[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / Attributor.cpp
blob1b30157e19522f2469d929fa38f77373421b174d
1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO/Attributor.h"
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/TinyPtrVector.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/Analysis/LazyValueInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/MustExecute.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/NoFolder.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/DebugCounter.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/GraphWriter.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/Local.h"
52 #include <cassert>
53 #include <string>
55 using namespace llvm;
57 #define DEBUG_TYPE "attributor"
59 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
60 "Determine what attributes are manifested in the IR");
62 STATISTIC(NumFnDeleted, "Number of function deleted");
63 STATISTIC(NumFnWithExactDefinition,
64 "Number of functions with exact definitions");
65 STATISTIC(NumFnWithoutExactDefinition,
66 "Number of functions without exact definitions");
67 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
68 STATISTIC(NumAttributesTimedOut,
69 "Number of abstract attributes timed out before fixpoint");
70 STATISTIC(NumAttributesValidFixpoint,
71 "Number of abstract attributes in a valid fixpoint state");
72 STATISTIC(NumAttributesManifested,
73 "Number of abstract attributes manifested in IR");
75 // TODO: Determine a good default value.
77 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
78 // (when run with the first 5 abstract attributes). The results also indicate
79 // that we never reach 32 iterations but always find a fixpoint sooner.
81 // This will become more evolved once we perform two interleaved fixpoint
82 // iterations: bottom-up and top-down.
83 static cl::opt<unsigned>
84 SetFixpointIterations("attributor-max-iterations", cl::Hidden,
85 cl::desc("Maximal number of fixpoint iterations."),
86 cl::init(32));
88 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
89 "attributor-max-initialization-chain-length", cl::Hidden,
90 cl::desc(
91 "Maximal number of chained initializations (to avoid stack overflows)"),
92 cl::location(MaxInitializationChainLength), cl::init(1024));
93 unsigned llvm::MaxInitializationChainLength;
95 static cl::opt<bool> VerifyMaxFixpointIterations(
96 "attributor-max-iterations-verify", cl::Hidden,
97 cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
98 cl::init(false));
100 static cl::opt<bool> AnnotateDeclarationCallSites(
101 "attributor-annotate-decl-cs", cl::Hidden,
102 cl::desc("Annotate call sites of function declarations."), cl::init(false));
104 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
105 cl::init(true), cl::Hidden);
107 static cl::opt<bool>
108 AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
109 cl::desc("Allow the Attributor to create shallow "
110 "wrappers for non-exact definitions."),
111 cl::init(false));
113 static cl::opt<bool>
114 AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
115 cl::desc("Allow the Attributor to use IP information "
116 "derived from non-exact functions via cloning"),
117 cl::init(false));
119 // These options can only used for debug builds.
120 #ifndef NDEBUG
121 static cl::list<std::string>
122 SeedAllowList("attributor-seed-allow-list", cl::Hidden,
123 cl::desc("Comma seperated list of attribute names that are "
124 "allowed to be seeded."),
125 cl::ZeroOrMore, cl::CommaSeparated);
127 static cl::list<std::string> FunctionSeedAllowList(
128 "attributor-function-seed-allow-list", cl::Hidden,
129 cl::desc("Comma seperated list of function names that are "
130 "allowed to be seeded."),
131 cl::ZeroOrMore, cl::CommaSeparated);
132 #endif
134 static cl::opt<bool>
135 DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
136 cl::desc("Dump the dependency graph to dot files."),
137 cl::init(false));
139 static cl::opt<std::string> DepGraphDotFileNamePrefix(
140 "attributor-depgraph-dot-filename-prefix", cl::Hidden,
141 cl::desc("The prefix used for the CallGraph dot file names."));
143 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
144 cl::desc("View the dependency graph."),
145 cl::init(false));
147 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
148 cl::desc("Print attribute dependencies"),
149 cl::init(false));
151 static cl::opt<bool> EnableCallSiteSpecific(
152 "attributor-enable-call-site-specific-deduction", cl::Hidden,
153 cl::desc("Allow the Attributor to do call site specific analysis"),
154 cl::init(false));
156 static cl::opt<bool>
157 PrintCallGraph("attributor-print-call-graph", cl::Hidden,
158 cl::desc("Print Attributor's internal call graph"),
159 cl::init(false));
161 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
162 cl::Hidden,
163 cl::desc("Try to simplify all loads."),
164 cl::init(true));
166 /// Logic operators for the change status enum class.
168 ///{
169 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
170 return L == ChangeStatus::CHANGED ? L : R;
172 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
173 L = L | R;
174 return L;
176 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
177 return L == ChangeStatus::UNCHANGED ? L : R;
179 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
180 L = L & R;
181 return L;
183 ///}
185 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
186 const Value &V) {
187 if (auto *C = dyn_cast<Constant>(&V))
188 return !C->isThreadDependent();
189 // TODO: Inspect and cache more complex instructions.
190 if (auto *CB = dyn_cast<CallBase>(&V))
191 return CB->getNumOperands() == 0 && !CB->mayHaveSideEffects() &&
192 !CB->mayReadFromMemory();
193 const Function *Scope = nullptr;
194 if (auto *I = dyn_cast<Instruction>(&V))
195 Scope = I->getFunction();
196 if (auto *A = dyn_cast<Argument>(&V))
197 Scope = A->getParent();
198 if (!Scope)
199 return false;
200 auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
201 QueryingAA, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
202 return NoRecurseAA.isAssumedNoRecurse();
205 Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty) {
206 if (isa<AllocaInst>(Obj))
207 return UndefValue::get(&Ty);
208 auto *GV = dyn_cast<GlobalVariable>(&Obj);
209 if (!GV || !GV->hasLocalLinkage())
210 return nullptr;
211 if (!GV->hasInitializer())
212 return UndefValue::get(&Ty);
213 return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
216 bool AA::isValidInScope(const Value &V, const Function *Scope) {
217 if (isa<Constant>(V))
218 return true;
219 if (auto *I = dyn_cast<Instruction>(&V))
220 return I->getFunction() == Scope;
221 if (auto *A = dyn_cast<Argument>(&V))
222 return A->getParent() == Scope;
223 return false;
226 bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI,
227 InformationCache &InfoCache) {
228 if (isa<Constant>(V))
229 return true;
230 const Function *Scope = CtxI.getFunction();
231 if (auto *A = dyn_cast<Argument>(&V))
232 return A->getParent() == Scope;
233 if (auto *I = dyn_cast<Instruction>(&V))
234 if (I->getFunction() == Scope) {
235 const DominatorTree *DT =
236 InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Scope);
237 return DT && DT->dominates(I, &CtxI);
239 return false;
242 Value *AA::getWithType(Value &V, Type &Ty) {
243 if (V.getType() == &Ty)
244 return &V;
245 if (isa<PoisonValue>(V))
246 return PoisonValue::get(&Ty);
247 if (isa<UndefValue>(V))
248 return UndefValue::get(&Ty);
249 if (auto *C = dyn_cast<Constant>(&V)) {
250 if (C->isNullValue())
251 return Constant::getNullValue(&Ty);
252 if (C->getType()->isPointerTy() && Ty.isPointerTy())
253 return ConstantExpr::getPointerCast(C, &Ty);
254 if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
255 if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
256 return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
257 if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
258 return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
261 return nullptr;
264 Optional<Value *>
265 AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
266 const Optional<Value *> &B, Type *Ty) {
267 if (A == B)
268 return A;
269 if (!B.hasValue())
270 return A;
271 if (*B == nullptr)
272 return nullptr;
273 if (!A.hasValue())
274 return Ty ? getWithType(**B, *Ty) : nullptr;
275 if (*A == nullptr)
276 return nullptr;
277 if (!Ty)
278 Ty = (*A)->getType();
279 if (isa_and_nonnull<UndefValue>(*A))
280 return getWithType(**B, *Ty);
281 if (isa<UndefValue>(*B))
282 return A;
283 if (*A && *B && *A == getWithType(**B, *Ty))
284 return A;
285 return nullptr;
288 bool AA::getPotentialCopiesOfStoredValue(
289 Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
290 const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) {
292 Value &Ptr = *SI.getPointerOperand();
293 SmallVector<Value *, 8> Objects;
294 if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &SI)) {
295 LLVM_DEBUG(
296 dbgs() << "Underlying objects stored into could not be determined\n";);
297 return false;
300 SmallVector<const AAPointerInfo *> PIs;
301 SmallVector<Value *> NewCopies;
303 for (Value *Obj : Objects) {
304 LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
305 if (isa<UndefValue>(Obj))
306 continue;
307 if (isa<ConstantPointerNull>(Obj)) {
308 // A null pointer access can be undefined but any offset from null may
309 // be OK. We do not try to optimize the latter.
310 if (!NullPointerIsDefined(SI.getFunction(),
311 Ptr.getType()->getPointerAddressSpace()) &&
312 A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) ==
313 Obj)
314 continue;
315 LLVM_DEBUG(
316 dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
317 return false;
319 if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj)) {
320 LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
321 << "\n";);
322 return false;
324 if (auto *GV = dyn_cast<GlobalVariable>(Obj))
325 if (!GV->hasLocalLinkage()) {
326 LLVM_DEBUG(dbgs() << "Underlying object is global with external "
327 "linkage, not supported yet: "
328 << *Obj << "\n";);
329 return false;
332 auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
333 if (!Acc.isRead())
334 return true;
335 auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
336 if (!LI) {
337 LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
338 "instruction not supported yet: "
339 << *Acc.getRemoteInst() << "\n";);
340 return false;
342 NewCopies.push_back(LI);
343 return true;
346 auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
347 DepClassTy::NONE);
348 if (!PI.forallInterferingAccesses(SI, CheckAccess)) {
349 LLVM_DEBUG(
350 dbgs()
351 << "Failed to verify all interfering accesses for underlying object: "
352 << *Obj << "\n");
353 return false;
355 PIs.push_back(&PI);
358 for (auto *PI : PIs) {
359 if (!PI->getState().isAtFixpoint())
360 UsedAssumedInformation = true;
361 A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
363 PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
365 return true;
368 /// Return true if \p New is equal or worse than \p Old.
369 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
370 if (!Old.isIntAttribute())
371 return true;
373 return Old.getValueAsInt() >= New.getValueAsInt();
376 /// Return true if the information provided by \p Attr was added to the
377 /// attribute list \p Attrs. This is only the case if it was not already present
378 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
379 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
380 AttributeList &Attrs, int AttrIdx,
381 bool ForceReplace = false) {
383 if (Attr.isEnumAttribute()) {
384 Attribute::AttrKind Kind = Attr.getKindAsEnum();
385 if (Attrs.hasAttribute(AttrIdx, Kind))
386 if (!ForceReplace &&
387 isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
388 return false;
389 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
390 return true;
392 if (Attr.isStringAttribute()) {
393 StringRef Kind = Attr.getKindAsString();
394 if (Attrs.hasAttribute(AttrIdx, Kind))
395 if (!ForceReplace &&
396 isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
397 return false;
398 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
399 return true;
401 if (Attr.isIntAttribute()) {
402 Attribute::AttrKind Kind = Attr.getKindAsEnum();
403 if (Attrs.hasAttribute(AttrIdx, Kind))
404 if (!ForceReplace &&
405 isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
406 return false;
407 Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
408 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
409 return true;
412 llvm_unreachable("Expected enum or string attribute!");
415 Argument *IRPosition::getAssociatedArgument() const {
416 if (getPositionKind() == IRP_ARGUMENT)
417 return cast<Argument>(&getAnchorValue());
419 // Not an Argument and no argument number means this is not a call site
420 // argument, thus we cannot find a callback argument to return.
421 int ArgNo = getCallSiteArgNo();
422 if (ArgNo < 0)
423 return nullptr;
425 // Use abstract call sites to make the connection between the call site
426 // values and the ones in callbacks. If a callback was found that makes use
427 // of the underlying call site operand, we want the corresponding callback
428 // callee argument and not the direct callee argument.
