1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
37 using namespace PatternMatch
;
39 #define DEBUG_TYPE "instcombine"
43 /// Class representing coefficient of floating-point addend.
44 /// This class needs to be highly efficient, which is especially true for
45 /// the constructor. As of I write this comment, the cost of the default
46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47 /// perform write-merging).
51 // The constructor has to initialize a APFloat, which is unnecessary for
52 // most addends which have coefficient either 1 or -1. So, the constructor
53 // is expensive. In order to avoid the cost of the constructor, we should
54 // reuse some instances whenever possible. The pre-created instances
55 // FAddCombine::Add[0-5] embodies this idea.
56 FAddendCoef() = default;
59 // If possible, don't define operator+/operator- etc because these
60 // operators inevitably call FAddendCoef's constructor which is not cheap.
61 void operator=(const FAddendCoef
&A
);
62 void operator+=(const FAddendCoef
&A
);
63 void operator*=(const FAddendCoef
&S
);
66 assert(!insaneIntVal(C
) && "Insane coefficient");
67 IsFp
= false; IntVal
= C
;
70 void set(const APFloat
& C
);
74 bool isZero() const { return isInt() ? !IntVal
: getFpVal().isZero(); }
75 Value
*getValue(Type
*) const;
77 bool isOne() const { return isInt() && IntVal
== 1; }
78 bool isTwo() const { return isInt() && IntVal
== 2; }
79 bool isMinusOne() const { return isInt() && IntVal
== -1; }
80 bool isMinusTwo() const { return isInt() && IntVal
== -2; }
83 bool insaneIntVal(int V
) { return V
> 4 || V
< -4; }
85 APFloat
*getFpValPtr() { return reinterpret_cast<APFloat
*>(&FpValBuf
); }
87 const APFloat
*getFpValPtr() const {
88 return reinterpret_cast<const APFloat
*>(&FpValBuf
);
91 const APFloat
&getFpVal() const {
92 assert(IsFp
&& BufHasFpVal
&& "Incorret state");
93 return *getFpValPtr();
97 assert(IsFp
&& BufHasFpVal
&& "Incorret state");
98 return *getFpValPtr();
101 bool isInt() const { return !IsFp
; }
103 // If the coefficient is represented by an integer, promote it to a
105 void convertToFpType(const fltSemantics
&Sem
);
107 // Construct an APFloat from a signed integer.
108 // TODO: We should get rid of this function when APFloat can be constructed
109 // from an *SIGNED* integer.
110 APFloat
createAPFloatFromInt(const fltSemantics
&Sem
, int Val
);
114 // True iff FpValBuf contains an instance of APFloat.
115 bool BufHasFpVal
= false;
117 // The integer coefficient of an individual addend is either 1 or -1,
118 // and we try to simplify at most 4 addends from neighboring at most
119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120 // is overkill of this end.
123 AlignedCharArrayUnion
<APFloat
> FpValBuf
;
126 /// FAddend is used to represent floating-point addend. An addend is
127 /// represented as <C, V>, where the V is a symbolic value, and C is a
128 /// constant coefficient. A constant addend is represented as <C, 0>.
133 void operator+=(const FAddend
&T
) {
134 assert((Val
== T
.Val
) && "Symbolic-values disagree");
138 Value
*getSymVal() const { return Val
; }
139 const FAddendCoef
&getCoef() const { return Coeff
; }
141 bool isConstant() const { return Val
== nullptr; }
142 bool isZero() const { return Coeff
.isZero(); }
144 void set(short Coefficient
, Value
*V
) {
145 Coeff
.set(Coefficient
);
148 void set(const APFloat
&Coefficient
, Value
*V
) {
149 Coeff
.set(Coefficient
);
152 void set(const ConstantFP
*Coefficient
, Value
*V
) {
153 Coeff
.set(Coefficient
->getValueAPF());
157 void negate() { Coeff
.negate(); }
159 /// Drill down the U-D chain one step to find the definition of V, and
160 /// try to break the definition into one or two addends.
161 static unsigned drillValueDownOneStep(Value
* V
, FAddend
&A0
, FAddend
&A1
);
163 /// Similar to FAddend::drillDownOneStep() except that the value being
164 /// splitted is the addend itself.
165 unsigned drillAddendDownOneStep(FAddend
&Addend0
, FAddend
&Addend1
) const;
168 void Scale(const FAddendCoef
& ScaleAmt
) { Coeff
*= ScaleAmt
; }
170 // This addend has the value of "Coeff * Val".
171 Value
*Val
= nullptr;
175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176 /// with its neighboring at most two instructions.
180 FAddCombine(InstCombiner::BuilderTy
&B
) : Builder(B
) {}
182 Value
*simplify(Instruction
*FAdd
);
185 using AddendVect
= SmallVector
<const FAddend
*, 4>;
187 Value
*simplifyFAdd(AddendVect
& V
, unsigned InstrQuota
);
189 /// Convert given addend to a Value
190 Value
*createAddendVal(const FAddend
&A
, bool& NeedNeg
);
192 /// Return the number of instructions needed to emit the N-ary addition.
193 unsigned calcInstrNumber(const AddendVect
& Vect
);
195 Value
*createFSub(Value
*Opnd0
, Value
*Opnd1
);
196 Value
*createFAdd(Value
*Opnd0
, Value
*Opnd1
);
197 Value
*createFMul(Value
*Opnd0
, Value
*Opnd1
);
198 Value
*createFNeg(Value
*V
);
199 Value
*createNaryFAdd(const AddendVect
& Opnds
, unsigned InstrQuota
);
200 void createInstPostProc(Instruction
*NewInst
, bool NoNumber
= false);
202 // Debugging stuff are clustered here.
204 unsigned CreateInstrNum
;
205 void initCreateInstNum() { CreateInstrNum
= 0; }
206 void incCreateInstNum() { CreateInstrNum
++; }
208 void initCreateInstNum() {}
209 void incCreateInstNum() {}
212 InstCombiner::BuilderTy
&Builder
;
213 Instruction
*Instr
= nullptr;
216 } // end anonymous namespace
218 //===----------------------------------------------------------------------===//
221 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
226 getFpValPtr()->~APFloat();
229 void FAddendCoef::set(const APFloat
& C
) {
230 APFloat
*P
= getFpValPtr();
233 // As the buffer is meanless byte stream, we cannot call
234 // APFloat::operator=().
239 IsFp
= BufHasFpVal
= true;
242 void FAddendCoef::convertToFpType(const fltSemantics
&Sem
) {
246 APFloat
*P
= getFpValPtr();
248 new(P
) APFloat(Sem
, IntVal
);
250 new(P
) APFloat(Sem
, 0 - IntVal
);
253 IsFp
= BufHasFpVal
= true;
256 APFloat
FAddendCoef::createAPFloatFromInt(const fltSemantics
&Sem
, int Val
) {
258 return APFloat(Sem
, Val
);
260 APFloat
T(Sem
, 0 - Val
);
266 void FAddendCoef::operator=(const FAddendCoef
&That
) {
270 set(That
.getFpVal());
273 void FAddendCoef::operator+=(const FAddendCoef
&That
) {
274 RoundingMode RndMode
= RoundingMode::NearestTiesToEven
;
275 if (isInt() == That
.isInt()) {
277 IntVal
+= That
.IntVal
;
279 getFpVal().add(That
.getFpVal(), RndMode
);
284 const APFloat
&T
= That
.getFpVal();
285 convertToFpType(T
.getSemantics());
286 getFpVal().add(T
, RndMode
);
290 APFloat
&T
= getFpVal();
291 T
.add(createAPFloatFromInt(T
.getSemantics(), That
.IntVal
), RndMode
);
294 void FAddendCoef::operator*=(const FAddendCoef
&That
) {
298 if (That
.isMinusOne()) {
303 if (isInt() && That
.isInt()) {
304 int Res
= IntVal
* (int)That
.IntVal
;
305 assert(!insaneIntVal(Res
) && "Insane int value");
310 const fltSemantics
&Semantic
=
311 isInt() ? That
.getFpVal().getSemantics() : getFpVal().getSemantics();
314 convertToFpType(Semantic
);
315 APFloat
&F0
= getFpVal();
318 F0
.multiply(createAPFloatFromInt(Semantic
, That
.IntVal
),
319 APFloat::rmNearestTiesToEven
);
321 F0
.multiply(That
.getFpVal(), APFloat::rmNearestTiesToEven
);
324 void FAddendCoef::negate() {
328 getFpVal().changeSign();
331 Value
*FAddendCoef::getValue(Type
*Ty
) const {
333 ConstantFP::get(Ty
, float(IntVal
)) :
334 ConstantFP::get(Ty
->getContext(), getFpVal());
337 // The definition of <Val> Addends
338 // =========================================
339 // A + B <1, A>, <1,B>
340 // A - B <1, A>, <1,B>
343 // A + C <1, A> <C, NULL>
344 // 0 +/- 0 <0, NULL> (corner case)
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348 (Value
*Val
, FAddend
&Addend0
, FAddend
&Addend1
) {
349 Instruction
*I
= nullptr;
350 if (!Val
|| !(I
= dyn_cast
<Instruction
>(Val
)))
353 unsigned Opcode
= I
->getOpcode();
355 if (Opcode
== Instruction::FAdd
|| Opcode
== Instruction::FSub
) {
357 Value
*Opnd0
= I
->getOperand(0);
358 Value
*Opnd1
= I
->getOperand(1);
359 if ((C0
= dyn_cast
<ConstantFP
>(Opnd0
)) && C0
->isZero())
362 if ((C1
= dyn_cast
<ConstantFP
>(Opnd1
)) && C1
->isZero())
367 Addend0
.set(1, Opnd0
);
369 Addend0
.set(C0
, nullptr);
373 FAddend
&Addend
= Opnd0
? Addend1
: Addend0
;
375 Addend
.set(1, Opnd1
);
377 Addend
.set(C1
, nullptr);
378 if (Opcode
== Instruction::FSub
)
383 return Opnd0
&& Opnd1
? 2 : 1;
385 // Both operands are zero. Weird!
386 Addend0
.set(APFloat(C0
->getValueAPF().getSemantics()), nullptr);
390 if (I
->getOpcode() == Instruction::FMul
) {
391 Value
*V0
= I
->getOperand(0);
392 Value
*V1
= I
->getOperand(1);
393 if (ConstantFP
*C
= dyn_cast
<ConstantFP
>(V0
)) {
398 if (ConstantFP
*C
= dyn_cast
<ConstantFP
>(V1
)) {
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411 (FAddend
&Addend0
, FAddend
&Addend1
) const {
415 unsigned BreakNum
= FAddend::drillValueDownOneStep(Val
, Addend0
, Addend1
);
416 if (!BreakNum
|| Coeff
.isOne())
419 Addend0
.Scale(Coeff
);
422 Addend1
.Scale(Coeff
);
427 Value
*FAddCombine::simplify(Instruction
*I
) {
428 assert(I
->hasAllowReassoc() && I
->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
431 // Currently we are not able to handle vector type.
432 if (I
->getType()->isVectorTy())
435 assert((I
->getOpcode() == Instruction::FAdd
||
436 I
->getOpcode() == Instruction::FSub
) && "Expect add/sub");
438 // Save the instruction before calling other member-functions.
441 FAddend Opnd0
, Opnd1
, Opnd0_0
, Opnd0_1
, Opnd1_0
, Opnd1_1
;
443 unsigned OpndNum
= FAddend::drillValueDownOneStep(I
, Opnd0
, Opnd1
);
445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446 unsigned Opnd0_ExpNum
= 0;
447 unsigned Opnd1_ExpNum
= 0;
449 if (!Opnd0
.isConstant())
450 Opnd0_ExpNum
= Opnd0
.drillAddendDownOneStep(Opnd0_0
, Opnd0_1
);
452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453 if (OpndNum
== 2 && !Opnd1
.isConstant())
454 Opnd1_ExpNum
= Opnd1
.drillAddendDownOneStep(Opnd1_0
, Opnd1_1
);
456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457 if (Opnd0_ExpNum
&& Opnd1_ExpNum
) {
459 AllOpnds
.push_back(&Opnd0_0
);
460 AllOpnds
.push_back(&Opnd1_0
);
461 if (Opnd0_ExpNum
== 2)
462 AllOpnds
.push_back(&Opnd0_1
);
463 if (Opnd1_ExpNum
== 2)
464 AllOpnds
.push_back(&Opnd1_1
);
466 // Compute instruction quota. We should save at least one instruction.
