1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "X86InstrInfo.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
45 #define DEBUG_TYPE "x86-instr-info"
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
51 NoFusing("disable-spill-fusing",
52 cl::desc("Disable fusing of spill code into instructions"),
55 PrintFailedFusing("print-failed-fuse-candidates",
56 cl::desc("Print instructions that the allocator wants to"
57 " fuse, but the X86 backend currently can't"),
60 ReMatPICStubLoad("remat-pic-stub-load",
61 cl::desc("Re-materialize load from stub in PIC mode"),
62 cl::init(false), cl::Hidden
);
63 static cl::opt
<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65 cl::desc("Clearance between two register writes "
66 "for inserting XOR to avoid partial "
68 cl::init(64), cl::Hidden
);
69 static cl::opt
<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71 cl::desc("How many idle instructions we would like before "
72 "certain undef register reads"),
73 cl::init(128), cl::Hidden
);
76 // Pin the vtable to this file.
77 void X86InstrInfo::anchor() {}
79 X86InstrInfo::X86InstrInfo(X86Subtarget
&STI
)
80 : X86GenInstrInfo((STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81 : X86::ADJCALLSTACKDOWN32
),
82 (STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83 : X86::ADJCALLSTACKUP32
),
85 (STI
.is64Bit() ? X86::RETQ
: X86::RETL
)),
86 Subtarget(STI
), RI(STI
.getTargetTriple()) {
90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
91 Register
&SrcReg
, Register
&DstReg
,
92 unsigned &SubIdx
) const {
93 switch (MI
.getOpcode()) {
100 if (!Subtarget
.is64Bit())
101 // It's not always legal to reference the low 8-bit of the larger
102 // register in 32-bit mode.
105 case X86::MOVSX32rr16
:
106 case X86::MOVZX32rr16
:
107 case X86::MOVSX64rr16
:
108 case X86::MOVSX64rr32
: {
109 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
112 SrcReg
= MI
.getOperand(1).getReg();
113 DstReg
= MI
.getOperand(0).getReg();
114 switch (MI
.getOpcode()) {
115 default: llvm_unreachable("Unreachable!");
116 case X86::MOVSX16rr8
:
117 case X86::MOVZX16rr8
:
118 case X86::MOVSX32rr8
:
119 case X86::MOVZX32rr8
:
120 case X86::MOVSX64rr8
:
121 SubIdx
= X86::sub_8bit
;
123 case X86::MOVSX32rr16
:
124 case X86::MOVZX32rr16
:
125 case X86::MOVSX64rr16
:
126 SubIdx
= X86::sub_16bit
;
128 case X86::MOVSX64rr32
:
129 SubIdx
= X86::sub_32bit
;
138 bool X86InstrInfo::isDataInvariant(MachineInstr
&MI
) {
139 switch (MI
.getOpcode()) {
141 // By default, assume that the instruction is not data invariant.
144 // Some target-independent operations that trivially lower to data-invariant
146 case TargetOpcode::COPY
:
147 case TargetOpcode::INSERT_SUBREG
:
148 case TargetOpcode::SUBREG_TO_REG
:
151 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
152 // However, they set flags and are perhaps the most surprisingly constant
153 // time operations so we call them out here separately.
155 case X86::IMUL16rri8
:
158 case X86::IMUL32rri8
:
161 case X86::IMUL64rri32
:
162 case X86::IMUL64rri8
:
164 // Bit scanning and counting instructions that are somewhat surprisingly
165 // constant time as they scan across bits and do other fairly complex
166 // operations like popcnt, but are believed to be constant time on x86.
167 // However, these set flags.
177 case X86::POPCNT16rr
:
178 case X86::POPCNT32rr
:
179 case X86::POPCNT64rr
:
184 // Bit manipulation instructions are effectively combinations of basic
185 // arithmetic ops, and should still execute in constant time. These also
187 case X86::BLCFILL32rr
:
188 case X86::BLCFILL64rr
:
193 case X86::BLCMSK32rr
:
194 case X86::BLCMSK64rr
:
197 case X86::BLSFILL32rr
:
198 case X86::BLSFILL64rr
:
203 case X86::BLSMSK32rr
:
204 case X86::BLSMSK64rr
:
210 // Bit extracting and clearing instructions should execute in constant time,
214 case X86::BEXTRI32ri
:
215 case X86::BEXTRI64ri
:
280 case X86::SHLD16rrCL
:
281 case X86::SHLD32rrCL
:
282 case X86::SHLD64rrCL
:
283 case X86::SHLD16rri8
:
284 case X86::SHLD32rri8
:
285 case X86::SHLD64rri8
:
286 case X86::SHRD16rrCL
:
287 case X86::SHRD32rrCL
:
288 case X86::SHRD64rrCL
:
289 case X86::SHRD16rri8
:
290 case X86::SHRD32rri8
:
291 case X86::SHRD64rri8
:
293 // Basic arithmetic is constant time on the input but does set flags.
371 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
378 // Unary arithmetic operations.
392 // Unlike other arithmetic, NOT doesn't set EFLAGS.
398 // Various move instructions used to zero or sign extend things. Note that we
399 // intentionally don't support the _NOREX variants as we can't handle that
400 // register constraint anyways.
401 case X86::MOVSX16rr8
:
402 case X86::MOVSX32rr8
:
403 case X86::MOVSX32rr16
:
404 case X86::MOVSX64rr8
:
405 case X86::MOVSX64rr16
:
406 case X86::MOVSX64rr32
:
407 case X86::MOVZX16rr8
:
408 case X86::MOVZX32rr8
:
409 case X86::MOVZX32rr16
:
410 case X86::MOVZX64rr8
:
411 case X86::MOVZX64rr16
:
414 // Arithmetic instructions that are both constant time and don't set flags.
424 // LEA doesn't actually access memory, and its arithmetic is constant time.
433 bool X86InstrInfo::isDataInvariantLoad(MachineInstr
&MI
) {
434 switch (MI
.getOpcode()) {
436 // By default, assume that the load will immediately leak.
439 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
440 // However, they set flags and are perhaps the most surprisingly constant
441 // time operations so we call them out here separately.
443 case X86::IMUL16rmi8
:
446 case X86::IMUL32rmi8
:
449 case X86::IMUL64rmi32
:
450 case X86::IMUL64rmi8
:
452 // Bit scanning and counting instructions that are somewhat surprisingly
453 // constant time as they scan across bits and do other fairly complex
454 // operations like popcnt, but are believed to be constant time on x86.
455 // However, these set flags.
465 case X86::POPCNT16rm
:
466 case X86::POPCNT32rm
:
467 case X86::POPCNT64rm
:
472 // Bit manipulation instructions are effectively combinations of basic
473 // arithmetic ops, and should still execute in constant time. These also
475 case X86::BLCFILL32rm
:
476 case X86::BLCFILL64rm
:
481 case X86::BLCMSK32rm
:
482 case X86::BLCMSK64rm
:
485 case X86::BLSFILL32rm
:
486 case X86::BLSFILL64rm
:
491 case X86::BLSMSK32rm
:
492 case X86::BLSMSK64rm
:
498 // Bit extracting and clearing instructions should execute in constant time,
502 case X86::BEXTRI32mi
:
503 case X86::BEXTRI64mi
:
507 // Basic arithmetic is constant time on the input but does set flags.
543 // Integer multiply w/o affecting flags is still believed to be constant
544 // time on x86. Called out separately as this is among the most surprising
545 // instructions to exhibit that behavior.
549 // Arithmetic instructions that are both constant time and don't set flags.
559 // Conversions are believed to be constant time and don't set flags.
560 case X86::CVTTSD2SI64rm
:
561 case X86::VCVTTSD2SI64rm
:
562 case X86::VCVTTSD2SI64Zrm
:
563 case X86::CVTTSD2SIrm
:
564 case X86::VCVTTSD2SIrm
:
565 case X86::VCVTTSD2SIZrm
:
566 case X86::CVTTSS2SI64rm
:
567 case X86::VCVTTSS2SI64rm
:
568 case X86::VCVTTSS2SI64Zrm
:
569 case X86::CVTTSS2SIrm
:
570 case X86::VCVTTSS2SIrm
:
571 case X86::VCVTTSS2SIZrm
:
572 case X86::CVTSI2SDrm
:
573 case X86::VCVTSI2SDrm
:
574 case X86::VCVTSI2SDZrm
:
575 case X86::CVTSI2SSrm
:
576 case X86::VCVTSI2SSrm
:
577 case X86::VCVTSI2SSZrm
:
578 case X86::CVTSI642SDrm
:
579 case X86::VCVTSI642SDrm
:
580 case X86::VCVTSI642SDZrm
:
581 case X86::CVTSI642SSrm
:
582 case X86::VCVTSI642SSrm
:
583 case X86::VCVTSI642SSZrm
:
584 case X86::CVTSS2SDrm
:
585 case X86::VCVTSS2SDrm
:
586 case X86::VCVTSS2SDZrm
:
587 case X86::CVTSD2SSrm
:
588 case X86::VCVTSD2SSrm
:
589 case X86::VCVTSD2SSZrm
:
590 // AVX512 added unsigned integer conversions.
591 case X86::VCVTTSD2USI64Zrm
:
592 case X86::VCVTTSD2USIZrm
:
593 case X86::VCVTTSS2USI64Zrm
:
594 case X86::VCVTTSS2USIZrm
:
595 case X86::VCVTUSI2SDZrm
:
596 case X86::VCVTUSI642SDZrm
:
597 case X86::VCVTUSI2SSZrm
:
598 case X86::VCVTUSI642SSZrm
:
600 // Loads to register don't set flags.
602 case X86::MOV8rm_NOREX
:
606 case X86::MOVSX16rm8
:
607 case X86::MOVSX32rm16
:
608 case X86::MOVSX32rm8
:
609 case X86::MOVSX32rm8_NOREX
:
610 case X86::MOVSX64rm16
:
611 case X86::MOVSX64rm32
:
612 case X86::MOVSX64rm8
:
613 case X86::MOVZX16rm8
:
614 case X86::MOVZX32rm16
:
615 case X86::MOVZX32rm8
:
616 case X86::MOVZX32rm8_NOREX
:
617 case X86::MOVZX64rm16
:
618 case X86::MOVZX64rm8
:
623 int X86InstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
624 const MachineFunction
*MF
= MI
.getParent()->getParent();
625 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
627 if (isFrameInstr(MI
)) {
628 int SPAdj
= alignTo(getFrameSize(MI
), TFI
->getStackAlign());
629 SPAdj
-= getFrameAdjustment(MI
);
630 if (!isFrameSetup(MI
))
635 // To know whether a call adjusts the stack, we need information
636 // that is bound to the following ADJCALLSTACKUP pseudo.
637 // Look for the next ADJCALLSTACKUP that follows the call.
639 const MachineBasicBlock
*MBB
= MI
.getParent();
640 auto I
= ++MachineBasicBlock::const_iterator(MI
);
641 for (auto E
= MBB
->end(); I
!= E
; ++I
) {
642 if (I
->getOpcode() == getCallFrameDestroyOpcode() ||
647 // If we could not find a frame destroy opcode, then it has already
648 // been simplified, so we don't care.
649 if (I
->getOpcode() != getCallFrameDestroyOpcode())
652 return -(I
->getOperand(1).getImm());
655 // Currently handle only PUSHes we can reasonably expect to see
657 switch (MI
.getOpcode()) {
675 /// Return true and the FrameIndex if the specified
676 /// operand and follow operands form a reference to the stack frame.
677 bool X86InstrInfo::isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
678 int &FrameIndex
) const {
679 if (MI
.getOperand(Op
+ X86::AddrBaseReg
).isFI() &&
680 MI
.getOperand(Op
+ X86::AddrScaleAmt
).isImm() &&
681 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
682 MI
.getOperand(Op
+ X86::AddrDisp
).isImm() &&
683 MI
.getOperand(Op
+ X86::AddrScaleAmt
).getImm() == 1 &&
684 MI
.getOperand(Op
+ X86::AddrIndexReg
).getReg() == 0 &&
685 MI
.getOperand(Op
+ X86::AddrDisp
).getImm() == 0) {
686 FrameIndex
= MI
.getOperand(Op
+ X86::AddrBaseReg
).getIndex();
692 static bool isFrameLoadOpcode(int Opcode
, unsigned &MemBytes
) {
703 case X86::VMOVSHZrm_alt
:
708 case X86::MOVSSrm_alt
:
710 case X86::VMOVSSrm_alt
:
712 case X86::VMOVSSZrm_alt
:
719 case X86::MOVSDrm_alt
:
721 case X86::VMOVSDrm_alt
:
723 case X86::VMOVSDZrm_alt
:
724 case X86::MMX_MOVD64rm
:
725 case X86::MMX_MOVQ64rm
:
741 case X86::VMOVAPSZ128rm
:
742 case X86::VMOVUPSZ128rm
:
743 case X86::VMOVAPSZ128rm_NOVLX
:
744 case X86::VMOVUPSZ128rm_NOVLX
:
745 case X86::VMOVAPDZ128rm
:
746 case X86::VMOVUPDZ128rm
:
747 case X86::VMOVDQU8Z128rm
:
748 case X86::VMOVDQU16Z128rm
:
749 case X86::VMOVDQA32Z128rm
:
750 case X86::VMOVDQU32Z128rm
:
751 case X86::VMOVDQA64Z128rm
:
752 case X86::VMOVDQU64Z128rm
:
755 case X86::VMOVAPSYrm
:
756 case X86::VMOVUPSYrm
:
757 case X86::VMOVAPDYrm
:
758 case X86::VMOVUPDYrm
:
759 case X86::VMOVDQAYrm
:
760 case X86::VMOVDQUYrm
:
761 case X86::VMOVAPSZ256rm
:
762 case X86::VMOVUPSZ256rm
:
763 case X86::VMOVAPSZ256rm_NOVLX
:
764 case X86::VMOVUPSZ256rm_NOVLX
:
765 case X86::VMOVAPDZ256rm
:
766 case X86::VMOVUPDZ256rm
:
767 case X86::VMOVDQU8Z256rm
:
768 case X86::VMOVDQU16Z256rm
:
769 case X86::VMOVDQA32Z256rm
:
770 case X86::VMOVDQU32Z256rm
:
771 case X86::VMOVDQA64Z256rm
:
772 case X86::VMOVDQU64Z256rm
:
775 case X86::VMOVAPSZrm
:
776 case X86::VMOVUPSZrm
:
777 case X86::VMOVAPDZrm
:
778 case X86::VMOVUPDZrm
:
779 case X86::VMOVDQU8Zrm
:
780 case X86::VMOVDQU16Zrm
:
781 case X86::VMOVDQA32Zrm
:
782 case X86::VMOVDQU32Zrm
:
783 case X86::VMOVDQA64Zrm
:
784 case X86::VMOVDQU64Zrm
:
790 static bool isFrameStoreOpcode(int Opcode
, unsigned &MemBytes
) {
815 case X86::MMX_MOVD64mr
:
816 case X86::MMX_MOVQ64mr
:
817 case X86::MMX_MOVNTQmr
:
833 case X86::VMOVUPSZ128mr
:
834 case X86::VMOVAPSZ128mr
:
835 case X86::VMOVUPSZ128mr_NOVLX
:
836 case X86::VMOVAPSZ128mr_NOVLX
:
837 case X86::VMOVUPDZ128mr
:
838 case X86::VMOVAPDZ128mr
:
839 case X86::VMOVDQA32Z128mr
:
840 case X86::VMOVDQU32Z128mr
:
841 case X86::VMOVDQA64Z128mr
:
842 case X86::VMOVDQU64Z128mr
:
843 case X86::VMOVDQU8Z128mr
:
844 case X86::VMOVDQU16Z128mr
:
847 case X86::VMOVUPSYmr
:
848 case X86::VMOVAPSYmr
:
849 case X86::VMOVUPDYmr
:
850 case X86::VMOVAPDYmr
:
851 case X86::VMOVDQUYmr
:
852 case X86::VMOVDQAYmr
:
853 case X86::VMOVUPSZ256mr
:
854 case X86::VMOVAPSZ256mr
:
855 case X86::VMOVUPSZ256mr_NOVLX
:
856 case X86::VMOVAPSZ256mr_NOVLX
:
857 case X86::VMOVUPDZ256mr
:
858 case X86::VMOVAPDZ256mr
:
859 case X86::VMOVDQU8Z256mr
:
860 case X86::VMOVDQU16Z256mr
:
861 case X86::VMOVDQA32Z256mr
:
862 case X86::VMOVDQU32Z256mr
:
863 case X86::VMOVDQA64Z256mr
:
864 case X86::VMOVDQU64Z256mr
:
867 case X86::VMOVUPSZmr
:
868 case X86::VMOVAPSZmr
:
869 case X86::VMOVUPDZmr
:
870 case X86::VMOVAPDZmr
:
871 case X86::VMOVDQU8Zmr
:
872 case X86::VMOVDQU16Zmr
:
873 case X86::VMOVDQA32Zmr
:
874 case X86::VMOVDQU32Zmr
:
875 case X86::VMOVDQA64Zmr
:
876 case X86::VMOVDQU64Zmr
:
883 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
884 int &FrameIndex
) const {
886 return X86InstrInfo::isLoadFromStackSlot(MI
, FrameIndex
, Dummy
);
889 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
891 unsigned &MemBytes
) const {
892 if (isFrameLoadOpcode(MI
.getOpcode(), MemBytes
))
893 if (MI
.getOperand(0).getSubReg() == 0 && isFrameOperand(MI
, 1, FrameIndex
))
894 return MI
.getOperand(0).getReg();
898 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
899 int &FrameIndex
) const {
901 if (isFrameLoadOpcode(MI
.getOpcode(), Dummy
)) {
903 if ((Reg
= isLoadFromStackSlot(MI
, FrameIndex
)))
905 // Check for post-frame index elimination operations
906 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
907 if (hasLoadFromStackSlot(MI
, Accesses
)) {
909 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
911 return MI
.getOperand(0).getReg();
917 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
918 int &FrameIndex
) const {
920 return X86InstrInfo::isStoreToStackSlot(MI
, FrameIndex
, Dummy
);
923 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
925 unsigned &MemBytes
) const {
926 if (isFrameStoreOpcode(MI
.getOpcode(), MemBytes
))
927 if (MI
.getOperand(X86::AddrNumOperands
).getSubReg() == 0 &&
928 isFrameOperand(MI
, 0, FrameIndex
))
929 return MI
.getOperand(X86::AddrNumOperands
).getReg();
933 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr
&MI
,
934 int &FrameIndex
) const {
936 if (isFrameStoreOpcode(MI
.getOpcode(), Dummy
)) {
938 if ((Reg
= isStoreToStackSlot(MI
, FrameIndex
)))
940 // Check for post-frame index elimination operations
941 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
942 if (hasStoreToStackSlot(MI
, Accesses
)) {
944 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
946 return MI
.getOperand(X86::AddrNumOperands
).getReg();
952 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
953 static bool regIsPICBase(Register BaseReg
, const MachineRegisterInfo
&MRI
) {
954 // Don't waste compile time scanning use-def chains of physregs.
955 if (!BaseReg
.isVirtual())
957 bool isPICBase
= false;
958 for (MachineRegisterInfo::def_instr_iterator I
= MRI
.def_instr_begin(BaseReg
),
959 E
= MRI
.def_instr_end(); I
!= E
; ++I
) {
960 MachineInstr
*DefMI
= &*I
;
961 if (DefMI
->getOpcode() != X86::MOVPC32r
)
963 assert(!isPICBase
&& "More than one PIC base?");
969 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
970 AAResults
*AA
) const {
971 switch (MI
.getOpcode()) {
973 // This function should only be called for opcodes with the ReMaterializable
975 llvm_unreachable("Unknown rematerializable operation!");
978 case X86::LOAD_STACK_GUARD
:
979 case X86::AVX1_SETALLONES
:
980 case X86::AVX2_SETALLONES
:
981 case X86::AVX512_128_SET0
:
982 case X86::AVX512_256_SET0
:
983 case X86::AVX512_512_SET0
:
984 case X86::AVX512_512_SETALLONES
:
985 case X86::AVX512_FsFLD0SD
:
986 case X86::AVX512_FsFLD0SH
:
987 case X86::AVX512_FsFLD0SS
:
988 case X86::AVX512_FsFLD0F128
:
992 case X86::FsFLD0F128
:
1000 case X86::MOV32ImmSExti8
:
1004 case X86::MOV32ri64
:
1005 case X86::MOV64ImmSExti8
:
1007 case X86::V_SETALLONES
:
1011 case X86::MOV64ri32
:
1013 case X86::PTILEZEROV
:
1017 case X86::MOV8rm_NOREX
:
1022 case X86::MOVSSrm_alt
:
1024 case X86::MOVSDrm_alt
:
1032 case X86::VMOVSSrm_alt
:
1034 case X86::VMOVSDrm_alt
:
1035 case X86::VMOVAPSrm
:
1036 case X86::VMOVUPSrm
:
1037 case X86::VMOVAPDrm
:
1038 case X86::VMOVUPDrm
:
1039 case X86::VMOVDQArm
:
1040 case X86::VMOVDQUrm
:
1041 case X86::VMOVAPSYrm
:
1042 case X86::VMOVUPSYrm
:
1043 case X86::VMOVAPDYrm
:
1044 case X86::VMOVUPDYrm
:
1045 case X86::VMOVDQAYrm
:
1046 case X86::VMOVDQUYrm
:
1047 case X86::MMX_MOVD64rm
:
1048 case X86::MMX_MOVQ64rm
:
1050 case X86::VMOVSSZrm
:
1051 case X86::VMOVSSZrm_alt
:
1052 case X86::VMOVSDZrm
:
1053 case X86::VMOVSDZrm_alt
:
1054 case X86::VMOVSHZrm
:
1055 case X86::VMOVSHZrm_alt
:
1056 case X86::VMOVAPDZ128rm
:
1057 case X86::VMOVAPDZ256rm
:
1058 case X86::VMOVAPDZrm
:
1059 case X86::VMOVAPSZ128rm
:
1060 case X86::VMOVAPSZ256rm
:
1061 case X86::VMOVAPSZ128rm_NOVLX
:
1062 case X86::VMOVAPSZ256rm_NOVLX
:
1063 case X86::VMOVAPSZrm
:
1064 case X86::VMOVDQA32Z128rm
:
1065 case X86::VMOVDQA32Z256rm
:
1066 case X86::VMOVDQA32Zrm
:
1067 case X86::VMOVDQA64Z128rm
:
1068 case X86::VMOVDQA64Z256rm
:
1069 case X86::VMOVDQA64Zrm
:
1070 case X86::VMOVDQU16Z128rm
:
1071 case X86::VMOVDQU16Z256rm
:
1072 case X86::VMOVDQU16Zrm
:
1073 case X86::VMOVDQU32Z128rm
:
1074 case X86::VMOVDQU32Z256rm
:
1075 case X86::VMOVDQU32Zrm
:
1076 case X86::VMOVDQU64Z128rm
:
1077 case X86::VMOVDQU64Z256rm
:
1078 case X86::VMOVDQU64Zrm
:
1079 case X86::VMOVDQU8Z128rm
:
1080 case X86::VMOVDQU8Z256rm
:
1081 case X86::VMOVDQU8Zrm
:
1082 case X86::VMOVUPDZ128rm
:
1083 case X86::VMOVUPDZ256rm
:
1084 case X86::VMOVUPDZrm
:
1085 case X86::VMOVUPSZ128rm
:
1086 case X86::VMOVUPSZ256rm
:
1087 case X86::VMOVUPSZ128rm_NOVLX
:
1088 case X86::VMOVUPSZ256rm_NOVLX
:
1089 case X86::VMOVUPSZrm
: {
1090 // Loads from constant pools are trivially rematerializable.
1091 if (MI
.getOperand(1 + X86::AddrBaseReg
).isReg() &&
1092 MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
1093 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
1094 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
1095 MI
.isDereferenceableInvariantLoad(AA
)) {
1096 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
1097 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
1099 // Allow re-materialization of PIC load.
1100 if (!ReMatPICStubLoad
&& MI
.getOperand(1 + X86::AddrDisp
).isGlobal())
1102 const MachineFunction
&MF
= *MI
.getParent()->getParent();
1103 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1104 return regIsPICBase(BaseReg
, MRI
);
1111 if (MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
1112 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
1113 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
1114 !MI
.getOperand(1 + X86::AddrDisp
).isReg()) {
1115 // lea fi#, lea GV, etc. are all rematerializable.
1116 if (!MI
.getOperand(1 + X86::AddrBaseReg
).isReg())
1118 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
1121 // Allow re-materialization of lea PICBase + x.
1122 const MachineFunction
&MF
= *MI
.getParent()->getParent();
1123 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1124 return regIsPICBase(BaseReg
, MRI
);
1131 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
1132 MachineBasicBlock::iterator I
,
1133 Register DestReg
, unsigned SubIdx
,
1134 const MachineInstr
&Orig
,
1135 const TargetRegisterInfo
&TRI
) const {
1136 bool ClobbersEFLAGS
= Orig
.modifiesRegister(X86::EFLAGS
, &TRI
);
1137 if (ClobbersEFLAGS
&& MBB
.computeRegisterLiveness(&TRI
, X86::EFLAGS
, I
) !=
1138 MachineBasicBlock::LQR_Dead
) {
1139 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
1142 switch (Orig
.getOpcode()) {
1143 case X86::MOV32r0
: Value
= 0; break;
1144 case X86::MOV32r1
: Value
= 1; break;
1145 case X86::MOV32r_1
: Value
= -1; break;
1147 llvm_unreachable("Unexpected instruction!");
1150 const DebugLoc
&DL
= Orig
.getDebugLoc();
1151 BuildMI(MBB
, I
, DL
, get(X86::MOV32ri
))
1152 .add(Orig
.getOperand(0))
1155 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
1159 MachineInstr
&NewMI
= *std::prev(I
);
1160 NewMI
.substituteRegister(Orig
.getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
1163 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
1164 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr
&MI
) const {
1165 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1166 MachineOperand
&MO
= MI
.getOperand(i
);
1167 if (MO
.isReg() && MO
.isDef() &&
1168 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
1175 /// Check whether the shift count for a machine operand is non-zero.
1176 inline static unsigned getTruncatedShiftCount(const MachineInstr
&MI
,
1177 unsigned ShiftAmtOperandIdx
) {
1178 // The shift count is six bits with the REX.W prefix and five bits without.
1179 unsigned ShiftCountMask
= (MI
.getDesc().TSFlags
& X86II::REX_W
) ? 63 : 31;
1180 unsigned Imm
= MI
.getOperand(ShiftAmtOperandIdx
).getImm();
1181 return Imm
& ShiftCountMask
;
1184 /// Check whether the given shift count is appropriate
1185 /// can be represented by a LEA instruction.
1186 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt
) {
1187 // Left shift instructions can be transformed into load-effective-address
1188 // instructions if we can encode them appropriately.
1189 // A LEA instruction utilizes a SIB byte to encode its scale factor.
1190 // The SIB.scale field is two bits wide which means that we can encode any
1191 // shift amount less than 4.
1192 return ShAmt
< 4 && ShAmt
> 0;
1195 bool X86InstrInfo::classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
1196 unsigned Opc
, bool AllowSP
, Register
&NewSrc
,
1197 bool &isKill
, MachineOperand
&ImplicitOp
,
1198 LiveVariables
*LV
) const {
1199 MachineFunction
&MF
= *MI
.getParent()->getParent();
1200 const TargetRegisterClass
*RC
;
1202 RC
= Opc
!= X86::LEA32r
? &X86::GR64RegClass
: &X86::GR32RegClass
;
1204 RC
= Opc
!= X86::LEA32r
?
1205 &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
;
1207 Register SrcReg
= Src
.getReg();
1209 // For both LEA64 and LEA32 the register already has essentially the right
1210 // type (32-bit or 64-bit) we may just need to forbid SP.
1211 if (Opc
!= X86::LEA64_32r
) {
1213 isKill
= Src
.isKill();
1214 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
1216 if (NewSrc
.isVirtual() && !MF
.getRegInfo().constrainRegClass(NewSrc
, RC
))
1222 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1223 // another we need to add 64-bit registers to the final MI.
1224 if (SrcReg
.isPhysical()) {
1226 ImplicitOp
.setImplicit();
1228 NewSrc
= getX86SubSuperRegister(Src
.getReg(), 64);
1229 isKill
= Src
.isKill();
1230 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
1232 // Virtual register of the wrong class, we have to create a temporary 64-bit
1233 // vreg to feed into the LEA.
1234 NewSrc
= MF
.getRegInfo().createVirtualRegister(RC
);
1235 MachineInstr
*Copy
=
1236 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1237 .addReg(NewSrc
, RegState::Define
| RegState::Undef
, X86::sub_32bit
)
1240 // Which is obviously going to be dead after we're done with it.
1244 LV
->replaceKillInstruction(SrcReg
, MI
, *Copy
);
1247 // We've set all the parameters without issue.
1251 MachineInstr
*X86InstrInfo::convertToThreeAddressWithLEA(
1252 unsigned MIOpc
, MachineFunction::iterator
&MFI
, MachineInstr
&MI
,
1253 LiveVariables
*LV
, bool Is8BitOp
) const {
1254 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1255 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
1256 assert((Is8BitOp
|| RegInfo
.getTargetRegisterInfo()->getRegSizeInBits(
1257 *RegInfo
.getRegClass(MI
.getOperand(0).getReg())) == 16) &&
1258 "Unexpected type for LEA transform");
1260 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1261 // something like this:
1262 // Opcode = X86::LEA32r;
1263 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1265 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1266 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1267 if (!Subtarget
.is64Bit())
1270 unsigned Opcode
= X86::LEA64_32r
;
1271 Register InRegLEA
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
1272 Register OutRegLEA
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1274 // Build and insert into an implicit UNDEF value. This is OK because
1275 // we will be shifting and then extracting the lower 8/16-bits.
1276 // This has the potential to cause partial register stall. e.g.
1277 // movw (%rbp,%rcx,2), %dx
1278 // leal -65(%rdx), %esi
1279 // But testing has shown this *does* help performance in 64-bit mode (at
1280 // least on modern x86 machines).
1281 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
1282 Register Dest
= MI
.getOperand(0).getReg();
1283 Register Src
= MI
.getOperand(1).getReg();
1284 bool IsDead
= MI
.getOperand(0).isDead();
1285 bool IsKill
= MI
.getOperand(1).isKill();
1286 unsigned SubReg
= Is8BitOp
? X86::sub_8bit
: X86::sub_16bit
;
1287 assert(!MI
.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1288 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA
);
1289 MachineInstr
*InsMI
=
1290 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1291 .addReg(InRegLEA
, RegState::Define
, SubReg
)
1292 .addReg(Src
, getKillRegState(IsKill
));
1294 MachineInstrBuilder MIB
=
1295 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(Opcode
), OutRegLEA
);
1297 default: llvm_unreachable("Unreachable!");
1299 case X86::SHL16ri
: {
1300 unsigned ShAmt
= MI
.getOperand(2).getImm();
1301 MIB
.addReg(0).addImm(1ULL << ShAmt
)
1302 .addReg(InRegLEA
, RegState::Kill
).addImm(0).addReg(0);
1307 addRegOffset(MIB
, InRegLEA
, true, 1);
1311 addRegOffset(MIB
, InRegLEA
, true, -1);
1314 case X86::ADD8ri_DB
:
1317 case X86::ADD16ri_DB
:
1318 case X86::ADD16ri8_DB
:
1319 addRegOffset(MIB
, InRegLEA
, true, MI
.getOperand(2).getImm());
1322 case X86::ADD8rr_DB
:
1324 case X86::ADD16rr_DB
: {
1325 Register Src2
= MI
.getOperand(2).getReg();
1326 bool IsKill2
= MI
.getOperand(2).isKill();
1327 assert(!MI
.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1328 unsigned InRegLEA2
= 0;
1329 MachineInstr
*InsMI2
= nullptr;
1331 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1332 // just a single insert_subreg.
1333 addRegReg(MIB
, InRegLEA
, true, InRegLEA
, false);
1335 if (Subtarget
.is64Bit())
1336 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
1338 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
1339 // Build and insert into an implicit UNDEF value. This is OK because
1340 // we will be shifting and then extracting the lower 8/16-bits.
1341 BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA2
);
1342 InsMI2
= BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1343 .addReg(InRegLEA2
, RegState::Define
, SubReg
)
1344 .addReg(Src2
, getKillRegState(IsKill2
));
1345 addRegReg(MIB
, InRegLEA
, true, InRegLEA2
, true);
1347 if (LV
&& IsKill2
&& InsMI2
)
1348 LV
->replaceKillInstruction(Src2
, MI
, *InsMI2
);
1353 MachineInstr
*NewMI
= MIB
;
1354 MachineInstr
*ExtMI
=
1355 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1356 .addReg(Dest
, RegState::Define
| getDeadRegState(IsDead
))
1357 .addReg(OutRegLEA
, RegState::Kill
, SubReg
);
1360 // Update live variables.
1361 LV
->getVarInfo(InRegLEA
).Kills
.push_back(NewMI
);
1362 LV
->getVarInfo(OutRegLEA
).Kills
.push_back(ExtMI
);
1364 LV
->replaceKillInstruction(Src
, MI
, *InsMI
);
1366 LV
->replaceKillInstruction(Dest
, MI
, *ExtMI
);
1372 /// This method must be implemented by targets that
1373 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1374 /// may be able to convert a two-address instruction into a true
1375 /// three-address instruction on demand. This allows the X86 target (for
1376 /// example) to convert ADD and SHL instructions into LEA instructions if they
1377 /// would require register copies due to two-addressness.
1379 /// This method returns a null pointer if the transformation cannot be
1380 /// performed, otherwise it returns the new instruction.
1383 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
1384 MachineInstr
&MI
, LiveVariables
*LV
) const {
1385 // The following opcodes also sets the condition code register(s). Only
1386 // convert them to equivalent lea if the condition code register def's
1388 if (hasLiveCondCodeDef(MI
))
1391 MachineFunction
&MF
= *MI
.getParent()->getParent();
1392 // All instructions input are two-addr instructions. Get the known operands.
1393 const MachineOperand
&Dest
= MI
.getOperand(0);
1394 const MachineOperand
&Src
= MI
.getOperand(1);
1396 // Ideally, operations with undef should be folded before we get here, but we
1397 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1398 // Without this, we have to forward undef state to new register operands to
1399 // avoid machine verifier errors.
1402 if (MI
.getNumOperands() > 2)
1403 if (MI
.getOperand(2).isReg() && MI
.getOperand(2).isUndef())
1406 MachineInstr
*NewMI
= nullptr;
1407 bool Is64Bit
= Subtarget
.is64Bit();
1409 bool Is8BitOp
= false;
1410 unsigned MIOpc
= MI
.getOpcode();
1412 default: llvm_unreachable("Unreachable!");
1413 case X86::SHL64ri
: {
1414 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
1415 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
1416 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
1418 // LEA can't handle RSP.
1419 if (Src
.getReg().isVirtual() && !MF
.getRegInfo().constrainRegClass(
1420 Src
.getReg(), &X86::GR64_NOSPRegClass
))
1423 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
))
1426 .addImm(1ULL << ShAmt
)
1432 case X86::SHL32ri
: {
1433 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
1434 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
1435 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
1437 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1439 // LEA can't handle ESP.
1442 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1443 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false,
1444 SrcReg
, isKill
, ImplicitOp
, LV
))
1447 MachineInstrBuilder MIB
=
1448 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1451 .addImm(1ULL << ShAmt
)
1452 .addReg(SrcReg
, getKillRegState(isKill
))
1455 if (ImplicitOp
.getReg() != 0)
1456 MIB
.add(ImplicitOp
);
1464 case X86::SHL16ri
: {
1465 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
1466 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
1467 if (!isTruncatedShiftCountForLEA(ShAmt
))
1469 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1473 assert(MI
.getNumOperands() >= 2 && "Unknown inc instruction!");
1474 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
:
1475 (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1478 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1479 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
1483 MachineInstrBuilder MIB
=
1484 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1486 .addReg(SrcReg
, getKillRegState(isKill
));
1487 if (ImplicitOp
.getReg() != 0)
1488 MIB
.add(ImplicitOp
);
1490 NewMI
= addOffset(MIB
, 1);
1495 assert(MI
.getNumOperands() >= 2 && "Unknown dec instruction!");
1496 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
1497 : (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1501 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1502 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
1506 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1508 .addReg(SrcReg
, getKillRegState(isKill
));
1509 if (ImplicitOp
.getReg() != 0)
1510 MIB
.add(ImplicitOp
);
1512 NewMI
= addOffset(MIB
, -1);
1522 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1524 case X86::ADD64rr_DB
:
1526 case X86::ADD32rr_DB
: {
1527 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1529 if (MIOpc
== X86::ADD64rr
|| MIOpc
== X86::ADD64rr_DB
)
1532 Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1536 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1537 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1538 SrcReg
, isKill
, ImplicitOp
, LV
))
1541 const MachineOperand
&Src2
= MI
.getOperand(2);
1544 MachineOperand ImplicitOp2
= MachineOperand::CreateReg(0, false);
1545 if (!classifyLEAReg(MI
, Src2
, Opc
, /*AllowSP=*/ false,
1546 SrcReg2
, isKill2
, ImplicitOp2
, LV
))
1549 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
)).add(Dest
);
1550 if (ImplicitOp
.getReg() != 0)
1551 MIB
.add(ImplicitOp
);
1552 if (ImplicitOp2
.getReg() != 0)
1553 MIB
.add(ImplicitOp2
);
1555 NewMI
= addRegReg(MIB
, SrcReg
, isKill
, SrcReg2
, isKill2
);
1556 if (LV
&& Src2
.isKill())
1557 LV
->replaceKillInstruction(SrcReg2
, MI
, *NewMI
);
1561 case X86::ADD8rr_DB
:
1565 case X86::ADD16rr_DB
:
1566 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1567 case X86::ADD64ri32
:
1569 case X86::ADD64ri32_DB
:
1570 case X86::ADD64ri8_DB
:
1571 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1573 BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
)).add(Dest
).add(Src
),
1578 case X86::ADD32ri_DB
:
1579 case X86::ADD32ri8_DB
: {
1580 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1581 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1585 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1586 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1587 SrcReg
, isKill
, ImplicitOp
, LV
))
1590 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1592 .addReg(SrcReg
, getKillRegState(isKill
));
1593 if (ImplicitOp
.getReg() != 0)
1594 MIB
.add(ImplicitOp
);
1596 NewMI
= addOffset(MIB
, MI
.getOperand(2));
1600 case X86::ADD8ri_DB
:
1605 case X86::ADD16ri_DB
:
1606 case X86::ADD16ri8_DB
:
1607 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1611 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1614 case X86::SUB32ri
: {
1615 if (!MI
.getOperand(2).isImm())
1617 int64_t Imm
= MI
.getOperand(2).getImm();
1618 if (!isInt
<32>(-Imm
))
1621 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1622 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1626 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1627 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1628 SrcReg
, isKill
, ImplicitOp
, LV
))
1631 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1633 .addReg(SrcReg
, getKillRegState(isKill
));
1634 if (ImplicitOp
.getReg() != 0)
1635 MIB
.add(ImplicitOp
);
1637 NewMI
= addOffset(MIB
, -Imm
);
1642 case X86::SUB64ri32
: {
1643 if (!MI
.getOperand(2).isImm())
1645 int64_t Imm
= MI
.getOperand(2).getImm();
1646 if (!isInt
<32>(-Imm
))
1649 assert(MI
.getNumOperands() >= 3 && "Unknown sub instruction!");
1651 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(),
1652 get(X86::LEA64r
)).add(Dest
).add(Src
);
1653 NewMI
= addOffset(MIB
, -Imm
);
1657 case X86::VMOVDQU8Z128rmk
:
1658 case X86::VMOVDQU8Z256rmk
:
1659 case X86::VMOVDQU8Zrmk
:
1660 case X86::VMOVDQU16Z128rmk
:
1661 case X86::VMOVDQU16Z256rmk
:
1662 case X86::VMOVDQU16Zrmk
:
1663 case X86::VMOVDQU32Z128rmk
: case X86::VMOVDQA32Z128rmk
:
1664 case X86::VMOVDQU32Z256rmk
: case X86::VMOVDQA32Z256rmk
:
1665 case X86::VMOVDQU32Zrmk
: case X86::VMOVDQA32Zrmk
:
1666 case X86::VMOVDQU64Z128rmk
: case X86::VMOVDQA64Z128rmk
:
1667 case X86::VMOVDQU64Z256rmk
: case X86::VMOVDQA64Z256rmk
:
1668 case X86::VMOVDQU64Zrmk
: case X86::VMOVDQA64Zrmk
:
1669 case X86::VMOVUPDZ128rmk
: case X86::VMOVAPDZ128rmk
:
1670 case X86::VMOVUPDZ256rmk
: case X86::VMOVAPDZ256rmk
:
1671 case X86::VMOVUPDZrmk
: case X86::VMOVAPDZrmk
:
1672 case X86::VMOVUPSZ128rmk
: case X86::VMOVAPSZ128rmk
:
1673 case X86::VMOVUPSZ256rmk
: case X86::VMOVAPSZ256rmk
:
1674 case X86::VMOVUPSZrmk
: case X86::VMOVAPSZrmk
:
1675 case X86::VBROADCASTSDZ256rmk
:
1676 case X86::VBROADCASTSDZrmk
:
1677 case X86::VBROADCASTSSZ128rmk
:
1678 case X86::VBROADCASTSSZ256rmk
:
1679 case X86::VBROADCASTSSZrmk
:
1680 case X86::VPBROADCASTDZ128rmk
:
1681 case X86::VPBROADCASTDZ256rmk
:
1682 case X86::VPBROADCASTDZrmk
:
1683 case X86::VPBROADCASTQZ128rmk
:
1684 case X86::VPBROADCASTQZ256rmk
:
1685 case X86::VPBROADCASTQZrmk
: {
1688 default: llvm_unreachable("Unreachable!");
1689 case X86::VMOVDQU8Z128rmk
: Opc
= X86::VPBLENDMBZ128rmk
; break;
1690 case X86::VMOVDQU8Z256rmk
: Opc
= X86::VPBLENDMBZ256rmk
; break;
1691 case X86::VMOVDQU8Zrmk
: Opc
= X86::VPBLENDMBZrmk
; break;
1692 case X86::VMOVDQU16Z128rmk
: Opc
= X86::VPBLENDMWZ128rmk
; break;
1693 case X86::VMOVDQU16Z256rmk
: Opc
= X86::VPBLENDMWZ256rmk
; break;
1694 case X86::VMOVDQU16Zrmk
: Opc
= X86::VPBLENDMWZrmk
; break;
1695 case X86::VMOVDQU32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1696 case X86::VMOVDQU32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1697 case X86::VMOVDQU32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1698 case X86::VMOVDQU64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1699 case X86::VMOVDQU64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1700 case X86::VMOVDQU64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1701 case X86::VMOVUPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1702 case X86::VMOVUPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1703 case X86::VMOVUPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1704 case X86::VMOVUPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1705 case X86::VMOVUPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1706 case X86::VMOVUPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1707 case X86::VMOVDQA32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1708 case X86::VMOVDQA32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1709 case X86::VMOVDQA32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1710 case X86::VMOVDQA64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1711 case X86::VMOVDQA64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1712 case X86::VMOVDQA64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1713 case X86::VMOVAPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1714 case X86::VMOVAPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1715 case X86::VMOVAPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1716 case X86::VMOVAPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1717 case X86::VMOVAPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1718 case X86::VMOVAPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1719 case X86::VBROADCASTSDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmbk
; break;
1720 case X86::VBROADCASTSDZrmk
: Opc
= X86::VBLENDMPDZrmbk
; break;
1721 case X86::VBROADCASTSSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmbk
; break;
1722 case X86::VBROADCASTSSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmbk
; break;
1723 case X86::VBROADCASTSSZrmk
: Opc
= X86::VBLENDMPSZrmbk
; break;
1724 case X86::VPBROADCASTDZ128rmk
: Opc
= X86::VPBLENDMDZ128rmbk
; break;
1725 case X86::VPBROADCASTDZ256rmk
: Opc
= X86::VPBLENDMDZ256rmbk
; break;
1726 case X86::VPBROADCASTDZrmk
: Opc
= X86::VPBLENDMDZrmbk
; break;
1727 case X86::VPBROADCASTQZ128rmk
: Opc
= X86::VPBLENDMQZ128rmbk
; break;
1728 case X86::VPBROADCASTQZ256rmk
: Opc
= X86::VPBLENDMQZ256rmbk
; break;
1729 case X86::VPBROADCASTQZrmk
: Opc
= X86::VPBLENDMQZrmbk
; break;
1732 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1734 .add(MI
.getOperand(2))
1736 .add(MI
.getOperand(3))
1737 .add(MI
.getOperand(4))
1738 .add(MI
.getOperand(5))
1739 .add(MI
.getOperand(6))
1740 .add(MI
.getOperand(7));
1744 case X86::VMOVDQU8Z128rrk
:
1745 case X86::VMOVDQU8Z256rrk
:
1746 case X86::VMOVDQU8Zrrk
:
1747 case X86::VMOVDQU16Z128rrk
:
1748 case X86::VMOVDQU16Z256rrk
:
1749 case X86::VMOVDQU16Zrrk
:
1750 case X86::VMOVDQU32Z128rrk
: case X86::VMOVDQA32Z128rrk
:
1751 case X86::VMOVDQU32Z256rrk
: case X86::VMOVDQA32Z256rrk
:
1752 case X86::VMOVDQU32Zrrk
: case X86::VMOVDQA32Zrrk
:
1753 case X86::VMOVDQU64Z128rrk
: case X86::VMOVDQA64Z128rrk
:
1754 case X86::VMOVDQU64Z256rrk
: case X86::VMOVDQA64Z256rrk
:
1755 case X86::VMOVDQU64Zrrk
: case X86::VMOVDQA64Zrrk
:
1756 case X86::VMOVUPDZ128rrk
: case X86::VMOVAPDZ128rrk
:
1757 case X86::VMOVUPDZ256rrk
: case X86::VMOVAPDZ256rrk
:
1758 case X86::VMOVUPDZrrk
: case X86::VMOVAPDZrrk
:
1759 case X86::VMOVUPSZ128rrk
: case X86::VMOVAPSZ128rrk
:
1760 case X86::VMOVUPSZ256rrk
: case X86::VMOVAPSZ256rrk
:
1761 case X86::VMOVUPSZrrk
: case X86::VMOVAPSZrrk
: {
1764 default: llvm_unreachable("Unreachable!");
1765 case X86::VMOVDQU8Z128rrk
: Opc
= X86::VPBLENDMBZ128rrk
; break;
1766 case X86::VMOVDQU8Z256rrk
: Opc
= X86::VPBLENDMBZ256rrk
; break;
1767 case X86::VMOVDQU8Zrrk
: Opc
= X86::VPBLENDMBZrrk
; break;
1768 case X86::VMOVDQU16Z128rrk
: Opc
= X86::VPBLENDMWZ128rrk
; break;
1769 case X86::VMOVDQU16Z256rrk
: Opc
= X86::VPBLENDMWZ256rrk
; break;
1770 case X86::VMOVDQU16Zrrk
: Opc
= X86::VPBLENDMWZrrk
; break;
1771 case X86::VMOVDQU32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1772 case X86::VMOVDQU32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1773 case X86::VMOVDQU32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1774 case X86::VMOVDQU64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1775 case X86::VMOVDQU64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1776 case X86::VMOVDQU64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1777 case X86::VMOVUPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1778 case X86::VMOVUPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1779 case X86::VMOVUPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1780 case X86::VMOVUPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1781 case X86::VMOVUPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1782 case X86::VMOVUPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1783 case X86::VMOVDQA32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1784 case X86::VMOVDQA32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1785 case X86::VMOVDQA32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1786 case X86::VMOVDQA64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1787 case X86::VMOVDQA64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1788 case X86::VMOVDQA64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1789 case X86::VMOVAPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1790 case X86::VMOVAPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1791 case X86::VMOVAPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1792 case X86::VMOVAPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1793 case X86::VMOVAPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1794 case X86::VMOVAPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1797 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1799 .add(MI
.getOperand(2))
1801 .add(MI
.getOperand(3));
1806 if (!NewMI
) return nullptr;
1808 if (LV
) { // Update live variables
1810 LV
->replaceKillInstruction(Src
.getReg(), MI
, *NewMI
);
1812 LV
->replaceKillInstruction(Dest
.getReg(), MI
, *NewMI
);
1815 MFI
->insert(MI
.getIterator(), NewMI
); // Insert the new inst
1819 /// This determines which of three possible cases of a three source commute
1820 /// the source indexes correspond to taking into account any mask operands.
