[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / X86 / X86TargetTransformInfo.cpp
blob532bc33d69a53282b44b92b8673051441455619d
1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 /// SSE 3 - Pentium4 / Athlon64
23 /// SSE 4.1 - Penryn
24 /// SSE 4.2 - Nehalem
25 /// AVX - Sandy Bridge
26 /// AVX2 - Haswell
27 /// AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 /// divss sqrtss rsqrtss
30 /// AMD K7 11-16 19 3
31 /// Piledriver 9-24 13-15 5
32 /// Jaguar 14 16 2
33 /// Pentium II,III 18 30 2
34 /// Nehalem 7-14 7-18 3
35 /// Haswell 10-13 11 5
36 /// TODO: Develop and implement the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
49 using namespace llvm;
51 #define DEBUG_TYPE "x86tti"
53 //===----------------------------------------------------------------------===//
55 // X86 cost model.
57 //===----------------------------------------------------------------------===//
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62 // TODO: Currently the __builtin_popcount() implementation using SSE3
63 // instructions is inefficient. Once the problem is fixed, we should
64 // call ST->hasSSE3() instead of ST->hasPOPCNT().
65 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69 TargetTransformInfo::CacheLevel Level) const {
70 switch (Level) {
71 case TargetTransformInfo::CacheLevel::L1D:
72 // - Penryn
73 // - Nehalem
74 // - Westmere
75 // - Sandy Bridge
76 // - Ivy Bridge
77 // - Haswell
78 // - Broadwell
79 // - Skylake
80 // - Kabylake
81 return 32 * 1024; // 32 KByte
82 case TargetTransformInfo::CacheLevel::L2D:
83 // - Penryn
84 // - Nehalem
85 // - Westmere
86 // - Sandy Bridge
87 // - Ivy Bridge
88 // - Haswell
89 // - Broadwell
90 // - Skylake
91 // - Kabylake
92 return 256 * 1024; // 256 KByte
95 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99 TargetTransformInfo::CacheLevel Level) const {
100 // - Penryn
101 // - Nehalem
102 // - Westmere
103 // - Sandy Bridge
104 // - Ivy Bridge
105 // - Haswell
106 // - Broadwell
107 // - Skylake
108 // - Kabylake
109 switch (Level) {
110 case TargetTransformInfo::CacheLevel::L1D:
111 LLVM_FALLTHROUGH;
112 case TargetTransformInfo::CacheLevel::L2D:
113 return 8;
116 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120 bool Vector = (ClassID == 1);
121 if (Vector && !ST->hasSSE1())
122 return 0;
124 if (ST->is64Bit()) {
125 if (Vector && ST->hasAVX512())
126 return 32;
127 return 16;
129 return 8;
132 TypeSize
133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
134 unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135 switch (K) {
136 case TargetTransformInfo::RGK_Scalar:
137 return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
138 case TargetTransformInfo::RGK_FixedWidthVector:
139 if (ST->hasAVX512() && PreferVectorWidth >= 512)
140 return TypeSize::getFixed(512);
141 if (ST->hasAVX() && PreferVectorWidth >= 256)
142 return TypeSize::getFixed(256);
143 if (ST->hasSSE1() && PreferVectorWidth >= 128)
144 return TypeSize::getFixed(128);
145 return TypeSize::getFixed(0);
146 case TargetTransformInfo::RGK_ScalableVector:
147 return TypeSize::getScalable(0);
150 llvm_unreachable("Unsupported register kind");
153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
154 return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
155 .getFixedSize();
158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
159 // If the loop will not be vectorized, don't interleave the loop.
160 // Let regular unroll to unroll the loop, which saves the overflow
161 // check and memory check cost.
162 if (VF == 1)
163 return 1;
165 if (ST->isAtom())
166 return 1;
168 // Sandybridge and Haswell have multiple execution ports and pipelined
169 // vector units.
170 if (ST->hasAVX())
171 return 4;
173 return 2;
176 InstructionCost X86TTIImpl::getArithmeticInstrCost(
177 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
178 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
179 TTI::OperandValueProperties Opd1PropInfo,
180 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
181 const Instruction *CxtI) {
182 // TODO: Handle more cost kinds.
183 if (CostKind != TTI::TCK_RecipThroughput)
184 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
185 Op2Info, Opd1PropInfo,
186 Opd2PropInfo, Args, CxtI);
188 // vXi8 multiplications are always promoted to vXi16.
189 if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
190 Ty->getScalarSizeInBits() == 8) {
191 Type *WideVecTy =
192 VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
193 return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
194 TargetTransformInfo::CastContextHint::None,
195 CostKind) +
196 getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
197 TargetTransformInfo::CastContextHint::None,
198 CostKind) +
199 getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info,
200 Opd1PropInfo, Opd2PropInfo);
203 // Legalize the type.
204 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
206 int ISD = TLI->InstructionOpcodeToISD(Opcode);
207 assert(ISD && "Invalid opcode");
209 static const CostTblEntry GLMCostTable[] = {
210 { ISD::FDIV, MVT::f32, 18 }, // divss
211 { ISD::FDIV, MVT::v4f32, 35 }, // divps
212 { ISD::FDIV, MVT::f64, 33 }, // divsd
213 { ISD::FDIV, MVT::v2f64, 65 }, // divpd
216 if (ST->useGLMDivSqrtCosts())
217 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
218 LT.second))
219 return LT.first * Entry->Cost;
221 static const CostTblEntry SLMCostTable[] = {
222 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
223 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
224 { ISD::FMUL, MVT::f64, 2 }, // mulsd
225 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
226 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
227 { ISD::FDIV, MVT::f32, 17 }, // divss
228 { ISD::FDIV, MVT::v4f32, 39 }, // divps
229 { ISD::FDIV, MVT::f64, 32 }, // divsd
230 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
231 { ISD::FADD, MVT::v2f64, 2 }, // addpd
232 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
233 // v2i64/v4i64 mul is custom lowered as a series of long:
234 // multiplies(3), shifts(3) and adds(2)
235 // slm muldq version throughput is 2 and addq throughput 4
236 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
237 // 3X4 (addq throughput) = 17
238 { ISD::MUL, MVT::v2i64, 17 },
239 // slm addq\subq throughput is 4
240 { ISD::ADD, MVT::v2i64, 4 },
241 { ISD::SUB, MVT::v2i64, 4 },
244 if (ST->isSLM()) {
245 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
246 // Check if the operands can be shrinked into a smaller datatype.
247 bool Op1Signed = false;
248 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
249 bool Op2Signed = false;
250 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
252 bool SignedMode = Op1Signed || Op2Signed;
253 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
255 if (OpMinSize <= 7)
256 return LT.first * 3; // pmullw/sext
257 if (!SignedMode && OpMinSize <= 8)
258 return LT.first * 3; // pmullw/zext
259 if (OpMinSize <= 15)
260 return LT.first * 5; // pmullw/pmulhw/pshuf
261 if (!SignedMode && OpMinSize <= 16)
262 return LT.first * 5; // pmullw/pmulhw/pshuf
265 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
266 LT.second)) {
267 return LT.first * Entry->Cost;
271 if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
272 ISD == ISD::UREM) &&
273 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
274 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
275 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
276 if (ISD == ISD::SDIV || ISD == ISD::SREM) {
277 // On X86, vector signed division by constants power-of-two are
278 // normally expanded to the sequence SRA + SRL + ADD + SRA.
279 // The OperandValue properties may not be the same as that of the previous
280 // operation; conservatively assume OP_None.
281 InstructionCost Cost =
282 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
283 Op2Info, TargetTransformInfo::OP_None,
284 TargetTransformInfo::OP_None);
285 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
286 Op2Info,
287 TargetTransformInfo::OP_None,
288 TargetTransformInfo::OP_None);
289 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
290 Op2Info,
291 TargetTransformInfo::OP_None,
292 TargetTransformInfo::OP_None);
294 if (ISD == ISD::SREM) {
295 // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
296 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
297 Op2Info);
298 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
299 Op2Info);
302 return Cost;
305 // Vector unsigned division/remainder will be simplified to shifts/masks.
306 if (ISD == ISD::UDIV)
307 return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
308 Op1Info, Op2Info,
309 TargetTransformInfo::OP_None,
310 TargetTransformInfo::OP_None);
312 else // UREM
313 return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
314 Op1Info, Op2Info,
315 TargetTransformInfo::OP_None,
316 TargetTransformInfo::OP_None);
319 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
320 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
321 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
322 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
325 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
326 ST->hasBWI()) {
327 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
328 LT.second))
329 return LT.first * Entry->Cost;
332 static const CostTblEntry AVX512UniformConstCostTable[] = {
333 { ISD::SRA, MVT::v2i64, 1 },
334 { ISD::SRA, MVT::v4i64, 1 },
335 { ISD::SRA, MVT::v8i64, 1 },
337 { ISD::SHL, MVT::v64i8, 4 }, // psllw + pand.
338 { ISD::SRL, MVT::v64i8, 4 }, // psrlw + pand.
339 { ISD::SRA, MVT::v64i8, 8 }, // psrlw, pand, pxor, psubb.
341 { ISD::SDIV, MVT::v16i32, 6 }, // pmuludq sequence
342 { ISD::SREM, MVT::v16i32, 8 }, // pmuludq+mul+sub sequence
343 { ISD::UDIV, MVT::v16i32, 5 }, // pmuludq sequence
344 { ISD::UREM, MVT::v16i32, 7 }, // pmuludq+mul+sub sequence
347 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
348 ST->hasAVX512()) {
349 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
350 LT.second))
351 return LT.first * Entry->Cost;
354 static const CostTblEntry AVX2UniformConstCostTable[] = {
355 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
356 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
357 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
359 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
361 { ISD::SDIV, MVT::v8i32, 6 }, // pmuludq sequence
362 { ISD::SREM, MVT::v8i32, 8 }, // pmuludq+mul+sub sequence
363 { ISD::UDIV, MVT::v8i32, 5 }, // pmuludq sequence
364 { ISD::UREM, MVT::v8i32, 7 }, // pmuludq+mul+sub sequence
367 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
368 ST->hasAVX2()) {
369 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
370 LT.second))
371 return LT.first * Entry->Cost;
374 static const CostTblEntry SSE2UniformConstCostTable[] = {
375 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
376 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
377 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
379 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
380 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
381 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
383 { ISD::SDIV, MVT::v8i32, 12+2 }, // 2*pmuludq sequence + split.
384 { ISD::SREM, MVT::v8i32, 16+2 }, // 2*pmuludq+mul+sub sequence + split.
385 { ISD::SDIV, MVT::v4i32, 6 }, // pmuludq sequence
386 { ISD::SREM, MVT::v4i32, 8 }, // pmuludq+mul+sub sequence
387 { ISD::UDIV, MVT::v8i32, 10+2 }, // 2*pmuludq sequence + split.
388 { ISD::UREM, MVT::v8i32, 14+2 }, // 2*pmuludq+mul+sub sequence + split.
389 { ISD::UDIV, MVT::v4i32, 5 }, // pmuludq sequence
390 { ISD::UREM, MVT::v4i32, 7 }, // pmuludq+mul+sub sequence
393 // XOP has faster vXi8 shifts.
394 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
395 ST->hasSSE2() && !ST->hasXOP()) {
396 if (const auto *Entry =
397 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
398 return LT.first * Entry->Cost;
401 static const CostTblEntry AVX512BWConstCostTable[] = {
402 { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
403 { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
404 { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
405 { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
406 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
407 { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence
408 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
409 { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence
412 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
413 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
414 ST->hasBWI()) {
415 if (const auto *Entry =
416 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
417 return LT.first * Entry->Cost;
420 static const CostTblEntry AVX512ConstCostTable[] = {
421 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
422 { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
423 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
424 { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
425 { ISD::SDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence
426 { ISD::SREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence
427 { ISD::UDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence
428 { ISD::UREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence
429 { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
430 { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
431 { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
432 { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
435 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
436 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
437 ST->hasAVX512()) {
438 if (const auto *Entry =
439 CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
440 return LT.first * Entry->Cost;
443 static const CostTblEntry AVX2ConstCostTable[] = {
444 { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
445 { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
446 { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
447 { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
448 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
449 { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence
450 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
451 { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence
452 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
453 { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence
454 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
455 { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence
458 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
459 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
460 ST->hasAVX2()) {
461 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
462 return LT.first * Entry->Cost;
465 static const CostTblEntry SSE2ConstCostTable[] = {
466 { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
467 { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
468 { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
469 { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
470 { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
471 { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
472 { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
473 { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
474 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
475 { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
476 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
477 { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence
478 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
479 { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
480 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
481 { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence
482 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
483 { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split.
484 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
485 { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence
486 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
487 { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split.
488 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
489 { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence
492 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
493 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
494 ST->hasSSE2()) {
495 // pmuldq sequence.
496 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
497 return LT.first * 32;
498 if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
499 return LT.first * 38;
500 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
501 return LT.first * 15;
502 if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
503 return LT.first * 20;
505 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
506 return LT.first * Entry->Cost;
509 static const CostTblEntry AVX512BWShiftCostTable[] = {
510 { ISD::SHL, MVT::v16i8, 4 }, // extend/vpsllvw/pack sequence.
511 { ISD::SRL, MVT::v16i8, 4 }, // extend/vpsrlvw/pack sequence.
512 { ISD::SRA, MVT::v16i8, 4 }, // extend/vpsravw/pack sequence.
513 { ISD::SHL, MVT::v32i8, 4 }, // extend/vpsllvw/pack sequence.
514 { ISD::SRL, MVT::v32i8, 4 }, // extend/vpsrlvw/pack sequence.
515 { ISD::SRA, MVT::v32i8, 6 }, // extend/vpsravw/pack sequence.
516 { ISD::SHL, MVT::v64i8, 6 }, // extend/vpsllvw/pack sequence.
517 { ISD::SRL, MVT::v64i8, 7 }, // extend/vpsrlvw/pack sequence.
518 { ISD::SRA, MVT::v64i8, 15 }, // extend/vpsravw/pack sequence.
520 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
521 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
522 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
523 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
524 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
525 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
526 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
527 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
528 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
531 if (ST->hasBWI())
532 if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
533 return LT.first * Entry->Cost;
535 static const CostTblEntry AVX2UniformCostTable[] = {
536 // Uniform splats are cheaper for the following instructions.
537 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
538 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
539 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
540 { ISD::SHL, MVT::v32i16, 2 }, // 2*psllw.
541 { ISD::SRL, MVT::v32i16, 2 }, // 2*psrlw.
542 { ISD::SRA, MVT::v32i16, 2 }, // 2*psraw.
544 { ISD::SHL, MVT::v8i32, 1 }, // pslld
545 { ISD::SRL, MVT::v8i32, 1 }, // psrld
546 { ISD::SRA, MVT::v8i32, 1 }, // psrad
547 { ISD::SHL, MVT::v4i64, 1 }, // psllq
548 { ISD::SRL, MVT::v4i64, 1 }, // psrlq
551 if (ST->hasAVX2() &&
552 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
553 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
554 if (const auto *Entry =
555 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
556 return LT.first * Entry->Cost;
559 static const CostTblEntry SSE2UniformCostTable[] = {
560 // Uniform splats are cheaper for the following instructions.
561 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
562 { ISD::SHL, MVT::v4i32, 1 }, // pslld
563 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
565 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
566 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
567 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
569 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
570 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
573 if (ST->hasSSE2() &&
574 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
575 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
576 if (const auto *Entry =
577 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
578 return LT.first * Entry->Cost;
581 static const CostTblEntry AVX512DQCostTable[] = {
582 { ISD::MUL, MVT::v2i64, 2 }, // pmullq
583 { ISD::MUL, MVT::v4i64, 2 }, // pmullq
584 { ISD::MUL, MVT::v8i64, 2 } // pmullq
587 // Look for AVX512DQ lowering tricks for custom cases.
588 if (ST->hasDQI())
589 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
590 return LT.first * Entry->Cost;
592 static const CostTblEntry AVX512BWCostTable[] = {
593 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
594 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
595 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
598 // Look for AVX512BW lowering tricks for custom cases.
599 if (ST->hasBWI())
600 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
601 return LT.first * Entry->Cost;
603 static const CostTblEntry AVX512CostTable[] = {
604 { ISD::SHL, MVT::v4i32, 1 },
605 { ISD::SRL, MVT::v4i32, 1 },
606 { ISD::SRA, MVT::v4i32, 1 },
607 { ISD::SHL, MVT::v8i32, 1 },
608 { ISD::SRL, MVT::v8i32, 1 },
609 { ISD::SRA, MVT::v8i32, 1 },
610 { ISD::SHL, MVT::v16i32, 1 },
611 { ISD::SRL, MVT::v16i32, 1 },
612 { ISD::SRA, MVT::v16i32, 1 },
614 { ISD::SHL, MVT::v2i64, 1 },
615 { ISD::SRL, MVT::v2i64, 1 },
616 { ISD::SHL, MVT::v4i64, 1 },
617 { ISD::SRL, MVT::v4i64, 1 },
618 { ISD::SHL, MVT::v8i64, 1 },
619 { ISD::SRL, MVT::v8i64, 1 },
621 { ISD::SRA, MVT::v2i64, 1 },
622 { ISD::SRA, MVT::v4i64, 1 },
623 { ISD::SRA, MVT::v8i64, 1 },
625 { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org)
626 { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org)
627 { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org)
628 { ISD::MUL, MVT::v8i64, 6 }, // 3*pmuludq/3*shift/2*add
630 { ISD::FNEG, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
631 { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
632 { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
633 { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
634 { ISD::FDIV, MVT::f64, 4 }, // Skylake from http://www.agner.org/
635 { ISD::FDIV, MVT::v2f64, 4 }, // Skylake from http://www.agner.org/
636 { ISD::FDIV, MVT::v4f64, 8 }, // Skylake from http://www.agner.org/
637 { ISD::FDIV, MVT::v8f64, 16 }, // Skylake from http://www.agner.org/
639 { ISD::FNEG, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
640 { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
641 { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
642 { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
643 { ISD::FDIV, MVT::f32, 3 }, // Skylake from http://www.agner.org/
644 { ISD::FDIV, MVT::v4f32, 3 }, // Skylake from http://www.agner.org/
645 { ISD::FDIV, MVT::v8f32, 5 }, // Skylake from http://www.agner.org/
646 { ISD::FDIV, MVT::v16f32, 10 }, // Skylake from http://www.agner.org/
649 if (ST->hasAVX512())
650 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
651 return LT.first * Entry->Cost;
653 static const CostTblEntry AVX2ShiftCostTable[] = {
654 // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
655 // customize them to detect the cases where shift amount is a scalar one.
656 { ISD::SHL, MVT::v4i32, 2 }, // vpsllvd (Haswell from agner.org)
657 { ISD::SRL, MVT::v4i32, 2 }, // vpsrlvd (Haswell from agner.org)
658 { ISD::SRA, MVT::v4i32, 2 }, // vpsravd (Haswell from agner.org)
659 { ISD::SHL, MVT::v8i32, 2 }, // vpsllvd (Haswell from agner.org)
660 { ISD::SRL, MVT::v8i32, 2 }, // vpsrlvd (Haswell from agner.org)
661 { ISD::SRA, MVT::v8i32, 2 }, // vpsravd (Haswell from agner.org)
662 { ISD::SHL, MVT::v2i64, 1 }, // vpsllvq (Haswell from agner.org)
663 { ISD::SRL, MVT::v2i64, 1 }, // vpsrlvq (Haswell from agner.org)
664 { ISD::SHL, MVT::v4i64, 1 }, // vpsllvq (Haswell from agner.org)
665 { ISD::SRL, MVT::v4i64, 1 }, // vpsrlvq (Haswell from agner.org)
668 if (ST->hasAVX512()) {
669 if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
670 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
671 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
672 // On AVX512, a packed v32i16 shift left by a constant build_vector
673 // is lowered into a vector multiply (vpmullw).