467 unsigned InstQuota
= 0;
469 Value
*V0
= I
->getOperand(0);
470 Value
*V1
= I
->getOperand(1);
471 InstQuota
= ((!isa
<Constant
>(V0
) && V0
->hasOneUse()) &&
472 (!isa
<Constant
>(V1
) && V1
->hasOneUse())) ? 2 : 1;
474 if (Value
*R
= simplifyFAdd(AllOpnds
, InstQuota
))
479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480 // splitted into two addends, say "V = X - Y", the instruction would have
481 // been optimized into "I = Y - X" in the previous steps.
483 const FAddendCoef
&CE
= Opnd0
.getCoef();
484 return CE
.isOne() ? Opnd0
.getSymVal() : nullptr;
487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
490 AllOpnds
.push_back(&Opnd0
);
491 AllOpnds
.push_back(&Opnd1_0
);
492 if (Opnd1_ExpNum
== 2)
493 AllOpnds
.push_back(&Opnd1_1
);
495 if (Value
*R
= simplifyFAdd(AllOpnds
, 1))
499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
502 AllOpnds
.push_back(&Opnd1
);
503 AllOpnds
.push_back(&Opnd0_0
);
504 if (Opnd0_ExpNum
== 2)
505 AllOpnds
.push_back(&Opnd0_1
);
507 if (Value
*R
= simplifyFAdd(AllOpnds
, 1))
514 Value
*FAddCombine::simplifyFAdd(AddendVect
& Addends
, unsigned InstrQuota
) {
515 unsigned AddendNum
= Addends
.size();
516 assert(AddendNum
<= 4 && "Too many addends");
518 // For saving intermediate results;
519 unsigned NextTmpIdx
= 0;
520 FAddend TmpResult
[3];
522 // Points to the constant addend of the resulting simplified expression.
523 // If the resulting expr has constant-addend, this constant-addend is
524 // desirable to reside at the top of the resulting expression tree. Placing
525 // constant close to supper-expr(s) will potentially reveal some optimization
526 // opportunities in super-expr(s).
527 const FAddend
*ConstAdd
= nullptr;
529 // Simplified addends are placed <SimpVect>.
532 // The outer loop works on one symbolic-value at a time. Suppose the input
533 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
534 // The symbolic-values will be processed in this order: x, y, z.
535 for (unsigned SymIdx
= 0; SymIdx
< AddendNum
; SymIdx
++) {
537 const FAddend
*ThisAddend
= Addends
[SymIdx
];
539 // This addend was processed before.
543 Value
*Val
= ThisAddend
->getSymVal();
544 unsigned StartIdx
= SimpVect
.size();
545 SimpVect
.push_back(ThisAddend
);
547 // The inner loop collects addends sharing same symbolic-value, and these
548 // addends will be later on folded into a single addend. Following above
549 // example, if the symbolic value "y" is being processed, the inner loop
550 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
551 // be later on folded into "<b1+b2, y>".
552 for (unsigned SameSymIdx
= SymIdx
+ 1;
553 SameSymIdx
< AddendNum
; SameSymIdx
++) {
554 const FAddend
*T
= Addends
[SameSymIdx
];
555 if (T
&& T
->getSymVal() == Val
) {
556 // Set null such that next iteration of the outer loop will not process
557 // this addend again.
558 Addends
[SameSymIdx
] = nullptr;
559 SimpVect
.push_back(T
);
563 // If multiple addends share same symbolic value, fold them together.
564 if (StartIdx
+ 1 != SimpVect
.size()) {
565 FAddend
&R
= TmpResult
[NextTmpIdx
++];
566 R
= *SimpVect
[StartIdx
];
567 for (unsigned Idx
= StartIdx
+ 1; Idx
< SimpVect
.size(); Idx
++)
570 // Pop all addends being folded and push the resulting folded addend.
571 SimpVect
.resize(StartIdx
);
574 SimpVect
.push_back(&R
);
577 // Don't push constant addend at this time. It will be the last element
584 assert((NextTmpIdx
<= array_lengthof(TmpResult
) + 1) &&
585 "out-of-bound access");
588 SimpVect
.push_back(ConstAdd
);
591 if (!SimpVect
.empty())
592 Result
= createNaryFAdd(SimpVect
, InstrQuota
);
594 // The addition is folded to 0.0.
595 Result
= ConstantFP::get(Instr
->getType(), 0.0);
601 Value
*FAddCombine::createNaryFAdd
602 (const AddendVect
&Opnds
, unsigned InstrQuota
) {
603 assert(!Opnds
.empty() && "Expect at least one addend");
605 // Step 1: Check if the # of instructions needed exceeds the quota.
607 unsigned InstrNeeded
= calcInstrNumber(Opnds
);
608 if (InstrNeeded
> InstrQuota
)
613 // step 2: Emit the N-ary addition.
614 // Note that at most three instructions are involved in Fadd-InstCombine: the
615 // addition in question, and at most two neighboring instructions.
616 // The resulting optimized addition should have at least one less instruction
617 // than the original addition expression tree. This implies that the resulting
618 // N-ary addition has at most two instructions, and we don't need to worry
619 // about tree-height when constructing the N-ary addition.
621 Value
*LastVal
= nullptr;
622 bool LastValNeedNeg
= false;
624 // Iterate the addends, creating fadd/fsub using adjacent two addends.
625 for (const FAddend
*Opnd
: Opnds
) {
627 Value
*V
= createAddendVal(*Opnd
, NeedNeg
);
630 LastValNeedNeg
= NeedNeg
;
634 if (LastValNeedNeg
== NeedNeg
) {
635 LastVal
= createFAdd(LastVal
, V
);
640 LastVal
= createFSub(V
, LastVal
);
642 LastVal
= createFSub(LastVal
, V
);
644 LastValNeedNeg
= false;
647 if (LastValNeedNeg
) {
648 LastVal
= createFNeg(LastVal
);
652 assert(CreateInstrNum
== InstrNeeded
&&
653 "Inconsistent in instruction numbers");
659 Value
*FAddCombine::createFSub(Value
*Opnd0
, Value
*Opnd1
) {
660 Value
*V
= Builder
.CreateFSub(Opnd0
, Opnd1
);
661 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
662 createInstPostProc(I
);
666 Value
*FAddCombine::createFNeg(Value
*V
) {
667 Value
*NewV
= Builder
.CreateFNeg(V
);
668 if (Instruction
*I
= dyn_cast
<Instruction
>(NewV
))
669 createInstPostProc(I
, true); // fneg's don't receive instruction numbers.
673 Value
*FAddCombine::createFAdd(Value
*Opnd0
, Value
*Opnd1
) {
674 Value
*V
= Builder
.CreateFAdd(Opnd0
, Opnd1
);
675 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
676 createInstPostProc(I
);
680 Value
*FAddCombine::createFMul(Value
*Opnd0
, Value
*Opnd1
) {
681 Value
*V
= Builder
.CreateFMul(Opnd0
, Opnd1
);
682 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
683 createInstPostProc(I
);
687 void FAddCombine::createInstPostProc(Instruction
*NewInstr
, bool NoNumber
) {
688 NewInstr
->setDebugLoc(Instr
->getDebugLoc());
690 // Keep track of the number of instruction created.
694 // Propagate fast-math flags
695 NewInstr
->setFastMathFlags(Instr
->getFastMathFlags());
698 // Return the number of instruction needed to emit the N-ary addition.
699 // NOTE: Keep this function in sync with createAddendVal().
700 unsigned FAddCombine::calcInstrNumber(const AddendVect
&Opnds
) {
701 unsigned OpndNum
= Opnds
.size();
702 unsigned InstrNeeded
= OpndNum
- 1;
704 // The number of addends in the form of "(-1)*x".
705 unsigned NegOpndNum
= 0;
707 // Adjust the number of instructions needed to emit the N-ary add.
708 for (const FAddend
*Opnd
: Opnds
) {
709 if (Opnd
->isConstant())
712 // The constant check above is really for a few special constant
714 if (isa
<UndefValue
>(Opnd
->getSymVal()))
717 const FAddendCoef
&CE
= Opnd
->getCoef();
718 if (CE
.isMinusOne() || CE
.isMinusTwo())
721 // Let the addend be "c * x". If "c == +/-1", the value of the addend
722 // is immediately available; otherwise, it needs exactly one instruction
723 // to evaluate the value.
724 if (!CE
.isMinusOne() && !CE
.isOne())
730 // Input Addend Value NeedNeg(output)
731 // ================================================================
732 // Constant C C false
733 // <+/-1, V> V coefficient is -1
734 // <2/-2, V> "fadd V, V" coefficient is -2
735 // <C, V> "fmul V, C" false
737 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
738 Value
*FAddCombine::createAddendVal(const FAddend
&Opnd
, bool &NeedNeg
) {
739 const FAddendCoef
&Coeff
= Opnd
.getCoef();
741 if (Opnd
.isConstant()) {
743 return Coeff
.getValue(Instr
->getType());
746 Value
*OpndVal
= Opnd
.getSymVal();
748 if (Coeff
.isMinusOne() || Coeff
.isOne()) {
749 NeedNeg
= Coeff
.isMinusOne();
753 if (Coeff
.isTwo() || Coeff
.isMinusTwo()) {
754 NeedNeg
= Coeff
.isMinusTwo();
755 return createFAdd(OpndVal
, OpndVal
);
759 return createFMul(OpndVal
, Coeff
.getValue(Instr
->getType()));
762 // Checks if any operand is negative and we can convert add to sub.
763 // This function checks for following negative patterns
764 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
765 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
766 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
767 static Value
*checkForNegativeOperand(BinaryOperator
&I
,
768 InstCombiner::BuilderTy
&Builder
) {
769 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
771 // This function creates 2 instructions to replace ADD, we need at least one
772 // of LHS or RHS to have one use to ensure benefit in transform.
773 if (!LHS
->hasOneUse() && !RHS
->hasOneUse())
776 Value
*X
= nullptr, *Y
= nullptr, *Z
= nullptr;
777 const APInt
*C1
= nullptr, *C2
= nullptr;
779 // if ONE is on other side, swap
780 if (match(RHS
, m_Add(m_Value(X
), m_One())))
783 if (match(LHS
, m_Add(m_Value(X
), m_One()))) {
784 // if XOR on other side, swap
785 if (match(RHS
, m_Xor(m_Value(Y
), m_APInt(C1
))))
788 if (match(X
, m_Xor(m_Value(Y
), m_APInt(C1
)))) {
789 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
790 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
791 if (match(Y
, m_Or(m_Value(Z
), m_APInt(C2
))) && (*C2
== ~(*C1
))) {
792 Value
*NewAnd
= Builder
.CreateAnd(Z
, *C1
);
793 return Builder
.CreateSub(RHS
, NewAnd
, "sub");
794 } else if (match(Y
, m_And(m_Value(Z
), m_APInt(C2
))) && (*C1
== *C2
)) {
795 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
796 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
797 Value
*NewOr
= Builder
.CreateOr(Z
, ~(*C1
));
798 return Builder
.CreateSub(RHS
, NewOr
, "sub");
803 // Restore LHS and RHS
804 LHS
= I
.getOperand(0);
805 RHS
= I
.getOperand(1);
807 // if XOR is on other side, swap
808 if (match(RHS
, m_Xor(m_Value(Y
), m_APInt(C1
))))
812 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
813 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
814 if (match(LHS
, m_Xor(m_Value(Y
), m_APInt(C1
))))
815 if (C1
->countTrailingZeros() == 0)
816 if (match(Y
, m_And(m_Value(Z
), m_APInt(C2
))) && *C1
== (*C2
+ 1)) {
817 Value
*NewOr
= Builder
.CreateOr(Z
, ~(*C2
));
818 return Builder
.CreateSub(RHS
, NewOr
, "sub");
823 /// Wrapping flags may allow combining constants separated by an extend.