1821 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1823 /// Case 0 - Possible to commute the first and second operands.
1824 /// Case 1 - Possible to commute the first and third operands.
1825 /// Case 2 - Possible to commute the second and third operands.
1826 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags
, unsigned SrcOpIdx1
,
1827 unsigned SrcOpIdx2
) {
1828 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1829 if (SrcOpIdx1
> SrcOpIdx2
)
1830 std::swap(SrcOpIdx1
, SrcOpIdx2
);
1832 unsigned Op1
= 1, Op2
= 2, Op3
= 3;
1833 if (X86II::isKMasked(TSFlags
)) {
1838 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op2
)
1840 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op3
)
1842 if (SrcOpIdx1
== Op2
&& SrcOpIdx2
== Op3
)
1844 llvm_unreachable("Unknown three src commute case.");
1847 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1848 const MachineInstr
&MI
, unsigned SrcOpIdx1
, unsigned SrcOpIdx2
,
1849 const X86InstrFMA3Group
&FMA3Group
) const {
1851 unsigned Opc
= MI
.getOpcode();
1853 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1854 // analysis. The commute optimization is legal only if all users of FMA*_Int
1855 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1856 // not implemented yet. So, just return 0 in that case.
1857 // When such analysis are available this place will be the right place for
1859 assert(!(FMA3Group
.isIntrinsic() && (SrcOpIdx1
== 1 || SrcOpIdx2
== 1)) &&
1860 "Intrinsic instructions can't commute operand 1");
1862 // Determine which case this commute is or if it can't be done.
1863 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1865 assert(Case
< 3 && "Unexpected case number!");
1867 // Define the FMA forms mapping array that helps to map input FMA form
1868 // to output FMA form to preserve the operation semantics after
1869 // commuting the operands.
1870 const unsigned Form132Index
= 0;
1871 const unsigned Form213Index
= 1;
1872 const unsigned Form231Index
= 2;
1873 static const unsigned FormMapping
[][3] = {
1874 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1875 // FMA132 A, C, b; ==> FMA231 C, A, b;
1876 // FMA213 B, A, c; ==> FMA213 A, B, c;
1877 // FMA231 C, A, b; ==> FMA132 A, C, b;
1878 { Form231Index
, Form213Index
, Form132Index
},
1879 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1880 // FMA132 A, c, B; ==> FMA132 B, c, A;
1881 // FMA213 B, a, C; ==> FMA231 C, a, B;
1882 // FMA231 C, a, B; ==> FMA213 B, a, C;
1883 { Form132Index
, Form231Index
, Form213Index
},
1884 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1885 // FMA132 a, C, B; ==> FMA213 a, B, C;
1886 // FMA213 b, A, C; ==> FMA132 b, C, A;
1887 // FMA231 c, A, B; ==> FMA231 c, B, A;
1888 { Form213Index
, Form132Index
, Form231Index
}
1891 unsigned FMAForms
[3];
1892 FMAForms
[0] = FMA3Group
.get132Opcode();
1893 FMAForms
[1] = FMA3Group
.get213Opcode();
1894 FMAForms
[2] = FMA3Group
.get231Opcode();
1896 for (FormIndex
= 0; FormIndex
< 3; FormIndex
++)
1897 if (Opc
== FMAForms
[FormIndex
])
1900 // Everything is ready, just adjust the FMA opcode and return it.
1901 FormIndex
= FormMapping
[Case
][FormIndex
];
1902 return FMAForms
[FormIndex
];
1905 static void commuteVPTERNLOG(MachineInstr
&MI
, unsigned SrcOpIdx1
,
1906 unsigned SrcOpIdx2
) {
1907 // Determine which case this commute is or if it can't be done.
1908 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1910 assert(Case
< 3 && "Unexpected case value!");
1912 // For each case we need to swap two pairs of bits in the final immediate.
1913 static const uint8_t SwapMasks
[3][4] = {
1914 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1915 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1916 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1919 uint8_t Imm
= MI
.getOperand(MI
.getNumOperands()-1).getImm();
1920 // Clear out the bits we are swapping.
1921 uint8_t NewImm
= Imm
& ~(SwapMasks
[Case
][0] | SwapMasks
[Case
][1] |
1922 SwapMasks
[Case
][2] | SwapMasks
[Case
][3]);
1923 // If the immediate had a bit of the pair set, then set the opposite bit.
1924 if (Imm
& SwapMasks
[Case
][0]) NewImm
|= SwapMasks
[Case
][1];
1925 if (Imm
& SwapMasks
[Case
][1]) NewImm
|= SwapMasks
[Case
][0];
1926 if (Imm
& SwapMasks
[Case
][2]) NewImm
|= SwapMasks
[Case
][3];
1927 if (Imm
& SwapMasks
[Case
][3]) NewImm
|= SwapMasks
[Case
][2];
1928 MI
.getOperand(MI
.getNumOperands()-1).setImm(NewImm
);
1931 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1933 static bool isCommutableVPERMV3Instruction(unsigned Opcode
) {
1934 #define VPERM_CASES(Suffix) \
1935 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1936 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1937 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1938 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1939 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1940 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1941 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1942 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1943 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1944 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1945 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1946 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1948 #define VPERM_CASES_BROADCAST(Suffix) \
1949 VPERM_CASES(Suffix) \
1950 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1951 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1952 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1953 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1954 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1955 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1958 default: return false;
1960 VPERM_CASES_BROADCAST(D
)
1961 VPERM_CASES_BROADCAST(PD
)
1962 VPERM_CASES_BROADCAST(PS
)
1963 VPERM_CASES_BROADCAST(Q
)
1967 #undef VPERM_CASES_BROADCAST
1971 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1972 // from the I opcode to the T opcode and vice versa.
1973 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode
) {
1974 #define VPERM_CASES(Orig, New) \
1975 case X86::Orig##128rr: return X86::New##128rr; \
1976 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1977 case X86::Orig##128rm: return X86::New##128rm; \
1978 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1979 case X86::Orig##256rr: return X86::New##256rr; \
1980 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1981 case X86::Orig##256rm: return X86::New##256rm; \
1982 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1983 case X86::Orig##rr: return X86::New##rr; \
1984 case X86::Orig##rrkz: return X86::New##rrkz; \
1985 case X86::Orig##rm: return X86::New##rm; \
1986 case X86::Orig##rmkz: return X86::New##rmkz;
1988 #define VPERM_CASES_BROADCAST(Orig, New) \
1989 VPERM_CASES(Orig, New) \
1990 case X86::Orig##128rmb: return X86::New##128rmb; \
1991 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1992 case X86::Orig##256rmb: return X86::New##256rmb; \
1993 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1994 case X86::Orig##rmb: return X86::New##rmb; \
1995 case X86::Orig##rmbkz: return X86::New##rmbkz;
1998 VPERM_CASES(VPERMI2B
, VPERMT2B
)
1999 VPERM_CASES_BROADCAST(VPERMI2D
, VPERMT2D
)
2000 VPERM_CASES_BROADCAST(VPERMI2PD
, VPERMT2PD
)
2001 VPERM_CASES_BROADCAST(VPERMI2PS
, VPERMT2PS
)
2002 VPERM_CASES_BROADCAST(VPERMI2Q
, VPERMT2Q
)
2003 VPERM_CASES(VPERMI2W
, VPERMT2W
)
2004 VPERM_CASES(VPERMT2B
, VPERMI2B
)
2005 VPERM_CASES_BROADCAST(VPERMT2D
, VPERMI2D
)
2006 VPERM_CASES_BROADCAST(VPERMT2PD
, VPERMI2PD
)
2007 VPERM_CASES_BROADCAST(VPERMT2PS
, VPERMI2PS
)
2008 VPERM_CASES_BROADCAST(VPERMT2Q
, VPERMI2Q
)
2009 VPERM_CASES(VPERMT2W
, VPERMI2W
)
2012 llvm_unreachable("Unreachable!");
2013 #undef VPERM_CASES_BROADCAST
2017 MachineInstr
*X86InstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
2019 unsigned OpIdx2
) const {
2020 auto cloneIfNew
= [NewMI
](MachineInstr
&MI
) -> MachineInstr
& {
2022 return *MI
.getParent()->getParent()->CloneMachineInstr(&MI
);
2026 switch (MI
.getOpcode()) {
2027 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2028 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2029 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2030 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2031 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2032 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2035 switch (MI
.getOpcode()) {
2036 default: llvm_unreachable("Unreachable!");
2037 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
2038 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
2039 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
2040 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
2041 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
2042 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
2044 unsigned Amt
= MI
.getOperand(3).getImm();
2045 auto &WorkingMI
= cloneIfNew(MI
);
2046 WorkingMI
.setDesc(get(Opc
));
2047 WorkingMI
.getOperand(3).setImm(Size
- Amt
);
2048 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2052 case X86::PFSUBRrr
: {
2053 // PFSUB x, y: x = x - y
2054 // PFSUBR x, y: x = y - x
2056 (X86::PFSUBRrr
== MI
.getOpcode() ? X86::PFSUBrr
: X86::PFSUBRrr
);
2057 auto &WorkingMI
= cloneIfNew(MI
);
2058 WorkingMI
.setDesc(get(Opc
));
2059 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2062 case X86::BLENDPDrri
:
2063 case X86::BLENDPSrri
:
2064 case X86::VBLENDPDrri
:
2065 case X86::VBLENDPSrri
:
2066 // If we're optimizing for size, try to use MOVSD/MOVSS.
2067 if (MI
.getParent()->getParent()->getFunction().hasOptSize()) {
2069 switch (MI
.getOpcode()) {
2070 default: llvm_unreachable("Unreachable!");
2071 case X86::BLENDPDrri
: Opc
= X86::MOVSDrr
; Mask
= 0x03; break;
2072 case X86::BLENDPSrri
: Opc
= X86::MOVSSrr
; Mask
= 0x0F; break;
2073 case X86::VBLENDPDrri
: Opc
= X86::VMOVSDrr
; Mask
= 0x03; break;
2074 case X86::VBLENDPSrri
: Opc
= X86::VMOVSSrr
; Mask
= 0x0F; break;
2076 if ((MI
.getOperand(3).getImm() ^ Mask
) == 1) {
2077 auto &WorkingMI
= cloneIfNew(MI
);
2078 WorkingMI
.setDesc(get(Opc
));
2079 WorkingMI
.RemoveOperand(3);
2080 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
,
2086 case X86::PBLENDWrri
:
2087 case X86::VBLENDPDYrri
:
2088 case X86::VBLENDPSYrri
:
2089 case X86::VPBLENDDrri
:
2090 case X86::VPBLENDWrri
:
2091 case X86::VPBLENDDYrri
:
2092 case X86::VPBLENDWYrri
:{
2094 switch (MI
.getOpcode()) {
2095 default: llvm_unreachable("Unreachable!");
2096 case X86::BLENDPDrri
: Mask
= (int8_t)0x03; break;
2097 case X86::BLENDPSrri
: Mask
= (int8_t)0x0F; break;
2098 case X86::PBLENDWrri
: Mask
= (int8_t)0xFF; break;
2099 case X86::VBLENDPDrri
: Mask
= (int8_t)0x03; break;
2100 case X86::VBLENDPSrri
: Mask
= (int8_t)0x0F; break;
2101 case X86::VBLENDPDYrri
: Mask
= (int8_t)0x0F; break;
2102 case X86::VBLENDPSYrri
: Mask
= (int8_t)0xFF; break;
2103 case X86::VPBLENDDrri
: Mask
= (int8_t)0x0F; break;
2104 case X86::VPBLENDWrri
: Mask
= (int8_t)0xFF; break;
2105 case X86::VPBLENDDYrri
: Mask
= (int8_t)0xFF; break;
2106 case X86::VPBLENDWYrri
: Mask
= (int8_t)0xFF; break;
2108 // Only the least significant bits of Imm are used.
2109 // Using int8_t to ensure it will be sign extended to the int64_t that
2110 // setImm takes in order to match isel behavior.
2111 int8_t Imm
= MI
.getOperand(3).getImm() & Mask
;
2112 auto &WorkingMI
= cloneIfNew(MI
);
2113 WorkingMI
.getOperand(3).setImm(Mask
^ Imm
);
2114 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2117 case X86::INSERTPSrr
:
2118 case X86::VINSERTPSrr
:
2119 case X86::VINSERTPSZrr
: {
2120 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
2121 unsigned ZMask
= Imm
& 15;
2122 unsigned DstIdx
= (Imm
>> 4) & 3;
2123 unsigned SrcIdx
= (Imm
>> 6) & 3;
2125 // We can commute insertps if we zero 2 of the elements, the insertion is
2126 // "inline" and we don't override the insertion with a zero.
2127 if (DstIdx
== SrcIdx
&& (ZMask
& (1 << DstIdx
)) == 0 &&
2128 countPopulation(ZMask
) == 2) {
2129 unsigned AltIdx
= findFirstSet((ZMask
| (1 << DstIdx
)) ^ 15);
2130 assert(AltIdx
< 4 && "Illegal insertion index");
2131 unsigned AltImm
= (AltIdx
<< 6) | (AltIdx
<< 4) | ZMask
;
2132 auto &WorkingMI
= cloneIfNew(MI
);
2133 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(AltImm
);
2134 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2142 case X86::VMOVSSrr
:{
2143 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2144 if (Subtarget
.hasSSE41()) {
2146 switch (MI
.getOpcode()) {
2147 default: llvm_unreachable("Unreachable!");
2148 case X86::MOVSDrr
: Opc
= X86::BLENDPDrri
; Mask
= 0x02; break;
2149 case X86::MOVSSrr
: Opc
= X86::BLENDPSrri
; Mask
= 0x0E; break;
2150 case X86::VMOVSDrr
: Opc
= X86::VBLENDPDrri
; Mask
= 0x02; break;
2151 case X86::VMOVSSrr
: Opc
= X86::VBLENDPSrri
; Mask
= 0x0E; break;
2154 auto &WorkingMI
= cloneIfNew(MI
);
2155 WorkingMI
.setDesc(get(Opc
));
2156 WorkingMI
.addOperand(MachineOperand::CreateImm(Mask
));
2157 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2161 // Convert to SHUFPD.
2162 assert(MI
.getOpcode() == X86::MOVSDrr
&&
2163 "Can only commute MOVSDrr without SSE4.1");
2165 auto &WorkingMI
= cloneIfNew(MI
);
2166 WorkingMI
.setDesc(get(X86::SHUFPDrri
));
2167 WorkingMI
.addOperand(MachineOperand::CreateImm(0x02));
2168 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2171 case X86::SHUFPDrri
: {
2172 // Commute to MOVSD.
2173 assert(MI
.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2174 auto &WorkingMI
= cloneIfNew(MI
);
2175 WorkingMI
.setDesc(get(X86::MOVSDrr
));
2176 WorkingMI
.RemoveOperand(3);
2177 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2180 case X86::PCLMULQDQrr
:
2181 case X86::VPCLMULQDQrr
:
2182 case X86::VPCLMULQDQYrr
:
2183 case X86::VPCLMULQDQZrr
:
2184 case X86::VPCLMULQDQZ128rr
:
2185 case X86::VPCLMULQDQZ256rr
: {
2186 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2187 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2188 unsigned Imm
= MI
.getOperand(3).getImm();
2189 unsigned Src1Hi
= Imm
& 0x01;
2190 unsigned Src2Hi
= Imm
& 0x10;
2191 auto &WorkingMI
= cloneIfNew(MI
);
2192 WorkingMI
.getOperand(3).setImm((Src1Hi
<< 4) | (Src2Hi
>> 4));
2193 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2196 case X86::VPCMPBZ128rri
: case X86::VPCMPUBZ128rri
:
2197 case X86::VPCMPBZ256rri
: case X86::VPCMPUBZ256rri
:
2198 case X86::VPCMPBZrri
: case X86::VPCMPUBZrri
:
2199 case X86::VPCMPDZ128rri
: case X86::VPCMPUDZ128rri
:
2200 case X86::VPCMPDZ256rri
: case X86::VPCMPUDZ256rri
:
2201 case X86::VPCMPDZrri
: case X86::VPCMPUDZrri
:
2202 case X86::VPCMPQZ128rri
: case X86::VPCMPUQZ128rri
:
2203 case X86::VPCMPQZ256rri
: case X86::VPCMPUQZ256rri
:
2204 case X86::VPCMPQZrri
: case X86::VPCMPUQZrri
:
2205 case X86::VPCMPWZ128rri
: case X86::VPCMPUWZ128rri
:
2206 case X86::VPCMPWZ256rri
: case X86::VPCMPUWZ256rri
:
2207 case X86::VPCMPWZrri
: case X86::VPCMPUWZrri
:
2208 case X86::VPCMPBZ128rrik
: case X86::VPCMPUBZ128rrik
:
2209 case X86::VPCMPBZ256rrik
: case X86::VPCMPUBZ256rrik
:
2210 case X86::VPCMPBZrrik
: case X86::VPCMPUBZrrik
:
2211 case X86::VPCMPDZ128rrik
: case X86::VPCMPUDZ128rrik
:
2212 case X86::VPCMPDZ256rrik
: case X86::VPCMPUDZ256rrik
:
2213 case X86::VPCMPDZrrik
: case X86::VPCMPUDZrrik
:
2214 case X86::VPCMPQZ128rrik
: case X86::VPCMPUQZ128rrik
:
2215 case X86::VPCMPQZ256rrik
: case X86::VPCMPUQZ256rrik
:
2216 case X86::VPCMPQZrrik
: case X86::VPCMPUQZrrik
:
2217 case X86::VPCMPWZ128rrik
: case X86::VPCMPUWZ128rrik
:
2218 case X86::VPCMPWZ256rrik
: case X86::VPCMPUWZ256rrik
:
2219 case X86::VPCMPWZrrik
: case X86::VPCMPUWZrrik
: {
2220 // Flip comparison mode immediate (if necessary).
2221 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm() & 0x7;
2222 Imm
= X86::getSwappedVPCMPImm(Imm
);
2223 auto &WorkingMI
= cloneIfNew(MI
);
2224 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(Imm
);
2225 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2228 case X86::VPCOMBri
: case X86::VPCOMUBri
:
2229 case X86::VPCOMDri
: case X86::VPCOMUDri
:
2230 case X86::VPCOMQri
: case X86::VPCOMUQri
:
2231 case X86::VPCOMWri
: case X86::VPCOMUWri
: {
2232 // Flip comparison mode immediate (if necessary).
2233 unsigned Imm
= MI
.getOperand(3).getImm() & 0x7;
2234 Imm
= X86::getSwappedVPCOMImm(Imm
);
2235 auto &WorkingMI
= cloneIfNew(MI
);
2236 WorkingMI
.getOperand(3).setImm(Imm
);
2237 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2240 case X86::VCMPSDZrr
:
2241 case X86::VCMPSSZrr
:
2242 case X86::VCMPPDZrri
:
2243 case X86::VCMPPSZrri
:
2244 case X86::VCMPSHZrr
:
2245 case X86::VCMPPHZrri
:
2246 case X86::VCMPPHZ128rri
:
2247 case X86::VCMPPHZ256rri
:
2248 case X86::VCMPPDZ128rri
:
2249 case X86::VCMPPSZ128rri
:
2250 case X86::VCMPPDZ256rri
:
2251 case X86::VCMPPSZ256rri
:
2252 case X86::VCMPPDZrrik
:
2253 case X86::VCMPPSZrrik
:
2254 case X86::VCMPPDZ128rrik
:
2255 case X86::VCMPPSZ128rrik
:
2256 case X86::VCMPPDZ256rrik
:
2257 case X86::VCMPPSZ256rrik
: {
2259 MI
.getOperand(MI
.getNumExplicitOperands() - 1).getImm() & 0x1f;
2260 Imm
= X86::getSwappedVCMPImm(Imm
);
2261 auto &WorkingMI
= cloneIfNew(MI
);
2262 WorkingMI
.getOperand(MI
.getNumExplicitOperands() - 1).setImm(Imm
);
2263 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2266 case X86::VPERM2F128rr
:
2267 case X86::VPERM2I128rr
: {
2268 // Flip permute source immediate.
2269 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2270 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2271 int8_t Imm
= MI
.getOperand(3).getImm() & 0xFF;
2272 auto &WorkingMI
= cloneIfNew(MI
);
2273 WorkingMI
.getOperand(3).setImm(Imm
^ 0x22);
2274 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2277 case X86::MOVHLPSrr
:
2278 case X86::UNPCKHPDrr
:
2279 case X86::VMOVHLPSrr
:
2280 case X86::VUNPCKHPDrr
:
2281 case X86::VMOVHLPSZrr
:
2282 case X86::VUNPCKHPDZ128rr
: {
2283 assert(Subtarget
.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2285 unsigned Opc
= MI
.getOpcode();
2287 default: llvm_unreachable("Unreachable!");
2288 case X86::MOVHLPSrr
: Opc
= X86::UNPCKHPDrr
; break;
2289 case X86::UNPCKHPDrr
: Opc
= X86::MOVHLPSrr
; break;
2290 case X86::VMOVHLPSrr
: Opc
= X86::VUNPCKHPDrr
; break;
2291 case X86::VUNPCKHPDrr
: Opc
= X86::VMOVHLPSrr
; break;
2292 case X86::VMOVHLPSZrr
: Opc
= X86::VUNPCKHPDZ128rr
; break;
2293 case X86::VUNPCKHPDZ128rr
: Opc
= X86::VMOVHLPSZrr
; break;
2295 auto &WorkingMI
= cloneIfNew(MI
);
2296 WorkingMI
.setDesc(get(Opc
));
2297 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2300 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
: {
2301 auto &WorkingMI
= cloneIfNew(MI
);
2302 unsigned OpNo
= MI
.getDesc().getNumOperands() - 1;
2303 X86::CondCode CC
= static_cast<X86::CondCode
>(MI
.getOperand(OpNo
).getImm());
2304 WorkingMI
.getOperand(OpNo
).setImm(X86::GetOppositeBranchCondition(CC
));
2305 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2308 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
2309 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
2310 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
2311 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
2312 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
2313 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
2314 case X86::VPTERNLOGDZrrik
:
2315 case X86::VPTERNLOGDZ128rrik
:
2316 case X86::VPTERNLOGDZ256rrik
:
2317 case X86::VPTERNLOGQZrrik
:
2318 case X86::VPTERNLOGQZ128rrik
:
2319 case X86::VPTERNLOGQZ256rrik
:
2320 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
2321 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
2322 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
2323 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
2324 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
2325 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
2326 case X86::VPTERNLOGDZ128rmbi
:
2327 case X86::VPTERNLOGDZ256rmbi
:
2328 case X86::VPTERNLOGDZrmbi
:
2329 case X86::VPTERNLOGQZ128rmbi
:
2330 case X86::VPTERNLOGQZ256rmbi
:
2331 case X86::VPTERNLOGQZrmbi
:
2332 case X86::VPTERNLOGDZ128rmbikz
:
2333 case X86::VPTERNLOGDZ256rmbikz
:
2334 case X86::VPTERNLOGDZrmbikz
:
2335 case X86::VPTERNLOGQZ128rmbikz
:
2336 case X86::VPTERNLOGQZ256rmbikz
:
2337 case X86::VPTERNLOGQZrmbikz
: {
2338 auto &WorkingMI
= cloneIfNew(MI
);
2339 commuteVPTERNLOG(WorkingMI
, OpIdx1
, OpIdx2
);
2340 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2344 if (isCommutableVPERMV3Instruction(MI
.getOpcode())) {
2345 unsigned Opc
= getCommutedVPERMV3Opcode(MI
.getOpcode());
2346 auto &WorkingMI
= cloneIfNew(MI
);
2347 WorkingMI
.setDesc(get(Opc
));
2348 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2352 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
2353 MI
.getDesc().TSFlags
);
2356 getFMA3OpcodeToCommuteOperands(MI
, OpIdx1
, OpIdx2
, *FMA3Group
);
2357 auto &WorkingMI
= cloneIfNew(MI
);
2358 WorkingMI
.setDesc(get(Opc
));
2359 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
2363 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
2369 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
2370 unsigned &SrcOpIdx1
,
2371 unsigned &SrcOpIdx2
,
2372 bool IsIntrinsic
) const {
2373 uint64_t TSFlags
= MI
.getDesc().TSFlags
;
2375 unsigned FirstCommutableVecOp
= 1;
2376 unsigned LastCommutableVecOp
= 3;
2377 unsigned KMaskOp
= -1U;
2378 if (X86II::isKMasked(TSFlags
)) {
2379 // For k-zero-masked operations it is Ok to commute the first vector
2380 // operand. Unless this is an intrinsic instruction.
2381 // For regular k-masked operations a conservative choice is done as the
2382 // elements of the first vector operand, for which the corresponding bit
2383 // in the k-mask operand is set to 0, are copied to the result of the
2385 // TODO/FIXME: The commute still may be legal if it is known that the
2386 // k-mask operand is set to either all ones or all zeroes.
2387 // It is also Ok to commute the 1st operand if all users of MI use only
2388 // the elements enabled by the k-mask operand. For example,
2389 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2391 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2392 // // Ok, to commute v1 in FMADD213PSZrk.
2394 // The k-mask operand has index = 2 for masked and zero-masked operations.
2397 // The operand with index = 1 is used as a source for those elements for
2398 // which the corresponding bit in the k-mask is set to 0.
2399 if (X86II::isKMergeMasked(TSFlags
) || IsIntrinsic
)
2400 FirstCommutableVecOp
= 3;
2402 LastCommutableVecOp
++;
2403 } else if (IsIntrinsic
) {
2404 // Commuting the first operand of an intrinsic instruction isn't possible
2405 // unless we can prove that only the lowest element of the result is used.
2406 FirstCommutableVecOp
= 2;
2409 if (isMem(MI
, LastCommutableVecOp
))
2410 LastCommutableVecOp
--;
2412 // Only the first RegOpsNum operands are commutable.
2413 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2414 // that the operand is not specified/fixed.
2415 if (SrcOpIdx1
!= CommuteAnyOperandIndex
&&
2416 (SrcOpIdx1
< FirstCommutableVecOp
|| SrcOpIdx1
> LastCommutableVecOp
||
2417 SrcOpIdx1
== KMaskOp
))
2419 if (SrcOpIdx2
!= CommuteAnyOperandIndex
&&
2420 (SrcOpIdx2
< FirstCommutableVecOp
|| SrcOpIdx2
> LastCommutableVecOp
||
2421 SrcOpIdx2
== KMaskOp
))
2424 // Look for two different register operands assumed to be commutable
2425 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2426 if (SrcOpIdx1
== CommuteAnyOperandIndex
||
2427 SrcOpIdx2
== CommuteAnyOperandIndex
) {
2428 unsigned CommutableOpIdx2
= SrcOpIdx2
;
2430 // At least one of operands to be commuted is not specified and
2431 // this method is free to choose appropriate commutable operands.
2432 if (SrcOpIdx1
== SrcOpIdx2
)
2433 // Both of operands are not fixed. By default set one of commutable
2434 // operands to the last register operand of the instruction.
2435 CommutableOpIdx2
= LastCommutableVecOp
;
2436 else if (SrcOpIdx2
== CommuteAnyOperandIndex
)
2437 // Only one of operands is not fixed.
2438 CommutableOpIdx2
= SrcOpIdx1
;
2440 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2441 // operand and assign its index to CommutableOpIdx1.
2442 Register Op2Reg
= MI
.getOperand(CommutableOpIdx2
).getReg();
2444 unsigned CommutableOpIdx1
;
2445 for (CommutableOpIdx1
= LastCommutableVecOp
;
2446 CommutableOpIdx1
>= FirstCommutableVecOp
; CommutableOpIdx1
--) {
2447 // Just ignore and skip the k-mask operand.
2448 if (CommutableOpIdx1
== KMaskOp
)
2451 // The commuted operands must have different registers.
2452 // Otherwise, the commute transformation does not change anything and
2454 if (Op2Reg
!= MI
.getOperand(CommutableOpIdx1
).getReg())
2458 // No appropriate commutable operands were found.
2459 if (CommutableOpIdx1
< FirstCommutableVecOp
)
2462 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2463 // to return those values.
2464 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2465 CommutableOpIdx1
, CommutableOpIdx2
))
2472 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr
&MI
,
2473 unsigned &SrcOpIdx1
,
2474 unsigned &SrcOpIdx2
) const {
2475 const MCInstrDesc
&Desc
= MI
.getDesc();
2476 if (!Desc
.isCommutable())
2479 switch (MI
.getOpcode()) {
2486 case X86::VCMPPDrri
:
2487 case X86::VCMPPSrri
:
2488 case X86::VCMPPDYrri
:
2489 case X86::VCMPPSYrri
:
2490 case X86::VCMPSDZrr
:
2491 case X86::VCMPSSZrr
:
2492 case X86::VCMPPDZrri
:
2493 case X86::VCMPPSZrri
:
2494 case X86::VCMPSHZrr
:
2495 case X86::VCMPPHZrri
:
2496 case X86::VCMPPHZ128rri
:
2497 case X86::VCMPPHZ256rri
:
2498 case X86::VCMPPDZ128rri
:
2499 case X86::VCMPPSZ128rri
:
2500 case X86::VCMPPDZ256rri
:
2501 case X86::VCMPPSZ256rri
:
2502 case X86::VCMPPDZrrik
:
2503 case X86::VCMPPSZrrik
:
2504 case X86::VCMPPDZ128rrik
:
2505 case X86::VCMPPSZ128rrik
:
2506 case X86::VCMPPDZ256rrik
:
2507 case X86::VCMPPSZ256rrik
: {
2508 unsigned OpOffset
= X86II::isKMasked(Desc
.TSFlags
) ? 1 : 0;
2510 // Float comparison can be safely commuted for
2511 // Ordered/Unordered/Equal/NotEqual tests
2512 unsigned Imm
= MI
.getOperand(3 + OpOffset
).getImm() & 0x7;
2515 // EVEX versions can be commuted.
2516 if ((Desc
.TSFlags
& X86II::EncodingMask
) == X86II::EVEX
)
2520 case 0x03: // UNORDERED
2521 case 0x04: // NOT EQUAL
2522 case 0x07: // ORDERED
2526 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2528 // Assign them to the returned operand indices here.
2529 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 1 + OpOffset
,
2533 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2534 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2535 // AVX implies sse4.1.
2536 if (Subtarget
.hasSSE41())
2537 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2539 case X86::SHUFPDrri
:
2540 // We can commute this to MOVSD.
2541 if (MI
.getOperand(3).getImm() == 0x02)
2542 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2544 case X86::MOVHLPSrr
:
2545 case X86::UNPCKHPDrr
:
2546 case X86::VMOVHLPSrr
:
2547 case X86::VUNPCKHPDrr
:
2548 case X86::VMOVHLPSZrr
:
2549 case X86::VUNPCKHPDZ128rr
:
2550 if (Subtarget
.hasSSE2())
2551 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2553 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
2554 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
2555 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
2556 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
2557 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
2558 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
2559 case X86::VPTERNLOGDZrrik
:
2560 case X86::VPTERNLOGDZ128rrik
:
2561 case X86::VPTERNLOGDZ256rrik
:
2562 case X86::VPTERNLOGQZrrik
:
2563 case X86::VPTERNLOGQZ128rrik
:
2564 case X86::VPTERNLOGQZ256rrik
:
2565 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
2566 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
2567 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
2568 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
2569 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
2570 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
2571 case X86::VPTERNLOGDZ128rmbi
:
2572 case X86::VPTERNLOGDZ256rmbi
:
2573 case X86::VPTERNLOGDZrmbi
:
2574 case X86::VPTERNLOGQZ128rmbi
:
2575 case X86::VPTERNLOGQZ256rmbi
:
2576 case X86::VPTERNLOGQZrmbi
:
2577 case X86::VPTERNLOGDZ128rmbikz
:
2578 case X86::VPTERNLOGDZ256rmbikz
:
2579 case X86::VPTERNLOGDZrmbikz
:
2580 case X86::VPTERNLOGQZ128rmbikz
:
2581 case X86::VPTERNLOGQZ256rmbikz
:
2582 case X86::VPTERNLOGQZrmbikz
:
2583 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2584 case X86::VPDPWSSDYrr
:
2585 case X86::VPDPWSSDrr
:
2586 case X86::VPDPWSSDSYrr
:
2587 case X86::VPDPWSSDSrr
:
2588 case X86::VPDPWSSDZ128r
:
2589 case X86::VPDPWSSDZ128rk
:
2590 case X86::VPDPWSSDZ128rkz
:
2591 case X86::VPDPWSSDZ256r
:
2592 case X86::VPDPWSSDZ256rk
:
2593 case X86::VPDPWSSDZ256rkz
:
2594 case X86::VPDPWSSDZr
:
2595 case X86::VPDPWSSDZrk
:
2596 case X86::VPDPWSSDZrkz
:
2597 case X86::VPDPWSSDSZ128r
:
2598 case X86::VPDPWSSDSZ128rk
:
2599 case X86::VPDPWSSDSZ128rkz
:
2600 case X86::VPDPWSSDSZ256r
:
2601 case X86::VPDPWSSDSZ256rk
:
2602 case X86::VPDPWSSDSZ256rkz
:
2603 case X86::VPDPWSSDSZr
:
2604 case X86::VPDPWSSDSZrk
:
2605 case X86::VPDPWSSDSZrkz
:
2606 case X86::VPMADD52HUQZ128r
:
2607 case X86::VPMADD52HUQZ128rk
:
2608 case X86::VPMADD52HUQZ128rkz
:
2609 case X86::VPMADD52HUQZ256r
:
2610 case X86::VPMADD52HUQZ256rk
:
2611 case X86::VPMADD52HUQZ256rkz
:
2612 case X86::VPMADD52HUQZr
:
2613 case X86::VPMADD52HUQZrk
:
2614 case X86::VPMADD52HUQZrkz
:
2615 case X86::VPMADD52LUQZ128r
:
2616 case X86::VPMADD52LUQZ128rk
:
2617 case X86::VPMADD52LUQZ128rkz
:
2618 case X86::VPMADD52LUQZ256r
:
2619 case X86::VPMADD52LUQZ256rk
:
2620 case X86::VPMADD52LUQZ256rkz
:
2621 case X86::VPMADD52LUQZr
:
2622 case X86::VPMADD52LUQZrk
:
2623 case X86::VPMADD52LUQZrkz
: {
2624 unsigned CommutableOpIdx1
= 2;
2625 unsigned CommutableOpIdx2
= 3;
2626 if (X86II::isKMasked(Desc
.TSFlags
)) {
2627 // Skip the mask register.
2631 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2632 CommutableOpIdx1
, CommutableOpIdx2
))
2634 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
2635 !MI
.getOperand(SrcOpIdx2
).isReg())
2642 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
2643 MI
.getDesc().TSFlags
);
2645 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
,
2646 FMA3Group
->isIntrinsic());
2648 // Handled masked instructions since we need to skip over the mask input
2649 // and the preserved input.
2650 if (X86II::isKMasked(Desc
.TSFlags
)) {
2651 // First assume that the first input is the mask operand and skip past it.
2652 unsigned CommutableOpIdx1
= Desc
.getNumDefs() + 1;
2653 unsigned CommutableOpIdx2
= Desc
.getNumDefs() + 2;
2654 // Check if the first input is tied. If there isn't one then we only
2655 // need to skip the mask operand which we did above.
2656 if ((MI
.getDesc().getOperandConstraint(Desc
.getNumDefs(),
2657 MCOI::TIED_TO
) != -1)) {
2658 // If this is zero masking instruction with a tied operand, we need to
2659 // move the first index back to the first input since this must
2660 // be a 3 input instruction and we want the first two non-mask inputs.
2661 // Otherwise this is a 2 input instruction with a preserved input and
2662 // mask, so we need to move the indices to skip one more input.
2663 if (X86II::isKMergeMasked(Desc
.TSFlags
)) {
2671 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2672 CommutableOpIdx1
, CommutableOpIdx2
))
2675 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
2676 !MI
.getOperand(SrcOpIdx2
).isReg())
2682 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2687 static bool isConvertibleLEA(MachineInstr
*MI
) {
2688 unsigned Opcode
= MI
->getOpcode();
2689 if (Opcode
!= X86::LEA32r
&& Opcode
!= X86::LEA64r
&&
2690 Opcode
!= X86::LEA64_32r
)
2693 const MachineOperand
&Scale
= MI
->getOperand(1 + X86::AddrScaleAmt
);
2694 const MachineOperand
&Disp
= MI
->getOperand(1 + X86::AddrDisp
);
2695 const MachineOperand
&Segment
= MI
->getOperand(1 + X86::AddrSegmentReg
);
2697 if (Segment
.getReg() != 0 || !Disp
.isImm() || Disp
.getImm() != 0 ||
2704 bool X86InstrInfo::hasCommutePreference(MachineInstr
&MI
, bool &Commute
) const {
2705 // Currently we're interested in following sequence only.
2708 // Both r3 and r4 are killed in add, we hope the add instruction has the
2711 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2712 unsigned Opcode
= MI
.getOpcode();
2713 if (Opcode
!= X86::ADD32rr
&& Opcode
!= X86::ADD64rr
)
2716 const MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
2717 Register Reg1
= MI
.getOperand(1).getReg();
2718 Register Reg2
= MI
.getOperand(2).getReg();
2720 // Check if Reg1 comes from LEA in the same MBB.
2721 if (MachineInstr
*Inst
= MRI
.getUniqueVRegDef(Reg1
)) {
2722 if (isConvertibleLEA(Inst
) && Inst
->getParent() == MI
.getParent()) {
2728 // Check if Reg2 comes from LEA in the same MBB.
2729 if (MachineInstr
*Inst
= MRI
.getUniqueVRegDef(Reg2
)) {
2730 if (isConvertibleLEA(Inst
) && Inst
->getParent() == MI
.getParent()) {
2739 X86::CondCode
X86::getCondFromBranch(const MachineInstr
&MI
) {
2740 switch (MI
.getOpcode()) {
2741 default: return X86::COND_INVALID
;
2743 return static_cast<X86::CondCode
>(
2744 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2748 /// Return condition code of a SETCC opcode.
2749 X86::CondCode
X86::getCondFromSETCC(const MachineInstr
&MI
) {
2750 switch (MI
.getOpcode()) {
2751 default: return X86::COND_INVALID
;
2752 case X86::SETCCr
: case X86::SETCCm
:
2753 return static_cast<X86::CondCode
>(
2754 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2758 /// Return condition code of a CMov opcode.
2759 X86::CondCode
X86::getCondFromCMov(const MachineInstr
&MI
) {
2760 switch (MI
.getOpcode()) {
2761 default: return X86::COND_INVALID
;
2762 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
:
2763 case X86::CMOV16rm
: case X86::CMOV32rm
: case X86::CMOV64rm
:
2764 return static_cast<X86::CondCode
>(
2765 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2769 /// Return the inverse of the specified condition,
2770 /// e.g. turning COND_E to COND_NE.
2771 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
2773 default: llvm_unreachable("Illegal condition code!");
2774 case X86::COND_E
: return X86::COND_NE
;
2775 case X86::COND_NE
: return X86::COND_E
;
2776 case X86::COND_L
: return X86::COND_GE
;
2777 case X86::COND_LE
: return X86::COND_G
;
2778 case X86::COND_G
: return X86::COND_LE
;
2779 case X86::COND_GE
: return X86::COND_L
;
2780 case X86::COND_B
: return X86::COND_AE
;
2781 case X86::COND_BE
: return X86::COND_A
;
2782 case X86::COND_A
: return X86::COND_BE
;
2783 case X86::COND_AE
: return X86::COND_B
;
2784 case X86::COND_S
: return X86::COND_NS
;
2785 case X86::COND_NS
: return X86::COND_S
;
2786 case X86::COND_P
: return X86::COND_NP
;
2787 case X86::COND_NP
: return X86::COND_P
;
2788 case X86::COND_O
: return X86::COND_NO
;
2789 case X86::COND_NO
: return X86::COND_O
;
2790 case X86::COND_NE_OR_P
: return X86::COND_E_AND_NP
;
2791 case X86::COND_E_AND_NP
: return X86::COND_NE_OR_P
;
2795 /// Assuming the flags are set by MI(a,b), return the condition code if we
2796 /// modify the instructions such that flags are set by MI(b,a).
2797 static X86::CondCode
getSwappedCondition(X86::CondCode CC
) {
2799 default: return X86::COND_INVALID
;
2800 case X86::COND_E
: return X86::COND_E
;
2801 case X86::COND_NE
: return X86::COND_NE
;
2802 case X86::COND_L
: return X86::COND_G
;
2803 case X86::COND_LE
: return X86::COND_GE
;
2804 case X86::COND_G
: return X86::COND_L
;
2805 case X86::COND_GE
: return X86::COND_LE
;
2806 case X86::COND_B
: return X86::COND_A
;
2807 case X86::COND_BE
: return X86::COND_AE
;
2808 case X86::COND_A
: return X86::COND_B
;
2809 case X86::COND_AE
: return X86::COND_BE
;
2813 std::pair
<X86::CondCode
, bool>
2814 X86::getX86ConditionCode(CmpInst::Predicate Predicate
) {
2815 X86::CondCode CC
= X86::COND_INVALID
;
2816 bool NeedSwap
= false;
2817 switch (Predicate
) {
2819 // Floating-point Predicates
2820 case CmpInst::FCMP_UEQ
: CC
= X86::COND_E
; break;
2821 case CmpInst::FCMP_OLT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2822 case CmpInst::FCMP_OGT
: CC
= X86::COND_A
; break;
2823 case CmpInst::FCMP_OLE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2824 case CmpInst::FCMP_OGE
: CC
= X86::COND_AE
; break;
2825 case CmpInst::FCMP_UGT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2826 case CmpInst::FCMP_ULT
: CC
= X86::COND_B
; break;
2827 case CmpInst::FCMP_UGE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2828 case CmpInst::FCMP_ULE
: CC
= X86::COND_BE
; break;
2829 case CmpInst::FCMP_ONE
: CC
= X86::COND_NE
; break;
2830 case CmpInst::FCMP_UNO
: CC
= X86::COND_P
; break;
2831 case CmpInst::FCMP_ORD
: CC
= X86::COND_NP
; break;
2832 case CmpInst::FCMP_OEQ
: LLVM_FALLTHROUGH
;
2833 case CmpInst::FCMP_UNE
: CC
= X86::COND_INVALID
; break;
2835 // Integer Predicates
2836 case CmpInst::ICMP_EQ
: CC
= X86::COND_E
; break;
2837 case CmpInst::ICMP_NE
: CC
= X86::COND_NE
; break;
2838 case CmpInst::ICMP_UGT
: CC
= X86::COND_A
; break;
2839 case CmpInst::ICMP_UGE
: CC
= X86::COND_AE
; break;
2840 case CmpInst::ICMP_ULT
: CC
= X86::COND_B
; break;
2841 case CmpInst::ICMP_ULE
: CC
= X86::COND_BE
; break;
2842 case CmpInst::ICMP_SGT
: CC
= X86::COND_G
; break;
2843 case CmpInst::ICMP_SGE
: CC
= X86::COND_GE
; break;
2844 case CmpInst::ICMP_SLT
: CC
= X86::COND_L
; break;
2845 case CmpInst::ICMP_SLE
: CC
= X86::COND_LE
; break;
2848 return std::make_pair(CC
, NeedSwap
);
2851 /// Return a setcc opcode based on whether it has memory operand.
2852 unsigned X86::getSETOpc(bool HasMemoryOperand
) {
2853 return HasMemoryOperand
? X86::SETCCr
: X86::SETCCm
;
2856 /// Return a cmov opcode for the given register size in bytes, and operand type.
2857 unsigned X86::getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
) {
2859 default: llvm_unreachable("Illegal register size!");
2860 case 2: return HasMemoryOperand
? X86::CMOV16rm
: X86::CMOV16rr
;
2861 case 4: return HasMemoryOperand
? X86::CMOV32rm
: X86::CMOV32rr
;
2862 case 8: return HasMemoryOperand
? X86::CMOV64rm
: X86::CMOV64rr
;
2866 /// Get the VPCMP immediate for the given condition.
2867 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC
) {
2869 default: llvm_unreachable("Unexpected SETCC condition");
2870 case ISD::SETNE
: return 4;
2871 case ISD::SETEQ
: return 0;
2873 case ISD::SETLT
: return 1;
2875 case ISD::SETGT
: return 6;
2877 case ISD::SETGE
: return 5;
2879 case ISD::SETLE
: return 2;
2883 /// Get the VPCMP immediate if the operands are swapped.