429 Optional<Argument *> CBCandidateArg;
430 SmallVector<const Use *, 4> CallbackUses;
431 const auto &CB = cast<CallBase>(getAnchorValue());
432 AbstractCallSite::getCallbackUses(CB, CallbackUses);
433 for (const Use *U : CallbackUses) {
434 AbstractCallSite ACS(U);
435 assert(ACS && ACS.isCallbackCall());
436 if (!ACS.getCalledFunction())
437 continue;
439 for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
441 // Test if the underlying call site operand is argument number u of the
442 // callback callee.
443 if (ACS.getCallArgOperandNo(u) != ArgNo)
444 continue;
446 assert(ACS.getCalledFunction()->arg_size() > u &&
447 "ACS mapped into var-args arguments!");
448 if (CBCandidateArg.hasValue()) {
449 CBCandidateArg = nullptr;
450 break;
452 CBCandidateArg = ACS.getCalledFunction()->getArg(u);
456 // If we found a unique callback candidate argument, return it.
457 if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
458 return CBCandidateArg.getValue();
460 // If no callbacks were found, or none used the underlying call site operand
461 // exclusively, use the direct callee argument if available.
462 const Function *Callee = CB.getCalledFunction();
463 if (Callee && Callee->arg_size() > unsigned(ArgNo))
464 return Callee->getArg(ArgNo);
466 return nullptr;
469 ChangeStatus AbstractAttribute::update(Attributor &A) {
470 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
471 if (getState().isAtFixpoint())
472 return HasChanged;
474 LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
476 HasChanged = updateImpl(A);
478 LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
479 << "\n");
481 return HasChanged;
484 ChangeStatus
485 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
486 const ArrayRef<Attribute> &DeducedAttrs,
487 bool ForceReplace) {
488 Function *ScopeFn = IRP.getAnchorScope();
489 IRPosition::Kind PK = IRP.getPositionKind();
491 // In the following some generic code that will manifest attributes in
492 // DeducedAttrs if they improve the current IR. Due to the different
493 // annotation positions we use the underlying AttributeList interface.
495 AttributeList Attrs;
496 switch (PK) {
497 case IRPosition::IRP_INVALID:
498 case IRPosition::IRP_FLOAT:
499 return ChangeStatus::UNCHANGED;
500 case IRPosition::IRP_ARGUMENT:
501 case IRPosition::IRP_FUNCTION:
502 case IRPosition::IRP_RETURNED:
503 Attrs = ScopeFn->getAttributes();
504 break;
505 case IRPosition::IRP_CALL_SITE:
506 case IRPosition::IRP_CALL_SITE_RETURNED:
507 case IRPosition::IRP_CALL_SITE_ARGUMENT:
508 Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
509 break;
512 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
513 LLVMContext &Ctx = IRP.getAnchorValue().getContext();
514 for (const Attribute &Attr : DeducedAttrs) {
515 if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
516 continue;
518 HasChanged = ChangeStatus::CHANGED;
521 if (HasChanged == ChangeStatus::UNCHANGED)
522 return HasChanged;
524 switch (PK) {
525 case IRPosition::IRP_ARGUMENT:
526 case IRPosition::IRP_FUNCTION:
527 case IRPosition::IRP_RETURNED:
528 ScopeFn->setAttributes(Attrs);
529 break;
530 case IRPosition::IRP_CALL_SITE:
531 case IRPosition::IRP_CALL_SITE_RETURNED:
532 case IRPosition::IRP_CALL_SITE_ARGUMENT:
533 cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
534 break;
535 case IRPosition::IRP_INVALID:
536 case IRPosition::IRP_FLOAT:
537 break;
540 return HasChanged;
543 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
544 const IRPosition
545 IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
547 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
548 IRPositions.emplace_back(IRP);
550 // Helper to determine if operand bundles on a call site are benin or
551 // potentially problematic. We handle only llvm.assume for now.
552 auto CanIgnoreOperandBundles = [](const CallBase &CB) {
553 return (isa<IntrinsicInst>(CB) &&
554 cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
557 const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
558 switch (IRP.getPositionKind()) {
559 case IRPosition::IRP_INVALID:
560 case IRPosition::IRP_FLOAT:
561 case IRPosition::IRP_FUNCTION:
562 return;
563 case IRPosition::IRP_ARGUMENT:
564 case IRPosition::IRP_RETURNED:
565 IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
566 return;
567 case IRPosition::IRP_CALL_SITE:
568 assert(CB && "Expected call site!");
569 // TODO: We need to look at the operand bundles similar to the redirection
570 // in CallBase.
571 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
572 if (const Function *Callee = CB->getCalledFunction())
573 IRPositions.emplace_back(IRPosition::function(*Callee));
574 return;
575 case IRPosition::IRP_CALL_SITE_RETURNED:
576 assert(CB && "Expected call site!");
577 // TODO: We need to look at the operand bundles similar to the redirection
578 // in CallBase.
579 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
580 if (const Function *Callee = CB->getCalledFunction()) {
581 IRPositions.emplace_back(IRPosition::returned(*Callee));
582 IRPositions.emplace_back(IRPosition::function(*Callee));
583 for (const Argument &Arg : Callee->args())
584 if (Arg.hasReturnedAttr()) {
585 IRPositions.emplace_back(
586 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
587 IRPositions.emplace_back(
588 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
589 IRPositions.emplace_back(IRPosition::argument(Arg));
593 IRPositions.emplace_back(IRPosition::callsite_function(*CB));
594 return;
595 case IRPosition::IRP_CALL_SITE_ARGUMENT: {
596 assert(CB && "Expected call site!");
597 // TODO: We need to look at the operand bundles similar to the redirection
598 // in CallBase.
599 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
600 const Function *Callee = CB->getCalledFunction();
601 if (Callee) {
602 if (Argument *Arg = IRP.getAssociatedArgument())
603 IRPositions.emplace_back(IRPosition::argument(*Arg));
604 IRPositions.emplace_back(IRPosition::function(*Callee));
607 IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
608 return;
613 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
614 bool IgnoreSubsumingPositions, Attributor *A) const {
615 SmallVector<Attribute, 4> Attrs;
616 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
617 for (Attribute::AttrKind AK : AKs)
618 if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
619 return true;
620 // The first position returned by the SubsumingPositionIterator is
621 // always the position itself. If we ignore subsuming positions we
622 // are done after the first iteration.
623 if (IgnoreSubsumingPositions)
624 break;
626 if (A)
627 for (Attribute::AttrKind AK : AKs)
628 if (getAttrsFromAssumes(AK, Attrs, *A))
629 return true;
630 return false;
633 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
634 SmallVectorImpl<Attribute> &Attrs,
635 bool IgnoreSubsumingPositions, Attributor *A) const {
636 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
637 for (Attribute::AttrKind AK : AKs)
638 EquivIRP.getAttrsFromIRAttr(AK, Attrs);
639 // The first position returned by the SubsumingPositionIterator is
640 // always the position itself. If we ignore subsuming positions we
641 // are done after the first iteration.
642 if (IgnoreSubsumingPositions)
643 break;
645 if (A)
646 for (Attribute::AttrKind AK : AKs)
647 getAttrsFromAssumes(AK, Attrs, *A);
650 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
651 SmallVectorImpl<Attribute> &Attrs) const {
652 if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
653 return false;
655 AttributeList AttrList;
656 if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
657 AttrList = CB->getAttributes();
658 else
659 AttrList = getAssociatedFunction()->getAttributes();
661 bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
662 if (HasAttr)
663 Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
664 return HasAttr;
667 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
668 SmallVectorImpl<Attribute> &Attrs,
669 Attributor &A) const {
670 assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
671 Value &AssociatedValue = getAssociatedValue();
673 const Assume2KnowledgeMap &A2K =
674 A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
676 // Check if we found any potential assume use, if not we don't need to create
677 // explorer iterators.
678 if (A2K.empty())
679 return false;
681 LLVMContext &Ctx = AssociatedValue.getContext();
682 unsigned AttrsSize = Attrs.size();
683 MustBeExecutedContextExplorer &Explorer =
684 A.getInfoCache().getMustBeExecutedContextExplorer();
685 auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
686 for (auto &It : A2K)
687 if (Explorer.findInContextOf(It.first, EIt, EEnd))
688 Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
689 return AttrsSize != Attrs.size();
692 void IRPosition::verify() {
693 #ifdef EXPENSIVE_CHECKS
694 switch (getPositionKind()) {
695 case IRP_INVALID:
696 assert((CBContext == nullptr) &&
697 "Invalid position must not have CallBaseContext!");
698 assert(!Enc.getOpaqueValue() &&
699 "Expected a nullptr for an invalid position!");
700 return;
701 case IRP_FLOAT:
702 assert((!isa<CallBase>(&getAssociatedValue()) &&
703 !isa<Argument>(&getAssociatedValue())) &&
704 "Expected specialized kind for call base and argument values!");
705 return;
706 case IRP_RETURNED:
707 assert(isa<Function>(getAsValuePtr()) &&
708 "Expected function for a 'returned' position!");
709 assert(getAsValuePtr() == &getAssociatedValue() &&
710 "Associated value mismatch!");
711 return;
712 case IRP_CALL_SITE_RETURNED:
713 assert((CBContext == nullptr) &&
714 "'call site returned' position must not have CallBaseContext!");
715 assert((isa<CallBase>(getAsValuePtr())) &&
716 "Expected call base for 'call site returned' position!");
717 assert(getAsValuePtr() == &getAssociatedValue() &&
718 "Associated value mismatch!");
719 return;
720 case IRP_CALL_SITE:
721 assert((CBContext == nullptr) &&
722 "'call site function' position must not have CallBaseContext!");
723 assert((isa<CallBase>(getAsValuePtr())) &&
724 "Expected call base for 'call site function' position!");
725 assert(getAsValuePtr() == &getAssociatedValue() &&
726 "Associated value mismatch!");
727 return;
728 case IRP_FUNCTION:
729 assert(isa<Function>(getAsValuePtr()) &&
730 "Expected function for a 'function' position!");
731 assert(getAsValuePtr() == &getAssociatedValue() &&
732 "Associated value mismatch!");
733 return;
734 case IRP_ARGUMENT:
735 assert(isa<Argument>(getAsValuePtr()) &&
736 "Expected argument for a 'argument' position!");
737 assert(getAsValuePtr() == &getAssociatedValue() &&
738 "Associated value mismatch!");
739 return;
740 case IRP_CALL_SITE_ARGUMENT: {
741 assert((CBContext == nullptr) &&
742 "'call site argument' position must not have CallBaseContext!");
743 Use *U = getAsUsePtr();
744 assert(U && "Expected use for a 'call site argument' position!");
745 assert(isa<CallBase>(U->getUser()) &&
746 "Expected call base user for a 'call site argument' position!");
747 assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
748 "Expected call base argument operand for a 'call site argument' "
749 "position");
750 assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
751 unsigned(getCallSiteArgNo()) &&
752 "Argument number mismatch!");
753 assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
754 return;
757 #endif
760 Optional<Constant *>
761 Attributor::getAssumedConstant(const IRPosition &IRP,
762 const AbstractAttribute &AA,
763 bool &UsedAssumedInformation) {
764 // First check all callbacks provided by outside AAs. If any of them returns
765 // a non-null value that is different from the associated value, or None, we
766 // assume it's simpliied.
