume that the FP stack is
1034 // returned empty (unless the callee returns values on FP stack).
1035 while (StackTop
> 0)
1038 for (unsigned I
= 0; I
< N
; ++I
)
1041 // Drop all variable values defined by this call -- we can't track them
1042 // once they've been stackified.
1043 I
->dropDebugNumber();
1046 /// If RET has an FP register use operand, pass the first one in ST(0) and
1047 /// the second one in ST(1).
1048 void FPS::handleReturn(MachineBasicBlock::iterator
&I
) {
1049 MachineInstr
&MI
= *I
;
1051 // Find the register operands.
1052 unsigned FirstFPRegOp
= ~0U, SecondFPRegOp
= ~0U;
1053 unsigned LiveMask
= 0;
1055 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1056 MachineOperand
&Op
= MI
.getOperand(i
);
1057 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1059 // FP Register uses must be kills unless there are two uses of the same
1060 // register, in which case only one will be a kill.
1061 assert(Op
.isUse() &&
1062 (Op
.isKill() || // Marked kill.
1063 getFPReg(Op
) == FirstFPRegOp
|| // Second instance.
1064 MI
.killsRegister(Op
.getReg())) && // Later use is marked kill.
1065 "Ret only defs operands, and values aren't live beyond it");
1067 if (FirstFPRegOp
== ~0U)
1068 FirstFPRegOp
= getFPReg(Op
);
1070 assert(SecondFPRegOp
== ~0U && "More than two fp operands!");
1071 SecondFPRegOp
= getFPReg(Op
);
1073 LiveMask
|= (1 << getFPReg(Op
));
1075 // Remove the operand so that later passes don't see it.
1076 MI
.RemoveOperand(i
);
1081 // We may have been carrying spurious live-ins, so make sure only the
1082 // returned registers are left live.
1083 adjustLiveRegs(LiveMask
, MI
);
1084 if (!LiveMask
) return; // Quick check to see if any are possible.
1086 // There are only four possibilities here:
1087 // 1) we are returning a single FP value. In this case, it has to be in
1088 // ST(0) already, so just declare success by removing the value from the
1090 if (SecondFPRegOp
== ~0U) {
1091 // Assert that the top of stack contains the right FP register.
1092 assert(StackTop
== 1 && FirstFPRegOp
== getStackEntry(0) &&
1093 "Top of stack not the right register for RET!");
1095 // Ok, everything is good, mark the value as not being on the stack
1096 // anymore so that our assertion about the stack being empty at end of
1097 // block doesn't fire.
1102 // Otherwise, we are returning two values:
1103 // 2) If returning the same value for both, we only have one thing in the FP
1104 // stack. Consider: RET FP1, FP1
1105 if (StackTop
== 1) {
1106 assert(FirstFPRegOp
== SecondFPRegOp
&& FirstFPRegOp
== getStackEntry(0)&&
1107 "Stack misconfiguration for RET!");
1109 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1110 // register to hold it.
1111 unsigned NewReg
= ScratchFPReg
;
1112 duplicateToTop(FirstFPRegOp
, NewReg
, MI
);
1113 FirstFPRegOp
= NewReg
;
1116 /// Okay we know we have two different FPx operands now:
1117 assert(StackTop
== 2 && "Must have two values live!");
1119 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1120 /// in ST(1). In this case, emit an fxch.
1121 if (getStackEntry(0) == SecondFPRegOp
) {
1122 assert(getStackEntry(1) == FirstFPRegOp
&& "Unknown regs live");
1123 moveToTop(FirstFPRegOp
, MI
);
1126 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1127 /// ST(1). Just remove both from our understanding of the stack and return.
1128 assert(getStackEntry(0) == FirstFPRegOp
&& "Unknown regs live");
1129 assert(getStackEntry(1) == SecondFPRegOp
&& "Unknown regs live");
1133 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1135 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
1136 MachineInstr
&MI
= *I
;
1137 unsigned DestReg
= getFPReg(MI
.getOperand(0));
1139 // Change from the pseudo instruction to the concrete instruction.
1140 MI
.RemoveOperand(0); // Remove the explicit ST(0) operand
1141 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1143 MachineOperand::CreateReg(X86::ST0
, /*isDef*/ true, /*isImp*/ true));
1145 // Result gets pushed on the stack.