824 static Instruction
*foldNoWrapAdd(BinaryOperator
&Add
,
825 InstCombiner::BuilderTy
&Builder
) {
826 Value
*Op0
= Add
.getOperand(0), *Op1
= Add
.getOperand(1);
827 Type
*Ty
= Add
.getType();
829 if (!match(Op1
, m_Constant(Op1C
)))
832 // Try this match first because it results in an add in the narrow type.
833 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
835 const APInt
*C1
, *C2
;
836 if (match(Op1
, m_APInt(C1
)) &&
837 match(Op0
, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X
), m_APInt(C2
))))) &&
838 C1
->isNegative() && C1
->sge(-C2
->sext(C1
->getBitWidth()))) {
840 ConstantInt::get(X
->getType(), *C2
+ C1
->trunc(C2
->getBitWidth()));
841 return new ZExtInst(Builder
.CreateNUWAdd(X
, NewC
), Ty
);
844 // More general combining of constants in the wide type.
845 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
847 if (match(Op0
, m_OneUse(m_SExt(m_NSWAdd(m_Value(X
), m_Constant(NarrowC
)))))) {
848 Constant
*WideC
= ConstantExpr::getSExt(NarrowC
, Ty
);
849 Constant
*NewC
= ConstantExpr::getAdd(WideC
, Op1C
);
850 Value
*WideX
= Builder
.CreateSExt(X
, Ty
);
851 return BinaryOperator::CreateAdd(WideX
, NewC
);
853 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
854 if (match(Op0
, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X
), m_Constant(NarrowC
)))))) {
855 Constant
*WideC
= ConstantExpr::getZExt(NarrowC
, Ty
);
856 Constant
*NewC
= ConstantExpr::getAdd(WideC
, Op1C
);
857 Value
*WideX
= Builder
.CreateZExt(X
, Ty
);
858 return BinaryOperator::CreateAdd(WideX
, NewC
);
864 Instruction
*InstCombinerImpl::foldAddWithConstant(BinaryOperator
&Add
) {
865 Value
*Op0
= Add
.getOperand(0), *Op1
= Add
.getOperand(1);
867 if (!match(Op1
, m_ImmConstant(Op1C
)))
870 if (Instruction
*NV
= foldBinOpIntoSelectOrPhi(Add
))
876 // add (sub C1, X), C2 --> sub (add C1, C2), X
877 if (match(Op0
, m_Sub(m_Constant(Op00C
), m_Value(X
))))
878 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C
, Op1C
), X
);
882 // add (sub X, Y), -1 --> add (not Y), X
883 if (match(Op0
, m_OneUse(m_Sub(m_Value(X
), m_Value(Y
)))) &&
884 match(Op1
, m_AllOnes()))
885 return BinaryOperator::CreateAdd(Builder
.CreateNot(Y
), X
);
887 // zext(bool) + C -> bool ? C + 1 : C
888 if (match(Op0
, m_ZExt(m_Value(X
))) &&
889 X
->getType()->getScalarSizeInBits() == 1)
890 return SelectInst::Create(X
, InstCombiner::AddOne(Op1C
), Op1
);
891 // sext(bool) + C -> bool ? C - 1 : C
892 if (match(Op0
, m_SExt(m_Value(X
))) &&
893 X
->getType()->getScalarSizeInBits() == 1)
894 return SelectInst::Create(X
, InstCombiner::SubOne(Op1C
), Op1
);
896 // ~X + C --> (C-1) - X
897 if (match(Op0
, m_Not(m_Value(X
))))
898 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C
), X
);
901 if (!match(Op1
, m_APInt(C
)))
904 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
906 if (match(Op0
, m_Or(m_Value(X
), m_ImmConstant(Op01C
))) &&
907 haveNoCommonBitsSet(X
, Op01C
, DL
, &AC
, &Add
, &DT
))
908 return BinaryOperator::CreateAdd(X
, ConstantExpr::getAdd(Op01C
, Op1C
));
910 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
912 if (match(Op0
, m_Or(m_Value(), m_APInt(C2
))) && *C2
== -*C
)
913 return BinaryOperator::CreateXor(Op0
, ConstantInt::get(Add
.getType(), *C2
));
915 if (C
->isSignMask()) {
916 // If wrapping is not allowed, then the addition must set the sign bit:
917 // X + (signmask) --> X | signmask
918 if (Add
.hasNoSignedWrap() || Add
.hasNoUnsignedWrap())
919 return BinaryOperator::CreateOr(Op0
, Op1
);
921 // If wrapping is allowed, then the addition flips the sign bit of LHS:
922 // X + (signmask) --> X ^ signmask
923 return BinaryOperator::CreateXor(Op0
, Op1
);
926 // Is this add the last step in a convoluted sext?
927 // add(zext(xor i16 X, -32768), -32768) --> sext X
928 Type
*Ty
= Add
.getType();
929 if (match(Op0
, m_ZExt(m_Xor(m_Value(X
), m_APInt(C2
)))) &&
930 C2
->isMinSignedValue() && C2
->sext(Ty
->getScalarSizeInBits()) == *C
)
931 return CastInst::Create(Instruction::SExt
, X
, Ty
);
933 if (match(Op0
, m_Xor(m_Value(X
), m_APInt(C2
)))) {
934 // (X ^ signmask) + C --> (X + (signmask ^ C))
935 if (C2
->isSignMask())
936 return BinaryOperator::CreateAdd(X
, ConstantInt::get(Ty
, *C2
^ *C
));
938 // If X has no high-bits set above an xor mask:
939 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
941 KnownBits LHSKnown
= computeKnownBits(X
, 0, &Add
);
942 if ((*C2
| LHSKnown
.Zero
).isAllOnesValue())
943 return BinaryOperator::CreateSub(ConstantInt::get(Ty
, *C2
+ *C
), X
);
946 // Look for a math+logic pattern that corresponds to sext-in-register of a
947 // value with cleared high bits. Convert that into a pair of shifts:
948 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
949 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
950 if (Op0
->hasOneUse() && *C2
== -(*C
)) {
951 unsigned BitWidth
= Ty
->getScalarSizeInBits();
954 ShAmt
= BitWidth
- C
->logBase2() - 1;
955 else if (C2
->isPowerOf2())
956 ShAmt
= BitWidth
- C2
->logBase2() - 1;
957 if (ShAmt
&& MaskedValueIsZero(X
, APInt::getHighBitsSet(BitWidth
, ShAmt
),
959 Constant
*ShAmtC
= ConstantInt::get(Ty
, ShAmt
);
960 Value
*NewShl
= Builder
.CreateShl(X
, ShAmtC
, "sext");
961 return BinaryOperator::CreateAShr(NewShl
, ShAmtC
);
966 if (C
->isOneValue() && Op0
->hasOneUse()) {
967 // add (sext i1 X), 1 --> zext (not X)
968 // TODO: The smallest IR representation is (select X, 0, 1), and that would
969 // not require the one-use check. But we need to remove a transform in
970 // visitSelect and make sure that IR value tracking for select is equal or
971 // better than for these ops.
972 if (match(Op0
, m_SExt(m_Value(X
))) &&
973 X
->getType()->getScalarSizeInBits() == 1)
974 return new ZExtInst(Builder
.CreateNot(X
), Ty
);
976 // Shifts and add used to flip and mask off the low bit:
977 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
979 if (match(Op0
, m_AShr(m_Shl(m_Value(X
), m_APInt(C2
)), m_APInt(C3
))) &&
980 C2
== C3
&& *C2
== Ty
->getScalarSizeInBits() - 1) {
981 Value
*NotX
= Builder
.CreateNot(X
);
982 return BinaryOperator::CreateAnd(NotX
, ConstantInt::get(Ty
, 1));
986 // If all bits affected by the add are included in a high-bit-mask, do the
987 // add before the mask op:
988 // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
989 if (match(Op0
, m_OneUse(m_And(m_Value(X
), m_APInt(C2
)))) &&
990 C2
->isNegative() && C2
->isShiftedMask() && *C
== (*C
& *C2
)) {
991 Value
*NewAdd
= Builder
.CreateAdd(X
, ConstantInt::get(Ty
, *C
));
992 return BinaryOperator::CreateAnd(NewAdd
, ConstantInt::get(Ty
, *C2
));
998 // Matches multiplication expression Op * C where C is a constant. Returns the
999 // constant value in C and the other operand in Op. Returns true if such a
1001 static bool MatchMul(Value
*E
, Value
*&Op
, APInt
&C
) {
1003 if (match(E
, m_Mul(m_Value(Op
), m_APInt(AI
)))) {
1007 if (match(E
, m_Shl(m_Value(Op
), m_APInt(AI
)))) {
1008 C
= APInt(AI
->getBitWidth(), 1);
1015 // Matches remainder expression Op % C where C is a constant. Returns the
1016 // constant value in C and the other operand in Op. Returns the signedness of
1017 // the remainder operation in IsSigned. Returns true if such a match is
1019 static bool MatchRem(Value
*E
, Value
*&Op
, APInt
&C
, bool &IsSigned
) {
1022 if (match(E
, m_SRem(m_Value(Op
), m_APInt(AI
)))) {
1027 if (match(E
, m_URem(m_Value(Op
), m_APInt(AI
)))) {
1031 if (match(E
, m_And(m_Value(Op
), m_APInt(AI
))) && (*AI
+ 1).isPowerOf2()) {
1038 // Matches division expression Op / C with the given signedness as indicated
1039 // by IsSigned, where C is a constant. Returns the constant value in C and the
1040 // other operand in Op. Returns true if such a match is found.
1041 static bool MatchDiv(Value
*E
, Value
*&Op
, APInt
&C
, bool IsSigned
) {
1043 if (IsSigned
&& match(E
, m_SDiv(m_Value(Op
), m_APInt(AI
)))) {
1048 if (match(E
, m_UDiv(m_Value(Op
), m_APInt(AI
)))) {
1052 if (match(E
, m_LShr(m_Value(Op
), m_APInt(AI
)))) {
1053 C
= APInt(AI
->getBitWidth(), 1);
1061 // Returns whether C0 * C1 with the given signedness overflows.
1062 static bool MulWillOverflow(APInt
&C0
, APInt
&C1
, bool IsSigned
) {
1065 (void)C0
.smul_ov(C1
, overflow
);
1067 (void)C0
.umul_ov(C1
, overflow
);
1071 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1072 // does not overflow.
1073 Value
*InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator
&I
) {
1074 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
1078 // Match I = X % C0 + MulOpV * C0
1079 if (((MatchRem(LHS
, X
, C0
, IsSigned
) && MatchMul(RHS
, MulOpV
, MulOpC
)) ||
1080 (MatchRem(RHS
, X
, C0
, IsSigned
) && MatchMul(LHS
, MulOpV
, MulOpC
))) &&
1085 // Match MulOpC = RemOpV % C1
1086 if (MatchRem(MulOpV
, RemOpV
, C1
, Rem2IsSigned
) &&
1087 IsSigned
== Rem2IsSigned
) {
1090 // Match RemOpV = X / C0
1091 if (MatchDiv(RemOpV
, DivOpV
, DivOpC
, IsSigned
) && X
== DivOpV
&&
1092 C0
== DivOpC
&& !MulWillOverflow(C0
, C1
, IsSigned
)) {
1093 Value
*NewDivisor
= ConstantInt::get(X
->getType(), C0
* C1
);
1094 return IsSigned
? Builder
.CreateSRem(X
, NewDivisor
, "srem")
1095 : Builder
.CreateURem(X
, NewDivisor
, "urem");
1104 /// (1 << NBits) - 1
1106 /// ~(-(1 << NBits))
1107 /// Because a 'not' is better for bit-tracking analysis and other transforms
1108 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1109 static Instruction
*canonicalizeLowbitMask(BinaryOperator
&I
,
1110 InstCombiner::BuilderTy
&Builder
) {
1112 if (!match(&I
, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits
))), m_AllOnes())))
1115 Constant
*MinusOne
= Constant::getAllOnesValue(NBits
->getType());
1116 Value
*NotMask
= Builder
.CreateShl(MinusOne
, NBits
, "notmask");
1117 // Be wary of constant folding.