767 for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
768 Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
769 if (!SimplifiedV.hasValue())
770 return llvm::None;
771 if (isa_and_nonnull<Constant>(*SimplifiedV))
772 return cast<Constant>(*SimplifiedV);
773 return nullptr;
775 const auto &ValueSimplifyAA =
776 getAAFor<AAValueSimplify>(AA, IRP, DepClassTy::NONE);
777 Optional<Value *> SimplifiedV =
778 ValueSimplifyAA.getAssumedSimplifiedValue(*this);
779 bool IsKnown = ValueSimplifyAA.isAtFixpoint();
780 UsedAssumedInformation |= !IsKnown;
781 if (!SimplifiedV.hasValue()) {
782 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
783 return llvm::None;
785 if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
786 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
787 return UndefValue::get(IRP.getAssociatedType());
789 Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
790 if (CI)
791 CI = dyn_cast_or_null<Constant>(
792 AA::getWithType(*CI, *IRP.getAssociatedType()));
793 if (CI)
794 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
795 return CI;
798 Optional<Value *>
799 Attributor::getAssumedSimplified(const IRPosition &IRP,
800 const AbstractAttribute *AA,
801 bool &UsedAssumedInformation) {
802 // First check all callbacks provided by outside AAs. If any of them returns
803 // a non-null value that is different from the associated value, or None, we
804 // assume it's simpliied.
805 for (auto &CB : SimplificationCallbacks.lookup(IRP))
806 return CB(IRP, AA, UsedAssumedInformation);
808 // If no high-level/outside simplification occured, use AAValueSimplify.
809 const auto &ValueSimplifyAA =
810 getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
811 Optional<Value *> SimplifiedV =
812 ValueSimplifyAA.getAssumedSimplifiedValue(*this);
813 bool IsKnown = ValueSimplifyAA.isAtFixpoint();
814 UsedAssumedInformation |= !IsKnown;
815 if (!SimplifiedV.hasValue()) {
816 if (AA)
817 recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
818 return llvm::None;
820 if (*SimplifiedV == nullptr)
821 return const_cast<Value *>(&IRP.getAssociatedValue());
822 if (Value *SimpleV =
823 AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
824 if (AA)
825 recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
826 return SimpleV;
828 return const_cast<Value *>(&IRP.getAssociatedValue());
831 Optional<Value *> Attributor::translateArgumentToCallSiteContent(
832 Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
833 bool &UsedAssumedInformation) {
834 if (!V.hasValue())
835 return V;
836 if (*V == nullptr || isa<Constant>(*V))
837 return V;
838 if (auto *Arg = dyn_cast<Argument>(*V))
839 if (CB.getCalledFunction() == Arg->getParent())
840 if (!Arg->hasPointeeInMemoryValueAttr())
841 return getAssumedSimplified(
842 IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
843 UsedAssumedInformation);
844 return nullptr;
847 Attributor::~Attributor() {
848 // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
849 // thus we cannot delete them. We can, and want to, destruct them though.
850 for (auto &DepAA : DG.SyntheticRoot.Deps) {
851 AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
852 AA->~AbstractAttribute();
856 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
857 const AAIsDead *FnLivenessAA,
858 bool &UsedAssumedInformation,
859 bool CheckBBLivenessOnly, DepClassTy DepClass) {
860 const IRPosition &IRP = AA.getIRPosition();
861 if (!Functions.count(IRP.getAnchorScope()))
862 return false;
863 return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
864 CheckBBLivenessOnly, DepClass);
867 bool Attributor::isAssumedDead(const Use &U,
868 const AbstractAttribute *QueryingAA,
869 const AAIsDead *FnLivenessAA,
870 bool &UsedAssumedInformation,
871 bool CheckBBLivenessOnly, DepClassTy DepClass) {
872 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
873 if (!UserI)
874 return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
875 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
877 if (auto *CB = dyn_cast<CallBase>(UserI)) {
878 // For call site argument uses we can check if the argument is
879 // unused/dead.
880 if (CB->isArgOperand(&U)) {
881 const IRPosition &CSArgPos =
882 IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
883 return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
884 UsedAssumedInformation, CheckBBLivenessOnly,
885 DepClass);
887 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
888 const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
889 return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
890 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
891 } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
892 BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
893 return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
894 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
897 return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
898 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
901 bool Attributor::isAssumedDead(const Instruction &I,
902 const AbstractAttribute *QueryingAA,
903 const AAIsDead *FnLivenessAA,
904 bool &UsedAssumedInformation,
905 bool CheckBBLivenessOnly, DepClassTy DepClass) {
906 const IRPosition::CallBaseContext *CBCtx =
907 QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
909 if (ManifestAddedBlocks.contains(I.getParent()))
910 return false;
912 if (!FnLivenessAA)
913 FnLivenessAA =
914 lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
915 QueryingAA, DepClassTy::NONE);
917 // If we have a context instruction and a liveness AA we use it.
918 if (FnLivenessAA &&
919 FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
920 FnLivenessAA->isAssumedDead(&I)) {
921 if (QueryingAA)
922 recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
923 if (!FnLivenessAA->isKnownDead(&I))
924 UsedAssumedInformation = true;
925 return true;
928 if (CheckBBLivenessOnly)
929 return false;
931 const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
932 IRPosition::value(I, CBCtx), QueryingAA, DepClassTy::NONE);
933 // Don't check liveness for AAIsDead.
934 if (QueryingAA == &IsDeadAA)
935 return false;
937 if (IsDeadAA.isAssumedDead()) {
938 if (QueryingAA)
939 recordDependence(IsDeadAA, *QueryingAA, DepClass);
940 if (!IsDeadAA.isKnownDead())
941 UsedAssumedInformation = true;
942 return true;
945 return false;
948 bool Attributor::isAssumedDead(const IRPosition &IRP,
949 const AbstractAttribute *QueryingAA,
950 const AAIsDead *FnLivenessAA,
951 bool &UsedAssumedInformation,
952 bool CheckBBLivenessOnly, DepClassTy DepClass) {
953 Instruction *CtxI = IRP.getCtxI();
954 if (CtxI &&
955 isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
956 /* CheckBBLivenessOnly */ true,
957 CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
958 return true;
960 if (CheckBBLivenessOnly)
961 return false;
963 // If we haven't succeeded we query the specific liveness info for the IRP.
964 const AAIsDead *IsDeadAA;
965 if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
966 IsDeadAA = &getOrCreateAAFor<AAIsDead>(
967 IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
968 QueryingAA, DepClassTy::NONE);
969 else
970 IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
971 // Don't check liveness for AAIsDead.
972 if (QueryingAA == IsDeadAA)
973 return false;
975 if (IsDeadAA->isAssumedDead()) {
976 if (QueryingAA)
977 recordDependence(*IsDeadAA, *QueryingAA, DepClass);
978 if (!IsDeadAA->isKnownDead())
979 UsedAssumedInformation = true;
980 return true;
983 return false;
986 bool Attributor::isAssumedDead(const BasicBlock &BB,
987 const AbstractAttribute *QueryingAA,
988 const AAIsDead *FnLivenessAA,
989 DepClassTy DepClass) {
990 if (!FnLivenessAA)
991 FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
992 QueryingAA, DepClassTy::NONE);
993 if (FnLivenessAA->isAssumedDead(&BB)) {
994 if (QueryingAA)
995 recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
996 return true;
999 return false;
1002 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
1003 const AbstractAttribute &QueryingAA,
1004 const Value &V, bool CheckBBLivenessOnly,
1005 DepClassTy LivenessDepClass) {
1007 // Check the trivial case first as it catches void values.
1008 if (V.use_empty())
1009 return true;
1011 const IRPosition &IRP = QueryingAA.getIRPosition();
1012 SmallVector<const Use *, 16> Worklist;
1013 SmallPtrSet<const Use *, 16> Visited;
1015 for (const Use &U : V.uses())
1016 Worklist.push_back(&U);
1018 LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1019 << " initial uses to check\n");
1021 const Function *ScopeFn = IRP.getAnchorScope();
1022 const auto *LivenessAA =
1023 ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1024 DepClassTy::NONE)
1025 : nullptr;
1027 while (!Worklist.empty()) {
1028 const Use *U = Worklist.pop_back_val();
1029 if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1030 continue;
1031 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
1032 << *U->getUser() << "\n");
1033 bool UsedAssumedInformation = false;
1034 if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1035 CheckBBLivenessOnly, LivenessDepClass)) {
1036 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1037 continue;
1039 if (U->getUser()->isDroppable()) {
1040 LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
1041 continue;
1044 if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1045 if (&SI->getOperandUse(0) == U) {
1046 SmallSetVector<Value *, 4> PotentialCopies;
1047 if (AA::getPotentialCopiesOfStoredValue(*this, *SI, PotentialCopies,
1048 QueryingAA,
1049 UsedAssumedInformation)) {
1050 LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
1051 << PotentialCopies.size()
1052 << " potential copies instead!\n");
1053 for (Value *PotentialCopy : PotentialCopies)
1054 for (const Use &U : PotentialCopy->uses())
1055 Worklist.push_back(&U);
1056 continue;
1061 bool Follow = false;
1062 if (!Pred(*U, Follow))
1063 return false;
1064 if (!Follow)
1065 continue;
1066 for (const Use &UU : U->getUser()->uses())
1067 Worklist.push_back(&UU);
1070 return true;
1073 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1074 const AbstractAttribute &QueryingAA,
1075 bool RequireAllCallSites,
1076 bool &AllCallSitesKnown) {
1077 // We can try to determine information from
1078 // the call sites. However, this is only possible all call sites are known,
1079 // hence the function has internal linkage.
1080 const IRPosition &IRP = QueryingAA.getIRPosition();
1081 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1082 if (!AssociatedFunction) {
1083 LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1084 << "\n");
1085 AllCallSitesKnown = false;
1086 return false;
1089 return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1090 &QueryingAA, AllCallSitesKnown);
1093 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1094 const Function &Fn,
1095 bool RequireAllCallSites,
1096 const AbstractAttribute *QueryingAA,
1097 bool &AllCallSitesKnown) {
1098 if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1099 LLVM_DEBUG(
1100 dbgs()
1101 << "[Attributor] Function " << Fn.getName()
1102 << " has no internal linkage, hence not all call sites are known\n");
1103 AllCallSitesKnown = false;
1104 return false;
1107 // If we do not require all call sites we might not see all.
1108 AllCallSitesKnown = RequireAllCallSites;
1110 SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1111 for (unsigned u = 0; u < Uses.size(); ++u) {
1112 const Use &U = *Uses[u];
1113 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
1114 << *U.getUser() << "\n");
1115 bool UsedAssumedInformation = false;
1116 if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1117 /* CheckBBLivenessOnly */ true)) {
1118 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1119 continue;
1121 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1122 if (CE->isCast() && CE->getType()->isPointerTy() &&
1123 CE->getType()->getPointerElementType()->isFunctionTy()) {
1124 for (const Use &CEU : CE->uses())
1125 Uses.push_back(&CEU);
1126 continue;
1130 AbstractCallSite ACS(&U);
1131 if (!ACS) {
1132 LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1133 << " has non call site use " << *U.get() << " in "
1134 << *U.getUser() << "\n");
1135 // BlockAddress users are allowed.
1136 if (isa<BlockAddress>(U.getUser()))
1137 continue;
1138 return false;
1141 const Use *EffectiveUse =
1142 ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1143 if (!ACS.isCallee(EffectiveUse)) {
1144 if (!RequireAllCallSites)
1145 continue;
1146 LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
1147 << " is an invalid use of " << Fn.getName() << "\n");
1148 return false;
1151 // Make sure the arguments that can be matched between the call site and the
1152 // callee argee on their type. It is unlikely they do not and it doesn't
1153 // make sense for all attributes to know/care about this.
1154 assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1155 unsigned MinArgsParams =
1156 std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1157 for (unsigned u = 0; u < MinArgsParams; ++u) {
1158 Value *CSArgOp = ACS.getCallArgOperand(u);
1159 if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1160 LLVM_DEBUG(
1161 dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1162 << u << "@" << Fn.getName() << ": "
1163 << *Fn.getArg(u)->getType() << " vs. "
1164 << *ACS.getCallArgOperand(u)->getType() << "\n");
1165 return false;
1169 if (Pred(ACS))
1170 continue;
1172 LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1173 << *ACS.getInstruction() << "\n");
1174 return false;
1177 return true;
1180 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1181 // TODO: Maintain a cache of Values that are
1182 // on the pathway from a Argument to a Instruction that would effect the
1183 // liveness/return state etc.