2884 unsigned X86::getSwappedVPCMPImm(unsigned Imm
) {
2886 default: llvm_unreachable("Unreachable!");
2887 case 0x01: Imm
= 0x06; break; // LT -> NLE
2888 case 0x02: Imm
= 0x05; break; // LE -> NLT
2889 case 0x05: Imm
= 0x02; break; // NLT -> LE
2890 case 0x06: Imm
= 0x01; break; // NLE -> LT
2901 /// Get the VPCOM immediate if the operands are swapped.
2902 unsigned X86::getSwappedVPCOMImm(unsigned Imm
) {
2904 default: llvm_unreachable("Unreachable!");
2905 case 0x00: Imm
= 0x02; break; // LT -> GT
2906 case 0x01: Imm
= 0x03; break; // LE -> GE
2907 case 0x02: Imm
= 0x00; break; // GT -> LT
2908 case 0x03: Imm
= 0x01; break; // GE -> LE
2919 /// Get the VCMP immediate if the operands are swapped.
2920 unsigned X86::getSwappedVCMPImm(unsigned Imm
) {
2921 // Only need the lower 2 bits to distinquish.
2922 switch (Imm
& 0x3) {
2923 default: llvm_unreachable("Unreachable!");
2924 case 0x00: case 0x03:
2925 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2927 case 0x01: case 0x02:
2928 // Need to toggle bits 3:0. Bit 4 stays the same.
2936 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr
&MI
) const {
2937 switch (MI
.getOpcode()) {
2938 case X86::TCRETURNdi
:
2939 case X86::TCRETURNri
:
2940 case X86::TCRETURNmi
:
2941 case X86::TCRETURNdi64
:
2942 case X86::TCRETURNri64
:
2943 case X86::TCRETURNmi64
:
2950 bool X86InstrInfo::canMakeTailCallConditional(
2951 SmallVectorImpl
<MachineOperand
> &BranchCond
,
2952 const MachineInstr
&TailCall
) const {
2953 if (TailCall
.getOpcode() != X86::TCRETURNdi
&&
2954 TailCall
.getOpcode() != X86::TCRETURNdi64
) {
2955 // Only direct calls can be done with a conditional branch.
2959 const MachineFunction
*MF
= TailCall
.getParent()->getParent();
2960 if (Subtarget
.isTargetWin64() && MF
->hasWinCFI()) {
2961 // Conditional tail calls confuse the Win64 unwinder.
2965 assert(BranchCond
.size() == 1);
2966 if (BranchCond
[0].getImm() > X86::LAST_VALID_COND
) {
2967 // Can't make a conditional tail call with this condition.
2971 const X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
2972 if (X86FI
->getTCReturnAddrDelta() != 0 ||
2973 TailCall
.getOperand(1).getImm() != 0) {
2974 // A conditional tail call cannot do any stack adjustment.
2981 void X86InstrInfo::replaceBranchWithTailCall(
2982 MachineBasicBlock
&MBB
, SmallVectorImpl
<MachineOperand
> &BranchCond
,
2983 const MachineInstr
&TailCall
) const {
2984 assert(canMakeTailCallConditional(BranchCond
, TailCall
));
2986 MachineBasicBlock::iterator I
= MBB
.end();
2987 while (I
!= MBB
.begin()) {
2989 if (I
->isDebugInstr())
2992 assert(0 && "Can't find the branch to replace!");
2994 X86::CondCode CC
= X86::getCondFromBranch(*I
);
2995 assert(BranchCond
.size() == 1);
2996 if (CC
!= BranchCond
[0].getImm())
3002 unsigned Opc
= TailCall
.getOpcode() == X86::TCRETURNdi
? X86::TCRETURNdicc
3003 : X86::TCRETURNdi64cc
;
3005 auto MIB
= BuildMI(MBB
, I
, MBB
.findDebugLoc(I
), get(Opc
));
3006 MIB
->addOperand(TailCall
.getOperand(0)); // Destination.
3007 MIB
.addImm(0); // Stack offset (not used).
3008 MIB
->addOperand(BranchCond
[0]); // Condition.
3009 MIB
.copyImplicitOps(TailCall
); // Regmask and (imp-used) parameters.
3011 // Add implicit uses and defs of all live regs potentially clobbered by the
3012 // call. This way they still appear live across the call.
3013 LivePhysRegs
LiveRegs(getRegisterInfo());
3014 LiveRegs
.addLiveOuts(MBB
);
3015 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 8> Clobbers
;
3016 LiveRegs
.stepForward(*MIB
, Clobbers
);
3017 for (const auto &C
: Clobbers
) {
3018 MIB
.addReg(C
.first
, RegState::Implicit
);
3019 MIB
.addReg(C
.first
, RegState::Implicit
| RegState::Define
);
3022 I
->eraseFromParent();
3025 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3026 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
3027 // fallthrough MBB cannot be identified.
3028 static MachineBasicBlock
*getFallThroughMBB(MachineBasicBlock
*MBB
,
3029 MachineBasicBlock
*TBB
) {
3030 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3031 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3032 // and fallthrough MBB. If we find more than one, we cannot identify the
3033 // fallthrough MBB and should return nullptr.
3034 MachineBasicBlock
*FallthroughBB
= nullptr;
3035 for (auto SI
= MBB
->succ_begin(), SE
= MBB
->succ_end(); SI
!= SE
; ++SI
) {
3036 if ((*SI
)->isEHPad() || (*SI
== TBB
&& FallthroughBB
))
3038 // Return a nullptr if we found more than one fallthrough successor.
3039 if (FallthroughBB
&& FallthroughBB
!= TBB
)
3041 FallthroughBB
= *SI
;
3043 return FallthroughBB
;
3046 bool X86InstrInfo::AnalyzeBranchImpl(
3047 MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
, MachineBasicBlock
*&FBB
,
3048 SmallVectorImpl
<MachineOperand
> &Cond
,
3049 SmallVectorImpl
<MachineInstr
*> &CondBranches
, bool AllowModify
) const {
3051 // Start from the bottom of the block and work up, examining the
3052 // terminator instructions.
3053 MachineBasicBlock::iterator I
= MBB
.end();
3054 MachineBasicBlock::iterator UnCondBrIter
= MBB
.end();
3055 while (I
!= MBB
.begin()) {
3057 if (I
->isDebugInstr())
3060 // Working from the bottom, when we see a non-terminator instruction, we're
3062 if (!isUnpredicatedTerminator(*I
))
3065 // A terminator that isn't a branch can't easily be handled by this
3070 // Handle unconditional branches.
3071 if (I
->getOpcode() == X86::JMP_1
) {
3075 TBB
= I
->getOperand(0).getMBB();
3079 // If the block has any instructions after a JMP, delete them.
3080 while (std::next(I
) != MBB
.end())
3081 std::next(I
)->eraseFromParent();
3086 // Delete the JMP if it's equivalent to a fall-through.
3087 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
3089 I
->eraseFromParent();
3091 UnCondBrIter
= MBB
.end();
3095 // TBB is used to indicate the unconditional destination.
3096 TBB
= I
->getOperand(0).getMBB();
3100 // Handle conditional branches.
3101 X86::CondCode BranchCode
= X86::getCondFromBranch(*I
);
3102 if (BranchCode
== X86::COND_INVALID
)
3103 return true; // Can't handle indirect branch.
3105 // In practice we should never have an undef eflags operand, if we do
3106 // abort here as we are not prepared to preserve the flag.
3107 if (I
->findRegisterUseOperand(X86::EFLAGS
)->isUndef())
3110 // Working from the bottom, handle the first conditional branch.
3112 MachineBasicBlock
*TargetBB
= I
->getOperand(0).getMBB();
3113 if (AllowModify
&& UnCondBrIter
!= MBB
.end() &&
3114 MBB
.isLayoutSuccessor(TargetBB
)) {
3115 // If we can modify the code and it ends in something like:
3123 // Then we can change this to:
3130 // Which is a bit more efficient.
3131 // We conditionally jump to the fall-through block.
3132 BranchCode
= GetOppositeBranchCondition(BranchCode
);
3133 MachineBasicBlock::iterator OldInst
= I
;
3135 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JCC_1
))
3136 .addMBB(UnCondBrIter
->getOperand(0).getMBB())
3137 .addImm(BranchCode
);
3138 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JMP_1
))
3141 OldInst
->eraseFromParent();
3142 UnCondBrIter
->eraseFromParent();
3144 // Restart the analysis.
3145 UnCondBrIter
= MBB
.end();
3151 TBB
= I
->getOperand(0).getMBB();
3152 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
3153 CondBranches
.push_back(&*I
);
3157 // Handle subsequent conditional branches. Only handle the case where all
3158 // conditional branches branch to the same destination and their condition
3159 // opcodes fit one of the special multi-branch idioms.
3160 assert(Cond
.size() == 1);
3163 // If the conditions are the same, we can leave them alone.
3164 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
3165 auto NewTBB
= I
->getOperand(0).getMBB();
3166 if (OldBranchCode
== BranchCode
&& TBB
== NewTBB
)
3169 // If they differ, see if they fit one of the known patterns. Theoretically,
3170 // we could handle more patterns here, but we shouldn't expect to see them
3171 // if instruction selection has done a reasonable job.
3172 if (TBB
== NewTBB
&&
3173 ((OldBranchCode
== X86::COND_P
&& BranchCode
== X86::COND_NE
) ||
3174 (OldBranchCode
== X86::COND_NE
&& BranchCode
== X86::COND_P
))) {
3175 BranchCode
= X86::COND_NE_OR_P
;
3176 } else if ((OldBranchCode
== X86::COND_NP
&& BranchCode
== X86::COND_NE
) ||
3177 (OldBranchCode
== X86::COND_E
&& BranchCode
== X86::COND_P
)) {
3178 if (NewTBB
!= (FBB
? FBB
: getFallThroughMBB(&MBB
, TBB
)))
3181 // X86::COND_E_AND_NP usually has two different branch destinations.
3189 // Here this condition branches to B2 only if NP && E. It has another
3198 // Similarly it branches to B2 only if E && NP. That is why this condition
3199 // is named with COND_E_AND_NP.
3200 BranchCode
= X86::COND_E_AND_NP
;
3204 // Update the MachineOperand.
3205 Cond
[0].setImm(BranchCode
);
3206 CondBranches
.push_back(&*I
);
3212 bool X86InstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
3213 MachineBasicBlock
*&TBB
,
3214 MachineBasicBlock
*&FBB
,
3215 SmallVectorImpl
<MachineOperand
> &Cond
,
3216 bool AllowModify
) const {
3217 SmallVector
<MachineInstr
*, 4> CondBranches
;
3218 return AnalyzeBranchImpl(MBB
, TBB
, FBB
, Cond
, CondBranches
, AllowModify
);
3221 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock
&MBB
,
3222 MachineBranchPredicate
&MBP
,
3223 bool AllowModify
) const {
3224 using namespace std::placeholders
;
3226 SmallVector
<MachineOperand
, 4> Cond
;
3227 SmallVector
<MachineInstr
*, 4> CondBranches
;
3228 if (AnalyzeBranchImpl(MBB
, MBP
.TrueDest
, MBP
.FalseDest
, Cond
, CondBranches
,
3232 if (Cond
.size() != 1)
3235 assert(MBP
.TrueDest
&& "expected!");
3238 MBP
.FalseDest
= MBB
.getNextNode();
3240 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3242 MachineInstr
*ConditionDef
= nullptr;
3243 bool SingleUseCondition
= true;
3245 for (auto I
= std::next(MBB
.rbegin()), E
= MBB
.rend(); I
!= E
; ++I
) {
3246 if (I
->modifiesRegister(X86::EFLAGS
, TRI
)) {
3251 if (I
->readsRegister(X86::EFLAGS
, TRI
))
3252 SingleUseCondition
= false;
3258 if (SingleUseCondition
) {
3259 for (auto *Succ
: MBB
.successors())
3260 if (Succ
->isLiveIn(X86::EFLAGS
))
3261 SingleUseCondition
= false;
3264 MBP
.ConditionDef
= ConditionDef
;
3265 MBP
.SingleUseCondition
= SingleUseCondition
;
3267 // Currently we only recognize the simple pattern:
3272 const unsigned TestOpcode
=
3273 Subtarget
.is64Bit() ? X86::TEST64rr
: X86::TEST32rr
;
3275 if (ConditionDef
->getOpcode() == TestOpcode
&&
3276 ConditionDef
->getNumOperands() == 3 &&
3277 ConditionDef
->getOperand(0).isIdenticalTo(ConditionDef
->getOperand(1)) &&
3278 (Cond
[0].getImm() == X86::COND_NE
|| Cond
[0].getImm() == X86::COND_E
)) {
3279 MBP
.LHS
= ConditionDef
->getOperand(0);
3280 MBP
.RHS
= MachineOperand::CreateImm(0);
3281 MBP
.Predicate
= Cond
[0].getImm() == X86::COND_NE
3282 ? MachineBranchPredicate::PRED_NE
3283 : MachineBranchPredicate::PRED_EQ
;
3290 unsigned X86InstrInfo::removeBranch(MachineBasicBlock
&MBB
,
3291 int *BytesRemoved
) const {
3292 assert(!BytesRemoved
&& "code size not handled");
3294 MachineBasicBlock::iterator I
= MBB
.end();
3297 while (I
!= MBB
.begin()) {
3299 if (I
->isDebugInstr())
3301 if (I
->getOpcode() != X86::JMP_1
&&
3302 X86::getCondFromBranch(*I
) == X86::COND_INVALID
)
3304 // Remove the branch.
3305 I
->eraseFromParent();
3313 unsigned X86InstrInfo::insertBranch(MachineBasicBlock
&MBB
,
3314 MachineBasicBlock
*TBB
,
3315 MachineBasicBlock
*FBB
,
3316 ArrayRef
<MachineOperand
> Cond
,
3318 int *BytesAdded
) const {
3319 // Shouldn't be a fall through.
3320 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
3321 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
3322 "X86 branch conditions have one component!");
3323 assert(!BytesAdded
&& "code size not handled");
3326 // Unconditional branch?
3327 assert(!FBB
&& "Unconditional branch with multiple successors!");
3328 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(TBB
);
3332 // If FBB is null, it is implied to be a fall-through block.
3333 bool FallThru
= FBB
== nullptr;
3335 // Conditional branch.
3337 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
3339 case X86::COND_NE_OR_P
:
3340 // Synthesize NE_OR_P with two branches.
3341 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NE
);
3343 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_P
);
3346 case X86::COND_E_AND_NP
:
3347 // Use the next block of MBB as FBB if it is null.
3348 if (FBB
== nullptr) {
3349 FBB
= getFallThroughMBB(&MBB
, TBB
);
3350 assert(FBB
&& "MBB cannot be the last block in function when the false "
3351 "body is a fall-through.");
3353 // Synthesize COND_E_AND_NP with two branches.
3354 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(FBB
).addImm(X86::COND_NE
);
3356 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NP
);
3360 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(CC
);
3365 // Two-way Conditional branch. Insert the second branch.
3366 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(FBB
);
3372 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
3373 ArrayRef
<MachineOperand
> Cond
,
3374 Register DstReg
, Register TrueReg
,
3375 Register FalseReg
, int &CondCycles
,
3376 int &TrueCycles
, int &FalseCycles
) const {
3377 // Not all subtargets have cmov instructions.
3378 if (!Subtarget
.hasCMov())
3380 if (Cond
.size() != 1)
3382 // We cannot do the composite conditions, at least not in SSA form.
3383 if ((X86::CondCode
)Cond
[0].getImm() > X86::LAST_VALID_COND
)
3386 // Check register classes.
3387 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
3388 const TargetRegisterClass
*RC
=
3389 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
3393 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3394 if (X86::GR16RegClass
.hasSubClassEq(RC
) ||
3395 X86::GR32RegClass
.hasSubClassEq(RC
) ||
3396 X86::GR64RegClass
.hasSubClassEq(RC
)) {
3397 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3398 // Bridge. Probably Ivy Bridge as well.
3405 // Can't do vectors.
3409 void X86InstrInfo::insertSelect(MachineBasicBlock
&MBB
,
3410 MachineBasicBlock::iterator I
,
3411 const DebugLoc
&DL
, Register DstReg
,
3412 ArrayRef
<MachineOperand
> Cond
, Register TrueReg
,
3413 Register FalseReg
) const {
3414 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
3415 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
3416 const TargetRegisterClass
&RC
= *MRI
.getRegClass(DstReg
);
3417 assert(Cond
.size() == 1 && "Invalid Cond array");
3418 unsigned Opc
= X86::getCMovOpcode(TRI
.getRegSizeInBits(RC
) / 8,
3419 false /*HasMemoryOperand*/);
3420 BuildMI(MBB
, I
, DL
, get(Opc
), DstReg
)
3423 .addImm(Cond
[0].getImm());
3426 /// Test if the given register is a physical h register.
3427 static bool isHReg(unsigned Reg
) {
3428 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
3431 // Try and copy between VR128/VR64 and GR64 registers.
3432 static unsigned CopyToFromAsymmetricReg(unsigned DestReg
, unsigned SrcReg
,
3433 const X86Subtarget
&Subtarget
) {
3434 bool HasAVX
= Subtarget
.hasAVX();
3435 bool HasAVX512
= Subtarget
.hasAVX512();
3437 // SrcReg(MaskReg) -> DestReg(GR64)
3438 // SrcReg(MaskReg) -> DestReg(GR32)
3440 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3441 if (X86::VK16RegClass
.contains(SrcReg
)) {
3442 if (X86::GR64RegClass
.contains(DestReg
)) {
3443 assert(Subtarget
.hasBWI());
3444 return X86::KMOVQrk
;
3446 if (X86::GR32RegClass
.contains(DestReg
))
3447 return Subtarget
.hasBWI() ? X86::KMOVDrk
: X86::KMOVWrk
;
3450 // SrcReg(GR64) -> DestReg(MaskReg)
3451 // SrcReg(GR32) -> DestReg(MaskReg)
3453 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3454 if (X86::VK16RegClass
.contains(DestReg
)) {
3455 if (X86::GR64RegClass
.contains(SrcReg
)) {
3456 assert(Subtarget
.hasBWI());
3457 return X86::KMOVQkr
;
3459 if (X86::GR32RegClass
.contains(SrcReg
))
3460 return Subtarget
.hasBWI() ? X86::KMOVDkr
: X86::KMOVWkr
;
3464 // SrcReg(VR128) -> DestReg(GR64)
3465 // SrcReg(VR64) -> DestReg(GR64)
3466 // SrcReg(GR64) -> DestReg(VR128)
3467 // SrcReg(GR64) -> DestReg(VR64)
3469 if (X86::GR64RegClass
.contains(DestReg
)) {
3470 if (X86::VR128XRegClass
.contains(SrcReg
))
3471 // Copy from a VR128 register to a GR64 register.
3472 return HasAVX512
? X86::VMOVPQIto64Zrr
:
3473 HasAVX
? X86::VMOVPQIto64rr
:
3475 if (X86::VR64RegClass
.contains(SrcReg
))
3476 // Copy from a VR64 register to a GR64 register.
3477 return X86::MMX_MOVD64from64rr
;
3478 } else if (X86::GR64RegClass
.contains(SrcReg
)) {
3479 // Copy from a GR64 register to a VR128 register.
3480 if (X86::VR128XRegClass
.contains(DestReg
))
3481 return HasAVX512
? X86::VMOV64toPQIZrr
:
3482 HasAVX
? X86::VMOV64toPQIrr
:
3484 // Copy from a GR64 register to a VR64 register.
3485 if (X86::VR64RegClass
.contains(DestReg
))
3486 return X86::MMX_MOVD64to64rr
;
3489 // SrcReg(VR128) -> DestReg(GR32)
3490 // SrcReg(GR32) -> DestReg(VR128)
3492 if (X86::GR32RegClass
.contains(DestReg
) &&
3493 X86::VR128XRegClass
.contains(SrcReg
))
3494 // Copy from a VR128 register to a GR32 register.
3495 return HasAVX512
? X86::VMOVPDI2DIZrr
:
3496 HasAVX
? X86::VMOVPDI2DIrr
:
3499 if (X86::VR128XRegClass
.contains(DestReg
) &&
3500 X86::GR32RegClass
.contains(SrcReg
))
3501 // Copy from a VR128 register to a VR128 register.
3502 return HasAVX512
? X86::VMOVDI2PDIZrr
:
3503 HasAVX
? X86::VMOVDI2PDIrr
:
3508 void X86InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
3509 MachineBasicBlock::iterator MI
,
3510 const DebugLoc
&DL
, MCRegister DestReg
,
3511 MCRegister SrcReg
, bool KillSrc
) const {
3512 // First deal with the normal symmetric copies.
3513 bool HasAVX
= Subtarget
.hasAVX();
3514 bool HasVLX
= Subtarget
.hasVLX();
3516 if (X86::GR64RegClass
.contains(DestReg
, SrcReg
))
3518 else if (X86::GR32RegClass
.contains(DestReg
, SrcReg
))
3520 else if (X86::GR16RegClass
.contains(DestReg
, SrcReg
))
3522 else if (X86::GR8RegClass
.contains(DestReg
, SrcReg
)) {
3523 // Copying to or from a physical H register on x86-64 requires a NOREX
3524 // move. Otherwise use a normal move.
3525 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
3526 Subtarget
.is64Bit()) {
3527 Opc
= X86::MOV8rr_NOREX
;
3528 // Both operands must be encodable without an REX prefix.
3529 assert(X86::GR8_NOREXRegClass
.contains(SrcReg
, DestReg
) &&
3530 "8-bit H register can not be copied outside GR8_NOREX");
3534 else if (X86::VR64RegClass
.contains(DestReg
, SrcReg
))
3535 Opc
= X86::MMX_MOVQ64rr
;
3536 else if (X86::VR128XRegClass
.contains(DestReg
, SrcReg
)) {
3538 Opc
= X86::VMOVAPSZ128rr
;
3539 else if (X86::VR128RegClass
.contains(DestReg
, SrcReg
))
3540 Opc
= HasAVX
? X86::VMOVAPSrr
: X86::MOVAPSrr
;
3542 // If this an extended register and we don't have VLX we need to use a
3544 Opc
= X86::VMOVAPSZrr
;
3545 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3546 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_xmm
,
3547 &X86::VR512RegClass
);
3548 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
,
3549 &X86::VR512RegClass
);
3551 } else if (X86::VR256XRegClass
.contains(DestReg
, SrcReg
)) {
3553 Opc
= X86::VMOVAPSZ256rr
;
3554 else if (X86::VR256RegClass
.contains(DestReg
, SrcReg
))
3555 Opc
= X86::VMOVAPSYrr
;
3557 // If this an extended register and we don't have VLX we need to use a
3559 Opc
= X86::VMOVAPSZrr
;
3560 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3561 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_ymm
,
3562 &X86::VR512RegClass
);
3563 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
,
3564 &X86::VR512RegClass
);
3566 } else if (X86::VR512RegClass
.contains(DestReg
, SrcReg
))
3567 Opc
= X86::VMOVAPSZrr
;
3568 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3569 else if (X86::VK16RegClass
.contains(DestReg
, SrcReg
))
3570 Opc
= Subtarget
.hasBWI() ? X86::KMOVQkk
: X86::KMOVWkk
;
3572 Opc
= CopyToFromAsymmetricReg(DestReg
, SrcReg
, Subtarget
);
3575 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
)
3576 .addReg(SrcReg
, getKillRegState(KillSrc
));
3580 if (SrcReg
== X86::EFLAGS
|| DestReg
== X86::EFLAGS
) {
3581 // FIXME: We use a fatal error here because historically LLVM has tried
3582 // lower some of these physreg copies and we want to ensure we get
3583 // reasonable bug reports if someone encounters a case no other testing
3584 // found. This path should be removed after the LLVM 7 release.
3585 report_fatal_error("Unable to copy EFLAGS physical register!");
3588 LLVM_DEBUG(dbgs() << "Cannot copy " << RI
.getName(SrcReg
) << " to "
3589 << RI
.getName(DestReg
) << '\n');
3590 report_fatal_error("Cannot emit physreg copy instruction");
3593 Optional
<DestSourcePair
>
3594 X86InstrInfo::isCopyInstrImpl(const MachineInstr
&MI
) const {
3596 return DestSourcePair
{MI
.getOperand(0), MI
.getOperand(1)};
3600 static unsigned getLoadStoreRegOpcode(Register Reg
,
3601 const TargetRegisterClass
*RC
,
3602 bool IsStackAligned
,
3603 const X86Subtarget
&STI
, bool load
) {
3604 bool HasAVX
= STI
.hasAVX();
3605 bool HasAVX512
= STI
.hasAVX512();
3606 bool HasVLX
= STI
.hasVLX();
3608 switch (STI
.getRegisterInfo()->getSpillSize(*RC
)) {
3610 llvm_unreachable("Unknown spill size");
3612 assert(X86::GR8RegClass
.hasSubClassEq(RC
) && "Unknown 1-byte regclass");
3614 // Copying to or from a physical H register on x86-64 requires a NOREX
3615 // move. Otherwise use a normal move.
3616 if (isHReg(Reg
) || X86::GR8_ABCD_HRegClass
.hasSubClassEq(RC
))
3617 return load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
3618 return load
? X86::MOV8rm
: X86::MOV8mr
;
3620 if (X86::VK16RegClass
.hasSubClassEq(RC
))
3621 return load
? X86::KMOVWkm
: X86::KMOVWmk
;
3622 if (X86::FR16XRegClass
.hasSubClassEq(RC
)) {
3623 assert(STI
.hasFP16());
3624 return load
? X86::VMOVSHZrm_alt
: X86::VMOVSHZmr
;
3626 assert(X86::GR16RegClass
.hasSubClassEq(RC
) && "Unknown 2-byte regclass");
3627 return load
? X86::MOV16rm
: X86::MOV16mr
;
3629 if (X86::GR32RegClass
.hasSubClassEq(RC
))
3630 return load
? X86::MOV32rm
: X86::MOV32mr
;
3631 if (X86::FR32XRegClass
.hasSubClassEq(RC
))
3633 (HasAVX512
? X86::VMOVSSZrm_alt
:
3634 HasAVX
? X86::VMOVSSrm_alt
:
3636 (HasAVX512
? X86::VMOVSSZmr
:
3637 HasAVX
? X86::VMOVSSmr
:
3639 if (X86::RFP32RegClass
.hasSubClassEq(RC
))
3640 return load
? X86::LD_Fp32m
: X86::ST_Fp32m
;
3641 if (X86::VK32RegClass
.hasSubClassEq(RC
)) {
3642 assert(STI
.hasBWI() && "KMOVD requires BWI");
3643 return load
? X86::KMOVDkm
: X86::KMOVDmk
;
3645 // All of these mask pair classes have the same spill size, the same kind
3646 // of kmov instructions can be used with all of them.
3647 if (X86::VK1PAIRRegClass
.hasSubClassEq(RC
) ||
3648 X86::VK2PAIRRegClass
.hasSubClassEq(RC
) ||
3649 X86::VK4PAIRRegClass
.hasSubClassEq(RC
) ||
3650 X86::VK8PAIRRegClass
.hasSubClassEq(RC
) ||
3651 X86::VK16PAIRRegClass
.hasSubClassEq(RC
))
3652 return load
? X86::MASKPAIR16LOAD
: X86::MASKPAIR16STORE
;
3653 llvm_unreachable("Unknown 4-byte regclass");
3655 if (X86::GR64RegClass
.hasSubClassEq(RC
))
3656 return load
? X86::MOV64rm
: X86::MOV64mr
;
3657 if (X86::FR64XRegClass
.hasSubClassEq(RC
))
3659 (HasAVX512
? X86::VMOVSDZrm_alt
:
3660 HasAVX
? X86::VMOVSDrm_alt
:
3662 (HasAVX512
? X86::VMOVSDZmr
:
3663 HasAVX
? X86::VMOVSDmr
:
3665 if (X86::VR64RegClass
.hasSubClassEq(RC
))
3666 return load
? X86::MMX_MOVQ64rm
: X86::MMX_MOVQ64mr
;
3667 if (X86::RFP64RegClass
.hasSubClassEq(RC
))
3668 return load
? X86::LD_Fp64m
: X86::ST_Fp64m
;
3669 if (X86::VK64RegClass
.hasSubClassEq(RC
)) {
3670 assert(STI
.hasBWI() && "KMOVQ requires BWI");
3671 return load
? X86::KMOVQkm
: X86::KMOVQmk
;
3673 llvm_unreachable("Unknown 8-byte regclass");
3675 assert(X86::RFP80RegClass
.hasSubClassEq(RC
) && "Unknown 10-byte regclass");
3676 return load
? X86::LD_Fp80m
: X86::ST_FpP80m
;
3678 if (X86::VR128XRegClass
.hasSubClassEq(RC
)) {
3679 // If stack is realigned we can use aligned stores.
3682 (HasVLX
? X86::VMOVAPSZ128rm
:
3683 HasAVX512
? X86::VMOVAPSZ128rm_NOVLX
:
3684 HasAVX
? X86::VMOVAPSrm
:
3686 (HasVLX
? X86::VMOVAPSZ128mr
:
3687 HasAVX512
? X86::VMOVAPSZ128mr_NOVLX
:
3688 HasAVX
? X86::VMOVAPSmr
:
3692 (HasVLX
? X86::VMOVUPSZ128rm
:
3693 HasAVX512
? X86::VMOVUPSZ128rm_NOVLX
:
3694 HasAVX
? X86::VMOVUPSrm
:
3696 (HasVLX
? X86::VMOVUPSZ128mr
:
3697 HasAVX512
? X86::VMOVUPSZ128mr_NOVLX
:
3698 HasAVX
? X86::VMOVUPSmr
:
3701 if (X86::BNDRRegClass
.hasSubClassEq(RC
)) {
3703 return load
? X86::BNDMOV64rm
: X86::BNDMOV64mr
;
3705 return load
? X86::BNDMOV32rm
: X86::BNDMOV32mr
;
3707 llvm_unreachable("Unknown 16-byte regclass");
3710 assert(X86::VR256XRegClass
.hasSubClassEq(RC
) && "Unknown 32-byte regclass");
3711 // If stack is realigned we can use aligned stores.
3714 (HasVLX
? X86::VMOVAPSZ256rm
:
3715 HasAVX512
? X86::VMOVAPSZ256rm_NOVLX
:
3717 (HasVLX
? X86::VMOVAPSZ256mr
:
3718 HasAVX512
? X86::VMOVAPSZ256mr_NOVLX
:
3722 (HasVLX
? X86::VMOVUPSZ256rm
:
3723 HasAVX512
? X86::VMOVUPSZ256rm_NOVLX
:
3725 (HasVLX
? X86::VMOVUPSZ256mr
:
3726 HasAVX512
? X86::VMOVUPSZ256mr_NOVLX
:
3729 assert(X86::VR512RegClass
.hasSubClassEq(RC
) && "Unknown 64-byte regclass");
3730 assert(STI
.hasAVX512() && "Using 512-bit register requires AVX512");
3732 return load
? X86::VMOVAPSZrm
: X86::VMOVAPSZmr
;
3734 return load
? X86::VMOVUPSZrm
: X86::VMOVUPSZmr
;
3738 Optional
<ExtAddrMode
>
3739 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr
&MemI
,
3740 const TargetRegisterInfo
*TRI
) const {
3741 const MCInstrDesc
&Desc
= MemI
.getDesc();
3742 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
3743 if (MemRefBegin
< 0)
3746 MemRefBegin
+= X86II::getOperandBias(Desc
);
3748 auto &BaseOp
= MemI
.getOperand(MemRefBegin
+ X86::AddrBaseReg
);
3749 if (!BaseOp
.isReg()) // Can be an MO_FrameIndex
3752 const MachineOperand
&DispMO
= MemI
.getOperand(MemRefBegin
+ X86::AddrDisp
);
3753 // Displacement can be symbolic
3754 if (!DispMO
.isImm())
3758 AM
.BaseReg
= BaseOp
.getReg();
3759 AM
.ScaledReg
= MemI
.getOperand(MemRefBegin
+ X86::AddrIndexReg
).getReg();
3760 AM
.Scale
= MemI
.getOperand(MemRefBegin
+ X86::AddrScaleAmt
).getImm();
3761 AM
.Displacement
= DispMO
.getImm();
3765 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr
&MI
,
3767 int64_t &ImmVal
) const {
3768 if (MI
.getOpcode() != X86::MOV32ri
&& MI
.getOpcode() != X86::MOV64ri
)
3770 // Mov Src can be a global address.
3771 if (!MI
.getOperand(1).isImm() || MI
.getOperand(0).getReg() != Reg
)
3773 ImmVal
= MI
.getOperand(1).getImm();
3777 bool X86InstrInfo::preservesZeroValueInReg(
3778 const MachineInstr
*MI
, const Register NullValueReg
,
3779 const TargetRegisterInfo
*TRI
) const {
3780 if (!MI
->modifiesRegister(NullValueReg
, TRI
))
3782 switch (MI
->getOpcode()) {
3783 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3789 assert(MI
->getOperand(0).isDef() && MI
->getOperand(1).isUse() &&
3790 "expected for shift opcode!");
3791 return MI
->getOperand(0).getReg() == NullValueReg
&&
3792 MI
->getOperand(1).getReg() == NullValueReg
;
3793 // Zero extend of a sub-reg of NullValueReg into itself does not change the
3796 return llvm::all_of(MI
->operands(), [&](const MachineOperand
&MO
) {
3797 return TRI
->isSubRegisterEq(NullValueReg
, MO
.getReg());
3802 llvm_unreachable("Should be handled above!");
3805 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3806 const MachineInstr
&MemOp
, SmallVectorImpl
<const MachineOperand
*> &BaseOps
,
3807 int64_t &Offset
, bool &OffsetIsScalable
, unsigned &Width
,
3808 const TargetRegisterInfo
*TRI
) const {
3809 const MCInstrDesc
&Desc
= MemOp
.getDesc();
3810 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
3811 if (MemRefBegin
< 0)
3814 MemRefBegin
+= X86II::getOperandBias(Desc
);
3816 const MachineOperand
*BaseOp
=
3817 &MemOp
.getOperand(MemRefBegin
+ X86::AddrBaseReg
);
3818 if (!BaseOp
->isReg()) // Can be an MO_FrameIndex
3821 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrScaleAmt
).getImm() != 1)
3824 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrIndexReg
).getReg() !=
3828 const MachineOperand
&DispMO
= MemOp
.getOperand(MemRefBegin
+ X86::AddrDisp
);
3830 // Displacement can be symbolic
3831 if (!DispMO
.isImm())
3834 Offset
= DispMO
.getImm();
3836 if (!BaseOp
->isReg())
3839 OffsetIsScalable
= false;
3840 // FIXME: Relying on memoperands() may not be right thing to do here. Check
3841 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3842 // there is no use of `Width` for X86 back-end at the moment.
3844 !MemOp
.memoperands_empty() ? MemOp
.memoperands().front()->getSize() : 0;
3845 BaseOps
.push_back(BaseOp
);
3849 static unsigned getStoreRegOpcode(Register SrcReg
,
3850 const TargetRegisterClass
*RC
,
3851 bool IsStackAligned
,
3852 const X86Subtarget
&STI
) {
3853 return getLoadStoreRegOpcode(SrcReg
, RC
, IsStackAligned
, STI
, false);
3856 static unsigned getLoadRegOpcode(Register DestReg
,
3857 const TargetRegisterClass
*RC
,
3858 bool IsStackAligned
, const X86Subtarget
&STI
) {
3859 return getLoadStoreRegOpcode(DestReg
, RC
, IsStackAligned
, STI
, true);
3862 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
3863 MachineBasicBlock::iterator MI
,
3864 Register SrcReg
, bool isKill
, int FrameIdx
,
3865 const TargetRegisterClass
*RC
,
3866 const TargetRegisterInfo
*TRI
) const {
3867 const MachineFunction
&MF
= *MBB
.getParent();
3868 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3869 assert(MFI
.getObjectSize(FrameIdx
) >= TRI
->getSpillSize(*RC
) &&
3870 "Stack slot too small for store");
3871 if (RC
->getID() == X86::TILERegClassID
) {
3872 unsigned Opc
= X86::TILESTORED
;
3873 // tilestored %tmm, (%sp, %idx)
3874 MachineRegisterInfo
&RegInfo
= MBB
.getParent()->getRegInfo();
3875 Register VirtReg
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
3876 BuildMI(MBB
, MI
, DebugLoc(), get(X86::MOV64ri
), VirtReg
).addImm(64);
3877 MachineInstr
*NewMI
=
3878 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
)), FrameIdx
)
3879 .addReg(SrcReg
, getKillRegState(isKill
));
3880 MachineOperand
&MO
= NewMI
->getOperand(2);
3884 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3886 (Subtarget
.getFrameLowering()->getStackAlign() >= Alignment
) ||
3887 (RI
.canRealignStack(MF
) && !MFI
.isFixedObjectIndex(FrameIdx
));
3888 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, Subtarget
);
3889 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
)), FrameIdx
)
3890 .addReg(SrcReg
, getKillRegState(isKill
));
3894 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
3895 MachineBasicBlock::iterator MI
,
3896 Register DestReg
, int FrameIdx
,
3897 const TargetRegisterClass
*RC
,
3898 const TargetRegisterInfo
*TRI
) const {
3899 if (RC
->getID() == X86::TILERegClassID
) {
3900 unsigned Opc
= X86::TILELOADD
;
3901 // tileloadd (%sp, %idx), %tmm
3902 MachineRegisterInfo
&RegInfo
= MBB
.getParent()->getRegInfo();
3903 Register VirtReg
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
3904 MachineInstr
*NewMI
=
3905 BuildMI(MBB
, MI
, DebugLoc(), get(X86::MOV64ri
), VirtReg
).addImm(64);
3906 NewMI
= addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
), DestReg
),
3908 MachineOperand
&MO
= NewMI
->getOperand(3);
3912 const MachineFunction
&MF
= *MBB
.getParent();
3913 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3914 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3916 (Subtarget
.getFrameLowering()->getStackAlign() >= Alignment
) ||
3917 (RI
.canRealignStack(MF
) && !MFI
.isFixedObjectIndex(FrameIdx
));
3918 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, Subtarget
);
3919 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
), DestReg
),
3924 bool X86InstrInfo::analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
3925 Register
&SrcReg2
, int &CmpMask
,
3926 int &CmpValue
) const {
3927 switch (MI
.getOpcode()) {
3929 case X86::CMP64ri32
:
3936 SrcReg
= MI
.getOperand(0).getReg();
3938 if (MI
.getOperand(1).isImm()) {
3940 CmpValue
= MI
.getOperand(1).getImm();
3942 CmpMask
= CmpValue
= 0;
3945 // A SUB can be used to perform comparison.
3950 SrcReg
= MI
.getOperand(1).getReg();
3959 SrcReg
= MI
.getOperand(1).getReg();
3960 SrcReg2
= MI
.getOperand(2).getReg();
3964 case X86::SUB64ri32
:
3971 SrcReg
= MI
.getOperand(1).getReg();
3973 if (MI
.getOperand(2).isImm()) {
3975 CmpValue
= MI
.getOperand(2).getImm();
3977 CmpMask
= CmpValue
= 0;
3984 SrcReg
= MI
.getOperand(0).getReg();
3985 SrcReg2
= MI
.getOperand(1).getReg();
3993 SrcReg
= MI
.getOperand(0).getReg();
3994 if (MI
.getOperand(1).getReg() != SrcReg
)
3996 // Compare against zero.
4005 /// Check whether the first instruction, whose only
4006 /// purpose is to update flags, can be made redundant.
4007 /// CMPrr can be made redundant by SUBrr if the operands are the same.
4008 /// This function can be extended later on.
4009 /// SrcReg, SrcRegs: register operands for FlagI.
4010 /// ImmValue: immediate for FlagI if it takes an immediate.
4011 inline static bool isRedundantFlagInstr(const MachineInstr
&FlagI
,
4012 Register SrcReg
, Register SrcReg2
,
4013 int ImmMask
, int ImmValue
,
4014 const MachineInstr
&OI
) {
4015 if (((FlagI
.getOpcode() == X86::CMP64rr
&& OI
.getOpcode() == X86::SUB64rr
) ||
4016 (FlagI
.getOpcode() == X86::CMP32rr
&& OI
.getOpcode() == X86::SUB32rr
) ||
4017 (FlagI
.getOpcode() == X86::CMP16rr
&& OI
.getOpcode() == X86::SUB16rr
) ||
4018 (FlagI
.getOpcode() == X86::CMP8rr
&& OI
.getOpcode() == X86::SUB8rr
)) &&
4019 ((OI
.getOperand(1).getReg() == SrcReg
&&
4020 OI
.getOperand(2).getReg() == SrcReg2
) ||
4021 (OI
.getOperand(1).getReg() == SrcReg2
&&
4022 OI
.getOperand(2).getReg() == SrcReg
)))
4026 ((FlagI
.getOpcode() == X86::CMP64ri32
&&
4027 OI
.getOpcode() == X86::SUB64ri32
) ||
4028 (FlagI
.getOpcode() == X86::CMP64ri8
&&
4029 OI
.getOpcode() == X86::SUB64ri8
) ||
4030 (FlagI
.getOpcode() == X86::CMP32ri
&& OI
.getOpcode() == X86::SUB32ri
) ||
4031 (FlagI
.getOpcode() == X86::CMP32ri8
&&
4032 OI
.getOpcode() == X86::SUB32ri8
) ||
4033 (FlagI
.getOpcode() == X86::CMP16ri
&& OI
.getOpcode() == X86::SUB16ri
) ||
4034 (FlagI
.getOpcode() == X86::CMP16ri8
&&
4035 OI
.getOpcode() == X86::SUB16ri8
) ||
4036 (FlagI
.getOpcode() == X86::CMP8ri
&& OI
.getOpcode() == X86::SUB8ri
)) &&
4037 OI
.getOperand(1).getReg() == SrcReg
&&
4038 OI
.getOperand(2).getImm() == ImmValue
)
4043 /// Check whether the definition can be converted
4044 /// to remove a comparison against zero.
4045 inline static bool isDefConvertible(const MachineInstr
&MI
, bool &NoSignFlag
,
4046 bool &ClearsOverflowFlag
) {
4048 ClearsOverflowFlag
= false;
4050 switch (MI
.getOpcode()) {
4051 default: return false;
4053 // The shift instructions only modify ZF if their shift count is non-zero.
4054 // N.B.: The processor truncates the shift count depending on the encoding.
4055 case X86::SAR8ri
: case X86::SAR16ri
: case X86::SAR32ri
:case X86::SAR64ri
:
4056 case X86::SHR8ri
: case X86::SHR16ri
: case X86::SHR32ri
:case X86::SHR64ri
:
4057 return getTruncatedShiftCount(MI
, 2) != 0;
4059 // Some left shift instructions can be turned into LEA instructions but only
4060 // if their flags aren't used. Avoid transforming such instructions.
4061 case X86::SHL8ri
: case X86::SHL16ri
: case X86::SHL32ri
:case X86::SHL64ri
:{
4062 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
4063 if (isTruncatedShiftCountForLEA(ShAmt
)) return false;
4067 case X86::SHRD16rri8
:case X86::SHRD32rri8
:case X86::SHRD64rri8
:
4068 case X86::SHLD16rri8
:case X86::SHLD32rri8
:case X86::SHLD64rri8
:
4069 return getTruncatedShiftCount(MI
, 3) != 0;
4071 case X86::SUB64ri32
: case X86::SUB64ri8
: case X86::SUB32ri
:
4072 case X86::SUB32ri8
: case X86::SUB16ri
: case X86::SUB16ri8
:
4073 case X86::SUB8ri
: case X86::SUB64rr
: case X86::SUB32rr
:
4074 case X86::SUB16rr
: case X86::SUB8rr
: case X86::SUB64rm
:
4075 case X86::SUB32rm
: case X86::SUB16rm
: case X86::SUB8rm
:
4076 case X86::DEC64r
: case X86::DEC32r
: case X86::DEC16r
: case X86::DEC8r
:
4077 case X86::ADD64ri32
: case X86::ADD64ri8
: case X86::ADD32ri
:
4078 case X86::ADD32ri8
: case X86::ADD16ri
: case X86::ADD16ri8
:
4079 case X86::ADD8ri
: case X86::ADD64rr
: case X86::ADD32rr
:
4080 case X86::ADD16rr
: case X86::ADD8rr
: case X86::ADD64rm
:
4081 case X86::ADD32rm
: case X86::ADD16rm
: case X86::ADD8rm
:
4082 case X86::INC64r
: case X86::INC32r
: case X86::INC16r
: case X86::INC8r
:
4083 case X86::ADC64ri32
: case X86::ADC64ri8
: case X86::ADC32ri
:
4084 case X86::ADC32ri8
: case X86::ADC16ri
: case X86::ADC16ri8
:
4085 case X86::ADC8ri
: case X86::ADC64rr
: case X86::ADC32rr
:
4086 case X86::ADC16rr
: case X86::ADC8rr
: case X86::ADC64rm
:
4087 case X86::ADC32rm
: case X86::ADC16rm
: case X86::ADC8rm
:
4088 case X86::SBB64ri32
: case X86::SBB64ri8
: case X86::SBB32ri
:
4089 case X86::SBB32ri8
: case X86::SBB16ri
: case X86::SBB16ri8
:
4090 case X86::SBB8ri
: case X86::SBB64rr
: case X86::SBB32rr
:
4091 case X86::SBB16rr
: case X86::SBB8rr
: case X86::SBB64rm
:
4092 case X86::SBB32rm
: case X86::SBB16rm
: case X86::SBB8rm
:
4093 case X86::NEG8r
: case X86::NEG16r
: case X86::NEG32r
: case X86::NEG64r
:
4094 case X86::SAR8r1
: case X86::SAR16r1
: case X86::SAR32r1
:case X86::SAR64r1
:
4095 case X86::SHR8r1
: case X86::SHR16r1
: case X86::SHR32r1
:case X86::SHR64r1
:
4096 case X86::SHL8r1
: case X86::SHL16r1
: case X86::SHL32r1
:case X86::SHL64r1
:
4097 case X86::LZCNT16rr
: case X86::LZCNT16rm
:
4098 case X86::LZCNT32rr
: case X86::LZCNT32rm
:
4099 case X86::LZCNT64rr
: case X86::LZCNT64rm
:
4100 case X86::POPCNT16rr
:case X86::POPCNT16rm
:
4101 case X86::POPCNT32rr
:case X86::POPCNT32rm
:
4102 case X86::POPCNT64rr
:case X86::POPCNT64rm
:
4103 case X86::TZCNT16rr
: case X86::TZCNT16rm
:
4104 case X86::TZCNT32rr
: case X86::TZCNT32rm
:
4105 case X86::TZCNT64rr
: case X86::TZCNT64rm
:
4107 case X86::AND64ri32
: case X86::AND64ri8
: case X86::AND32ri
:
4108 case X86::AND32ri8
: case X86::AND16ri
: case X86::AND16ri8
:
4109 case X86::AND8ri
: case X86::AND64rr
: case X86::AND32rr
:
4110 case X86::AND16rr
: case X86::AND8rr
: case X86::AND64rm
:
4111 case X86::AND32rm
: case X86::AND16rm
: case X86::AND8rm
:
4112 case X86::XOR64ri32
: case X86::XOR64ri8
: case X86::XOR32ri
:
4113 case X86::XOR32ri8
: case X86::XOR16ri
: case X86::XOR16ri8
:
4114 case X86::XOR8ri
: case X86::XOR64rr
: case X86::XOR32rr
:
4115 case X86::XOR16rr
: case X86::XOR8rr
: case X86::XOR64rm
:
4116 case X86::XOR32rm
: case X86::XOR16rm
: case X86::XOR8rm
:
4117 case X86::OR64ri32
: case X86::OR64ri8
: case X86::OR32ri
:
4118 case X86::OR32ri8
: case X86::OR16ri
: case X86::OR16ri8
:
4119 case X86::OR8ri
: case X86::OR64rr
: case X86::OR32rr
:
4120 case X86::OR16rr
: case X86::OR8rr
: case X86::OR64rm
:
4121 case X86::OR32rm
: case X86::OR16rm
: case X86::OR8rm
:
4122 case X86::ANDN32rr
: case X86::ANDN32rm
:
4123 case X86::ANDN64rr
: case X86::ANDN64rm
:
4124 case X86::BLSI32rr
: case X86::BLSI32rm
:
4125 case X86::BLSI64rr
: case X86::BLSI64rm
:
4126 case X86::BLSMSK32rr
: case X86::BLSMSK32rm
:
4127 case X86::BLSMSK64rr
: case X86::BLSMSK64rm
:
4128 case X86::BLSR32rr
: case X86::BLSR32rm
:
4129 case X86::BLSR64rr
: case X86::BLSR64rm
:
4130 case X86::BLCFILL32rr
: case X86::BLCFILL32rm
:
4131 case X86::BLCFILL64rr
: case X86::BLCFILL64rm
:
4132 case X86::BLCI32rr
: case X86::BLCI32rm
:
4133 case X86::BLCI64rr
: case X86::BLCI64rm
:
4134 case X86::BLCIC32rr
: case X86::BLCIC32rm
:
4135 case X86::BLCIC64rr
: case X86::BLCIC64rm
:
4136 case X86::BLCMSK32rr
: case X86::BLCMSK32rm
:
4137 case X86::BLCMSK64rr
: case X86::BLCMSK64rm
:
4138 case X86::BLCS32rr
: case X86::BLCS32rm
:
4139 case X86::BLCS64rr
: case X86::BLCS64rm
:
4140 case X86::BLSFILL32rr
: case X86::BLSFILL32rm
:
4141 case X86::BLSFILL64rr
: case X86::BLSFILL64rm
:
4142 case X86::BLSIC32rr
: case X86::BLSIC32rm
:
4143 case X86::BLSIC64rr
: case X86::BLSIC64rm
:
4144 case X86::BZHI32rr
: case X86::BZHI32rm
:
4145 case X86::BZHI64rr
: case X86::BZHI64rm
:
4146 case X86::T1MSKC32rr
: case X86::T1MSKC32rm
:
4147 case X86::T1MSKC64rr
: case X86::T1MSKC64rm
:
4148 case X86::TZMSK32rr
: case X86::TZMSK32rm
:
4149 case X86::TZMSK64rr
: case X86::TZMSK64rm
:
4150 // These instructions clear the overflow flag just like TEST.