674 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
675 Op1Info, Op2Info,
676 TargetTransformInfo::OP_None,
677 TargetTransformInfo::OP_None);
680 // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
681 if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
682 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
683 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
684 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
685 // On AVX2, a packed v16i16 shift left by a constant build_vector
686 // is lowered into a vector multiply (vpmullw).
687 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
688 Op1Info, Op2Info,
689 TargetTransformInfo::OP_None,
690 TargetTransformInfo::OP_None);
692 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
693 return LT.first * Entry->Cost;
696 static const CostTblEntry XOPShiftCostTable[] = {
697 // 128bit shifts take 1cy, but right shifts require negation beforehand.
698 { ISD::SHL, MVT::v16i8, 1 },
699 { ISD::SRL, MVT::v16i8, 2 },
700 { ISD::SRA, MVT::v16i8, 2 },
701 { ISD::SHL, MVT::v8i16, 1 },
702 { ISD::SRL, MVT::v8i16, 2 },
703 { ISD::SRA, MVT::v8i16, 2 },
704 { ISD::SHL, MVT::v4i32, 1 },
705 { ISD::SRL, MVT::v4i32, 2 },
706 { ISD::SRA, MVT::v4i32, 2 },
707 { ISD::SHL, MVT::v2i64, 1 },
708 { ISD::SRL, MVT::v2i64, 2 },
709 { ISD::SRA, MVT::v2i64, 2 },
710 // 256bit shifts require splitting if AVX2 didn't catch them above.
711 { ISD::SHL, MVT::v32i8, 2+2 },
712 { ISD::SRL, MVT::v32i8, 4+2 },
713 { ISD::SRA, MVT::v32i8, 4+2 },
714 { ISD::SHL, MVT::v16i16, 2+2 },
715 { ISD::SRL, MVT::v16i16, 4+2 },
716 { ISD::SRA, MVT::v16i16, 4+2 },
717 { ISD::SHL, MVT::v8i32, 2+2 },
718 { ISD::SRL, MVT::v8i32, 4+2 },
719 { ISD::SRA, MVT::v8i32, 4+2 },
720 { ISD::SHL, MVT::v4i64, 2+2 },
721 { ISD::SRL, MVT::v4i64, 4+2 },
722 { ISD::SRA, MVT::v4i64, 4+2 },
725 // Look for XOP lowering tricks.
726 if (ST->hasXOP()) {
727 // If the right shift is constant then we'll fold the negation so
728 // it's as cheap as a left shift.
729 int ShiftISD = ISD;
730 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
731 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
732 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
733 ShiftISD = ISD::SHL;
734 if (const auto *Entry =
735 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
736 return LT.first * Entry->Cost;
739 static const CostTblEntry SSE2UniformShiftCostTable[] = {
740 // Uniform splats are cheaper for the following instructions.
741 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
742 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
743 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
745 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
746 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
747 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
749 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
750 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
751 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
752 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
755 if (ST->hasSSE2() &&
756 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
757 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
759 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
760 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
761 return LT.first * 4; // 2*psrad + shuffle.
763 if (const auto *Entry =
764 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
765 return LT.first * Entry->Cost;
768 if (ISD == ISD::SHL &&
769 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
770 MVT VT = LT.second;
771 // Vector shift left by non uniform constant can be lowered
772 // into vector multiply.
773 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
774 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
775 ISD = ISD::MUL;
778 static const CostTblEntry AVX2CostTable[] = {
779 { ISD::SHL, MVT::v16i8, 6 }, // vpblendvb sequence.
780 { ISD::SHL, MVT::v32i8, 6 }, // vpblendvb sequence.
781 { ISD::SHL, MVT::v64i8, 12 }, // 2*vpblendvb sequence.
782 { ISD::SHL, MVT::v8i16, 5 }, // extend/vpsrlvd/pack sequence.
783 { ISD::SHL, MVT::v16i16, 7 }, // extend/vpsrlvd/pack sequence.
784 { ISD::SHL, MVT::v32i16, 14 }, // 2*extend/vpsrlvd/pack sequence.
786 { ISD::SRL, MVT::v16i8, 6 }, // vpblendvb sequence.
787 { ISD::SRL, MVT::v32i8, 6 }, // vpblendvb sequence.
788 { ISD::SRL, MVT::v64i8, 12 }, // 2*vpblendvb sequence.
789 { ISD::SRL, MVT::v8i16, 5 }, // extend/vpsrlvd/pack sequence.
790 { ISD::SRL, MVT::v16i16, 7 }, // extend/vpsrlvd/pack sequence.
791 { ISD::SRL, MVT::v32i16, 14 }, // 2*extend/vpsrlvd/pack sequence.
793 { ISD::SRA, MVT::v16i8, 17 }, // vpblendvb sequence.
794 { ISD::SRA, MVT::v32i8, 17 }, // vpblendvb sequence.
795 { ISD::SRA, MVT::v64i8, 34 }, // 2*vpblendvb sequence.
796 { ISD::SRA, MVT::v8i16, 5 }, // extend/vpsravd/pack sequence.
797 { ISD::SRA, MVT::v16i16, 7 }, // extend/vpsravd/pack sequence.
798 { ISD::SRA, MVT::v32i16, 14 }, // 2*extend/vpsravd/pack sequence.
799 { ISD::SRA, MVT::v2i64, 2 }, // srl/xor/sub sequence.
800 { ISD::SRA, MVT::v4i64, 2 }, // srl/xor/sub sequence.
802 { ISD::SUB, MVT::v32i8, 1 }, // psubb
803 { ISD::ADD, MVT::v32i8, 1 }, // paddb
804 { ISD::SUB, MVT::v16i16, 1 }, // psubw
805 { ISD::ADD, MVT::v16i16, 1 }, // paddw
806 { ISD::SUB, MVT::v8i32, 1 }, // psubd
807 { ISD::ADD, MVT::v8i32, 1 }, // paddd
808 { ISD::SUB, MVT::v4i64, 1 }, // psubq
809 { ISD::ADD, MVT::v4i64, 1 }, // paddq
811 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
812 { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org)
813 { ISD::MUL, MVT::v4i64, 6 }, // 3*pmuludq/3*shift/2*add
815 { ISD::FNEG, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
816 { ISD::FNEG, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
817 { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
818 { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
819 { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
820 { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
821 { ISD::FMUL, MVT::f64, 1 }, // Haswell from http://www.agner.org/
822 { ISD::FMUL, MVT::v2f64, 1 }, // Haswell from http://www.agner.org/
823 { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
824 { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
826 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
827 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
828 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
829 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
830 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
831 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
834 // Look for AVX2 lowering tricks for custom cases.
835 if (ST->hasAVX2())
836 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
837 return LT.first * Entry->Cost;
839 static const CostTblEntry AVX1CostTable[] = {
840 // We don't have to scalarize unsupported ops. We can issue two half-sized
841 // operations and we only need to extract the upper YMM half.
842 // Two ops + 1 extract + 1 insert = 4.
843 { ISD::MUL, MVT::v16i16, 4 },
844 { ISD::MUL, MVT::v8i32, 5 }, // BTVER2 from http://www.agner.org/
845 { ISD::MUL, MVT::v4i64, 12 },
847 { ISD::SUB, MVT::v32i8, 4 },
848 { ISD::ADD, MVT::v32i8, 4 },
849 { ISD::SUB, MVT::v16i16, 4 },
850 { ISD::ADD, MVT::v16i16, 4 },
851 { ISD::SUB, MVT::v8i32, 4 },
852 { ISD::ADD, MVT::v8i32, 4 },
853 { ISD::SUB, MVT::v4i64, 4 },
854 { ISD::ADD, MVT::v4i64, 4 },
856 { ISD::SHL, MVT::v32i8, 22 }, // pblendvb sequence + split.
857 { ISD::SHL, MVT::v8i16, 6 }, // pblendvb sequence.
858 { ISD::SHL, MVT::v16i16, 13 }, // pblendvb sequence + split.
859 { ISD::SHL, MVT::v4i32, 3 }, // pslld/paddd/cvttps2dq/pmulld
860 { ISD::SHL, MVT::v8i32, 9 }, // pslld/paddd/cvttps2dq/pmulld + split
861 { ISD::SHL, MVT::v2i64, 2 }, // Shift each lane + blend.
862 { ISD::SHL, MVT::v4i64, 6 }, // Shift each lane + blend + split.
864 { ISD::SRL, MVT::v32i8, 23 }, // pblendvb sequence + split.
865 { ISD::SRL, MVT::v16i16, 28 }, // pblendvb sequence + split.
866 { ISD::SRL, MVT::v4i32, 6 }, // Shift each lane + blend.
867 { ISD::SRL, MVT::v8i32, 14 }, // Shift each lane + blend + split.
868 { ISD::SRL, MVT::v2i64, 2 }, // Shift each lane + blend.
869 { ISD::SRL, MVT::v4i64, 6 }, // Shift each lane + blend + split.
871 { ISD::SRA, MVT::v32i8, 44 }, // pblendvb sequence + split.
872 { ISD::SRA, MVT::v16i16, 28 }, // pblendvb sequence + split.
873 { ISD::SRA, MVT::v4i32, 6 }, // Shift each lane + blend.
874 { ISD::SRA, MVT::v8i32, 14 }, // Shift each lane + blend + split.
875 { ISD::SRA, MVT::v2i64, 5 }, // Shift each lane + blend.
876 { ISD::SRA, MVT::v4i64, 12 }, // Shift each lane + blend + split.
878 { ISD::FNEG, MVT::v4f64, 2 }, // BTVER2 from http://www.agner.org/
879 { ISD::FNEG, MVT::v8f32, 2 }, // BTVER2 from http://www.agner.org/
881 { ISD::FMUL, MVT::f64, 2 }, // BTVER2 from http://www.agner.org/
882 { ISD::FMUL, MVT::v2f64, 2 }, // BTVER2 from http://www.agner.org/
883 { ISD::FMUL, MVT::v4f64, 4 }, // BTVER2 from http://www.agner.org/
885 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
886 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
887 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
888 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
889 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
890 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
893 if (ST->hasAVX())
894 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
895 return LT.first * Entry->Cost;
897 static const CostTblEntry SSE42CostTable[] = {
898 { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
899 { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
900 { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
901 { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
903 { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
904 { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/
905 { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
906 { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
908 { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
909 { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
910 { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
911 { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
913 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
914 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
915 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
916 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
918 { ISD::MUL, MVT::v2i64, 6 } // 3*pmuludq/3*shift/2*add
921 if (ST->hasSSE42())
922 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
923 return LT.first * Entry->Cost;
925 static const CostTblEntry SSE41CostTable[] = {
926 { ISD::SHL, MVT::v16i8, 10 }, // pblendvb sequence.
927 { ISD::SHL, MVT::v8i16, 11 }, // pblendvb sequence.
928 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
930 { ISD::SRL, MVT::v16i8, 11 }, // pblendvb sequence.
931 { ISD::SRL, MVT::v8i16, 13 }, // pblendvb sequence.
932 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
934 { ISD::SRA, MVT::v16i8, 21 }, // pblendvb sequence.
935 { ISD::SRA, MVT::v8i16, 13 }, // pblendvb sequence.
937 { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org)
940 if (ST->hasSSE41())
941 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
942 return LT.first * Entry->Cost;
944 static const CostTblEntry SSE2CostTable[] = {
945 // We don't correctly identify costs of casts because they are marked as
946 // custom.
947 { ISD::SHL, MVT::v16i8, 13 }, // cmpgtb sequence.
948 { ISD::SHL, MVT::v8i16, 25 }, // cmpgtw sequence.
949 { ISD::SHL, MVT::v4i32, 16 }, // pslld/paddd/cvttps2dq/pmuludq.
950 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
952 { ISD::SRL, MVT::v16i8, 14 }, // cmpgtb sequence.
953 { ISD::SRL, MVT::v8i16, 16 }, // cmpgtw sequence.
954 { ISD::SRL, MVT::v4i32, 12 }, // Shift each lane + blend.
955 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
957 { ISD::SRA, MVT::v16i8, 27 }, // unpacked cmpgtb sequence.
958 { ISD::SRA, MVT::v8i16, 16 }, // cmpgtw sequence.
959 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
960 { ISD::SRA, MVT::v2i64, 8 }, // srl/xor/sub splat+shuffle sequence.
962 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
963 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
964 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
966 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
967 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
968 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
969 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
971 { ISD::FNEG, MVT::f32, 1 }, // Pentium IV from http://www.agner.org/
972 { ISD::FNEG, MVT::f64, 1 }, // Pentium IV from http://www.agner.org/
973 { ISD::FNEG, MVT::v4f32, 1 }, // Pentium IV from http://www.agner.org/
974 { ISD::FNEG, MVT::v2f64, 1 }, // Pentium IV from http://www.agner.org/
976 { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
977 { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
979 { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
980 { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
983 if (ST->hasSSE2())
984 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
985 return LT.first * Entry->Cost;
987 static const CostTblEntry SSE1CostTable[] = {
988 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
989 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
991 { ISD::FNEG, MVT::f32, 2 }, // Pentium III from http://www.agner.org/
992 { ISD::FNEG, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
994 { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
995 { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
997 { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
998 { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
1001 if (ST->hasSSE1())
1002 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1003 return LT.first * Entry->Cost;
1005 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1006 { ISD::ADD, MVT::i64, 1 }, // Core (Merom) from http://www.agner.org/
1007 { ISD::SUB, MVT::i64, 1 }, // Core (Merom) from http://www.agner.org/
1010 if (ST->is64Bit())
1011 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1012 return LT.first * Entry->Cost;
1014 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1015 { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
1016 { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
1017 { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
1019 { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
1020 { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
1021 { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
1024 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1025 return LT.first * Entry->Cost;
1027 // It is not a good idea to vectorize division. We have to scalarize it and
1028 // in the process we will often end up having to spilling regular
1029 // registers. The overhead of division is going to dominate most kernels
1030 // anyways so try hard to prevent vectorization of division - it is
1031 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1032 // to hide "20 cycles" for each lane.
1033 if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
1034 ISD == ISD::UDIV || ISD == ISD::UREM)) {
1035 InstructionCost ScalarCost = getArithmeticInstrCost(
1036 Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
1037 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1038 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1041 // Fallback to the default implementation.
1042 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
1045 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1046 VectorType *BaseTp,
1047 ArrayRef<int> Mask, int Index,
1048 VectorType *SubTp) {
1049 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1050 // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1051 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
1053 Kind = improveShuffleKindFromMask(Kind, Mask);
1054 // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1055 if (Kind == TTI::SK_Transpose)
1056 Kind = TTI::SK_PermuteTwoSrc;
1058 // For Broadcasts we are splatting the first element from the first input
1059 // register, so only need to reference that input and all the output
1060 // registers are the same.
1061 if (Kind == TTI::SK_Broadcast)
1062 LT.first = 1;
1064 // Subvector extractions are free if they start at the beginning of a
1065 // vector and cheap if the subvectors are aligned.
1066 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1067 int NumElts = LT.second.getVectorNumElements();
1068 if ((Index % NumElts) == 0)
1069 return 0;
1070 std::pair<InstructionCost, MVT> SubLT =
1071 TLI->getTypeLegalizationCost(DL, SubTp);
1072 if (SubLT.second.isVector()) {
1073 int NumSubElts = SubLT.second.getVectorNumElements();
1074 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1075 return SubLT.first;
1076 // Handle some cases for widening legalization. For now we only handle
1077 // cases where the original subvector was naturally aligned and evenly
1078 // fit in its legalized subvector type.
1079 // FIXME: Remove some of the alignment restrictions.
1080 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1081 // vectors.
1082 int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1083 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1084 (NumSubElts % OrigSubElts) == 0 &&
1085 LT.second.getVectorElementType() ==
1086 SubLT.second.getVectorElementType() &&
1087 LT.second.getVectorElementType().getSizeInBits() ==
1088 BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1089 assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1090 "Unexpected number of elements!");
1091 auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1092 LT.second.getVectorNumElements());
1093 auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1094 SubLT.second.getVectorNumElements());
1095 int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1096 InstructionCost ExtractCost = getShuffleCost(
1097 TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1099 // If the original size is 32-bits or more, we can use pshufd. Otherwise
1100 // if we have SSSE3 we can use pshufb.
1101 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1102 return ExtractCost + 1; // pshufd or pshufb
1104 assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1105 "Unexpected vector size");
1107 return ExtractCost + 2; // worst case pshufhw + pshufd
1112 // Subvector insertions are cheap if the subvectors are aligned.
1113 // Note that in general, the insertion starting at the beginning of a vector
1114 // isn't free, because we need to preserve the rest of the wide vector.
1115 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1116 int NumElts = LT.second.getVectorNumElements();
1117 std::pair<InstructionCost, MVT> SubLT =
1118 TLI->getTypeLegalizationCost(DL, SubTp);
1119 if (SubLT.second.isVector()) {
1120 int NumSubElts = SubLT.second.getVectorNumElements();
1121 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1122 return SubLT.first;
1125 // If the insertion isn't aligned, treat it like a 2-op shuffle.
1126 Kind = TTI::SK_PermuteTwoSrc;
1129 // Handle some common (illegal) sub-vector types as they are often very cheap
1130 // to shuffle even on targets without PSHUFB.
1131 EVT VT = TLI->getValueType(DL, BaseTp);
1132 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1133 !ST->hasSSSE3()) {
1134 static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1135 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw
1136 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw
1137 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw
1138 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw
1139 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck
1141 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw
1142 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw
1143 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus
1144 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck
1146 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw
1147 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw
1148 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw
1149 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw
1150 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck
1152 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1153 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1154 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw
1155 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw
1156 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck
1159 if (ST->hasSSE2())
1160 if (const auto *Entry =
1161 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1162 return Entry->Cost;
1165 // We are going to permute multiple sources and the result will be in multiple
1166 // destinations. Providing an accurate cost only for splits where the element
1167 // type remains the same.
1168 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1169 MVT LegalVT = LT.second;
1170 if (LegalVT.isVector() &&
1171 LegalVT.getVectorElementType().getSizeInBits() ==
1172 BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1173 LegalVT.getVectorNumElements() <
1174 cast<FixedVectorType>(BaseTp)->getNumElements()) {
1176 unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1177 unsigned LegalVTSize = LegalVT.getStoreSize();
1178 // Number of source vectors after legalization:
1179 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1180 // Number of destination vectors after legalization:
1181 InstructionCost NumOfDests = LT.first;
1183 auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1184 LegalVT.getVectorNumElements());
1186 InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1187 return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1188 None, 0, nullptr);
1191 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1194 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1195 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1196 // We assume that source and destination have the same vector type.
1197 InstructionCost NumOfDests = LT.first;
1198 InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1199 LT.first = NumOfDests * NumOfShufflesPerDest;
1202 static const CostTblEntry AVX512FP16ShuffleTbl[] = {
1203 {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1204 {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1205 {TTI::SK_Broadcast, MVT::v8f16, 1}, // vpbroadcastw
1207 {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1208 {TTI::SK_Reverse, MVT::v16f16, 2}, // vpermw
1209 {TTI::SK_Reverse, MVT::v8f16, 1}, // vpshufb
1211 {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1212 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1213 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1}, // vpshufb
1215 {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1216 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 2}, // vpermt2w
1217 {TTI::SK_PermuteTwoSrc, MVT::v8f16, 2} // vpermt2w
1220 if (!ST->useSoftFloat() && ST->hasFP16())
1221 if (const auto *Entry =
1222 CostTableLookup(AVX512FP16ShuffleTbl, Kind, LT.second))
1223 return LT.first * Entry->Cost;
1225 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1226 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1227 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1229 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1230 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1232 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1233 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1234 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b
1237 if (ST->hasVBMI())
1238 if (const auto *Entry =
1239 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1240 return LT.first * Entry->Cost;
1242 static const CostTblEntry AVX512BWShuffleTbl[] = {
1243 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1244 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
1246 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1247 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1248 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
1250 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1251 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1252 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
1254 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1255 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1256 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w
1257 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1259 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1260 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb
1263 if (ST->hasBWI())
1264 if (const auto *Entry =
1265 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1266 return LT.first * Entry->Cost;
1268 static const CostTblEntry AVX512ShuffleTbl[] = {
1269 {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd
1270 {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1271 {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq
1272 {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1273 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1274 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
1276 {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd
1277 {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1278 {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq
1279 {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1280 {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca
1281 {TTI::SK_Reverse, MVT::v64i8, 7}, // per mca
1283 {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd
1284 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1285 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd
1286 {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1287 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1288 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps
1289 {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq
1290 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1291 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq
1292 {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1293 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1294 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd
1295 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1297 {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd
1298 {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1299 {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q
1300 {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1301 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd
1302 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps
1303 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q
1304 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d
1305 {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd
1306 {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps
1307 {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q
1308 {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}, // vpermt2d
1310 // FIXME: This just applies the type legalization cost rules above
1311 // assuming these completely split.