1148 MI
.dropDebugNumber();
1151 /// handleOneArgFP - fst <mem>, ST(0)
1153 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
1154 MachineInstr
&MI
= *I
;
1155 unsigned NumOps
= MI
.getDesc().getNumOperands();
1156 assert((NumOps
== X86::AddrNumOperands
+ 1 || NumOps
== 1) &&
1157 "Can only handle fst* & ftst instructions!");
1159 // Is this the last use of the source register?
1160 unsigned Reg
= getFPReg(MI
.getOperand(NumOps
- 1));
1161 bool KillsSrc
= MI
.killsRegister(X86::FP0
+ Reg
);
1163 // FISTP64m is strange because there isn't a non-popping versions.
1164 // If we have one _and_ we don't want to pop the operand, duplicate the value
1165 // on the stack instead of moving it. This ensure that popping the value is
1167 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1169 if (!KillsSrc
&& (MI
.getOpcode() == X86::IST_Fp64m32
||
1170 MI
.getOpcode() == X86::ISTT_Fp16m32
||
1171 MI
.getOpcode() == X86::ISTT_Fp32m32
||
1172 MI
.getOpcode() == X86::ISTT_Fp64m32
||
1173 MI
.getOpcode() == X86::IST_Fp64m64
||
1174 MI
.getOpcode() == X86::ISTT_Fp16m64
||
1175 MI
.getOpcode() == X86::ISTT_Fp32m64
||
1176 MI
.getOpcode() == X86::ISTT_Fp64m64
||
1177 MI
.getOpcode() == X86::IST_Fp64m80
||
1178 MI
.getOpcode() == X86::ISTT_Fp16m80
||
1179 MI
.getOpcode() == X86::ISTT_Fp32m80
||
1180 MI
.getOpcode() == X86::ISTT_Fp64m80
||
1181 MI
.getOpcode() == X86::ST_FpP80m
)) {
1182 duplicateToTop(Reg
, ScratchFPReg
, I
);
1184 moveToTop(Reg
, I
); // Move to the top of the stack...
1187 // Convert from the pseudo instruction to the concrete instruction.
1188 MI
.RemoveOperand(NumOps
- 1); // Remove explicit ST(0) operand
1189 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1191 MachineOperand::CreateReg(X86::ST0
, /*isDef*/ false, /*isImp*/ true));
1193 if (MI
.getOpcode() == X86::IST_FP64m
|| MI
.getOpcode() == X86::ISTT_FP16m
||
1194 MI
.getOpcode() == X86::ISTT_FP32m
|| MI
.getOpcode() == X86::ISTT_FP64m
||
1195 MI
.getOpcode() == X86::ST_FP80m
) {
1197 report_fatal_error("Stack empty??");
1199 } else if (KillsSrc
) { // Last use of operand?
1203 MI
.dropDebugNumber();
1207 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1208 /// replace the value with a newly computed value. These instructions may have
1209 /// non-fp operands after their FP operands.
1213 /// R1 = fadd R2, [mem]
1215 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
1216 MachineInstr
&MI
= *I
;
1218 unsigned NumOps
= MI
.getDesc().getNumOperands();
1219 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
1222 // Is this the last use of the source register?
1223 unsigned Reg
= getFPReg(MI
.getOperand(1));
1224 bool KillsSrc
= MI
.killsRegister(X86::FP0
+ Reg
);
1227 // If this is the last use of the source register, just make sure it's on
1228 // the top of the stack.
1231 report_fatal_error("Stack cannot be empty!");
1233 pushReg(getFPReg(MI
.getOperand(0)));
1235 // If this is not the last use of the source register, _copy_ it to the top
1237 duplicateToTop(Reg
, getFPReg(MI
.getOperand(0)), I
);
1240 // Change from the pseudo instruction to the concrete instruction.
1241 MI
.RemoveOperand(1); // Drop the source operand.
1242 MI
.RemoveOperand(0); // Drop the destination operand.