4151 // FIXME: These are not the only instructions in this switch that clear the
4153 ClearsOverflowFlag
= true;
4155 case X86::BEXTR32rr
: case X86::BEXTR64rr
:
4156 case X86::BEXTR32rm
: case X86::BEXTR64rm
:
4157 case X86::BEXTRI32ri
: case X86::BEXTRI32mi
:
4158 case X86::BEXTRI64ri
: case X86::BEXTRI64mi
:
4159 // BEXTR doesn't update the sign flag so we can't use it. It does clear
4160 // the overflow flag, but that's not useful without the sign flag.
4166 /// Check whether the use can be converted to remove a comparison against zero.
4167 static X86::CondCode
isUseDefConvertible(const MachineInstr
&MI
) {
4168 switch (MI
.getOpcode()) {
4169 default: return X86::COND_INVALID
;
4174 return X86::COND_AE
;
4175 case X86::LZCNT16rr
:
4176 case X86::LZCNT32rr
:
4177 case X86::LZCNT64rr
:
4179 case X86::POPCNT16rr
:
4180 case X86::POPCNT32rr
:
4181 case X86::POPCNT64rr
:
4183 case X86::TZCNT16rr
:
4184 case X86::TZCNT32rr
:
4185 case X86::TZCNT64rr
:
4196 return X86::COND_AE
;
4199 case X86::BLSMSK32rr
:
4200 case X86::BLSMSK64rr
:
4202 // TODO: TBM instructions.
4206 /// Check if there exists an earlier instruction that
4207 /// operates on the same source operands and sets flags in the same way as
4208 /// Compare; remove Compare if possible.
4209 bool X86InstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, Register SrcReg
,
4210 Register SrcReg2
, int CmpMask
,
4212 const MachineRegisterInfo
*MRI
) const {
4213 // Check whether we can replace SUB with CMP.
4214 switch (CmpInstr
.getOpcode()) {
4216 case X86::SUB64ri32
:
4231 if (!MRI
->use_nodbg_empty(CmpInstr
.getOperand(0).getReg()))
4233 // There is no use of the destination register, we can replace SUB with CMP.
4234 unsigned NewOpcode
= 0;
4235 switch (CmpInstr
.getOpcode()) {
4236 default: llvm_unreachable("Unreachable!");
4237 case X86::SUB64rm
: NewOpcode
= X86::CMP64rm
; break;
4238 case X86::SUB32rm
: NewOpcode
= X86::CMP32rm
; break;
4239 case X86::SUB16rm
: NewOpcode
= X86::CMP16rm
; break;
4240 case X86::SUB8rm
: NewOpcode
= X86::CMP8rm
; break;
4241 case X86::SUB64rr
: NewOpcode
= X86::CMP64rr
; break;
4242 case X86::SUB32rr
: NewOpcode
= X86::CMP32rr
; break;
4243 case X86::SUB16rr
: NewOpcode
= X86::CMP16rr
; break;
4244 case X86::SUB8rr
: NewOpcode
= X86::CMP8rr
; break;
4245 case X86::SUB64ri32
: NewOpcode
= X86::CMP64ri32
; break;
4246 case X86::SUB64ri8
: NewOpcode
= X86::CMP64ri8
; break;
4247 case X86::SUB32ri
: NewOpcode
= X86::CMP32ri
; break;
4248 case X86::SUB32ri8
: NewOpcode
= X86::CMP32ri8
; break;
4249 case X86::SUB16ri
: NewOpcode
= X86::CMP16ri
; break;
4250 case X86::SUB16ri8
: NewOpcode
= X86::CMP16ri8
; break;
4251 case X86::SUB8ri
: NewOpcode
= X86::CMP8ri
; break;
4253 CmpInstr
.setDesc(get(NewOpcode
));
4254 CmpInstr
.RemoveOperand(0);
4255 // Mutating this instruction invalidates any debug data associated with it.
4256 CmpInstr
.dropDebugNumber();
4257 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4258 if (NewOpcode
== X86::CMP64rm
|| NewOpcode
== X86::CMP32rm
||
4259 NewOpcode
== X86::CMP16rm
|| NewOpcode
== X86::CMP8rm
)
4264 // Get the unique definition of SrcReg.
4265 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
4266 if (!MI
) return false;
4268 // CmpInstr is the first instruction of the BB.
4269 MachineBasicBlock::iterator I
= CmpInstr
, Def
= MI
;
4271 // If we are comparing against zero, check whether we can use MI to update
4272 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4273 bool IsCmpZero
= (CmpMask
!= 0 && CmpValue
== 0);
4274 if (IsCmpZero
&& MI
->getParent() != CmpInstr
.getParent())
4277 // If we have a use of the source register between the def and our compare
4278 // instruction we can eliminate the compare iff the use sets EFLAGS in the
4280 bool ShouldUpdateCC
= false;
4281 bool NoSignFlag
= false;
4282 bool ClearsOverflowFlag
= false;
4283 X86::CondCode NewCC
= X86::COND_INVALID
;
4284 if (IsCmpZero
&& !isDefConvertible(*MI
, NoSignFlag
, ClearsOverflowFlag
)) {
4285 // Scan forward from the use until we hit the use we're looking for or the
4286 // compare instruction.
4287 for (MachineBasicBlock::iterator J
= MI
;; ++J
) {
4288 // Do we have a convertible instruction?
4289 NewCC
= isUseDefConvertible(*J
);
4290 if (NewCC
!= X86::COND_INVALID
&& J
->getOperand(1).isReg() &&
4291 J
->getOperand(1).getReg() == SrcReg
) {
4292 assert(J
->definesRegister(X86::EFLAGS
) && "Must be an EFLAGS def!");
4293 ShouldUpdateCC
= true; // Update CC later on.
4294 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4295 // with the new def.
4306 // We are searching for an earlier instruction that can make CmpInstr
4307 // redundant and that instruction will be saved in Sub.
4308 MachineInstr
*Sub
= nullptr;
4309 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4311 // We iterate backward, starting from the instruction before CmpInstr and
4312 // stop when reaching the definition of a source register or done with the BB.
4313 // RI points to the instruction before CmpInstr.
4314 // If the definition is in this basic block, RE points to the definition;
4315 // otherwise, RE is the rend of the basic block.
4316 MachineBasicBlock::reverse_iterator
4317 RI
= ++I
.getReverse(),
4318 RE
= CmpInstr
.getParent() == MI
->getParent()
4319 ? Def
.getReverse() /* points to MI */
4320 : CmpInstr
.getParent()->rend();
4321 MachineInstr
*Movr0Inst
= nullptr;
4322 for (; RI
!= RE
; ++RI
) {
4323 MachineInstr
&Instr
= *RI
;
4324 // Check whether CmpInstr can be made redundant by the current instruction.
4325 if (!IsCmpZero
&& isRedundantFlagInstr(CmpInstr
, SrcReg
, SrcReg2
, CmpMask
,
4331 if (Instr
.modifiesRegister(X86::EFLAGS
, TRI
) ||
4332 Instr
.readsRegister(X86::EFLAGS
, TRI
)) {
4333 // This instruction modifies or uses EFLAGS.
4335 // MOV32r0 etc. are implemented with xor which clobbers condition code.
4336 // They are safe to move up, if the definition to EFLAGS is dead and
4337 // earlier instructions do not read or write EFLAGS.
4338 if (!Movr0Inst
&& Instr
.getOpcode() == X86::MOV32r0
&&
4339 Instr
.registerDefIsDead(X86::EFLAGS
, TRI
)) {
4344 // We can't remove CmpInstr.
4349 // Return false if no candidates exist.
4350 if (!IsCmpZero
&& !Sub
)
4354 (SrcReg2
!= 0 && Sub
&& Sub
->getOperand(1).getReg() == SrcReg2
&&
4355 Sub
->getOperand(2).getReg() == SrcReg
);
4357 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4358 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4359 // If we are done with the basic block, we need to check whether EFLAGS is
4361 bool IsSafe
= false;
4362 SmallVector
<std::pair
<MachineInstr
*, X86::CondCode
>, 4> OpsToUpdate
;
4363 MachineBasicBlock::iterator E
= CmpInstr
.getParent()->end();
4364 for (++I
; I
!= E
; ++I
) {
4365 const MachineInstr
&Instr
= *I
;
4366 bool ModifyEFLAGS
= Instr
.modifiesRegister(X86::EFLAGS
, TRI
);
4367 bool UseEFLAGS
= Instr
.readsRegister(X86::EFLAGS
, TRI
);
4368 // We should check the usage if this instruction uses and updates EFLAGS.
4369 if (!UseEFLAGS
&& ModifyEFLAGS
) {
4370 // It is safe to remove CmpInstr if EFLAGS is updated again.
4374 if (!UseEFLAGS
&& !ModifyEFLAGS
)
4377 // EFLAGS is used by this instruction.
4378 X86::CondCode OldCC
= X86::COND_INVALID
;
4379 if (IsCmpZero
|| IsSwapped
) {
4380 // We decode the condition code from opcode.
4381 if (Instr
.isBranch())
4382 OldCC
= X86::getCondFromBranch(Instr
);
4384 OldCC
= X86::getCondFromSETCC(Instr
);
4385 if (OldCC
== X86::COND_INVALID
)
4386 OldCC
= X86::getCondFromCMov(Instr
);
4388 if (OldCC
== X86::COND_INVALID
) return false;
4390 X86::CondCode ReplacementCC
= X86::COND_INVALID
;
4394 case X86::COND_A
: case X86::COND_AE
:
4395 case X86::COND_B
: case X86::COND_BE
:
4396 // CF is used, we can't perform this optimization.
4398 case X86::COND_G
: case X86::COND_GE
:
4399 case X86::COND_L
: case X86::COND_LE
:
4400 case X86::COND_O
: case X86::COND_NO
:
4401 // If OF is used, the instruction needs to clear it like CmpZero does.
4402 if (!ClearsOverflowFlag
)
4405 case X86::COND_S
: case X86::COND_NS
:
4406 // If SF is used, but the instruction doesn't update the SF, then we
4407 // can't do the optimization.
4413 // If we're updating the condition code check if we have to reverse the
4420 ReplacementCC
= NewCC
;
4423 ReplacementCC
= GetOppositeBranchCondition(NewCC
);
4426 } else if (IsSwapped
) {
4427 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4428 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4429 // We swap the condition code and synthesize the new opcode.
4430 ReplacementCC
= getSwappedCondition(OldCC
);
4431 if (ReplacementCC
== X86::COND_INVALID
) return false;
4434 if ((ShouldUpdateCC
|| IsSwapped
) && ReplacementCC
!= OldCC
) {
4435 // Push the MachineInstr to OpsToUpdate.
4436 // If it is safe to remove CmpInstr, the condition code of these
4437 // instructions will be modified.
4438 OpsToUpdate
.push_back(std::make_pair(&*I
, ReplacementCC
));
4440 if (ModifyEFLAGS
|| Instr
.killsRegister(X86::EFLAGS
, TRI
)) {
4441 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4447 // If EFLAGS is not killed nor re-defined, we should check whether it is
4448 // live-out. If it is live-out, do not optimize.
4449 if ((IsCmpZero
|| IsSwapped
) && !IsSafe
) {
4450 MachineBasicBlock
*MBB
= CmpInstr
.getParent();
4451 for (MachineBasicBlock
*Successor
: MBB
->successors())
4452 if (Successor
->isLiveIn(X86::EFLAGS
))
4456 // The instruction to be updated is either Sub or MI.
4457 Sub
= IsCmpZero
? MI
: Sub
;
4458 // Move Movr0Inst to the appropriate place before Sub.
4460 // Look backwards until we find a def that doesn't use the current EFLAGS.
4462 MachineBasicBlock::reverse_iterator InsertI
= Def
.getReverse(),
4463 InsertE
= Sub
->getParent()->rend();
4464 for (; InsertI
!= InsertE
; ++InsertI
) {
4465 MachineInstr
*Instr
= &*InsertI
;
4466 if (!Instr
->readsRegister(X86::EFLAGS
, TRI
) &&
4467 Instr
->modifiesRegister(X86::EFLAGS
, TRI
)) {
4468 Sub
->getParent()->remove(Movr0Inst
);
4469 Instr
->getParent()->insert(MachineBasicBlock::iterator(Instr
),
4474 if (InsertI
== InsertE
)
4478 // Make sure Sub instruction defines EFLAGS and mark the def live.
4479 MachineOperand
*FlagDef
= Sub
->findRegisterDefOperand(X86::EFLAGS
);
4480 assert(FlagDef
&& "Unable to locate a def EFLAGS operand");
4481 FlagDef
->setIsDead(false);
4483 CmpInstr
.eraseFromParent();
4485 // Modify the condition code of instructions in OpsToUpdate.
4486 for (auto &Op
: OpsToUpdate
) {
4487 Op
.first
->getOperand(Op
.first
->getDesc().getNumOperands() - 1)
4493 /// Try to remove the load by folding it to a register
4494 /// operand at the use. We fold the load instructions if load defines a virtual
4495 /// register, the virtual register is used once in the same BB, and the
4496 /// instructions in-between do not load or store, and have no side effects.
4497 MachineInstr
*X86InstrInfo::optimizeLoadInstr(MachineInstr
&MI
,
4498 const MachineRegisterInfo
*MRI
,
4499 Register
&FoldAsLoadDefReg
,
4500 MachineInstr
*&DefMI
) const {
4501 // Check whether we can move DefMI here.
4502 DefMI
= MRI
->getVRegDef(FoldAsLoadDefReg
);
4504 bool SawStore
= false;
4505 if (!DefMI
->isSafeToMove(nullptr, SawStore
))
4508 // Collect information about virtual register operands of MI.
4509 SmallVector
<unsigned, 1> SrcOperandIds
;
4510 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
4511 MachineOperand
&MO
= MI
.getOperand(i
);
4514 Register Reg
= MO
.getReg();
4515 if (Reg
!= FoldAsLoadDefReg
)
4517 // Do not fold if we have a subreg use or a def.
4518 if (MO
.getSubReg() || MO
.isDef())
4520 SrcOperandIds
.push_back(i
);
4522 if (SrcOperandIds
.empty())
4525 // Check whether we can fold the def into SrcOperandId.
4526 if (MachineInstr
*FoldMI
= foldMemoryOperand(MI
, SrcOperandIds
, *DefMI
)) {
4527 FoldAsLoadDefReg
= 0;
4534 /// Expand a single-def pseudo instruction to a two-addr
4535 /// instruction with two undef reads of the register being defined.
4536 /// This is used for mapping:
4539 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
4541 static bool Expand2AddrUndef(MachineInstrBuilder
&MIB
,
4542 const MCInstrDesc
&Desc
) {
4543 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
4544 Register Reg
= MIB
.getReg(0);
4547 // MachineInstr::addOperand() will insert explicit operands before any
4548 // implicit operands.
4549 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
4550 // But we don't trust that.
4551 assert(MIB
.getReg(1) == Reg
&&
4552 MIB
.getReg(2) == Reg
&& "Misplaced operand");
4556 /// Expand a single-def pseudo instruction to a two-addr
4557 /// instruction with two %k0 reads.
4558 /// This is used for mapping:
4561 /// %k4 = KXNORrr %k0, %k0
4562 static bool Expand2AddrKreg(MachineInstrBuilder
&MIB
, const MCInstrDesc
&Desc
,
4564 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
4566 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
4570 static bool expandMOV32r1(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
,
4572 MachineBasicBlock
&MBB
= *MIB
->getParent();
4573 const DebugLoc
&DL
= MIB
->getDebugLoc();
4574 Register Reg
= MIB
.getReg(0);
4577 BuildMI(MBB
, MIB
.getInstr(), DL
, TII
.get(X86::XOR32rr
), Reg
)
4578 .addReg(Reg
, RegState::Undef
)
4579 .addReg(Reg
, RegState::Undef
);
4581 // Turn the pseudo into an INC or DEC.
4582 MIB
->setDesc(TII
.get(MinusOne
? X86::DEC32r
: X86::INC32r
));
4588 static bool ExpandMOVImmSExti8(MachineInstrBuilder
&MIB
,
4589 const TargetInstrInfo
&TII
,
4590 const X86Subtarget
&Subtarget
) {
4591 MachineBasicBlock
&MBB
= *MIB
->getParent();
4592 const DebugLoc
&DL
= MIB
->getDebugLoc();
4593 int64_t Imm
= MIB
->getOperand(1).getImm();
4594 assert(Imm
!= 0 && "Using push/pop for 0 is not efficient.");
4595 MachineBasicBlock::iterator I
= MIB
.getInstr();
4597 int StackAdjustment
;
4599 if (Subtarget
.is64Bit()) {
4600 assert(MIB
->getOpcode() == X86::MOV64ImmSExti8
||
4601 MIB
->getOpcode() == X86::MOV32ImmSExti8
);
4603 // Can't use push/pop lowering if the function might write to the red zone.
4604 X86MachineFunctionInfo
*X86FI
=
4605 MBB
.getParent()->getInfo
<X86MachineFunctionInfo
>();
4606 if (X86FI
->getUsesRedZone()) {
4607 MIB
->setDesc(TII
.get(MIB
->getOpcode() ==
4608 X86::MOV32ImmSExti8
? X86::MOV32ri
: X86::MOV64ri
));
4612 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4613 // widen the register if necessary.
4614 StackAdjustment
= 8;
4615 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH64i8
)).addImm(Imm
);
4616 MIB
->setDesc(TII
.get(X86::POP64r
));
4618 .setReg(getX86SubSuperRegister(MIB
.getReg(0), 64));
4620 assert(MIB
->getOpcode() == X86::MOV32ImmSExti8
);
4621 StackAdjustment
= 4;
4622 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH32i8
)).addImm(Imm
);
4623 MIB
->setDesc(TII
.get(X86::POP32r
));
4625 MIB
->RemoveOperand(1);
4626 MIB
->addImplicitDefUseOperands(*MBB
.getParent());
4628 // Build CFI if necessary.
4629 MachineFunction
&MF
= *MBB
.getParent();
4630 const X86FrameLowering
*TFL
= Subtarget
.getFrameLowering();
4631 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
4632 bool NeedsDwarfCFI
= !IsWin64Prologue
&& MF
.needsFrameMoves();
4633 bool EmitCFI
= !TFL
->hasFP(MF
) && NeedsDwarfCFI
;
4635 TFL
->BuildCFI(MBB
, I
, DL
,
4636 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment
));
4637 TFL
->BuildCFI(MBB
, std::next(I
), DL
,
4638 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment
));
4644 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4645 // code sequence is needed for other targets.
4646 static void expandLoadStackGuard(MachineInstrBuilder
&MIB
,
4647 const TargetInstrInfo
&TII
) {
4648 MachineBasicBlock
&MBB
= *MIB
->getParent();
4649 const DebugLoc
&DL
= MIB
->getDebugLoc();
4650 Register Reg
= MIB
.getReg(0);
4651 const GlobalValue
*GV
=
4652 cast
<GlobalValue
>((*MIB
->memoperands_begin())->getValue());
4653 auto Flags
= MachineMemOperand::MOLoad
|
4654 MachineMemOperand::MODereferenceable
|
4655 MachineMemOperand::MOInvariant
;
4656 MachineMemOperand
*MMO
= MBB
.getParent()->getMachineMemOperand(
4657 MachinePointerInfo::getGOT(*MBB
.getParent()), Flags
, 8, Align(8));
4658 MachineBasicBlock::iterator I
= MIB
.getInstr();
4660 BuildMI(MBB
, I
, DL
, TII
.get(X86::MOV64rm
), Reg
).addReg(X86::RIP
).addImm(1)
4661 .addReg(0).addGlobalAddress(GV
, 0, X86II::MO_GOTPCREL
).addReg(0)
4662 .addMemOperand(MMO
);
4663 MIB
->setDebugLoc(DL
);
4664 MIB
->setDesc(TII
.get(X86::MOV64rm
));
4665 MIB
.addReg(Reg
, RegState::Kill
).addImm(1).addReg(0).addImm(0).addReg(0);
4668 static bool expandXorFP(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
) {
4669 MachineBasicBlock
&MBB
= *MIB
->getParent();
4670 MachineFunction
&MF
= *MBB
.getParent();
4671 const X86Subtarget
&Subtarget
= MF
.getSubtarget
<X86Subtarget
>();
4672 const X86RegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
4674 MIB
->getOpcode() == X86::XOR64_FP
? X86::XOR64rr
: X86::XOR32rr
;
4675 MIB
->setDesc(TII
.get(XorOp
));
4676 MIB
.addReg(TRI
->getFrameRegister(MF
), RegState::Undef
);
4680 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4681 // but not VLX. If it uses an extended register we need to use an instruction
4682 // that loads the lower 128/256-bit, but is available with only AVX512F.
4683 static bool expandNOVLXLoad(MachineInstrBuilder
&MIB
,
4684 const TargetRegisterInfo
*TRI
,
4685 const MCInstrDesc
&LoadDesc
,
4686 const MCInstrDesc
&BroadcastDesc
,
4688 Register DestReg
= MIB
.getReg(0);
4689 // Check if DestReg is XMM16-31 or YMM16-31.
4690 if (TRI
->getEncodingValue(DestReg
) < 16) {
4691 // We can use a normal VEX encoded load.
4692 MIB
->setDesc(LoadDesc
);
4694 // Use a 128/256-bit VBROADCAST instruction.
4695 MIB
->setDesc(BroadcastDesc
);
4696 // Change the destination to a 512-bit register.
4697 DestReg
= TRI
->getMatchingSuperReg(DestReg
, SubIdx
, &X86::VR512RegClass
);
4698 MIB
->getOperand(0).setReg(DestReg
);
4703 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4704 // but not VLX. If it uses an extended register we need to use an instruction
4705 // that stores the lower 128/256-bit, but is available with only AVX512F.
4706 static bool expandNOVLXStore(MachineInstrBuilder
&MIB
,
4707 const TargetRegisterInfo
*TRI
,
4708 const MCInstrDesc
&StoreDesc
,
4709 const MCInstrDesc
&ExtractDesc
,
4711 Register SrcReg
= MIB
.getReg(X86::AddrNumOperands
);
4712 // Check if DestReg is XMM16-31 or YMM16-31.
4713 if (TRI
->getEncodingValue(SrcReg
) < 16) {
4714 // We can use a normal VEX encoded store.
4715 MIB
->setDesc(StoreDesc
);
4717 // Use a VEXTRACTF instruction.
4718 MIB
->setDesc(ExtractDesc
);
4719 // Change the destination to a 512-bit register.
4720 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, SubIdx
, &X86::VR512RegClass
);
4721 MIB
->getOperand(X86::AddrNumOperands
).setReg(SrcReg
);
4722 MIB
.addImm(0x0); // Append immediate to extract from the lower bits.
4728 static bool expandSHXDROT(MachineInstrBuilder
&MIB
, const MCInstrDesc
&Desc
) {
4730 int64_t ShiftAmt
= MIB
->getOperand(2).getImm();
4731 // Temporarily remove the immediate so we can add another source register.
4732 MIB
->RemoveOperand(2);
4733 // Add the register. Don't copy the kill flag if there is one.
4734 MIB
.addReg(MIB
.getReg(1),
4735 getUndefRegState(MIB
->getOperand(1).isUndef()));
4736 // Add back the immediate.
4737 MIB
.addImm(ShiftAmt
);
4741 bool X86InstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
4742 bool HasAVX
= Subtarget
.hasAVX();
4743 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
4744 switch (MI
.getOpcode()) {
4746 return Expand2AddrUndef(MIB
, get(X86::XOR32rr
));
4748 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ false);
4750 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ true);
4751 case X86::MOV32ImmSExti8
:
4752 case X86::MOV64ImmSExti8
:
4753 return ExpandMOVImmSExti8(MIB
, *this, Subtarget
);
4754 case X86::SETB_C32r
:
4755 return Expand2AddrUndef(MIB
, get(X86::SBB32rr
));
4756 case X86::SETB_C64r
:
4757 return Expand2AddrUndef(MIB
, get(X86::SBB64rr
));
4759 return Expand2AddrUndef(MIB
, get(X86::MMX_PXORirr
));
4763 case X86::FsFLD0F128
:
4764 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VXORPSrr
: X86::XORPSrr
));
4765 case X86::AVX_SET0
: {
4766 assert(HasAVX
&& "AVX not supported");
4767 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4768 Register SrcReg
= MIB
.getReg(0);
4769 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
4770 MIB
->getOperand(0).setReg(XReg
);
4771 Expand2AddrUndef(MIB
, get(X86::VXORPSrr
));
4772 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
4775 case X86::AVX512_128_SET0
:
4776 case X86::AVX512_FsFLD0SH
:
4777 case X86::AVX512_FsFLD0SS
:
4778 case X86::AVX512_FsFLD0SD
:
4779 case X86::AVX512_FsFLD0F128
: {
4780 bool HasVLX
= Subtarget
.hasVLX();
4781 Register SrcReg
= MIB
.getReg(0);
4782 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4783 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16)
4784 return Expand2AddrUndef(MIB
,
4785 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
4786 // Extended register without VLX. Use a larger XOR.
4788 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
, &X86::VR512RegClass
);
4789 MIB
->getOperand(0).setReg(SrcReg
);
4790 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
4792 case X86::AVX512_256_SET0
:
4793 case X86::AVX512_512_SET0
: {
4794 bool HasVLX
= Subtarget
.hasVLX();
4795 Register SrcReg
= MIB
.getReg(0);
4796 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4797 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16) {
4798 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
4799 MIB
->getOperand(0).setReg(XReg
);
4800 Expand2AddrUndef(MIB
,
4801 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
4802 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
4805 if (MI
.getOpcode() == X86::AVX512_256_SET0
) {
4806 // No VLX so we must reference a zmm.
4808 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
, &X86::VR512RegClass
);
4809 MIB
->getOperand(0).setReg(ZReg
);
4811 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
4813 case X86::V_SETALLONES
:
4814 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VPCMPEQDrr
: X86::PCMPEQDrr
));
4815 case X86::AVX2_SETALLONES
:
4816 return Expand2AddrUndef(MIB
, get(X86::VPCMPEQDYrr
));
4817 case X86::AVX1_SETALLONES
: {
4818 Register Reg
= MIB
.getReg(0);
4819 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4820 MIB
->setDesc(get(X86::VCMPPSYrri
));
4821 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xf);
4824 case X86::AVX512_512_SETALLONES
: {
4825 Register Reg
= MIB
.getReg(0);
4826 MIB
->setDesc(get(X86::VPTERNLOGDZrri
));
4827 // VPTERNLOGD needs 3 register inputs and an immediate.
4828 // 0xff will return 1s for any input.
4829 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
)
4830 .addReg(Reg
, RegState::Undef
).addImm(0xff);
4833 case X86::AVX512_512_SEXT_MASK_32
:
4834 case X86::AVX512_512_SEXT_MASK_64
: {
4835 Register Reg
= MIB
.getReg(0);
4836 Register MaskReg
= MIB
.getReg(1);
4837 unsigned MaskState
= getRegState(MIB
->getOperand(1));
4838 unsigned Opc
= (MI
.getOpcode() == X86::AVX512_512_SEXT_MASK_64
) ?
4839 X86::VPTERNLOGQZrrikz
: X86::VPTERNLOGDZrrikz
;
4840 MI
.RemoveOperand(1);
4841 MIB
->setDesc(get(Opc
));
4842 // VPTERNLOG needs 3 register inputs and an immediate.
4843 // 0xff will return 1s for any input.
4844 MIB
.addReg(Reg
, RegState::Undef
).addReg(MaskReg
, MaskState
)
4845 .addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xff);
4848 case X86::VMOVAPSZ128rm_NOVLX
:
4849 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSrm
),
4850 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4851 case X86::VMOVUPSZ128rm_NOVLX
:
4852 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSrm
),
4853 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4854 case X86::VMOVAPSZ256rm_NOVLX
:
4855 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYrm
),
4856 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4857 case X86::VMOVUPSZ256rm_NOVLX
:
4858 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYrm
),
4859 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4860 case X86::VMOVAPSZ128mr_NOVLX
:
4861 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSmr
),
4862 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4863 case X86::VMOVUPSZ128mr_NOVLX
:
4864 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSmr
),
4865 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4866 case X86::VMOVAPSZ256mr_NOVLX
:
4867 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYmr
),
4868 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4869 case X86::VMOVUPSZ256mr_NOVLX
:
4870 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYmr
),
4871 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4872 case X86::MOV32ri64
: {
4873 Register Reg
= MIB
.getReg(0);
4874 Register Reg32
= RI
.getSubReg(Reg
, X86::sub_32bit
);
4875 MI
.setDesc(get(X86::MOV32ri
));
4876 MIB
->getOperand(0).setReg(Reg32
);
4877 MIB
.addReg(Reg
, RegState::ImplicitDefine
);
4881 // KNL does not recognize dependency-breaking idioms for mask registers,
4882 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4883 // Using %k0 as the undef input register is a performance heuristic based
4884 // on the assumption that %k0 is used less frequently than the other mask
4885 // registers, since it is not usable as a write mask.
4886 // FIXME: A more advanced approach would be to choose the best input mask
4887 // register based on context.
4888 case X86::KSET0W
: return Expand2AddrKreg(MIB
, get(X86::KXORWrr
), X86::K0
);
4889 case X86::KSET0D
: return Expand2AddrKreg(MIB
, get(X86::KXORDrr
), X86::K0
);
4890 case X86::KSET0Q
: return Expand2AddrKreg(MIB
, get(X86::KXORQrr
), X86::K0
);
4891 case X86::KSET1W
: return Expand2AddrKreg(MIB
, get(X86::KXNORWrr
), X86::K0
);
4892 case X86::KSET1D
: return Expand2AddrKreg(MIB
, get(X86::KXNORDrr
), X86::K0
);
4893 case X86::KSET1Q
: return Expand2AddrKreg(MIB
, get(X86::KXNORQrr
), X86::K0
);
4894 case TargetOpcode::LOAD_STACK_GUARD
:
4895 expandLoadStackGuard(MIB
, *this);
4899 return expandXorFP(MIB
, *this);
4900 case X86::SHLDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHLD32rri8
));
4901 case X86::SHLDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHLD64rri8
));
4902 case X86::SHRDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHRD32rri8
));
4903 case X86::SHRDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHRD64rri8
));
4904 case X86::ADD8rr_DB
: MIB
->setDesc(get(X86::OR8rr
)); break;
4905 case X86::ADD16rr_DB
: MIB
->setDesc(get(X86::OR16rr
)); break;
4906 case X86::ADD32rr_DB
: MIB
->setDesc(get(X86::OR32rr
)); break;
4907 case X86::ADD64rr_DB
: MIB
->setDesc(get(X86::OR64rr
)); break;
4908 case X86::ADD8ri_DB
: MIB
->setDesc(get(X86::OR8ri
)); break;
4909 case X86::ADD16ri_DB
: MIB
->setDesc(get(X86::OR16ri
)); break;
4910 case X86::ADD32ri_DB
: MIB
->setDesc(get(X86::OR32ri
)); break;
4911 case X86::ADD64ri32_DB
: MIB
->setDesc(get(X86::OR64ri32
)); break;
4912 case X86::ADD16ri8_DB
: MIB
->setDesc(get(X86::OR16ri8
)); break;
4913 case X86::ADD32ri8_DB
: MIB
->setDesc(get(X86::OR32ri8
)); break;
4914 case X86::ADD64ri8_DB
: MIB
->setDesc(get(X86::OR64ri8
)); break;
4919 /// Return true for all instructions that only update
4920 /// the first 32 or 64-bits of the destination register and leave the rest
4921 /// unmodified. This can be used to avoid folding loads if the instructions
4922 /// only update part of the destination register, and the non-updated part is
4923 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4924 /// instructions breaks the partial register dependency and it can improve
4925 /// performance. e.g.:
4927 /// movss (%rdi), %xmm0
4928 /// cvtss2sd %xmm0, %xmm0
4931 /// cvtss2sd (%rdi), %xmm0
4933 /// FIXME: This should be turned into a TSFlags.
4935 static bool hasPartialRegUpdate(unsigned Opcode
,
4936 const X86Subtarget
&Subtarget
,
4937 bool ForLoadFold
= false) {
4939 case X86::CVTSI2SSrr
:
4940 case X86::CVTSI2SSrm
:
4941 case X86::CVTSI642SSrr
:
4942 case X86::CVTSI642SSrm
:
4943 case X86::CVTSI2SDrr
:
4944 case X86::CVTSI2SDrm
:
4945 case X86::CVTSI642SDrr
:
4946 case X86::CVTSI642SDrm
:
4947 // Load folding won't effect the undef register update since the input is
4949 return !ForLoadFold
;
4950 case X86::CVTSD2SSrr
:
4951 case X86::CVTSD2SSrm
:
4952 case X86::CVTSS2SDrr
:
4953 case X86::CVTSS2SDrm
:
4960 case X86::RCPSSr_Int
:
4961 case X86::RCPSSm_Int
:
4968 case X86::RSQRTSSr_Int
:
4969 case X86::RSQRTSSm_Int
:
4972 case X86::SQRTSSr_Int
:
4973 case X86::SQRTSSm_Int
:
4976 case X86::SQRTSDr_Int
:
4977 case X86::SQRTSDm_Int
:
4980 case X86::POPCNT32rm
:
4981 case X86::POPCNT32rr
:
4982 case X86::POPCNT64rm
:
4983 case X86::POPCNT64rr
:
4984 return Subtarget
.hasPOPCNTFalseDeps();
4985 case X86::LZCNT32rm
:
4986 case X86::LZCNT32rr
:
4987 case X86::LZCNT64rm
:
4988 case X86::LZCNT64rr
:
4989 case X86::TZCNT32rm
:
4990 case X86::TZCNT32rr
:
4991 case X86::TZCNT64rm
:
4992 case X86::TZCNT64rr
:
4993 return Subtarget
.hasLZCNTFalseDeps();
4999 /// Inform the BreakFalseDeps pass how many idle
5000 /// instructions we would like before a partial register update.
5001 unsigned X86InstrInfo::getPartialRegUpdateClearance(
5002 const MachineInstr
&MI
, unsigned OpNum
,
5003 const TargetRegisterInfo
*TRI
) const {
5004 if (OpNum
!= 0 || !hasPartialRegUpdate(MI
.getOpcode(), Subtarget
))
5007 // If MI is marked as reading Reg, the partial register update is wanted.
5008 const MachineOperand
&MO
= MI
.getOperand(0);
5009 Register Reg
= MO
.getReg();
5010 if (Reg
.isVirtual()) {
5011 if (MO
.readsReg() || MI
.readsVirtualRegister(Reg
))
5014 if (MI
.readsRegister(Reg
, TRI
))
5018 // If any instructions in the clearance range are reading Reg, insert a
5019 // dependency breaking instruction, which is inexpensive and is likely to
5020 // be hidden in other instruction's cycles.
5021 return PartialRegUpdateClearance
;
5024 // Return true for any instruction the copies the high bits of the first source
5025 // operand into the unused high bits of the destination operand.
5026 // Also returns true for instructions that have two inputs where one may
5027 // be undef and we want it to use the same register as the other input.
5028 static bool hasUndefRegUpdate(unsigned Opcode
, unsigned OpNum
,
5029 bool ForLoadFold
= false) {
5030 // Set the OpNum parameter to the first source operand.
5032 case X86::MMX_PUNPCKHBWirr
:
5033 case X86::MMX_PUNPCKHWDirr
:
5034 case X86::MMX_PUNPCKHDQirr
:
5035 case X86::MMX_PUNPCKLBWirr
:
5036 case X86::MMX_PUNPCKLWDirr
:
5037 case X86::MMX_PUNPCKLDQirr
:
5038 case X86::MOVHLPSrr
:
5039 case X86::PACKSSWBrr
:
5040 case X86::PACKUSWBrr
:
5041 case X86::PACKSSDWrr
:
5042 case X86::PACKUSDWrr
:
5043 case X86::PUNPCKHBWrr
:
5044 case X86::PUNPCKLBWrr
:
5045 case X86::PUNPCKHWDrr
:
5046 case X86::PUNPCKLWDrr
:
5047 case X86::PUNPCKHDQrr
:
5048 case X86::PUNPCKLDQrr
:
5049 case X86::PUNPCKHQDQrr
:
5050 case X86::PUNPCKLQDQrr
:
5051 case X86::SHUFPDrri
:
5052 case X86::SHUFPSrri
:
5053 // These instructions are sometimes used with an undef first or second
5054 // source. Return true here so BreakFalseDeps will assign this source to the
5055 // same register as the first source to avoid a false dependency.
5056 // Operand 1 of these instructions is tied so they're separate from their
5057 // VEX counterparts.
5058 return OpNum
== 2 && !ForLoadFold
;
5060 case X86::VMOVLHPSrr
:
5061 case X86::VMOVLHPSZrr
:
5062 case X86::VPACKSSWBrr
:
5063 case X86::VPACKUSWBrr
:
5064 case X86::VPACKSSDWrr
:
5065 case X86::VPACKUSDWrr
:
5066 case X86::VPACKSSWBZ128rr
:
5067 case X86::VPACKUSWBZ128rr
:
5068 case X86::VPACKSSDWZ128rr
:
5069 case X86::VPACKUSDWZ128rr
:
5070 case X86::VPERM2F128rr
:
5071 case X86::VPERM2I128rr
:
5072 case X86::VSHUFF32X4Z256rri
:
5073 case X86::VSHUFF32X4Zrri
:
5074 case X86::VSHUFF64X2Z256rri
:
5075 case X86::VSHUFF64X2Zrri
:
5076 case X86::VSHUFI32X4Z256rri
:
5077 case X86::VSHUFI32X4Zrri
:
5078 case X86::VSHUFI64X2Z256rri
:
5079 case X86::VSHUFI64X2Zrri
:
5080 case X86::VPUNPCKHBWrr
:
5081 case X86::VPUNPCKLBWrr
:
5082 case X86::VPUNPCKHBWYrr
:
5083 case X86::VPUNPCKLBWYrr
:
5084 case X86::VPUNPCKHBWZ128rr
:
5085 case X86::VPUNPCKLBWZ128rr
:
5086 case X86::VPUNPCKHBWZ256rr
:
5087 case X86::VPUNPCKLBWZ256rr
:
5088 case X86::VPUNPCKHBWZrr
:
5089 case X86::VPUNPCKLBWZrr
:
5090 case X86::VPUNPCKHWDrr
:
5091 case X86::VPUNPCKLWDrr
:
5092 case X86::VPUNPCKHWDYrr
:
5093 case X86::VPUNPCKLWDYrr
:
5094 case X86::VPUNPCKHWDZ128rr
:
5095 case X86::VPUNPCKLWDZ128rr
:
5096 case X86::VPUNPCKHWDZ256rr
:
5097 case X86::VPUNPCKLWDZ256rr
:
5098 case X86::VPUNPCKHWDZrr
:
5099 case X86::VPUNPCKLWDZrr
:
5100 case X86::VPUNPCKHDQrr
:
5101 case X86::VPUNPCKLDQrr
:
5102 case X86::VPUNPCKHDQYrr
:
5103 case X86::VPUNPCKLDQYrr
:
5104 case X86::VPUNPCKHDQZ128rr
:
5105 case X86::VPUNPCKLDQZ128rr
:
5106 case X86::VPUNPCKHDQZ256rr
:
5107 case X86::VPUNPCKLDQZ256rr
:
5108 case X86::VPUNPCKHDQZrr
:
5109 case X86::VPUNPCKLDQZrr
:
5110 case X86::VPUNPCKHQDQrr
:
5111 case X86::VPUNPCKLQDQrr
:
5112 case X86::VPUNPCKHQDQYrr
:
5113 case X86::VPUNPCKLQDQYrr
:
5114 case X86::VPUNPCKHQDQZ128rr
:
5115 case X86::VPUNPCKLQDQZ128rr
:
5116 case X86::VPUNPCKHQDQZ256rr
:
5117 case X86::VPUNPCKLQDQZ256rr
:
5118 case X86::VPUNPCKHQDQZrr
:
5119 case X86::VPUNPCKLQDQZrr
:
5120 // These instructions are sometimes used with an undef first or second
5121 // source. Return true here so BreakFalseDeps will assign this source to the
5122 // same register as the first source to avoid a false dependency.