1312 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1313 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 14},
1314 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 42},
1315 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 42},
1317 {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1318 {TTI::SK_Select, MVT::v64i8, 1}, // vpternlogq
1319 {TTI::SK_Select, MVT::v8f64, 1}, // vblendmpd
1320 {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1321 {TTI::SK_Select, MVT::v8i64, 1}, // vblendmq
1322 {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1325 if (ST->hasAVX512())
1326 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1327 return LT.first * Entry->Cost;
1329 static const CostTblEntry AVX2ShuffleTbl[] = {
1330 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
1331 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
1332 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
1333 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
1334 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1335 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
1337 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
1338 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
1339 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
1340 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
1341 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1342 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
1344 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1345 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
1347 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1348 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1349 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1350 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1351 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1352 // + vpblendvb
1353 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
1354 // + vpblendvb
1356 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
1357 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
1358 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
1359 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
1360 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1361 // + vpblendvb
1362 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
1363 // + vpblendvb
1366 if (ST->hasAVX2())
1367 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1368 return LT.first * Entry->Cost;
1370 static const CostTblEntry XOPShuffleTbl[] = {
1371 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
1372 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
1373 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
1374 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
1375 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1376 // + vinsertf128
1377 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
1378 // + vinsertf128
1380 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1381 // + vinsertf128
1382 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
1383 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
1384 // + vinsertf128
1385 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
1388 if (ST->hasXOP())
1389 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1390 return LT.first * Entry->Cost;
1392 static const CostTblEntry AVX1ShuffleTbl[] = {
1393 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1394 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1395 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1396 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1397 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1398 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
1400 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1401 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1402 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1403 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1404 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1405 // + vinsertf128
1406 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
1407 // + vinsertf128
1409 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
1410 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
1411 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps
1412 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps
1413 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1414 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
1416 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
1417 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
1418 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1419 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1420 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1421 // + 2*por + vinsertf128
1422 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
1423 // + 2*por + vinsertf128
1425 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
1426 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
1427 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1428 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1429 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1430 // + 4*por + vinsertf128
1431 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
1432 // + 4*por + vinsertf128
1435 if (ST->hasAVX())
1436 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1437 return LT.first * Entry->Cost;
1439 static const CostTblEntry SSE41ShuffleTbl[] = {
1440 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1441 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1442 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1443 {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1444 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1445 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb
1448 if (ST->hasSSE41())
1449 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1450 return LT.first * Entry->Cost;
1452 static const CostTblEntry SSSE3ShuffleTbl[] = {
1453 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1454 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1456 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1457 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1459 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1460 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1462 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1463 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1465 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1466 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1469 if (ST->hasSSSE3())
1470 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1471 return LT.first * Entry->Cost;
1473 static const CostTblEntry SSE2ShuffleTbl[] = {
1474 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1475 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1476 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1477 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1478 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1480 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1481 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1482 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1483 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1484 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1485 // + 2*pshufd + 2*unpck + packus
1487 {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1488 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1489 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1490 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1491 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1493 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1494 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1495 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1496 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1497 // + pshufd/unpck
1498 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1499 // + 2*pshufd + 2*unpck + 2*packus
1501 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
1502 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
1503 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
1504 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
1505 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
1508 if (ST->hasSSE2())
1509 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1510 return LT.first * Entry->Cost;
1512 static const CostTblEntry SSE1ShuffleTbl[] = {
1513 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
1514 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
1515 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
1516 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1517 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
1520 if (ST->hasSSE1())
1521 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1522 return LT.first * Entry->Cost;
1524 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1527 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1528 Type *Src,
1529 TTI::CastContextHint CCH,
1530 TTI::TargetCostKind CostKind,
1531 const Instruction *I) {
1532 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1533 assert(ISD && "Invalid opcode");
1535 // TODO: Allow non-throughput costs that aren't binary.
1536 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1537 if (CostKind != TTI::TCK_RecipThroughput)
1538 return Cost == 0 ? 0 : 1;
1539 return Cost;
1542 // The cost tables include both specific, custom (non-legal) src/dst type
1543 // conversions and generic, legalized types. We test for customs first, before
1544 // falling back to legalization.
1545 // FIXME: Need a better design of the cost table to handle non-simple types of
1546 // potential massive combinations (elem_num x src_type x dst_type).
1547 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1548 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1549 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1551 // Mask sign extend has an instruction.
1552 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
1553 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
1554 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
1555 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
1556 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
1557 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
1558 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
1559 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1560 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
1561 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1562 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 },
1564 // Mask zero extend is a sext + shift.
1565 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
1566 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
1567 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
1568 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
1569 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
1570 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
1571 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
1572 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1573 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
1574 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1575 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 },
1577 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 },
1578 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm
1579 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // widen to zmm
1580 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // widen to zmm
1581 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // vpmovwb
1582 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // widen to zmm
1583 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // widen to zmm
1584 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // vpmovwb
1585 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // widen to zmm
1586 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // widen to zmm
1587 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // vpmovwb
1588 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // widen to zmm
1589 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // widen to zmm
1590 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // widen to zmm
1591 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 },
1592 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 },
1595 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1596 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1597 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1599 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1600 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1602 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
1603 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
1605 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
1606 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
1609 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1610 // 256-bit wide vectors.
1612 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1613 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
1614 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
1615 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
1617 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
1618 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
1619 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
1620 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd
1621 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
1622 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
1623 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
1624 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1625 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd
1626 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd
1627 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd
1628 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd
1629 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq
1630 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq
1631 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq
1632 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 2 }, // vpmovdb
1633 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 2 }, // vpmovdb
1634 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, // vpmovdb
1635 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, // vpmovdb
1636 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 2 }, // vpmovqb
1637 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1 }, // vpshufb
1638 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, // vpmovqb
1639 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, // vpmovqw
1640 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, // vpmovqd
1641 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd
1642 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1644 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32
1645 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 },
1647 // Sign extend is zmm vpternlogd+vptruncdb.
1648 // Zero extend is zmm broadcast load+vptruncdw.
1649 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 },
1650 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 },
1651 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 },
1652 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 },
1653 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 },
1654 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 },
1655 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 },
1656 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 },
1658 // Sign extend is zmm vpternlogd+vptruncdw.
1659 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1660 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 },
1661 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
1662 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 },
1663 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
1664 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 },
1665 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
1666 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 },
1667 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1669 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd
1670 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld
1671 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd
1672 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld
1673 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd
1674 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld
1675 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq
1676 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq
1677 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq
1678 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq
1680 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd
1681 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld
1682 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq
1683 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq
1685 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1686 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1687 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1688 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1689 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
1690 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
1691 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1692 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1693 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1694 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1696 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1697 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1699 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
1700 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
1701 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
1702 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
1703 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1704 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
1705 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1706 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
1708 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
1709 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
1710 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
1711 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
1712 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1713 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
1714 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1715 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
1716 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1717 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 },
1719 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
1720 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f64, 7 },
1721 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f64,15 },
1722 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f32,11 },
1723 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f64,31 },
1724 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 },
1725 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f64, 7 },
1726 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f32, 5 },
1727 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f64,15 },
1728 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 1 },
1729 { ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f64, 3 },
1731 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
1732 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 },
1733 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 },
1734 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
1735 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 },
1736 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 },
1739 static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1740 // Mask sign extend has an instruction.
1741 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
1742 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
1743 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
1744 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
1745 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
1746 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
1747 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
1748 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1749 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
1751 // Mask zero extend is a sext + shift.
1752 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
1753 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
1754 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
1755 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
1756 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
1757 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
1758 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
1759 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1760 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
1762 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 },
1763 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // vpsllw+vptestmb
1764 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // vpsllw+vptestmw
1765 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // vpsllw+vptestmb
1766 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // vpsllw+vptestmw
1767 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // vpsllw+vptestmb
1768 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // vpsllw+vptestmw
1769 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // vpsllw+vptestmb
1770 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // vpsllw+vptestmw
1771 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // vpsllw+vptestmb
1774 static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1775 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1776 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1777 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1778 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
1780 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1781 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1782 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1783 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
1785 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v4f32, 1 },
1786 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
1787 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
1788 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
1790 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v4f32, 1 },
1791 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
1792 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1793 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
1796 static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1797 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
1798 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
1799 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
1800 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8
1801 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
1802 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
1803 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
1804 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16
1805 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd
1806 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd
1807 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd
1808 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq
1809 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq
1810 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd
1811 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, // vpmovqb
1812 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, // vpmovqw
1813 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, // vpmovwb
1815 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1816 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1817 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 },
1818 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 },
1819 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 },
1820 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 },
1821 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 },
1822 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 },
1823 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 },
1824 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 },
1826 // sign extend is vpcmpeq+maskedmove+vpmovdw
1827 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1828 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
1829 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 },
1830 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
1831 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 },
1832 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
1833 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 },
1834 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1835 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1837 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd
1838 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld
1839 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd
1840 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld
1841 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd
1842 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld
1843 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq
1844 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq
1845 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq
1846 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq
1848 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
1849 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
1850 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
1851 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
1852 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1853 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1854 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
1855 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
1856 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1857 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1858 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1859 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1861 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
1862 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
1863 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
1864 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
1866 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 },
1867 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 },
1868 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
1869 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
1870 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
1871 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
1872 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1873 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1874 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1875 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1876 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
1877 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1878 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 },
1880 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
1881 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
1882 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f32, 5 },
1884 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 },
1885 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 },
1886 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1887 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 1 },
1888 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 },
1889 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1890 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
1893 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1894 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1895 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1896 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1897 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1898 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1899 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1901 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
1902 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
1903 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
1904 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
1905 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1906 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1907 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
1908 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
1909 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1910 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1911 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1912 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1913 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1914 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1916 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
1918 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 1 },
1919 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 1 },
1920 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 1 },
1921 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 4 },
1922 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 4 },
1923 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 1 },
1924 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 1 },
1925 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 5 },
1926 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
1927 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1929 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1930 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
1932 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 1 },
1933 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 1 },
1934 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 1 },
1935 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 3 },
1937 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 3 },
1938 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 3 },
1939 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 1 },
1940 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
1941 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
1942 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4 },
1943 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 3 },
1944 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 4 },
1946 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
1947 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
1948 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
1949 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1950 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1951 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1952 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 3 },
1954 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
1955 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
1956 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
1957 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1958 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
1959 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
1960 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 2 },
1961 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
1962 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
1963 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
1966 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1967 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1968 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
1969 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1970 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
1971 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1972 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1974 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
1975 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
1976 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
1977 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
1978 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1979 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1980 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
1981 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
1982 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1983 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1984 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1985 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1987 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 },
1988 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 },
1989 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 },
1990 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 },
1991 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 },
1993 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // and+extract+packuswb
1994 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 5 },
1995 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1996 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 5 },
1997 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 3 }, // and+extract+2*packusdw
1998 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
2000 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
2001 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
2002 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
2003 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
2004 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
2005 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2006 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
2007 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2008 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
2009 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
2010 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 5 },
2011 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 8 },
2013 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
2014 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
2015 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
2016 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
2017 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
2018 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2019 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
2020 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 4 },
2021 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 4 },
2022 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2023 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
2024 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
2025 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 10 },
2026 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 10 },
2027 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 18 },
2028 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
2029 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 10 },
2031 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
2032 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f64, 2 },
2033 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v8f32, 2 },
2034 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v4f64, 2 },
2035 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 2 },
2036 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f64, 2 },
2037 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 2 },
2038 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v4f64, 2 },
2039 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 2 },
2040 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 2 },
2041 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 5 },
2043 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v8f32, 2 },
2044 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f64, 2 },
2045 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v8f32, 2 },
2046 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v4f64, 2 },
2047 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 2 },
2048 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f64, 2 },
2049 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 2 },
2050 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v4f64, 2 },
2051 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
2052 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2053 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 6 },
2054 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 7 },
2055 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 7 },
2057 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
2058 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
2061 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2062 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
2063 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
2064 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
2065 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
2066 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2067 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2068 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
2069 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
2070 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2071 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2072 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2073 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2075 // These truncates end up widening elements.
2076 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ
2077 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ
2078 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD
2080 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 2 },
2081 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 2 },
2082 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 2 },
2084 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 1 },
2085 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 1 },
2086 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 1 },
2087 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 1 },
2088 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
2089 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2090 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
2091 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2092 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2093 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 1 },
2094 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2096 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 1 },
2097 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 1 },
2098 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 },
2099 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 },
2100 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
2101 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2102 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
2103 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2104 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 3 },
2105 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
2106 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 2 },
2107 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 12 },
2108 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 22 },
2109 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 4 },
2111 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 1 },
2112 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 1 },
2113 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 1 },
2114 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 1 },
2115 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 2 },
2116 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 2 },
2117 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 1 },
2118 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 1 },
2119 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
2120 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 1 },
2122 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 1 },
2123 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
2124 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 1 },
2125 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 },
2126 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 2 },
2127 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 2 },
2128 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 1 },
2129 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 1 },
2130 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 4 },
2131 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2134 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2135 // These are somewhat magic numbers justified by comparing the
2136 // output of llvm-mca for our various supported scheduler models
2137 // and basing it off the worst case scenario.
2138 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 3 },
2139 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 3 },
2140 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 3 },
2141 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 3 },
2142 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 3 },
2143 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
2144 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 3 },
2145 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
2146 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
2147 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4 },
2148 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 8 },
2149 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 8 },
2151 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 3 },
2152 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 3 },
2153 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 8 },
2154 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 9 },
2155 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
2156 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 4 },
2157 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 4 },
2158 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
2159 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 7 },
2160 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 7 },
2161 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2162 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 15 },
2163 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 18 },
2165 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 4 },
2166 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 4 },
2167 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 4 },
2168 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 4 },
2169 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 6 },
2170 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 6 },
2171 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 5 },
2172 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 5 },
2173 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 4 },
2174 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 4 },
2176 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 4 },
2177 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
2178 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 4 },
2179 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 15 },
2180 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 6 },
2181 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 6 },
2182 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 5 },
2183 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 5 },
2184 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 8 },
2185 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 8 },
2187 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
2188 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
2189 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 2 },
2190 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 3 },
2191 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2192 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 2 },
2193 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 2 },
2194 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 3 },
2195 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2196 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 2 },
2197 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2198 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 2 },
2200 // These truncates are really widening elements.
2201 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD
2202 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ
2203 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD
2204 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD
2205 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD
2206 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW
2208 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 2 }, // PAND+PACKUSWB
2209 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
2210 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 3 }, // PAND+2*PACKUSWB
2211 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
2212 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 },
2213 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 3 },
2214 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
2215 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32,10 },
2216 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB
2217 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW
2218 { ISD::TRUNCATE, MVT::v4i32, MVT::v2i64, 1 }, // PSHUFD
2221 // Attempt to map directly to (simple) MVT types to let us match custom entries.
2222 EVT SrcTy = TLI->getValueType(DL, Src);
2223 EVT DstTy = TLI->getValueType(DL, Dst);
2225 // The function getSimpleVT only handles simple value types.
2226 if (SrcTy.isSimple() && DstTy.isSimple()) {
2227 MVT SimpleSrcTy = SrcTy.getSimpleVT();
2228 MVT SimpleDstTy = DstTy.getSimpleVT();
2230 if (ST->useAVX512Regs()) {
2231 if (ST->hasBWI())
2232 if (const auto *Entry = ConvertCostTableLookup(
2233 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2234 return AdjustCost(Entry->Cost);
2236 if (ST->hasDQI())
2237 if (const auto *Entry = ConvertCostTableLookup(
2238 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2239 return AdjustCost(Entry->Cost);
2241 if (ST->hasAVX512())
2242 if (const auto *Entry = ConvertCostTableLookup(
2243 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2244 return AdjustCost(Entry->Cost);
2247 if (ST->hasBWI())
2248 if (const auto *Entry = ConvertCostTableLookup(
2249 AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2250 return AdjustCost(Entry->Cost);
2252 if (ST->hasDQI())
2253 if (const auto *Entry = ConvertCostTableLookup(
2254 AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2255 return AdjustCost(Entry->Cost);
2257 if (ST->hasAVX512())
2258 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2259 SimpleDstTy, SimpleSrcTy))
2260 return AdjustCost(Entry->Cost);
2262 if (ST->hasAVX2()) {
2263 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2264 SimpleDstTy, SimpleSrcTy))
2265 return AdjustCost(Entry->Cost);
2268 if (ST->hasAVX()) {
2269 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2270 SimpleDstTy, SimpleSrcTy))
2271 return AdjustCost(Entry->Cost);
2274 if (ST->hasSSE41()) {
2275 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2276 SimpleDstTy, SimpleSrcTy))
2277 return AdjustCost(Entry->Cost);
2280 if (ST->hasSSE2()) {
2281 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2282 SimpleDstTy, SimpleSrcTy))
2283 return AdjustCost(Entry->Cost);
2287 // Fall back to legalized types.
2288 std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2289 std::pair<InstructionCost, MVT> LTDest =
2290 TLI->getTypeLegalizationCost(DL, Dst);
2292 if (ST->useAVX512Regs()) {
2293 if (ST->hasBWI())
2294 if (const auto *Entry = ConvertCostTableLookup(
2295 AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
2296 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2298 if (ST->hasDQI())
2299 if (const auto *Entry = ConvertCostTableLookup(
2300 AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
2301 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2303 if (ST->hasAVX512())
2304 if (const auto *Entry = ConvertCostTableLookup(
2305 AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
2306 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2309 if (ST->hasBWI())
2310 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2311 LTDest.second, LTSrc.second))
2312 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2314 if (ST->hasDQI())
2315 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2316 LTDest.second, LTSrc.second))
2317 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2319 if (ST->hasAVX512())
2320 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2321 LTDest.second, LTSrc.second))
2322 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2324 if (ST->hasAVX2())
2325 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2326 LTDest.second, LTSrc.second))
2327 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2329 if (ST->hasAVX())
2330 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2331 LTDest.second, LTSrc.second))
2332 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2334 if (ST->hasSSE41())
2335 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2336 LTDest.second, LTSrc.second))
2337 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2339 if (ST->hasSSE2())
2340 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2341 LTDest.second, LTSrc.second))
2342 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2344 // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
2345 // sitofp.
2346 if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
2347 1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
2348 Type *ExtSrc = Src->getWithNewBitWidth(32);
2349 unsigned ExtOpc =
2350 (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
2352 // For scalar loads the extend would be free.
2353 InstructionCost ExtCost = 0;
2354 if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
2355 ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
2357 return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
2358 TTI::CastContextHint::None, CostKind);
2361 // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
2362 // i32.
2363 if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
2364 1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
2365 Type *TruncDst = Dst->getWithNewBitWidth(32);
2366 return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
2367 getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
2368 TTI::CastContextHint::None, CostKind);
2371 return AdjustCost(
2372 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2375 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2376 Type *CondTy,
2377 CmpInst::Predicate VecPred,
2378 TTI::TargetCostKind CostKind,
2379 const Instruction *I) {
2380 // TODO: Handle other cost kinds.
2381 if (CostKind != TTI::TCK_RecipThroughput)
2382 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2385 // Legalize the type.
2386 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2388 MVT MTy = LT.second;
2390 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2391 assert(ISD && "Invalid opcode");
2393 unsigned ExtraCost = 0;
2394 if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2395 // Some vector comparison predicates cost extra instructions.