1184 return EnableCallSiteSpecific;
1187 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1188 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1189 const AbstractAttribute &QueryingAA) {
1191 const IRPosition &IRP = QueryingAA.getIRPosition();
1192 // Since we need to provide return instructions we have to have an exact
1193 // definition.
1194 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1195 if (!AssociatedFunction)
1196 return false;
1198 // If this is a call site query we use the call site specific return values
1199 // and liveness information.
1200 // TODO: use the function scope once we have call site AAReturnedValues.
1201 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1202 const auto &AARetVal =
1203 getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1204 if (!AARetVal.getState().isValidState())
1205 return false;
1207 return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1210 bool Attributor::checkForAllReturnedValues(
1211 function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1213 const IRPosition &IRP = QueryingAA.getIRPosition();
1214 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1215 if (!AssociatedFunction)
1216 return false;
1218 // TODO: use the function scope once we have call site AAReturnedValues.
1219 const IRPosition &QueryIRP = IRPosition::function(
1220 *AssociatedFunction, QueryingAA.getCallBaseContext());
1221 const auto &AARetVal =
1222 getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1223 if (!AARetVal.getState().isValidState())
1224 return false;
1226 return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1227 [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1228 return Pred(RV);
1232 static bool checkForAllInstructionsImpl(
1233 Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1234 function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1235 const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1236 bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1237 bool CheckPotentiallyDead = false) {
1238 for (unsigned Opcode : Opcodes) {
1239 // Check if we have instructions with this opcode at all first.
1240 auto *Insts = OpcodeInstMap.lookup(Opcode);
1241 if (!Insts)
1242 continue;
1244 for (Instruction *I : *Insts) {
1245 // Skip dead instructions.
1246 if (A && !CheckPotentiallyDead &&
1247 A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
1248 UsedAssumedInformation, CheckBBLivenessOnly))
1249 continue;
1251 if (!Pred(*I))
1252 return false;
1255 return true;
1258 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1259 const AbstractAttribute &QueryingAA,
1260 const ArrayRef<unsigned> &Opcodes,
1261 bool &UsedAssumedInformation,
1262 bool CheckBBLivenessOnly,
1263 bool CheckPotentiallyDead) {
1265 const IRPosition &IRP = QueryingAA.getIRPosition();
1266 // Since we need to provide instructions we have to have an exact definition.
1267 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1268 if (!AssociatedFunction)
1269 return false;
1271 if (AssociatedFunction->isDeclaration())
1272 return false;
1274 // TODO: use the function scope once we have call site AAReturnedValues.
1275 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1276 const auto *LivenessAA =
1277 (CheckBBLivenessOnly || CheckPotentiallyDead)
1278 ? nullptr
1279 : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1281 auto &OpcodeInstMap =
1282 InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
1283 if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1284 LivenessAA, Opcodes, UsedAssumedInformation,
1285 CheckBBLivenessOnly, CheckPotentiallyDead))
1286 return false;
1288 return true;
1291 bool Attributor::checkForAllReadWriteInstructions(
1292 function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1293 bool &UsedAssumedInformation) {
1295 const Function *AssociatedFunction =
1296 QueryingAA.getIRPosition().getAssociatedFunction();
1297 if (!AssociatedFunction)
1298 return false;
1300 // TODO: use the function scope once we have call site AAReturnedValues.
1301 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1302 const auto &LivenessAA =
1303 getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1305 for (Instruction *I :
1306 InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1307 // Skip dead instructions.
1308 if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA,
1309 UsedAssumedInformation))
1310 continue;
1312 if (!Pred(*I))
1313 return false;
1316 return true;
1319 void Attributor::runTillFixpoint() {
1320 TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1321 LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1322 << DG.SyntheticRoot.Deps.size()
1323 << " abstract attributes.\n");
1325 // Now that all abstract attributes are collected and initialized we start
1326 // the abstract analysis.
1328 unsigned IterationCounter = 1;
1329 unsigned MaxFixedPointIterations;
1330 if (MaxFixpointIterations)
1331 MaxFixedPointIterations = MaxFixpointIterations.getValue();
1332 else
1333 MaxFixedPointIterations = SetFixpointIterations;
1335 SmallVector<AbstractAttribute *, 32> ChangedAAs;
1336 SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1337 Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1339 do {
1340 // Remember the size to determine new attributes.
1341 size_t NumAAs = DG.SyntheticRoot.Deps.size();
1342 LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1343 << ", Worklist size: " << Worklist.size() << "\n");
1345 // For invalid AAs we can fix dependent AAs that have a required dependence,
1346 // thereby folding long dependence chains in a single step without the need
1347 // to run updates.
1348 for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1349 AbstractAttribute *InvalidAA = InvalidAAs[u];
1351 // Check the dependences to fast track invalidation.
1352 LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1353 << InvalidAA->Deps.size()
1354 << " required & optional dependences\n");
1355 while (!InvalidAA->Deps.empty()) {
1356 const auto &Dep = InvalidAA->Deps.back();
1357 InvalidAA->Deps.pop_back();
1358 AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1359 if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1360 Worklist.insert(DepAA);
1361 continue;
1363 DepAA->getState().indicatePessimisticFixpoint();
1364 assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1365 if (!DepAA->getState().isValidState())
1366 InvalidAAs.insert(DepAA);
1367 else
1368 ChangedAAs.push_back(DepAA);
1372 // Add all abstract attributes that are potentially dependent on one that
1373 // changed to the work list.
1374 for (AbstractAttribute *ChangedAA : ChangedAAs)
1375 while (!ChangedAA->Deps.empty()) {
1376 Worklist.insert(
1377 cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1378 ChangedAA->Deps.pop_back();
1381 LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1382 << ", Worklist+Dependent size: " << Worklist.size()
1383 << "\n");
1385 // Reset the changed and invalid set.
1386 ChangedAAs.clear();
1387 InvalidAAs.clear();
1389 // Update all abstract attribute in the work list and record the ones that
1390 // changed.
1391 for (AbstractAttribute *AA : Worklist) {
1392 const auto &AAState = AA->getState();
1393 if (!AAState.isAtFixpoint())
1394 if (updateAA(*AA) == ChangeStatus::CHANGED)
1395 ChangedAAs.push_back(AA);
1397 // Use the InvalidAAs vector to propagate invalid states fast transitively
1398 // without requiring updates.
1399 if (!AAState.isValidState())
1400 InvalidAAs.insert(AA);
1403 // Add attributes to the changed set if they have been created in the last
1404 // iteration.
1405 ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1406 DG.SyntheticRoot.end());
1408 // Reset the work list and repopulate with the changed abstract attributes.
1409 // Note that dependent ones are added above.
1410 Worklist.clear();
1411 Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1413 } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations ||
1414 VerifyMaxFixpointIterations));
1416 LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1417 << IterationCounter << "/" << MaxFixpointIterations
1418 << " iterations\n");
1420 // Reset abstract arguments not settled in a sound fixpoint by now. This
1421 // happens when we stopped the fixpoint iteration early. Note that only the
1422 // ones marked as "changed" *and* the ones transitively depending on them
1423 // need to be reverted to a pessimistic state. Others might not be in a
1424 // fixpoint state but we can use the optimistic results for them anyway.
1425 SmallPtrSet<AbstractAttribute *, 32> Visited;
1426 for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1427 AbstractAttribute *ChangedAA = ChangedAAs[u];
1428 if (!Visited.insert(ChangedAA).second)
1429 continue;
1431 AbstractState &State = ChangedAA->getState();
1432 if (!State.isAtFixpoint()) {
1433 State.indicatePessimisticFixpoint();
1435 NumAttributesTimedOut++;
1438 while (!ChangedAA->Deps.empty()) {
1439 ChangedAAs.push_back(
1440 cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1441 ChangedAA->Deps.pop_back();
1445 LLVM_DEBUG({
1446 if (!Visited.empty())
1447 dbgs() << "\n[Attributor] Finalized " << Visited.size()
1448 << " abstract attributes.\n";
1451 if (VerifyMaxFixpointIterations &&
1452 IterationCounter != MaxFixedPointIterations) {
1453 errs() << "\n[Attributor] Fixpoint iteration done after: "
1454 << IterationCounter << "/" << MaxFixedPointIterations
1455 << " iterations\n";
1456 llvm_unreachable("The fixpoint was not reached with exactly the number of "
1457 "specified iterations!");
1461 ChangeStatus Attributor::manifestAttributes() {
1462 TimeTraceScope TimeScope("Attributor::manifestAttributes");
1463 size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1465 unsigned NumManifested = 0;
1466 unsigned NumAtFixpoint = 0;
1467 ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1468 for (auto &DepAA : DG.SyntheticRoot.Deps) {
1469 AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1470 AbstractState &State = AA->getState();
1472 // If there is not already a fixpoint reached, we can now take the
1473 // optimistic state. This is correct because we enforced a pessimistic one
1474 // on abstract attributes that were transitively dependent on a changed one
1475 // already above.
1476 if (!State.isAtFixpoint())
1477 State.indicateOptimisticFixpoint();
1479 // We must not manifest Attributes that use Callbase info.
1480 if (AA->hasCallBaseContext())
1481 continue;
1482 // If the state is invalid, we do not try to manifest it.
1483 if (!State.isValidState())
1484 continue;
1486 // Skip dead code.
1487 bool UsedAssumedInformation = false;
1488 if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1489 /* CheckBBLivenessOnly */ true))
1490 continue;
1491 // Check if the manifest debug counter that allows skipping manifestation of
1492 // AAs
1493 if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1494 continue;
1495 // Manifest the state and record if we changed the IR.
1496 ChangeStatus LocalChange = AA->manifest(*this);
1497 if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1498 AA->trackStatistics();
1499 LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1500 << "\n");
1502 ManifestChange = ManifestChange | LocalChange;
1504 NumAtFixpoint++;
1505 NumManifested += (LocalChange == ChangeStatus::CHANGED);
1508 (void)NumManifested;
1509 (void)NumAtFixpoint;
1510 LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1511 << " arguments while " << NumAtFixpoint
1512 << " were in a valid fixpoint state\n");
1514 NumAttributesManifested += NumManifested;
1515 NumAttributesValidFixpoint += NumAtFixpoint;
1517 (void)NumFinalAAs;
1518 if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1519 for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1520 errs() << "Unexpected abstract attribute: "
1521 << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1522 << " :: "
1523 << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1524 ->getIRPosition()
1525 .getAssociatedValue()
1526 << "\n";
1527 llvm_unreachable("Expected the final number of abstract attributes to "
1528 "remain unchanged!");
1530 return ManifestChange;
1533 void Attributor::identifyDeadInternalFunctions() {
1534 // Early exit if we don't intend to delete functions.
1535 if (!DeleteFns)
1536 return;
1538 // Identify dead internal functions and delete them. This happens outside
1539 // the other fixpoint analysis as we might treat potentially dead functions
1540 // as live to lower the number of iterations. If they happen to be dead, the
1541 // below fixpoint loop will identify and eliminate them.