5123 return (OpNum
== 1 || OpNum
== 2) && !ForLoadFold
;
5125 case X86::VCVTSI2SSrr
:
5126 case X86::VCVTSI2SSrm
:
5127 case X86::VCVTSI2SSrr_Int
:
5128 case X86::VCVTSI2SSrm_Int
:
5129 case X86::VCVTSI642SSrr
:
5130 case X86::VCVTSI642SSrm
:
5131 case X86::VCVTSI642SSrr_Int
:
5132 case X86::VCVTSI642SSrm_Int
:
5133 case X86::VCVTSI2SDrr
:
5134 case X86::VCVTSI2SDrm
:
5135 case X86::VCVTSI2SDrr_Int
:
5136 case X86::VCVTSI2SDrm_Int
:
5137 case X86::VCVTSI642SDrr
:
5138 case X86::VCVTSI642SDrm
:
5139 case X86::VCVTSI642SDrr_Int
:
5140 case X86::VCVTSI642SDrm_Int
:
5142 case X86::VCVTSI2SSZrr
:
5143 case X86::VCVTSI2SSZrm
:
5144 case X86::VCVTSI2SSZrr_Int
:
5145 case X86::VCVTSI2SSZrrb_Int
:
5146 case X86::VCVTSI2SSZrm_Int
:
5147 case X86::VCVTSI642SSZrr
:
5148 case X86::VCVTSI642SSZrm
:
5149 case X86::VCVTSI642SSZrr_Int
:
5150 case X86::VCVTSI642SSZrrb_Int
:
5151 case X86::VCVTSI642SSZrm_Int
:
5152 case X86::VCVTSI2SDZrr
:
5153 case X86::VCVTSI2SDZrm
:
5154 case X86::VCVTSI2SDZrr_Int
:
5155 case X86::VCVTSI2SDZrm_Int
:
5156 case X86::VCVTSI642SDZrr
:
5157 case X86::VCVTSI642SDZrm
:
5158 case X86::VCVTSI642SDZrr_Int
:
5159 case X86::VCVTSI642SDZrrb_Int
:
5160 case X86::VCVTSI642SDZrm_Int
:
5161 case X86::VCVTUSI2SSZrr
:
5162 case X86::VCVTUSI2SSZrm
:
5163 case X86::VCVTUSI2SSZrr_Int
:
5164 case X86::VCVTUSI2SSZrrb_Int
:
5165 case X86::VCVTUSI2SSZrm_Int
:
5166 case X86::VCVTUSI642SSZrr
:
5167 case X86::VCVTUSI642SSZrm
:
5168 case X86::VCVTUSI642SSZrr_Int
:
5169 case X86::VCVTUSI642SSZrrb_Int
:
5170 case X86::VCVTUSI642SSZrm_Int
:
5171 case X86::VCVTUSI2SDZrr
:
5172 case X86::VCVTUSI2SDZrm
:
5173 case X86::VCVTUSI2SDZrr_Int
:
5174 case X86::VCVTUSI2SDZrm_Int
:
5175 case X86::VCVTUSI642SDZrr
:
5176 case X86::VCVTUSI642SDZrm
:
5177 case X86::VCVTUSI642SDZrr_Int
:
5178 case X86::VCVTUSI642SDZrrb_Int
:
5179 case X86::VCVTUSI642SDZrm_Int
:
5180 case X86::VCVTSI2SHZrr
:
5181 case X86::VCVTSI2SHZrm
:
5182 case X86::VCVTSI2SHZrr_Int
:
5183 case X86::VCVTSI2SHZrrb_Int
:
5184 case X86::VCVTSI2SHZrm_Int
:
5185 case X86::VCVTSI642SHZrr
:
5186 case X86::VCVTSI642SHZrm
:
5187 case X86::VCVTSI642SHZrr_Int
:
5188 case X86::VCVTSI642SHZrrb_Int
:
5189 case X86::VCVTSI642SHZrm_Int
:
5190 case X86::VCVTUSI2SHZrr
:
5191 case X86::VCVTUSI2SHZrm
:
5192 case X86::VCVTUSI2SHZrr_Int
:
5193 case X86::VCVTUSI2SHZrrb_Int
:
5194 case X86::VCVTUSI2SHZrm_Int
:
5195 case X86::VCVTUSI642SHZrr
:
5196 case X86::VCVTUSI642SHZrm
:
5197 case X86::VCVTUSI642SHZrr_Int
:
5198 case X86::VCVTUSI642SHZrrb_Int
:
5199 case X86::VCVTUSI642SHZrm_Int
:
5200 // Load folding won't effect the undef register update since the input is
5202 return OpNum
== 1 && !ForLoadFold
;
5203 case X86::VCVTSD2SSrr
:
5204 case X86::VCVTSD2SSrm
:
5205 case X86::VCVTSD2SSrr_Int
:
5206 case X86::VCVTSD2SSrm_Int
:
5207 case X86::VCVTSS2SDrr
:
5208 case X86::VCVTSS2SDrm
:
5209 case X86::VCVTSS2SDrr_Int
:
5210 case X86::VCVTSS2SDrm_Int
:
5212 case X86::VRCPSSr_Int
:
5214 case X86::VRCPSSm_Int
:
5215 case X86::VROUNDSDr
:
5216 case X86::VROUNDSDm
:
5217 case X86::VROUNDSDr_Int
:
5218 case X86::VROUNDSDm_Int
:
5219 case X86::VROUNDSSr
:
5220 case X86::VROUNDSSm
:
5221 case X86::VROUNDSSr_Int
:
5222 case X86::VROUNDSSm_Int
:
5223 case X86::VRSQRTSSr
:
5224 case X86::VRSQRTSSr_Int
:
5225 case X86::VRSQRTSSm
:
5226 case X86::VRSQRTSSm_Int
:
5228 case X86::VSQRTSSr_Int
:
5230 case X86::VSQRTSSm_Int
:
5232 case X86::VSQRTSDr_Int
:
5234 case X86::VSQRTSDm_Int
:
5236 case X86::VCVTSD2SSZrr
:
5237 case X86::VCVTSD2SSZrr_Int
:
5238 case X86::VCVTSD2SSZrrb_Int
:
5239 case X86::VCVTSD2SSZrm
:
5240 case X86::VCVTSD2SSZrm_Int
:
5241 case X86::VCVTSS2SDZrr
:
5242 case X86::VCVTSS2SDZrr_Int
:
5243 case X86::VCVTSS2SDZrrb_Int
:
5244 case X86::VCVTSS2SDZrm
:
5245 case X86::VCVTSS2SDZrm_Int
:
5246 case X86::VGETEXPSDZr
:
5247 case X86::VGETEXPSDZrb
:
5248 case X86::VGETEXPSDZm
:
5249 case X86::VGETEXPSSZr
:
5250 case X86::VGETEXPSSZrb
:
5251 case X86::VGETEXPSSZm
:
5252 case X86::VGETMANTSDZrri
:
5253 case X86::VGETMANTSDZrrib
:
5254 case X86::VGETMANTSDZrmi
:
5255 case X86::VGETMANTSSZrri
:
5256 case X86::VGETMANTSSZrrib
:
5257 case X86::VGETMANTSSZrmi
:
5258 case X86::VRNDSCALESDZr
:
5259 case X86::VRNDSCALESDZr_Int
:
5260 case X86::VRNDSCALESDZrb_Int
:
5261 case X86::VRNDSCALESDZm
:
5262 case X86::VRNDSCALESDZm_Int
:
5263 case X86::VRNDSCALESSZr
:
5264 case X86::VRNDSCALESSZr_Int
:
5265 case X86::VRNDSCALESSZrb_Int
:
5266 case X86::VRNDSCALESSZm
:
5267 case X86::VRNDSCALESSZm_Int
:
5268 case X86::VRCP14SDZrr
:
5269 case X86::VRCP14SDZrm
:
5270 case X86::VRCP14SSZrr
:
5271 case X86::VRCP14SSZrm
:
5272 case X86::VRCPSHZrr
:
5273 case X86::VRCPSHZrm
:
5274 case X86::VRSQRTSHZrr
:
5275 case X86::VRSQRTSHZrm
:
5276 case X86::VREDUCESHZrmi
:
5277 case X86::VREDUCESHZrri
:
5278 case X86::VREDUCESHZrrib
:
5279 case X86::VGETEXPSHZr
:
5280 case X86::VGETEXPSHZrb
:
5281 case X86::VGETEXPSHZm
:
5282 case X86::VGETMANTSHZrri
:
5283 case X86::VGETMANTSHZrrib
:
5284 case X86::VGETMANTSHZrmi
:
5285 case X86::VRNDSCALESHZr
:
5286 case X86::VRNDSCALESHZr_Int
:
5287 case X86::VRNDSCALESHZrb_Int
:
5288 case X86::VRNDSCALESHZm
:
5289 case X86::VRNDSCALESHZm_Int
:
5290 case X86::VSQRTSHZr
:
5291 case X86::VSQRTSHZr_Int
:
5292 case X86::VSQRTSHZrb_Int
:
5293 case X86::VSQRTSHZm
:
5294 case X86::VSQRTSHZm_Int
:
5295 case X86::VRCP28SDZr
:
5296 case X86::VRCP28SDZrb
:
5297 case X86::VRCP28SDZm
:
5298 case X86::VRCP28SSZr
:
5299 case X86::VRCP28SSZrb
:
5300 case X86::VRCP28SSZm
:
5301 case X86::VREDUCESSZrmi
:
5302 case X86::VREDUCESSZrri
:
5303 case X86::VREDUCESSZrrib
:
5304 case X86::VRSQRT14SDZrr
:
5305 case X86::VRSQRT14SDZrm
:
5306 case X86::VRSQRT14SSZrr
:
5307 case X86::VRSQRT14SSZrm
:
5308 case X86::VRSQRT28SDZr
:
5309 case X86::VRSQRT28SDZrb
:
5310 case X86::VRSQRT28SDZm
:
5311 case X86::VRSQRT28SSZr
:
5312 case X86::VRSQRT28SSZrb
:
5313 case X86::VRSQRT28SSZm
:
5314 case X86::VSQRTSSZr
:
5315 case X86::VSQRTSSZr_Int
:
5316 case X86::VSQRTSSZrb_Int
:
5317 case X86::VSQRTSSZm
:
5318 case X86::VSQRTSSZm_Int
:
5319 case X86::VSQRTSDZr
:
5320 case X86::VSQRTSDZr_Int
:
5321 case X86::VSQRTSDZrb_Int
:
5322 case X86::VSQRTSDZm
:
5323 case X86::VSQRTSDZm_Int
:
5324 case X86::VCVTSD2SHZrr
:
5325 case X86::VCVTSD2SHZrr_Int
:
5326 case X86::VCVTSD2SHZrrb_Int
:
5327 case X86::VCVTSD2SHZrm
:
5328 case X86::VCVTSD2SHZrm_Int
:
5329 case X86::VCVTSS2SHZrr
:
5330 case X86::VCVTSS2SHZrr_Int
:
5331 case X86::VCVTSS2SHZrrb_Int
:
5332 case X86::VCVTSS2SHZrm
:
5333 case X86::VCVTSS2SHZrm_Int
:
5334 case X86::VCVTSH2SDZrr
:
5335 case X86::VCVTSH2SDZrr_Int
:
5336 case X86::VCVTSH2SDZrrb_Int
:
5337 case X86::VCVTSH2SDZrm
:
5338 case X86::VCVTSH2SDZrm_Int
:
5339 case X86::VCVTSH2SSZrr
:
5340 case X86::VCVTSH2SSZrr_Int
:
5341 case X86::VCVTSH2SSZrrb_Int
:
5342 case X86::VCVTSH2SSZrm
:
5343 case X86::VCVTSH2SSZrm_Int
:
5345 case X86::VMOVSSZrrk
:
5346 case X86::VMOVSDZrrk
:
5347 return OpNum
== 3 && !ForLoadFold
;
5348 case X86::VMOVSSZrrkz
:
5349 case X86::VMOVSDZrrkz
:
5350 return OpNum
== 2 && !ForLoadFold
;
5356 /// Inform the BreakFalseDeps pass how many idle instructions we would like
5357 /// before certain undef register reads.
5359 /// This catches the VCVTSI2SD family of instructions:
5361 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5363 /// We should to be careful *not* to catch VXOR idioms which are presumably
5364 /// handled specially in the pipeline:
5366 /// vxorps undef %xmm1, undef %xmm1, %xmm1
5368 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5369 /// high bits that are passed-through are not live.
5371 X86InstrInfo::getUndefRegClearance(const MachineInstr
&MI
, unsigned OpNum
,
5372 const TargetRegisterInfo
*TRI
) const {
5373 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
5374 if (Register::isPhysicalRegister(MO
.getReg()) &&
5375 hasUndefRegUpdate(MI
.getOpcode(), OpNum
))
5376 return UndefRegClearance
;
5381 void X86InstrInfo::breakPartialRegDependency(
5382 MachineInstr
&MI
, unsigned OpNum
, const TargetRegisterInfo
*TRI
) const {
5383 Register Reg
= MI
.getOperand(OpNum
).getReg();
5384 // If MI kills this register, the false dependence is already broken.
5385 if (MI
.killsRegister(Reg
, TRI
))
5388 if (X86::VR128RegClass
.contains(Reg
)) {
5389 // These instructions are all floating point domain, so xorps is the best
5391 unsigned Opc
= Subtarget
.hasAVX() ? X86::VXORPSrr
: X86::XORPSrr
;
5392 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(Opc
), Reg
)
5393 .addReg(Reg
, RegState::Undef
)
5394 .addReg(Reg
, RegState::Undef
);
5395 MI
.addRegisterKilled(Reg
, TRI
, true);
5396 } else if (X86::VR256RegClass
.contains(Reg
)) {
5397 // Use vxorps to clear the full ymm register.
5398 // It wants to read and write the xmm sub-register.
5399 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_xmm
);
5400 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::VXORPSrr
), XReg
)
5401 .addReg(XReg
, RegState::Undef
)
5402 .addReg(XReg
, RegState::Undef
)
5403 .addReg(Reg
, RegState::ImplicitDefine
);
5404 MI
.addRegisterKilled(Reg
, TRI
, true);
5405 } else if (X86::GR64RegClass
.contains(Reg
)) {
5406 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5408 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_32bit
);
5409 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), XReg
)
5410 .addReg(XReg
, RegState::Undef
)
5411 .addReg(XReg
, RegState::Undef
)
5412 .addReg(Reg
, RegState::ImplicitDefine
);
5413 MI
.addRegisterKilled(Reg
, TRI
, true);
5414 } else if (X86::GR32RegClass
.contains(Reg
)) {
5415 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), Reg
)
5416 .addReg(Reg
, RegState::Undef
)
5417 .addReg(Reg
, RegState::Undef
);
5418 MI
.addRegisterKilled(Reg
, TRI
, true);
5422 static void addOperands(MachineInstrBuilder
&MIB
, ArrayRef
<MachineOperand
> MOs
,
5423 int PtrOffset
= 0) {
5424 unsigned NumAddrOps
= MOs
.size();
5426 if (NumAddrOps
< 4) {
5427 // FrameIndex only - add an immediate offset (whether its zero or not).
5428 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
5430 addOffset(MIB
, PtrOffset
);
5432 // General Memory Addressing - we need to add any offset to an existing
5434 assert(MOs
.size() == 5 && "Unexpected memory operand list length");
5435 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
) {
5436 const MachineOperand
&MO
= MOs
[i
];
5437 if (i
== 3 && PtrOffset
!= 0) {
5438 MIB
.addDisp(MO
, PtrOffset
);
5446 static void updateOperandRegConstraints(MachineFunction
&MF
,
5447 MachineInstr
&NewMI
,
5448 const TargetInstrInfo
&TII
) {
5449 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
5450 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
5452 for (int Idx
: llvm::seq
<int>(0, NewMI
.getNumOperands())) {
5453 MachineOperand
&MO
= NewMI
.getOperand(Idx
);
5454 // We only need to update constraints on virtual register operands.
5457 Register Reg
= MO
.getReg();
5458 if (!Reg
.isVirtual())
5461 auto *NewRC
= MRI
.constrainRegClass(
5462 Reg
, TII
.getRegClass(NewMI
.getDesc(), Idx
, &TRI
, MF
));
5465 dbgs() << "WARNING: Unable to update register constraint for operand "
5466 << Idx
<< " of instruction:\n";
5467 NewMI
.dump(); dbgs() << "\n");
5472 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
5473 ArrayRef
<MachineOperand
> MOs
,
5474 MachineBasicBlock::iterator InsertPt
,
5476 const TargetInstrInfo
&TII
) {
5477 // Create the base instruction with the memory operand as the first part.
5478 // Omit the implicit operands, something BuildMI can't do.
5479 MachineInstr
*NewMI
=
5480 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
5481 MachineInstrBuilder
MIB(MF
, NewMI
);
5482 addOperands(MIB
, MOs
);
5484 // Loop over the rest of the ri operands, converting them over.
5485 unsigned NumOps
= MI
.getDesc().getNumOperands() - 2;
5486 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
5487 MachineOperand
&MO
= MI
.getOperand(i
+ 2);
5490 for (unsigned i
= NumOps
+ 2, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
5491 MachineOperand
&MO
= MI
.getOperand(i
);
5495 updateOperandRegConstraints(MF
, *NewMI
, TII
);
5497 MachineBasicBlock
*MBB
= InsertPt
->getParent();
5498 MBB
->insert(InsertPt
, NewMI
);
5503 static MachineInstr
*FuseInst(MachineFunction
&MF
, unsigned Opcode
,
5504 unsigned OpNo
, ArrayRef
<MachineOperand
> MOs
,
5505 MachineBasicBlock::iterator InsertPt
,
5506 MachineInstr
&MI
, const TargetInstrInfo
&TII
,
5507 int PtrOffset
= 0) {
5508 // Omit the implicit operands, something BuildMI can't do.
5509 MachineInstr
*NewMI
=
5510 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
5511 MachineInstrBuilder
MIB(MF
, NewMI
);
5513 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
5514 MachineOperand
&MO
= MI
.getOperand(i
);
5516 assert(MO
.isReg() && "Expected to fold into reg operand!");
5517 addOperands(MIB
, MOs
, PtrOffset
);
5523 updateOperandRegConstraints(MF
, *NewMI
, TII
);
5525 // Copy the NoFPExcept flag from the instruction we're fusing.
5526 if (MI
.getFlag(MachineInstr::MIFlag::NoFPExcept
))
5527 NewMI
->setFlag(MachineInstr::MIFlag::NoFPExcept
);
5529 MachineBasicBlock
*MBB
= InsertPt
->getParent();
5530 MBB
->insert(InsertPt
, NewMI
);
5535 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
5536 ArrayRef
<MachineOperand
> MOs
,
5537 MachineBasicBlock::iterator InsertPt
,
5539 MachineInstrBuilder MIB
= BuildMI(*InsertPt
->getParent(), InsertPt
,
5540 MI
.getDebugLoc(), TII
.get(Opcode
));
5541 addOperands(MIB
, MOs
);
5542 return MIB
.addImm(0);
5545 MachineInstr
*X86InstrInfo::foldMemoryOperandCustom(
5546 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
5547 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
5548 unsigned Size
, Align Alignment
) const {
5549 switch (MI
.getOpcode()) {
5550 case X86::INSERTPSrr
:
5551 case X86::VINSERTPSrr
:
5552 case X86::VINSERTPSZrr
:
5553 // Attempt to convert the load of inserted vector into a fold load
5554 // of a single float.
5556 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
5557 unsigned ZMask
= Imm
& 15;
5558 unsigned DstIdx
= (Imm
>> 4) & 3;
5559 unsigned SrcIdx
= (Imm
>> 6) & 3;
5561 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5562 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
5563 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
5564 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Alignment
>= Align(4)) {
5565 int PtrOffset
= SrcIdx
* 4;
5566 unsigned NewImm
= (DstIdx
<< 4) | ZMask
;
5567 unsigned NewOpCode
=
5568 (MI
.getOpcode() == X86::VINSERTPSZrr
) ? X86::VINSERTPSZrm
:
5569 (MI
.getOpcode() == X86::VINSERTPSrr
) ? X86::VINSERTPSrm
:
5571 MachineInstr
*NewMI
=
5572 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, PtrOffset
);
5573 NewMI
->getOperand(NewMI
->getNumOperands() - 1).setImm(NewImm
);
5578 case X86::MOVHLPSrr
:
5579 case X86::VMOVHLPSrr
:
5580 case X86::VMOVHLPSZrr
:
5581 // Move the upper 64-bits of the second operand to the lower 64-bits.
5582 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5583 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5585 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5586 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
5587 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
5588 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Alignment
>= Align(8)) {
5589 unsigned NewOpCode
=
5590 (MI
.getOpcode() == X86::VMOVHLPSZrr
) ? X86::VMOVLPSZ128rm
:
5591 (MI
.getOpcode() == X86::VMOVHLPSrr
) ? X86::VMOVLPSrm
:
5593 MachineInstr
*NewMI
=
5594 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, 8);
5599 case X86::UNPCKLPDrr
:
5600 // If we won't be able to fold this to the memory form of UNPCKL, use
5601 // MOVHPD instead. Done as custom because we can't have this in the load
5604 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5605 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
5606 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
5607 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Alignment
< Align(16)) {
5608 MachineInstr
*NewMI
=
5609 FuseInst(MF
, X86::MOVHPDrm
, OpNum
, MOs
, InsertPt
, MI
, *this);
5619 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction
&MF
,
5621 if (!hasUndefRegUpdate(MI
.getOpcode(), 1, /*ForLoadFold*/true) ||
5622 !MI
.getOperand(1).isReg())
5625 // The are two cases we need to handle depending on where in the pipeline
5626 // the folding attempt is being made.
5627 // -Register has the undef flag set.
5628 // -Register is produced by the IMPLICIT_DEF instruction.
5630 if (MI
.getOperand(1).isUndef())
5633 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5634 MachineInstr
*VRegDef
= RegInfo
.getUniqueVRegDef(MI
.getOperand(1).getReg());
5635 return VRegDef
&& VRegDef
->isImplicitDef();
5638 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
5639 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
5640 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
5641 unsigned Size
, Align Alignment
, bool AllowCommute
) const {
5642 bool isSlowTwoMemOps
= Subtarget
.slowTwoMemOps();
5643 bool isTwoAddrFold
= false;
5645 // For CPUs that favor the register form of a call or push,
5646 // do not fold loads into calls or pushes, unless optimizing for size
5648 if (isSlowTwoMemOps
&& !MF
.getFunction().hasMinSize() &&
5649 (MI
.getOpcode() == X86::CALL32r
|| MI
.getOpcode() == X86::CALL64r
||
5650 MI
.getOpcode() == X86::PUSH16r
|| MI
.getOpcode() == X86::PUSH32r
||
5651 MI
.getOpcode() == X86::PUSH64r
))
5654 // Avoid partial and undef register update stalls unless optimizing for size.
5655 if (!MF
.getFunction().hasOptSize() &&
5656 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
5657 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
5660 unsigned NumOps
= MI
.getDesc().getNumOperands();
5662 NumOps
> 1 && MI
.getDesc().getOperandConstraint(1, MCOI::TIED_TO
) != -1;
5664 // FIXME: AsmPrinter doesn't know how to handle
5665 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5666 if (MI
.getOpcode() == X86::ADD32ri
&&
5667 MI
.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS
)
5670 // GOTTPOFF relocation loads can only be folded into add instructions.
5671 // FIXME: Need to exclude other relocations that only support specific
5673 if (MOs
.size() == X86::AddrNumOperands
&&
5674 MOs
[X86::AddrDisp
].getTargetFlags() == X86II::MO_GOTTPOFF
&&
5675 MI
.getOpcode() != X86::ADD64rr
)
5678 MachineInstr
*NewMI
= nullptr;
5680 // Attempt to fold any custom cases we have.
5681 if (MachineInstr
*CustomMI
= foldMemoryOperandCustom(
5682 MF
, MI
, OpNum
, MOs
, InsertPt
, Size
, Alignment
))
5685 const X86MemoryFoldTableEntry
*I
= nullptr;
5687 // Folding a memory location into the two-address part of a two-address
5688 // instruction is different than folding it other places. It requires
5689 // replacing the *two* registers with the memory location.
5690 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2 && MI
.getOperand(0).isReg() &&
5691 MI
.getOperand(1).isReg() &&
5692 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg()) {
5693 I
= lookupTwoAddrFoldTable(MI
.getOpcode());
5694 isTwoAddrFold
= true;
5697 if (MI
.getOpcode() == X86::MOV32r0
) {
5698 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, InsertPt
, MI
);
5704 I
= lookupFoldTable(MI
.getOpcode(), OpNum
);
5708 unsigned Opcode
= I
->DstOp
;
5710 isTwoAddrFold
|| (OpNum
== 0 && I
->Flags
& TB_FOLDED_LOAD
) || OpNum
> 0;
5712 isTwoAddrFold
|| (OpNum
== 0 && I
->Flags
& TB_FOLDED_STORE
);
5713 MaybeAlign MinAlign
=
5714 decodeMaybeAlign((I
->Flags
& TB_ALIGN_MASK
) >> TB_ALIGN_SHIFT
);
5715 if (MinAlign
&& Alignment
< *MinAlign
)
5717 bool NarrowToMOV32rm
= false;
5719 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5720 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
,
5722 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
5723 // Check if it's safe to fold the load. If the size of the object is
5724 // narrower than the load width, then it's not.
5725 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
5726 if (FoldedLoad
&& Size
< RCSize
) {
5727 // If this is a 64-bit load, but the spill slot is 32, then we can do
5728 // a 32-bit load which is implicitly zero-extended. This likely is
5729 // due to live interval analysis remat'ing a load from stack slot.
5730 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
5732 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
5734 Opcode
= X86::MOV32rm
;
5735 NarrowToMOV32rm
= true;
5737 // For stores, make sure the size of the object is equal to the size of
5738 // the store. If the object is larger, the extra bits would be garbage. If
5739 // the object is smaller we might overwrite another object or fault.
5740 if (FoldedStore
&& Size
!= RCSize
)
5745 NewMI
= FuseTwoAddrInst(MF
, Opcode
, MOs
, InsertPt
, MI
, *this);
5747 NewMI
= FuseInst(MF
, Opcode
, OpNum
, MOs
, InsertPt
, MI
, *this);
5749 if (NarrowToMOV32rm
) {
5750 // If this is the special case where we use a MOV32rm to load a 32-bit
5751 // value and zero-extend the top bits. Change the destination register
5753 Register DstReg
= NewMI
->getOperand(0).getReg();
5754 if (DstReg
.isPhysical())
5755 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
, X86::sub_32bit
));
5757 NewMI
->getOperand(0).setSubReg(X86::sub_32bit
);
5762 // If the instruction and target operand are commutable, commute the
5763 // instruction and try again.
5765 unsigned CommuteOpIdx1
= OpNum
, CommuteOpIdx2
= CommuteAnyOperandIndex
;
5766 if (findCommutedOpIndices(MI
, CommuteOpIdx1
, CommuteOpIdx2
)) {
5767 bool HasDef
= MI
.getDesc().getNumDefs();
5768 Register Reg0
= HasDef
? MI
.getOperand(0).getReg() : Register();
5769 Register Reg1
= MI
.getOperand(CommuteOpIdx1
).getReg();
5770 Register Reg2
= MI
.getOperand(CommuteOpIdx2
).getReg();
5772 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx1
, MCOI::TIED_TO
);
5774 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx2
, MCOI::TIED_TO
);
5776 // If either of the commutable operands are tied to the destination
5777 // then we can not commute + fold.
5778 if ((HasDef
&& Reg0
== Reg1
&& Tied1
) ||
5779 (HasDef
&& Reg0
== Reg2
&& Tied2
))
5782 MachineInstr
*CommutedMI
=
5783 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
5785 // Unable to commute.
5788 if (CommutedMI
!= &MI
) {
5789 // New instruction. We can't fold from this.
5790 CommutedMI
->eraseFromParent();
5794 // Attempt to fold with the commuted version of the instruction.
5795 NewMI
= foldMemoryOperandImpl(MF
, MI
, CommuteOpIdx2
, MOs
, InsertPt
, Size
,
5796 Alignment
, /*AllowCommute=*/false);
5800 // Folding failed again - undo the commute before returning.
5801 MachineInstr
*UncommutedMI
=
5802 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
5803 if (!UncommutedMI
) {
5804 // Unable to commute.
5807 if (UncommutedMI
!= &MI
) {
5808 // New instruction. It doesn't need to be kept.
5809 UncommutedMI
->eraseFromParent();
5813 // Return here to prevent duplicate fuse failure report.
5819 if (PrintFailedFusing
&& !MI
.isCopy())
5820 dbgs() << "We failed to fuse operand " << OpNum
<< " in " << MI
;
5825 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
5826 ArrayRef
<unsigned> Ops
,
5827 MachineBasicBlock::iterator InsertPt
,
5828 int FrameIndex
, LiveIntervals
*LIS
,
5829 VirtRegMap
*VRM
) const {
5830 // Check switch flag
5834 // Avoid partial and undef register update stalls unless optimizing for size.
5835 if (!MF
.getFunction().hasOptSize() &&
5836 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
5837 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
5840 // Don't fold subreg spills, or reloads that use a high subreg.
5841 for (auto Op
: Ops
) {
5842 MachineOperand
&MO
= MI
.getOperand(Op
);
5843 auto SubReg
= MO
.getSubReg();
5844 if (SubReg
&& (MO
.isDef() || SubReg
== X86::sub_8bit_hi
))
5848 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5849 unsigned Size
= MFI
.getObjectSize(FrameIndex
);
5850 Align Alignment
= MFI
.getObjectAlign(FrameIndex
);
5851 // If the function stack isn't realigned we don't want to fold instructions
5852 // that need increased alignment.
5853 if (!RI
.hasStackRealignment(MF
))
5855 std::min(Alignment
, Subtarget
.getFrameLowering()->getStackAlign());
5856 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
5857 unsigned NewOpc
= 0;
5858 unsigned RCSize
= 0;
5859 switch (MI
.getOpcode()) {
5860 default: return nullptr;
5861 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; RCSize
= 1; break;
5862 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; RCSize
= 2; break;
5863 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; RCSize
= 4; break;
5864 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; RCSize
= 8; break;
5866 // Check if it's safe to fold the load. If the size of the object is
5867 // narrower than the load width, then it's not.
5870 // Change to CMPXXri r, 0 first.
5871 MI
.setDesc(get(NewOpc
));
5872 MI
.getOperand(1).ChangeToImmediate(0);
5873 } else if (Ops
.size() != 1)
5876 return foldMemoryOperandImpl(MF
, MI
, Ops
[0],
5877 MachineOperand::CreateFI(FrameIndex
), InsertPt
,
5878 Size
, Alignment
, /*AllowCommute=*/true);
5881 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5882 /// because the latter uses contents that wouldn't be defined in the folded
5883 /// version. For instance, this transformation isn't legal:
5884 /// movss (%rdi), %xmm0
5885 /// addps %xmm0, %xmm0
5887 /// addps (%rdi), %xmm0
5889 /// But this one is:
5890 /// movss (%rdi), %xmm0
5891 /// addss %xmm0, %xmm0
5893 /// addss (%rdi), %xmm0
5895 static bool isNonFoldablePartialRegisterLoad(const MachineInstr
&LoadMI
,
5896 const MachineInstr
&UserMI
,
5897 const MachineFunction
&MF
) {
5898 unsigned Opc
= LoadMI
.getOpcode();
5899 unsigned UserOpc
= UserMI
.getOpcode();
5900 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5901 const TargetRegisterClass
*RC
=
5902 MF
.getRegInfo().getRegClass(LoadMI
.getOperand(0).getReg());
5903 unsigned RegSize
= TRI
.getRegSizeInBits(*RC
);
5905 if ((Opc
== X86::MOVSSrm
|| Opc
== X86::VMOVSSrm
|| Opc
== X86::VMOVSSZrm
||
5906 Opc
== X86::MOVSSrm_alt
|| Opc
== X86::VMOVSSrm_alt
||
5907 Opc
== X86::VMOVSSZrm_alt
) &&
5909 // These instructions only load 32 bits, we can't fold them if the
5910 // destination register is wider than 32 bits (4 bytes), and its user
5911 // instruction isn't scalar (SS).
5913 case X86::CVTSS2SDrr_Int
:
5914 case X86::VCVTSS2SDrr_Int
:
5915 case X86::VCVTSS2SDZrr_Int
:
5916 case X86::VCVTSS2SDZrr_Intk
:
5917 case X86::VCVTSS2SDZrr_Intkz
:
5918 case X86::CVTSS2SIrr_Int
: case X86::CVTSS2SI64rr_Int
:
5919 case X86::VCVTSS2SIrr_Int
: case X86::VCVTSS2SI64rr_Int
:
5920 case X86::VCVTSS2SIZrr_Int
: case X86::VCVTSS2SI64Zrr_Int
:
5921 case X86::CVTTSS2SIrr_Int
: case X86::CVTTSS2SI64rr_Int
:
5922 case X86::VCVTTSS2SIrr_Int
: case X86::VCVTTSS2SI64rr_Int
:
5923 case X86::VCVTTSS2SIZrr_Int
: case X86::VCVTTSS2SI64Zrr_Int
:
5924 case X86::VCVTSS2USIZrr_Int
: case X86::VCVTSS2USI64Zrr_Int
:
5925 case X86::VCVTTSS2USIZrr_Int
: case X86::VCVTTSS2USI64Zrr_Int
:
5926 case X86::RCPSSr_Int
: case X86::VRCPSSr_Int
:
5927 case X86::RSQRTSSr_Int
: case X86::VRSQRTSSr_Int
:
5928 case X86::ROUNDSSr_Int
: case X86::VROUNDSSr_Int
:
5929 case X86::COMISSrr_Int
: case X86::VCOMISSrr_Int
: case X86::VCOMISSZrr_Int
:
5930 case X86::UCOMISSrr_Int
:case X86::VUCOMISSrr_Int
:case X86::VUCOMISSZrr_Int
:
5931 case X86::ADDSSrr_Int
: case X86::VADDSSrr_Int
: case X86::VADDSSZrr_Int
:
5932 case X86::CMPSSrr_Int
: case X86::VCMPSSrr_Int
: case X86::VCMPSSZrr_Int
:
5933 case X86::DIVSSrr_Int
: case X86::VDIVSSrr_Int
: case X86::VDIVSSZrr_Int
:
5934 case X86::MAXSSrr_Int
: case X86::VMAXSSrr_Int
: case X86::VMAXSSZrr_Int
:
5935 case X86::MINSSrr_Int
: case X86::VMINSSrr_Int
: case X86::VMINSSZrr_Int
:
5936 case X86::MULSSrr_Int
: case X86::VMULSSrr_Int
: case X86::VMULSSZrr_Int
:
5937 case X86::SQRTSSr_Int
: case X86::VSQRTSSr_Int
: case X86::VSQRTSSZr_Int
:
5938 case X86::SUBSSrr_Int
: case X86::VSUBSSrr_Int
: case X86::VSUBSSZrr_Int
:
5939 case X86::VADDSSZrr_Intk
: case X86::VADDSSZrr_Intkz
:
5940 case X86::VCMPSSZrr_Intk
:
5941 case X86::VDIVSSZrr_Intk
: case X86::VDIVSSZrr_Intkz
:
5942 case X86::VMAXSSZrr_Intk
: case X86::VMAXSSZrr_Intkz
:
5943 case X86::VMINSSZrr_Intk
: case X86::VMINSSZrr_Intkz
:
5944 case X86::VMULSSZrr_Intk
: case X86::VMULSSZrr_Intkz
:
5945 case X86::VSQRTSSZr_Intk
: case X86::VSQRTSSZr_Intkz
:
5946 case X86::VSUBSSZrr_Intk
: case X86::VSUBSSZrr_Intkz
:
5947 case X86::VFMADDSS4rr_Int
: case X86::VFNMADDSS4rr_Int
:
5948 case X86::VFMSUBSS4rr_Int
: case X86::VFNMSUBSS4rr_Int
:
5949 case X86::VFMADD132SSr_Int
: case X86::VFNMADD132SSr_Int
:
5950 case X86::VFMADD213SSr_Int
: case X86::VFNMADD213SSr_Int
:
5951 case X86::VFMADD231SSr_Int
: case X86::VFNMADD231SSr_Int
:
5952 case X86::VFMSUB132SSr_Int
: case X86::VFNMSUB132SSr_Int
:
5953 case X86::VFMSUB213SSr_Int
: case X86::VFNMSUB213SSr_Int
:
5954 case X86::VFMSUB231SSr_Int
: case X86::VFNMSUB231SSr_Int
:
5955 case X86::VFMADD132SSZr_Int
: case X86::VFNMADD132SSZr_Int
:
5956 case X86::VFMADD213SSZr_Int
: case X86::VFNMADD213SSZr_Int
:
5957 case X86::VFMADD231SSZr_Int
: case X86::VFNMADD231SSZr_Int
:
5958 case X86::VFMSUB132SSZr_Int
: case X86::VFNMSUB132SSZr_Int
:
5959 case X86::VFMSUB213SSZr_Int
: case X86::VFNMSUB213SSZr_Int
:
5960 case X86::VFMSUB231SSZr_Int
: case X86::VFNMSUB231SSZr_Int
:
5961 case X86::VFMADD132SSZr_Intk
: case X86::VFNMADD132SSZr_Intk
:
5962 case X86::VFMADD213SSZr_Intk
: case X86::VFNMADD213SSZr_Intk
:
5963 case X86::VFMADD231SSZr_Intk
: case X86::VFNMADD231SSZr_Intk
:
5964 case X86::VFMSUB132SSZr_Intk
: case X86::VFNMSUB132SSZr_Intk
:
5965 case X86::VFMSUB213SSZr_Intk
: case X86::VFNMSUB213SSZr_Intk
:
5966 case X86::VFMSUB231SSZr_Intk
: case X86::VFNMSUB231SSZr_Intk
:
5967 case X86::VFMADD132SSZr_Intkz
: case X86::VFNMADD132SSZr_Intkz
:
5968 case X86::VFMADD213SSZr_Intkz
: case X86::VFNMADD213SSZr_Intkz
:
5969 case X86::VFMADD231SSZr_Intkz
: case X86::VFNMADD231SSZr_Intkz
:
5970 case X86::VFMSUB132SSZr_Intkz
: case X86::VFNMSUB132SSZr_Intkz
:
5971 case X86::VFMSUB213SSZr_Intkz
: case X86::VFNMSUB213SSZr_Intkz
:
5972 case X86::VFMSUB231SSZr_Intkz
: case X86::VFNMSUB231SSZr_Intkz
:
5973 case X86::VFIXUPIMMSSZrri
:
5974 case X86::VFIXUPIMMSSZrrik
:
5975 case X86::VFIXUPIMMSSZrrikz
:
5976 case X86::VFPCLASSSSZrr
:
5977 case X86::VFPCLASSSSZrrk
:
5978 case X86::VGETEXPSSZr
:
5979 case X86::VGETEXPSSZrk
:
5980 case X86::VGETEXPSSZrkz
:
5981 case X86::VGETMANTSSZrri
:
5982 case X86::VGETMANTSSZrrik
:
5983 case X86::VGETMANTSSZrrikz
:
5984 case X86::VRANGESSZrri
:
5985 case X86::VRANGESSZrrik
:
5986 case X86::VRANGESSZrrikz
:
5987 case X86::VRCP14SSZrr
:
5988 case X86::VRCP14SSZrrk
:
5989 case X86::VRCP14SSZrrkz
:
5990 case X86::VRCP28SSZr
:
5991 case X86::VRCP28SSZrk
:
5992 case X86::VRCP28SSZrkz
:
5993 case X86::VREDUCESSZrri
:
5994 case X86::VREDUCESSZrrik
:
5995 case X86::VREDUCESSZrrikz
:
5996 case X86::VRNDSCALESSZr_Int
:
5997 case X86::VRNDSCALESSZr_Intk
:
5998 case X86::VRNDSCALESSZr_Intkz
:
5999 case X86::VRSQRT14SSZrr
:
6000 case X86::VRSQRT14SSZrrk
:
6001 case X86::VRSQRT14SSZrrkz
:
6002 case X86::VRSQRT28SSZr
:
6003 case X86::VRSQRT28SSZrk
:
6004 case X86::VRSQRT28SSZrkz
:
6005 case X86::VSCALEFSSZrr
:
6006 case X86::VSCALEFSSZrrk
:
6007 case X86::VSCALEFSSZrrkz
:
6014 if ((Opc
== X86::MOVSDrm
|| Opc
== X86::VMOVSDrm
|| Opc
== X86::VMOVSDZrm
||
6015 Opc
== X86::MOVSDrm_alt
|| Opc
== X86::VMOVSDrm_alt
||
6016 Opc
== X86::VMOVSDZrm_alt
) &&
6018 // These instructions only load 64 bits, we can't fold them if the
6019 // destination register is wider than 64 bits (8 bytes), and its user
6020 // instruction isn't scalar (SD).
6022 case X86::CVTSD2SSrr_Int
:
6023 case X86::VCVTSD2SSrr_Int
:
6024 case X86::VCVTSD2SSZrr_Int
:
6025 case X86::VCVTSD2SSZrr_Intk
:
6026 case X86::VCVTSD2SSZrr_Intkz
:
6027 case X86::CVTSD2SIrr_Int
: case X86::CVTSD2SI64rr_Int
:
6028 case X86::VCVTSD2SIrr_Int
: case X86::VCVTSD2SI64rr_Int
:
6029 case X86::VCVTSD2SIZrr_Int
: case X86::VCVTSD2SI64Zrr_Int
:
6030 case X86::CVTTSD2SIrr_Int
: case X86::CVTTSD2SI64rr_Int
:
6031 case X86::VCVTTSD2SIrr_Int
: case X86::VCVTTSD2SI64rr_Int
:
6032 case X86::VCVTTSD2SIZrr_Int
: case X86::VCVTTSD2SI64Zrr_Int
:
6033 case X86::VCVTSD2USIZrr_Int
: case X86::VCVTSD2USI64Zrr_Int
:
6034 case X86::VCVTTSD2USIZrr_Int
: case X86::VCVTTSD2USI64Zrr_Int
:
6035 case X86::ROUNDSDr_Int
: case X86::VROUNDSDr_Int
:
6036 case X86::COMISDrr_Int
: case X86::VCOMISDrr_Int
: case X86::VCOMISDZrr_Int
:
6037 case X86::UCOMISDrr_Int
:case X86::VUCOMISDrr_Int
:case X86::VUCOMISDZrr_Int
:
6038 case X86::ADDSDrr_Int
: case X86::VADDSDrr_Int
: case X86::VADDSDZrr_Int
:
6039 case X86::CMPSDrr_Int
: case X86::VCMPSDrr_Int
: case X86::VCMPSDZrr_Int
:
6040 case X86::DIVSDrr_Int
: case X86::VDIVSDrr_Int
: case X86::VDIVSDZrr_Int
:
6041 case X86::MAXSDrr_Int
: case X86::VMAXSDrr_Int
: case X86::VMAXSDZrr_Int
:
6042 case X86::MINSDrr_Int
: case X86::VMINSDrr_Int
: case X86::VMINSDZrr_Int
:
6043 case X86::MULSDrr_Int
: case X86::VMULSDrr_Int
: case X86::VMULSDZrr_Int
:
6044 case X86::SQRTSDr_Int
: case X86::VSQRTSDr_Int
: case X86::VSQRTSDZr_Int
:
6045 case X86::SUBSDrr_Int
: case X86::VSUBSDrr_Int
: case X86::VSUBSDZrr_Int
:
6046 case X86::VADDSDZrr_Intk
: case X86::VADDSDZrr_Intkz
:
6047 case X86::VCMPSDZrr_Intk
:
6048 case X86::VDIVSDZrr_Intk
: case X86::VDIVSDZrr_Intkz
:
6049 case X86::VMAXSDZrr_Intk
: case X86::VMAXSDZrr_Intkz
:
6050 case X86::VMINSDZrr_Intk
: case X86::VMINSDZrr_Intkz
:
6051 case X86::VMULSDZrr_Intk
: case X86::VMULSDZrr_Intkz
:
6052 case X86::VSQRTSDZr_Intk
: case X86::VSQRTSDZr_Intkz
:
6053 case X86::VSUBSDZrr_Intk
: case X86::VSUBSDZrr_Intkz
:
6054 case X86::VFMADDSD4rr_Int
: case X86::VFNMADDSD4rr_Int
:
6055 case X86::VFMSUBSD4rr_Int
: case X86::VFNMSUBSD4rr_Int
:
6056 case X86::VFMADD132SDr_Int
: case X86::VFNMADD132SDr_Int
:
6057 case X86::VFMADD213SDr_Int
: case X86::VFNMADD213SDr_Int
:
6058 case X86::VFMADD231SDr_Int
: case X86::VFNMADD231SDr_Int
:
6059 case X86::VFMSUB132SDr_Int
: case X86::VFNMSUB132SDr_Int
:
6060 case X86::VFMSUB213SDr_Int
: case X86::VFNMSUB213SDr_Int
:
6061 case X86::VFMSUB231SDr_Int
: case X86::VFNMSUB231SDr_Int
:
6062 case X86::VFMADD132SDZr_Int
: case X86::VFNMADD132SDZr_Int
:
6063 case X86::VFMADD213SDZr_Int
: case X86::VFNMADD213SDZr_Int
:
6064 case X86::VFMADD231SDZr_Int
: case X86::VFNMADD231SDZr_Int
:
6065 case X86::VFMSUB132SDZr_Int
: case X86::VFNMSUB132SDZr_Int
:
6066 case X86::VFMSUB213SDZr_Int
: case X86::VFNMSUB213SDZr_Int
:
6067 case X86::VFMSUB231SDZr_Int
: case X86::VFNMSUB231SDZr_Int
:
6068 case X86::VFMADD132SDZr_Intk
: case X86::VFNMADD132SDZr_Intk
:
6069 case X86::VFMADD213SDZr_Intk
: case X86::VFNMADD213SDZr_Intk
:
6070 case X86::VFMADD231SDZr_Intk
: case X86::VFNMADD231SDZr_Intk
:
6071 case X86::VFMSUB132SDZr_Intk
: case X86::VFNMSUB132SDZr_Intk
:
6072 case X86::VFMSUB213SDZr_Intk
: case X86::VFNMSUB213SDZr_Intk
:
6073 case X86::VFMSUB231SDZr_Intk
: case X86::VFNMSUB231SDZr_Intk
:
6074 case X86::VFMADD132SDZr_Intkz
: case X86::VFNMADD132SDZr_Intkz
:
6075 case X86::VFMADD213SDZr_Intkz
: case X86::VFNMADD213SDZr_Intkz
:
6076 case X86::VFMADD231SDZr_Intkz
: case X86::VFNMADD231SDZr_Intkz
:
6077 case X86::VFMSUB132SDZr_Intkz
: case X86::VFNMSUB132SDZr_Intkz
:
6078 case X86::VFMSUB213SDZr_Intkz
: case X86::VFNMSUB213SDZr_Intkz
:
6079 case X86::VFMSUB231SDZr_Intkz
: case X86::VFNMSUB231SDZr_Intkz
:
6080 case X86::VFIXUPIMMSDZrri
:
6081 case X86::VFIXUPIMMSDZrrik
:
6082 case X86::VFIXUPIMMSDZrrikz
:
6083 case X86::VFPCLASSSDZrr
:
6084 case X86::VFPCLASSSDZrrk
:
6085 case X86::VGETEXPSDZr
:
6086 case X86::VGETEXPSDZrk
:
6087 case X86::VGETEXPSDZrkz
:
6088 case X86::VGETMANTSDZrri
:
6089 case X86::VGETMANTSDZrrik
:
6090 case X86::VGETMANTSDZrrikz
:
6091 case X86::VRANGESDZrri
:
6092 case X86::VRANGESDZrrik
:
6093 case X86::VRANGESDZrrikz
:
6094 case X86::VRCP14SDZrr
:
6095 case X86::VRCP14SDZrrk
:
6096 case X86::VRCP14SDZrrkz
:
6097 case X86::VRCP28SDZr
:
6098 case X86::VRCP28SDZrk
:
6099 case X86::VRCP28SDZrkz
:
6100 case X86::VREDUCESDZrri
:
6101 case X86::VREDUCESDZrrik
:
6102 case X86::VREDUCESDZrrikz
:
6103 case X86::VRNDSCALESDZr_Int
:
6104 case X86::VRNDSCALESDZr_Intk
:
6105 case X86::VRNDSCALESDZr_Intkz
:
6106 case X86::VRSQRT14SDZrr
:
6107 case X86::VRSQRT14SDZrrk
:
6108 case X86::VRSQRT14SDZrrkz
:
6109 case X86::VRSQRT28SDZr
:
6110 case X86::VRSQRT28SDZrk
:
6111 case X86::VRSQRT28SDZrkz
:
6112 case X86::VSCALEFSDZrr
:
6113 case X86::VSCALEFSDZrrk
:
6114 case X86::VSCALEFSDZrrkz
:
6121 if ((Opc
== X86::VMOVSHZrm
|| Opc
== X86::VMOVSHZrm_alt
) && RegSize
> 16) {
6122 // These instructions only load 16 bits, we can't fold them if the
6123 // destination register is wider than 16 bits (2 bytes), and its user
6124 // instruction isn't scalar (SH).