1243 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1244 MI
.dropDebugNumber();
1248 //===----------------------------------------------------------------------===//
1249 // Define tables of various ways to map pseudo instructions
1252 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1253 static const TableEntry ForwardST0Table
[] = {
1254 { X86::ADD_Fp32
, X86::ADD_FST0r
},
1255 { X86::ADD_Fp64
, X86::ADD_FST0r
},
1256 { X86::ADD_Fp80
, X86::ADD_FST0r
},
1257 { X86::DIV_Fp32
, X86::DIV_FST0r
},
1258 { X86::DIV_Fp64
, X86::DIV_FST0r
},
1259 { X86::DIV_Fp80
, X86::DIV_FST0r
},
1260 { X86::MUL_Fp32
, X86::MUL_FST0r
},
1261 { X86::MUL_Fp64
, X86::MUL_FST0r
},
1262 { X86::MUL_Fp80
, X86::MUL_FST0r
},
1263 { X86::SUB_Fp32
, X86::SUB_FST0r
},
1264 { X86::SUB_Fp64
, X86::SUB_FST0r
},
1265 { X86::SUB_Fp80
, X86::SUB_FST0r
},
1268 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1269 static const TableEntry ReverseST0Table
[] = {
1270 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
1271 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
1272 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
1273 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
1274 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
1275 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
1276 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
1277 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
1278 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
1279 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
1280 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
1281 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
1284 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1285 static const TableEntry ForwardSTiTable
[] = {
1286 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
1287 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
1288 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
1289 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
1290 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
1291 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
1292 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
1293 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
1294 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
1295 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
1296 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
1297 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
1300 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1301 static const TableEntry ReverseSTiTable
[] = {
1302 { X86::ADD_Fp32
, X86::ADD_FrST0
},
1303 { X86::ADD_Fp64
, X86::ADD_FrST0
},
1304 { X86::ADD_Fp80
, X86::ADD_FrST0
},
1305 { X86::DIV_Fp32
, X86::DIV_FrST0
},
1306 { X86::DIV_Fp64
, X86::DIV_FrST0
},
1307 { X86::DIV_Fp80
, X86::DIV_FrST0
},
1308 { X86::MUL_Fp32
, X86::MUL_FrST0
},
1309 { X86::MUL_Fp64
, X86::MUL_FrST0
},
1310 { X86::MUL_Fp80
, X86::MUL_FrST0
},
1311 { X86::SUB_Fp32
, X86::SUB_FrST0
},
1312 { X86::SUB_Fp64
, X86::SUB_FrST0
},
1313 { X86::SUB_Fp80
, X86::SUB_FrST0
},
1317 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1318 /// instructions which need to be simplified and possibly transformed.
1320 /// Result: ST(0) = fsub ST(0), ST(i)
1321 /// ST(i) = fsub ST(0), ST(i)
1322 /// ST(0) = fsubr ST(0), ST(i)
1323 /// ST(i) = fsubr ST(0), ST(i)
1325 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
1326 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
1327 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
1328 MachineInstr
&MI
= *I
;
1330 unsigned NumOperands
= MI
.getDesc().getNumOperands();
1331 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
1332 unsigned Dest
= getFPReg(MI
.getOperand(0));
1333 unsigned Op0
= getFPReg(MI
.getOperand(NumOperands
- 2));
1334 unsigned Op1
= getFPReg(MI
.getOperand(NumOperands
- 1));
1335 bool KillsOp0
= MI
.killsRegister(X86::FP0
+ Op0
);
1336 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
);
1337 const DebugLoc
&dl
= MI
.getDebugLoc();
1339 unsigned TOS
= getStackEntry(0);
1341 // One of our operands must be on the top of the stack. If neither is yet, we
1342 // need to move one.
1343 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
1344 // We can choose to move either operand to the top of the stack. If one of
1345 // the operands is killed by this instruction, we want that one so that we
1346 // can update right on top of the old version.
1348 moveToTop(Op0
, I
); // Move dead operand to TOS.
1350 } else if (KillsOp1
) {
1354 // All of the operands are live after this instruction executes, so we
1355 // cannot update on top of any operand. Because of this, we must
1356 // duplicate one of the stack elements to the top. It doesn't matter
1357 // which one we pick.
1359 duplicateToTop(Op0
, Dest
, I
);
1363 } else if (!KillsOp0
&& !KillsOp1
) {
1364 // If we DO have one of our operands at the top of the stack, but we don't
1365 // have a dead operand, we must duplicate one of the operands to a new slot
1367 duplicateToTop(Op0
, Dest
, I
);
1372 // Now we know that one of our operands is on the top of the stack, and at
1373 // least one of our operands is killed by this instruction.
1374 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
1375 "Stack conditions not set up right!");
1377 // We decide which form to use based on what is on the top of the stack, and
1378 // which operand is killed by this instruction.