2396 if (MTy.isVector() &&
2397 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2398 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2399 ST->hasBWI())) {
2400 switch (cast<CmpInst>(I)->getPredicate()) {
2401 case CmpInst::Predicate::ICMP_NE:
2402 // xor(cmpeq(x,y),-1)
2403 ExtraCost = 1;
2404 break;
2405 case CmpInst::Predicate::ICMP_SGE:
2406 case CmpInst::Predicate::ICMP_SLE:
2407 // xor(cmpgt(x,y),-1)
2408 ExtraCost = 1;
2409 break;
2410 case CmpInst::Predicate::ICMP_ULT:
2411 case CmpInst::Predicate::ICMP_UGT:
2412 // cmpgt(xor(x,signbit),xor(y,signbit))
2413 // xor(cmpeq(pmaxu(x,y),x),-1)
2414 ExtraCost = 2;
2415 break;
2416 case CmpInst::Predicate::ICMP_ULE:
2417 case CmpInst::Predicate::ICMP_UGE:
2418 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2419 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2420 // cmpeq(psubus(x,y),0)
2421 // cmpeq(pminu(x,y),x)
2422 ExtraCost = 1;
2423 } else {
2424 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2425 ExtraCost = 3;
2427 break;
2428 default:
2429 break;
2434 static const CostTblEntry SLMCostTbl[] = {
2435 // slm pcmpeq/pcmpgt throughput is 2
2436 { ISD::SETCC, MVT::v2i64, 2 },
2439 static const CostTblEntry AVX512BWCostTbl[] = {
2440 { ISD::SETCC, MVT::v32i16, 1 },
2441 { ISD::SETCC, MVT::v64i8, 1 },
2443 { ISD::SELECT, MVT::v32i16, 1 },
2444 { ISD::SELECT, MVT::v64i8, 1 },
2447 static const CostTblEntry AVX512CostTbl[] = {
2448 { ISD::SETCC, MVT::v8i64, 1 },
2449 { ISD::SETCC, MVT::v16i32, 1 },
2450 { ISD::SETCC, MVT::v8f64, 1 },
2451 { ISD::SETCC, MVT::v16f32, 1 },
2453 { ISD::SELECT, MVT::v8i64, 1 },
2454 { ISD::SELECT, MVT::v16i32, 1 },
2455 { ISD::SELECT, MVT::v8f64, 1 },
2456 { ISD::SELECT, MVT::v16f32, 1 },
2458 { ISD::SETCC, MVT::v32i16, 2 }, // FIXME: should probably be 4
2459 { ISD::SETCC, MVT::v64i8, 2 }, // FIXME: should probably be 4
2461 { ISD::SELECT, MVT::v32i16, 2 }, // FIXME: should be 3
2462 { ISD::SELECT, MVT::v64i8, 2 }, // FIXME: should be 3
2465 static const CostTblEntry AVX2CostTbl[] = {
2466 { ISD::SETCC, MVT::v4i64, 1 },
2467 { ISD::SETCC, MVT::v8i32, 1 },
2468 { ISD::SETCC, MVT::v16i16, 1 },
2469 { ISD::SETCC, MVT::v32i8, 1 },
2471 { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb
2472 { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb
2473 { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb
2474 { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb
2477 static const CostTblEntry AVX1CostTbl[] = {
2478 { ISD::SETCC, MVT::v4f64, 1 },
2479 { ISD::SETCC, MVT::v8f32, 1 },
2480 // AVX1 does not support 8-wide integer compare.
2481 { ISD::SETCC, MVT::v4i64, 4 },
2482 { ISD::SETCC, MVT::v8i32, 4 },
2483 { ISD::SETCC, MVT::v16i16, 4 },
2484 { ISD::SETCC, MVT::v32i8, 4 },
2486 { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd
2487 { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps
2488 { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd
2489 { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps
2490 { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps
2491 { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps
2494 static const CostTblEntry SSE42CostTbl[] = {
2495 { ISD::SETCC, MVT::v2f64, 1 },
2496 { ISD::SETCC, MVT::v4f32, 1 },
2497 { ISD::SETCC, MVT::v2i64, 1 },
2500 static const CostTblEntry SSE41CostTbl[] = {
2501 { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd
2502 { ISD::SELECT, MVT::v4f32, 1 }, // blendvps
2503 { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb
2504 { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb
2505 { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb
2506 { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb
2509 static const CostTblEntry SSE2CostTbl[] = {
2510 { ISD::SETCC, MVT::v2f64, 2 },
2511 { ISD::SETCC, MVT::f64, 1 },
2512 { ISD::SETCC, MVT::v2i64, 8 },
2513 { ISD::SETCC, MVT::v4i32, 1 },
2514 { ISD::SETCC, MVT::v8i16, 1 },
2515 { ISD::SETCC, MVT::v16i8, 1 },
2517 { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd
2518 { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por
2519 { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por
2520 { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por
2521 { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por
2524 static const CostTblEntry SSE1CostTbl[] = {
2525 { ISD::SETCC, MVT::v4f32, 2 },
2526 { ISD::SETCC, MVT::f32, 1 },
2528 { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps
2531 if (ST->isSLM())
2532 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2533 return LT.first * (ExtraCost + Entry->Cost);
2535 if (ST->hasBWI())
2536 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2537 return LT.first * (ExtraCost + Entry->Cost);
2539 if (ST->hasAVX512())
2540 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2541 return LT.first * (ExtraCost + Entry->Cost);
2543 if (ST->hasAVX2())
2544 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2545 return LT.first * (ExtraCost + Entry->Cost);
2547 if (ST->hasAVX())
2548 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2549 return LT.first * (ExtraCost + Entry->Cost);
2551 if (ST->hasSSE42())
2552 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2553 return LT.first * (ExtraCost + Entry->Cost);
2555 if (ST->hasSSE41())
2556 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2557 return LT.first * (ExtraCost + Entry->Cost);
2559 if (ST->hasSSE2())
2560 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2561 return LT.first * (ExtraCost + Entry->Cost);
2563 if (ST->hasSSE1())
2564 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2565 return LT.first * (ExtraCost + Entry->Cost);
2567 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2570 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2572 InstructionCost
2573 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2574 TTI::TargetCostKind CostKind) {
2576 // Costs should match the codegen from:
2577 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2578 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2579 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2580 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2581 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2583 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2584 // specialized in these tables yet.
2585 static const CostTblEntry AVX512BITALGCostTbl[] = {
2586 { ISD::CTPOP, MVT::v32i16, 1 },
2587 { ISD::CTPOP, MVT::v64i8, 1 },
2588 { ISD::CTPOP, MVT::v16i16, 1 },
2589 { ISD::CTPOP, MVT::v32i8, 1 },
2590 { ISD::CTPOP, MVT::v8i16, 1 },
2591 { ISD::CTPOP, MVT::v16i8, 1 },
2593 static const CostTblEntry AVX512VPOPCNTDQCostTbl[] = {
2594 { ISD::CTPOP, MVT::v8i64, 1 },
2595 { ISD::CTPOP, MVT::v16i32, 1 },
2596 { ISD::CTPOP, MVT::v4i64, 1 },
2597 { ISD::CTPOP, MVT::v8i32, 1 },
2598 { ISD::CTPOP, MVT::v2i64, 1 },
2599 { ISD::CTPOP, MVT::v4i32, 1 },
2601 static const CostTblEntry AVX512CDCostTbl[] = {
2602 { ISD::CTLZ, MVT::v8i64, 1 },
2603 { ISD::CTLZ, MVT::v16i32, 1 },
2604 { ISD::CTLZ, MVT::v32i16, 8 },
2605 { ISD::CTLZ, MVT::v64i8, 20 },
2606 { ISD::CTLZ, MVT::v4i64, 1 },
2607 { ISD::CTLZ, MVT::v8i32, 1 },
2608 { ISD::CTLZ, MVT::v16i16, 4 },
2609 { ISD::CTLZ, MVT::v32i8, 10 },
2610 { ISD::CTLZ, MVT::v2i64, 1 },
2611 { ISD::CTLZ, MVT::v4i32, 1 },
2612 { ISD::CTLZ, MVT::v8i16, 4 },
2613 { ISD::CTLZ, MVT::v16i8, 4 },
2615 static const CostTblEntry AVX512BWCostTbl[] = {
2616 { ISD::ABS, MVT::v32i16, 1 },
2617 { ISD::ABS, MVT::v64i8, 1 },
2618 { ISD::BITREVERSE, MVT::v8i64, 5 },
2619 { ISD::BITREVERSE, MVT::v16i32, 5 },
2620 { ISD::BITREVERSE, MVT::v32i16, 5 },
2621 { ISD::BITREVERSE, MVT::v64i8, 5 },
2622 { ISD::BSWAP, MVT::v8i64, 1 },
2623 { ISD::BSWAP, MVT::v16i32, 1 },
2624 { ISD::BSWAP, MVT::v32i16, 1 },
2625 { ISD::CTLZ, MVT::v8i64, 23 },
2626 { ISD::CTLZ, MVT::v16i32, 22 },
2627 { ISD::CTLZ, MVT::v32i16, 18 },
2628 { ISD::CTLZ, MVT::v64i8, 17 },
2629 { ISD::CTPOP, MVT::v8i64, 7 },
2630 { ISD::CTPOP, MVT::v16i32, 11 },
2631 { ISD::CTPOP, MVT::v32i16, 9 },
2632 { ISD::CTPOP, MVT::v64i8, 6 },
2633 { ISD::CTTZ, MVT::v8i64, 10 },
2634 { ISD::CTTZ, MVT::v16i32, 14 },
2635 { ISD::CTTZ, MVT::v32i16, 12 },
2636 { ISD::CTTZ, MVT::v64i8, 9 },
2637 { ISD::SADDSAT, MVT::v32i16, 1 },
2638 { ISD::SADDSAT, MVT::v64i8, 1 },
2639 { ISD::SMAX, MVT::v32i16, 1 },
2640 { ISD::SMAX, MVT::v64i8, 1 },
2641 { ISD::SMIN, MVT::v32i16, 1 },
2642 { ISD::SMIN, MVT::v64i8, 1 },
2643 { ISD::SSUBSAT, MVT::v32i16, 1 },
2644 { ISD::SSUBSAT, MVT::v64i8, 1 },
2645 { ISD::UADDSAT, MVT::v32i16, 1 },
2646 { ISD::UADDSAT, MVT::v64i8, 1 },
2647 { ISD::UMAX, MVT::v32i16, 1 },
2648 { ISD::UMAX, MVT::v64i8, 1 },
2649 { ISD::UMIN, MVT::v32i16, 1 },
2650 { ISD::UMIN, MVT::v64i8, 1 },
2651 { ISD::USUBSAT, MVT::v32i16, 1 },
2652 { ISD::USUBSAT, MVT::v64i8, 1 },
2654 static const CostTblEntry AVX512CostTbl[] = {
2655 { ISD::ABS, MVT::v8i64, 1 },
2656 { ISD::ABS, MVT::v16i32, 1 },
2657 { ISD::ABS, MVT::v32i16, 2 }, // FIXME: include split
2658 { ISD::ABS, MVT::v64i8, 2 }, // FIXME: include split
2659 { ISD::ABS, MVT::v4i64, 1 },
2660 { ISD::ABS, MVT::v2i64, 1 },
2661 { ISD::BITREVERSE, MVT::v8i64, 36 },
2662 { ISD::BITREVERSE, MVT::v16i32, 24 },
2663 { ISD::BITREVERSE, MVT::v32i16, 10 },
2664 { ISD::BITREVERSE, MVT::v64i8, 10 },
2665 { ISD::BSWAP, MVT::v8i64, 4 },
2666 { ISD::BSWAP, MVT::v16i32, 4 },
2667 { ISD::BSWAP, MVT::v32i16, 4 },
2668 { ISD::CTLZ, MVT::v8i64, 29 },
2669 { ISD::CTLZ, MVT::v16i32, 35 },
2670 { ISD::CTLZ, MVT::v32i16, 28 },
2671 { ISD::CTLZ, MVT::v64i8, 18 },
2672 { ISD::CTPOP, MVT::v8i64, 16 },
2673 { ISD::CTPOP, MVT::v16i32, 24 },
2674 { ISD::CTPOP, MVT::v32i16, 18 },
2675 { ISD::CTPOP, MVT::v64i8, 12 },
2676 { ISD::CTTZ, MVT::v8i64, 20 },
2677 { ISD::CTTZ, MVT::v16i32, 28 },
2678 { ISD::CTTZ, MVT::v32i16, 24 },
2679 { ISD::CTTZ, MVT::v64i8, 18 },
2680 { ISD::SMAX, MVT::v8i64, 1 },
2681 { ISD::SMAX, MVT::v16i32, 1 },
2682 { ISD::SMAX, MVT::v32i16, 2 }, // FIXME: include split
2683 { ISD::SMAX, MVT::v64i8, 2 }, // FIXME: include split
2684 { ISD::SMAX, MVT::v4i64, 1 },
2685 { ISD::SMAX, MVT::v2i64, 1 },
2686 { ISD::SMIN, MVT::v8i64, 1 },
2687 { ISD::SMIN, MVT::v16i32, 1 },
2688 { ISD::SMIN, MVT::v32i16, 2 }, // FIXME: include split
2689 { ISD::SMIN, MVT::v64i8, 2 }, // FIXME: include split
2690 { ISD::SMIN, MVT::v4i64, 1 },
2691 { ISD::SMIN, MVT::v2i64, 1 },
2692 { ISD::UMAX, MVT::v8i64, 1 },
2693 { ISD::UMAX, MVT::v16i32, 1 },
2694 { ISD::UMAX, MVT::v32i16, 2 }, // FIXME: include split
2695 { ISD::UMAX, MVT::v64i8, 2 }, // FIXME: include split
2696 { ISD::UMAX, MVT::v4i64, 1 },
2697 { ISD::UMAX, MVT::v2i64, 1 },
2698 { ISD::UMIN, MVT::v8i64, 1 },
2699 { ISD::UMIN, MVT::v16i32, 1 },
2700 { ISD::UMIN, MVT::v32i16, 2 }, // FIXME: include split
2701 { ISD::UMIN, MVT::v64i8, 2 }, // FIXME: include split
2702 { ISD::UMIN, MVT::v4i64, 1 },
2703 { ISD::UMIN, MVT::v2i64, 1 },
2704 { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd
2705 { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq
2706 { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq
2707 { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq
2708 { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd
2709 { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq
2710 { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq
2711 { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq
2712 { ISD::SADDSAT, MVT::v32i16, 2 }, // FIXME: include split
2713 { ISD::SADDSAT, MVT::v64i8, 2 }, // FIXME: include split
2714 { ISD::SSUBSAT, MVT::v32i16, 2 }, // FIXME: include split
2715 { ISD::SSUBSAT, MVT::v64i8, 2 }, // FIXME: include split
2716 { ISD::UADDSAT, MVT::v32i16, 2 }, // FIXME: include split
2717 { ISD::UADDSAT, MVT::v64i8, 2 }, // FIXME: include split
2718 { ISD::USUBSAT, MVT::v32i16, 2 }, // FIXME: include split
2719 { ISD::USUBSAT, MVT::v64i8, 2 }, // FIXME: include split
2720 { ISD::FMAXNUM, MVT::f32, 2 },
2721 { ISD::FMAXNUM, MVT::v4f32, 2 },
2722 { ISD::FMAXNUM, MVT::v8f32, 2 },
2723 { ISD::FMAXNUM, MVT::v16f32, 2 },
2724 { ISD::FMAXNUM, MVT::f64, 2 },
2725 { ISD::FMAXNUM, MVT::v2f64, 2 },
2726 { ISD::FMAXNUM, MVT::v4f64, 2 },
2727 { ISD::FMAXNUM, MVT::v8f64, 2 },
2728 { ISD::ISNAN, MVT::v8f64, 1 },
2729 { ISD::ISNAN, MVT::v16f32, 1 },
2731 static const CostTblEntry XOPCostTbl[] = {
2732 { ISD::BITREVERSE, MVT::v4i64, 4 },
2733 { ISD::BITREVERSE, MVT::v8i32, 4 },
2734 { ISD::BITREVERSE, MVT::v16i16, 4 },
2735 { ISD::BITREVERSE, MVT::v32i8, 4 },
2736 { ISD::BITREVERSE, MVT::v2i64, 1 },
2737 { ISD::BITREVERSE, MVT::v4i32, 1 },
2738 { ISD::BITREVERSE, MVT::v8i16, 1 },
2739 { ISD::BITREVERSE, MVT::v16i8, 1 },
2740 { ISD::BITREVERSE, MVT::i64, 3 },
2741 { ISD::BITREVERSE, MVT::i32, 3 },
2742 { ISD::BITREVERSE, MVT::i16, 3 },
2743 { ISD::BITREVERSE, MVT::i8, 3 }
2745 static const CostTblEntry AVX2CostTbl[] = {
2746 { ISD::ABS, MVT::v4i64, 2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2747 { ISD::ABS, MVT::v8i32, 1 },
2748 { ISD::ABS, MVT::v16i16, 1 },
2749 { ISD::ABS, MVT::v32i8, 1 },
2750 { ISD::BITREVERSE, MVT::v4i64, 5 },
2751 { ISD::BITREVERSE, MVT::v8i32, 5 },
2752 { ISD::BITREVERSE, MVT::v16i16, 5 },
2753 { ISD::BITREVERSE, MVT::v32i8, 5 },
2754 { ISD::BSWAP, MVT::v4i64, 1 },
2755 { ISD::BSWAP, MVT::v8i32, 1 },
2756 { ISD::BSWAP, MVT::v16i16, 1 },
2757 { ISD::CTLZ, MVT::v4i64, 23 },
2758 { ISD::CTLZ, MVT::v8i32, 18 },
2759 { ISD::CTLZ, MVT::v16i16, 14 },
2760 { ISD::CTLZ, MVT::v32i8, 9 },
2761 { ISD::CTPOP, MVT::v4i64, 7 },
2762 { ISD::CTPOP, MVT::v8i32, 11 },
2763 { ISD::CTPOP, MVT::v16i16, 9 },
2764 { ISD::CTPOP, MVT::v32i8, 6 },
2765 { ISD::CTTZ, MVT::v4i64, 10 },
2766 { ISD::CTTZ, MVT::v8i32, 14 },
2767 { ISD::CTTZ, MVT::v16i16, 12 },
2768 { ISD::CTTZ, MVT::v32i8, 9 },
2769 { ISD::SADDSAT, MVT::v16i16, 1 },
2770 { ISD::SADDSAT, MVT::v32i8, 1 },
2771 { ISD::SMAX, MVT::v8i32, 1 },
2772 { ISD::SMAX, MVT::v16i16, 1 },
2773 { ISD::SMAX, MVT::v32i8, 1 },
2774 { ISD::SMIN, MVT::v8i32, 1 },
2775 { ISD::SMIN, MVT::v16i16, 1 },
2776 { ISD::SMIN, MVT::v32i8, 1 },
2777 { ISD::SSUBSAT, MVT::v16i16, 1 },
2778 { ISD::SSUBSAT, MVT::v32i8, 1 },
2779 { ISD::UADDSAT, MVT::v16i16, 1 },
2780 { ISD::UADDSAT, MVT::v32i8, 1 },
2781 { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd
2782 { ISD::UMAX, MVT::v8i32, 1 },
2783 { ISD::UMAX, MVT::v16i16, 1 },
2784 { ISD::UMAX, MVT::v32i8, 1 },
2785 { ISD::UMIN, MVT::v8i32, 1 },
2786 { ISD::UMIN, MVT::v16i16, 1 },
2787 { ISD::UMIN, MVT::v32i8, 1 },
2788 { ISD::USUBSAT, MVT::v16i16, 1 },
2789 { ISD::USUBSAT, MVT::v32i8, 1 },
2790 { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd
2791 { ISD::FMAXNUM, MVT::v8f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2792 { ISD::FMAXNUM, MVT::v4f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2793 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
2794 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
2795 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
2796 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
2797 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
2798 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
2800 static const CostTblEntry AVX1CostTbl[] = {
2801 { ISD::ABS, MVT::v4i64, 5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2802 { ISD::ABS, MVT::v8i32, 3 },
2803 { ISD::ABS, MVT::v16i16, 3 },
2804 { ISD::ABS, MVT::v32i8, 3 },
2805 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
2806 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
2807 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2808 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
2809 { ISD::BSWAP, MVT::v4i64, 4 },
2810 { ISD::BSWAP, MVT::v8i32, 4 },
2811 { ISD::BSWAP, MVT::v16i16, 4 },
2812 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
2813 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
2814 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2815 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
2816 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
2817 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
2818 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2819 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
2820 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
2821 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
2822 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2823 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
2824 { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2825 { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2826 { ISD::SMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert
2827 { ISD::SMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2828 { ISD::SMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2829 { ISD::SMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert
2830 { ISD::SMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2831 { ISD::SMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2832 { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2833 { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2834 { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2835 { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2836 { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert
2837 { ISD::UMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert
2838 { ISD::UMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2839 { ISD::UMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2840 { ISD::UMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert
2841 { ISD::UMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2842 { ISD::UMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2843 { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2844 { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2845 { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert
2846 { ISD::FMAXNUM, MVT::f32, 3 }, // MAXSS + CMPUNORDSS + BLENDVPS
2847 { ISD::FMAXNUM, MVT::v4f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2848 { ISD::FMAXNUM, MVT::v8f32, 5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
2849 { ISD::FMAXNUM, MVT::f64, 3 }, // MAXSD + CMPUNORDSD + BLENDVPD
2850 { ISD::FMAXNUM, MVT::v2f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2851 { ISD::FMAXNUM, MVT::v4f64, 5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
2852 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
2853 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
2854 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
2855 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
2856 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
2857 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
2858 { ISD::ISNAN, MVT::v4f64, 1 },
2859 { ISD::ISNAN, MVT::v8f32, 1 },
2861 static const CostTblEntry GLMCostTbl[] = {
2862 { ISD::FSQRT, MVT::f32, 19 }, // sqrtss
2863 { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2864 { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd
2865 { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2867 static const CostTblEntry SLMCostTbl[] = {
2868 { ISD::FSQRT, MVT::f32, 20 }, // sqrtss
2869 { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2870 { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd
2871 { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2873 static const CostTblEntry SSE42CostTbl[] = {
2874 { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd
2875 { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd
2876 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
2877 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
2879 static const CostTblEntry SSE41CostTbl[] = {
2880 { ISD::ABS, MVT::v2i64, 2 }, // BLENDVPD(X,PSUBQ(0,X),X)
2881 { ISD::SMAX, MVT::v4i32, 1 },
2882 { ISD::SMAX, MVT::v16i8, 1 },
2883 { ISD::SMIN, MVT::v4i32, 1 },
2884 { ISD::SMIN, MVT::v16i8, 1 },
2885 { ISD::UMAX, MVT::v4i32, 1 },
2886 { ISD::UMAX, MVT::v8i16, 1 },
2887 { ISD::UMIN, MVT::v4i32, 1 },
2888 { ISD::UMIN, MVT::v8i16, 1 },
2890 static const CostTblEntry SSSE3CostTbl[] = {
2891 { ISD::ABS, MVT::v4i32, 1 },
2892 { ISD::ABS, MVT::v8i16, 1 },
2893 { ISD::ABS, MVT::v16i8, 1 },
2894 { ISD::BITREVERSE, MVT::v2i64, 5 },
2895 { ISD::BITREVERSE, MVT::v4i32, 5 },
2896 { ISD::BITREVERSE, MVT::v8i16, 5 },
2897 { ISD::BITREVERSE, MVT::v16i8, 5 },
2898 { ISD::BSWAP, MVT::v2i64, 1 },
2899 { ISD::BSWAP, MVT::v4i32, 1 },
2900 { ISD::BSWAP, MVT::v8i16, 1 },
2901 { ISD::CTLZ, MVT::v2i64, 23 },
2902 { ISD::CTLZ, MVT::v4i32, 18 },
2903 { ISD::CTLZ, MVT::v8i16, 14 },
2904 { ISD::CTLZ, MVT::v16i8, 9 },
2905 { ISD::CTPOP, MVT::v2i64, 7 },
2906 { ISD::CTPOP, MVT::v4i32, 11 },
2907 { ISD::CTPOP, MVT::v8i16, 9 },
2908 { ISD::CTPOP, MVT::v16i8, 6 },
2909 { ISD::CTTZ, MVT::v2i64, 10 },
2910 { ISD::CTTZ, MVT::v4i32, 14 },
2911 { ISD::CTTZ, MVT::v8i16, 12 },
2912 { ISD::CTTZ, MVT::v16i8, 9 }
2914 static const CostTblEntry SSE2CostTbl[] = {
2915 { ISD::ABS, MVT::v2i64, 4 },
2916 { ISD::ABS, MVT::v4i32, 3 },
2917 { ISD::ABS, MVT::v8i16, 2 },
2918 { ISD::ABS, MVT::v16i8, 2 },
2919 { ISD::BITREVERSE, MVT::v2i64, 29 },
2920 { ISD::BITREVERSE, MVT::v4i32, 27 },
2921 { ISD::BITREVERSE, MVT::v8i16, 27 },
2922 { ISD::BITREVERSE, MVT::v16i8, 20 },
2923 { ISD::BSWAP, MVT::v2i64, 7 },
2924 { ISD::BSWAP, MVT::v4i32, 7 },
2925 { ISD::BSWAP, MVT::v8i16, 7 },
2926 { ISD::CTLZ, MVT::v2i64, 25 },
2927 { ISD::CTLZ, MVT::v4i32, 26 },
2928 { ISD::CTLZ, MVT::v8i16, 20 },
2929 { ISD::CTLZ, MVT::v16i8, 17 },
2930 { ISD::CTPOP, MVT::v2i64, 12 },
2931 { ISD::CTPOP, MVT::v4i32, 15 },
2932 { ISD::CTPOP, MVT::v8i16, 13 },
2933 { ISD::CTPOP, MVT::v16i8, 10 },
2934 { ISD::CTTZ, MVT::v2i64, 14 },
2935 { ISD::CTTZ, MVT::v4i32, 18 },
2936 { ISD::CTTZ, MVT::v8i16, 16 },
2937 { ISD::CTTZ, MVT::v16i8, 13 },
2938 { ISD::SADDSAT, MVT::v8i16, 1 },
2939 { ISD::SADDSAT, MVT::v16i8, 1 },
2940 { ISD::SMAX, MVT::v8i16, 1 },
2941 { ISD::SMIN, MVT::v8i16, 1 },
2942 { ISD::SSUBSAT, MVT::v8i16, 1 },
2943 { ISD::SSUBSAT, MVT::v16i8, 1 },
2944 { ISD::UADDSAT, MVT::v8i16, 1 },
2945 { ISD::UADDSAT, MVT::v16i8, 1 },
2946 { ISD::UMAX, MVT::v8i16, 2 },
2947 { ISD::UMAX, MVT::v16i8, 1 },
2948 { ISD::UMIN, MVT::v8i16, 2 },
2949 { ISD::UMIN, MVT::v16i8, 1 },
2950 { ISD::USUBSAT, MVT::v8i16, 1 },
2951 { ISD::USUBSAT, MVT::v16i8, 1 },
2952 { ISD::FMAXNUM, MVT::f64, 4 },
2953 { ISD::FMAXNUM, MVT::v2f64, 4 },
2954 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
2955 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
2956 { ISD::ISNAN, MVT::f64, 1 },
2957 { ISD::ISNAN, MVT::v2f64, 1 },
2959 static const CostTblEntry SSE1CostTbl[] = {
2960 { ISD::FMAXNUM, MVT::f32, 4 },
2961 { ISD::FMAXNUM, MVT::v4f32, 4 },
2962 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
2963 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
2964 { ISD::ISNAN, MVT::f32, 1 },
2965 { ISD::ISNAN, MVT::v4f32, 1 },
2967 static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2968 { ISD::CTTZ, MVT::i64, 1 },
2970 static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2971 { ISD::CTTZ, MVT::i32, 1 },
2972 { ISD::CTTZ, MVT::i16, 1 },
2973 { ISD::CTTZ, MVT::i8, 1 },
2975 static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2976 { ISD::CTLZ, MVT::i64, 1 },
2978 static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2979 { ISD::CTLZ, MVT::i32, 1 },
2980 { ISD::CTLZ, MVT::i16, 1 },
2981 { ISD::CTLZ, MVT::i8, 1 },
2983 static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2984 { ISD::CTPOP, MVT::i64, 1 },
2986 static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2987 { ISD::CTPOP, MVT::i32, 1 },
2988 { ISD::CTPOP, MVT::i16, 1 },
2989 { ISD::CTPOP, MVT::i8, 1 },
2991 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2992 { ISD::ABS, MVT::i64, 2 }, // SUB+CMOV
2993 { ISD::BITREVERSE, MVT::i64, 14 },
2994 { ISD::BSWAP, MVT::i64, 1 },
2995 { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV
2996 { ISD::CTTZ, MVT::i64, 3 }, // TEST+BSF+CMOV/BRANCH
2997 { ISD::CTPOP, MVT::i64, 10 },
2998 { ISD::SADDO, MVT::i64, 1 },
2999 { ISD::UADDO, MVT::i64, 1 },
3000 { ISD::UMULO, MVT::i64, 2 }, // mulq + seto
3002 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3003 { ISD::ABS, MVT::i32, 2 }, // SUB+CMOV
3004 { ISD::ABS, MVT::i16, 2 }, // SUB+CMOV
3005 { ISD::BITREVERSE, MVT::i32, 14 },
3006 { ISD::BITREVERSE, MVT::i16, 14 },
3007 { ISD::BITREVERSE, MVT::i8, 11 },
3008 { ISD::BSWAP, MVT::i32, 1 },
3009 { ISD::BSWAP, MVT::i16, 1 }, // ROL
3010 { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV
3011 { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV
3012 { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV
3013 { ISD::CTTZ, MVT::i32, 3 }, // TEST+BSF+CMOV/BRANCH
3014 { ISD::CTTZ, MVT::i16, 3 }, // TEST+BSF+CMOV/BRANCH
3015 { ISD::CTTZ, MVT::i8, 3 }, // TEST+BSF+CMOV/BRANCH
3016 { ISD::CTPOP, MVT::i32, 8 },
3017 { ISD::CTPOP, MVT::i16, 9 },
3018 { ISD::CTPOP, MVT::i8, 7 },
3019 { ISD::SADDO, MVT::i32, 1 },
3020 { ISD::SADDO, MVT::i16, 1 },
3021 { ISD::SADDO, MVT::i8, 1 },
3022 { ISD::UADDO, MVT::i32, 1 },
3023 { ISD::UADDO, MVT::i16, 1 },
3024 { ISD::UADDO, MVT::i8, 1 },
3025 { ISD::UMULO, MVT::i32, 2 }, // mul + seto
3026 { ISD::UMULO, MVT::i16, 2 },
3027 { ISD::UMULO, MVT::i8, 2 },
3030 Type *RetTy = ICA.getReturnType();
3031 Type *OpTy = RetTy;
3032 Intrinsic::ID IID = ICA.getID();
3033 unsigned ISD = ISD::DELETED_NODE;
3034 switch (IID) {
3035 default:
3036 break;
3037 case Intrinsic::abs:
3038 ISD = ISD::ABS;
3039 break;
3040 case Intrinsic::bitreverse:
3041 ISD = ISD::BITREVERSE;
3042 break;
3043 case Intrinsic::bswap:
3044 ISD = ISD::BSWAP;
3045 break;
3046 case Intrinsic::ctlz:
3047 ISD = ISD::CTLZ;
3048 break;
3049 case Intrinsic::ctpop:
3050 ISD = ISD::CTPOP;
3051 break;
3052 case Intrinsic::cttz:
3053 ISD = ISD::CTTZ;
3054 break;
3055 case Intrinsic::isnan:
3056 ISD = ISD::ISNAN;
3057 OpTy = ICA.getArgTypes()[0];
3058 break;
3059 case Intrinsic::maxnum:
3060 case Intrinsic::minnum:
3061 // FMINNUM has same costs so don't duplicate.
3062 ISD = ISD::FMAXNUM;
3063 break;
3064 case Intrinsic::sadd_sat:
3065 ISD = ISD::SADDSAT;
3066 break;
3067 case Intrinsic::smax:
3068 ISD = ISD::SMAX;
3069 break;
3070 case Intrinsic::smin:
3071 ISD = ISD::SMIN;
3072 break;
3073 case Intrinsic::ssub_sat:
3074 ISD = ISD::SSUBSAT;
3075 break;
3076 case Intrinsic::uadd_sat:
3077 ISD = ISD::UADDSAT;
3078 break;
3079 case Intrinsic::umax:
3080 ISD = ISD::UMAX;
3081 break;
3082 case Intrinsic::umin:
3083 ISD = ISD::UMIN;
3084 break;
3085 case Intrinsic::usub_sat:
3086 ISD = ISD::USUBSAT;
3087 break;
3088 case Intrinsic::sqrt:
3089 ISD = ISD::FSQRT;
3090 break;
3091 case Intrinsic::sadd_with_overflow:
3092 case Intrinsic::ssub_with_overflow:
3093 // SSUBO has same costs so don't duplicate.
3094 ISD = ISD::SADDO;
3095 OpTy = RetTy->getContainedType(0);
3096 break;
3097 case Intrinsic::uadd_with_overflow:
3098 case Intrinsic::usub_with_overflow:
3099 // USUBO has same costs so don't duplicate.
3100 ISD = ISD::UADDO;
3101 OpTy = RetTy->getContainedType(0);
3102 break;
3103 case Intrinsic::umul_with_overflow:
3104 case Intrinsic::smul_with_overflow:
3105 // SMULO has same costs so don't duplicate.
3106 ISD = ISD::UMULO;
3107 OpTy = RetTy->getContainedType(0);
3108 break;
3111 if (ISD != ISD::DELETED_NODE) {
3112 // Legalize the type.
3113 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
3114 MVT MTy = LT.second;
3116 // Attempt to lookup cost.
3117 if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
3118 MTy.isVector()) {
3119 // With PSHUFB the code is very similar for all types. If we have integer
3120 // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
3121 // we also need a PSHUFB.
3122 unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
3124 // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
3125 // instructions. We also need an extract and an insert.
3126 if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
3127 (ST->hasBWI() && MTy.is512BitVector())))
3128 Cost = Cost * 2 + 2;
3130 return LT.first * Cost;
3133 auto adjustTableCost = [](const CostTblEntry &Entry,
3134 InstructionCost LegalizationCost,
3135 FastMathFlags FMF) {
3136 // If there are no NANs to deal with, then these are reduced to a
3137 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
3138 // assume is used in the non-fast case.
3139 if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
3140 if (FMF.noNaNs())
3141 return LegalizationCost * 1;
3143 return LegalizationCost * (int)Entry.Cost;
3146 if (ST->useGLMDivSqrtCosts())
3147 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
3148 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3150 if (ST->isSLM())
3151 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3152 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3154 if (ST->hasBITALG())
3155 if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
3156 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3158 if (ST->hasVPOPCNTDQ())
3159 if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
3160 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3162 if (ST->hasCDI())
3163 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
3164 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3166 if (ST->hasBWI())
3167 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3168 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3170 if (ST->hasAVX512())
3171 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3172 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3174 if (ST->hasXOP())
3175 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3176 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3178 if (ST->hasAVX2())
3179 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3180 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3182 if (ST->hasAVX())
3183 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3184 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3186 if (ST->hasSSE42())
3187 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3188 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3190 if (ST->hasSSE41())
3191 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3192 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3194 if (ST->hasSSSE3())
3195 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
3196 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3198 if (ST->hasSSE2())
3199 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3200 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3202 if (ST->hasSSE1())
3203 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3204 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3206 if (ST->hasBMI()) {
3207 if (ST->is64Bit())
3208 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
3209 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3211 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
3212 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3215 if (ST->hasLZCNT()) {
3216 if (ST->is64Bit())
3217 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
3218 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3220 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
3221 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3224 if (ST->hasPOPCNT()) {
3225 if (ST->is64Bit())
3226 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
3227 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3229 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
3230 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3233 if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
3234 if (const Instruction *II = ICA.getInst()) {
3235 if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
3236 return TTI::TCC_Free;
3237 if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
3238 if (LI->hasOneUse())
3239 return TTI::TCC_Free;
3244 // TODO - add BMI (TZCNT) scalar handling
3246 if (ST->is64Bit())
3247 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3248 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3250 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3251 return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3254 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3257 InstructionCost
3258 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3259 TTI::TargetCostKind CostKind) {
3260 if (ICA.isTypeBasedOnly())
3261 return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
3263 static const CostTblEntry AVX512CostTbl[] = {
3264 { ISD::ROTL, MVT::v8i64, 1 },
3265 { ISD::ROTL, MVT::v4i64, 1 },
3266 { ISD::ROTL, MVT::v2i64, 1 },
3267 { ISD::ROTL, MVT::v16i32, 1 },
3268 { ISD::ROTL, MVT::v8i32, 1 },
3269 { ISD::ROTL, MVT::v4i32, 1 },
3270 { ISD::ROTR, MVT::v8i64, 1 },
3271 { ISD::ROTR, MVT::v4i64, 1 },
3272 { ISD::ROTR, MVT::v2i64, 1 },
3273 { ISD::ROTR, MVT::v16i32, 1 },
3274 { ISD::ROTR, MVT::v8i32, 1 },
3275 { ISD::ROTR, MVT::v4i32, 1 }
3277 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3278 static const CostTblEntry XOPCostTbl[] = {
3279 { ISD::ROTL, MVT::v4i64, 4 },
3280 { ISD::ROTL, MVT::v8i32, 4 },
3281 { ISD::ROTL, MVT::v16i16, 4 },
3282 { ISD::ROTL, MVT::v32i8, 4 },
3283 { ISD::ROTL, MVT::v2i64, 1 },
3284 { ISD::ROTL, MVT::v4i32, 1 },
3285 { ISD::ROTL, MVT::v8i16, 1 },
3286 { ISD::ROTL, MVT::v16i8, 1 },
3287 { ISD::ROTR, MVT::v4i64, 6 },
3288 { ISD::ROTR, MVT::v8i32, 6 },
3289 { ISD::ROTR, MVT::v16i16, 6 },
3290 { ISD::ROTR, MVT::v32i8, 6 },
3291 { ISD::ROTR, MVT::v2i64, 2 },
3292 { ISD::ROTR, MVT::v4i32, 2 },
3293 { ISD::ROTR, MVT::v8i16, 2 },
3294 { ISD::ROTR, MVT::v16i8, 2 }
3296 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3297 { ISD::ROTL, MVT::i64, 1 },
3298 { ISD::ROTR, MVT::i64, 1 },
3299 { ISD::FSHL, MVT::i64, 4 }
3301 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3302 { ISD::ROTL, MVT::i32, 1 },
3303 { ISD::ROTL, MVT::i16, 1 },
3304 { ISD::ROTL, MVT::i8, 1 },
3305 { ISD::ROTR, MVT::i32, 1 },
3306 { ISD::ROTR, MVT::i16, 1 },
3307 { ISD::ROTR, MVT::i8, 1 },
3308 { ISD::FSHL, MVT::i32, 4 },
3309 { ISD::FSHL, MVT::i16, 4 },
3310 { ISD::FSHL, MVT::i8, 4 }
3313 Intrinsic::ID IID = ICA.getID();
3314 Type *RetTy = ICA.getReturnType();
3315 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3316 unsigned ISD = ISD::DELETED_NODE;
3317 switch (IID) {
3318 default:
3319 break;
3320 case Intrinsic::fshl:
3321 ISD = ISD::FSHL;
3322 if (Args[0] == Args[1])
3323 ISD = ISD::ROTL;
3324 break;
3325 case Intrinsic::fshr:
3326 // FSHR has same costs so don't duplicate.