6126 case X86::VADDSHZrr_Int
:
6127 case X86::VCMPSHZrr_Int
:
6128 case X86::VDIVSHZrr_Int
:
6129 case X86::VMAXSHZrr_Int
:
6130 case X86::VMINSHZrr_Int
:
6131 case X86::VMULSHZrr_Int
:
6132 case X86::VSUBSHZrr_Int
:
6133 case X86::VADDSHZrr_Intk
: case X86::VADDSHZrr_Intkz
:
6134 case X86::VCMPSHZrr_Intk
:
6135 case X86::VDIVSHZrr_Intk
: case X86::VDIVSHZrr_Intkz
:
6136 case X86::VMAXSHZrr_Intk
: case X86::VMAXSHZrr_Intkz
:
6137 case X86::VMINSHZrr_Intk
: case X86::VMINSHZrr_Intkz
:
6138 case X86::VMULSHZrr_Intk
: case X86::VMULSHZrr_Intkz
:
6139 case X86::VSUBSHZrr_Intk
: case X86::VSUBSHZrr_Intkz
:
6149 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
6150 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
6151 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
6152 LiveIntervals
*LIS
) const {
6154 // TODO: Support the case where LoadMI loads a wide register, but MI
6155 // only uses a subreg.
6156 for (auto Op
: Ops
) {
6157 if (MI
.getOperand(Op
).getSubReg())
6161 // If loading from a FrameIndex, fold directly from the FrameIndex.
6162 unsigned NumOps
= LoadMI
.getDesc().getNumOperands();
6164 if (isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
6165 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
6167 return foldMemoryOperandImpl(MF
, MI
, Ops
, InsertPt
, FrameIndex
, LIS
);
6170 // Check switch flag
6171 if (NoFusing
) return nullptr;
6173 // Avoid partial and undef register update stalls unless optimizing for size.
6174 if (!MF
.getFunction().hasOptSize() &&
6175 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
6176 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
6179 // Determine the alignment of the load.
6181 if (LoadMI
.hasOneMemOperand())
6182 Alignment
= (*LoadMI
.memoperands_begin())->getAlign();
6184 switch (LoadMI
.getOpcode()) {
6185 case X86::AVX512_512_SET0
:
6186 case X86::AVX512_512_SETALLONES
:
6187 Alignment
= Align(64);
6189 case X86::AVX2_SETALLONES
:
6190 case X86::AVX1_SETALLONES
:
6192 case X86::AVX512_256_SET0
:
6193 Alignment
= Align(32);
6196 case X86::V_SETALLONES
:
6197 case X86::AVX512_128_SET0
:
6198 case X86::FsFLD0F128
:
6199 case X86::AVX512_FsFLD0F128
:
6200 Alignment
= Align(16);
6204 case X86::AVX512_FsFLD0SD
:
6205 Alignment
= Align(8);
6208 case X86::AVX512_FsFLD0SS
:
6209 Alignment
= Align(4);
6211 case X86::AVX512_FsFLD0SH
:
6212 Alignment
= Align(2);
6217 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
6218 unsigned NewOpc
= 0;
6219 switch (MI
.getOpcode()) {
6220 default: return nullptr;
6221 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
6222 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; break;
6223 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; break;
6224 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; break;
6226 // Change to CMPXXri r, 0 first.
6227 MI
.setDesc(get(NewOpc
));
6228 MI
.getOperand(1).ChangeToImmediate(0);
6229 } else if (Ops
.size() != 1)
6232 // Make sure the subregisters match.
6233 // Otherwise we risk changing the size of the load.
6234 if (LoadMI
.getOperand(0).getSubReg() != MI
.getOperand(Ops
[0]).getSubReg())
6237 SmallVector
<MachineOperand
,X86::AddrNumOperands
> MOs
;
6238 switch (LoadMI
.getOpcode()) {
6241 case X86::V_SETALLONES
:
6242 case X86::AVX2_SETALLONES
:
6243 case X86::AVX1_SETALLONES
:
6245 case X86::AVX512_128_SET0
:
6246 case X86::AVX512_256_SET0
:
6247 case X86::AVX512_512_SET0
:
6248 case X86::AVX512_512_SETALLONES
:
6249 case X86::AVX512_FsFLD0SH
:
6251 case X86::AVX512_FsFLD0SD
:
6253 case X86::AVX512_FsFLD0SS
:
6254 case X86::FsFLD0F128
:
6255 case X86::AVX512_FsFLD0F128
: {
6256 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6257 // Create a constant-pool entry and operands to load from it.
6259 // Medium and large mode can't fold loads this way.
6260 if (MF
.getTarget().getCodeModel() != CodeModel::Small
&&
6261 MF
.getTarget().getCodeModel() != CodeModel::Kernel
)
6264 // x86-32 PIC requires a PIC base register for constant pools.
6265 unsigned PICBase
= 0;
6266 // Since we're using Small or Kernel code model, we can always use
6267 // RIP-relative addressing for a smaller encoding.
6268 if (Subtarget
.is64Bit()) {
6270 } else if (MF
.getTarget().isPositionIndependent()) {
6271 // FIXME: PICBase = getGlobalBaseReg(&MF);
6272 // This doesn't work for several reasons.
6273 // 1. GlobalBaseReg may have been spilled.
6274 // 2. It may not be live at MI.
6278 // Create a constant-pool entry.
6279 MachineConstantPool
&MCP
= *MF
.getConstantPool();
6281 unsigned Opc
= LoadMI
.getOpcode();
6282 if (Opc
== X86::FsFLD0SS
|| Opc
== X86::AVX512_FsFLD0SS
)
6283 Ty
= Type::getFloatTy(MF
.getFunction().getContext());
6284 else if (Opc
== X86::FsFLD0SD
|| Opc
== X86::AVX512_FsFLD0SD
)
6285 Ty
= Type::getDoubleTy(MF
.getFunction().getContext());
6286 else if (Opc
== X86::FsFLD0F128
|| Opc
== X86::AVX512_FsFLD0F128
)
6287 Ty
= Type::getFP128Ty(MF
.getFunction().getContext());
6288 else if (Opc
== X86::AVX512_FsFLD0SH
)
6289 Ty
= Type::getHalfTy(MF
.getFunction().getContext());
6290 else if (Opc
== X86::AVX512_512_SET0
|| Opc
== X86::AVX512_512_SETALLONES
)
6291 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
6293 else if (Opc
== X86::AVX2_SETALLONES
|| Opc
== X86::AVX_SET0
||
6294 Opc
== X86::AVX512_256_SET0
|| Opc
== X86::AVX1_SETALLONES
)
6295 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
6297 else if (Opc
== X86::MMX_SET0
)
6298 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
6301 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
6304 bool IsAllOnes
= (Opc
== X86::V_SETALLONES
|| Opc
== X86::AVX2_SETALLONES
||
6305 Opc
== X86::AVX512_512_SETALLONES
||
6306 Opc
== X86::AVX1_SETALLONES
);
6307 const Constant
*C
= IsAllOnes
? Constant::getAllOnesValue(Ty
) :
6308 Constant::getNullValue(Ty
);
6309 unsigned CPI
= MCP
.getConstantPoolIndex(C
, Alignment
);
6311 // Create operands to load from the constant pool entry.
6312 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
6313 MOs
.push_back(MachineOperand::CreateImm(1));
6314 MOs
.push_back(MachineOperand::CreateReg(0, false));
6315 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
6316 MOs
.push_back(MachineOperand::CreateReg(0, false));
6320 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
6323 // Folding a normal load. Just copy the load's address operands.
6324 MOs
.append(LoadMI
.operands_begin() + NumOps
- X86::AddrNumOperands
,
6325 LoadMI
.operands_begin() + NumOps
);
6329 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, InsertPt
,
6330 /*Size=*/0, Alignment
, /*AllowCommute=*/true);
6333 static SmallVector
<MachineMemOperand
*, 2>
6334 extractLoadMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
6335 SmallVector
<MachineMemOperand
*, 2> LoadMMOs
;
6337 for (MachineMemOperand
*MMO
: MMOs
) {
6341 if (!MMO
->isStore()) {
6343 LoadMMOs
.push_back(MMO
);
6345 // Clone the MMO and unset the store flag.
6346 LoadMMOs
.push_back(MF
.getMachineMemOperand(
6347 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOStore
));
6354 static SmallVector
<MachineMemOperand
*, 2>
6355 extractStoreMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
6356 SmallVector
<MachineMemOperand
*, 2> StoreMMOs
;
6358 for (MachineMemOperand
*MMO
: MMOs
) {
6359 if (!MMO
->isStore())
6362 if (!MMO
->isLoad()) {
6364 StoreMMOs
.push_back(MMO
);
6366 // Clone the MMO and unset the load flag.
6367 StoreMMOs
.push_back(MF
.getMachineMemOperand(
6368 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOLoad
));
6375 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry
*I
,
6376 const TargetRegisterClass
*RC
,
6377 const X86Subtarget
&STI
) {
6378 assert(STI
.hasAVX512() && "Expected at least AVX512!");
6379 unsigned SpillSize
= STI
.getRegisterInfo()->getSpillSize(*RC
);
6380 assert((SpillSize
== 64 || STI
.hasVLX()) &&
6381 "Can't broadcast less than 64 bytes without AVX512VL!");
6383 switch (I
->Flags
& TB_BCAST_MASK
) {
6384 default: llvm_unreachable("Unexpected broadcast type!");
6386 switch (SpillSize
) {
6387 default: llvm_unreachable("Unknown spill size");
6388 case 16: return X86::VPBROADCASTDZ128rm
;
6389 case 32: return X86::VPBROADCASTDZ256rm
;
6390 case 64: return X86::VPBROADCASTDZrm
;
6394 switch (SpillSize
) {
6395 default: llvm_unreachable("Unknown spill size");
6396 case 16: return X86::VPBROADCASTQZ128rm
;
6397 case 32: return X86::VPBROADCASTQZ256rm
;
6398 case 64: return X86::VPBROADCASTQZrm
;
6402 switch (SpillSize
) {
6403 default: llvm_unreachable("Unknown spill size");
6404 case 16: return X86::VBROADCASTSSZ128rm
;
6405 case 32: return X86::VBROADCASTSSZ256rm
;
6406 case 64: return X86::VBROADCASTSSZrm
;
6410 switch (SpillSize
) {
6411 default: llvm_unreachable("Unknown spill size");
6412 case 16: return X86::VMOVDDUPZ128rm
;
6413 case 32: return X86::VBROADCASTSDZ256rm
;
6414 case 64: return X86::VBROADCASTSDZrm
;
6420 bool X86InstrInfo::unfoldMemoryOperand(
6421 MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
, bool UnfoldLoad
,
6422 bool UnfoldStore
, SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
6423 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(MI
.getOpcode());
6426 unsigned Opc
= I
->DstOp
;
6427 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
6428 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
6429 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
6430 bool FoldedBCast
= I
->Flags
& TB_FOLDED_BCAST
;
6431 if (UnfoldLoad
&& !FoldedLoad
)
6433 UnfoldLoad
&= FoldedLoad
;
6434 if (UnfoldStore
&& !FoldedStore
)
6436 UnfoldStore
&= FoldedStore
;
6438 const MCInstrDesc
&MCID
= get(Opc
);
6440 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
6441 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
6442 // TODO: Check if 32-byte or greater accesses are slow too?
6443 if (!MI
.hasOneMemOperand() && RC
== &X86::VR128RegClass
&&
6444 Subtarget
.isUnalignedMem16Slow())
6445 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6446 // conservatively assume the address is unaligned. That's bad for
6449 SmallVector
<MachineOperand
, X86::AddrNumOperands
> AddrOps
;
6450 SmallVector
<MachineOperand
,2> BeforeOps
;
6451 SmallVector
<MachineOperand
,2> AfterOps
;
6452 SmallVector
<MachineOperand
,4> ImpOps
;
6453 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
6454 MachineOperand
&Op
= MI
.getOperand(i
);
6455 if (i
>= Index
&& i
< Index
+ X86::AddrNumOperands
)
6456 AddrOps
.push_back(Op
);
6457 else if (Op
.isReg() && Op
.isImplicit())
6458 ImpOps
.push_back(Op
);
6460 BeforeOps
.push_back(Op
);
6462 AfterOps
.push_back(Op
);
6465 // Emit the load or broadcast instruction.
6467 auto MMOs
= extractLoadMMOs(MI
.memoperands(), MF
);
6471 Opc
= getBroadcastOpcode(I
, RC
, Subtarget
);
6473 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
6474 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
6475 Opc
= getLoadRegOpcode(Reg
, RC
, isAligned
, Subtarget
);
6479 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), Reg
);
6480 for (unsigned i
= 0, e
= AddrOps
.size(); i
!= e
; ++i
)
6481 MIB
.add(AddrOps
[i
]);
6482 MIB
.setMemRefs(MMOs
);
6483 NewMIs
.push_back(MIB
);
6486 // Address operands cannot be marked isKill.
6487 for (unsigned i
= 1; i
!= 1 + X86::AddrNumOperands
; ++i
) {
6488 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
6490 MO
.setIsKill(false);
6495 // Emit the data processing instruction.
6496 MachineInstr
*DataMI
= MF
.CreateMachineInstr(MCID
, MI
.getDebugLoc(), true);
6497 MachineInstrBuilder
MIB(MF
, DataMI
);
6500 MIB
.addReg(Reg
, RegState::Define
);
6501 for (MachineOperand
&BeforeOp
: BeforeOps
)
6505 for (MachineOperand
&AfterOp
: AfterOps
)
6507 for (MachineOperand
&ImpOp
: ImpOps
) {
6508 MIB
.addReg(ImpOp
.getReg(),
6509 getDefRegState(ImpOp
.isDef()) |
6510 RegState::Implicit
|
6511 getKillRegState(ImpOp
.isKill()) |
6512 getDeadRegState(ImpOp
.isDead()) |
6513 getUndefRegState(ImpOp
.isUndef()));
6515 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6516 switch (DataMI
->getOpcode()) {
6518 case X86::CMP64ri32
:
6525 MachineOperand
&MO0
= DataMI
->getOperand(0);
6526 MachineOperand
&MO1
= DataMI
->getOperand(1);
6527 if (MO1
.isImm() && MO1
.getImm() == 0) {
6529 switch (DataMI
->getOpcode()) {
6530 default: llvm_unreachable("Unreachable!");
6532 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
6534 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
6536 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
6537 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
6539 DataMI
->setDesc(get(NewOpc
));
6540 MO1
.ChangeToRegister(MO0
.getReg(), false);
6544 NewMIs
.push_back(DataMI
);
6546 // Emit the store instruction.
6548 const TargetRegisterClass
*DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
6549 auto MMOs
= extractStoreMMOs(MI
.memoperands(), MF
);
6550 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*DstRC
), 16);
6551 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
6552 unsigned Opc
= getStoreRegOpcode(Reg
, DstRC
, isAligned
, Subtarget
);
6554 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
6555 for (unsigned i
= 0, e
= AddrOps
.size(); i
!= e
; ++i
)
6556 MIB
.add(AddrOps
[i
]);
6557 MIB
.addReg(Reg
, RegState::Kill
);
6558 MIB
.setMemRefs(MMOs
);
6559 NewMIs
.push_back(MIB
);
6566 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
6567 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
6568 if (!N
->isMachineOpcode())
6571 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(N
->getMachineOpcode());
6574 unsigned Opc
= I
->DstOp
;
6575 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
6576 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
6577 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
6578 bool FoldedBCast
= I
->Flags
& TB_FOLDED_BCAST
;
6579 const MCInstrDesc
&MCID
= get(Opc
);
6580 MachineFunction
&MF
= DAG
.getMachineFunction();
6581 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
6582 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
6583 unsigned NumDefs
= MCID
.NumDefs
;
6584 std::vector
<SDValue
> AddrOps
;
6585 std::vector
<SDValue
> BeforeOps
;
6586 std::vector
<SDValue
> AfterOps
;
6588 unsigned NumOps
= N
->getNumOperands();
6589 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
6590 SDValue Op
= N
->getOperand(i
);
6591 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86::AddrNumOperands
)
6592 AddrOps
.push_back(Op
);
6593 else if (i
< Index
-NumDefs
)
6594 BeforeOps
.push_back(Op
);
6595 else if (i
> Index
-NumDefs
)
6596 AfterOps
.push_back(Op
);
6598 SDValue Chain
= N
->getOperand(NumOps
-1);
6599 AddrOps
.push_back(Chain
);
6601 // Emit the load instruction.
6602 SDNode
*Load
= nullptr;
6604 EVT VT
= *TRI
.legalclasstypes_begin(*RC
);
6605 auto MMOs
= extractLoadMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
6606 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
6607 Subtarget
.isUnalignedMem16Slow())
6608 // Do not introduce a slow unaligned load.
6610 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6611 // memory access is slow above.
6615 Opc
= getBroadcastOpcode(I
, RC
, Subtarget
);
6617 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
6618 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
6619 Opc
= getLoadRegOpcode(0, RC
, isAligned
, Subtarget
);
6622 Load
= DAG
.getMachineNode(Opc
, dl
, VT
, MVT::Other
, AddrOps
);
6623 NewNodes
.push_back(Load
);
6625 // Preserve memory reference information.
6626 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Load
), MMOs
);
6629 // Emit the data processing instruction.
6630 std::vector
<EVT
> VTs
;
6631 const TargetRegisterClass
*DstRC
= nullptr;
6632 if (MCID
.getNumDefs() > 0) {
6633 DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
6634 VTs
.push_back(*TRI
.legalclasstypes_begin(*DstRC
));
6636 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
6637 EVT VT
= N
->getValueType(i
);
6638 if (VT
!= MVT::Other
&& i
>= (unsigned)MCID
.getNumDefs())
6642 BeforeOps
.push_back(SDValue(Load
, 0));
6643 llvm::append_range(BeforeOps
, AfterOps
);
6644 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6647 case X86::CMP64ri32
:
6654 if (isNullConstant(BeforeOps
[1])) {
6656 default: llvm_unreachable("Unreachable!");
6658 case X86::CMP64ri32
: Opc
= X86::TEST64rr
; break;
6660 case X86::CMP32ri
: Opc
= X86::TEST32rr
; break;
6662 case X86::CMP16ri
: Opc
= X86::TEST16rr
; break;
6663 case X86::CMP8ri
: Opc
= X86::TEST8rr
; break;
6665 BeforeOps
[1] = BeforeOps
[0];
6668 SDNode
*NewNode
= DAG
.getMachineNode(Opc
, dl
, VTs
, BeforeOps
);
6669 NewNodes
.push_back(NewNode
);
6671 // Emit the store instruction.
6674 AddrOps
.push_back(SDValue(NewNode
, 0));
6675 AddrOps
.push_back(Chain
);
6676 auto MMOs
= extractStoreMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
6677 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
6678 Subtarget
.isUnalignedMem16Slow())
6679 // Do not introduce a slow unaligned store.
6681 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6682 // memory access is slow above.
6683 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
6684 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
6686 DAG
.getMachineNode(getStoreRegOpcode(0, DstRC
, isAligned
, Subtarget
),
6687 dl
, MVT::Other
, AddrOps
);
6688 NewNodes
.push_back(Store
);
6690 // Preserve memory reference information.
6691 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Store
), MMOs
);
6697 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
6698 bool UnfoldLoad
, bool UnfoldStore
,
6699 unsigned *LoadRegIndex
) const {
6700 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(Opc
);
6703 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
6704 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
6705 if (UnfoldLoad
&& !FoldedLoad
)
6707 if (UnfoldStore
&& !FoldedStore
)
6710 *LoadRegIndex
= I
->Flags
& TB_INDEX_MASK
;
6715 X86InstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
6716 int64_t &Offset1
, int64_t &Offset2
) const {
6717 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
6719 unsigned Opc1
= Load1
->getMachineOpcode();
6720 unsigned Opc2
= Load2
->getMachineOpcode();
6722 default: return false;
6731 case X86::MOVSSrm_alt
:
6733 case X86::MOVSDrm_alt
:
6734 case X86::MMX_MOVD64rm
:
6735 case X86::MMX_MOVQ64rm
:
6742 // AVX load instructions
6744 case X86::VMOVSSrm_alt
:
6746 case X86::VMOVSDrm_alt
:
6747 case X86::VMOVAPSrm
:
6748 case X86::VMOVUPSrm
:
6749 case X86::VMOVAPDrm
:
6750 case X86::VMOVUPDrm
:
6751 case X86::VMOVDQArm
:
6752 case X86::VMOVDQUrm
:
6753 case X86::VMOVAPSYrm
:
6754 case X86::VMOVUPSYrm
:
6755 case X86::VMOVAPDYrm
:
6756 case X86::VMOVUPDYrm
:
6757 case X86::VMOVDQAYrm
:
6758 case X86::VMOVDQUYrm
:
6759 // AVX512 load instructions
6760 case X86::VMOVSSZrm
:
6761 case X86::VMOVSSZrm_alt
:
6762 case X86::VMOVSDZrm
:
6763 case X86::VMOVSDZrm_alt
:
6764 case X86::VMOVAPSZ128rm
:
6765 case X86::VMOVUPSZ128rm
:
6766 case X86::VMOVAPSZ128rm_NOVLX
:
6767 case X86::VMOVUPSZ128rm_NOVLX
:
6768 case X86::VMOVAPDZ128rm
:
6769 case X86::VMOVUPDZ128rm
:
6770 case X86::VMOVDQU8Z128rm
:
6771 case X86::VMOVDQU16Z128rm
:
6772 case X86::VMOVDQA32Z128rm
:
6773 case X86::VMOVDQU32Z128rm
:
6774 case X86::VMOVDQA64Z128rm
:
6775 case X86::VMOVDQU64Z128rm
:
6776 case X86::VMOVAPSZ256rm
:
6777 case X86::VMOVUPSZ256rm
:
6778 case X86::VMOVAPSZ256rm_NOVLX
:
6779 case X86::VMOVUPSZ256rm_NOVLX
:
6780 case X86::VMOVAPDZ256rm
:
6781 case X86::VMOVUPDZ256rm
:
6782 case X86::VMOVDQU8Z256rm
:
6783 case X86::VMOVDQU16Z256rm
:
6784 case X86::VMOVDQA32Z256rm
:
6785 case X86::VMOVDQU32Z256rm
:
6786 case X86::VMOVDQA64Z256rm
:
6787 case X86::VMOVDQU64Z256rm
:
6788 case X86::VMOVAPSZrm
:
6789 case X86::VMOVUPSZrm
:
6790 case X86::VMOVAPDZrm
:
6791 case X86::VMOVUPDZrm
:
6792 case X86::VMOVDQU8Zrm
:
6793 case X86::VMOVDQU16Zrm
:
6794 case X86::VMOVDQA32Zrm
:
6795 case X86::VMOVDQU32Zrm
:
6796 case X86::VMOVDQA64Zrm
:
6797 case X86::VMOVDQU64Zrm
:
6805 default: return false;
6814 case X86::MOVSSrm_alt
:
6816 case X86::MOVSDrm_alt
:
6817 case X86::MMX_MOVD64rm
:
6818 case X86::MMX_MOVQ64rm
:
6825 // AVX load instructions
6827 case X86::VMOVSSrm_alt
:
6829 case X86::VMOVSDrm_alt
:
6830 case X86::VMOVAPSrm
:
6831 case X86::VMOVUPSrm
:
6832 case X86::VMOVAPDrm
:
6833 case X86::VMOVUPDrm
:
6834 case X86::VMOVDQArm
:
6835 case X86::VMOVDQUrm
:
6836 case X86::VMOVAPSYrm
:
6837 case X86::VMOVUPSYrm
:
6838 case X86::VMOVAPDYrm
:
6839 case X86::VMOVUPDYrm
:
6840 case X86::VMOVDQAYrm
:
6841 case X86::VMOVDQUYrm
:
6842 // AVX512 load instructions
6843 case X86::VMOVSSZrm
:
6844 case X86::VMOVSSZrm_alt
:
6845 case X86::VMOVSDZrm
:
6846 case X86::VMOVSDZrm_alt
:
6847 case X86::VMOVAPSZ128rm
:
6848 case X86::VMOVUPSZ128rm
:
6849 case X86::VMOVAPSZ128rm_NOVLX
:
6850 case X86::VMOVUPSZ128rm_NOVLX
:
6851 case X86::VMOVAPDZ128rm
:
6852 case X86::VMOVUPDZ128rm
:
6853 case X86::VMOVDQU8Z128rm
:
6854 case X86::VMOVDQU16Z128rm
:
6855 case X86::VMOVDQA32Z128rm
:
6856 case X86::VMOVDQU32Z128rm
:
6857 case X86::VMOVDQA64Z128rm
:
6858 case X86::VMOVDQU64Z128rm
:
6859 case X86::VMOVAPSZ256rm
:
6860 case X86::VMOVUPSZ256rm
:
6861 case X86::VMOVAPSZ256rm_NOVLX
:
6862 case X86::VMOVUPSZ256rm_NOVLX
:
6863 case X86::VMOVAPDZ256rm
:
6864 case X86::VMOVUPDZ256rm
:
6865 case X86::VMOVDQU8Z256rm
:
6866 case X86::VMOVDQU16Z256rm
:
6867 case X86::VMOVDQA32Z256rm
:
6868 case X86::VMOVDQU32Z256rm
:
6869 case X86::VMOVDQA64Z256rm
:
6870 case X86::VMOVDQU64Z256rm
:
6871 case X86::VMOVAPSZrm
:
6872 case X86::VMOVUPSZrm
:
6873 case X86::VMOVAPDZrm
:
6874 case X86::VMOVUPDZrm
:
6875 case X86::VMOVDQU8Zrm
:
6876 case X86::VMOVDQU16Zrm
:
6877 case X86::VMOVDQA32Zrm
:
6878 case X86::VMOVDQU32Zrm
:
6879 case X86::VMOVDQA64Zrm
:
6880 case X86::VMOVDQU64Zrm
:
6888 // Lambda to check if both the loads have the same value for an operand index.
6889 auto HasSameOp
= [&](int I
) {
6890 return Load1
->getOperand(I
) == Load2
->getOperand(I
);
6893 // All operands except the displacement should match.
6894 if (!HasSameOp(X86::AddrBaseReg
) || !HasSameOp(X86::AddrScaleAmt
) ||
6895 !HasSameOp(X86::AddrIndexReg
) || !HasSameOp(X86::AddrSegmentReg
))
6898 // Chain Operand must be the same.
6902 // Now let's examine if the displacements are constants.
6903 auto Disp1
= dyn_cast
<ConstantSDNode
>(Load1
->getOperand(X86::AddrDisp
));
6904 auto Disp2
= dyn_cast
<ConstantSDNode
>(Load2
->getOperand(X86::AddrDisp
));
6905 if (!Disp1
|| !Disp2
)
6908 Offset1
= Disp1
->getSExtValue();
6909 Offset2
= Disp2
->getSExtValue();
6913 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
6914 int64_t Offset1
, int64_t Offset2
,
6915 unsigned NumLoads
) const {
6916 assert(Offset2
> Offset1
);
6917 if ((Offset2
- Offset1
) / 8 > 64)
6920 unsigned Opc1
= Load1
->getMachineOpcode();
6921 unsigned Opc2
= Load2
->getMachineOpcode();
6923 return false; // FIXME: overly conservative?
6930 case X86::MMX_MOVD64rm
:
6931 case X86::MMX_MOVQ64rm
:
6935 EVT VT
= Load1
->getValueType(0);
6936 switch (VT
.getSimpleVT().SimpleTy
) {
6938 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
6939 // have 16 of them to play with.
6940 if (Subtarget
.is64Bit()) {
6943 } else if (NumLoads
) {
6961 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
6962 const MachineBasicBlock
*MBB
,
6963 const MachineFunction
&MF
) const {
6965 // ENDBR instructions should not be scheduled around.
6966 unsigned Opcode
= MI
.getOpcode();
6967 if (Opcode
== X86::ENDBR64
|| Opcode
== X86::ENDBR32
||
6968 Opcode
== X86::LDTILECFG
)
6971 return TargetInstrInfo::isSchedulingBoundary(MI
, MBB
, MF
);
6975 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
6976 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
6977 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
6978 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
6983 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
6984 // FIXME: Return false for x87 stack register classes for now. We can't
6985 // allow any loads of these registers before FpGet_ST0_80.
6986 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::DFCCRRegClass
||
6987 RC
== &X86::RFP32RegClass
|| RC
== &X86::RFP64RegClass
||
6988 RC
== &X86::RFP80RegClass
);
6991 /// Return a virtual register initialized with the
6992 /// the global base register value. Output instructions required to
6993 /// initialize the register in the function entry block, if necessary.
6995 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6997 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
6998 assert((!Subtarget
.is64Bit() ||
6999 MF
->getTarget().getCodeModel() == CodeModel::Medium
||
7000 MF
->getTarget().getCodeModel() == CodeModel::Large
) &&
7001 "X86-64 PIC uses RIP relative addressing");
7003 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
7004 Register GlobalBaseReg
= X86FI
->getGlobalBaseReg();
7005 if (GlobalBaseReg
!= 0)
7006 return GlobalBaseReg
;
7008 // Create the register. The code to initialize it is inserted
7009 // later, by the CGBR pass (below).
7010 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
7011 GlobalBaseReg
= RegInfo
.createVirtualRegister(
7012 Subtarget
.is64Bit() ? &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
);
7013 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
7014 return GlobalBaseReg
;
7017 // These are the replaceable SSE instructions. Some of these have Int variants
7018 // that we don't include here. We don't want to replace instructions selected
7020 static const uint16_t ReplaceableInstrs
[][3] = {
7021 //PackedSingle PackedDouble PackedInt
7022 { X86::MOVAPSmr
, X86::MOVAPDmr
, X86::MOVDQAmr
},
7023 { X86::MOVAPSrm
, X86::MOVAPDrm
, X86::MOVDQArm
},
7024 { X86::MOVAPSrr
, X86::MOVAPDrr
, X86::MOVDQArr
},
7025 { X86::MOVUPSmr
, X86::MOVUPDmr
, X86::MOVDQUmr
},
7026 { X86::MOVUPSrm
, X86::MOVUPDrm
, X86::MOVDQUrm
},
7027 { X86::MOVLPSmr
, X86::MOVLPDmr
, X86::MOVPQI2QImr
},
7028 { X86::MOVSDmr
, X86::MOVSDmr
, X86::MOVPQI2QImr
},
7029 { X86::MOVSSmr
, X86::MOVSSmr
, X86::MOVPDI2DImr
},
7030 { X86::MOVSDrm
, X86::MOVSDrm
, X86::MOVQI2PQIrm
},
7031 { X86::MOVSDrm_alt
,X86::MOVSDrm_alt
,X86::MOVQI2PQIrm
},
7032 { X86::MOVSSrm
, X86::MOVSSrm
, X86::MOVDI2PDIrm
},
7033 { X86::MOVSSrm_alt
,X86::MOVSSrm_alt
,X86::MOVDI2PDIrm
},
7034 { X86::MOVNTPSmr
, X86::MOVNTPDmr
, X86::MOVNTDQmr
},
7035 { X86::ANDNPSrm
, X86::ANDNPDrm
, X86::PANDNrm
},
7036 { X86::ANDNPSrr
, X86::ANDNPDrr
, X86::PANDNrr
},
7037 { X86::ANDPSrm
, X86::ANDPDrm
, X86::PANDrm
},
7038 { X86::ANDPSrr
, X86::ANDPDrr
, X86::PANDrr
},
7039 { X86::ORPSrm
, X86::ORPDrm
, X86::PORrm
},
7040 { X86::ORPSrr
, X86::ORPDrr
, X86::PORrr
},
7041 { X86::XORPSrm
, X86::XORPDrm
, X86::PXORrm
},
7042 { X86::XORPSrr
, X86::XORPDrr
, X86::PXORrr
},
7043 { X86::UNPCKLPDrm
, X86::UNPCKLPDrm
, X86::PUNPCKLQDQrm
},
7044 { X86::MOVLHPSrr
, X86::UNPCKLPDrr
, X86::PUNPCKLQDQrr
},
7045 { X86::UNPCKHPDrm
, X86::UNPCKHPDrm
, X86::PUNPCKHQDQrm
},
7046 { X86::UNPCKHPDrr
, X86::UNPCKHPDrr
, X86::PUNPCKHQDQrr
},
7047 { X86::UNPCKLPSrm
, X86::UNPCKLPSrm
, X86::PUNPCKLDQrm
},
7048 { X86::UNPCKLPSrr
, X86::UNPCKLPSrr
, X86::PUNPCKLDQrr
},
7049 { X86::UNPCKHPSrm
, X86::UNPCKHPSrm
, X86::PUNPCKHDQrm
},
7050 { X86::UNPCKHPSrr
, X86::UNPCKHPSrr
, X86::PUNPCKHDQrr
},
7051 { X86::EXTRACTPSmr
, X86::EXTRACTPSmr
, X86::PEXTRDmr
},
7052 { X86::EXTRACTPSrr
, X86::EXTRACTPSrr
, X86::PEXTRDrr
},
7053 // AVX 128-bit support
7054 { X86::VMOVAPSmr
, X86::VMOVAPDmr
, X86::VMOVDQAmr
},
7055 { X86::VMOVAPSrm
, X86::VMOVAPDrm
, X86::VMOVDQArm
},
7056 { X86::VMOVAPSrr
, X86::VMOVAPDrr
, X86::VMOVDQArr
},
7057 { X86::VMOVUPSmr
, X86::VMOVUPDmr
, X86::VMOVDQUmr
},
7058 { X86::VMOVUPSrm
, X86::VMOVUPDrm
, X86::VMOVDQUrm
},
7059 { X86::VMOVLPSmr
, X86::VMOVLPDmr
, X86::VMOVPQI2QImr
},
7060 { X86::VMOVSDmr
, X86::VMOVSDmr
, X86::VMOVPQI2QImr
},
7061 { X86::VMOVSSmr
, X86::VMOVSSmr
, X86::VMOVPDI2DImr
},
7062 { X86::VMOVSDrm
, X86::VMOVSDrm
, X86::VMOVQI2PQIrm
},
7063 { X86::VMOVSDrm_alt
,X86::VMOVSDrm_alt
,X86::VMOVQI2PQIrm
},
7064 { X86::VMOVSSrm
, X86::VMOVSSrm
, X86::VMOVDI2PDIrm
},
7065 { X86::VMOVSSrm_alt
,X86::VMOVSSrm_alt
,X86::VMOVDI2PDIrm
},
7066 { X86::VMOVNTPSmr
, X86::VMOVNTPDmr
, X86::VMOVNTDQmr
},
7067 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNrm
},
7068 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNrr
},
7069 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDrm
},
7070 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDrr
},
7071 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORrm
},
7072 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORrr
},
7073 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORrm
},
7074 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORrr
},
7075 { X86::VUNPCKLPDrm
, X86::VUNPCKLPDrm
, X86::VPUNPCKLQDQrm
},
7076 { X86::VMOVLHPSrr
, X86::VUNPCKLPDrr
, X86::VPUNPCKLQDQrr
},
7077 { X86::VUNPCKHPDrm
, X86::VUNPCKHPDrm
, X86::VPUNPCKHQDQrm
},
7078 { X86::VUNPCKHPDrr
, X86::VUNPCKHPDrr
, X86::VPUNPCKHQDQrr
},
7079 { X86::VUNPCKLPSrm
, X86::VUNPCKLPSrm
, X86::VPUNPCKLDQrm
},
7080 { X86::VUNPCKLPSrr
, X86::VUNPCKLPSrr
, X86::VPUNPCKLDQrr
},
7081 { X86::VUNPCKHPSrm
, X86::VUNPCKHPSrm
, X86::VPUNPCKHDQrm
},
7082 { X86::VUNPCKHPSrr
, X86::VUNPCKHPSrr
, X86::VPUNPCKHDQrr
},
7083 { X86::VEXTRACTPSmr
, X86::VEXTRACTPSmr
, X86::VPEXTRDmr
},
7084 { X86::VEXTRACTPSrr
, X86::VEXTRACTPSrr
, X86::VPEXTRDrr
},
7085 // AVX 256-bit support
7086 { X86::VMOVAPSYmr
, X86::VMOVAPDYmr
, X86::VMOVDQAYmr
},
7087 { X86::VMOVAPSYrm
, X86::VMOVAPDYrm
, X86::VMOVDQAYrm
},
7088 { X86::VMOVAPSYrr
, X86::VMOVAPDYrr
, X86::VMOVDQAYrr
},
7089 { X86::VMOVUPSYmr
, X86::VMOVUPDYmr
, X86::VMOVDQUYmr
},
7090 { X86::VMOVUPSYrm
, X86::VMOVUPDYrm
, X86::VMOVDQUYrm
},
7091 { X86::VMOVNTPSYmr
, X86::VMOVNTPDYmr
, X86::VMOVNTDQYmr
},
7092 { X86::VPERMPSYrm
, X86::VPERMPSYrm
, X86::VPERMDYrm
},
7093 { X86::VPERMPSYrr
, X86::VPERMPSYrr
, X86::VPERMDYrr
},
7094 { X86::VPERMPDYmi
, X86::VPERMPDYmi
, X86::VPERMQYmi
},
7095 { X86::VPERMPDYri
, X86::VPERMPDYri
, X86::VPERMQYri
},
7097 { X86::VMOVLPSZ128mr
, X86::VMOVLPDZ128mr
, X86::VMOVPQI2QIZmr
},
7098 { X86::VMOVNTPSZ128mr
, X86::VMOVNTPDZ128mr
, X86::VMOVNTDQZ128mr
},
7099 { X86::VMOVNTPSZ256mr
, X86::VMOVNTPDZ256mr
, X86::VMOVNTDQZ256mr
},
7100 { X86::VMOVNTPSZmr
, X86::VMOVNTPDZmr
, X86::VMOVNTDQZmr
},
7101 { X86::VMOVSDZmr
, X86::VMOVSDZmr
, X86::VMOVPQI2QIZmr
},
7102 { X86::VMOVSSZmr
, X86::VMOVSSZmr
, X86::VMOVPDI2DIZmr
},
7103 { X86::VMOVSDZrm
, X86::VMOVSDZrm
, X86::VMOVQI2PQIZrm
},
7104 { X86::VMOVSDZrm_alt
, X86::VMOVSDZrm_alt
, X86::VMOVQI2PQIZrm
},
7105 { X86::VMOVSSZrm
, X86::VMOVSSZrm
, X86::VMOVDI2PDIZrm
},
7106 { X86::VMOVSSZrm_alt
, X86::VMOVSSZrm_alt
, X86::VMOVDI2PDIZrm
},
7107 { X86::VBROADCASTSSZ128rr
,X86::VBROADCASTSSZ128rr
,X86::VPBROADCASTDZ128rr
},
7108 { X86::VBROADCASTSSZ128rm
,X86::VBROADCASTSSZ128rm
,X86::VPBROADCASTDZ128rm
},
7109 { X86::VBROADCASTSSZ256rr
,X86::VBROADCASTSSZ256rr
,X86::VPBROADCASTDZ256rr
},
7110 { X86::VBROADCASTSSZ256rm
,X86::VBROADCASTSSZ256rm
,X86::VPBROADCASTDZ256rm
},
7111 { X86::VBROADCASTSSZrr
, X86::VBROADCASTSSZrr
, X86::VPBROADCASTDZrr
},
7112 { X86::VBROADCASTSSZrm
, X86::VBROADCASTSSZrm
, X86::VPBROADCASTDZrm
},
7113 { X86::VMOVDDUPZ128rr
, X86::VMOVDDUPZ128rr
, X86::VPBROADCASTQZ128rr
},
7114 { X86::VMOVDDUPZ128rm
, X86::VMOVDDUPZ128rm
, X86::VPBROADCASTQZ128rm
},
7115 { X86::VBROADCASTSDZ256rr
,X86::VBROADCASTSDZ256rr
,X86::VPBROADCASTQZ256rr
},
7116 { X86::VBROADCASTSDZ256rm
,X86::VBROADCASTSDZ256rm
,X86::VPBROADCASTQZ256rm
},
7117 { X86::VBROADCASTSDZrr
, X86::VBROADCASTSDZrr
, X86::VPBROADCASTQZrr
},
7118 { X86::VBROADCASTSDZrm
, X86::VBROADCASTSDZrm
, X86::VPBROADCASTQZrm
},
7119 { X86::VINSERTF32x4Zrr
, X86::VINSERTF32x4Zrr
, X86::VINSERTI32x4Zrr
},
7120 { X86::VINSERTF32x4Zrm
, X86::VINSERTF32x4Zrm
, X86::VINSERTI32x4Zrm
},
7121 { X86::VINSERTF32x8Zrr
, X86::VINSERTF32x8Zrr
, X86::VINSERTI32x8Zrr
},
7122 { X86::VINSERTF32x8Zrm
, X86::VINSERTF32x8Zrm
, X86::VINSERTI32x8Zrm
},
7123 { X86::VINSERTF64x2Zrr
, X86::VINSERTF64x2Zrr
, X86::VINSERTI64x2Zrr
},
7124 { X86::VINSERTF64x2Zrm
, X86::VINSERTF64x2Zrm
, X86::VINSERTI64x2Zrm
},
7125 { X86::VINSERTF64x4Zrr
, X86::VINSERTF64x4Zrr
, X86::VINSERTI64x4Zrr
},
7126 { X86::VINSERTF64x4Zrm
, X86::VINSERTF64x4Zrm
, X86::VINSERTI64x4Zrm
},
7127 { X86::VINSERTF32x4Z256rr
,X86::VINSERTF32x4Z256rr
,X86::VINSERTI32x4Z256rr
},
7128 { X86::VINSERTF32x4Z256rm
,X86::VINSERTF32x4Z256rm
,X86::VINSERTI32x4Z256rm
},
7129 { X86::VINSERTF64x2Z256rr
,X86::VINSERTF64x2Z256rr
,X86::VINSERTI64x2Z256rr
},
7130 { X86::VINSERTF64x2Z256rm
,X86::VINSERTF64x2Z256rm
,X86::VINSERTI64x2Z256rm
},
7131 { X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTI32x4Zrr
},
7132 { X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTI32x4Zmr
},
7133 { X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTI32x8Zrr
},
7134 { X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTI32x8Zmr
},
7135 { X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTI64x2Zrr
},
7136 { X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTI64x2Zmr
},
7137 { X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTI64x4Zrr
},
7138 { X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTI64x4Zmr
},
7139 { X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTI32x4Z256rr
},
7140 { X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTI32x4Z256mr
},
7141 { X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTI64x2Z256rr
},
7142 { X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTI64x2Z256mr
},
7143 { X86::VPERMILPSmi
, X86::VPERMILPSmi
, X86::VPSHUFDmi
},
7144 { X86::VPERMILPSri
, X86::VPERMILPSri
, X86::VPSHUFDri
},
7145 { X86::VPERMILPSZ128mi
, X86::VPERMILPSZ128mi
, X86::VPSHUFDZ128mi
},
7146 { X86::VPERMILPSZ128ri
, X86::VPERMILPSZ128ri
, X86::VPSHUFDZ128ri
},
7147 { X86::VPERMILPSZ256mi
, X86::VPERMILPSZ256mi
, X86::VPSHUFDZ256mi
},
7148 { X86::VPERMILPSZ256ri
, X86::VPERMILPSZ256ri
, X86::VPSHUFDZ256ri
},
7149 { X86::VPERMILPSZmi
, X86::VPERMILPSZmi
, X86::VPSHUFDZmi
},
7150 { X86::VPERMILPSZri
, X86::VPERMILPSZri
, X86::VPSHUFDZri
},
7151 { X86::VPERMPSZ256rm
, X86::VPERMPSZ256rm
, X86::VPERMDZ256rm
},
7152 { X86::VPERMPSZ256rr
, X86::VPERMPSZ256rr
, X86::VPERMDZ256rr
},
7153 { X86::VPERMPDZ256mi
, X86::VPERMPDZ256mi
, X86::VPERMQZ256mi
},
7154 { X86::VPERMPDZ256ri
, X86::VPERMPDZ256ri
, X86::VPERMQZ256ri
},
7155 { X86::VPERMPDZ256rm
, X86::VPERMPDZ256rm
, X86::VPERMQZ256rm
},
7156 { X86::VPERMPDZ256rr
, X86::VPERMPDZ256rr
, X86::VPERMQZ256rr
},
7157 { X86::VPERMPSZrm
, X86::VPERMPSZrm
, X86::VPERMDZrm
},
7158 { X86::VPERMPSZrr
, X86::VPERMPSZrr
, X86::VPERMDZrr
},
7159 { X86::VPERMPDZmi
, X86::VPERMPDZmi
, X86::VPERMQZmi
},
7160 { X86::VPERMPDZri
, X86::VPERMPDZri
, X86::VPERMQZri
},
7161 { X86::VPERMPDZrm
, X86::VPERMPDZrm
, X86::VPERMQZrm
},
7162 { X86::VPERMPDZrr
, X86::VPERMPDZrr
, X86::VPERMQZrr
},
7163 { X86::VUNPCKLPDZ256rm
, X86::VUNPCKLPDZ256rm
, X86::VPUNPCKLQDQZ256rm
},
7164 { X86::VUNPCKLPDZ256rr
, X86::VUNPCKLPDZ256rr
, X86::VPUNPCKLQDQZ256rr
},
7165 { X86::VUNPCKHPDZ256rm
, X86::VUNPCKHPDZ256rm
, X86::VPUNPCKHQDQZ256rm
},
7166 { X86::VUNPCKHPDZ256rr
, X86::VUNPCKHPDZ256rr
, X86::VPUNPCKHQDQZ256rr
},
7167 { X86::VUNPCKLPSZ256rm
, X86::VUNPCKLPSZ256rm
, X86::VPUNPCKLDQZ256rm
},
7168 { X86::VUNPCKLPSZ256rr
, X86::VUNPCKLPSZ256rr
, X86::VPUNPCKLDQZ256rr
},
7169 { X86::VUNPCKHPSZ256rm
, X86::VUNPCKHPSZ256rm
, X86::VPUNPCKHDQZ256rm
},
7170 { X86::VUNPCKHPSZ256rr
, X86::VUNPCKHPSZ256rr
, X86::VPUNPCKHDQZ256rr
},
7171 { X86::VUNPCKLPDZ128rm
, X86::VUNPCKLPDZ128rm
, X86::VPUNPCKLQDQZ128rm
},
7172 { X86::VMOVLHPSZrr
, X86::VUNPCKLPDZ128rr
, X86::VPUNPCKLQDQZ128rr
},
7173 { X86::VUNPCKHPDZ128rm
, X86::VUNPCKHPDZ128rm
, X86::VPUNPCKHQDQZ128rm
},
7174 { X86::VUNPCKHPDZ128rr
, X86::VUNPCKHPDZ128rr
, X86::VPUNPCKHQDQZ128rr
},
7175 { X86::VUNPCKLPSZ128rm
, X86::VUNPCKLPSZ128rm
, X86::VPUNPCKLDQZ128rm
},
7176 { X86::VUNPCKLPSZ128rr
, X86::VUNPCKLPSZ128rr
, X86::VPUNPCKLDQZ128rr
},
7177 { X86::VUNPCKHPSZ128rm
, X86::VUNPCKHPSZ128rm
, X86::VPUNPCKHDQZ128rm
},
7178 { X86::VUNPCKHPSZ128rr
, X86::VUNPCKHPSZ128rr
, X86::VPUNPCKHDQZ128rr
},
7179 { X86::VUNPCKLPDZrm
, X86::VUNPCKLPDZrm
, X86::VPUNPCKLQDQZrm
},
7180 { X86::VUNPCKLPDZrr
, X86::VUNPCKLPDZrr
, X86::VPUNPCKLQDQZrr
},
7181 { X86::VUNPCKHPDZrm
, X86::VUNPCKHPDZrm
, X86::VPUNPCKHQDQZrm
},
7182 { X86::VUNPCKHPDZrr
, X86::VUNPCKHPDZrr
, X86::VPUNPCKHQDQZrr
},
7183 { X86::VUNPCKLPSZrm
, X86::VUNPCKLPSZrm
, X86::VPUNPCKLDQZrm
},
7184 { X86::VUNPCKLPSZrr
, X86::VUNPCKLPSZrr
, X86::VPUNPCKLDQZrr
},
7185 { X86::VUNPCKHPSZrm
, X86::VUNPCKHPSZrm
, X86::VPUNPCKHDQZrm
},
7186 { X86::VUNPCKHPSZrr
, X86::VUNPCKHPSZrr
, X86::VPUNPCKHDQZrr
},
7187 { X86::VEXTRACTPSZmr
, X86::VEXTRACTPSZmr
, X86::VPEXTRDZmr
},
7188 { X86::VEXTRACTPSZrr
, X86::VEXTRACTPSZrr
, X86::VPEXTRDZrr
},
7191 static const uint16_t ReplaceableInstrsAVX2
[][3] = {
7192 //PackedSingle PackedDouble PackedInt
7193 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNYrm
},
7194 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNYrr
},
7195 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDYrm
},
7196 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDYrr
},
7197 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORYrm
},
7198 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORYrr
},
7199 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORYrm
},
7200 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORYrr
},
7201 { X86::VPERM2F128rm
, X86::VPERM2F128rm
, X86::VPERM2I128rm
},
7202 { X86::VPERM2F128rr
, X86::VPERM2F128rr
, X86::VPERM2I128rr
},
7203 { X86::VBROADCASTSSrm
, X86::VBROADCASTSSrm
, X86::VPBROADCASTDrm
},
7204 { X86::VBROADCASTSSrr
, X86::VBROADCASTSSrr
, X86::VPBROADCASTDrr
},
7205 { X86::VMOVDDUPrm
, X86::VMOVDDUPrm
, X86::VPBROADCASTQrm
},
7206 { X86::VMOVDDUPrr
, X86::VMOVDDUPrr
, X86::VPBROADCASTQrr
},
7207 { X86::VBROADCASTSSYrr
, X86::VBROADCASTSSYrr
, X86::VPBROADCASTDYrr
},
7208 { X86::VBROADCASTSSYrm
, X86::VBROADCASTSSYrm
, X86::VPBROADCASTDYrm
},
7209 { X86::VBROADCASTSDYrr
, X86::VBROADCASTSDYrr
, X86::VPBROADCASTQYrr
},
7210 { X86::VBROADCASTSDYrm
, X86::VBROADCASTSDYrm
, X86::VPBROADCASTQYrm
},
7211 { X86::VBROADCASTF128
, X86::VBROADCASTF128
, X86::VBROADCASTI128
},
7212 { X86::VBLENDPSYrri
, X86::VBLENDPSYrri
, X86::VPBLENDDYrri
},
7213 { X86::VBLENDPSYrmi
, X86::VBLENDPSYrmi
, X86::VPBLENDDYrmi
},
7214 { X86::VPERMILPSYmi
, X86::VPERMILPSYmi
, X86::VPSHUFDYmi
},
7215 { X86::VPERMILPSYri
, X86::VPERMILPSYri
, X86::VPSHUFDYri
},
7216 { X86::VUNPCKLPDYrm
, X86::VUNPCKLPDYrm
, X86::VPUNPCKLQDQYrm
},
7217 { X86::VUNPCKLPDYrr
, X86::VUNPCKLPDYrr
, X86::VPUNPCKLQDQYrr
},
7218 { X86::VUNPCKHPDYrm
, X86::VUNPCKHPDYrm
, X86::VPUNPCKHQDQYrm
},
7219 { X86::VUNPCKHPDYrr
, X86::VUNPCKHPDYrr
, X86::VPUNPCKHQDQYrr
},
7220 { X86::VUNPCKLPSYrm
, X86::VUNPCKLPSYrm
, X86::VPUNPCKLDQYrm
},
7221 { X86::VUNPCKLPSYrr
, X86::VUNPCKLPSYrr
, X86::VPUNPCKLDQYrr
},
7222 { X86::VUNPCKHPSYrm
, X86::VUNPCKHPSYrm
, X86::VPUNPCKHDQYrm
},
7223 { X86::VUNPCKHPSYrr
, X86::VUNPCKHPSYrr
, X86::VPUNPCKHDQYrr
},
7226 static const uint16_t ReplaceableInstrsFP
[][3] = {
7227 //PackedSingle PackedDouble
7228 { X86::MOVLPSrm
, X86::MOVLPDrm
, X86::INSTRUCTION_LIST_END
},
7229 { X86::MOVHPSrm
, X86::MOVHPDrm
, X86::INSTRUCTION_LIST_END
},
7230 { X86::MOVHPSmr
, X86::MOVHPDmr
, X86::INSTRUCTION_LIST_END
},
7231 { X86::VMOVLPSrm
, X86::VMOVLPDrm
, X86::INSTRUCTION_LIST_END
},
7232 { X86::VMOVHPSrm
, X86::VMOVHPDrm
, X86::INSTRUCTION_LIST_END
},
7233 { X86::VMOVHPSmr
, X86::VMOVHPDmr
, X86::INSTRUCTION_LIST_END
},
7234 { X86::VMOVLPSZ128rm
, X86::VMOVLPDZ128rm
, X86::INSTRUCTION_LIST_END
},
7235 { X86::VMOVHPSZ128rm
, X86::VMOVHPDZ128rm
, X86::INSTRUCTION_LIST_END
},
7236 { X86::VMOVHPSZ128mr
, X86::VMOVHPDZ128mr
, X86::INSTRUCTION_LIST_END
},
7239 static const uint16_t ReplaceableInstrsAVX2InsertExtract
[][3] = {
7240 //PackedSingle PackedDouble PackedInt
7241 { X86::VEXTRACTF128mr
, X86::VEXTRACTF128mr
, X86::VEXTRACTI128mr
},
7242 { X86::VEXTRACTF128rr
, X86::VEXTRACTF128rr
, X86::VEXTRACTI128rr
},
7243 { X86::VINSERTF128rm
, X86::VINSERTF128rm
, X86::VINSERTI128rm
},
7244 { X86::VINSERTF128rr
, X86::VINSERTF128rr
, X86::VINSERTI128rr
},
7247 static const uint16_t ReplaceableInstrsAVX512
[][4] = {
7248 // Two integer columns for 64-bit and 32-bit elements.