1379 ArrayRef
<TableEntry
> InstTable
;
1380 bool isForward
= TOS
== Op0
;
1381 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
1384 InstTable
= ForwardST0Table
;
1386 InstTable
= ReverseST0Table
;
1389 InstTable
= ForwardSTiTable
;
1391 InstTable
= ReverseSTiTable
;
1394 int Opcode
= Lookup(InstTable
, MI
.getOpcode());
1395 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
1397 // NotTOS - The register which is not on the top of stack...
1398 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
1400 // Replace the old instruction with a new instruction
1402 I
= BuildMI(*MBB
, I
, dl
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
1404 if (!MI
.mayRaiseFPException())
1405 I
->setFlag(MachineInstr::MIFlag::NoFPExcept
);
1407 // If both operands are killed, pop one off of the stack in addition to
1408 // overwriting the other one.
1409 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
1410 assert(!updateST0
&& "Should have updated other operand!");
1411 popStackAfter(I
); // Pop the top of stack
1414 // Update stack information so that we know the destination register is now on
1416 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
1417 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
1418 Stack
[UpdatedSlot
] = Dest
;
1419 RegMap
[Dest
] = UpdatedSlot
;
1420 MBB
->getParent()->DeleteMachineInstr(&MI
); // Remove the old instruction
1423 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1424 /// register arguments and no explicit destinations.
1426 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
1427 MachineInstr
&MI
= *I
;
1429 unsigned NumOperands
= MI
.getDesc().getNumOperands();
1430 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
1431 unsigned Op0
= getFPReg(MI
.getOperand(NumOperands
- 2));
1432 unsigned Op1
= getFPReg(MI
.getOperand(NumOperands
- 1));
1433 bool KillsOp0
= MI
.killsRegister(X86::FP0
+ Op0
);
1434 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
);
1436 // Make sure the first operand is on the top of stack, the other one can be
1440 // Change from the pseudo instruction to the concrete instruction.
1441 MI
.getOperand(0).setReg(getSTReg(Op1
));
1442 MI
.RemoveOperand(1);
1443 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1444 MI
.dropDebugNumber();
1446 // If any of the operands are killed by this instruction, free them.
1447 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
1448 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
1451 /// handleCondMovFP - Handle two address conditional move instructions. These
1452 /// instructions move a st(i) register to st(0) iff a condition is true. These
1453 /// instructions require that the first operand is at the top of the stack, but
1454 /// otherwise don't modify the stack at all.
1455 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
1456 MachineInstr
&MI
= *I
;
1458 unsigned Op0
= getFPReg(MI
.getOperand(0));
1459 unsigned Op1
= getFPReg(MI
.getOperand(2));
1460 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
);
1462 // The first operand *must* be on the top of the stack.
1465 // Change the second operand to the stack register that the operand is in.
1466 // Change from the pseudo instruction to the concrete instruction.
1467 MI
.RemoveOperand(0);
1468 MI
.RemoveOperand(1);
1469 MI
.getOperand(0).setReg(getSTReg(Op1
));
1470 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1471 MI
.dropDebugNumber();
1473 // If we kill the second operand, make sure to pop it from the stack.
1474 if (Op0
!= Op1
&& KillsOp1
) {
1475 // Get this value off of the register stack.
1476 freeStackSlotAfter(I
, Op1
);
1481 /// handleSpecialFP - Handle special instructions which behave unlike other
1482 /// floating point instructions. This is primarily intended for use by pseudo
1485 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&Inst
) {
1486 MachineInstr
&MI
= *Inst
;
1493 if (MI
.isReturn()) {
1498 switch (MI
.getOpcode()) {
1499 default: llvm_unreachable("Unknown SpecialFP instruction!");
1500 case TargetOpcode::COPY
: {
1501 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1502 const MachineOperand
&MO1
= MI
.getOperand(1);
1503 const MachineOperand
&MO0
= MI
.getOperand(0);
1504 bool KillsSrc
= MI
.killsRegister(MO1
.getReg());
1507 unsigned DstFP
= getFPReg(MO0
);
1508 unsigned SrcFP
= getFPReg(MO1
);
1509 assert(isLive(SrcFP
) && "Cannot copy dead register");
1511 // If the input operand is killed, we can just change the owner of the
1512 // incoming stack slot into the result.
1513 unsigned Slot
= getSlot(SrcFP
);
1514 Stack
[Slot
] = DstFP
;
1515 RegMap
[DstFP
] = Slot
;
1517 // For COPY we just duplicate the specified value to a new stack slot.