1542 SmallVector<Function *, 8> InternalFns;
1543 for (Function *F : Functions)
1544 if (F->hasLocalLinkage())
1545 InternalFns.push_back(F);
1547 SmallPtrSet<Function *, 8> LiveInternalFns;
1548 bool FoundLiveInternal = true;
1549 while (FoundLiveInternal) {
1550 FoundLiveInternal = false;
1551 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1552 Function *F = InternalFns[u];
1553 if (!F)
1554 continue;
1556 bool AllCallSitesKnown;
1557 if (checkForAllCallSites(
1558 [&](AbstractCallSite ACS) {
1559 Function *Callee = ACS.getInstruction()->getFunction();
1560 return ToBeDeletedFunctions.count(Callee) ||
1561 (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1562 !LiveInternalFns.count(Callee));
1564 *F, true, nullptr, AllCallSitesKnown)) {
1565 continue;
1568 LiveInternalFns.insert(F);
1569 InternalFns[u] = nullptr;
1570 FoundLiveInternal = true;
1574 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1575 if (Function *F = InternalFns[u])
1576 ToBeDeletedFunctions.insert(F);
1579 ChangeStatus Attributor::cleanupIR() {
1580 TimeTraceScope TimeScope("Attributor::cleanupIR");
1581 // Delete stuff at the end to avoid invalid references and a nice order.
1582 LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
1583 << ToBeDeletedFunctions.size() << " functions and "
1584 << ToBeDeletedBlocks.size() << " blocks and "
1585 << ToBeDeletedInsts.size() << " instructions and "
1586 << ToBeChangedValues.size() << " values and "
1587 << ToBeChangedUses.size() << " uses. "
1588 << "Preserve manifest added " << ManifestAddedBlocks.size()
1589 << " blocks\n");
1591 SmallVector<WeakTrackingVH, 32> DeadInsts;
1592 SmallVector<Instruction *, 32> TerminatorsToFold;
1594 auto ReplaceUse = [&](Use *U, Value *NewV) {
1595 Value *OldV = U->get();
1597 // If we plan to replace NewV we need to update it at this point.
1598 do {
1599 const auto &Entry = ToBeChangedValues.lookup(NewV);
1600 if (!Entry.first)
1601 break;
1602 NewV = Entry.first;
1603 } while (true);
1605 // Do not replace uses in returns if the value is a must-tail call we will
1606 // not delete.
1607 if (auto *RI = dyn_cast<ReturnInst>(U->getUser())) {
1608 if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1609 if (CI->isMustTailCall() &&
1610 (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller())))
1611 return;
1612 // If we rewrite a return and the new value is not an argument, strip the
1613 // `returned` attribute as it is wrong now.
1614 if (!isa<Argument>(NewV))
1615 for (auto &Arg : RI->getFunction()->args())
1616 Arg.removeAttr(Attribute::Returned);
1619 // Do not perform call graph altering changes outside the SCC.
1620 if (auto *CB = dyn_cast<CallBase>(U->getUser()))
1621 if (CB->isCallee(U) && !isRunOn(*CB->getCaller()))
1622 return;
1624 LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1625 << " instead of " << *OldV << "\n");
1626 U->set(NewV);
1628 if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1629 CGModifiedFunctions.insert(I->getFunction());
1630 if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1631 isInstructionTriviallyDead(I))
1632 DeadInsts.push_back(I);
1634 if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1635 auto *CB = cast<CallBase>(U->getUser());
1636 if (CB->isArgOperand(U)) {
1637 unsigned Idx = CB->getArgOperandNo(U);
1638 CB->removeParamAttr(Idx, Attribute::NoUndef);
1639 Function *Fn = CB->getCalledFunction();
1640 if (Fn && Fn->arg_size() > Idx)
1641 Fn->removeParamAttr(Idx, Attribute::NoUndef);
1644 if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1645 Instruction *UserI = cast<Instruction>(U->getUser());
1646 if (isa<UndefValue>(NewV)) {
1647 ToBeChangedToUnreachableInsts.insert(UserI);
1648 } else {
1649 TerminatorsToFold.push_back(UserI);
1654 for (auto &It : ToBeChangedUses) {
1655 Use *U = It.first;
1656 Value *NewV = It.second;
1657 ReplaceUse(U, NewV);
1660 SmallVector<Use *, 4> Uses;
1661 for (auto &It : ToBeChangedValues) {
1662 Value *OldV = It.first;
1663 auto &Entry = It.second;
1664 Value *NewV = Entry.first;
1665 Uses.clear();
1666 for (auto &U : OldV->uses())
1667 if (Entry.second || !U.getUser()->isDroppable())
1668 Uses.push_back(&U);
1669 for (Use *U : Uses)
1670 ReplaceUse(U, NewV);
1673 for (auto &V : InvokeWithDeadSuccessor)
1674 if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1675 assert(isRunOn(*II->getFunction()) &&
1676 "Cannot replace an invoke outside the current SCC!");
1677 bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1678 bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1679 bool Invoke2CallAllowed =
1680 !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1681 assert((UnwindBBIsDead || NormalBBIsDead) &&
1682 "Invoke does not have dead successors!");
1683 BasicBlock *BB = II->getParent();
1684 BasicBlock *NormalDestBB = II->getNormalDest();
1685 if (UnwindBBIsDead) {
1686 Instruction *NormalNextIP = &NormalDestBB->front();
1687 if (Invoke2CallAllowed) {
1688 changeToCall(II);
1689 NormalNextIP = BB->getTerminator();
1691 if (NormalBBIsDead)
1692 ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1693 } else {
1694 assert(NormalBBIsDead && "Broken invariant!");
1695 if (!NormalDestBB->getUniquePredecessor())
1696 NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1697 ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1700 for (Instruction *I : TerminatorsToFold) {
1701 if (!isRunOn(*I->getFunction()))
1702 continue;
1703 CGModifiedFunctions.insert(I->getFunction());
1704 ConstantFoldTerminator(I->getParent());
1706 for (auto &V : ToBeChangedToUnreachableInsts)
1707 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1708 if (!isRunOn(*I->getFunction()))
1709 continue;
1710 CGModifiedFunctions.insert(I->getFunction());
1711 changeToUnreachable(I);
1714 for (auto &V : ToBeDeletedInsts) {
1715 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1716 if (auto *CB = dyn_cast<CallBase>(I)) {
1717 if (!isRunOn(*I->getFunction()))
1718 continue;
1719 if (!isa<IntrinsicInst>(CB))
1720 CGUpdater.removeCallSite(*CB);
1722 I->dropDroppableUses();
1723 CGModifiedFunctions.insert(I->getFunction());
1724 if (!I->getType()->isVoidTy())
1725 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1726 if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1727 DeadInsts.push_back(I);
1728 else
1729 I->eraseFromParent();
1733 llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) {
1734 return !I || !isRunOn(*cast<Instruction>(I)->getFunction());
1737 LLVM_DEBUG({
1738 dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
1739 for (auto &I : DeadInsts)
1740 if (I)
1741 dbgs() << " - " << *I << "\n";
1744 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1746 if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1747 SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1748 ToBeDeletedBBs.reserve(NumDeadBlocks);
1749 for (BasicBlock *BB : ToBeDeletedBlocks) {
1750 assert(isRunOn(*BB->getParent()) &&
1751 "Cannot delete a block outside the current SCC!");
1752 CGModifiedFunctions.insert(BB->getParent());
1753 // Do not delete BBs added during manifests of AAs.
1754 if (ManifestAddedBlocks.contains(BB))
1755 continue;
1756 ToBeDeletedBBs.push_back(BB);
1758 // Actually we do not delete the blocks but squash them into a single
1759 // unreachable but untangling branches that jump here is something we need
1760 // to do in a more generic way.
1761 DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1764 identifyDeadInternalFunctions();
1766 // Rewrite the functions as requested during manifest.
1767 ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1769 for (Function *Fn : CGModifiedFunctions)
1770 if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
1771 CGUpdater.reanalyzeFunction(*Fn);
1773 for (Function *Fn : ToBeDeletedFunctions) {
1774 if (!Functions.count(Fn))
1775 continue;
1776 CGUpdater.removeFunction(*Fn);
1779 if (!ToBeChangedUses.empty())
1780 ManifestChange = ChangeStatus::CHANGED;
1782 if (!ToBeChangedToUnreachableInsts.empty())
1783 ManifestChange = ChangeStatus::CHANGED;
1785 if (!ToBeDeletedFunctions.empty())
1786 ManifestChange = ChangeStatus::CHANGED;
1788 if (!ToBeDeletedBlocks.empty())
1789 ManifestChange = ChangeStatus::CHANGED;
1791 if (!ToBeDeletedInsts.empty())
1792 ManifestChange = ChangeStatus::CHANGED;
1794 if (!InvokeWithDeadSuccessor.empty())
1795 ManifestChange = ChangeStatus::CHANGED;
1797 if (!DeadInsts.empty())
1798 ManifestChange = ChangeStatus::CHANGED;
1800 NumFnDeleted += ToBeDeletedFunctions.size();
1802 LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1803 << " functions after manifest.\n");
1805 #ifdef EXPENSIVE_CHECKS
1806 for (Function *F : Functions) {
1807 if (ToBeDeletedFunctions.count(F))
1808 continue;
1809 assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1811 #endif
1813 return ManifestChange;
1816 ChangeStatus Attributor::run() {
1817 TimeTraceScope TimeScope("Attributor::run");
1818 AttributorCallGraph ACallGraph(*this);
1820 if (PrintCallGraph)
1821 ACallGraph.populateAll();
1823 Phase = AttributorPhase::UPDATE;
1824 runTillFixpoint();
1826 // dump graphs on demand
1827 if (DumpDepGraph)
1828 DG.dumpGraph();
1830 if (ViewDepGraph)
1831 DG.viewGraph();
1833 if (PrintDependencies)
1834 DG.print();
1836 Phase = AttributorPhase::MANIFEST;
1837 ChangeStatus ManifestChange = manifestAttributes();
1839 Phase = AttributorPhase::CLEANUP;
1840 ChangeStatus CleanupChange = cleanupIR();
1842 if (PrintCallGraph)
1843 ACallGraph.print();
1845 return ManifestChange | CleanupChange;
1848 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1849 TimeTraceScope TimeScope(
1850 AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1851 "::updateAA");
1852 assert(Phase == AttributorPhase::UPDATE &&
1853 "We can update AA only in the update stage!");
1855 // Use a new dependence vector for this update.
1856 DependenceVector DV;
1857 DependenceStack.push_back(&DV);
1859 auto &AAState = AA.getState();
1860 ChangeStatus CS = ChangeStatus::UNCHANGED;
1861 bool UsedAssumedInformation = false;
1862 if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
1863 /* CheckBBLivenessOnly */ true))
1864 CS = AA.update(*this);
1866 if (DV.empty()) {
1867 // If the attribute did not query any non-fix information, the state
1868 // will not change and we can indicate that right away.
1869 AAState.indicateOptimisticFixpoint();
1872 if (!AAState.isAtFixpoint())
1873 rememberDependences();
1875 // Verify the stack was used properly, that is we pop the dependence vector we
1876 // put there earlier.
1877 DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1878 (void)PoppedDV;
1879 assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1881 return CS;
1884 void Attributor::createShallowWrapper(Function &F) {
1885 assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1887 Module &M = *F.getParent();
1888 LLVMContext &Ctx = M.getContext();
1889 FunctionType *FnTy = F.getFunctionType();
1891 Function *Wrapper =
1892 Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1893 F.setName(""); // set the inside function anonymous
1894 M.getFunctionList().insert(F.getIterator(), Wrapper);
1896 F.setLinkage(GlobalValue::InternalLinkage);
1898 F.replaceAllUsesWith(Wrapper);
1899 assert(F.use_empty() && "Uses remained after wrapper was created!");
1901 // Move the COMDAT section to the wrapper.
1902 // TODO: Check if we need to keep it for F as well.
1903 Wrapper->setComdat(F.getComdat());
1904 F.setComdat(nullptr);
1906 // Copy all metadata and attributes but keep them on F as well.
1907 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1908 F.getAllMetadata(MDs);
1909 for (auto MDIt : MDs)
1910 Wrapper->addMetadata(MDIt.first, *MDIt.second);
1911 Wrapper->setAttributes(F.getAttributes());
1913 // Create the call in the wrapper.