7249 //PackedSingle PackedDouble PackedInt PackedInt
7250 { X86::VMOVAPSZ128mr
, X86::VMOVAPDZ128mr
, X86::VMOVDQA64Z128mr
, X86::VMOVDQA32Z128mr
},
7251 { X86::VMOVAPSZ128rm
, X86::VMOVAPDZ128rm
, X86::VMOVDQA64Z128rm
, X86::VMOVDQA32Z128rm
},
7252 { X86::VMOVAPSZ128rr
, X86::VMOVAPDZ128rr
, X86::VMOVDQA64Z128rr
, X86::VMOVDQA32Z128rr
},
7253 { X86::VMOVUPSZ128mr
, X86::VMOVUPDZ128mr
, X86::VMOVDQU64Z128mr
, X86::VMOVDQU32Z128mr
},
7254 { X86::VMOVUPSZ128rm
, X86::VMOVUPDZ128rm
, X86::VMOVDQU64Z128rm
, X86::VMOVDQU32Z128rm
},
7255 { X86::VMOVAPSZ256mr
, X86::VMOVAPDZ256mr
, X86::VMOVDQA64Z256mr
, X86::VMOVDQA32Z256mr
},
7256 { X86::VMOVAPSZ256rm
, X86::VMOVAPDZ256rm
, X86::VMOVDQA64Z256rm
, X86::VMOVDQA32Z256rm
},
7257 { X86::VMOVAPSZ256rr
, X86::VMOVAPDZ256rr
, X86::VMOVDQA64Z256rr
, X86::VMOVDQA32Z256rr
},
7258 { X86::VMOVUPSZ256mr
, X86::VMOVUPDZ256mr
, X86::VMOVDQU64Z256mr
, X86::VMOVDQU32Z256mr
},
7259 { X86::VMOVUPSZ256rm
, X86::VMOVUPDZ256rm
, X86::VMOVDQU64Z256rm
, X86::VMOVDQU32Z256rm
},
7260 { X86::VMOVAPSZmr
, X86::VMOVAPDZmr
, X86::VMOVDQA64Zmr
, X86::VMOVDQA32Zmr
},
7261 { X86::VMOVAPSZrm
, X86::VMOVAPDZrm
, X86::VMOVDQA64Zrm
, X86::VMOVDQA32Zrm
},
7262 { X86::VMOVAPSZrr
, X86::VMOVAPDZrr
, X86::VMOVDQA64Zrr
, X86::VMOVDQA32Zrr
},
7263 { X86::VMOVUPSZmr
, X86::VMOVUPDZmr
, X86::VMOVDQU64Zmr
, X86::VMOVDQU32Zmr
},
7264 { X86::VMOVUPSZrm
, X86::VMOVUPDZrm
, X86::VMOVDQU64Zrm
, X86::VMOVDQU32Zrm
},
7267 static const uint16_t ReplaceableInstrsAVX512DQ
[][4] = {
7268 // Two integer columns for 64-bit and 32-bit elements.
7269 //PackedSingle PackedDouble PackedInt PackedInt
7270 { X86::VANDNPSZ128rm
, X86::VANDNPDZ128rm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
7271 { X86::VANDNPSZ128rr
, X86::VANDNPDZ128rr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
7272 { X86::VANDPSZ128rm
, X86::VANDPDZ128rm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
7273 { X86::VANDPSZ128rr
, X86::VANDPDZ128rr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
7274 { X86::VORPSZ128rm
, X86::VORPDZ128rm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
7275 { X86::VORPSZ128rr
, X86::VORPDZ128rr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
7276 { X86::VXORPSZ128rm
, X86::VXORPDZ128rm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
7277 { X86::VXORPSZ128rr
, X86::VXORPDZ128rr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
7278 { X86::VANDNPSZ256rm
, X86::VANDNPDZ256rm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
7279 { X86::VANDNPSZ256rr
, X86::VANDNPDZ256rr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
7280 { X86::VANDPSZ256rm
, X86::VANDPDZ256rm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
7281 { X86::VANDPSZ256rr
, X86::VANDPDZ256rr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
7282 { X86::VORPSZ256rm
, X86::VORPDZ256rm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
7283 { X86::VORPSZ256rr
, X86::VORPDZ256rr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
7284 { X86::VXORPSZ256rm
, X86::VXORPDZ256rm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
7285 { X86::VXORPSZ256rr
, X86::VXORPDZ256rr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
7286 { X86::VANDNPSZrm
, X86::VANDNPDZrm
, X86::VPANDNQZrm
, X86::VPANDNDZrm
},
7287 { X86::VANDNPSZrr
, X86::VANDNPDZrr
, X86::VPANDNQZrr
, X86::VPANDNDZrr
},
7288 { X86::VANDPSZrm
, X86::VANDPDZrm
, X86::VPANDQZrm
, X86::VPANDDZrm
},
7289 { X86::VANDPSZrr
, X86::VANDPDZrr
, X86::VPANDQZrr
, X86::VPANDDZrr
},
7290 { X86::VORPSZrm
, X86::VORPDZrm
, X86::VPORQZrm
, X86::VPORDZrm
},
7291 { X86::VORPSZrr
, X86::VORPDZrr
, X86::VPORQZrr
, X86::VPORDZrr
},
7292 { X86::VXORPSZrm
, X86::VXORPDZrm
, X86::VPXORQZrm
, X86::VPXORDZrm
},
7293 { X86::VXORPSZrr
, X86::VXORPDZrr
, X86::VPXORQZrr
, X86::VPXORDZrr
},
7296 static const uint16_t ReplaceableInstrsAVX512DQMasked
[][4] = {
7297 // Two integer columns for 64-bit and 32-bit elements.
7298 //PackedSingle PackedDouble
7299 //PackedInt PackedInt
7300 { X86::VANDNPSZ128rmk
, X86::VANDNPDZ128rmk
,
7301 X86::VPANDNQZ128rmk
, X86::VPANDNDZ128rmk
},
7302 { X86::VANDNPSZ128rmkz
, X86::VANDNPDZ128rmkz
,
7303 X86::VPANDNQZ128rmkz
, X86::VPANDNDZ128rmkz
},
7304 { X86::VANDNPSZ128rrk
, X86::VANDNPDZ128rrk
,
7305 X86::VPANDNQZ128rrk
, X86::VPANDNDZ128rrk
},
7306 { X86::VANDNPSZ128rrkz
, X86::VANDNPDZ128rrkz
,
7307 X86::VPANDNQZ128rrkz
, X86::VPANDNDZ128rrkz
},
7308 { X86::VANDPSZ128rmk
, X86::VANDPDZ128rmk
,
7309 X86::VPANDQZ128rmk
, X86::VPANDDZ128rmk
},
7310 { X86::VANDPSZ128rmkz
, X86::VANDPDZ128rmkz
,
7311 X86::VPANDQZ128rmkz
, X86::VPANDDZ128rmkz
},
7312 { X86::VANDPSZ128rrk
, X86::VANDPDZ128rrk
,
7313 X86::VPANDQZ128rrk
, X86::VPANDDZ128rrk
},
7314 { X86::VANDPSZ128rrkz
, X86::VANDPDZ128rrkz
,
7315 X86::VPANDQZ128rrkz
, X86::VPANDDZ128rrkz
},
7316 { X86::VORPSZ128rmk
, X86::VORPDZ128rmk
,
7317 X86::VPORQZ128rmk
, X86::VPORDZ128rmk
},
7318 { X86::VORPSZ128rmkz
, X86::VORPDZ128rmkz
,
7319 X86::VPORQZ128rmkz
, X86::VPORDZ128rmkz
},
7320 { X86::VORPSZ128rrk
, X86::VORPDZ128rrk
,
7321 X86::VPORQZ128rrk
, X86::VPORDZ128rrk
},
7322 { X86::VORPSZ128rrkz
, X86::VORPDZ128rrkz
,
7323 X86::VPORQZ128rrkz
, X86::VPORDZ128rrkz
},
7324 { X86::VXORPSZ128rmk
, X86::VXORPDZ128rmk
,
7325 X86::VPXORQZ128rmk
, X86::VPXORDZ128rmk
},
7326 { X86::VXORPSZ128rmkz
, X86::VXORPDZ128rmkz
,
7327 X86::VPXORQZ128rmkz
, X86::VPXORDZ128rmkz
},
7328 { X86::VXORPSZ128rrk
, X86::VXORPDZ128rrk
,
7329 X86::VPXORQZ128rrk
, X86::VPXORDZ128rrk
},
7330 { X86::VXORPSZ128rrkz
, X86::VXORPDZ128rrkz
,
7331 X86::VPXORQZ128rrkz
, X86::VPXORDZ128rrkz
},
7332 { X86::VANDNPSZ256rmk
, X86::VANDNPDZ256rmk
,
7333 X86::VPANDNQZ256rmk
, X86::VPANDNDZ256rmk
},
7334 { X86::VANDNPSZ256rmkz
, X86::VANDNPDZ256rmkz
,
7335 X86::VPANDNQZ256rmkz
, X86::VPANDNDZ256rmkz
},
7336 { X86::VANDNPSZ256rrk
, X86::VANDNPDZ256rrk
,
7337 X86::VPANDNQZ256rrk
, X86::VPANDNDZ256rrk
},
7338 { X86::VANDNPSZ256rrkz
, X86::VANDNPDZ256rrkz
,
7339 X86::VPANDNQZ256rrkz
, X86::VPANDNDZ256rrkz
},
7340 { X86::VANDPSZ256rmk
, X86::VANDPDZ256rmk
,
7341 X86::VPANDQZ256rmk
, X86::VPANDDZ256rmk
},
7342 { X86::VANDPSZ256rmkz
, X86::VANDPDZ256rmkz
,
7343 X86::VPANDQZ256rmkz
, X86::VPANDDZ256rmkz
},
7344 { X86::VANDPSZ256rrk
, X86::VANDPDZ256rrk
,
7345 X86::VPANDQZ256rrk
, X86::VPANDDZ256rrk
},
7346 { X86::VANDPSZ256rrkz
, X86::VANDPDZ256rrkz
,
7347 X86::VPANDQZ256rrkz
, X86::VPANDDZ256rrkz
},
7348 { X86::VORPSZ256rmk
, X86::VORPDZ256rmk
,
7349 X86::VPORQZ256rmk
, X86::VPORDZ256rmk
},
7350 { X86::VORPSZ256rmkz
, X86::VORPDZ256rmkz
,
7351 X86::VPORQZ256rmkz
, X86::VPORDZ256rmkz
},
7352 { X86::VORPSZ256rrk
, X86::VORPDZ256rrk
,
7353 X86::VPORQZ256rrk
, X86::VPORDZ256rrk
},
7354 { X86::VORPSZ256rrkz
, X86::VORPDZ256rrkz
,
7355 X86::VPORQZ256rrkz
, X86::VPORDZ256rrkz
},
7356 { X86::VXORPSZ256rmk
, X86::VXORPDZ256rmk
,
7357 X86::VPXORQZ256rmk
, X86::VPXORDZ256rmk
},
7358 { X86::VXORPSZ256rmkz
, X86::VXORPDZ256rmkz
,
7359 X86::VPXORQZ256rmkz
, X86::VPXORDZ256rmkz
},
7360 { X86::VXORPSZ256rrk
, X86::VXORPDZ256rrk
,
7361 X86::VPXORQZ256rrk
, X86::VPXORDZ256rrk
},
7362 { X86::VXORPSZ256rrkz
, X86::VXORPDZ256rrkz
,
7363 X86::VPXORQZ256rrkz
, X86::VPXORDZ256rrkz
},
7364 { X86::VANDNPSZrmk
, X86::VANDNPDZrmk
,
7365 X86::VPANDNQZrmk
, X86::VPANDNDZrmk
},
7366 { X86::VANDNPSZrmkz
, X86::VANDNPDZrmkz
,
7367 X86::VPANDNQZrmkz
, X86::VPANDNDZrmkz
},
7368 { X86::VANDNPSZrrk
, X86::VANDNPDZrrk
,
7369 X86::VPANDNQZrrk
, X86::VPANDNDZrrk
},
7370 { X86::VANDNPSZrrkz
, X86::VANDNPDZrrkz
,
7371 X86::VPANDNQZrrkz
, X86::VPANDNDZrrkz
},
7372 { X86::VANDPSZrmk
, X86::VANDPDZrmk
,
7373 X86::VPANDQZrmk
, X86::VPANDDZrmk
},
7374 { X86::VANDPSZrmkz
, X86::VANDPDZrmkz
,
7375 X86::VPANDQZrmkz
, X86::VPANDDZrmkz
},
7376 { X86::VANDPSZrrk
, X86::VANDPDZrrk
,
7377 X86::VPANDQZrrk
, X86::VPANDDZrrk
},
7378 { X86::VANDPSZrrkz
, X86::VANDPDZrrkz
,
7379 X86::VPANDQZrrkz
, X86::VPANDDZrrkz
},
7380 { X86::VORPSZrmk
, X86::VORPDZrmk
,
7381 X86::VPORQZrmk
, X86::VPORDZrmk
},
7382 { X86::VORPSZrmkz
, X86::VORPDZrmkz
,
7383 X86::VPORQZrmkz
, X86::VPORDZrmkz
},
7384 { X86::VORPSZrrk
, X86::VORPDZrrk
,
7385 X86::VPORQZrrk
, X86::VPORDZrrk
},
7386 { X86::VORPSZrrkz
, X86::VORPDZrrkz
,
7387 X86::VPORQZrrkz
, X86::VPORDZrrkz
},
7388 { X86::VXORPSZrmk
, X86::VXORPDZrmk
,
7389 X86::VPXORQZrmk
, X86::VPXORDZrmk
},
7390 { X86::VXORPSZrmkz
, X86::VXORPDZrmkz
,
7391 X86::VPXORQZrmkz
, X86::VPXORDZrmkz
},
7392 { X86::VXORPSZrrk
, X86::VXORPDZrrk
,
7393 X86::VPXORQZrrk
, X86::VPXORDZrrk
},
7394 { X86::VXORPSZrrkz
, X86::VXORPDZrrkz
,
7395 X86::VPXORQZrrkz
, X86::VPXORDZrrkz
},
7396 // Broadcast loads can be handled the same as masked operations to avoid
7397 // changing element size.
7398 { X86::VANDNPSZ128rmb
, X86::VANDNPDZ128rmb
,
7399 X86::VPANDNQZ128rmb
, X86::VPANDNDZ128rmb
},
7400 { X86::VANDPSZ128rmb
, X86::VANDPDZ128rmb
,
7401 X86::VPANDQZ128rmb
, X86::VPANDDZ128rmb
},
7402 { X86::VORPSZ128rmb
, X86::VORPDZ128rmb
,
7403 X86::VPORQZ128rmb
, X86::VPORDZ128rmb
},
7404 { X86::VXORPSZ128rmb
, X86::VXORPDZ128rmb
,
7405 X86::VPXORQZ128rmb
, X86::VPXORDZ128rmb
},
7406 { X86::VANDNPSZ256rmb
, X86::VANDNPDZ256rmb
,
7407 X86::VPANDNQZ256rmb
, X86::VPANDNDZ256rmb
},
7408 { X86::VANDPSZ256rmb
, X86::VANDPDZ256rmb
,
7409 X86::VPANDQZ256rmb
, X86::VPANDDZ256rmb
},
7410 { X86::VORPSZ256rmb
, X86::VORPDZ256rmb
,
7411 X86::VPORQZ256rmb
, X86::VPORDZ256rmb
},
7412 { X86::VXORPSZ256rmb
, X86::VXORPDZ256rmb
,
7413 X86::VPXORQZ256rmb
, X86::VPXORDZ256rmb
},
7414 { X86::VANDNPSZrmb
, X86::VANDNPDZrmb
,
7415 X86::VPANDNQZrmb
, X86::VPANDNDZrmb
},
7416 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
7417 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
7418 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
7419 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
7420 { X86::VORPSZrmb
, X86::VORPDZrmb
,
7421 X86::VPORQZrmb
, X86::VPORDZrmb
},
7422 { X86::VXORPSZrmb
, X86::VXORPDZrmb
,
7423 X86::VPXORQZrmb
, X86::VPXORDZrmb
},
7424 { X86::VANDNPSZ128rmbk
, X86::VANDNPDZ128rmbk
,
7425 X86::VPANDNQZ128rmbk
, X86::VPANDNDZ128rmbk
},
7426 { X86::VANDPSZ128rmbk
, X86::VANDPDZ128rmbk
,
7427 X86::VPANDQZ128rmbk
, X86::VPANDDZ128rmbk
},
7428 { X86::VORPSZ128rmbk
, X86::VORPDZ128rmbk
,
7429 X86::VPORQZ128rmbk
, X86::VPORDZ128rmbk
},
7430 { X86::VXORPSZ128rmbk
, X86::VXORPDZ128rmbk
,
7431 X86::VPXORQZ128rmbk
, X86::VPXORDZ128rmbk
},
7432 { X86::VANDNPSZ256rmbk
, X86::VANDNPDZ256rmbk
,
7433 X86::VPANDNQZ256rmbk
, X86::VPANDNDZ256rmbk
},
7434 { X86::VANDPSZ256rmbk
, X86::VANDPDZ256rmbk
,
7435 X86::VPANDQZ256rmbk
, X86::VPANDDZ256rmbk
},
7436 { X86::VORPSZ256rmbk
, X86::VORPDZ256rmbk
,
7437 X86::VPORQZ256rmbk
, X86::VPORDZ256rmbk
},
7438 { X86::VXORPSZ256rmbk
, X86::VXORPDZ256rmbk
,
7439 X86::VPXORQZ256rmbk
, X86::VPXORDZ256rmbk
},
7440 { X86::VANDNPSZrmbk
, X86::VANDNPDZrmbk
,
7441 X86::VPANDNQZrmbk
, X86::VPANDNDZrmbk
},
7442 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
7443 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
7444 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
7445 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
7446 { X86::VORPSZrmbk
, X86::VORPDZrmbk
,
7447 X86::VPORQZrmbk
, X86::VPORDZrmbk
},
7448 { X86::VXORPSZrmbk
, X86::VXORPDZrmbk
,
7449 X86::VPXORQZrmbk
, X86::VPXORDZrmbk
},
7450 { X86::VANDNPSZ128rmbkz
,X86::VANDNPDZ128rmbkz
,
7451 X86::VPANDNQZ128rmbkz
,X86::VPANDNDZ128rmbkz
},
7452 { X86::VANDPSZ128rmbkz
, X86::VANDPDZ128rmbkz
,
7453 X86::VPANDQZ128rmbkz
, X86::VPANDDZ128rmbkz
},
7454 { X86::VORPSZ128rmbkz
, X86::VORPDZ128rmbkz
,
7455 X86::VPORQZ128rmbkz
, X86::VPORDZ128rmbkz
},
7456 { X86::VXORPSZ128rmbkz
, X86::VXORPDZ128rmbkz
,
7457 X86::VPXORQZ128rmbkz
, X86::VPXORDZ128rmbkz
},
7458 { X86::VANDNPSZ256rmbkz
,X86::VANDNPDZ256rmbkz
,
7459 X86::VPANDNQZ256rmbkz
,X86::VPANDNDZ256rmbkz
},
7460 { X86::VANDPSZ256rmbkz
, X86::VANDPDZ256rmbkz
,
7461 X86::VPANDQZ256rmbkz
, X86::VPANDDZ256rmbkz
},
7462 { X86::VORPSZ256rmbkz
, X86::VORPDZ256rmbkz
,
7463 X86::VPORQZ256rmbkz
, X86::VPORDZ256rmbkz
},
7464 { X86::VXORPSZ256rmbkz
, X86::VXORPDZ256rmbkz
,
7465 X86::VPXORQZ256rmbkz
, X86::VPXORDZ256rmbkz
},
7466 { X86::VANDNPSZrmbkz
, X86::VANDNPDZrmbkz
,
7467 X86::VPANDNQZrmbkz
, X86::VPANDNDZrmbkz
},
7468 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
7469 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
7470 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
7471 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
7472 { X86::VORPSZrmbkz
, X86::VORPDZrmbkz
,
7473 X86::VPORQZrmbkz
, X86::VPORDZrmbkz
},
7474 { X86::VXORPSZrmbkz
, X86::VXORPDZrmbkz
,
7475 X86::VPXORQZrmbkz
, X86::VPXORDZrmbkz
},
7478 // NOTE: These should only be used by the custom domain methods.
7479 static const uint16_t ReplaceableBlendInstrs
[][3] = {
7480 //PackedSingle PackedDouble PackedInt
7481 { X86::BLENDPSrmi
, X86::BLENDPDrmi
, X86::PBLENDWrmi
},
7482 { X86::BLENDPSrri
, X86::BLENDPDrri
, X86::PBLENDWrri
},
7483 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDWrmi
},
7484 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDWrri
},
7485 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDWYrmi
},
7486 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDWYrri
},
7488 static const uint16_t ReplaceableBlendAVX2Instrs
[][3] = {
7489 //PackedSingle PackedDouble PackedInt
7490 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDDrmi
},
7491 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDDrri
},
7492 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDDYrmi
},
7493 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDDYrri
},
7496 // Special table for changing EVEX logic instructions to VEX.
7497 // TODO: Should we run EVEX->VEX earlier?
7498 static const uint16_t ReplaceableCustomAVX512LogicInstrs
[][4] = {
7499 // Two integer columns for 64-bit and 32-bit elements.
7500 //PackedSingle PackedDouble PackedInt PackedInt
7501 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
7502 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
7503 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
7504 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
7505 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
7506 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
7507 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
7508 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
7509 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
7510 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
7511 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
7512 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
7513 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
7514 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
7515 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
7516 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
7519 // FIXME: Some shuffle and unpack instructions have equivalents in different
7520 // domains, but they require a bit more work than just switching opcodes.
7522 static const uint16_t *lookup(unsigned opcode
, unsigned domain
,
7523 ArrayRef
<uint16_t[3]> Table
) {
7524 for (const uint16_t (&Row
)[3] : Table
)
7525 if (Row
[domain
-1] == opcode
)
7530 static const uint16_t *lookupAVX512(unsigned opcode
, unsigned domain
,
7531 ArrayRef
<uint16_t[4]> Table
) {
7532 // If this is the integer domain make sure to check both integer columns.
7533 for (const uint16_t (&Row
)[4] : Table
)
7534 if (Row
[domain
-1] == opcode
|| (domain
== 3 && Row
[3] == opcode
))
7539 // Helper to attempt to widen/narrow blend masks.
7540 static bool AdjustBlendMask(unsigned OldMask
, unsigned OldWidth
,
7541 unsigned NewWidth
, unsigned *pNewMask
= nullptr) {
7542 assert(((OldWidth
% NewWidth
) == 0 || (NewWidth
% OldWidth
) == 0) &&
7543 "Illegal blend mask scale");
7544 unsigned NewMask
= 0;
7546 if ((OldWidth
% NewWidth
) == 0) {
7547 unsigned Scale
= OldWidth
/ NewWidth
;
7548 unsigned SubMask
= (1u << Scale
) - 1;
7549 for (unsigned i
= 0; i
!= NewWidth
; ++i
) {
7550 unsigned Sub
= (OldMask
>> (i
* Scale
)) & SubMask
;
7552 NewMask
|= (1u << i
);
7553 else if (Sub
!= 0x0)
7557 unsigned Scale
= NewWidth
/ OldWidth
;
7558 unsigned SubMask
= (1u << Scale
) - 1;
7559 for (unsigned i
= 0; i
!= OldWidth
; ++i
) {
7560 if (OldMask
& (1 << i
)) {
7561 NewMask
|= (SubMask
<< (i
* Scale
));
7567 *pNewMask
= NewMask
;
7571 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr
&MI
) const {
7572 unsigned Opcode
= MI
.getOpcode();
7573 unsigned NumOperands
= MI
.getDesc().getNumOperands();
7575 auto GetBlendDomains
= [&](unsigned ImmWidth
, bool Is256
) {
7576 uint16_t validDomains
= 0;
7577 if (MI
.getOperand(NumOperands
- 1).isImm()) {
7578 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm();
7579 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4))
7580 validDomains
|= 0x2; // PackedSingle
7581 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2))
7582 validDomains
|= 0x4; // PackedDouble
7583 if (!Is256
|| Subtarget
.hasAVX2())
7584 validDomains
|= 0x8; // PackedInt
7586 return validDomains
;
7590 case X86::BLENDPDrmi
:
7591 case X86::BLENDPDrri
:
7592 case X86::VBLENDPDrmi
:
7593 case X86::VBLENDPDrri
:
7594 return GetBlendDomains(2, false);
7595 case X86::VBLENDPDYrmi
:
7596 case X86::VBLENDPDYrri
:
7597 return GetBlendDomains(4, true);
7598 case X86::BLENDPSrmi
:
7599 case X86::BLENDPSrri
:
7600 case X86::VBLENDPSrmi
:
7601 case X86::VBLENDPSrri
:
7602 case X86::VPBLENDDrmi
:
7603 case X86::VPBLENDDrri
:
7604 return GetBlendDomains(4, false);
7605 case X86::VBLENDPSYrmi
:
7606 case X86::VBLENDPSYrri
:
7607 case X86::VPBLENDDYrmi
:
7608 case X86::VPBLENDDYrri
:
7609 return GetBlendDomains(8, true);
7610 case X86::PBLENDWrmi
:
7611 case X86::PBLENDWrri
:
7612 case X86::VPBLENDWrmi
:
7613 case X86::VPBLENDWrri
:
7614 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
7615 case X86::VPBLENDWYrmi
:
7616 case X86::VPBLENDWYrri
:
7617 return GetBlendDomains(8, false);
7618 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
7619 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
7620 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
7621 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
7622 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
7623 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
7624 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
7625 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
7626 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
7627 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
7628 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
7629 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
7630 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
7631 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
7632 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
7633 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
:
7634 // If we don't have DQI see if we can still switch from an EVEX integer
7635 // instruction to a VEX floating point instruction.
7636 if (Subtarget
.hasDQI())
7639 if (RI
.getEncodingValue(MI
.getOperand(0).getReg()) >= 16)
7641 if (RI
.getEncodingValue(MI
.getOperand(1).getReg()) >= 16)
7643 // Register forms will have 3 operands. Memory form will have more.
7644 if (NumOperands
== 3 &&
7645 RI
.getEncodingValue(MI
.getOperand(2).getReg()) >= 16)
7648 // All domains are valid.
7650 case X86::MOVHLPSrr
:
7651 // We can swap domains when both inputs are the same register.
7652 // FIXME: This doesn't catch all the cases we would like. If the input
7653 // register isn't KILLed by the instruction, the two address instruction
7654 // pass puts a COPY on one input. The other input uses the original
7655 // register. This prevents the same physical register from being used by
7657 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
7658 MI
.getOperand(0).getSubReg() == 0 &&
7659 MI
.getOperand(1).getSubReg() == 0 &&
7660 MI
.getOperand(2).getSubReg() == 0)
7663 case X86::SHUFPDrri
:
7669 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr
&MI
,
7670 unsigned Domain
) const {
7671 assert(Domain
> 0 && Domain
< 4 && "Invalid execution domain");
7672 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
7673 assert(dom
&& "Not an SSE instruction");
7675 unsigned Opcode
= MI
.getOpcode();
7676 unsigned NumOperands
= MI
.getDesc().getNumOperands();
7678 auto SetBlendDomain
= [&](unsigned ImmWidth
, bool Is256
) {
7679 if (MI
.getOperand(NumOperands
- 1).isImm()) {
7680 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm() & 255;
7681 Imm
= (ImmWidth
== 16 ? ((Imm
<< 8) | Imm
) : Imm
);
7682 unsigned NewImm
= Imm
;
7684 const uint16_t *table
= lookup(Opcode
, dom
, ReplaceableBlendInstrs
);
7686 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
7688 if (Domain
== 1) { // PackedSingle
7689 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
7690 } else if (Domain
== 2) { // PackedDouble
7691 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2, &NewImm
);
7692 } else if (Domain
== 3) { // PackedInt
7693 if (Subtarget
.hasAVX2()) {
7694 // If we are already VPBLENDW use that, else use VPBLENDD.
7695 if ((ImmWidth
/ (Is256
? 2 : 1)) != 8) {
7696 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
7697 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
7700 assert(!Is256
&& "128-bit vector expected");
7701 AdjustBlendMask(Imm
, ImmWidth
, 8, &NewImm
);
7705 assert(table
&& table
[Domain
- 1] && "Unknown domain op");
7706 MI
.setDesc(get(table
[Domain
- 1]));
7707 MI
.getOperand(NumOperands
- 1).setImm(NewImm
& 255);
7713 case X86::BLENDPDrmi
:
7714 case X86::BLENDPDrri
:
7715 case X86::VBLENDPDrmi
:
7716 case X86::VBLENDPDrri
:
7717 return SetBlendDomain(2, false);
7718 case X86::VBLENDPDYrmi
:
7719 case X86::VBLENDPDYrri
:
7720 return SetBlendDomain(4, true);
7721 case X86::BLENDPSrmi
:
7722 case X86::BLENDPSrri
:
7723 case X86::VBLENDPSrmi
:
7724 case X86::VBLENDPSrri
:
7725 case X86::VPBLENDDrmi
:
7726 case X86::VPBLENDDrri
:
7727 return SetBlendDomain(4, false);
7728 case X86::VBLENDPSYrmi
:
7729 case X86::VBLENDPSYrri
:
7730 case X86::VPBLENDDYrmi
:
7731 case X86::VPBLENDDYrri
:
7732 return SetBlendDomain(8, true);
7733 case X86::PBLENDWrmi
:
7734 case X86::PBLENDWrri
:
7735 case X86::VPBLENDWrmi
:
7736 case X86::VPBLENDWrri
:
7737 return SetBlendDomain(8, false);
7738 case X86::VPBLENDWYrmi
:
7739 case X86::VPBLENDWYrri
:
7740 return SetBlendDomain(16, true);
7741 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
7742 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
7743 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
7744 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
7745 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
7746 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
7747 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
7748 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
7749 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
7750 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
7751 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
7752 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
7753 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
7754 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
7755 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
7756 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
: {
7757 // Without DQI, convert EVEX instructions to VEX instructions.
7758 if (Subtarget
.hasDQI())
7761 const uint16_t *table
= lookupAVX512(MI
.getOpcode(), dom
,
7762 ReplaceableCustomAVX512LogicInstrs
);
7763 assert(table
&& "Instruction not found in table?");
7764 // Don't change integer Q instructions to D instructions and
7765 // use D intructions if we started with a PS instruction.
7766 if (Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
7768 MI
.setDesc(get(table
[Domain
- 1]));
7771 case X86::UNPCKHPDrr
:
7772 case X86::MOVHLPSrr
:
7773 // We just need to commute the instruction which will switch the domains.
7774 if (Domain
!= dom
&& Domain
!= 3 &&
7775 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
7776 MI
.getOperand(0).getSubReg() == 0 &&
7777 MI
.getOperand(1).getSubReg() == 0 &&
7778 MI
.getOperand(2).getSubReg() == 0) {
7779 commuteInstruction(MI
, false);
7782 // We must always return true for MOVHLPSrr.
7783 if (Opcode
== X86::MOVHLPSrr
)
7786 case X86::SHUFPDrri
: {
7788 unsigned Imm
= MI
.getOperand(3).getImm();
7789 unsigned NewImm
= 0x44;
7790 if (Imm
& 1) NewImm
|= 0x0a;
7791 if (Imm
& 2) NewImm
|= 0xa0;
7792 MI
.getOperand(3).setImm(NewImm
);
7793 MI
.setDesc(get(X86::SHUFPSrri
));
7801 std::pair
<uint16_t, uint16_t>
7802 X86InstrInfo::getExecutionDomain(const MachineInstr
&MI
) const {
7803 uint16_t domain
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
7804 unsigned opcode
= MI
.getOpcode();
7805 uint16_t validDomains
= 0;
7807 // Attempt to match for custom instructions.
7808 validDomains
= getExecutionDomainCustom(MI
);
7810 return std::make_pair(domain
, validDomains
);
7812 if (lookup(opcode
, domain
, ReplaceableInstrs
)) {
7814 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2
)) {
7815 validDomains
= Subtarget
.hasAVX2() ? 0xe : 0x6;
7816 } else if (lookup(opcode
, domain
, ReplaceableInstrsFP
)) {
7818 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2InsertExtract
)) {
7819 // Insert/extract instructions should only effect domain if AVX2
7821 if (!Subtarget
.hasAVX2())
7822 return std::make_pair(0, 0);
7824 } else if (lookupAVX512(opcode
, domain
, ReplaceableInstrsAVX512
)) {
7826 } else if (Subtarget
.hasDQI() && lookupAVX512(opcode
, domain
,
7827 ReplaceableInstrsAVX512DQ
)) {
7829 } else if (Subtarget
.hasDQI()) {
7830 if (const uint16_t *table
= lookupAVX512(opcode
, domain
,
7831 ReplaceableInstrsAVX512DQMasked
)) {
7832 if (domain
== 1 || (domain
== 3 && table
[3] == opcode
))
7839 return std::make_pair(domain
, validDomains
);
7842 void X86InstrInfo::setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const {
7843 assert(Domain
>0 && Domain
<4 && "Invalid execution domain");
7844 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
7845 assert(dom
&& "Not an SSE instruction");
7847 // Attempt to match for custom instructions.
7848 if (setExecutionDomainCustom(MI
, Domain
))
7851 const uint16_t *table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrs
);
7852 if (!table
) { // try the other table
7853 assert((Subtarget
.hasAVX2() || Domain
< 3) &&
7854 "256-bit vector operations only available in AVX2");
7855 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2
);
7857 if (!table
) { // try the FP table
7858 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsFP
);
7859 assert((!table
|| Domain
< 3) &&
7860 "Can only select PackedSingle or PackedDouble");
7862 if (!table
) { // try the other table
7863 assert(Subtarget
.hasAVX2() &&
7864 "256-bit insert/extract only available in AVX2");
7865 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2InsertExtract
);
7867 if (!table
) { // try the AVX512 table
7868 assert(Subtarget
.hasAVX512() && "Requires AVX-512");
7869 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512
);
7870 // Don't change integer Q instructions to D instructions.
7871 if (table
&& Domain
== 3 && table
[3] == MI
.getOpcode())
7874 if (!table
) { // try the AVX512DQ table
7875 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
7876 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQ
);
7877 // Don't change integer Q instructions to D instructions and
7878 // use D instructions if we started with a PS instruction.
7879 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
7882 if (!table
) { // try the AVX512DQMasked table
7883 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
7884 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQMasked
);
7885 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
7888 assert(table
&& "Cannot change domain");
7889 MI
.setDesc(get(table
[Domain
- 1]));
7892 /// Return the noop instruction to use for a noop.