1118 if (auto *BOp
= dyn_cast
<BinaryOperator
>(NotMask
)) {
1119 // Always NSW. But NUW propagates from `add`.
1120 BOp
->setHasNoSignedWrap();
1121 BOp
->setHasNoUnsignedWrap(I
.hasNoUnsignedWrap());
1124 return BinaryOperator::CreateNot(NotMask
, I
.getName());
1127 static Instruction
*foldToUnsignedSaturatedAdd(BinaryOperator
&I
) {
1128 assert(I
.getOpcode() == Instruction::Add
&& "Expecting add instruction");
1129 Type
*Ty
= I
.getType();
1130 auto getUAddSat
= [&]() {
1131 return Intrinsic::getDeclaration(I
.getModule(), Intrinsic::uadd_sat
, Ty
);
1134 // add (umin X, ~Y), Y --> uaddsat X, Y
1136 if (match(&I
, m_c_Add(m_c_UMin(m_Value(X
), m_Not(m_Value(Y
))),
1138 return CallInst::Create(getUAddSat(), { X
, Y
});
1140 // add (umin X, ~C), C --> uaddsat X, C
1141 const APInt
*C
, *NotC
;
1142 if (match(&I
, m_Add(m_UMin(m_Value(X
), m_APInt(NotC
)), m_APInt(C
))) &&
1144 return CallInst::Create(getUAddSat(), { X
, ConstantInt::get(Ty
, *C
) });
1149 Instruction
*InstCombinerImpl::
1150 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1151 BinaryOperator
&I
) {
1152 assert((I
.getOpcode() == Instruction::Add
||
1153 I
.getOpcode() == Instruction::Or
||
1154 I
.getOpcode() == Instruction::Sub
) &&
1155 "Expecting add/or/sub instruction");
1157 // We have a subtraction/addition between a (potentially truncated) *logical*
1158 // right-shift of X and a "select".
1160 Instruction
*LowBitsToSkip
, *Extract
;
1161 if (!match(&I
, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1162 m_LShr(m_Value(X
), m_Instruction(LowBitsToSkip
)),
1163 m_Instruction(Extract
))),
1167 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1168 if (I
.getOpcode() == Instruction::Sub
&& I
.getOperand(1) != Select
)
1171 Type
*XTy
= X
->getType();
1172 bool HadTrunc
= I
.getType() != XTy
;
1174 // If there was a truncation of extracted value, then we'll need to produce
1175 // one extra instruction, so we need to ensure one instruction will go away.
1176 if (HadTrunc
&& !match(&I
, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1179 // Extraction should extract high NBits bits, with shift amount calculated as:
1180 // low bits to skip = shift bitwidth - high bits to extract
1181 // The shift amount itself may be extended, and we need to look past zero-ext
1182 // when matching NBits, that will matter for matching later.
1187 m_ZExtOrSelf(m_Sub(m_Constant(C
), m_ZExtOrSelf(m_Value(NBits
))))) ||
1188 !match(C
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ
,
1189 APInt(C
->getType()->getScalarSizeInBits(),
1190 X
->getType()->getScalarSizeInBits()))))
1193 // Sign-extending value can be zero-extended if we `sub`tract it,
1194 // or sign-extended otherwise.
1195 auto SkipExtInMagic
= [&I
](Value
*&V
) {
1196 if (I
.getOpcode() == Instruction::Sub
)
1197 match(V
, m_ZExtOrSelf(m_Value(V
)));
1199 match(V
, m_SExtOrSelf(m_Value(V
)));
1202 // Now, finally validate the sign-extending magic.
1203 // `select` itself may be appropriately extended, look past that.
1204 SkipExtInMagic(Select
);
1206 ICmpInst::Predicate Pred
;
1208 Value
*SignExtendingValue
, *Zero
;
1210 // It must be a select between two values we will later establish to be a
1211 // sign-extending value and a zero constant. The condition guarding the
1212 // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1213 if (!match(Select
, m_Select(m_ICmp(Pred
, m_Specific(X
), m_APInt(Thr
)),
1214 m_Value(SignExtendingValue
), m_Value(Zero
))) ||
1215 !isSignBitCheck(Pred
, *Thr
, ShouldSignext
))
1218 // icmp-select pair is commutative.
1220 std::swap(SignExtendingValue
, Zero
);
1222 // If we should not perform sign-extension then we must add/or/subtract zero.
1223 if (!match(Zero
, m_Zero()))
1225 // Otherwise, it should be some constant, left-shifted by the same NBits we
1226 // had in `lshr`. Said left-shift can also be appropriately extended.
1227 // Again, we must look past zero-ext when looking for NBits.
1228 SkipExtInMagic(SignExtendingValue
);
1229 Constant
*SignExtendingValueBaseConstant
;
1230 if (!match(SignExtendingValue
,
1231 m_Shl(m_Constant(SignExtendingValueBaseConstant
),
1232 m_ZExtOrSelf(m_Specific(NBits
)))))
1234 // If we `sub`, then the constant should be one, else it should be all-ones.
1235 if (I
.getOpcode() == Instruction::Sub
1236 ? !match(SignExtendingValueBaseConstant
, m_One())
1237 : !match(SignExtendingValueBaseConstant
, m_AllOnes()))
1240 auto *NewAShr
= BinaryOperator::CreateAShr(X
, LowBitsToSkip
,
1241 Extract
->getName() + ".sext");
1242 NewAShr
->copyIRFlags(Extract
); // Preserve `exact`-ness.
1246 Builder
.Insert(NewAShr
);
1247 return TruncInst::CreateTruncOrBitCast(NewAShr
, I
.getType());
1250 /// This is a specialization of a more general transform from
1251 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
1252 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1253 static Instruction
*factorizeMathWithShlOps(BinaryOperator
&I
,
1254 InstCombiner::BuilderTy
&Builder
) {
1255 // TODO: Also handle mul by doubling the shift amount?
1256 assert((I
.getOpcode() == Instruction::Add
||
1257 I
.getOpcode() == Instruction::Sub
) &&
1258 "Expected add/sub");
1259 auto *Op0
= dyn_cast
<BinaryOperator
>(I
.getOperand(0));
1260 auto *Op1
= dyn_cast
<BinaryOperator
>(I
.getOperand(1));
1261 if (!Op0
|| !Op1
|| !(Op0
->hasOneUse() || Op1
->hasOneUse()))
1264 Value
*X
, *Y
, *ShAmt
;
1265 if (!match(Op0
, m_Shl(m_Value(X
), m_Value(ShAmt
))) ||
1266 !match(Op1
, m_Shl(m_Value(Y
), m_Specific(ShAmt
))))
1269 // No-wrap propagates only when all ops have no-wrap.
1270 bool HasNSW
= I
.hasNoSignedWrap() && Op0
->hasNoSignedWrap() &&
1271 Op1
->hasNoSignedWrap();
1272 bool HasNUW
= I
.hasNoUnsignedWrap() && Op0
->hasNoUnsignedWrap() &&
1273 Op1
->hasNoUnsignedWrap();
1275 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1276 Value
*NewMath
= Builder
.CreateBinOp(I
.getOpcode(), X
, Y
);
1277 if (auto *NewI
= dyn_cast
<BinaryOperator
>(NewMath
)) {
1278 NewI
->setHasNoSignedWrap(HasNSW
);
1279 NewI
->setHasNoUnsignedWrap(HasNUW
);
1281 auto *NewShl
= BinaryOperator::CreateShl(NewMath
, ShAmt
);
1282 NewShl
->setHasNoSignedWrap(HasNSW
);
1283 NewShl
->setHasNoUnsignedWrap(HasNUW
);
1287 Instruction
*InstCombinerImpl::visitAdd(BinaryOperator
&I
) {
1288 if (Value
*V
= SimplifyAddInst(I
.getOperand(0), I
.getOperand(1),
1289 I
.hasNoSignedWrap(), I
.hasNoUnsignedWrap(),
1290 SQ
.getWithInstruction(&I
)))
1291 return replaceInstUsesWith(I
, V
);
1293 if (SimplifyAssociativeOrCommutative(I
))
1296 if (Instruction
*X
= foldVectorBinop(I
))
1299 // (A*B)+(A*C) -> A*(B+C) etc
1300 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
1301 return replaceInstUsesWith(I
, V
);
1303 if (Instruction
*R
= factorizeMathWithShlOps(I
, Builder
))
1306 if (Instruction
*X
= foldAddWithConstant(I
))
1309 if (Instruction
*X
= foldNoWrapAdd(I
, Builder
))
1312 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
1313 Type
*Ty
= I
.getType();
1314 if (Ty
->isIntOrIntVectorTy(1))
1315 return BinaryOperator::CreateXor(LHS
, RHS
);
1319 auto *Shl
= BinaryOperator::CreateShl(LHS
, ConstantInt::get(Ty
, 1));
1320 Shl
->setHasNoSignedWrap(I
.hasNoSignedWrap());
1321 Shl
->setHasNoUnsignedWrap(I
.hasNoUnsignedWrap());
1326 if (match(LHS
, m_Neg(m_Value(A
)))) {
1327 // -A + -B --> -(A + B)
1328 if (match(RHS
, m_Neg(m_Value(B
))))
1329 return BinaryOperator::CreateNeg(Builder
.CreateAdd(A
, B
));
1332 return BinaryOperator::CreateSub(RHS
, A
);
1336 if (match(RHS
, m_Neg(m_Value(B
))))
1337 return BinaryOperator::CreateSub(LHS
, B
);
1339 if (Value
*V
= checkForNegativeOperand(I
, Builder
))
1340 return replaceInstUsesWith(I
, V
);
1342 // (A + 1) + ~B --> A - B
1343 // ~B + (A + 1) --> A - B
1344 // (~B + A) + 1 --> A - B
1345 // (A + ~B) + 1 --> A - B
1346 if (match(&I
, m_c_BinOp(m_Add(m_Value(A
), m_One()), m_Not(m_Value(B
)))) ||
1347 match(&I
, m_BinOp(m_c_Add(m_Not(m_Value(B
)), m_Value(A
)), m_One())))
1348 return BinaryOperator::CreateSub(A
, B
);
1350 // (A + RHS) + RHS --> A + (RHS << 1)
1351 if (match(LHS
, m_OneUse(m_c_Add(m_Value(A
), m_Specific(RHS
)))))
1352 return BinaryOperator::CreateAdd(A
, Builder
.CreateShl(RHS
, 1, "reass.add"));
1354 // LHS + (A + LHS) --> A + (LHS << 1)
1355 if (match(RHS
, m_OneUse(m_c_Add(m_Value(A
), m_Specific(LHS
)))))
1356 return BinaryOperator::CreateAdd(A
, Builder
.CreateShl(LHS
, 1, "reass.add"));
1359 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1361 if (match(&I
, m_c_Add(m_Add(m_Value(A
), m_ImmConstant(C1
)),
1362 m_Sub(m_ImmConstant(C2
), m_Value(B
)))) &&
1363 (LHS
->hasOneUse() || RHS
->hasOneUse())) {
1364 Value
*Sub
= Builder
.CreateSub(A
, B
);
1365 return BinaryOperator::CreateAdd(Sub
, ConstantExpr::getAdd(C1
, C2
));
1369 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1370 if (Value
*V
= SimplifyAddWithRemainder(I
)) return replaceInstUsesWith(I
, V
);
1372 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1373 const APInt
*C1
, *C2
;
1374 if (match(LHS
, m_Shl(m_SDiv(m_Specific(RHS
), m_APInt(C1
)), m_APInt(C2
)))) {
1375 APInt
one(C2
->getBitWidth(), 1);
1376 APInt minusC1
= -(*C1
);
1377 if (minusC1
== (one
<< *C2
)) {
1378 Constant
*NewRHS
= ConstantInt::get(RHS
->getType(), minusC1
);
1379 return BinaryOperator::CreateSRem(RHS
, NewRHS
);
1383 // A+B --> A|B iff A and B have no bits set in common.