1518 // This could be made better, but would require substantial changes.
1519 duplicateToTop(SrcFP
, DstFP
, Inst
);
1524 case TargetOpcode::IMPLICIT_DEF
: {
1525 // All FP registers must be explicitly defined, so load a 0 instead.
1526 unsigned Reg
= MI
.getOperand(0).getReg() - X86::FP0
;
1527 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg
<< '\n');
1528 BuildMI(*MBB
, Inst
, MI
.getDebugLoc(), TII
->get(X86::LD_F0
));
1533 case TargetOpcode::INLINEASM
:
1534 case TargetOpcode::INLINEASM_BR
: {
1535 // The inline asm MachineInstr currently only *uses* FP registers for the
1536 // 'f' constraint. These should be turned into the current ST(x) register
1537 // in the machine instr.
1539 // There are special rules for x87 inline assembly. The compiler must know
1540 // exactly how many registers are popped and pushed implicitly by the asm.
1541 // Otherwise it is not possible to restore the stack state after the inline
1544 // There are 3 kinds of input operands:
1546 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1547 // popped input operand must be in a fixed stack slot, and it is either
1548 // tied to an output operand, or in the clobber list. The MI has ST use
1549 // and def operands for these inputs.
1551 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1552 // preserved by the inline asm. The fixed stack slots must be STn-STm
1553 // following the popped inputs. A fixed input operand cannot be tied to
1554 // an output or appear in the clobber list. The MI has ST use operands
1555 // and no defs for these inputs.
1557 // 3. Preserved inputs. These inputs use the "f" constraint which is
1558 // represented as an FP register. The inline asm won't change these
1561 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1562 // registers do not count as output operands. The inline asm changes the
1563 // stack as if it popped all the popped inputs and then pushed all the
1566 // Scan the assembly for ST registers used, defined and clobbered. We can
1567 // only tell clobbers from defs by looking at the asm descriptor.
1568 unsigned STUses
= 0, STDefs
= 0, STClobbers
= 0;
1569 unsigned NumOps
= 0;
1570 SmallSet
<unsigned, 1> FRegIdx
;
1573 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= MI
.getNumOperands();
1574 i
!= e
&& MI
.getOperand(i
).isImm(); i
+= 1 + NumOps
) {
1575 unsigned Flags
= MI
.getOperand(i
).getImm();
1577 NumOps
= InlineAsm::getNumOperandRegisters(Flags
);
1580 const MachineOperand
&MO
= MI
.getOperand(i
+ 1);
1583 unsigned STReg
= MO
.getReg() - X86::FP0
;
1587 // If the flag has a register class constraint, this must be an operand
1588 // with constraint "f". Record its index and continue.
1589 if (InlineAsm::hasRegClassConstraint(Flags
, RCID
)) {
1590 FRegIdx
.insert(i
+ 1);
1594 switch (InlineAsm::getKind(Flags
)) {
1595 case InlineAsm::Kind_RegUse
:
1596 STUses
|= (1u << STReg
);
1598 case InlineAsm::Kind_RegDef
:
1599 case InlineAsm::Kind_RegDefEarlyClobber
:
1600 STDefs
|= (1u << STReg
);
1602 case InlineAsm::Kind_Clobber
:
1603 STClobbers
|= (1u << STReg
);
1610 if (STUses
&& !isMask_32(STUses
))
1611 MI
.emitError("fixed input regs must be last on the x87 stack");
1612 unsigned NumSTUses
= countTrailingOnes(STUses
);
1614 // Defs must be contiguous from the stack top. ST0-STn.
1615 if (STDefs
&& !isMask_32(STDefs
)) {
1616 MI
.emitError("output regs must be last on the x87 stack");
1617 STDefs
= NextPowerOf2(STDefs
) - 1;
1619 unsigned NumSTDefs
= countTrailingOnes(STDefs
);
1621 // So must the clobbered stack slots. ST0-STm, m >= n.
1622 if (STClobbers
&& !isMask_32(STDefs
| STClobbers
))
1623 MI
.emitError("clobbers must be last on the x87 stack");
1625 // Popped inputs are the ones that are also clobbered or defined.
1626 unsigned STPopped
= STUses
& (STDefs
| STClobbers
);
1627 if (STPopped
&& !isMask_32(STPopped
))
1628 MI
.emitError("implicitly popped regs must be last on the x87 stack");
1629 unsigned NumSTPopped
= countTrailingOnes(STPopped
);
1631 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses
<< " fixed regs, pops "
1632 << NumSTPopped
<< ", and defines " << NumSTDefs
1636 // If any input operand uses constraint "f", all output register
1637 // constraints must be early-clobber defs.