1914 BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1916 SmallVector<Value *, 8> Args;
1917 Argument *FArgIt = F.arg_begin();
1918 for (Argument &Arg : Wrapper->args()) {
1919 Args.push_back(&Arg);
1920 Arg.setName((FArgIt++)->getName());
1923 CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1924 CI->setTailCall(true);
1925 CI->addFnAttr(Attribute::NoInline);
1926 ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1928 NumFnShallowWrappersCreated++;
1931 bool Attributor::isInternalizable(Function &F) {
1932 if (F.isDeclaration() || F.hasLocalLinkage() ||
1933 GlobalValue::isInterposableLinkage(F.getLinkage()))
1934 return false;
1935 return true;
1938 Function *Attributor::internalizeFunction(Function &F, bool Force) {
1939 if (!AllowDeepWrapper && !Force)
1940 return nullptr;
1941 if (!isInternalizable(F))
1942 return nullptr;
1944 SmallPtrSet<Function *, 2> FnSet = {&F};
1945 DenseMap<Function *, Function *> InternalizedFns;
1946 internalizeFunctions(FnSet, InternalizedFns);
1948 return InternalizedFns[&F];
1951 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
1952 DenseMap<Function *, Function *> &FnMap) {
1953 for (Function *F : FnSet)
1954 if (!Attributor::isInternalizable(*F))
1955 return false;
1957 FnMap.clear();
1958 // Generate the internalized version of each function.
1959 for (Function *F : FnSet) {
1960 Module &M = *F->getParent();
1961 FunctionType *FnTy = F->getFunctionType();
1963 // Create a copy of the current function
1964 Function *Copied =
1965 Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
1966 F->getName() + ".internalized");
1967 ValueToValueMapTy VMap;
1968 auto *NewFArgIt = Copied->arg_begin();
1969 for (auto &Arg : F->args()) {
1970 auto ArgName = Arg.getName();
1971 NewFArgIt->setName(ArgName);
1972 VMap[&Arg] = &(*NewFArgIt++);
1974 SmallVector<ReturnInst *, 8> Returns;
1976 // Copy the body of the original function to the new one
1977 CloneFunctionInto(Copied, F, VMap,
1978 CloneFunctionChangeType::LocalChangesOnly, Returns);
1980 // Set the linakage and visibility late as CloneFunctionInto has some
1981 // implicit requirements.
1982 Copied->setVisibility(GlobalValue::DefaultVisibility);
1983 Copied->setLinkage(GlobalValue::PrivateLinkage);
1985 // Copy metadata
1986 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1987 F->getAllMetadata(MDs);
1988 for (auto MDIt : MDs)
1989 if (!Copied->hasMetadata())
1990 Copied->addMetadata(MDIt.first, *MDIt.second);
1992 M.getFunctionList().insert(F->getIterator(), Copied);
1993 Copied->setDSOLocal(true);
1994 FnMap[F] = Copied;
1997 // Replace all uses of the old function with the new internalized function
1998 // unless the caller is a function that was just internalized.
1999 for (Function *F : FnSet) {
2000 auto &InternalizedFn = FnMap[F];
2001 auto IsNotInternalized = [&](Use &U) -> bool {
2002 if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2003 return !FnMap.lookup(CB->getCaller());
2004 return false;
2006 F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2009 return true;
2012 bool Attributor::isValidFunctionSignatureRewrite(
2013 Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2015 if (!RewriteSignatures)
2016 return false;
2018 Function *Fn = Arg.getParent();
2019 auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2020 // Forbid the call site to cast the function return type. If we need to
2021 // rewrite these functions we need to re-create a cast for the new call site
2022 // (if the old had uses).
2023 if (!ACS.getCalledFunction() ||
2024 ACS.getInstruction()->getType() !=
2025 ACS.getCalledFunction()->getReturnType())
2026 return false;
2027 if (ACS.getCalledOperand()->getType() != Fn->getType())
2028 return false;
2029 // Forbid must-tail calls for now.
2030 return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2033 // Avoid var-arg functions for now.
2034 if (Fn->isVarArg()) {
2035 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2036 return false;
2039 // Avoid functions with complicated argument passing semantics.
2040 AttributeList FnAttributeList = Fn->getAttributes();
2041 if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2042 FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2043 FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2044 FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2045 LLVM_DEBUG(
2046 dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2047 return false;
2050 // Avoid callbacks for now.
2051 bool AllCallSitesKnown;
2052 if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2053 AllCallSitesKnown)) {
2054 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2055 return false;
2058 auto InstPred = [](Instruction &I) {
2059 if (auto *CI = dyn_cast<CallInst>(&I))
2060 return !CI->isMustTailCall();
2061 return true;
2064 // Forbid must-tail calls for now.
2065 // TODO:
2066 bool UsedAssumedInformation = false;
2067 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2068 if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2069 nullptr, {Instruction::Call},
2070 UsedAssumedInformation)) {
2071 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2072 return false;
2075 return true;
2078 bool Attributor::registerFunctionSignatureRewrite(
2079 Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2080 ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2081 ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2082 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2083 << Arg.getParent()->getName() << " with "
2084 << ReplacementTypes.size() << " replacements\n");
2085 assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2086 "Cannot register an invalid rewrite");
2088 Function *Fn = Arg.getParent();
2089 SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2090 ArgumentReplacementMap[Fn];
2091 if (ARIs.empty())
2092 ARIs.resize(Fn->arg_size());
2094 // If we have a replacement already with less than or equal new arguments,
2095 // ignore this request.
2096 std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2097 if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2098 LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2099 return false;
2102 // If we have a replacement already but we like the new one better, delete
2103 // the old.
2104 ARI.reset();
2106 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2107 << Arg.getParent()->getName() << " with "
2108 << ReplacementTypes.size() << " replacements\n");
2110 // Remember the replacement.
2111 ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2112 std::move(CalleeRepairCB),
2113 std::move(ACSRepairCB)));
2115 return true;
2118 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2119 bool Result = true;
2120 #ifndef NDEBUG
2121 if (SeedAllowList.size() != 0)
2122 Result =
2123 std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
2124 Function *Fn = AA.getAnchorScope();
2125 if (FunctionSeedAllowList.size() != 0 && Fn)
2126 Result &= std::count(FunctionSeedAllowList.begin(),
2127 FunctionSeedAllowList.end(), Fn->getName());
2128 #endif
2129 return Result;
2132 ChangeStatus Attributor::rewriteFunctionSignatures(
2133 SmallPtrSetImpl<Function *> &ModifiedFns) {
2134 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2136 for (auto &It : ArgumentReplacementMap) {
2137 Function *OldFn = It.getFirst();
2139 // Deleted functions do not require rewrites.
2140 if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2141 continue;
2143 const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2144 It.getSecond();
2145 assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2147 SmallVector<Type *, 16> NewArgumentTypes;
2148 SmallVector<AttributeSet, 16> NewArgumentAttributes;
2150 // Collect replacement argument types and copy over existing attributes.
2151 AttributeList OldFnAttributeList = OldFn->getAttributes();
2152 for (Argument &Arg : OldFn->args()) {
2153 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2154 ARIs[Arg.getArgNo()]) {
2155 NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2156 ARI->ReplacementTypes.end());
2157 NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2158 AttributeSet());
2159 } else {
2160 NewArgumentTypes.push_back(Arg.getType());
2161 NewArgumentAttributes.push_back(
2162 OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2166 FunctionType *OldFnTy = OldFn->getFunctionType();
2167 Type *RetTy = OldFnTy->getReturnType();
2169 // Construct the new function type using the new arguments types.
2170 FunctionType *NewFnTy =
2171 FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2173 LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
2174 << "' from " << *OldFn->getFunctionType() << " to "
2175 << *NewFnTy << "\n");
2177 // Create the new function body and insert it into the module.
2178 Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2179 OldFn->getAddressSpace(), "");
2180 Functions.insert(NewFn);
2181 OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2182 NewFn->takeName(OldFn);
2183 NewFn->copyAttributesFrom(OldFn);
2185 // Patch the pointer to LLVM function in debug info descriptor.
2186 NewFn->setSubprogram(OldFn->getSubprogram());
2187 OldFn->setSubprogram(nullptr);
2189 // Recompute the parameter attributes list based on the new arguments for
2190 // the function.
2191 LLVMContext &Ctx = OldFn->getContext();
2192 NewFn->setAttributes(AttributeList::get(
2193 Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2194 NewArgumentAttributes));
2196 // Since we have now created the new function, splice the body of the old
2197 // function right into the new function, leaving the old rotting hulk of the
2198 // function empty.
2199 NewFn->getBasicBlockList().splice(NewFn->begin(),
2200 OldFn->getBasicBlockList());
2202 // Fixup block addresses to reference new function.
2203 SmallVector<BlockAddress *, 8u> BlockAddresses;
2204 for (User *U : OldFn->users())
2205 if (auto *BA = dyn_cast<BlockAddress>(U))
2206 BlockAddresses.push_back(BA);
2207 for (auto *BA : BlockAddresses)
2208 BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2210 // Set of all "call-like" instructions that invoke the old function mapped
2211 // to their new replacements.
2212 SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2214 // Callback to create a new "call-like" instruction for a given one.
2215 auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2216 CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2217 const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2219 // Collect the new argument operands for the replacement call site.
2220 SmallVector<Value *, 16> NewArgOperands;
2221 SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2222 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2223 unsigned NewFirstArgNum = NewArgOperands.size();
2224 (void)NewFirstArgNum; // only used inside assert.
2225 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2226 ARIs[OldArgNum]) {
2227 if (ARI->ACSRepairCB)
2228 ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2229 assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
2230 NewArgOperands.size() &&
2231 "ACS repair callback did not provide as many operand as new "
2232 "types were registered!");
2233 // TODO: Exose the attribute set to the ACS repair callback
2234 NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2235 AttributeSet());
2236 } else {
2237 NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2238 NewArgOperandAttributes.push_back(
2239 OldCallAttributeList.getParamAttrs(OldArgNum));
2243 assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
2244 "Mismatch # argument operands vs. # argument operand attributes!");
2245 assert(NewArgOperands.size() == NewFn->arg_size() &&
2246 "Mismatch # argument operands vs. # function arguments!");
2248 SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2249 OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2251 // Create a new call or invoke instruction to replace the old one.
2252 CallBase *NewCB;
2253 if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2254 NewCB =
2255 InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2256 NewArgOperands, OperandBundleDefs, "", OldCB);
2257 } else {
2258 auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2259 "", OldCB);
2260 NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2261 NewCB = NewCI;
2264 // Copy over various properties and the new attributes.
2265 NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2266 NewCB->setCallingConv(OldCB->getCallingConv());
2267 NewCB->takeName(OldCB);
2268 NewCB->setAttributes(AttributeList::get(
2269 Ctx, OldCallAttributeList.getFnAttrs(),
2270 OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2272 CallSitePairs.push_back({OldCB, NewCB});
2273 return true;
2276 // Use the CallSiteReplacementCreator to create replacement call sites.
2277 bool AllCallSitesKnown;
2278 bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2279 true, nullptr, AllCallSitesKnown);
2280 (void)Success;
2281 assert(Success && "Assumed call site replacement to succeed!");
2283 // Rewire the arguments.
2284 Argument *OldFnArgIt = OldFn->arg_begin();
2285 Argument *NewFnArgIt = NewFn->arg_begin();
2286 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2287 ++OldArgNum, ++OldFnArgIt) {
2288 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2289 ARIs[OldArgNum]) {
2290 if (ARI->CalleeRepairCB)
2291 ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2292 NewFnArgIt += ARI->ReplacementTypes.size();
2293 } else {
2294 NewFnArgIt->takeName(&*OldFnArgIt);
2295 OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2296 ++NewFnArgIt;
2300 // Eliminate the instructions *after* we visited all of them.