1384 if (haveNoCommonBitsSet(LHS
, RHS
, DL
, &AC
, &I
, &DT
))
1385 return BinaryOperator::CreateOr(LHS
, RHS
);
1387 // add (select X 0 (sub n A)) A --> select X A n
1389 SelectInst
*SI
= dyn_cast
<SelectInst
>(LHS
);
1392 SI
= dyn_cast
<SelectInst
>(RHS
);
1395 if (SI
&& SI
->hasOneUse()) {
1396 Value
*TV
= SI
->getTrueValue();
1397 Value
*FV
= SI
->getFalseValue();
1400 // Can we fold the add into the argument of the select?
1401 // We check both true and false select arguments for a matching subtract.
1402 if (match(FV
, m_Zero()) && match(TV
, m_Sub(m_Value(N
), m_Specific(A
))))
1403 // Fold the add into the true select value.
1404 return SelectInst::Create(SI
->getCondition(), N
, A
);
1406 if (match(TV
, m_Zero()) && match(FV
, m_Sub(m_Value(N
), m_Specific(A
))))
1407 // Fold the add into the false select value.
1408 return SelectInst::Create(SI
->getCondition(), A
, N
);
1412 if (Instruction
*Ext
= narrowMathIfNoOverflow(I
))
1415 // (add (xor A, B) (and A, B)) --> (or A, B)
1416 // (add (and A, B) (xor A, B)) --> (or A, B)
1417 if (match(&I
, m_c_BinOp(m_Xor(m_Value(A
), m_Value(B
)),
1418 m_c_And(m_Deferred(A
), m_Deferred(B
)))))
1419 return BinaryOperator::CreateOr(A
, B
);
1421 // (add (or A, B) (and A, B)) --> (add A, B)
1422 // (add (and A, B) (or A, B)) --> (add A, B)
1423 if (match(&I
, m_c_BinOp(m_Or(m_Value(A
), m_Value(B
)),
1424 m_c_And(m_Deferred(A
), m_Deferred(B
))))) {
1425 // Replacing operands in-place to preserve nuw/nsw flags.
1426 replaceOperand(I
, 0, A
);
1427 replaceOperand(I
, 1, B
);
1431 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1432 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1433 // computeKnownBits.
1434 bool Changed
= false;
1435 if (!I
.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS
, RHS
, I
)) {
1437 I
.setHasNoSignedWrap(true);
1439 if (!I
.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS
, RHS
, I
)) {
1441 I
.setHasNoUnsignedWrap(true);
1444 if (Instruction
*V
= canonicalizeLowbitMask(I
, Builder
))
1447 if (Instruction
*V
=
1448 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I
))
1451 if (Instruction
*SatAdd
= foldToUnsignedSaturatedAdd(I
))
1454 // usub.sat(A, B) + B => umax(A, B)
1455 if (match(&I
, m_c_BinOp(
1456 m_OneUse(m_Intrinsic
<Intrinsic::usub_sat
>(m_Value(A
), m_Value(B
))),
1458 return replaceInstUsesWith(I
,
1459 Builder
.CreateIntrinsic(Intrinsic::umax
, {I
.getType()}, {A
, B
}));
1462 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1463 if (match(LHS
, m_OneUse(m_Intrinsic
<Intrinsic::ctpop
>(m_Value(A
)))) &&
1464 match(RHS
, m_OneUse(m_Intrinsic
<Intrinsic::ctpop
>(m_Value(B
)))) &&
1465 haveNoCommonBitsSet(A
, B
, DL
, &AC
, &I
, &DT
))
1466 return replaceInstUsesWith(
1467 I
, Builder
.CreateIntrinsic(Intrinsic::ctpop
, {I
.getType()},
1468 {Builder
.CreateOr(A
, B
)}));
1470 return Changed
? &I
: nullptr;
1473 /// Eliminate an op from a linear interpolation (lerp) pattern.
1474 static Instruction
*factorizeLerp(BinaryOperator
&I
,
1475 InstCombiner::BuilderTy
&Builder
) {
1477 if (!match(&I
, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y
),
1478 m_OneUse(m_FSub(m_FPOne(),
1480 m_OneUse(m_c_FMul(m_Value(X
), m_Deferred(Z
))))))
1483 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1484 Value
*XY
= Builder
.CreateFSubFMF(X
, Y
, &I
);
1485 Value
*MulZ
= Builder
.CreateFMulFMF(Z
, XY
, &I
);
1486 return BinaryOperator::CreateFAddFMF(Y
, MulZ
, &I
);
1489 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1490 static Instruction
*factorizeFAddFSub(BinaryOperator
&I
,
1491 InstCombiner::BuilderTy
&Builder
) {
1492 assert((I
.getOpcode() == Instruction::FAdd
||
1493 I
.getOpcode() == Instruction::FSub
) && "Expecting fadd/fsub");
1494 assert(I
.hasAllowReassoc() && I
.hasNoSignedZeros() &&
1495 "FP factorization requires FMF");
1497 if (Instruction
*Lerp
= factorizeLerp(I
, Builder
))
1500 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1503 if ((match(Op0
, m_OneUse(m_FMul(m_Value(X
), m_Value(Z
)))) &&
1504 match(Op1
, m_OneUse(m_c_FMul(m_Value(Y
), m_Specific(Z
))))) ||
1505 (match(Op0
, m_OneUse(m_FMul(m_Value(Z
), m_Value(X
)))) &&
1506 match(Op1
, m_OneUse(m_c_FMul(m_Value(Y
), m_Specific(Z
))))))
1508 else if (match(Op0
, m_OneUse(m_FDiv(m_Value(X
), m_Value(Z
)))) &&
1509 match(Op1
, m_OneUse(m_FDiv(m_Value(Y
), m_Specific(Z
)))))
1514 // (X * Z) + (Y * Z) --> (X + Y) * Z
1515 // (X * Z) - (Y * Z) --> (X - Y) * Z
1516 // (X / Z) + (Y / Z) --> (X + Y) / Z
1517 // (X / Z) - (Y / Z) --> (X - Y) / Z
1518 bool IsFAdd
= I
.getOpcode() == Instruction::FAdd
;
1519 Value
*XY
= IsFAdd
? Builder
.CreateFAddFMF(X
, Y
, &I
)
1520 : Builder
.CreateFSubFMF(X
, Y
, &I
);
1522 // Bail out if we just created a denormal constant.
1523 // TODO: This is copied from a previous implementation. Is it necessary?
1525 if (match(XY
, m_APFloat(C
)) && !C
->isNormal())
1528 return IsFMul
? BinaryOperator::CreateFMulFMF(XY
, Z
, &I
)
1529 : BinaryOperator::CreateFDivFMF(XY
, Z
, &I
);
1532 Instruction
*InstCombinerImpl::visitFAdd(BinaryOperator
&I
) {
1533 if (Value
*V
= SimplifyFAddInst(I
.getOperand(0), I
.getOperand(1),
1534 I
.getFastMathFlags(),
1535 SQ
.getWithInstruction(&I
)))
1536 return replaceInstUsesWith(I
, V
);
1538 if (SimplifyAssociativeOrCommutative(I
))
1541 if (Instruction
*X
= foldVectorBinop(I
))
1544 if (Instruction
*FoldedFAdd
= foldBinOpIntoSelectOrPhi(I
))
1547 // (-X) + Y --> Y - X
1549 if (match(&I
, m_c_FAdd(m_FNeg(m_Value(X
)), m_Value(Y
))))
1550 return BinaryOperator::CreateFSubFMF(Y
, X
, &I
);
1552 // Similar to above, but look through fmul/fdiv for the negated term.
1553 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1555 if (match(&I
, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X
)), m_Value(Y
))),
1557 Value
*XY
= Builder
.CreateFMulFMF(X
, Y
, &I
);
1558 return BinaryOperator::CreateFSubFMF(Z
, XY
, &I
);
1560 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1561 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1562 if (match(&I
, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X
)), m_Value(Y
))),
1564 match(&I
, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X
), m_FNeg(m_Value(Y
)))),
1566 Value
*XY
= Builder
.CreateFDivFMF(X
, Y
, &I
);
1567 return BinaryOperator::CreateFSubFMF(Z
, XY
, &I
);
1570 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1571 // integer add followed by a promotion.
1572 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
1573 if (SIToFPInst
*LHSConv
= dyn_cast
<SIToFPInst
>(LHS
)) {
1574 Value
*LHSIntVal
= LHSConv
->getOperand(0);
1575 Type
*FPType
= LHSConv
->getType();
1577 // TODO: This check is overly conservative. In many cases known bits
1578 // analysis can tell us that the result of the addition has less significant
1579 // bits than the integer type can hold.
1580 auto IsValidPromotion
= [](Type
*FTy
, Type
*ITy
) {
1581 Type
*FScalarTy
= FTy
->getScalarType();
1582 Type
*IScalarTy
= ITy
->getScalarType();
1584 // Do we have enough bits in the significand to represent the result of
1585 // the integer addition?
1586 unsigned MaxRepresentableBits
=
1587 APFloat::semanticsPrecision(FScalarTy
->getFltSemantics());
1588 return IScalarTy
->getIntegerBitWidth() <= MaxRepresentableBits
;
1591 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1592 // ... if the constant fits in the integer value. This is useful for things
1593 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1594 // requires a constant pool load, and generally allows the add to be better
1596 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHS
))
1597 if (IsValidPromotion(FPType
, LHSIntVal
->getType())) {
1599 ConstantExpr::getFPToSI(CFP
, LHSIntVal
->getType());
1600 if (LHSConv
->hasOneUse() &&
1601 ConstantExpr::getSIToFP(CI
, I
.getType()) == CFP
&&
1602 willNotOverflowSignedAdd(LHSIntVal
, CI
, I
)) {
1603 // Insert the new integer add.
1604 Value
*NewAdd
= Builder
.CreateNSWAdd(LHSIntVal
, CI
, "addconv");
1605 return new SIToFPInst(NewAdd
, I
.getType());
1609 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1610 if (SIToFPInst
*RHSConv
= dyn_cast
<SIToFPInst
>(RHS
)) {
1611 Value
*RHSIntVal
= RHSConv
->getOperand(0);
1612 // It's enough to check LHS types only because we require int types to
1613 // be the same for this transform.
1614 if (IsValidPromotion(FPType
, LHSIntVal
->getType())) {
1615 // Only do this if x/y have the same type, if at least one of them has a
1616 // single use (so we don't increase the number of int->fp conversions),
1617 // and if the integer add will not overflow.
1618 if (LHSIntVal
->getType() == RHSIntVal
->getType() &&
1619 (LHSConv
->hasOneUse() || RHSConv
->hasOneUse()) &&
1620 willNotOverflowSignedAdd(LHSIntVal
, RHSIntVal
, I
)) {
1621 // Insert the new integer add.
1622 Value
*NewAdd
= Builder
.CreateNSWAdd(LHSIntVal
, RHSIntVal
, "addconv");
1623 return new SIToFPInst(NewAdd
, I
.getType());
1629 // Handle specials cases for FAdd with selects feeding the operation
1630 if (Value
*V
= SimplifySelectsFeedingBinaryOp(I
, LHS
, RHS
))
1631 return replaceInstUsesWith(I
, V
);
1633 if (I
.hasAllowReassoc() && I
.hasNoSignedZeros()) {
1634 if (Instruction
*F
= factorizeFAddFSub(I
, Builder
))
1637 // Try to fold fadd into start value of reduction intrinsic.