1638 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
)
1639 if (FRegIdx
.count(I
)) {
1640 assert((1 << getFPReg(MI
.getOperand(I
)) & STDefs
) == 0 &&
1641 "Operands with constraint \"f\" cannot overlap with defs");
1645 // Collect all FP registers (register operands with constraints "t", "u",
1646 // and "f") to kill afer the instruction.
1647 unsigned FPKills
= ((1u << NumFPRegs
) - 1) & ~0xff;
1648 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1649 MachineOperand
&Op
= MI
.getOperand(i
);
1650 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1652 unsigned FPReg
= getFPReg(Op
);
1654 // If we kill this operand, make sure to pop it from the stack after the
1655 // asm. We just remember it for now, and pop them all off at the end in
1657 if (Op
.isUse() && Op
.isKill())
1658 FPKills
|= 1U << FPReg
;
1661 // Do not include registers that are implicitly popped by defs/clobbers.
1662 FPKills
&= ~(STDefs
| STClobbers
);
1664 // Now we can rearrange the live registers to match what was requested.
1665 unsigned char STUsesArray
[8];
1667 for (unsigned I
= 0; I
< NumSTUses
; ++I
)
1670 shuffleStackTop(STUsesArray
, NumSTUses
, Inst
);
1672 dbgs() << "Before asm: ";
1676 // With the stack layout fixed, rewrite the FP registers.
1677 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1678 MachineOperand
&Op
= MI
.getOperand(i
);
1679 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1682 unsigned FPReg
= getFPReg(Op
);
1684 if (FRegIdx
.count(i
))
1685 // Operand with constraint "f".
1686 Op
.setReg(getSTReg(FPReg
));
1688 // Operand with a single register class constraint ("t" or "u").
1689 Op
.setReg(X86::ST0
+ FPReg
);
1692 // Simulate the inline asm popping its inputs and pushing its outputs.
1693 StackTop
-= NumSTPopped
;
1695 for (unsigned i
= 0; i
< NumSTDefs
; ++i
)
1696 pushReg(NumSTDefs
- i
- 1);
1698 // If this asm kills any FP registers (is the last use of them) we must
1699 // explicitly emit pop instructions for them. Do this now after the asm has
1700 // executed so that the ST(x) numbers are not off (which would happen if we
1701 // did this inline with operand rewriting).
1703 // Note: this might be a non-optimal pop sequence. We might be able to do
1704 // better by trying to pop in stack order or something.
1706 unsigned FPReg
= countTrailingZeros(FPKills
);
1708 freeStackSlotAfter(Inst
, FPReg
);
1709 FPKills
&= ~(1U << FPReg
);
1712 // Don't delete the inline asm!
1717 Inst
= MBB
->erase(Inst
); // Remove the pseudo instruction
1719 // We want to leave I pointing to the previous instruction, but what if we
1720 // just erased the first instruction?
1721 if (Inst
== MBB
->begin()) {
1722 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1723 Inst
= BuildMI(*MBB
, Inst
, DebugLoc(), TII
->get(TargetOpcode::KILL
));
1728 void FPS::setKillFlags(MachineBasicBlock
&MBB
) const {
1729 const TargetRegisterInfo
&TRI
=
1730 *MBB
.getParent()->getSubtarget().getRegisterInfo();
1731 LivePhysRegs
LPR(TRI
);
1733 LPR
.addLiveOuts(MBB
);
1735 for (MachineBasicBlock::reverse_iterator I
= MBB
.rbegin(), E
= MBB
.rend();
1737 if (I
->isDebugInstr())
1740 std::bitset
<8> Defs
;
1741 SmallVector
<MachineOperand
*, 2> Uses
;
1742 MachineInstr
&MI
= *I
;
1744 for (auto &MO
: I
->operands()) {
1748 unsigned Reg
= MO
.getReg() - X86::FP0
;
1755 if (!LPR
.contains(MO
.getReg()))
1758 Uses
.push_back(&MO
);
1761 for (auto *MO
: Uses
)
1762 if (Defs
.test(getFPReg(*MO
)) || !LPR
.contains(MO
->getReg()))
1765 LPR
.stepBackward(MI
);