2301 for (auto &CallSitePair : CallSitePairs) {
2302 CallBase &OldCB = *CallSitePair.first;
2303 CallBase &NewCB = *CallSitePair.second;
2304 assert(OldCB.getType() == NewCB.getType() &&
2305 "Cannot handle call sites with different types!");
2306 ModifiedFns.insert(OldCB.getFunction());
2307 CGUpdater.replaceCallSite(OldCB, NewCB);
2308 OldCB.replaceAllUsesWith(&NewCB);
2309 OldCB.eraseFromParent();
2312 // Replace the function in the call graph (if any).
2313 CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2315 // If the old function was modified and needed to be reanalyzed, the new one
2316 // does now.
2317 if (ModifiedFns.erase(OldFn))
2318 ModifiedFns.insert(NewFn);
2320 Changed = ChangeStatus::CHANGED;
2323 return Changed;
2326 void InformationCache::initializeInformationCache(const Function &CF,
2327 FunctionInfo &FI) {
2328 // As we do not modify the function here we can remove the const
2329 // withouth breaking implicit assumptions. At the end of the day, we could
2330 // initialize the cache eagerly which would look the same to the users.
2331 Function &F = const_cast<Function &>(CF);
2333 // Walk all instructions to find interesting instructions that might be
2334 // queried by abstract attributes during their initialization or update.
2335 // This has to happen before we create attributes.
2337 for (Instruction &I : instructions(&F)) {
2338 bool IsInterestingOpcode = false;
2340 // To allow easy access to all instructions in a function with a given
2341 // opcode we store them in the InfoCache. As not all opcodes are interesting
2342 // to concrete attributes we only cache the ones that are as identified in
2343 // the following switch.
2344 // Note: There are no concrete attributes now so this is initially empty.
2345 switch (I.getOpcode()) {
2346 default:
2347 assert(!isa<CallBase>(&I) &&
2348 "New call base instruction type needs to be known in the "
2349 "Attributor.");
2350 break;
2351 case Instruction::Call:
2352 // Calls are interesting on their own, additionally:
2353 // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2354 // For `must-tail` calls we remember the caller and callee.
2355 if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2356 fillMapFromAssume(*Assume, KnowledgeMap);
2357 } else if (cast<CallInst>(I).isMustTailCall()) {
2358 FI.ContainsMustTailCall = true;
2359 if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2360 getFunctionInfo(*Callee).CalledViaMustTail = true;
2362 LLVM_FALLTHROUGH;
2363 case Instruction::CallBr:
2364 case Instruction::Invoke:
2365 case Instruction::CleanupRet:
2366 case Instruction::CatchSwitch:
2367 case Instruction::AtomicRMW:
2368 case Instruction::AtomicCmpXchg:
2369 case Instruction::Br:
2370 case Instruction::Resume:
2371 case Instruction::Ret:
2372 case Instruction::Load:
2373 // The alignment of a pointer is interesting for loads.
2374 case Instruction::Store:
2375 // The alignment of a pointer is interesting for stores.
2376 case Instruction::Alloca:
2377 case Instruction::AddrSpaceCast:
2378 IsInterestingOpcode = true;
2380 if (IsInterestingOpcode) {
2381 auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2382 if (!Insts)
2383 Insts = new (Allocator) InstructionVectorTy();
2384 Insts->push_back(&I);
2386 if (I.mayReadOrWriteMemory())
2387 FI.RWInsts.push_back(&I);
2390 if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2391 isInlineViable(F).isSuccess())
2392 InlineableFunctions.insert(&F);
2395 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2396 return AG.getAnalysis<AAManager>(F);
2399 InformationCache::FunctionInfo::~FunctionInfo() {
2400 // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2401 // manually destroy them.
2402 for (auto &It : OpcodeInstMap)
2403 It.getSecond()->~InstructionVectorTy();
2406 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2407 const AbstractAttribute &ToAA,
2408 DepClassTy DepClass) {
2409 if (DepClass == DepClassTy::NONE)
2410 return;
2411 // If we are outside of an update, thus before the actual fixpoint iteration
2412 // started (= when we create AAs), we do not track dependences because we will
2413 // put all AAs into the initial worklist anyway.
2414 if (DependenceStack.empty())
2415 return;
2416 if (FromAA.getState().isAtFixpoint())
2417 return;
2418 DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2421 void Attributor::rememberDependences() {
2422 assert(!DependenceStack.empty() && "No dependences to remember!");
2424 for (DepInfo &DI : *DependenceStack.back()) {
2425 assert((DI.DepClass == DepClassTy::REQUIRED ||
2426 DI.DepClass == DepClassTy::OPTIONAL) &&
2427 "Expected required or optional dependence (1 bit)!");
2428 auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2429 DepAAs.push_back(AbstractAttribute::DepTy(
2430 const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2434 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2435 if (!VisitedFunctions.insert(&F).second)
2436 return;
2437 if (F.isDeclaration())
2438 return;
2440 // In non-module runs we need to look at the call sites of a function to
2441 // determine if it is part of a must-tail call edge. This will influence what
2442 // attributes we can derive.
2443 InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2444 if (!isModulePass() && !FI.CalledViaMustTail) {
2445 for (const Use &U : F.uses())
2446 if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2447 if (CB->isCallee(&U) && CB->isMustTailCall())
2448 FI.CalledViaMustTail = true;
2451 IRPosition FPos = IRPosition::function(F);
2453 // Check for dead BasicBlocks in every function.
2454 // We need dead instruction detection because we do not want to deal with
2455 // broken IR in which SSA rules do not apply.
2456 getOrCreateAAFor<AAIsDead>(FPos);
2458 // Every function might be "will-return".
2459 getOrCreateAAFor<AAWillReturn>(FPos);
2461 // Every function might contain instructions that cause "undefined behavior".
2462 getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2464 // Every function can be nounwind.
2465 getOrCreateAAFor<AANoUnwind>(FPos);
2467 // Every function might be marked "nosync"
2468 getOrCreateAAFor<AANoSync>(FPos);
2470 // Every function might be "no-free".
2471 getOrCreateAAFor<AANoFree>(FPos);
2473 // Every function might be "no-return".
2474 getOrCreateAAFor<AANoReturn>(FPos);
2476 // Every function might be "no-recurse".
2477 getOrCreateAAFor<AANoRecurse>(FPos);
2479 // Every function might be "readnone/readonly/writeonly/...".
2480 getOrCreateAAFor<AAMemoryBehavior>(FPos);
2482 // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2483 getOrCreateAAFor<AAMemoryLocation>(FPos);
2485 // Every function might be applicable for Heap-To-Stack conversion.
2486 if (EnableHeapToStack)
2487 getOrCreateAAFor<AAHeapToStack>(FPos);
2489 // Return attributes are only appropriate if the return type is non void.
2490 Type *ReturnType = F.getReturnType();
2491 if (!ReturnType->isVoidTy()) {
2492 // Argument attribute "returned" --- Create only one per function even
2493 // though it is an argument attribute.
2494 getOrCreateAAFor<AAReturnedValues>(FPos);
2496 IRPosition RetPos = IRPosition::returned(F);
2498 // Every returned value might be dead.
2499 getOrCreateAAFor<AAIsDead>(RetPos);
2501 // Every function might be simplified.
2502 getOrCreateAAFor<AAValueSimplify>(RetPos);
2504 // Every returned value might be marked noundef.
2505 getOrCreateAAFor<AANoUndef>(RetPos);
2507 if (ReturnType->isPointerTy()) {
2509 // Every function with pointer return type might be marked align.
2510 getOrCreateAAFor<AAAlign>(RetPos);
2512 // Every function with pointer return type might be marked nonnull.
2513 getOrCreateAAFor<AANonNull>(RetPos);
2515 // Every function with pointer return type might be marked noalias.
2516 getOrCreateAAFor<AANoAlias>(RetPos);
2518 // Every function with pointer return type might be marked
2519 // dereferenceable.
2520 getOrCreateAAFor<AADereferenceable>(RetPos);
2524 for (Argument &Arg : F.args()) {
2525 IRPosition ArgPos = IRPosition::argument(Arg);
2527 // Every argument might be simplified. We have to go through the Attributor
2528 // interface though as outside AAs can register custom simplification
2529 // callbacks.
2530 bool UsedAssumedInformation = false;
2531 getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2533 // Every argument might be dead.
2534 getOrCreateAAFor<AAIsDead>(ArgPos);
2536 // Every argument might be marked noundef.
2537 getOrCreateAAFor<AANoUndef>(ArgPos);
2539 if (Arg.getType()->isPointerTy()) {
2540 // Every argument with pointer type might be marked nonnull.
2541 getOrCreateAAFor<AANonNull>(ArgPos);
2543 // Every argument with pointer type might be marked noalias.
2544 getOrCreateAAFor<AANoAlias>(ArgPos);
2546 // Every argument with pointer type might be marked dereferenceable.
2547 getOrCreateAAFor<AADereferenceable>(ArgPos);
2549 // Every argument with pointer type might be marked align.
2550 getOrCreateAAFor<AAAlign>(ArgPos);
2552 // Every argument with pointer type might be marked nocapture.
2553 getOrCreateAAFor<AANoCapture>(ArgPos);
2555 // Every argument with pointer type might be marked
2556 // "readnone/readonly/writeonly/..."
2557 getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2559 // Every argument with pointer type might be marked nofree.
2560 getOrCreateAAFor<AANoFree>(ArgPos);
2562 // Every argument with pointer type might be privatizable (or promotable)
2563 getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2567 auto CallSitePred = [&](Instruction &I) -> bool {
2568 auto &CB = cast<CallBase>(I);
2569 IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2571 // Call sites might be dead if they do not have side effects and no live
2572 // users. The return value might be dead if there are no live users.
2573 getOrCreateAAFor<AAIsDead>(CBRetPos);
2575 Function *Callee = CB.getCalledFunction();
2576 // TODO: Even if the callee is not known now we might be able to simplify
2577 // the call/callee.
2578 if (!Callee)
2579 return true;
2581 // Skip declarations except if annotations on their call sites were
2582 // explicitly requested.
2583 if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2584 !Callee->hasMetadata(LLVMContext::MD_callback))
2585 return true;
2587 if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2589 IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2590 getOrCreateAAFor<AAValueSimplify>(CBRetPos);
2593 for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2595 IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2597 // Every call site argument might be dead.
2598 getOrCreateAAFor<AAIsDead>(CBArgPos);
2600 // Call site argument might be simplified. We have to go through the
2601 // Attributor interface though as outside AAs can register custom
2602 // simplification callbacks.
2603 bool UsedAssumedInformation = false;
2604 getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2606 // Every call site argument might be marked "noundef".
2607 getOrCreateAAFor<AANoUndef>(CBArgPos);
2609 if (!CB.getArgOperand(I)->getType()->isPointerTy())
2610 continue;
2612 // Call site argument attribute "non-null".
2613 getOrCreateAAFor<AANonNull>(CBArgPos);
2615 // Call site argument attribute "nocapture".
2616 getOrCreateAAFor<AANoCapture>(CBArgPos);
2618 // Call site argument attribute "no-alias".
2619 getOrCreateAAFor<AANoAlias>(CBArgPos);
2621 // Call site argument attribute "dereferenceable".
2622 getOrCreateAAFor<AADereferenceable>(CBArgPos);
2624 // Call site argument attribute "align".
2625 getOrCreateAAFor<AAAlign>(CBArgPos);
2627 // Call site argument attribute
2628 // "readnone/readonly/writeonly/..."
2629 getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2631 // Call site argument attribute "nofree".