1638 if (match(&I
, m_c_FAdd(m_OneUse(m_Intrinsic
<Intrinsic::vector_reduce_fadd
>(
1639 m_AnyZeroFP(), m_Value(X
))),
1641 // fadd (rdx 0.0, X), Y --> rdx Y, X
1642 return replaceInstUsesWith(
1643 I
, Builder
.CreateIntrinsic(Intrinsic::vector_reduce_fadd
,
1644 {X
->getType()}, {Y
, X
}, &I
));
1646 const APFloat
*StartC
, *C
;
1647 if (match(LHS
, m_OneUse(m_Intrinsic
<Intrinsic::vector_reduce_fadd
>(
1648 m_APFloat(StartC
), m_Value(X
)))) &&
1649 match(RHS
, m_APFloat(C
))) {
1650 // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1651 Constant
*NewStartC
= ConstantFP::get(I
.getType(), *C
+ *StartC
);
1652 return replaceInstUsesWith(
1653 I
, Builder
.CreateIntrinsic(Intrinsic::vector_reduce_fadd
,
1654 {X
->getType()}, {NewStartC
, X
}, &I
));
1657 if (Value
*V
= FAddCombine(Builder
).simplify(&I
))
1658 return replaceInstUsesWith(I
, V
);
1664 /// Optimize pointer differences into the same array into a size. Consider:
1665 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1666 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1667 Value
*InstCombinerImpl::OptimizePointerDifference(Value
*LHS
, Value
*RHS
,
1668 Type
*Ty
, bool IsNUW
) {
1669 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1671 bool Swapped
= false;
1672 GEPOperator
*GEP1
= nullptr, *GEP2
= nullptr;
1673 if (!isa
<GEPOperator
>(LHS
) && isa
<GEPOperator
>(RHS
)) {
1674 std::swap(LHS
, RHS
);
1678 // Require at least one GEP with a common base pointer on both sides.
1679 if (auto *LHSGEP
= dyn_cast
<GEPOperator
>(LHS
)) {
1681 if (LHSGEP
->getOperand(0) == RHS
) {
1683 } else if (auto *RHSGEP
= dyn_cast
<GEPOperator
>(RHS
)) {
1684 // (gep X, ...) - (gep X, ...)
1685 if (LHSGEP
->getOperand(0)->stripPointerCasts() ==
1686 RHSGEP
->getOperand(0)->stripPointerCasts()) {
1697 // (gep X, ...) - (gep X, ...)
1699 // Avoid duplicating the arithmetic if there are more than one non-constant
1700 // indices between the two GEPs and either GEP has a non-constant index and
1701 // multiple users. If zero non-constant index, the result is a constant and
1702 // there is no duplication. If one non-constant index, the result is an add
1703 // or sub with a constant, which is no larger than the original code, and
1704 // there's no duplicated arithmetic, even if either GEP has multiple
1705 // users. If more than one non-constant indices combined, as long as the GEP
1706 // with at least one non-constant index doesn't have multiple users, there
1707 // is no duplication.
1708 unsigned NumNonConstantIndices1
= GEP1
->countNonConstantIndices();
1709 unsigned NumNonConstantIndices2
= GEP2
->countNonConstantIndices();
1710 if (NumNonConstantIndices1
+ NumNonConstantIndices2
> 1 &&
1711 ((NumNonConstantIndices1
> 0 && !GEP1
->hasOneUse()) ||
1712 (NumNonConstantIndices2
> 0 && !GEP2
->hasOneUse()))) {
1717 // Emit the offset of the GEP and an intptr_t.
1718 Value
*Result
= EmitGEPOffset(GEP1
);
1720 // If this is a single inbounds GEP and the original sub was nuw,
1721 // then the final multiplication is also nuw.
1722 if (auto *I
= dyn_cast
<Instruction
>(Result
))
1723 if (IsNUW
&& !GEP2
&& !Swapped
&& GEP1
->isInBounds() &&
1724 I
->getOpcode() == Instruction::Mul
)
1725 I
->setHasNoUnsignedWrap();
1727 // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1728 // If both GEPs are inbounds, then the subtract does not have signed overflow.
1730 Value
*Offset
= EmitGEPOffset(GEP2
);
1731 Result
= Builder
.CreateSub(Result
, Offset
, "gepdiff", /* NUW */ false,
1732 GEP1
->isInBounds() && GEP2
->isInBounds());
1735 // If we have p - gep(p, ...) then we have to negate the result.
1737 Result
= Builder
.CreateNeg(Result
, "diff.neg");
1739 return Builder
.CreateIntCast(Result
, Ty
, true);
1742 Instruction
*InstCombinerImpl::visitSub(BinaryOperator
&I
) {
1743 if (Value
*V
= SimplifySubInst(I
.getOperand(0), I
.getOperand(1),
1744 I
.hasNoSignedWrap(), I
.hasNoUnsignedWrap(),
1745 SQ
.getWithInstruction(&I
)))
1746 return replaceInstUsesWith(I
, V
);
1748 if (Instruction
*X
= foldVectorBinop(I
))
1751 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1753 // If this is a 'B = x-(-A)', change to B = x+A.
1754 // We deal with this without involving Negator to preserve NSW flag.
1755 if (Value
*V
= dyn_castNegVal(Op1
)) {
1756 BinaryOperator
*Res
= BinaryOperator::CreateAdd(Op0
, V
);
1758 if (const auto *BO
= dyn_cast
<BinaryOperator
>(Op1
)) {
1759 assert(BO
->getOpcode() == Instruction::Sub
&&
1760 "Expected a subtraction operator!");
1761 if (BO
->hasNoSignedWrap() && I
.hasNoSignedWrap())
1762 Res
->setHasNoSignedWrap(true);
1764 if (cast
<Constant
>(Op1
)->isNotMinSignedValue() && I
.hasNoSignedWrap())
1765 Res
->setHasNoSignedWrap(true);
1771 // Try this before Negator to preserve NSW flag.
1772 if (Instruction
*R
= factorizeMathWithShlOps(I
, Builder
))
1776 if (match(Op0
, m_ImmConstant(C
))) {
1780 // C-(X+C2) --> (C-C2)-X
1781 if (match(Op1
, m_Add(m_Value(X
), m_ImmConstant(C2
))))
1782 return BinaryOperator::CreateSub(ConstantExpr::getSub(C
, C2
), X
);
1785 auto TryToNarrowDeduceFlags
= [this, &I
, &Op0
, &Op1
]() -> Instruction
* {
1786 if (Instruction
*Ext
= narrowMathIfNoOverflow(I
))
1789 bool Changed
= false;
1790 if (!I
.hasNoSignedWrap() && willNotOverflowSignedSub(Op0
, Op1
, I
)) {
1792 I
.setHasNoSignedWrap(true);
1794 if (!I
.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0
, Op1
, I
)) {
1796 I
.setHasNoUnsignedWrap(true);
1799 return Changed
? &I
: nullptr;
1802 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1803 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1804 // a pure negation used by a select that looks like abs/nabs.
1805 bool IsNegation
= match(Op0
, m_ZeroInt());
1806 if (!IsNegation
|| none_of(I
.users(), [&I
, Op1
](const User
*U
) {
1807 const Instruction
*UI
= dyn_cast
<Instruction
>(U
);
1811 m_Select(m_Value(), m_Specific(Op1
), m_Specific(&I
))) ||
1812 match(UI
, m_Select(m_Value(), m_Specific(&I
), m_Specific(Op1
)));
1814 if (Value
*NegOp1
= Negator::Negate(IsNegation
, Op1
, *this))
1815 return BinaryOperator::CreateAdd(NegOp1
, Op0
);
1818 return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1820 // (A*B)-(A*C) -> A*(B-C) etc
1821 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
1822 return replaceInstUsesWith(I
, V
);
1824 if (I
.getType()->isIntOrIntVectorTy(1))
1825 return BinaryOperator::CreateXor(Op0
, Op1
);
1827 // Replace (-1 - A) with (~A).
1828 if (match(Op0
, m_AllOnes()))
1829 return BinaryOperator::CreateNot(Op1
);
1831 // (~X) - (~Y) --> Y - X
1833 if (match(Op0
, m_Not(m_Value(X
))) && match(Op1
, m_Not(m_Value(Y
))))
1834 return BinaryOperator::CreateSub(Y
, X
);
1836 // (X + -1) - Y --> ~Y + X
1837 if (match(Op0
, m_OneUse(m_Add(m_Value(X
), m_AllOnes()))))
1838 return BinaryOperator::CreateAdd(Builder
.CreateNot(Op1
), X
);
1840 // Reassociate sub/add sequences to create more add instructions and
1841 // reduce dependency chains:
1842 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1844 if (match(Op0
, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X
), m_Value(Y
))),
1846 Value
*XZ
= Builder
.CreateAdd(X
, Z
);
1847 Value
*YW
= Builder
.CreateAdd(Y
, Op1
);
1848 return BinaryOperator::CreateSub(XZ
, YW
);
1851 // ((X - Y) - Op1) --> X - (Y + Op1)
1852 if (match(Op0
, m_OneUse(m_Sub(m_Value(X
), m_Value(Y
))))) {
1853 Value
*Add
= Builder
.CreateAdd(Y
, Op1
);
1854 return BinaryOperator::CreateSub(X
, Add
);
1857 auto m_AddRdx
= [](Value
*&Vec
) {
1858 return m_OneUse(m_Intrinsic
<Intrinsic::vector_reduce_add
>(m_Value(Vec
)));
1861 if (match(Op0
, m_AddRdx(V0
)) && match(Op1
, m_AddRdx(V1
)) &&
1862 V0
->getType() == V1
->getType()) {
1863 // Difference of sums is sum of differences:
1864 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1865 Value
*Sub
= Builder
.CreateSub(V0
, V1
);
1866 Value
*Rdx
= Builder
.CreateIntrinsic(Intrinsic::vector_reduce_add
,
1867 {Sub
->getType()}, {Sub
});
1868 return replaceInstUsesWith(I
, Rdx
);
1871 if (Constant
*C
= dyn_cast
<Constant
>(Op0
)) {
1873 if (match(Op1
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
1874 // C - (zext bool) --> bool ? C - 1 : C
1875 return SelectInst::Create(X
, InstCombiner::SubOne(C
), C
);
1876 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
1877 // C - (sext bool) --> bool ? C + 1 : C
1878 return SelectInst::Create(X
, InstCombiner::AddOne(C
), C
);
1880 // C - ~X == X + (1+C)
1881 if (match(Op1
, m_Not(m_Value(X
))))
1882 return BinaryOperator::CreateAdd(X
, InstCombiner::AddOne(C
));
1884 // Try to fold constant sub into select arguments.
1885 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
1886 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1889 // Try to fold constant sub into PHI values.