7893 MCInst
X86InstrInfo::getNop() const {
7895 Nop
.setOpcode(X86::NOOP
);
7899 bool X86InstrInfo::isHighLatencyDef(int opc
) const {
7901 default: return false;
7907 case X86::DIVSDrm_Int
:
7909 case X86::DIVSDrr_Int
:
7911 case X86::DIVSSrm_Int
:
7913 case X86::DIVSSrr_Int
:
7919 case X86::SQRTSDm_Int
:
7921 case X86::SQRTSDr_Int
:
7923 case X86::SQRTSSm_Int
:
7925 case X86::SQRTSSr_Int
:
7926 // AVX instructions with high latency
7929 case X86::VDIVPDYrm
:
7930 case X86::VDIVPDYrr
:
7933 case X86::VDIVPSYrm
:
7934 case X86::VDIVPSYrr
:
7936 case X86::VDIVSDrm_Int
:
7938 case X86::VDIVSDrr_Int
:
7940 case X86::VDIVSSrm_Int
:
7942 case X86::VDIVSSrr_Int
:
7945 case X86::VSQRTPDYm
:
7946 case X86::VSQRTPDYr
:
7949 case X86::VSQRTPSYm
:
7950 case X86::VSQRTPSYr
:
7952 case X86::VSQRTSDm_Int
:
7954 case X86::VSQRTSDr_Int
:
7956 case X86::VSQRTSSm_Int
:
7958 case X86::VSQRTSSr_Int
:
7959 // AVX512 instructions with high latency
7960 case X86::VDIVPDZ128rm
:
7961 case X86::VDIVPDZ128rmb
:
7962 case X86::VDIVPDZ128rmbk
:
7963 case X86::VDIVPDZ128rmbkz
:
7964 case X86::VDIVPDZ128rmk
:
7965 case X86::VDIVPDZ128rmkz
:
7966 case X86::VDIVPDZ128rr
:
7967 case X86::VDIVPDZ128rrk
:
7968 case X86::VDIVPDZ128rrkz
:
7969 case X86::VDIVPDZ256rm
:
7970 case X86::VDIVPDZ256rmb
:
7971 case X86::VDIVPDZ256rmbk
:
7972 case X86::VDIVPDZ256rmbkz
:
7973 case X86::VDIVPDZ256rmk
:
7974 case X86::VDIVPDZ256rmkz
:
7975 case X86::VDIVPDZ256rr
:
7976 case X86::VDIVPDZ256rrk
:
7977 case X86::VDIVPDZ256rrkz
:
7978 case X86::VDIVPDZrrb
:
7979 case X86::VDIVPDZrrbk
:
7980 case X86::VDIVPDZrrbkz
:
7981 case X86::VDIVPDZrm
:
7982 case X86::VDIVPDZrmb
:
7983 case X86::VDIVPDZrmbk
:
7984 case X86::VDIVPDZrmbkz
:
7985 case X86::VDIVPDZrmk
:
7986 case X86::VDIVPDZrmkz
:
7987 case X86::VDIVPDZrr
:
7988 case X86::VDIVPDZrrk
:
7989 case X86::VDIVPDZrrkz
:
7990 case X86::VDIVPSZ128rm
:
7991 case X86::VDIVPSZ128rmb
:
7992 case X86::VDIVPSZ128rmbk
:
7993 case X86::VDIVPSZ128rmbkz
:
7994 case X86::VDIVPSZ128rmk
:
7995 case X86::VDIVPSZ128rmkz
:
7996 case X86::VDIVPSZ128rr
:
7997 case X86::VDIVPSZ128rrk
:
7998 case X86::VDIVPSZ128rrkz
:
7999 case X86::VDIVPSZ256rm
:
8000 case X86::VDIVPSZ256rmb
:
8001 case X86::VDIVPSZ256rmbk
:
8002 case X86::VDIVPSZ256rmbkz
:
8003 case X86::VDIVPSZ256rmk
:
8004 case X86::VDIVPSZ256rmkz
:
8005 case X86::VDIVPSZ256rr
:
8006 case X86::VDIVPSZ256rrk
:
8007 case X86::VDIVPSZ256rrkz
:
8008 case X86::VDIVPSZrrb
:
8009 case X86::VDIVPSZrrbk
:
8010 case X86::VDIVPSZrrbkz
:
8011 case X86::VDIVPSZrm
:
8012 case X86::VDIVPSZrmb
:
8013 case X86::VDIVPSZrmbk
:
8014 case X86::VDIVPSZrmbkz
:
8015 case X86::VDIVPSZrmk
:
8016 case X86::VDIVPSZrmkz
:
8017 case X86::VDIVPSZrr
:
8018 case X86::VDIVPSZrrk
:
8019 case X86::VDIVPSZrrkz
:
8020 case X86::VDIVSDZrm
:
8021 case X86::VDIVSDZrr
:
8022 case X86::VDIVSDZrm_Int
:
8023 case X86::VDIVSDZrm_Intk
:
8024 case X86::VDIVSDZrm_Intkz
:
8025 case X86::VDIVSDZrr_Int
:
8026 case X86::VDIVSDZrr_Intk
:
8027 case X86::VDIVSDZrr_Intkz
:
8028 case X86::VDIVSDZrrb_Int
:
8029 case X86::VDIVSDZrrb_Intk
:
8030 case X86::VDIVSDZrrb_Intkz
:
8031 case X86::VDIVSSZrm
:
8032 case X86::VDIVSSZrr
:
8033 case X86::VDIVSSZrm_Int
:
8034 case X86::VDIVSSZrm_Intk
:
8035 case X86::VDIVSSZrm_Intkz
:
8036 case X86::VDIVSSZrr_Int
:
8037 case X86::VDIVSSZrr_Intk
:
8038 case X86::VDIVSSZrr_Intkz
:
8039 case X86::VDIVSSZrrb_Int
:
8040 case X86::VDIVSSZrrb_Intk
:
8041 case X86::VDIVSSZrrb_Intkz
:
8042 case X86::VSQRTPDZ128m
:
8043 case X86::VSQRTPDZ128mb
:
8044 case X86::VSQRTPDZ128mbk
:
8045 case X86::VSQRTPDZ128mbkz
:
8046 case X86::VSQRTPDZ128mk
:
8047 case X86::VSQRTPDZ128mkz
:
8048 case X86::VSQRTPDZ128r
:
8049 case X86::VSQRTPDZ128rk
:
8050 case X86::VSQRTPDZ128rkz
:
8051 case X86::VSQRTPDZ256m
:
8052 case X86::VSQRTPDZ256mb
:
8053 case X86::VSQRTPDZ256mbk
:
8054 case X86::VSQRTPDZ256mbkz
:
8055 case X86::VSQRTPDZ256mk
:
8056 case X86::VSQRTPDZ256mkz
:
8057 case X86::VSQRTPDZ256r
:
8058 case X86::VSQRTPDZ256rk
:
8059 case X86::VSQRTPDZ256rkz
:
8060 case X86::VSQRTPDZm
:
8061 case X86::VSQRTPDZmb
:
8062 case X86::VSQRTPDZmbk
:
8063 case X86::VSQRTPDZmbkz
:
8064 case X86::VSQRTPDZmk
:
8065 case X86::VSQRTPDZmkz
:
8066 case X86::VSQRTPDZr
:
8067 case X86::VSQRTPDZrb
:
8068 case X86::VSQRTPDZrbk
:
8069 case X86::VSQRTPDZrbkz
:
8070 case X86::VSQRTPDZrk
:
8071 case X86::VSQRTPDZrkz
:
8072 case X86::VSQRTPSZ128m
:
8073 case X86::VSQRTPSZ128mb
:
8074 case X86::VSQRTPSZ128mbk
:
8075 case X86::VSQRTPSZ128mbkz
:
8076 case X86::VSQRTPSZ128mk
:
8077 case X86::VSQRTPSZ128mkz
:
8078 case X86::VSQRTPSZ128r
:
8079 case X86::VSQRTPSZ128rk
:
8080 case X86::VSQRTPSZ128rkz
:
8081 case X86::VSQRTPSZ256m
:
8082 case X86::VSQRTPSZ256mb
:
8083 case X86::VSQRTPSZ256mbk
:
8084 case X86::VSQRTPSZ256mbkz
:
8085 case X86::VSQRTPSZ256mk
:
8086 case X86::VSQRTPSZ256mkz
:
8087 case X86::VSQRTPSZ256r
:
8088 case X86::VSQRTPSZ256rk
:
8089 case X86::VSQRTPSZ256rkz
:
8090 case X86::VSQRTPSZm
:
8091 case X86::VSQRTPSZmb
:
8092 case X86::VSQRTPSZmbk
:
8093 case X86::VSQRTPSZmbkz
:
8094 case X86::VSQRTPSZmk
:
8095 case X86::VSQRTPSZmkz
:
8096 case X86::VSQRTPSZr
:
8097 case X86::VSQRTPSZrb
:
8098 case X86::VSQRTPSZrbk
:
8099 case X86::VSQRTPSZrbkz
:
8100 case X86::VSQRTPSZrk
:
8101 case X86::VSQRTPSZrkz
:
8102 case X86::VSQRTSDZm
:
8103 case X86::VSQRTSDZm_Int
:
8104 case X86::VSQRTSDZm_Intk
:
8105 case X86::VSQRTSDZm_Intkz
:
8106 case X86::VSQRTSDZr
:
8107 case X86::VSQRTSDZr_Int
:
8108 case X86::VSQRTSDZr_Intk
:
8109 case X86::VSQRTSDZr_Intkz
:
8110 case X86::VSQRTSDZrb_Int
:
8111 case X86::VSQRTSDZrb_Intk
:
8112 case X86::VSQRTSDZrb_Intkz
:
8113 case X86::VSQRTSSZm
:
8114 case X86::VSQRTSSZm_Int
:
8115 case X86::VSQRTSSZm_Intk
:
8116 case X86::VSQRTSSZm_Intkz
:
8117 case X86::VSQRTSSZr
:
8118 case X86::VSQRTSSZr_Int
:
8119 case X86::VSQRTSSZr_Intk
:
8120 case X86::VSQRTSSZr_Intkz
:
8121 case X86::VSQRTSSZrb_Int
:
8122 case X86::VSQRTSSZrb_Intk
:
8123 case X86::VSQRTSSZrb_Intkz
:
8125 case X86::VGATHERDPDYrm
:
8126 case X86::VGATHERDPDZ128rm
:
8127 case X86::VGATHERDPDZ256rm
:
8128 case X86::VGATHERDPDZrm
:
8129 case X86::VGATHERDPDrm
:
8130 case X86::VGATHERDPSYrm
:
8131 case X86::VGATHERDPSZ128rm
:
8132 case X86::VGATHERDPSZ256rm
:
8133 case X86::VGATHERDPSZrm
:
8134 case X86::VGATHERDPSrm
:
8135 case X86::VGATHERPF0DPDm
:
8136 case X86::VGATHERPF0DPSm
:
8137 case X86::VGATHERPF0QPDm
:
8138 case X86::VGATHERPF0QPSm
:
8139 case X86::VGATHERPF1DPDm
:
8140 case X86::VGATHERPF1DPSm
:
8141 case X86::VGATHERPF1QPDm
:
8142 case X86::VGATHERPF1QPSm
:
8143 case X86::VGATHERQPDYrm
:
8144 case X86::VGATHERQPDZ128rm
:
8145 case X86::VGATHERQPDZ256rm
:
8146 case X86::VGATHERQPDZrm
:
8147 case X86::VGATHERQPDrm
:
8148 case X86::VGATHERQPSYrm
:
8149 case X86::VGATHERQPSZ128rm
:
8150 case X86::VGATHERQPSZ256rm
:
8151 case X86::VGATHERQPSZrm
:
8152 case X86::VGATHERQPSrm
:
8153 case X86::VPGATHERDDYrm
:
8154 case X86::VPGATHERDDZ128rm
:
8155 case X86::VPGATHERDDZ256rm
:
8156 case X86::VPGATHERDDZrm
:
8157 case X86::VPGATHERDDrm
:
8158 case X86::VPGATHERDQYrm
:
8159 case X86::VPGATHERDQZ128rm
:
8160 case X86::VPGATHERDQZ256rm
:
8161 case X86::VPGATHERDQZrm
:
8162 case X86::VPGATHERDQrm
:
8163 case X86::VPGATHERQDYrm
:
8164 case X86::VPGATHERQDZ128rm
:
8165 case X86::VPGATHERQDZ256rm
:
8166 case X86::VPGATHERQDZrm
:
8167 case X86::VPGATHERQDrm
:
8168 case X86::VPGATHERQQYrm
:
8169 case X86::VPGATHERQQZ128rm
:
8170 case X86::VPGATHERQQZ256rm
:
8171 case X86::VPGATHERQQZrm
:
8172 case X86::VPGATHERQQrm
:
8173 case X86::VSCATTERDPDZ128mr
:
8174 case X86::VSCATTERDPDZ256mr
:
8175 case X86::VSCATTERDPDZmr
:
8176 case X86::VSCATTERDPSZ128mr
:
8177 case X86::VSCATTERDPSZ256mr
:
8178 case X86::VSCATTERDPSZmr
:
8179 case X86::VSCATTERPF0DPDm
:
8180 case X86::VSCATTERPF0DPSm
:
8181 case X86::VSCATTERPF0QPDm
:
8182 case X86::VSCATTERPF0QPSm
:
8183 case X86::VSCATTERPF1DPDm
:
8184 case X86::VSCATTERPF1DPSm
:
8185 case X86::VSCATTERPF1QPDm
:
8186 case X86::VSCATTERPF1QPSm
:
8187 case X86::VSCATTERQPDZ128mr
:
8188 case X86::VSCATTERQPDZ256mr
:
8189 case X86::VSCATTERQPDZmr
:
8190 case X86::VSCATTERQPSZ128mr
:
8191 case X86::VSCATTERQPSZ256mr
:
8192 case X86::VSCATTERQPSZmr
:
8193 case X86::VPSCATTERDDZ128mr
:
8194 case X86::VPSCATTERDDZ256mr
:
8195 case X86::VPSCATTERDDZmr
:
8196 case X86::VPSCATTERDQZ128mr
:
8197 case X86::VPSCATTERDQZ256mr
:
8198 case X86::VPSCATTERDQZmr
:
8199 case X86::VPSCATTERQDZ128mr
:
8200 case X86::VPSCATTERQDZ256mr
:
8201 case X86::VPSCATTERQDZmr
:
8202 case X86::VPSCATTERQQZ128mr
:
8203 case X86::VPSCATTERQQZ256mr
:
8204 case X86::VPSCATTERQQZmr
:
8209 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
8210 const MachineRegisterInfo
*MRI
,
8211 const MachineInstr
&DefMI
,
8213 const MachineInstr
&UseMI
,
8214 unsigned UseIdx
) const {
8215 return isHighLatencyDef(DefMI
.getOpcode());
8218 bool X86InstrInfo::hasReassociableOperands(const MachineInstr
&Inst
,
8219 const MachineBasicBlock
*MBB
) const {
8220 assert(Inst
.getNumExplicitOperands() == 3 && Inst
.getNumExplicitDefs() == 1 &&
8221 Inst
.getNumDefs() <= 2 && "Reassociation needs binary operators");
8223 // Integer binary math/logic instructions have a third source operand:
8224 // the EFLAGS register. That operand must be both defined here and never
8225 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8226 // not change anything because rearranging the operands could affect other
8227 // instructions that depend on the exact status flags (zero, sign, etc.)
8228 // that are set by using these particular operands with this operation.
8229 const MachineOperand
*FlagDef
= Inst
.findRegisterDefOperand(X86::EFLAGS
);
8230 assert((Inst
.getNumDefs() == 1 || FlagDef
) &&
8231 "Implicit def isn't flags?");
8232 if (FlagDef
&& !FlagDef
->isDead())
8235 return TargetInstrInfo::hasReassociableOperands(Inst
, MBB
);
8238 // TODO: There are many more machine instruction opcodes to match:
8239 // 1. Other data types (integer, vectors)
8240 // 2. Other math / logic operations (xor, or)
8241 // 3. Other forms of the same operation (intrinsics and other variants)
8242 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
8243 switch (Inst
.getOpcode()) {
8288 case X86::VPANDDZ128rr
:
8289 case X86::VPANDDZ256rr
:
8290 case X86::VPANDDZrr
:
8291 case X86::VPANDQZ128rr
:
8292 case X86::VPANDQZ256rr
:
8293 case X86::VPANDQZrr
:
8296 case X86::VPORDZ128rr
:
8297 case X86::VPORDZ256rr
:
8299 case X86::VPORQZ128rr
:
8300 case X86::VPORQZ256rr
:
8304 case X86::VPXORDZ128rr
:
8305 case X86::VPXORDZ256rr
:
8306 case X86::VPXORDZrr
:
8307 case X86::VPXORQZ128rr
:
8308 case X86::VPXORQZ256rr
:
8309 case X86::VPXORQZrr
:
8312 case X86::VANDPDYrr
:
8313 case X86::VANDPSYrr
:
8314 case X86::VANDPDZ128rr
:
8315 case X86::VANDPSZ128rr
:
8316 case X86::VANDPDZ256rr
:
8317 case X86::VANDPSZ256rr
:
8318 case X86::VANDPDZrr
:
8319 case X86::VANDPSZrr
:
8324 case X86::VORPDZ128rr
:
8325 case X86::VORPSZ128rr
:
8326 case X86::VORPDZ256rr
:
8327 case X86::VORPSZ256rr
:
8332 case X86::VXORPDYrr
:
8333 case X86::VXORPSYrr
:
8334 case X86::VXORPDZ128rr
:
8335 case X86::VXORPSZ128rr
:
8336 case X86::VXORPDZ256rr
:
8337 case X86::VXORPSZ256rr
:
8338 case X86::VXORPDZrr
:
8339 case X86::VXORPSZrr
:
8360 case X86::VPADDBYrr
:
8361 case X86::VPADDWYrr
:
8362 case X86::VPADDDYrr
:
8363 case X86::VPADDQYrr
:
8364 case X86::VPADDBZ128rr
:
8365 case X86::VPADDWZ128rr
:
8366 case X86::VPADDDZ128rr
:
8367 case X86::VPADDQZ128rr
:
8368 case X86::VPADDBZ256rr
:
8369 case X86::VPADDWZ256rr
:
8370 case X86::VPADDDZ256rr
:
8371 case X86::VPADDQZ256rr
:
8372 case X86::VPADDBZrr
:
8373 case X86::VPADDWZrr
:
8374 case X86::VPADDDZrr
:
8375 case X86::VPADDQZrr
:
8376 case X86::VPMULLWrr
:
8377 case X86::VPMULLWYrr
:
8378 case X86::VPMULLWZ128rr
:
8379 case X86::VPMULLWZ256rr
:
8380 case X86::VPMULLWZrr
:
8381 case X86::VPMULLDrr
:
8382 case X86::VPMULLDYrr
:
8383 case X86::VPMULLDZ128rr
:
8384 case X86::VPMULLDZ256rr
:
8385 case X86::VPMULLDZrr
:
8386 case X86::VPMULLQZ128rr
:
8387 case X86::VPMULLQZ256rr
:
8388 case X86::VPMULLQZrr
:
8389 case X86::VPMAXSBrr
:
8390 case X86::VPMAXSBYrr
:
8391 case X86::VPMAXSBZ128rr
:
8392 case X86::VPMAXSBZ256rr
:
8393 case X86::VPMAXSBZrr
:
8394 case X86::VPMAXSDrr
:
8395 case X86::VPMAXSDYrr
:
8396 case X86::VPMAXSDZ128rr
:
8397 case X86::VPMAXSDZ256rr
:
8398 case X86::VPMAXSDZrr
:
8399 case X86::VPMAXSQZ128rr
:
8400 case X86::VPMAXSQZ256rr
:
8401 case X86::VPMAXSQZrr
:
8402 case X86::VPMAXSWrr
:
8403 case X86::VPMAXSWYrr
:
8404 case X86::VPMAXSWZ128rr
:
8405 case X86::VPMAXSWZ256rr
:
8406 case X86::VPMAXSWZrr
:
8407 case X86::VPMAXUBrr
:
8408 case X86::VPMAXUBYrr
:
8409 case X86::VPMAXUBZ128rr
:
8410 case X86::VPMAXUBZ256rr
:
8411 case X86::VPMAXUBZrr
:
8412 case X86::VPMAXUDrr
:
8413 case X86::VPMAXUDYrr
:
8414 case X86::VPMAXUDZ128rr
:
8415 case X86::VPMAXUDZ256rr
:
8416 case X86::VPMAXUDZrr
:
8417 case X86::VPMAXUQZ128rr
:
8418 case X86::VPMAXUQZ256rr
:
8419 case X86::VPMAXUQZrr
:
8420 case X86::VPMAXUWrr
:
8421 case X86::VPMAXUWYrr
:
8422 case X86::VPMAXUWZ128rr
:
8423 case X86::VPMAXUWZ256rr
:
8424 case X86::VPMAXUWZrr
:
8425 case X86::VPMINSBrr
:
8426 case X86::VPMINSBYrr
:
8427 case X86::VPMINSBZ128rr
:
8428 case X86::VPMINSBZ256rr
:
8429 case X86::VPMINSBZrr
:
8430 case X86::VPMINSDrr
:
8431 case X86::VPMINSDYrr
:
8432 case X86::VPMINSDZ128rr
:
8433 case X86::VPMINSDZ256rr
:
8434 case X86::VPMINSDZrr
:
8435 case X86::VPMINSQZ128rr
:
8436 case X86::VPMINSQZ256rr
:
8437 case X86::VPMINSQZrr
:
8438 case X86::VPMINSWrr
:
8439 case X86::VPMINSWYrr
:
8440 case X86::VPMINSWZ128rr
:
8441 case X86::VPMINSWZ256rr
:
8442 case X86::VPMINSWZrr
:
8443 case X86::VPMINUBrr
:
8444 case X86::VPMINUBYrr
:
8445 case X86::VPMINUBZ128rr
:
8446 case X86::VPMINUBZ256rr
:
8447 case X86::VPMINUBZrr
:
8448 case X86::VPMINUDrr
:
8449 case X86::VPMINUDYrr
:
8450 case X86::VPMINUDZ128rr
:
8451 case X86::VPMINUDZ256rr
:
8452 case X86::VPMINUDZrr
:
8453 case X86::VPMINUQZ128rr
:
8454 case X86::VPMINUQZ256rr
:
8455 case X86::VPMINUQZrr
:
8456 case X86::VPMINUWrr
:
8457 case X86::VPMINUWYrr
:
8458 case X86::VPMINUWZ128rr
:
8459 case X86::VPMINUWZ256rr
:
8460 case X86::VPMINUWZrr
:
8461 // Normal min/max instructions are not commutative because of NaN and signed
8462 // zero semantics, but these are. Thus, there's no need to check for global
8463 // relaxed math; the instructions themselves have the properties we need.
8472 case X86::VMAXCPDrr
:
8473 case X86::VMAXCPSrr
:
8474 case X86::VMAXCPDYrr
:
8475 case X86::VMAXCPSYrr
:
8476 case X86::VMAXCPDZ128rr
:
8477 case X86::VMAXCPSZ128rr
:
8478 case X86::VMAXCPDZ256rr
:
8479 case X86::VMAXCPSZ256rr
:
8480 case X86::VMAXCPDZrr
:
8481 case X86::VMAXCPSZrr
:
8482 case X86::VMAXCSDrr
:
8483 case X86::VMAXCSSrr
:
8484 case X86::VMAXCSDZrr
:
8485 case X86::VMAXCSSZrr
:
8486 case X86::VMINCPDrr
:
8487 case X86::VMINCPSrr
:
8488 case X86::VMINCPDYrr
:
8489 case X86::VMINCPSYrr
:
8490 case X86::VMINCPDZ128rr
:
8491 case X86::VMINCPSZ128rr
:
8492 case X86::VMINCPDZ256rr
:
8493 case X86::VMINCPSZ256rr
:
8494 case X86::VMINCPDZrr
:
8495 case X86::VMINCPSZrr
:
8496 case X86::VMINCSDrr
:
8497 case X86::VMINCSSrr
:
8498 case X86::VMINCSDZrr
:
8499 case X86::VMINCSSZrr
:
8500 case X86::VMAXCPHZ128rr
:
8501 case X86::VMAXCPHZ256rr
:
8502 case X86::VMAXCPHZrr
:
8503 case X86::VMAXCSHZrr
:
8504 case X86::VMINCPHZ128rr
:
8505 case X86::VMINCPHZ256rr
:
8506 case X86::VMINCPHZrr
:
8507 case X86::VMINCSHZrr
:
8519 case X86::VADDPDYrr
:
8520 case X86::VADDPSYrr
:
8521 case X86::VADDPDZ128rr
:
8522 case X86::VADDPSZ128rr
:
8523 case X86::VADDPDZ256rr
:
8524 case X86::VADDPSZ256rr
:
8525 case X86::VADDPDZrr
:
8526 case X86::VADDPSZrr
:
8529 case X86::VADDSDZrr
:
8530 case X86::VADDSSZrr
:
8533 case X86::VMULPDYrr
:
8534 case X86::VMULPSYrr
:
8535 case X86::VMULPDZ128rr
:
8536 case X86::VMULPSZ128rr
:
8537 case X86::VMULPDZ256rr
:
8538 case X86::VMULPSZ256rr
:
8539 case X86::VMULPDZrr
:
8540 case X86::VMULPSZrr
:
8543 case X86::VMULSDZrr
:
8544 case X86::VMULSSZrr
:
8545 case X86::VADDPHZ128rr
:
8546 case X86::VADDPHZ256rr
:
8547 case X86::VADDPHZrr
:
8548 case X86::VADDSHZrr
:
8549 case X86::VMULPHZ128rr
:
8550 case X86::VMULPHZ256rr
:
8551 case X86::VMULPHZrr
:
8552 case X86::VMULSHZrr
:
8553 return Inst
.getFlag(MachineInstr::MIFlag::FmReassoc
) &&
8554 Inst
.getFlag(MachineInstr::MIFlag::FmNsz
);
8560 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
8561 /// register then, if possible, describe the value in terms of the source
8563 static Optional
<ParamLoadedValue
>
8564 describeMOVrrLoadedValue(const MachineInstr
&MI
, Register DescribedReg
,
8565 const TargetRegisterInfo
*TRI
) {
8566 Register DestReg
= MI
.getOperand(0).getReg();
8567 Register SrcReg
= MI
.getOperand(1).getReg();
8569 auto Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), {});
8571 // If the described register is the destination, just return the source.
8572 if (DestReg
== DescribedReg
)
8573 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg
, false), Expr
);
8575 // If the described register is a sub-register of the destination register,
8576 // then pick out the source register's corresponding sub-register.
8577 if (unsigned SubRegIdx
= TRI
->getSubRegIndex(DestReg
, DescribedReg
)) {
8578 Register SrcSubReg
= TRI
->getSubReg(SrcReg
, SubRegIdx
);
8579 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg
, false), Expr
);
8582 // The remaining case to consider is when the described register is a
8583 // super-register of the destination register. MOV8rr and MOV16rr does not
8584 // write to any of the other bytes in the register, meaning that we'd have to
8585 // describe the value using a combination of the source register and the
8586 // non-overlapping bits in the described register, which is not currently
8588 if (MI
.getOpcode() == X86::MOV8rr
|| MI
.getOpcode() == X86::MOV16rr
||
8589 !TRI
->isSuperRegister(DestReg
, DescribedReg
))
8592 assert(MI
.getOpcode() == X86::MOV32rr
&& "Unexpected super-register case");
8593 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg
, false), Expr
);
8596 Optional
<ParamLoadedValue
>
8597 X86InstrInfo::describeLoadedValue(const MachineInstr
&MI
, Register Reg
) const {
8598 const MachineOperand
*Op
= nullptr;
8599 DIExpression
*Expr
= nullptr;
8601 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
8603 switch (MI
.getOpcode()) {
8606 case X86::LEA64_32r
: {
8607 // We may need to describe a 64-bit parameter with a 32-bit LEA.
8608 if (!TRI
->isSuperRegisterEq(MI
.getOperand(0).getReg(), Reg
))
8611 // Operand 4 could be global address. For now we do not support
8613 if (!MI
.getOperand(4).isImm() || !MI
.getOperand(2).isImm())
8616 const MachineOperand
&Op1
= MI
.getOperand(1);
8617 const MachineOperand
&Op2
= MI
.getOperand(3);
8618 assert(Op2
.isReg() && (Op2
.getReg() == X86::NoRegister
||
8619 Register::isPhysicalRegister(Op2
.getReg())));
8621 // Omit situations like:
8622 // %rsi = lea %rsi, 4, ...
8623 if ((Op1
.isReg() && Op1
.getReg() == MI
.getOperand(0).getReg()) ||
8624 Op2
.getReg() == MI
.getOperand(0).getReg())
8626 else if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
&&
8627 TRI
->regsOverlap(Op1
.getReg(), MI
.getOperand(0).getReg())) ||
8628 (Op2
.getReg() != X86::NoRegister
&&
8629 TRI
->regsOverlap(Op2
.getReg(), MI
.getOperand(0).getReg())))
8632 int64_t Coef
= MI
.getOperand(2).getImm();
8633 int64_t Offset
= MI
.getOperand(4).getImm();
8634 SmallVector
<uint64_t, 8> Ops
;
8636 if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
)) {
8638 } else if (Op1
.isFI())
8641 if (Op
&& Op
->isReg() && Op
->getReg() == Op2
.getReg() && Coef
> 0) {
8642 Ops
.push_back(dwarf::DW_OP_constu
);
8643 Ops
.push_back(Coef
+ 1);
8644 Ops
.push_back(dwarf::DW_OP_mul
);
8646 if (Op
&& Op2
.getReg() != X86::NoRegister
) {
8647 int dwarfReg
= TRI
->getDwarfRegNum(Op2
.getReg(), false);
8650 else if (dwarfReg
< 32) {
8651 Ops
.push_back(dwarf::DW_OP_breg0
+ dwarfReg
);
8654 Ops
.push_back(dwarf::DW_OP_bregx
);
8655 Ops
.push_back(dwarfReg
);
8659 assert(Op2
.getReg() != X86::NoRegister
);
8664 assert(Op2
.getReg() != X86::NoRegister
);
8665 Ops
.push_back(dwarf::DW_OP_constu
);
8666 Ops
.push_back(Coef
);
8667 Ops
.push_back(dwarf::DW_OP_mul
);
8670 if (((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
) || Op1
.isFI()) &&
8671 Op2
.getReg() != X86::NoRegister
) {
8672 Ops
.push_back(dwarf::DW_OP_plus
);
8676 DIExpression::appendOffset(Ops
, Offset
);
8677 Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), Ops
);
8679 return ParamLoadedValue(*Op
, Expr
);;
8683 // TODO: Handle MOV8ri and MOV16ri.
8687 case X86::MOV64ri32
:
8688 // MOV32ri may be used for producing zero-extended 32-bit immediates in
8689 // 64-bit parameters, so we need to consider super-registers.
8690 if (!TRI
->isSuperRegisterEq(MI
.getOperand(0).getReg(), Reg
))
8692 return ParamLoadedValue(MI
.getOperand(1), Expr
);
8697 return describeMOVrrLoadedValue(MI
, Reg
, TRI
);
8698 case X86::XOR32rr
: {
8699 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
8701 if (!TRI
->isSuperRegisterEq(MI
.getOperand(0).getReg(), Reg
))
8703 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
8704 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr
);
8707 case X86::MOVSX64rr32
: {
8708 // We may need to describe the lower 32 bits of the MOVSX; for example, in
8712 // $rdi = MOVSX64rr32 $ebx
8713 // $esi = MOV32rr $edi
8714 if (!TRI
->isSubRegisterEq(MI
.getOperand(0).getReg(), Reg
))
8717 Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), {});
8719 // If the described register is the destination register we need to
8720 // sign-extend the source register from 32 bits. The other case we handle
8721 // is when the described register is the 32-bit sub-register of the
8722 // destination register, in case we just need to return the source
8724 if (Reg
== MI
.getOperand(0).getReg())
8725 Expr
= DIExpression::appendExt(Expr
, 32, 64, true);
8727 assert(X86MCRegisterClasses
[X86::GR32RegClassID
].contains(Reg
) &&
8728 "Unhandled sub-register case for MOVSX64rr32");
8730 return ParamLoadedValue(MI
.getOperand(1), Expr
);
8733 assert(!MI
.isMoveImmediate() && "Unexpected MoveImm instruction");
8734 return TargetInstrInfo::describeLoadedValue(MI
, Reg
);
8738 /// This is an architecture-specific helper function of reassociateOps.
8739 /// Set special operand attributes for new instructions after reassociation.
8740 void X86InstrInfo::setSpecialOperandAttr(MachineInstr
&OldMI1
,
8741 MachineInstr
&OldMI2
,
8742 MachineInstr
&NewMI1
,
8743 MachineInstr
&NewMI2
) const {
8744 // Propagate FP flags from the original instructions.
8745 // But clear poison-generating flags because those may not be valid now.
8746 // TODO: There should be a helper function for copying only fast-math-flags.
8747 uint16_t IntersectedFlags
= OldMI1
.getFlags() & OldMI2
.getFlags();
8748 NewMI1
.setFlags(IntersectedFlags
);
8749 NewMI1
.clearFlag(MachineInstr::MIFlag::NoSWrap
);
8750 NewMI1
.clearFlag(MachineInstr::MIFlag::NoUWrap
);
8751 NewMI1
.clearFlag(MachineInstr::MIFlag::IsExact
);
8753 NewMI2
.setFlags(IntersectedFlags
);
8754 NewMI2
.clearFlag(MachineInstr::MIFlag::NoSWrap
);
8755 NewMI2
.clearFlag(MachineInstr::MIFlag::NoUWrap
);
8756 NewMI2
.clearFlag(MachineInstr::MIFlag::IsExact
);
8758 // Integer instructions may define an implicit EFLAGS dest register operand.
8759 MachineOperand
*OldFlagDef1
= OldMI1
.findRegisterDefOperand(X86::EFLAGS
);
8760 MachineOperand
*OldFlagDef2
= OldMI2
.findRegisterDefOperand(X86::EFLAGS
);
8762 assert(!OldFlagDef1
== !OldFlagDef2
&&
8763 "Unexpected instruction type for reassociation");
8765 if (!OldFlagDef1
|| !OldFlagDef2
)
8768 assert(OldFlagDef1
->isDead() && OldFlagDef2
->isDead() &&
8769 "Must have dead EFLAGS operand in reassociable instruction");
8771 MachineOperand
*NewFlagDef1
= NewMI1
.findRegisterDefOperand(X86::EFLAGS
);
8772 MachineOperand
*NewFlagDef2
= NewMI2
.findRegisterDefOperand(X86::EFLAGS
);
8774 assert(NewFlagDef1
&& NewFlagDef2
&&
8775 "Unexpected operand in reassociable instruction");
8777 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
8778 // of this pass or other passes. The EFLAGS operands must be dead in these new
8779 // instructions because the EFLAGS operands in the original instructions must
8780 // be dead in order for reassociation to occur.
8781 NewFlagDef1
->setIsDead();
8782 NewFlagDef2
->setIsDead();
8785 std::pair
<unsigned, unsigned>
8786 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
8787 return std::make_pair(TF
, 0u);
8790 ArrayRef
<std::pair
<unsigned, const char *>>
8791 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8792 using namespace X86II
;
8793 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
8794 {MO_GOT_ABSOLUTE_ADDRESS
, "x86-got-absolute-address"},
8795 {MO_PIC_BASE_OFFSET
, "x86-pic-base-offset"},
8796 {MO_GOT
, "x86-got"},
8797 {MO_GOTOFF
, "x86-gotoff"},
8798 {MO_GOTPCREL
, "x86-gotpcrel"},
8799 {MO_PLT
, "x86-plt"},
8800 {MO_TLSGD
, "x86-tlsgd"},
8801 {MO_TLSLD
, "x86-tlsld"},
8802 {MO_TLSLDM
, "x86-tlsldm"},
8803 {MO_GOTTPOFF
, "x86-gottpoff"},
8804 {MO_INDNTPOFF
, "x86-indntpoff"},
8805 {MO_TPOFF
, "x86-tpoff"},
8806 {MO_DTPOFF
, "x86-dtpoff"},
8807 {MO_NTPOFF
, "x86-ntpoff"},
8808 {MO_GOTNTPOFF
, "x86-gotntpoff"},
8809 {MO_DLLIMPORT
, "x86-dllimport"},
8810 {MO_DARWIN_NONLAZY
, "x86-darwin-nonlazy"},
8811 {MO_DARWIN_NONLAZY_PIC_BASE
, "x86-darwin-nonlazy-pic-base"},
8812 {MO_TLVP
, "x86-tlvp"},
8813 {MO_TLVP_PIC_BASE
, "x86-tlvp-pic-base"},
8814 {MO_SECREL
, "x86-secrel"},
8815 {MO_COFFSTUB
, "x86-coffstub"}};
8816 return makeArrayRef(TargetFlags
);
8820 /// Create Global Base Reg pass. This initializes the PIC
8821 /// global base register for x86-32.
8822 struct CGBR
: public MachineFunctionPass
{
8824 CGBR() : MachineFunctionPass(ID
) {}
8826 bool runOnMachineFunction(MachineFunction
&MF
) override
{
8827 const X86TargetMachine
*TM
=
8828 static_cast<const X86TargetMachine
*>(&MF
.getTarget());
8829 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
8831 // Don't do anything in the 64-bit small and kernel code models. They use
8832 // RIP-relative addressing for everything.
8833 if (STI
.is64Bit() && (TM
->getCodeModel() == CodeModel::Small
||
8834 TM
->getCodeModel() == CodeModel::Kernel
))
8837 // Only emit a global base reg in PIC mode.
8838 if (!TM
->isPositionIndependent())
8841 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
8842 Register GlobalBaseReg
= X86FI
->getGlobalBaseReg();
8844 // If we didn't need a GlobalBaseReg, don't insert code.
8845 if (GlobalBaseReg
== 0)
8848 // Insert the set of GlobalBaseReg into the first MBB of the function
8849 MachineBasicBlock
&FirstMBB
= MF
.front();
8850 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
8851 DebugLoc DL
= FirstMBB
.findDebugLoc(MBBI
);
8852 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
8853 const X86InstrInfo
*TII
= STI
.getInstrInfo();
8856 if (STI
.isPICStyleGOT())
8857 PC
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
8861 if (STI
.is64Bit()) {
8862 if (TM
->getCodeModel() == CodeModel::Medium
) {
8863 // In the medium code model, use a RIP-relative LEA to materialize the
8865 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PC
)
8869 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
8871 } else if (TM
->getCodeModel() == CodeModel::Large
) {
8872 // In the large code model, we are aiming for this code, though the
8873 // register allocation may vary:
8874 // leaq .LN$pb(%rip), %rax
8875 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
8877 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
8878 Register PBReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
8879 Register GOTReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
8880 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PBReg
)
8884 .addSym(MF
.getPICBaseSymbol())
8886 std::prev(MBBI
)->setPreInstrSymbol(MF
, MF
.getPICBaseSymbol());
8887 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOV64ri
), GOTReg
)
8888 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8889 X86II::MO_PIC_BASE_OFFSET
);
8890 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD64rr
), PC
)
8891 .addReg(PBReg
, RegState::Kill
)
8892 .addReg(GOTReg
, RegState::Kill
);
8894 llvm_unreachable("unexpected code model");
8897 // Operand of MovePCtoStack is completely ignored by asm printer. It's
8898 // only used in JIT code emission as displacement to pc.
8899 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
8901 // If we're using vanilla 'GOT' PIC style, we should use relative
8902 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
8903 if (STI
.isPICStyleGOT()) {
8904 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
8906 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
8908 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8909 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
8916 StringRef
getPassName() const override
{
8917 return "X86 PIC Global Base Reg Initialization";
8920 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
8921 AU
.setPreservesCFG();
8922 MachineFunctionPass::getAnalysisUsage(AU
);
8929 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
8932 struct LDTLSCleanup
: public MachineFunctionPass
{
8934 LDTLSCleanup() : MachineFunctionPass(ID
) {}
8936 bool runOnMachineFunction(MachineFunction
&MF
) override
{
8937 if (skipFunction(MF
.getFunction()))
8940 X86MachineFunctionInfo
*MFI
= MF
.getInfo
<X86MachineFunctionInfo
>();
8941 if (MFI
->getNumLocalDynamicTLSAccesses() < 2) {
8942 // No point folding accesses if there isn't at least two.
8946 MachineDominatorTree
*DT
= &getAnalysis
<MachineDominatorTree
>();
8947 return VisitNode(DT
->getRootNode(), 0);
8950 // Visit the dominator subtree rooted at Node in pre-order.
8951 // If TLSBaseAddrReg is non-null, then use that to replace any
8952 // TLS_base_addr instructions. Otherwise, create the register
8953 // when the first such instruction is seen, and then use it
8954 // as we encounter more instructions.
8955 bool VisitNode(MachineDomTreeNode
*Node
, unsigned TLSBaseAddrReg
) {
8956 MachineBasicBlock
*BB
= Node
->getBlock();
8957 bool Changed
= false;
8959 // Traverse the current block.
8960 for (MachineBasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
8962 switch (I
->getOpcode()) {
8963 case X86::TLS_base_addr32
:
8964 case X86::TLS_base_addr64
:
8966 I
= ReplaceTLSBaseAddrCall(*I
, TLSBaseAddrReg
);
8968 I
= SetRegister(*I
, &TLSBaseAddrReg
);
8976 // Visit the children of this block in the dominator tree.
8977 for (auto I
= Node
->begin(), E
= Node
->end(); I
!= E
; ++I
) {
8978 Changed
|= VisitNode(*I
, TLSBaseAddrReg
);
8984 // Replace the TLS_base_addr instruction I with a copy from
8985 // TLSBaseAddrReg, returning the new instruction.
8986 MachineInstr
*ReplaceTLSBaseAddrCall(MachineInstr
&I
,
8987 unsigned TLSBaseAddrReg
) {
8988 MachineFunction
*MF
= I
.getParent()->getParent();
8989 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
8990 const bool is64Bit
= STI
.is64Bit();
8991 const X86InstrInfo
*TII
= STI
.getInstrInfo();
8993 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
8994 MachineInstr
*Copy
=
8995 BuildMI(*I
.getParent(), I
, I
.getDebugLoc(),
8996 TII
->get(TargetOpcode::COPY
), is64Bit
? X86::RAX
: X86::EAX
)
8997 .addReg(TLSBaseAddrReg
);
8999 // Erase the TLS_base_addr instruction.
9000 I
.eraseFromParent();
9005 // Create a virtual register in *TLSBaseAddrReg, and populate it by
9006 // inserting a copy instruction after I. Returns the new instruction.
9007 MachineInstr
*SetRegister(MachineInstr
&I
, unsigned *TLSBaseAddrReg
) {
9008 MachineFunction
*MF
= I
.getParent()->getParent();
9009 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
9010 const bool is64Bit
= STI
.is64Bit();
9011 const X86InstrInfo
*TII
= STI
.getInstrInfo();
9013 // Create a virtual register for the TLS base address.
9014 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
9015 *TLSBaseAddrReg
= RegInfo
.createVirtualRegister(is64Bit
9016 ? &X86::GR64RegClass
9017 : &X86::GR32RegClass
);
9019 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9020 MachineInstr
*Next
= I
.getNextNode();
9021 MachineInstr
*Copy
=
9022 BuildMI(*I
.getParent(), Next
, I
.getDebugLoc(),
9023 TII
->get(TargetOpcode::COPY
), *TLSBaseAddrReg
)
9024 .addReg(is64Bit
? X86::RAX
: X86::EAX
);
9029 StringRef
getPassName() const override
{
9030 return "Local Dynamic TLS Access Clean-up";
9033 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
9034 AU
.setPreservesCFG();
9035 AU
.addRequired
<MachineDominatorTree
>();
9036 MachineFunctionPass::getAnalysisUsage(AU
);
9041 char LDTLSCleanup::ID
= 0;
9043 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9045 /// Constants defining how certain sequences should be outlined.
9047 /// \p MachineOutlinerDefault implies that the function is called with a call
9048 /// instruction, and a return must be emitted for the outlined function frame.
9052 /// I1 OUTLINED_FUNCTION:
9053 /// I2 --> call OUTLINED_FUNCTION I1
9058 /// * Call construction overhead: 1 (call instruction)
9059 /// * Frame construction overhead: 1 (return instruction)
9061 /// \p MachineOutlinerTailCall implies that the function is being tail called.
9062 /// A jump is emitted instead of a call, and the return is already present in
9063 /// the outlined sequence. That is,
9065 /// I1 OUTLINED_FUNCTION:
9066 /// I2 --> jmp OUTLINED_FUNCTION I1
9070 /// * Call construction overhead: 1 (jump instruction)
9071 /// * Frame construction overhead: 0 (don't need to return)
9073 enum MachineOutlinerClass
{
9074 MachineOutlinerDefault
,
9075 MachineOutlinerTailCall
9078 outliner::OutlinedFunction
X86InstrInfo::getOutliningCandidateInfo(
9079 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
9080 unsigned SequenceSize
=
9081 std::accumulate(RepeatedSequenceLocs
[0].front(),
9082 std::next(RepeatedSequenceLocs
[0].back()), 0,
9083 [](unsigned Sum
, const MachineInstr
&MI
) {
9084 // FIXME: x86 doesn't implement getInstSizeInBytes, so
9085 // we can't tell the cost. Just assume each instruction
9087 if (MI
.isDebugInstr() || MI
.isKill())
9092 // We check to see if CFI Instructions are present, and if they are
9093 // we find the number of CFI Instructions in the candidates.
9094 unsigned CFICount
= 0;
9095 MachineBasicBlock::iterator MBBI
= RepeatedSequenceLocs
[0].front();
9096 for (unsigned Loc
= RepeatedSequenceLocs
[0].getStartIdx();
9097 Loc
< RepeatedSequenceLocs
[0].getEndIdx() + 1; Loc
++) {
9098 const std::vector
<MCCFIInstruction
> &CFIInstructions
=
9099 RepeatedSequenceLocs
[0].getMF()->getFrameInstructions();
9100 if (MBBI
->isCFIInstruction()) {
9101 unsigned CFIIndex
= MBBI
->getOperand(0).getCFIIndex();
9102 MCCFIInstruction CFI
= CFIInstructions
[CFIIndex
];
9108 // We compare the number of found CFI Instructions to the number of CFI
9109 // instructions in the parent function for each candidate. We must check this
9110 // since if we outline one of the CFI instructions in a function, we have to
9111 // outline them all for correctness. If we do not, the address offsets will be
9112 // incorrect between the two sections of the program.
9113 for (outliner::Candidate
&C
: RepeatedSequenceLocs
) {
9114 std::vector
<MCCFIInstruction
> CFIInstructions
=
9115 C
.getMF()->getFrameInstructions();
9117 if (CFICount
> 0 && CFICount
!= CFIInstructions
.size())
9118 return outliner::OutlinedFunction();
9121 // FIXME: Use real size in bytes for call and ret instructions.
9122 if (RepeatedSequenceLocs
[0].back()->isTerminator()) {
9123 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
9124 C
.setCallInfo(MachineOutlinerTailCall
, 1);
9126 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
,
9127 0, // Number of bytes to emit frame.
9128 MachineOutlinerTailCall
// Type of frame.
9133 return outliner::OutlinedFunction();
9135 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
9136 C
.setCallInfo(MachineOutlinerDefault
, 1);
9138 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
, 1,
9139 MachineOutlinerDefault
);
9142 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
9143 bool OutlineFromLinkOnceODRs
) const {
9144 const Function
&F
= MF
.getFunction();
9146 // Does the function use a red zone? If it does, then we can't risk messing
9148 if (Subtarget
.getFrameLowering()->has128ByteRedZone(MF
)) {
9149 // It could have a red zone. If it does, then we don't want to touch it.
9150 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
9151 if (!X86FI
|| X86FI
->getUsesRedZone())
9155 // If we *don't* want to outline from things that could potentially be deduped
9156 // then return false.
9157 if (!OutlineFromLinkOnceODRs
&& F
.hasLinkOnceODRLinkage())
9160 // This function is viable for outlining, so return true.
9165 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const {
9166 MachineInstr
&MI
= *MIT
;
9167 // Don't allow debug values to impact outlining type.
9168 if (MI
.isDebugInstr() || MI
.isIndirectDebugValue())
9169 return outliner::InstrType::Invisible
;
9171 // At this point, KILL instructions don't really tell us much so we can go
9172 // ahead and skip over them.
9174 return outliner::InstrType::Invisible
;
9176 // Is this a tail call? If yes, we can outline as a tail call.
9178 return outliner::InstrType::Legal
;
9180 // Is this the terminator of a basic block?
9181 if (MI
.isTerminator() || MI
.isReturn()) {
9183 // Does its parent have any successors in its MachineFunction?
9184 if (MI
.getParent()->succ_empty())
9185 return outliner::InstrType::Legal
;
9187 // It does, so we can't tail call it.
9188 return outliner::InstrType::Illegal
;
9191 // Don't outline anything that modifies or reads from the stack pointer.
9193 // FIXME: There are instructions which are being manually built without
9194 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9195 // able to remove the extra checks once those are fixed up. For example,
9196 // sometimes we might get something like %rax = POP64r 1. This won't be
9197 // caught by modifiesRegister or readsRegister even though the instruction
9198 // really ought to be formed so that modifiesRegister/readsRegister would
9200 if (MI
.modifiesRegister(X86::RSP
, &RI
) || MI
.readsRegister(X86::RSP
, &RI
) ||
9201 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RSP
) ||
9202 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RSP
))
9203 return outliner::InstrType::Illegal
;
9205 // Outlined calls change the instruction pointer, so don't read from it.
9206 if (MI
.readsRegister(X86::RIP
, &RI
) ||
9207 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RIP
) ||
9208 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RIP
))
9209 return outliner::InstrType::Illegal
;
9211 // Positions can't safely be outlined.
9212 if (MI
.isPosition())
9213 return outliner::InstrType::Illegal
;
9215 // Make sure none of the operands of this instruction do anything tricky.
9216 for (const MachineOperand
&MOP
: MI
.operands())
9217 if (MOP
.isCPI() || MOP
.isJTI() || MOP
.isCFIIndex() || MOP
.isFI() ||
9218 MOP
.isTargetIndex())
9219 return outliner::InstrType::Illegal
;
9221 return outliner::InstrType::Legal
;
9224 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock
&MBB
,
9225 MachineFunction
&MF
,
9226 const outliner::OutlinedFunction
&OF
)
9228 // If we're a tail call, we already have a return, so don't do anything.
9229 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
)
9232 // We're a normal call, so our sequence doesn't have a return instruction.
9234 MachineInstr
*retq
= BuildMI(MF
, DebugLoc(), get(X86::RETQ
));
9235 MBB
.insert(MBB
.end(), retq
);
9238 MachineBasicBlock::iterator
9239 X86InstrInfo::insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
9240 MachineBasicBlock::iterator
&It
,
9241 MachineFunction
&MF
,
9242 const outliner::Candidate
&C
) const {
9243 // Is it a tail call?
9244 if (C
.CallConstructionID
== MachineOutlinerTailCall
) {
9245 // Yes, just insert a JMP.
9247 BuildMI(MF
, DebugLoc(), get(X86::TAILJMPd64
))
9248 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
9250 // No, insert a call.
9252 BuildMI(MF
, DebugLoc(), get(X86::CALL64pcrel32
))
9253 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
9259 #define GET_INSTRINFO_HELPERS
9260 #include "X86GenInstrInfo.inc"