3327 ISD = ISD::FSHL;
3328 if (Args[0] == Args[1])
3329 ISD = ISD::ROTR;
3330 break;
3333 if (ISD != ISD::DELETED_NODE) {
3334 // Legalize the type.
3335 std::pair<InstructionCost, MVT> LT =
3336 TLI->getTypeLegalizationCost(DL, RetTy);
3337 MVT MTy = LT.second;
3339 // Attempt to lookup cost.
3340 if (ST->hasAVX512())
3341 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3342 return LT.first * Entry->Cost;
3344 if (ST->hasXOP())
3345 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3346 return LT.first * Entry->Cost;
3348 if (ST->is64Bit())
3349 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3350 return LT.first * Entry->Cost;
3352 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3353 return LT.first * Entry->Cost;
3356 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3359 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3360 unsigned Index) {
3361 static const CostTblEntry SLMCostTbl[] = {
3362 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 },
3363 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 },
3364 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 },
3365 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 }
3368 assert(Val->isVectorTy() && "This must be a vector type");
3369 Type *ScalarType = Val->getScalarType();
3370 int RegisterFileMoveCost = 0;
3372 // Non-immediate extraction/insertion can be handled as a sequence of
3373 // aliased loads+stores via the stack.
3374 if (Index == -1U && (Opcode == Instruction::ExtractElement ||
3375 Opcode == Instruction::InsertElement)) {
3376 // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
3377 // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
3379 // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
3380 assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
3381 Align VecAlign = DL.getPrefTypeAlign(Val);
3382 Align SclAlign = DL.getPrefTypeAlign(ScalarType);
3384 // Extract - store vector to stack, load scalar.
3385 if (Opcode == Instruction::ExtractElement) {
3386 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3387 TTI::TargetCostKind::TCK_RecipThroughput) +
3388 getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
3389 TTI::TargetCostKind::TCK_RecipThroughput);
3391 // Insert - store vector to stack, store scalar, load vector.
3392 if (Opcode == Instruction::InsertElement) {
3393 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3394 TTI::TargetCostKind::TCK_RecipThroughput) +
3395 getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
3396 TTI::TargetCostKind::TCK_RecipThroughput) +
3397 getMemoryOpCost(Instruction::Load, Val, VecAlign, 0,
3398 TTI::TargetCostKind::TCK_RecipThroughput);
3402 if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3403 Opcode == Instruction::InsertElement)) {
3404 // Legalize the type.
3405 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3407 // This type is legalized to a scalar type.
3408 if (!LT.second.isVector())
3409 return 0;
3411 // The type may be split. Normalize the index to the new type.
3412 unsigned NumElts = LT.second.getVectorNumElements();
3413 unsigned SubNumElts = NumElts;
3414 Index = Index % NumElts;
3416 // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3417 // For inserts, we also need to insert the subvector back.
3418 if (LT.second.getSizeInBits() > 128) {
3419 assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3420 unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3421 SubNumElts = NumElts / NumSubVecs;
3422 if (SubNumElts <= Index) {
3423 RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3424 Index %= SubNumElts;
3428 if (Index == 0) {
3429 // Floating point scalars are already located in index #0.
3430 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3431 // true for all.
3432 if (ScalarType->isFloatingPointTy())
3433 return RegisterFileMoveCost;
3435 // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3436 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3437 return 1 + RegisterFileMoveCost;
3440 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3441 assert(ISD && "Unexpected vector opcode");
3442 MVT MScalarTy = LT.second.getScalarType();
3443 if (ST->isSLM())
3444 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3445 return Entry->Cost + RegisterFileMoveCost;
3447 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3448 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3449 (MScalarTy.isInteger() && ST->hasSSE41()))
3450 return 1 + RegisterFileMoveCost;
3452 // Assume insertps is relatively cheap on all targets.
3453 if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3454 Opcode == Instruction::InsertElement)
3455 return 1 + RegisterFileMoveCost;
3457 // For extractions we just need to shuffle the element to index 0, which
3458 // should be very cheap (assume cost = 1). For insertions we need to shuffle
3459 // the elements to its destination. In both cases we must handle the
3460 // subvector move(s).
3461 // If the vector type is already less than 128-bits then don't reduce it.
3462 // TODO: Under what circumstances should we shuffle using the full width?
3463 InstructionCost ShuffleCost = 1;
3464 if (Opcode == Instruction::InsertElement) {
3465 auto *SubTy = cast<VectorType>(Val);
3466 EVT VT = TLI->getValueType(DL, Val);
3467 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3468 SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3469 ShuffleCost =
3470 getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3472 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3473 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3476 // Add to the base cost if we know that the extracted element of a vector is
3477 // destined to be moved to and used in the integer register file.
3478 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3479 RegisterFileMoveCost += 1;
3481 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3484 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3485 const APInt &DemandedElts,
3486 bool Insert,
3487 bool Extract) {
3488 InstructionCost Cost = 0;
3490 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3491 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3492 if (Insert) {
3493 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3494 MVT MScalarTy = LT.second.getScalarType();
3496 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3497 (MScalarTy.isInteger() && ST->hasSSE41()) ||
3498 (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3499 // For types we can insert directly, insertion into 128-bit sub vectors is
3500 // cheap, followed by a cheap chain of concatenations.
3501 if (LT.second.getSizeInBits() <= 128) {
3502 Cost +=
3503 BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3504 } else {
3505 // In each 128-lane, if at least one index is demanded but not all
3506 // indices are demanded and this 128-lane is not the first 128-lane of
3507 // the legalized-vector, then this 128-lane needs a extracti128; If in
3508 // each 128-lane, there is at least one demanded index, this 128-lane
3509 // needs a inserti128.
3511 // The following cases will help you build a better understanding:
3512 // Assume we insert several elements into a v8i32 vector in avx2,
3513 // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3514 // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3515 // inserti128.
3516 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3517 const int CostValue = *LT.first.getValue();
3518 assert(CostValue >= 0 && "Negative cost!");
3519 unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue;
3520 unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3521 APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3522 unsigned Scale = NumElts / Num128Lanes;
3523 // We iterate each 128-lane, and check if we need a
3524 // extracti128/inserti128 for this 128-lane.
3525 for (unsigned I = 0; I < NumElts; I += Scale) {
3526 APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3527 APInt MaskedDE = Mask & WidenedDemandedElts;
3528 unsigned Population = MaskedDE.countPopulation();
3529 Cost += (Population > 0 && Population != Scale &&
3530 I % LT.second.getVectorNumElements() != 0);
3531 Cost += Population > 0;
3533 Cost += DemandedElts.countPopulation();
3535 // For vXf32 cases, insertion into the 0'th index in each v4f32
3536 // 128-bit vector is free.
3537 // NOTE: This assumes legalization widens vXf32 vectors.
3538 if (MScalarTy == MVT::f32)
3539 for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3540 i < e; i += 4)
3541 if (DemandedElts[i])
3542 Cost--;
3544 } else if (LT.second.isVector()) {
3545 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3546 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3547 // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3548 // considered cheap.
3549 if (Ty->isIntOrIntVectorTy())
3550 Cost += DemandedElts.countPopulation();
3552 // Get the smaller of the legalized or original pow2-extended number of
3553 // vector elements, which represents the number of unpacks we'll end up
3554 // performing.
3555 unsigned NumElts = LT.second.getVectorNumElements();
3556 unsigned Pow2Elts =
3557 PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3558 Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3562 // TODO: Use default extraction for now, but we should investigate extending this
3563 // to handle repeated subvector extraction.
3564 if (Extract)
3565 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3567 return Cost;
3570 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3571 MaybeAlign Alignment,
3572 unsigned AddressSpace,
3573 TTI::TargetCostKind CostKind,
3574 const Instruction *I) {
3575 // TODO: Handle other cost kinds.
3576 if (CostKind != TTI::TCK_RecipThroughput) {
3577 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3578 // Store instruction with index and scale costs 2 Uops.
3579 // Check the preceding GEP to identify non-const indices.
3580 if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3581 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3582 return TTI::TCC_Basic * 2;
3585 return TTI::TCC_Basic;
3588 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3589 "Invalid Opcode");
3590 // Type legalization can't handle structs
3591 if (TLI->getValueType(DL, Src, true) == MVT::Other)
3592 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3593 CostKind);
3595 // Legalize the type.
3596 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3598 auto *VTy = dyn_cast<FixedVectorType>(Src);
3600 // Handle the simple case of non-vectors.
3601 // NOTE: this assumes that legalization never creates vector from scalars!
3602 if (!VTy || !LT.second.isVector())
3603 // Each load/store unit costs 1.
3604 return LT.first * 1;
3606 bool IsLoad = Opcode == Instruction::Load;
3608 Type *EltTy = VTy->getElementType();
3610 const int EltTyBits = DL.getTypeSizeInBits(EltTy);
3612 InstructionCost Cost = 0;
3614 // Source of truth: how many elements were there in the original IR vector?
3615 const unsigned SrcNumElt = VTy->getNumElements();
3617 // How far have we gotten?
3618 int NumEltRemaining = SrcNumElt;
3619 // Note that we intentionally capture by-reference, NumEltRemaining changes.
3620 auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
3622 const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
3624 // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
3625 const unsigned XMMBits = 128;
3626 if (XMMBits % EltTyBits != 0)
3627 // Vector size must be a multiple of the element size. I.e. no padding.
3628 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3629 CostKind);
3630 const int NumEltPerXMM = XMMBits / EltTyBits;
3632 auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
3634 for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
3635 NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
3636 // How many elements would a single op deal with at once?
3637 if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
3638 // Vector size must be a multiple of the element size. I.e. no padding.
3639 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3640 CostKind);
3641 int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
3643 assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
3644 assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
3645 (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
3646 "Unless we haven't halved the op size yet, "
3647 "we have less than two op's sized units of work left.");
3649 auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
3650 ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
3651 : XMMVecTy;
3653 assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
3654 "After halving sizes, the vector elt count is no longer a multiple "
3655 "of number of elements per operation?");
3656 auto *CoalescedVecTy =
3657 CurrNumEltPerOp == 1
3658 ? CurrVecTy
3659 : FixedVectorType::get(
3660 IntegerType::get(Src->getContext(),
3661 EltTyBits * CurrNumEltPerOp),
3662 CurrVecTy->getNumElements() / CurrNumEltPerOp);
3663 assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
3664 DL.getTypeSizeInBits(CurrVecTy) &&
3665 "coalesciing elements doesn't change vector width.");
3667 while (NumEltRemaining > 0) {
3668 assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
3670 // Can we use this vector size, as per the remaining element count?
3671 // Iff the vector is naturally aligned, we can do a wide load regardless.
3672 if (NumEltRemaining < CurrNumEltPerOp &&
3673 (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
3674 CurrOpSizeBytes != 1)
3675 break; // Try smalled vector size.
3677 bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
3679 // If we have fully processed the previous reg, we need to replenish it.
3680 if (SubVecEltsLeft == 0) {
3681 SubVecEltsLeft += CurrVecTy->getNumElements();
3682 // And that's free only for the 0'th subvector of a legalized vector.
3683 if (!Is0thSubVec)
3684 Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
3685 : TTI::ShuffleKind::SK_ExtractSubvector,
3686 VTy, None, NumEltDone(), CurrVecTy);
3689 // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
3690 // for smaller widths (32/16/8) we have to insert/extract them separately.
3691 // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
3692 // but let's pretend that it is also true for 16/8 bit wide ops...)
3693 if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
3694 int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
3695 assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
3696 int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
3697 APInt DemandedElts =
3698 APInt::getBitsSet(CoalescedVecTy->getNumElements(),
3699 CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
3700 assert(DemandedElts.countPopulation() == 1 && "Inserting single value");
3701 Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
3702 !IsLoad);
3705 // This isn't exactly right. We're using slow unaligned 32-byte accesses
3706 // as a proxy for a double-pumped AVX memory interface such as on
3707 // Sandybridge.
3708 if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
3709 Cost += 2;
3710 else
3711 Cost += 1;
3713 SubVecEltsLeft -= CurrNumEltPerOp;
3714 NumEltRemaining -= CurrNumEltPerOp;
3715 Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
3719 assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
3721 return Cost;
3724 InstructionCost
3725 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
3726 unsigned AddressSpace,
3727 TTI::TargetCostKind CostKind) {
3728 bool IsLoad = (Instruction::Load == Opcode);
3729 bool IsStore = (Instruction::Store == Opcode);
3731 auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3732 if (!SrcVTy)
3733 // To calculate scalar take the regular cost, without mask
3734 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3736 unsigned NumElem = SrcVTy->getNumElements();
3737 auto *MaskTy =
3738 FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3739 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3740 (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
3741 // Scalarization
3742 APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3743 InstructionCost MaskSplitCost =
3744 getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3745 InstructionCost ScalarCompareCost = getCmpSelInstrCost(
3746 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3747 CmpInst::BAD_ICMP_PREDICATE, CostKind);
3748 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3749 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3750 InstructionCost ValueSplitCost =
3751 getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3752 InstructionCost MemopCost =
3753 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3754 Alignment, AddressSpace, CostKind);
3755 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3758 // Legalize the type.
3759 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3760 auto VT = TLI->getValueType(DL, SrcVTy);
3761 InstructionCost Cost = 0;
3762 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3763 LT.second.getVectorNumElements() == NumElem)
3764 // Promotion requires extend/truncate for data and a shuffle for mask.
3765 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
3766 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
3768 else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
3769 auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3770 LT.second.getVectorNumElements());
3771 // Expanding requires fill mask with zeroes
3772 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
3775 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3776 if (!ST->hasAVX512())
3777 return Cost + LT.first * (IsLoad ? 2 : 8);
3779 // AVX-512 masked load/store is cheapper
3780 return Cost + LT.first;
3783 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
3784 ScalarEvolution *SE,
3785 const SCEV *Ptr) {
3786 // Address computations in vectorized code with non-consecutive addresses will
3787 // likely result in more instructions compared to scalar code where the
3788 // computation can more often be merged into the index mode. The resulting
3789 // extra micro-ops can significantly decrease throughput.
3790 const unsigned NumVectorInstToHideOverhead = 10;
3792 // Cost modeling of Strided Access Computation is hidden by the indexing
3793 // modes of X86 regardless of the stride value. We dont believe that there
3794 // is a difference between constant strided access in gerenal and constant
3795 // strided value which is less than or equal to 64.
3796 // Even in the case of (loop invariant) stride whose value is not known at
3797 // compile time, the address computation will not incur more than one extra
3798 // ADD instruction.
3799 if (Ty->isVectorTy() && SE) {
3800 if (!BaseT::isStridedAccess(Ptr))
3801 return NumVectorInstToHideOverhead;
3802 if (!BaseT::getConstantStrideStep(SE, Ptr))
3803 return 1;
3806 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3809 InstructionCost
3810 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3811 Optional<FastMathFlags> FMF,
3812 TTI::TargetCostKind CostKind) {
3813 if (TTI::requiresOrderedReduction(FMF))
3814 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
3816 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3817 // and make it as the cost.
3819 static const CostTblEntry SLMCostTblNoPairWise[] = {
3820 { ISD::FADD, MVT::v2f64, 3 },
3821 { ISD::ADD, MVT::v2i64, 5 },
3824 static const CostTblEntry SSE2CostTblNoPairWise[] = {
3825 { ISD::FADD, MVT::v2f64, 2 },
3826 { ISD::FADD, MVT::v2f32, 2 },
3827 { ISD::FADD, MVT::v4f32, 4 },
3828 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
3829 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
3830 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
3831 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
3832 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
3833 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
3834 { ISD::ADD, MVT::v2i8, 2 },
3835 { ISD::ADD, MVT::v4i8, 2 },
3836 { ISD::ADD, MVT::v8i8, 2 },
3837 { ISD::ADD, MVT::v16i8, 3 },
3840 static const CostTblEntry AVX1CostTblNoPairWise[] = {
3841 { ISD::FADD, MVT::v4f64, 3 },
3842 { ISD::FADD, MVT::v4f32, 3 },
3843 { ISD::FADD, MVT::v8f32, 4 },
3844 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
3845 { ISD::ADD, MVT::v4i64, 3 },
3846 { ISD::ADD, MVT::v8i32, 5 },
3847 { ISD::ADD, MVT::v16i16, 5 },
3848 { ISD::ADD, MVT::v32i8, 4 },
3851 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3852 assert(ISD && "Invalid opcode");
3854 // Before legalizing the type, give a chance to look up illegal narrow types
3855 // in the table.
3856 // FIXME: Is there a better way to do this?
3857 EVT VT = TLI->getValueType(DL, ValTy);
3858 if (VT.isSimple()) {
3859 MVT MTy = VT.getSimpleVT();
3860 if (ST->isSLM())
3861 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3862 return Entry->Cost;
3864 if (ST->hasAVX())
3865 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3866 return Entry->Cost;
3868 if (ST->hasSSE2())
3869 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3870 return Entry->Cost;
3873 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3875 MVT MTy = LT.second;
3877 auto *ValVTy = cast<FixedVectorType>(ValTy);
3879 // Special case: vXi8 mul reductions are performed as vXi16.
3880 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
3881 auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
3882 auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
3883 return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
3884 TargetTransformInfo::CastContextHint::None,
3885 CostKind) +
3886 getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
3889 InstructionCost ArithmeticCost = 0;
3890 if (LT.first != 1 && MTy.isVector() &&
3891 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3892 // Type needs to be split. We need LT.first - 1 arithmetic ops.
3893 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3894 MTy.getVectorNumElements());
3895 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3896 ArithmeticCost *= LT.first - 1;
3899 if (ST->isSLM())
3900 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3901 return ArithmeticCost + Entry->Cost;
3903 if (ST->hasAVX())
3904 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3905 return ArithmeticCost + Entry->Cost;
3907 if (ST->hasSSE2())
3908 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3909 return ArithmeticCost + Entry->Cost;
3911 // FIXME: These assume a naive kshift+binop lowering, which is probably
3912 // conservative in most cases.
3913 static const CostTblEntry AVX512BoolReduction[] = {
3914 { ISD::AND, MVT::v2i1, 3 },
3915 { ISD::AND, MVT::v4i1, 5 },
3916 { ISD::AND, MVT::v8i1, 7 },
3917 { ISD::AND, MVT::v16i1, 9 },
3918 { ISD::AND, MVT::v32i1, 11 },
3919 { ISD::AND, MVT::v64i1, 13 },
3920 { ISD::OR, MVT::v2i1, 3 },
3921 { ISD::OR, MVT::v4i1, 5 },
3922 { ISD::OR, MVT::v8i1, 7 },
3923 { ISD::OR, MVT::v16i1, 9 },
3924 { ISD::OR, MVT::v32i1, 11 },
3925 { ISD::OR, MVT::v64i1, 13 },
3928 static const CostTblEntry AVX2BoolReduction[] = {
3929 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
3930 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
3931 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
3932 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
3935 static const CostTblEntry AVX1BoolReduction[] = {
3936 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
3937 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
3938 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
3939 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
3940 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
3941 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
3942 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
3943 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
3946 static const CostTblEntry SSE2BoolReduction[] = {
3947 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
3948 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
3949 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
3950 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
3951 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
3952 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
3953 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
3954 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
3957 // Handle bool allof/anyof patterns.
3958 if (ValVTy->getElementType()->isIntegerTy(1)) {
3959 InstructionCost ArithmeticCost = 0;
3960 if (LT.first != 1 && MTy.isVector() &&
3961 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3962 // Type needs to be split. We need LT.first - 1 arithmetic ops.
3963 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3964 MTy.getVectorNumElements());
3965 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3966 ArithmeticCost *= LT.first - 1;
3969 if (ST->hasAVX512())
3970 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3971 return ArithmeticCost + Entry->Cost;
3972 if (ST->hasAVX2())
3973 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3974 return ArithmeticCost + Entry->Cost;
3975 if (ST->hasAVX())
3976 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3977 return ArithmeticCost + Entry->Cost;
3978 if (ST->hasSSE2())
3979 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3980 return ArithmeticCost + Entry->Cost;
3982 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
3985 unsigned NumVecElts = ValVTy->getNumElements();
3986 unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3988 // Special case power of 2 reductions where the scalar type isn't changed
3989 // by type legalization.