1890 if (PHINode
*PN
= dyn_cast
<PHINode
>(Op1
))
1891 if (Instruction
*R
= foldOpIntoPhi(I
, PN
))
1896 // C-(C2-X) --> X+(C-C2)
1897 if (match(Op1
, m_Sub(m_ImmConstant(C2
), m_Value(X
))))
1898 return BinaryOperator::CreateAdd(X
, ConstantExpr::getSub(C
, C2
));
1902 if (match(Op0
, m_APInt(Op0C
)) && Op0C
->isMask()) {
1903 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1905 KnownBits RHSKnown
= computeKnownBits(Op1
, 0, &I
);
1906 if ((*Op0C
| RHSKnown
.Zero
).isAllOnesValue())
1907 return BinaryOperator::CreateXor(Op1
, Op0
);
1912 // X-(X+Y) == -Y X-(Y+X) == -Y
1913 if (match(Op1
, m_c_Add(m_Specific(Op0
), m_Value(Y
))))
1914 return BinaryOperator::CreateNeg(Y
);
1917 if (match(Op0
, m_Sub(m_Specific(Op1
), m_Value(Y
))))
1918 return BinaryOperator::CreateNeg(Y
);
1921 // (sub (or A, B) (and A, B)) --> (xor A, B)
1924 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))) &&
1925 match(Op0
, m_c_Or(m_Specific(A
), m_Specific(B
))))
1926 return BinaryOperator::CreateXor(A
, B
);
1929 // (sub (add A, B) (or A, B)) --> (and A, B)
1932 if (match(Op0
, m_Add(m_Value(A
), m_Value(B
))) &&
1933 match(Op1
, m_c_Or(m_Specific(A
), m_Specific(B
))))
1934 return BinaryOperator::CreateAnd(A
, B
);
1937 // (sub (add A, B) (and A, B)) --> (or A, B)
1940 if (match(Op0
, m_Add(m_Value(A
), m_Value(B
))) &&
1941 match(Op1
, m_c_And(m_Specific(A
), m_Specific(B
))))
1942 return BinaryOperator::CreateOr(A
, B
);
1945 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1948 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
1949 match(Op1
, m_c_Or(m_Specific(A
), m_Specific(B
))) &&
1950 (Op0
->hasOneUse() || Op1
->hasOneUse()))
1951 return BinaryOperator::CreateNeg(Builder
.CreateXor(A
, B
));
1954 // (sub (or A, B), (xor A, B)) --> (and A, B)
1957 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) &&
1958 match(Op0
, m_c_Or(m_Specific(A
), m_Specific(B
))))
1959 return BinaryOperator::CreateAnd(A
, B
);
1962 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1965 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))) &&
1966 match(Op1
, m_c_Or(m_Specific(A
), m_Specific(B
))) &&
1967 (Op0
->hasOneUse() || Op1
->hasOneUse()))
1968 return BinaryOperator::CreateNeg(Builder
.CreateAnd(A
, B
));
1973 // ((X | Y) - X) --> (~X & Y)
1974 if (match(Op0
, m_OneUse(m_c_Or(m_Value(Y
), m_Specific(Op1
)))))
1975 return BinaryOperator::CreateAnd(
1976 Y
, Builder
.CreateNot(Op1
, Op1
->getName() + ".not"));
1980 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
1982 if (match(Op0
, m_OneUse(m_c_And(m_Specific(Op1
),
1983 m_OneUse(m_Neg(m_Value(X
))))))) {
1984 return BinaryOperator::CreateNeg(Builder
.CreateAnd(
1985 Op1
, Builder
.CreateAdd(X
, Constant::getAllOnesValue(I
.getType()))));
1990 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
1992 if (match(Op0
, m_OneUse(m_And(m_Specific(Op1
), m_Constant(C
))))) {
1993 return BinaryOperator::CreateNeg(
1994 Builder
.CreateAnd(Op1
, Builder
.CreateNot(C
)));
1999 // If we have a subtraction between some value and a select between
2000 // said value and something else, sink subtraction into select hands, i.e.:
2001 // sub (select %Cond, %TrueVal, %FalseVal), %Op1
2003 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2005 // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2007 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2008 // This will result in select between new subtraction and 0.
2009 auto SinkSubIntoSelect
=
2010 [Ty
= I
.getType()](Value
*Select
, Value
*OtherHandOfSub
,
2011 auto SubBuilder
) -> Instruction
* {
2012 Value
*Cond
, *TrueVal
, *FalseVal
;
2013 if (!match(Select
, m_OneUse(m_Select(m_Value(Cond
), m_Value(TrueVal
),
2014 m_Value(FalseVal
)))))
2016 if (OtherHandOfSub
!= TrueVal
&& OtherHandOfSub
!= FalseVal
)
2018 // While it is really tempting to just create two subtractions and let
2019 // InstCombine fold one of those to 0, it isn't possible to do so
2020 // because of worklist visitation order. So ugly it is.
2021 bool OtherHandOfSubIsTrueVal
= OtherHandOfSub
== TrueVal
;
2022 Value
*NewSub
= SubBuilder(OtherHandOfSubIsTrueVal
? FalseVal
: TrueVal
);
2023 Constant
*Zero
= Constant::getNullValue(Ty
);
2024 SelectInst
*NewSel
=
2025 SelectInst::Create(Cond
, OtherHandOfSubIsTrueVal
? Zero
: NewSub
,
2026 OtherHandOfSubIsTrueVal
? NewSub
: Zero
);
2027 // Preserve prof metadata if any.
2028 NewSel
->copyMetadata(cast
<Instruction
>(*Select
));
2031 if (Instruction
*NewSel
= SinkSubIntoSelect(
2032 /*Select=*/Op0
, /*OtherHandOfSub=*/Op1
,
2033 [Builder
= &Builder
, Op1
](Value
*OtherHandOfSelect
) {
2034 return Builder
->CreateSub(OtherHandOfSelect
,
2035 /*OtherHandOfSub=*/Op1
);
2038 if (Instruction
*NewSel
= SinkSubIntoSelect(
2039 /*Select=*/Op1
, /*OtherHandOfSub=*/Op0
,
2040 [Builder
= &Builder
, Op0
](Value
*OtherHandOfSelect
) {
2041 return Builder
->CreateSub(/*OtherHandOfSub=*/Op0
,
2047 // (X - (X & Y)) --> (X & ~Y)
2048 if (match(Op1
, m_c_And(m_Specific(Op0
), m_Value(Y
))) &&
2049 (Op1
->hasOneUse() || isa
<Constant
>(Y
)))
2050 return BinaryOperator::CreateAnd(
2051 Op0
, Builder
.CreateNot(Y
, Y
->getName() + ".not"));
2054 // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
2055 // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
2056 // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
2057 // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
2058 // So long as O here is freely invertible, this will be neutral or a win.
2059 Value
*LHS
, *RHS
, *A
;
2060 Value
*NotA
= Op0
, *MinMax
= Op1
;
2061 SelectPatternFlavor SPF
= matchSelectPattern(MinMax
, LHS
, RHS
).Flavor
;
2062 if (!SelectPatternResult::isMinOrMax(SPF
)) {
2065 SPF
= matchSelectPattern(MinMax
, LHS
, RHS
).Flavor
;
2067 if (SelectPatternResult::isMinOrMax(SPF
) &&
2068 match(NotA
, m_Not(m_Value(A
))) && (NotA
== LHS
|| NotA
== RHS
)) {
2070 std::swap(LHS
, RHS
);
2071 // LHS is now O above and expected to have at least 2 uses (the min/max)
2072 // NotA is epected to have 2 uses from the min/max and 1 from the sub.
2073 if (isFreeToInvert(LHS
, !LHS
->hasNUsesOrMore(3)) &&
2074 !NotA
->hasNUsesOrMore(4)) {
2075 // Note: We don't generate the inverse max/min, just create the not of
2076 // it and let other folds do the rest.
2077 Value
*Not
= Builder
.CreateNot(MinMax
);
2079 return BinaryOperator::CreateSub(Not
, A
);
2081 return BinaryOperator::CreateSub(A
, Not
);
2086 // Optimize pointer differences into the same array into a size. Consider:
2087 // &A[10] - &A[0]: we should compile this to "10".
2088 Value
*LHSOp
, *RHSOp
;
2089 if (match(Op0
, m_PtrToInt(m_Value(LHSOp
))) &&
2090 match(Op1
, m_PtrToInt(m_Value(RHSOp
))))
2091 if (Value
*Res
= OptimizePointerDifference(LHSOp
, RHSOp
, I
.getType(),
2092 I
.hasNoUnsignedWrap()))
2093 return replaceInstUsesWith(I
, Res
);
2095 // trunc(p)-trunc(q) -> trunc(p-q)
2096 if (match(Op0
, m_Trunc(m_PtrToInt(m_Value(LHSOp
)))) &&
2097 match(Op1
, m_Trunc(m_PtrToInt(m_Value(RHSOp
)))))
2098 if (Value
*Res
= OptimizePointerDifference(LHSOp
, RHSOp
, I
.getType(),
2100 return replaceInstUsesWith(I
, Res
);
2102 // Canonicalize a shifty way to code absolute value to the common pattern.
2103 // There are 2 potential commuted variants.
2104 // We're relying on the fact that we only do this transform when the shift has
2105 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2109 Type
*Ty
= I
.getType();
2110 if (match(Op1
, m_AShr(m_Value(A
), m_APInt(ShAmt
))) &&
2111 Op1
->hasNUses(2) && *ShAmt
== Ty
->getScalarSizeInBits() - 1 &&
2112 match(Op0
, m_OneUse(m_c_Xor(m_Specific(A
), m_Specific(Op1
))))) {
2113 // B = ashr i32 A, 31 ; smear the sign bit
2114 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
2115 // --> (A < 0) ? -A : A
2116 Value
*Cmp
= Builder
.CreateICmpSLT(A
, ConstantInt::getNullValue(Ty
));
2117 // Copy the nuw/nsw flags from the sub to the negate.
2118 Value
*Neg
= Builder
.CreateNeg(A
, "", I
.hasNoUnsignedWrap(),
2119 I
.hasNoSignedWrap());
2120 return SelectInst::Create(Cmp
, Neg
, A
);
2123 // If we are subtracting a low-bit masked subset of some value from an add
2124 // of that same value with no low bits changed, that is clearing some low bits
2126 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2127 const APInt
*AddC
, *AndC
;
2128 if (match(Op0
, m_Add(m_Value(X
), m_APInt(AddC
))) &&
2129 match(Op1
, m_And(m_Specific(X
), m_APInt(AndC
)))) {
2130 unsigned BitWidth
= Ty
->getScalarSizeInBits();
2131 unsigned Cttz
= AddC
->countTrailingZeros();
2132 APInt
HighMask(APInt::getHighBitsSet(BitWidth
, BitWidth
- Cttz
));
2133 if ((HighMask
& *AndC
).isNullValue())
2134 return BinaryOperator::CreateAnd(Op0
, ConstantInt::get(Ty
, ~(*AndC
)));
2137 if (Instruction
*V
=
2138 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I
))
2141 // X - usub.sat(X, Y) => umin(X, Y)
2142 if (match(Op1
, m_OneUse(m_Intrinsic
<Intrinsic::usub_sat
>(m_Specific(Op0
),
2144 return replaceInstUsesWith(
2145 I
, Builder
.CreateIntrinsic(Intrinsic::umin
, {I
.getType()}, {Op0
, Y
}));
2147 // C - ctpop(X) => ctpop(~X) if C is bitwidth
2148 if (match(Op0
, m_SpecificInt(Ty
->getScalarSizeInBits())) &&
2149 match(Op1
, m_OneUse(m_Intrinsic
<Intrinsic::ctpop
>(m_Value(X
)))))
2150 return replaceInstUsesWith(
2151 I
, Builder
.CreateIntrinsic(Intrinsic::ctpop
, {I
.getType()},
2152 {Builder
.CreateNot(X
)}));
2154 return TryToNarrowDeduceFlags();
2157 /// This eliminates floating-point negation in either 'fneg(X)' or
2158 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2159 static Instruction
*foldFNegIntoConstant(Instruction
&I
) {
2160 // This is limited with one-use because fneg is assumed better for
2161 // reassociation and cheaper in codegen than fmul/fdiv.
2162 // TODO: Should the m_OneUse restriction be removed?
2163 Instruction
*FNegOp
;
2164 if (!match(&I
, m_FNeg(m_OneUse(m_Instruction(FNegOp
)))))
2170 // Fold negation into constant operand.
2171 // -(X * C) --> X * (-C)
2172 if (match(FNegOp
, m_FMul(m_Value(X
), m_Constant(C
))))
2173 return BinaryOperator::CreateFMulFMF(X
, ConstantExpr::getFNeg(C
), &I
);
2174 // -(X / C) --> X / (-C)
2175 if (match(FNegOp
, m_FDiv(m_Value(X
), m_Constant(C
))))
2176 return BinaryOperator::CreateFDivFMF(X
, ConstantExpr::getFNeg(C
), &I
);
2177 // -(C / X) --> (-C) / X
2178 if (match(FNegOp
, m_FDiv(m_Constant(C
), m_Value(X
)))) {
2180 BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C
), X
, &I
);
2182 // Intersect 'nsz' and 'ninf' because those special value exceptions may not
2183 // apply to the fdiv. Everything else propagates from the fneg.
2184 // TODO: We could propagate nsz/ninf from fdiv alone?