2632 getOrCreateAAFor<AANoFree>(CBArgPos);
2634 return true;
2637 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2638 bool Success;
2639 bool UsedAssumedInformation = false;
2640 Success = checkForAllInstructionsImpl(
2641 nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2642 {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2643 (unsigned)Instruction::Call},
2644 UsedAssumedInformation);
2645 (void)Success;
2646 assert(Success && "Expected the check call to be successful!");
2648 auto LoadStorePred = [&](Instruction &I) -> bool {
2649 if (isa<LoadInst>(I)) {
2650 getOrCreateAAFor<AAAlign>(
2651 IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2652 if (SimplifyAllLoads)
2653 getOrCreateAAFor<AAValueSimplify>(IRPosition::value(I));
2654 } else
2655 getOrCreateAAFor<AAAlign>(
2656 IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2657 return true;
2659 Success = checkForAllInstructionsImpl(
2660 nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2661 {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
2662 UsedAssumedInformation);
2663 (void)Success;
2664 assert(Success && "Expected the check call to be successful!");
2667 /// Helpers to ease debugging through output streams and print calls.
2669 ///{
2670 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2671 return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2674 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2675 switch (AP) {
2676 case IRPosition::IRP_INVALID:
2677 return OS << "inv";
2678 case IRPosition::IRP_FLOAT:
2679 return OS << "flt";
2680 case IRPosition::IRP_RETURNED:
2681 return OS << "fn_ret";
2682 case IRPosition::IRP_CALL_SITE_RETURNED:
2683 return OS << "cs_ret";
2684 case IRPosition::IRP_FUNCTION:
2685 return OS << "fn";
2686 case IRPosition::IRP_CALL_SITE:
2687 return OS << "cs";
2688 case IRPosition::IRP_ARGUMENT:
2689 return OS << "arg";
2690 case IRPosition::IRP_CALL_SITE_ARGUMENT:
2691 return OS << "cs_arg";
2693 llvm_unreachable("Unknown attribute position!");
2696 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2697 const Value &AV = Pos.getAssociatedValue();
2698 OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2699 << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2701 if (Pos.hasCallBaseContext())
2702 OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2703 return OS << "}";
2706 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2707 OS << "range-state(" << S.getBitWidth() << ")<";
2708 S.getKnown().print(OS);
2709 OS << " / ";
2710 S.getAssumed().print(OS);
2711 OS << ">";
2713 return OS << static_cast<const AbstractState &>(S);
2716 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2717 return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2720 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2721 AA.print(OS);
2722 return OS;
2725 raw_ostream &llvm::operator<<(raw_ostream &OS,
2726 const PotentialConstantIntValuesState &S) {
2727 OS << "set-state(< {";
2728 if (!S.isValidState())
2729 OS << "full-set";
2730 else {
2731 for (auto &it : S.getAssumedSet())
2732 OS << it << ", ";
2733 if (S.undefIsContained())
2734 OS << "undef ";
2736 OS << "} >)";
2738 return OS;
2741 void AbstractAttribute::print(raw_ostream &OS) const {
2742 OS << "[";
2743 OS << getName();
2744 OS << "] for CtxI ";
2746 if (auto *I = getCtxI()) {
2747 OS << "'";
2748 I->print(OS);
2749 OS << "'";
2750 } else
2751 OS << "<<null inst>>";
2753 OS << " at position " << getIRPosition() << " with state " << getAsStr()
2754 << '\n';
2757 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2758 print(OS);
2760 for (const auto &DepAA : Deps) {
2761 auto *AA = DepAA.getPointer();
2762 OS << " updates ";
2763 AA->print(OS);
2766 OS << '\n';
2769 raw_ostream &llvm::operator<<(raw_ostream &OS,
2770 const AAPointerInfo::Access &Acc) {
2771 OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
2772 if (Acc.getLocalInst() != Acc.getRemoteInst())
2773 OS << " via " << *Acc.getLocalInst();
2774 if (Acc.getContent().hasValue())
2775 OS << " [" << *Acc.getContent() << "]";
2776 return OS;
2778 ///}
2780 /// ----------------------------------------------------------------------------
2781 /// Pass (Manager) Boilerplate
2782 /// ----------------------------------------------------------------------------
2784 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2785 SetVector<Function *> &Functions,
2786 AnalysisGetter &AG,
2787 CallGraphUpdater &CGUpdater,
2788 bool DeleteFns) {
2789 if (Functions.empty())
2790 return false;
2792 LLVM_DEBUG({
2793 dbgs() << "[Attributor] Run on module with " << Functions.size()
2794 << " functions:\n";
2795 for (Function *Fn : Functions)
2796 dbgs() << " - " << Fn->getName() << "\n";
2799 // Create an Attributor and initially empty information cache that is filled
2800 // while we identify default attribute opportunities.
2801 Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2802 DeleteFns);
2804 // Create shallow wrappers for all functions that are not IPO amendable
2805 if (AllowShallowWrappers)
2806 for (Function *F : Functions)
2807 if (!A.isFunctionIPOAmendable(*F))
2808 Attributor::createShallowWrapper(*F);
2810 // Internalize non-exact functions
2811 // TODO: for now we eagerly internalize functions without calculating the
2812 // cost, we need a cost interface to determine whether internalizing
2813 // a function is "benefitial"
2814 if (AllowDeepWrapper) {
2815 unsigned FunSize = Functions.size();
2816 for (unsigned u = 0; u < FunSize; u++) {
2817 Function *F = Functions[u];
2818 if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2819 !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2820 Function *NewF = Attributor::internalizeFunction(*F);
2821 assert(NewF && "Could not internalize function.");
2822 Functions.insert(NewF);
2824 // Update call graph
2825 CGUpdater.replaceFunctionWith(*F, *NewF);
2826 for (const Use &U : NewF->uses())
2827 if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2828 auto *CallerF = CB->getCaller();
2829 CGUpdater.reanalyzeFunction(*CallerF);
2835 for (Function *F : Functions) {
2836 if (F->hasExactDefinition())
2837 NumFnWithExactDefinition++;
2838 else
2839 NumFnWithoutExactDefinition++;
2841 // We look at internal functions only on-demand but if any use is not a
2842 // direct call or outside the current set of analyzed functions, we have
2843 // to do it eagerly.
2844 if (F->hasLocalLinkage()) {
2845 if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2846 const auto *CB = dyn_cast<CallBase>(U.getUser());
2847 return CB && CB->isCallee(&U) &&
2848 Functions.count(const_cast<Function *>(CB->getCaller()));
2850 continue;
2853 // Populate the Attributor with abstract attribute opportunities in the
2854 // function and the information cache with IR information.
2855 A.identifyDefaultAbstractAttributes(*F);
2858 ChangeStatus Changed = A.run();
2860 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2861 << " functions, result: " << Changed << ".\n");
2862 return Changed == ChangeStatus::CHANGED;
2865 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2867 void AADepGraph::dumpGraph() {
2868 static std::atomic<int> CallTimes;
2869 std::string Prefix;
2871 if (!DepGraphDotFileNamePrefix.empty())
2872 Prefix = DepGraphDotFileNamePrefix;
2873 else
2874 Prefix = "dep_graph";
2875 std::string Filename =
2876 Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2878 outs() << "Dependency graph dump to " << Filename << ".\n";
2880 std::error_code EC;
2882 raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2883 if (!EC)
2884 llvm::WriteGraph(File, this);
2886 CallTimes++;
2889 void AADepGraph::print() {
2890 for (auto DepAA : SyntheticRoot.Deps)
2891 cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2894 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2895 FunctionAnalysisManager &FAM =
2896 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2897 AnalysisGetter AG(FAM);
2899 SetVector<Function *> Functions;
2900 for (Function &F : M)
2901 Functions.insert(&F);
2903 CallGraphUpdater CGUpdater;
2904 BumpPtrAllocator Allocator;
2905 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2906 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2907 /* DeleteFns */ true)) {
2908 // FIXME: Think about passes we will preserve and add them here.
2909 return PreservedAnalyses::none();
2911 return PreservedAnalyses::all();
2914 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2915 CGSCCAnalysisManager &AM,
2916 LazyCallGraph &CG,
2917 CGSCCUpdateResult &UR) {
2918 FunctionAnalysisManager &FAM =
2919 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2920 AnalysisGetter AG(FAM);
2922 SetVector<Function *> Functions;
2923 for (LazyCallGraph::Node &N : C)
2924 Functions.insert(&N.getFunction());
2926 if (Functions.empty())
2927 return PreservedAnalyses::all();
2929 Module &M = *Functions.back()->getParent();
2930 CallGraphUpdater CGUpdater;
2931 CGUpdater.initialize(CG, C, AM, UR);
2932 BumpPtrAllocator Allocator;
2933 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2934 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2935 /* DeleteFns */ false)) {
2936 // FIXME: Think about passes we will preserve and add them here.
2937 PreservedAnalyses PA;
2938 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2939 return PA;
2941 return PreservedAnalyses::all();
2944 namespace llvm {
2946 template <> struct GraphTraits<AADepGraphNode *> {
2947 using NodeRef = AADepGraphNode *;
2948 using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2949 using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2951 static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2952 static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2954 using ChildIteratorType =
2955 mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2956 using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2958 static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2960 static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2963 template <>
2964 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2965 static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2967 using nodes_iterator =
2968 mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2970 static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2972 static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2975 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2976 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2978 static std::string getNodeLabel(const AADepGraphNode *Node,
2979 const AADepGraph *DG) {
2980 std::string AAString;
2981 raw_string_ostream O(AAString);
2982 Node->print(O);
2983 return AAString;
2987 } // end namespace llvm
2989 namespace {
2991 struct AttributorLegacyPass : public ModulePass {
2992 static char ID;
2994 AttributorLegacyPass() : ModulePass(ID) {
2995 initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2998 bool runOnModule(Module &M) override {
2999 if (skipModule(M))
3000 return false;
3002 AnalysisGetter AG;
3003 SetVector<Function *> Functions;
3004 for (Function &F : M)
3005 Functions.insert(&F);
3007 CallGraphUpdater CGUpdater;
3008 BumpPtrAllocator Allocator;
3009 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3010 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3011 /* DeleteFns*/ true);
3014 void getAnalysisUsage(AnalysisUsage &AU) const override {
3015 // FIXME: Think about passes we will preserve and add them here.
3016 AU.addRequired<TargetLibraryInfoWrapperPass>();
3020 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3021 static char ID;
3023 AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3024 initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3027 bool runOnSCC(CallGraphSCC &SCC) override {
3028 if (skipSCC(SCC))
3029 return false;
3031 SetVector<Function *> Functions;
3032 for (CallGraphNode *CGN : SCC)
3033 if (Function *Fn = CGN->getFunction())
3034 if (!Fn->isDeclaration())
3035 Functions.insert(Fn);
3037 if (Functions.empty())
3038 return false;
3040 AnalysisGetter AG;
3041 CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3042 CallGraphUpdater CGUpdater;
3043 CGUpdater.initialize(CG, SCC);
3044 Module &M = *Functions.back()->getParent();
3045 BumpPtrAllocator Allocator;
3046 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3047 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3048 /* DeleteFns */ false);
3051 void getAnalysisUsage(AnalysisUsage &AU) const override {
3052 // FIXME: Think about passes we will preserve and add them here.
3053 AU.addRequired<TargetLibraryInfoWrapperPass>();
3054 CallGraphSCCPass::getAnalysisUsage(AU);
3058 } // end anonymous namespace
3060 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3061 Pass *llvm::createAttributorCGSCCLegacyPass() {
3062 return new AttributorCGSCCLegacyPass();
3065 char AttributorLegacyPass::ID = 0;
3066 char AttributorCGSCCLegacyPass::ID = 0;
3068 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3069 "Deduce and propagate attributes", false, false)
3070 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3071 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3072 "Deduce and propagate attributes", false, false)
3073 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
3074 "Deduce and propagate attributes (CGSCC pass)", false,
3075 false)
3076 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3077 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
3078 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
3079 "Deduce and propagate attributes (CGSCC pass)", false,
3080 false)