3990 if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3991 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
3993 InstructionCost ReductionCost = 0;
3995 auto *Ty = ValVTy;
3996 if (LT.first != 1 && MTy.isVector() &&
3997 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3998 // Type needs to be split. We need LT.first - 1 arithmetic ops.
3999 Ty = FixedVectorType::get(ValVTy->getElementType(),
4000 MTy.getVectorNumElements());
4001 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
4002 ReductionCost *= LT.first - 1;
4003 NumVecElts = MTy.getVectorNumElements();
4006 // Now handle reduction with the legal type, taking into account size changes
4007 // at each level.
4008 while (NumVecElts > 1) {
4009 // Determine the size of the remaining vector we need to reduce.
4010 unsigned Size = NumVecElts * ScalarSize;
4011 NumVecElts /= 2;
4012 // If we're reducing from 256/512 bits, use an extract_subvector.
4013 if (Size > 128) {
4014 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4015 ReductionCost +=
4016 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4017 Ty = SubTy;
4018 } else if (Size == 128) {
4019 // Reducing from 128 bits is a permute of v2f64/v2i64.
4020 FixedVectorType *ShufTy;
4021 if (ValVTy->isFloatingPointTy())
4022 ShufTy =
4023 FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
4024 else
4025 ShufTy =
4026 FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
4027 ReductionCost +=
4028 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4029 } else if (Size == 64) {
4030 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4031 FixedVectorType *ShufTy;
4032 if (ValVTy->isFloatingPointTy())
4033 ShufTy =
4034 FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
4035 else
4036 ShufTy =
4037 FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
4038 ReductionCost +=
4039 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4040 } else {
4041 // Reducing from smaller size is a shift by immediate.
4042 auto *ShiftTy = FixedVectorType::get(
4043 Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
4044 ReductionCost += getArithmeticInstrCost(
4045 Instruction::LShr, ShiftTy, CostKind,
4046 TargetTransformInfo::OK_AnyValue,
4047 TargetTransformInfo::OK_UniformConstantValue,
4048 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4051 // Add the arithmetic op for this level.
4052 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
4055 // Add the final extract element to the cost.
4056 return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4059 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
4060 bool IsUnsigned) {
4061 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
4063 MVT MTy = LT.second;
4065 int ISD;
4066 if (Ty->isIntOrIntVectorTy()) {
4067 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4068 } else {
4069 assert(Ty->isFPOrFPVectorTy() &&
4070 "Expected float point or integer vector type.");
4071 ISD = ISD::FMINNUM;
4074 static const CostTblEntry SSE1CostTbl[] = {
4075 {ISD::FMINNUM, MVT::v4f32, 1},
4078 static const CostTblEntry SSE2CostTbl[] = {
4079 {ISD::FMINNUM, MVT::v2f64, 1},
4080 {ISD::SMIN, MVT::v8i16, 1},
4081 {ISD::UMIN, MVT::v16i8, 1},
4084 static const CostTblEntry SSE41CostTbl[] = {
4085 {ISD::SMIN, MVT::v4i32, 1},
4086 {ISD::UMIN, MVT::v4i32, 1},
4087 {ISD::UMIN, MVT::v8i16, 1},
4088 {ISD::SMIN, MVT::v16i8, 1},
4091 static const CostTblEntry SSE42CostTbl[] = {
4092 {ISD::UMIN, MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
4095 static const CostTblEntry AVX1CostTbl[] = {
4096 {ISD::FMINNUM, MVT::v8f32, 1},
4097 {ISD::FMINNUM, MVT::v4f64, 1},
4098 {ISD::SMIN, MVT::v8i32, 3},
4099 {ISD::UMIN, MVT::v8i32, 3},
4100 {ISD::SMIN, MVT::v16i16, 3},
4101 {ISD::UMIN, MVT::v16i16, 3},
4102 {ISD::SMIN, MVT::v32i8, 3},
4103 {ISD::UMIN, MVT::v32i8, 3},
4106 static const CostTblEntry AVX2CostTbl[] = {
4107 {ISD::SMIN, MVT::v8i32, 1},
4108 {ISD::UMIN, MVT::v8i32, 1},
4109 {ISD::SMIN, MVT::v16i16, 1},
4110 {ISD::UMIN, MVT::v16i16, 1},
4111 {ISD::SMIN, MVT::v32i8, 1},
4112 {ISD::UMIN, MVT::v32i8, 1},
4115 static const CostTblEntry AVX512CostTbl[] = {
4116 {ISD::FMINNUM, MVT::v16f32, 1},
4117 {ISD::FMINNUM, MVT::v8f64, 1},
4118 {ISD::SMIN, MVT::v2i64, 1},
4119 {ISD::UMIN, MVT::v2i64, 1},
4120 {ISD::SMIN, MVT::v4i64, 1},
4121 {ISD::UMIN, MVT::v4i64, 1},
4122 {ISD::SMIN, MVT::v8i64, 1},
4123 {ISD::UMIN, MVT::v8i64, 1},
4124 {ISD::SMIN, MVT::v16i32, 1},
4125 {ISD::UMIN, MVT::v16i32, 1},
4128 static const CostTblEntry AVX512BWCostTbl[] = {
4129 {ISD::SMIN, MVT::v32i16, 1},
4130 {ISD::UMIN, MVT::v32i16, 1},
4131 {ISD::SMIN, MVT::v64i8, 1},
4132 {ISD::UMIN, MVT::v64i8, 1},
4135 // If we have a native MIN/MAX instruction for this type, use it.
4136 if (ST->hasBWI())
4137 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4138 return LT.first * Entry->Cost;
4140 if (ST->hasAVX512())
4141 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4142 return LT.first * Entry->Cost;
4144 if (ST->hasAVX2())
4145 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4146 return LT.first * Entry->Cost;
4148 if (ST->hasAVX())
4149 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4150 return LT.first * Entry->Cost;
4152 if (ST->hasSSE42())
4153 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4154 return LT.first * Entry->Cost;
4156 if (ST->hasSSE41())
4157 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4158 return LT.first * Entry->Cost;
4160 if (ST->hasSSE2())
4161 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4162 return LT.first * Entry->Cost;
4164 if (ST->hasSSE1())
4165 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4166 return LT.first * Entry->Cost;
4168 unsigned CmpOpcode;
4169 if (Ty->isFPOrFPVectorTy()) {
4170 CmpOpcode = Instruction::FCmp;
4171 } else {
4172 assert(Ty->isIntOrIntVectorTy() &&
4173 "expecting floating point or integer type for min/max reduction");
4174 CmpOpcode = Instruction::ICmp;
4177 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4178 // Otherwise fall back to cmp+select.
4179 InstructionCost Result =
4180 getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
4181 CostKind) +
4182 getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
4183 CmpInst::BAD_ICMP_PREDICATE, CostKind);
4184 return Result;
4187 InstructionCost
4188 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
4189 bool IsUnsigned,
4190 TTI::TargetCostKind CostKind) {
4191 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4193 MVT MTy = LT.second;
4195 int ISD;
4196 if (ValTy->isIntOrIntVectorTy()) {
4197 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4198 } else {
4199 assert(ValTy->isFPOrFPVectorTy() &&
4200 "Expected float point or integer vector type.");
4201 ISD = ISD::FMINNUM;
4204 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4205 // and make it as the cost.
4207 static const CostTblEntry SSE2CostTblNoPairWise[] = {
4208 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
4209 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
4210 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
4213 static const CostTblEntry SSE41CostTblNoPairWise[] = {
4214 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
4215 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
4216 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
4217 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
4218 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
4219 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
4220 {ISD::SMIN, MVT::v2i8, 3}, // pminsb
4221 {ISD::SMIN, MVT::v4i8, 5}, // pminsb
4222 {ISD::SMIN, MVT::v8i8, 7}, // pminsb
4223 {ISD::SMIN, MVT::v16i8, 6},
4224 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2
4225 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2
4226 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2
4227 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
4230 static const CostTblEntry AVX1CostTblNoPairWise[] = {
4231 {ISD::SMIN, MVT::v16i16, 6},
4232 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
4233 {ISD::SMIN, MVT::v32i8, 8},
4234 {ISD::UMIN, MVT::v32i8, 8},
4237 static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
4238 {ISD::SMIN, MVT::v32i16, 8},
4239 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
4240 {ISD::SMIN, MVT::v64i8, 10},
4241 {ISD::UMIN, MVT::v64i8, 10},
4244 // Before legalizing the type, give a chance to look up illegal narrow types
4245 // in the table.
4246 // FIXME: Is there a better way to do this?
4247 EVT VT = TLI->getValueType(DL, ValTy);
4248 if (VT.isSimple()) {
4249 MVT MTy = VT.getSimpleVT();
4250 if (ST->hasBWI())
4251 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4252 return Entry->Cost;
4254 if (ST->hasAVX())
4255 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4256 return Entry->Cost;
4258 if (ST->hasSSE41())
4259 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4260 return Entry->Cost;
4262 if (ST->hasSSE2())
4263 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4264 return Entry->Cost;
4267 auto *ValVTy = cast<FixedVectorType>(ValTy);
4268 unsigned NumVecElts = ValVTy->getNumElements();
4270 auto *Ty = ValVTy;
4271 InstructionCost MinMaxCost = 0;
4272 if (LT.first != 1 && MTy.isVector() &&
4273 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4274 // Type needs to be split. We need LT.first - 1 operations ops.
4275 Ty = FixedVectorType::get(ValVTy->getElementType(),
4276 MTy.getVectorNumElements());
4277 auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
4278 MTy.getVectorNumElements());
4279 MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4280 MinMaxCost *= LT.first - 1;
4281 NumVecElts = MTy.getVectorNumElements();
4284 if (ST->hasBWI())
4285 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4286 return MinMaxCost + Entry->Cost;
4288 if (ST->hasAVX())
4289 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4290 return MinMaxCost + Entry->Cost;
4292 if (ST->hasSSE41())
4293 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4294 return MinMaxCost + Entry->Cost;
4296 if (ST->hasSSE2())
4297 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4298 return MinMaxCost + Entry->Cost;
4300 unsigned ScalarSize = ValTy->getScalarSizeInBits();
4302 // Special case power of 2 reductions where the scalar type isn't changed
4303 // by type legalization.
4304 if (!isPowerOf2_32(ValVTy->getNumElements()) ||
4305 ScalarSize != MTy.getScalarSizeInBits())
4306 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind);
4308 // Now handle reduction with the legal type, taking into account size changes
4309 // at each level.
4310 while (NumVecElts > 1) {
4311 // Determine the size of the remaining vector we need to reduce.
4312 unsigned Size = NumVecElts * ScalarSize;
4313 NumVecElts /= 2;
4314 // If we're reducing from 256/512 bits, use an extract_subvector.
4315 if (Size > 128) {
4316 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4317 MinMaxCost +=
4318 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4319 Ty = SubTy;
4320 } else if (Size == 128) {
4321 // Reducing from 128 bits is a permute of v2f64/v2i64.
4322 VectorType *ShufTy;
4323 if (ValTy->isFloatingPointTy())
4324 ShufTy =
4325 FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
4326 else
4327 ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
4328 MinMaxCost +=
4329 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4330 } else if (Size == 64) {
4331 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4332 FixedVectorType *ShufTy;
4333 if (ValTy->isFloatingPointTy())
4334 ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
4335 else
4336 ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
4337 MinMaxCost +=
4338 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4339 } else {
4340 // Reducing from smaller size is a shift by immediate.
4341 auto *ShiftTy = FixedVectorType::get(
4342 Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
4343 MinMaxCost += getArithmeticInstrCost(
4344 Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
4345 TargetTransformInfo::OK_AnyValue,
4346 TargetTransformInfo::OK_UniformConstantValue,
4347 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4350 // Add the arithmetic op for this level.
4351 auto *SubCondTy =
4352 FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
4353 MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4356 // Add the final extract element to the cost.
4357 return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4360 /// Calculate the cost of materializing a 64-bit value. This helper
4361 /// method might only calculate a fraction of a larger immediate. Therefore it
4362 /// is valid to return a cost of ZERO.
4363 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
4364 if (Val == 0)
4365 return TTI::TCC_Free;
4367 if (isInt<32>(Val))
4368 return TTI::TCC_Basic;
4370 return 2 * TTI::TCC_Basic;
4373 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
4374 TTI::TargetCostKind CostKind) {
4375 assert(Ty->isIntegerTy());
4377 unsigned BitSize = Ty->getPrimitiveSizeInBits();
4378 if (BitSize == 0)
4379 return ~0U;
4381 // Never hoist constants larger than 128bit, because this might lead to
4382 // incorrect code generation or assertions in codegen.
4383 // Fixme: Create a cost model for types larger than i128 once the codegen
4384 // issues have been fixed.
4385 if (BitSize > 128)
4386 return TTI::TCC_Free;
4388 if (Imm == 0)
4389 return TTI::TCC_Free;
4391 // Sign-extend all constants to a multiple of 64-bit.
4392 APInt ImmVal = Imm;
4393 if (BitSize % 64 != 0)
4394 ImmVal = Imm.sext(alignTo(BitSize, 64));
4396 // Split the constant into 64-bit chunks and calculate the cost for each
4397 // chunk.
4398 InstructionCost Cost = 0;
4399 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
4400 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
4401 int64_t Val = Tmp.getSExtValue();
4402 Cost += getIntImmCost(Val);
4404 // We need at least one instruction to materialize the constant.
4405 return std::max<InstructionCost>(1, Cost);
4408 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
4409 const APInt &Imm, Type *Ty,
4410 TTI::TargetCostKind CostKind,
4411 Instruction *Inst) {
4412 assert(Ty->isIntegerTy());
4414 unsigned BitSize = Ty->getPrimitiveSizeInBits();
4415 // There is no cost model for constants with a bit size of 0. Return TCC_Free
4416 // here, so that constant hoisting will ignore this constant.
4417 if (BitSize == 0)
4418 return TTI::TCC_Free;
4420 unsigned ImmIdx = ~0U;
4421 switch (Opcode) {
4422 default:
4423 return TTI::TCC_Free;
4424 case Instruction::GetElementPtr:
4425 // Always hoist the base address of a GetElementPtr. This prevents the
4426 // creation of new constants for every base constant that gets constant
4427 // folded with the offset.
4428 if (Idx == 0)
4429 return 2 * TTI::TCC_Basic;
4430 return TTI::TCC_Free;
4431 case Instruction::Store:
4432 ImmIdx = 0;
4433 break;
4434 case Instruction::ICmp:
4435 // This is an imperfect hack to prevent constant hoisting of
4436 // compares that might be trying to check if a 64-bit value fits in
4437 // 32-bits. The backend can optimize these cases using a right shift by 32.
4438 // Ideally we would check the compare predicate here. There also other
4439 // similar immediates the backend can use shifts for.
4440 if (Idx == 1 && Imm.getBitWidth() == 64) {
4441 uint64_t ImmVal = Imm.getZExtValue();
4442 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
4443 return TTI::TCC_Free;
4445 ImmIdx = 1;
4446 break;
4447 case Instruction::And:
4448 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
4449 // by using a 32-bit operation with implicit zero extension. Detect such
4450 // immediates here as the normal path expects bit 31 to be sign extended.
4451 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
4452 return TTI::TCC_Free;
4453 ImmIdx = 1;
4454 break;
4455 case Instruction::Add:
4456 case Instruction::Sub:
4457 // For add/sub, we can use the opposite instruction for INT32_MIN.
4458 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4459 return TTI::TCC_Free;
4460 ImmIdx = 1;
4461 break;
4462 case Instruction::UDiv:
4463 case Instruction::SDiv:
4464 case Instruction::URem:
4465 case Instruction::SRem:
4466 // Division by constant is typically expanded later into a different
4467 // instruction sequence. This completely changes the constants.
4468 // Report them as "free" to stop ConstantHoist from marking them as opaque.
4469 return TTI::TCC_Free;
4470 case Instruction::Mul:
4471 case Instruction::Or:
4472 case Instruction::Xor:
4473 ImmIdx = 1;
4474 break;
4475 // Always return TCC_Free for the shift value of a shift instruction.
4476 case Instruction::Shl:
4477 case Instruction::LShr:
4478 case Instruction::AShr:
4479 if (Idx == 1)
4480 return TTI::TCC_Free;
4481 break;
4482 case Instruction::Trunc:
4483 case Instruction::ZExt:
4484 case Instruction::SExt:
4485 case Instruction::IntToPtr:
4486 case Instruction::PtrToInt:
4487 case Instruction::BitCast:
4488 case Instruction::PHI:
4489 case Instruction::Call:
4490 case Instruction::Select:
4491 case Instruction::Ret:
4492 case Instruction::Load:
4493 break;
4496 if (Idx == ImmIdx) {
4497 int NumConstants = divideCeil(BitSize, 64);
4498 InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4499 return (Cost <= NumConstants * TTI::TCC_Basic)
4500 ? static_cast<int>(TTI::TCC_Free)
4501 : Cost;
4504 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4507 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4508 const APInt &Imm, Type *Ty,
4509 TTI::TargetCostKind CostKind) {
4510 assert(Ty->isIntegerTy());
4512 unsigned BitSize = Ty->getPrimitiveSizeInBits();
4513 // There is no cost model for constants with a bit size of 0. Return TCC_Free
4514 // here, so that constant hoisting will ignore this constant.
4515 if (BitSize == 0)
4516 return TTI::TCC_Free;
4518 switch (IID) {
4519 default:
4520 return TTI::TCC_Free;
4521 case Intrinsic::sadd_with_overflow:
4522 case Intrinsic::uadd_with_overflow:
4523 case Intrinsic::ssub_with_overflow:
4524 case Intrinsic::usub_with_overflow:
4525 case Intrinsic::smul_with_overflow:
4526 case Intrinsic::umul_with_overflow:
4527 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4528 return TTI::TCC_Free;
4529 break;
4530 case Intrinsic::experimental_stackmap:
4531 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4532 return TTI::TCC_Free;
4533 break;
4534 case Intrinsic::experimental_patchpoint_void:
4535 case Intrinsic::experimental_patchpoint_i64:
4536 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4537 return TTI::TCC_Free;
4538 break;
4540 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4543 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
4544 TTI::TargetCostKind CostKind,
4545 const Instruction *I) {
4546 if (CostKind != TTI::TCK_RecipThroughput)
4547 return Opcode == Instruction::PHI ? 0 : 1;
4548 // Branches are assumed to be predicted.
4549 return 0;
4552 int X86TTIImpl::getGatherOverhead() const {
4553 // Some CPUs have more overhead for gather. The specified overhead is relative
4554 // to the Load operation. "2" is the number provided by Intel architects. This
4555 // parameter is used for cost estimation of Gather Op and comparison with
4556 // other alternatives.
4557 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4558 // enable gather with a -march.
4559 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4560 return 2;
4562 return 1024;
4565 int X86TTIImpl::getScatterOverhead() const {
4566 if (ST->hasAVX512())
4567 return 2;
4569 return 1024;
4572 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4573 // FIXME: Add TargetCostKind support.
4574 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
4575 const Value *Ptr, Align Alignment,
4576 unsigned AddressSpace) {
4578 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4579 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4581 // Try to reduce index size from 64 bit (default for GEP)
4582 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4583 // operation will use 16 x 64 indices which do not fit in a zmm and needs
4584 // to split. Also check that the base pointer is the same for all lanes,
4585 // and that there's at most one variable index.
4586 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4587 unsigned IndexSize = DL.getPointerSizeInBits();
4588 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4589 if (IndexSize < 64 || !GEP)
4590 return IndexSize;
4592 unsigned NumOfVarIndices = 0;
4593 const Value *Ptrs = GEP->getPointerOperand();
4594 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4595 return IndexSize;
4596 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4597 if (isa<Constant>(GEP->getOperand(i)))
4598 continue;
4599 Type *IndxTy = GEP->getOperand(i)->getType();
4600 if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4601 IndxTy = IndexVTy->getElementType();
4602 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4603 !isa<SExtInst>(GEP->getOperand(i))) ||
4604 ++NumOfVarIndices > 1)
4605 return IndexSize; // 64
4607 return (unsigned)32;
4610 // Trying to reduce IndexSize to 32 bits for vector 16.