2185 FastMathFlags FMF
= I
.getFastMathFlags();
2186 FastMathFlags OpFMF
= FNegOp
->getFastMathFlags();
2187 FDiv
->setHasNoSignedZeros(FMF
.noSignedZeros() & OpFMF
.noSignedZeros());
2188 FDiv
->setHasNoInfs(FMF
.noInfs() & OpFMF
.noInfs());
2191 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2192 // -(X + C) --> -X + -C --> -C - X
2193 if (I
.hasNoSignedZeros() && match(FNegOp
, m_FAdd(m_Value(X
), m_Constant(C
))))
2194 return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C
), X
, &I
);
2199 static Instruction
*hoistFNegAboveFMulFDiv(Instruction
&I
,
2200 InstCombiner::BuilderTy
&Builder
) {
2202 if (!match(&I
, m_FNeg(m_Value(FNeg
))))
2206 if (match(FNeg
, m_OneUse(m_FMul(m_Value(X
), m_Value(Y
)))))
2207 return BinaryOperator::CreateFMulFMF(Builder
.CreateFNegFMF(X
, &I
), Y
, &I
);
2209 if (match(FNeg
, m_OneUse(m_FDiv(m_Value(X
), m_Value(Y
)))))
2210 return BinaryOperator::CreateFDivFMF(Builder
.CreateFNegFMF(X
, &I
), Y
, &I
);
2215 Instruction
*InstCombinerImpl::visitFNeg(UnaryOperator
&I
) {
2216 Value
*Op
= I
.getOperand(0);
2218 if (Value
*V
= SimplifyFNegInst(Op
, I
.getFastMathFlags(),
2219 getSimplifyQuery().getWithInstruction(&I
)))
2220 return replaceInstUsesWith(I
, V
);
2222 if (Instruction
*X
= foldFNegIntoConstant(I
))
2227 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2228 if (I
.hasNoSignedZeros() &&
2229 match(Op
, m_OneUse(m_FSub(m_Value(X
), m_Value(Y
)))))
2230 return BinaryOperator::CreateFSubFMF(Y
, X
, &I
);
2232 if (Instruction
*R
= hoistFNegAboveFMulFDiv(I
, Builder
))
2235 // Try to eliminate fneg if at least 1 arm of the select is negated.
2237 if (match(Op
, m_OneUse(m_Select(m_Value(Cond
), m_Value(X
), m_Value(Y
))))) {
2238 // Unlike most transforms, this one is not safe to propagate nsz unless
2239 // it is present on the original select. (We are conservatively intersecting
2240 // the nsz flags from the select and root fneg instruction.)
2241 auto propagateSelectFMF
= [&](SelectInst
*S
) {
2242 S
->copyFastMathFlags(&I
);
2243 if (auto *OldSel
= dyn_cast
<SelectInst
>(Op
))
2244 if (!OldSel
->hasNoSignedZeros())
2245 S
->setHasNoSignedZeros(false);
2247 // -(Cond ? -P : Y) --> Cond ? P : -Y
2249 if (match(X
, m_FNeg(m_Value(P
)))) {
2250 Value
*NegY
= Builder
.CreateFNegFMF(Y
, &I
, Y
->getName() + ".neg");
2251 SelectInst
*NewSel
= SelectInst::Create(Cond
, P
, NegY
);
2252 propagateSelectFMF(NewSel
);
2255 // -(Cond ? X : -P) --> Cond ? -X : P
2256 if (match(Y
, m_FNeg(m_Value(P
)))) {
2257 Value
*NegX
= Builder
.CreateFNegFMF(X
, &I
, X
->getName() + ".neg");
2258 SelectInst
*NewSel
= SelectInst::Create(Cond
, NegX
, P
);
2259 propagateSelectFMF(NewSel
);
2267 Instruction
*InstCombinerImpl::visitFSub(BinaryOperator
&I
) {
2268 if (Value
*V
= SimplifyFSubInst(I
.getOperand(0), I
.getOperand(1),
2269 I
.getFastMathFlags(),
2270 getSimplifyQuery().getWithInstruction(&I
)))
2271 return replaceInstUsesWith(I
, V
);
2273 if (Instruction
*X
= foldVectorBinop(I
))
2276 // Subtraction from -0.0 is the canonical form of fneg.
2277 // fsub -0.0, X ==> fneg X
2278 // fsub nsz 0.0, X ==> fneg nsz X
2280 // FIXME This matcher does not respect FTZ or DAZ yet:
2281 // fsub -0.0, Denorm ==> +-0
2282 // fneg Denorm ==> -Denorm
2284 if (match(&I
, m_FNeg(m_Value(Op
))))
2285 return UnaryOperator::CreateFNegFMF(Op
, &I
);
2287 if (Instruction
*X
= foldFNegIntoConstant(I
))
2290 if (Instruction
*R
= hoistFNegAboveFMulFDiv(I
, Builder
))
2296 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2297 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2298 // Canonicalize to fadd to make analysis easier.
2299 // This can also help codegen because fadd is commutative.
2300 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2301 // killed later. We still limit that particular transform with 'hasOneUse'
2302 // because an fneg is assumed better/cheaper than a generic fsub.
2303 if (I
.hasNoSignedZeros() || CannotBeNegativeZero(Op0
, SQ
.TLI
)) {
2304 if (match(Op1
, m_OneUse(m_FSub(m_Value(X
), m_Value(Y
))))) {
2305 Value
*NewSub
= Builder
.CreateFSubFMF(Y
, X
, &I
);
2306 return BinaryOperator::CreateFAddFMF(Op0
, NewSub
, &I
);
2310 // (-X) - Op1 --> -(X + Op1)
2311 if (I
.hasNoSignedZeros() && !isa
<ConstantExpr
>(Op0
) &&
2312 match(Op0
, m_OneUse(m_FNeg(m_Value(X
))))) {
2313 Value
*FAdd
= Builder
.CreateFAddFMF(X
, Op1
, &I
);
2314 return UnaryOperator::CreateFNegFMF(FAdd
, &I
);
2317 if (isa
<Constant
>(Op0
))
2318 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
2319 if (Instruction
*NV
= FoldOpIntoSelect(I
, SI
))
2322 // X - C --> X + (-C)
2323 // But don't transform constant expressions because there's an inverse fold
2324 // for X + (-Y) --> X - Y.
2325 if (match(Op1
, m_ImmConstant(C
)))
2326 return BinaryOperator::CreateFAddFMF(Op0
, ConstantExpr::getFNeg(C
), &I
);
2328 // X - (-Y) --> X + Y
2329 if (match(Op1
, m_FNeg(m_Value(Y
))))
2330 return BinaryOperator::CreateFAddFMF(Op0
, Y
, &I
);
2332 // Similar to above, but look through a cast of the negated value:
2333 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2334 Type
*Ty
= I
.getType();
2335 if (match(Op1
, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y
))))))
2336 return BinaryOperator::CreateFAddFMF(Op0
, Builder
.CreateFPTrunc(Y
, Ty
), &I
);
2338 // X - (fpext(-Y)) --> X + fpext(Y)
2339 if (match(Op1
, m_OneUse(m_FPExt(m_FNeg(m_Value(Y
))))))
2340 return BinaryOperator::CreateFAddFMF(Op0
, Builder
.CreateFPExt(Y
, Ty
), &I
);
2342 // Similar to above, but look through fmul/fdiv of the negated value:
2343 // Op0 - (-X * Y) --> Op0 + (X * Y)
2344 // Op0 - (Y * -X) --> Op0 + (X * Y)
2345 if (match(Op1
, m_OneUse(m_c_FMul(m_FNeg(m_Value(X
)), m_Value(Y
))))) {
2346 Value
*FMul
= Builder
.CreateFMulFMF(X
, Y
, &I
);
2347 return BinaryOperator::CreateFAddFMF(Op0
, FMul
, &I
);
2349 // Op0 - (-X / Y) --> Op0 + (X / Y)
2350 // Op0 - (X / -Y) --> Op0 + (X / Y)
2351 if (match(Op1
, m_OneUse(m_FDiv(m_FNeg(m_Value(X
)), m_Value(Y
)))) ||
2352 match(Op1
, m_OneUse(m_FDiv(m_Value(X
), m_FNeg(m_Value(Y
)))))) {
2353 Value
*FDiv
= Builder
.CreateFDivFMF(X
, Y
, &I
);
2354 return BinaryOperator::CreateFAddFMF(Op0
, FDiv
, &I
);
2357 // Handle special cases for FSub with selects feeding the operation
2358 if (Value
*V
= SimplifySelectsFeedingBinaryOp(I
, Op0
, Op1
))
2359 return replaceInstUsesWith(I
, V
);
2361 if (I
.hasAllowReassoc() && I
.hasNoSignedZeros()) {
2362 // (Y - X) - Y --> -X
2363 if (match(Op0
, m_FSub(m_Specific(Op1
), m_Value(X
))))
2364 return UnaryOperator::CreateFNegFMF(X
, &I
);
2366 // Y - (X + Y) --> -X
2367 // Y - (Y + X) --> -X
2368 if (match(Op1
, m_c_FAdd(m_Specific(Op0
), m_Value(X
))))
2369 return UnaryOperator::CreateFNegFMF(X
, &I
);
2371 // (X * C) - X --> X * (C - 1.0)
2372 if (match(Op0
, m_FMul(m_Specific(Op1
), m_Constant(C
)))) {
2373 Constant
*CSubOne
= ConstantExpr::getFSub(C
, ConstantFP::get(Ty
, 1.0));
2374 return BinaryOperator::CreateFMulFMF(Op1
, CSubOne
, &I
);
2376 // X - (X * C) --> X * (1.0 - C)
2377 if (match(Op1
, m_FMul(m_Specific(Op0
), m_Constant(C
)))) {
2378 Constant
*OneSubC
= ConstantExpr::getFSub(ConstantFP::get(Ty
, 1.0), C
);
2379 return BinaryOperator::CreateFMulFMF(Op0
, OneSubC
, &I
);
2382 // Reassociate fsub/fadd sequences to create more fadd instructions and
2383 // reduce dependency chains:
2384 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2386 if (match(Op0
, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X
), m_Value(Y
))),
2388 Value
*XZ
= Builder
.CreateFAddFMF(X
, Z
, &I
);
2389 Value
*YW
= Builder
.CreateFAddFMF(Y
, Op1
, &I
);
2390 return BinaryOperator::CreateFSubFMF(XZ
, YW
, &I
);
2393 auto m_FaddRdx
= [](Value
*&Sum
, Value
*&Vec
) {
2394 return m_OneUse(m_Intrinsic
<Intrinsic::vector_reduce_fadd
>(m_Value(Sum
),
2397 Value
*A0
, *A1
, *V0
, *V1
;
2398 if (match(Op0
, m_FaddRdx(A0
, V0
)) && match(Op1
, m_FaddRdx(A1
, V1
)) &&
2399 V0
->getType() == V1
->getType()) {
2400 // Difference of sums is sum of differences:
2401 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2402 Value
*Sub
= Builder
.CreateFSubFMF(V0
, V1
, &I
);
2403 Value
*Rdx
= Builder
.CreateIntrinsic(Intrinsic::vector_reduce_fadd
,
2404 {Sub
->getType()}, {A0
, Sub
}, &I
);
2405 return BinaryOperator::CreateFSubFMF(Rdx
, A1
, &I
);
2408 if (Instruction
*F
= factorizeFAddFSub(I
, Builder
))
2411 // TODO: This performs reassociative folds for FP ops. Some fraction of the
2412 // functionality has been subsumed by simple pattern matching here and in
2413 // InstSimplify. We should let a dedicated reassociation pass handle more
2414 // complex pattern matching and remove this from InstCombine.
2415 if (Value
*V
= FAddCombine(Builder
).simplify(&I
))
2416 return replaceInstUsesWith(I
, V
);
2418 // (X - Y) - Op1 --> X - (Y + Op1)
2419 if (match(Op0
, m_OneUse(m_FSub(m_Value(X
), m_Value(Y
))))) {
2420 Value
*FAdd
= Builder
.CreateFAddFMF(Y
, Op1
, &I
);
2421 return BinaryOperator::CreateFSubFMF(X
, FAdd
, &I
);