4611 // By default the IndexSize is equal to pointer size.
4612 unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4613 ? getIndexSizeInBits(Ptr, DL)
4614 : DL.getPointerSizeInBits();
4616 auto *IndexVTy = FixedVectorType::get(
4617 IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4618 std::pair<InstructionCost, MVT> IdxsLT =
4619 TLI->getTypeLegalizationCost(DL, IndexVTy);
4620 std::pair<InstructionCost, MVT> SrcLT =
4621 TLI->getTypeLegalizationCost(DL, SrcVTy);
4622 InstructionCost::CostType SplitFactor =
4623 *std::max(IdxsLT.first, SrcLT.first).getValue();
4624 if (SplitFactor > 1) {
4625 // Handle splitting of vector of pointers
4626 auto *SplitSrcTy =
4627 FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4628 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4629 AddressSpace);
4632 // The gather / scatter cost is given by Intel architects. It is a rough
4633 // number since we are looking at one instruction in a time.
4634 const int GSOverhead = (Opcode == Instruction::Load)
4635 ? getGatherOverhead()
4636 : getScatterOverhead();
4637 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4638 MaybeAlign(Alignment), AddressSpace,
4639 TTI::TCK_RecipThroughput);
4642 /// Return the cost of full scalarization of gather / scatter operation.
4644 /// Opcode - Load or Store instruction.
4645 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4646 /// VariableMask - The mask is non-constant at compile time.
4647 /// Alignment - Alignment for one element.
4648 /// AddressSpace - pointer[s] address space.
4650 /// FIXME: Add TargetCostKind support.
4651 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4652 bool VariableMask, Align Alignment,
4653 unsigned AddressSpace) {
4654 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4655 APInt DemandedElts = APInt::getAllOnesValue(VF);
4656 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4658 InstructionCost MaskUnpackCost = 0;
4659 if (VariableMask) {
4660 auto *MaskTy =
4661 FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4662 MaskUnpackCost =
4663 getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4664 InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4665 Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4666 CmpInst::BAD_ICMP_PREDICATE, CostKind);
4667 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4668 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4671 // The cost of the scalar loads/stores.
4672 InstructionCost MemoryOpCost =
4673 VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4674 MaybeAlign(Alignment), AddressSpace, CostKind);
4676 InstructionCost InsertExtractCost = 0;
4677 if (Opcode == Instruction::Load)
4678 for (unsigned i = 0; i < VF; ++i)
4679 // Add the cost of inserting each scalar load into the vector
4680 InsertExtractCost +=
4681 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4682 else
4683 for (unsigned i = 0; i < VF; ++i)
4684 // Add the cost of extracting each element out of the data vector
4685 InsertExtractCost +=
4686 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4688 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4691 /// Calculate the cost of Gather / Scatter operation
4692 InstructionCost X86TTIImpl::getGatherScatterOpCost(
4693 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
4694 Align Alignment, TTI::TargetCostKind CostKind,
4695 const Instruction *I = nullptr) {
4696 if (CostKind != TTI::TCK_RecipThroughput) {
4697 if ((Opcode == Instruction::Load &&
4698 isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4699 (Opcode == Instruction::Store &&
4700 isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4701 return 1;
4702 return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4703 Alignment, CostKind, I);
4706 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4707 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4708 if (!PtrTy && Ptr->getType()->isVectorTy())
4709 PtrTy = dyn_cast<PointerType>(
4710 cast<VectorType>(Ptr->getType())->getElementType());
4711 assert(PtrTy && "Unexpected type for Ptr argument");
4712 unsigned AddressSpace = PtrTy->getAddressSpace();
4714 if ((Opcode == Instruction::Load &&
4715 !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4716 (Opcode == Instruction::Store &&
4717 !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4718 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4719 AddressSpace);
4721 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4724 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4725 TargetTransformInfo::LSRCost &C2) {
4726 // X86 specific here are "instruction number 1st priority".
4727 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4728 C1.NumIVMuls, C1.NumBaseAdds,
4729 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4730 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4731 C2.NumIVMuls, C2.NumBaseAdds,
4732 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4735 bool X86TTIImpl::canMacroFuseCmp() {
4736 return ST->hasMacroFusion() || ST->hasBranchFusion();
4739 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4740 if (!ST->hasAVX())
4741 return false;
4743 // The backend can't handle a single element vector.
4744 if (isa<VectorType>(DataTy) &&
4745 cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4746 return false;
4747 Type *ScalarTy = DataTy->getScalarType();
4749 if (ScalarTy->isPointerTy())
4750 return true;
4752 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4753 return true;
4755 if (ScalarTy->isHalfTy() && ST->hasBWI() && ST->hasFP16())
4756 return true;
4758 if (!ScalarTy->isIntegerTy())
4759 return false;
4761 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4762 return IntWidth == 32 || IntWidth == 64 ||
4763 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4766 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4767 return isLegalMaskedLoad(DataType, Alignment);
4770 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4771 unsigned DataSize = DL.getTypeStoreSize(DataType);
4772 // The only supported nontemporal loads are for aligned vectors of 16 or 32
4773 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
4774 // (the equivalent stores only require AVX).
4775 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4776 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
4778 return false;
4781 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4782 unsigned DataSize = DL.getTypeStoreSize(DataType);
4784 // SSE4A supports nontemporal stores of float and double at arbitrary
4785 // alignment.
4786 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4787 return true;
4789 // Besides the SSE4A subtarget exception above, only aligned stores are
4790 // available nontemporaly on any other subtarget. And only stores with a size
4791 // of 4..32 bytes (powers of 2, only) are permitted.
4792 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4793 !isPowerOf2_32(DataSize))
4794 return false;
4796 // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4797 // loads require AVX2).
4798 if (DataSize == 32)
4799 return ST->hasAVX();
4800 else if (DataSize == 16)
4801 return ST->hasSSE1();
4802 return true;
4805 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4806 if (!isa<VectorType>(DataTy))
4807 return false;
4809 if (!ST->hasAVX512())
4810 return false;
4812 // The backend can't handle a single element vector.
4813 if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4814 return false;
4816 Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4818 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4819 return true;
4821 if (!ScalarTy->isIntegerTy())
4822 return false;
4824 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4825 return IntWidth == 32 || IntWidth == 64 ||
4826 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4829 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4830 return isLegalMaskedExpandLoad(DataTy);
4833 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4834 // Some CPUs have better gather performance than others.
4835 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4836 // enable gather with a -march.
4837 if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4838 return false;
4840 // This function is called now in two cases: from the Loop Vectorizer
4841 // and from the Scalarizer.
4842 // When the Loop Vectorizer asks about legality of the feature,
4843 // the vectorization factor is not calculated yet. The Loop Vectorizer
4844 // sends a scalar type and the decision is based on the width of the
4845 // scalar element.
4846 // Later on, the cost model will estimate usage this intrinsic based on
4847 // the vector type.
4848 // The Scalarizer asks again about legality. It sends a vector type.
4849 // In this case we can reject non-power-of-2 vectors.
4850 // We also reject single element vectors as the type legalizer can't
4851 // scalarize it.
4852 if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4853 unsigned NumElts = DataVTy->getNumElements();
4854 if (NumElts == 1)
4855 return false;
4856 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4857 // Vector-4 of gather/scatter instruction does not exist on KNL.
4858 // We can extend it to 8 elements, but zeroing upper bits of
4859 // the mask vector will add more instructions. Right now we give the scalar
4860 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter
4861 // instruction is better in the VariableMask case.
4862 if (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())))
4863 return false;
4865 Type *ScalarTy = DataTy->getScalarType();
4866 if (ScalarTy->isPointerTy())
4867 return true;
4869 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4870 return true;
4872 if (!ScalarTy->isIntegerTy())
4873 return false;
4875 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4876 return IntWidth == 32 || IntWidth == 64;
4879 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4880 // AVX2 doesn't support scatter
4881 if (!ST->hasAVX512())
4882 return false;
4883 return isLegalMaskedGather(DataType, Alignment);
4886 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4887 EVT VT = TLI->getValueType(DL, DataType);
4888 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4891 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4892 return false;
4895 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4896 const Function *Callee) const {
4897 const TargetMachine &TM = getTLI()->getTargetMachine();
4899 // Work this as a subsetting of subtarget features.
4900 const FeatureBitset &CallerBits =
4901 TM.getSubtargetImpl(*Caller)->getFeatureBits();
4902 const FeatureBitset &CalleeBits =
4903 TM.getSubtargetImpl(*Callee)->getFeatureBits();
4905 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4906 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4907 return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4910 bool X86TTIImpl::areFunctionArgsABICompatible(
4911 const Function *Caller, const Function *Callee,
4912 SmallPtrSetImpl<Argument *> &Args) const {
4913 if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4914 return false;
4916 // If we get here, we know the target features match. If one function
4917 // considers 512-bit vectors legal and the other does not, consider them
4918 // incompatible.
4919 const TargetMachine &TM = getTLI()->getTargetMachine();
4921 if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4922 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4923 return true;
4925 // Consider the arguments compatible if they aren't vectors or aggregates.
4926 // FIXME: Look at the size of vectors.
4927 // FIXME: Look at the element types of aggregates to see if there are vectors.
4928 // FIXME: The API of this function seems intended to allow arguments
4929 // to be removed from the set, but the caller doesn't check if the set
4930 // becomes empty so that may not work in practice.
4931 return llvm::none_of(Args, [](Argument *A) {
4932 auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4933 return EltTy->isVectorTy() || EltTy->isAggregateType();
4937 X86TTIImpl::TTI::MemCmpExpansionOptions
4938 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4939 TTI::MemCmpExpansionOptions Options;
4940 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4941 Options.NumLoadsPerBlock = 2;
4942 // All GPR and vector loads can be unaligned.
4943 Options.AllowOverlappingLoads = true;
4944 if (IsZeroCmp) {
4945 // Only enable vector loads for equality comparison. Right now the vector
4946 // version is not as fast for three way compare (see #33329).
4947 const unsigned PreferredWidth = ST->getPreferVectorWidth();
4948 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4949 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4950 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4952 if (ST->is64Bit()) {
4953 Options.LoadSizes.push_back(8);
4955 Options.LoadSizes.push_back(4);
4956 Options.LoadSizes.push_back(2);
4957 Options.LoadSizes.push_back(1);
4958 return Options;
4961 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4962 // TODO: We expect this to be beneficial regardless of arch,
4963 // but there are currently some unexplained performance artifacts on Atom.
4964 // As a temporary solution, disable on Atom.
4965 return !(ST->isAtom());
4968 // Get estimation for interleaved load/store operations for AVX2.
4969 // \p Factor is the interleaved-access factor (stride) - number of
4970 // (interleaved) elements in the group.
4971 // \p Indices contains the indices for a strided load: when the
4972 // interleaved load has gaps they indicate which elements are used.
4973 // If Indices is empty (or if the number of indices is equal to the size
4974 // of the interleaved-access as given in \p Factor) the access has no gaps.
4976 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4977 // computing the cost using a generic formula as a function of generic
4978 // shuffles. We therefore use a lookup table instead, filled according to
4979 // the instruction sequences that codegen currently generates.
4980 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4981 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4982 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4983 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4985 if (UseMaskForCond || UseMaskForGaps)
4986 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4987 Alignment, AddressSpace, CostKind,
4988 UseMaskForCond, UseMaskForGaps);
4990 // We currently Support only fully-interleaved groups, with no gaps.
4991 // TODO: Support also strided loads (interleaved-groups with gaps).
4992 if (Indices.size() && Indices.size() != Factor)
4993 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4994 Alignment, AddressSpace, CostKind);
4996 // VecTy for interleave memop is <VF*Factor x Elt>.
4997 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4998 // VecTy = <12 x i32>.
4999 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5001 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
5002 // the VF=2, while v2i128 is an unsupported MVT vector type
5003 // (see MachineValueType.h::getVectorVT()).
5004 if (!LegalVT.isVector())
5005 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5006 Alignment, AddressSpace, CostKind);
5008 unsigned VF = VecTy->getNumElements() / Factor;
5009 Type *ScalarTy = VecTy->getElementType();
5010 // Deduplicate entries, model floats/pointers as appropriately-sized integers.
5011 if (!ScalarTy->isIntegerTy())
5012 ScalarTy =
5013 Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
5015 // Get the cost of all the memory operations.
5016 InstructionCost MemOpCosts = getMemoryOpCost(
5017 Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
5019 auto *VT = FixedVectorType::get(ScalarTy, VF);
5020 EVT ETy = TLI->getValueType(DL, VT);
5021 if (!ETy.isSimple())
5022 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5023 Alignment, AddressSpace, CostKind);
5025 // TODO: Complete for other data-types and strides.
5026 // Each combination of Stride, element bit width and VF results in a different
5027 // sequence; The cost tables are therefore accessed with:
5028 // Factor (stride) and VectorType=VFxiN.
5029 // The Cost accounts only for the shuffle sequence;
5030 // The cost of the loads/stores is accounted for separately.
5032 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
5033 {2, MVT::v4i64, 6}, // (load 8i64 and) deinterleave into 2 x 4i64
5035 {3, MVT::v2i8, 10}, // (load 6i8 and) deinterleave into 3 x 2i8
5036 {3, MVT::v4i8, 4}, // (load 12i8 and) deinterleave into 3 x 4i8
5037 {3, MVT::v8i8, 9}, // (load 24i8 and) deinterleave into 3 x 8i8
5038 {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
5039 {3, MVT::v32i8, 13}, // (load 96i8 and) deinterleave into 3 x 32i8
5041 {3, MVT::v8i32, 17}, // (load 24i32 and) deinterleave into 3 x 8i32
5043 {4, MVT::v2i8, 12}, // (load 8i8 and) deinterleave into 4 x 2i8
5044 {4, MVT::v4i8, 4}, // (load 16i8 and) deinterleave into 4 x 4i8
5045 {4, MVT::v8i8, 20}, // (load 32i8 and) deinterleave into 4 x 8i8
5046 {4, MVT::v16i8, 39}, // (load 64i8 and) deinterleave into 4 x 16i8
5047 {4, MVT::v32i8, 80}, // (load 128i8 and) deinterleave into 4 x 32i8
5049 {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
5052 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
5053 {2, MVT::v4i64, 6}, // interleave 2 x 4i64 into 8i64 (and store)
5055 {3, MVT::v2i8, 7}, // interleave 3 x 2i8 into 6i8 (and store)
5056 {3, MVT::v4i8, 8}, // interleave 3 x 4i8 into 12i8 (and store)
5057 {3, MVT::v8i8, 11}, // interleave 3 x 8i8 into 24i8 (and store)
5058 {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
5059 {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
5061 {4, MVT::v2i8, 12}, // interleave 4 x 2i8 into 8i8 (and store)
5062 {4, MVT::v4i8, 9}, // interleave 4 x 4i8 into 16i8 (and store)
5063 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
5064 {4, MVT::v16i8, 10}, // interleave 4 x 16i8 into 64i8 (and store)
5065 {4, MVT::v32i8, 12} // interleave 4 x 32i8 into 128i8 (and store)
5068 if (Opcode == Instruction::Load) {
5069 if (const auto *Entry =
5070 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
5071 return MemOpCosts + Entry->Cost;
5072 } else {
5073 assert(Opcode == Instruction::Store &&
5074 "Expected Store Instruction at this point");
5075 if (const auto *Entry =
5076 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
5077 return MemOpCosts + Entry->Cost;
5080 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5081 Alignment, AddressSpace, CostKind);
5084 // Get estimation for interleaved load/store operations and strided load.
5085 // \p Indices contains indices for strided load.
5086 // \p Factor - the factor of interleaving.
5087 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
5088 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
5089 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
5090 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
5091 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
5093 if (UseMaskForCond || UseMaskForGaps)
5094 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5095 Alignment, AddressSpace, CostKind,
5096 UseMaskForCond, UseMaskForGaps);
5098 // VecTy for interleave memop is <VF*Factor x Elt>.
5099 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5100 // VecTy = <12 x i32>.
5102 // Calculate the number of memory operations (NumOfMemOps), required
5103 // for load/store the VecTy.
5104 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5105 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
5106 unsigned LegalVTSize = LegalVT.getStoreSize();
5107 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
5109 // Get the cost of one memory operation.
5110 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
5111 LegalVT.getVectorNumElements());
5112 InstructionCost MemOpCost = getMemoryOpCost(
5113 Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind);
5115 unsigned VF = VecTy->getNumElements() / Factor;
5116 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
5118 if (Opcode == Instruction::Load) {
5119 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
5120 // contain the cost of the optimized shuffle sequence that the
5121 // X86InterleavedAccess pass will generate.
5122 // The cost of loads and stores are computed separately from the table.
5124 // X86InterleavedAccess support only the following interleaved-access group.
5125 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
5126 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
5127 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
5128 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
5131 if (const auto *Entry =
5132 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
5133 return NumOfMemOps * MemOpCost + Entry->Cost;
5134 //If an entry does not exist, fallback to the default implementation.
5136 // Kind of shuffle depends on number of loaded values.
5137 // If we load the entire data in one register, we can use a 1-src shuffle.
5138 // Otherwise, we'll merge 2 sources in each operation.
5139 TTI::ShuffleKind ShuffleKind =
5140 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
5142 InstructionCost ShuffleCost =
5143 getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
5145 unsigned NumOfLoadsInInterleaveGrp =
5146 Indices.size() ? Indices.size() : Factor;
5147 auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
5148 VecTy->getNumElements() / Factor);
5149 InstructionCost NumOfResults =
5150 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
5151 NumOfLoadsInInterleaveGrp;
5153 // About a half of the loads may be folded in shuffles when we have only
5154 // one result. If we have more than one result, we do not fold loads at all.
5155 unsigned NumOfUnfoldedLoads =
5156 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
5158 // Get a number of shuffle operations per result.
5159 unsigned NumOfShufflesPerResult =
5160 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
5162 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5163 // When we have more than one destination, we need additional instructions
5164 // to keep sources.
5165 InstructionCost NumOfMoves = 0;
5166 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
5167 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
5169 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
5170 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
5172 return Cost;
5175 // Store.
5176 assert(Opcode == Instruction::Store &&
5177 "Expected Store Instruction at this point");
5178 // X86InterleavedAccess support only the following interleaved-access group.
5179 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
5180 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
5181 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
5182 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
5184 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
5185 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
5186 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
5187 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
5190 if (const auto *Entry =
5191 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
5192 return NumOfMemOps * MemOpCost + Entry->Cost;
5193 //If an entry does not exist, fallback to the default implementation.
5195 // There is no strided stores meanwhile. And store can't be folded in
5196 // shuffle.
5197 unsigned NumOfSources = Factor; // The number of values to be merged.
5198 InstructionCost ShuffleCost =
5199 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
5200 unsigned NumOfShufflesPerStore = NumOfSources - 1;
5202 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5203 // We need additional instructions to keep sources.
5204 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
5205 InstructionCost Cost =
5206 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
5207 NumOfMoves;
5208 return Cost;
5211 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
5212 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
5213 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
5214 bool UseMaskForCond, bool UseMaskForGaps) {
5215 auto isSupportedOnAVX512 = [&](Type *VecTy, bool HasBW) {
5216 Type *EltTy = cast<VectorType>(VecTy)->getElementType();
5217 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
5218 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
5219 return true;
5220 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) ||
5221 (!ST->useSoftFloat() && ST->hasFP16() && EltTy->isHalfTy()))
5222 return HasBW;
5223 return false;
5225 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
5226 return getInterleavedMemoryOpCostAVX512(
5227 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
5228 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5229 if (ST->hasAVX2())
5230 return getInterleavedMemoryOpCostAVX2(
5231 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
5232 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5234 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5235 Alignment, AddressSpace, CostKind,
5236 UseMaskForCond, UseMaskForGaps);