[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstructionCombining.cpp
blob1026b9da44e91d970082cae81993fc6f3cfdcfc5
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
19 // This is a simple worklist driven algorithm.
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
33 //===----------------------------------------------------------------------===//
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
115 #define DEBUG_TYPE "instcombine"
117 STATISTIC(NumWorklistIterations,
118 "Number of instruction combining iterations performed");
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand, "Number of expansions");
125 STATISTIC(NumFactor , "Number of factorizations");
126 STATISTIC(NumReassoc , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128 "Controls which instructions are visited");
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140 cl::init(true));
142 static cl::opt<unsigned> LimitMaxIterations(
143 "instcombine-max-iterations",
144 cl::desc("Limit the maximum number of instruction combining iterations"),
145 cl::init(InstCombineDefaultMaxIterations));
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148 "instcombine-infinite-loop-threshold",
149 cl::desc("Number of instruction combining iterations considered an "
150 "infinite loop"),
151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155 cl::desc("Maximum array size considered when doing a combine"));
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165 cl::Hidden, cl::init(true));
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169 // Handle target specific intrinsics
170 if (II.getCalledFunction()->isTargetIntrinsic()) {
171 return TTI.instCombineIntrinsic(*this, II);
173 return None;
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178 bool &KnownBitsComputed) {
179 // Handle target specific intrinsics
180 if (II.getCalledFunction()->isTargetIntrinsic()) {
181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182 KnownBitsComputed);
184 return None;
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189 APInt &UndefElts3,
190 std::function<void(Instruction *, unsigned, APInt, APInt &)>
191 SimplifyAndSetOp) {
192 // Handle target specific intrinsics
193 if (II.getCalledFunction()->isTargetIntrinsic()) {
194 return TTI.simplifyDemandedVectorEltsIntrinsic(
195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196 SimplifyAndSetOp);
198 return None;
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202 return llvm::EmitGEPOffset(&Builder, DL, GEP);
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215 unsigned ToWidth) const {
216 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
219 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220 // shrink types, to prevent infinite loops.
221 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222 return true;
224 // If this is a legal integer from type, and the result would be an illegal
225 // type, don't do the transformation.
226 if (FromLegal && !ToLegal)
227 return false;
229 // Otherwise, if both are illegal, do not increase the size of the result. We
230 // do allow things like i160 -> i64, but not i64 -> i160.
231 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232 return false;
234 return true;
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243 // TODO: This could be extended to allow vectors. Datalayout changes might be
244 // needed to properly support that.
245 if (!From->isIntegerTy() || !To->isIntegerTy())
246 return false;
248 unsigned FromWidth = From->getPrimitiveSizeInBits();
249 unsigned ToWidth = To->getPrimitiveSizeInBits();
250 return shouldChangeType(FromWidth, ToWidth);
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260 if (!OBO || !OBO->hasNoSignedWrap())
261 return false;
263 // We reason about Add and Sub Only.
264 Instruction::BinaryOps Opcode = I.getOpcode();
265 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266 return false;
268 const APInt *BVal, *CVal;
269 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270 return false;
272 bool Overflow = false;
273 if (Opcode == Instruction::Add)
274 (void)BVal->sadd_ov(*CVal, Overflow);
275 else
276 (void)BVal->ssub_ov(*CVal, Overflow);
278 return !Overflow;
281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283 return OBO && OBO->hasNoUnsignedWrap();
286 static bool hasNoSignedWrap(BinaryOperator &I) {
287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288 return OBO && OBO->hasNoSignedWrap();
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296 if (!FPMO) {
297 I.clearSubclassOptionalData();
298 return;
301 FastMathFlags FMF = I.getFastMathFlags();
302 I.clearSubclassOptionalData();
303 I.setFastMathFlags(FMF);
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311 InstCombinerImpl &IC) {
312 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313 if (!Cast || !Cast->hasOneUse())
314 return false;
316 // TODO: Enhance logic for other casts and remove this check.
317 auto CastOpcode = Cast->getOpcode();
318 if (CastOpcode != Instruction::ZExt)
319 return false;
321 // TODO: Enhance logic for other BinOps and remove this check.
322 if (!BinOp1->isBitwiseLogicOp())
323 return false;
325 auto AssocOpcode = BinOp1->getOpcode();
326 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328 return false;
330 Constant *C1, *C2;
331 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332 !match(BinOp2->getOperand(1), m_Constant(C2)))
333 return false;
335 // TODO: This assumes a zext cast.
336 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337 // to the destination type might lose bits.
339 // Fold the constants together in the destination type:
340 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341 Type *DestTy = C1->getType();
342 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345 IC.replaceOperand(*BinOp1, 1, FoldedC);
346 return true;
349 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
350 // inttoptr ( ptrtoint (x) ) --> x
351 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
352 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
353 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
354 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
355 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
356 Type *CastTy = IntToPtr->getDestTy();
357 if (PtrToInt &&
358 CastTy->getPointerAddressSpace() ==
359 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
360 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
361 DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
362 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
363 "", PtrToInt);
366 return nullptr;
369 /// This performs a few simplifications for operators that are associative or
370 /// commutative:
372 /// Commutative operators:
374 /// 1. Order operands such that they are listed from right (least complex) to
375 /// left (most complex). This puts constants before unary operators before
376 /// binary operators.
378 /// Associative operators:
380 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
381 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
383 /// Associative and commutative operators:
385 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
386 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
387 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
388 /// if C1 and C2 are constants.
389 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
390 Instruction::BinaryOps Opcode = I.getOpcode();
391 bool Changed = false;
393 do {
394 // Order operands such that they are listed from right (least complex) to
395 // left (most complex). This puts constants before unary operators before
396 // binary operators.
397 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
398 getComplexity(I.getOperand(1)))
399 Changed = !I.swapOperands();
401 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
402 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
404 if (I.isAssociative()) {
405 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
406 if (Op0 && Op0->getOpcode() == Opcode) {
407 Value *A = Op0->getOperand(0);
408 Value *B = Op0->getOperand(1);
409 Value *C = I.getOperand(1);
411 // Does "B op C" simplify?
412 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
413 // It simplifies to V. Form "A op V".
414 replaceOperand(I, 0, A);
415 replaceOperand(I, 1, V);
416 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
417 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
419 // Conservatively clear all optional flags since they may not be
420 // preserved by the reassociation. Reset nsw/nuw based on the above
421 // analysis.
422 ClearSubclassDataAfterReassociation(I);
424 // Note: this is only valid because SimplifyBinOp doesn't look at
425 // the operands to Op0.
426 if (IsNUW)
427 I.setHasNoUnsignedWrap(true);
429 if (IsNSW)
430 I.setHasNoSignedWrap(true);
432 Changed = true;
433 ++NumReassoc;
434 continue;
438 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
439 if (Op1 && Op1->getOpcode() == Opcode) {
440 Value *A = I.getOperand(0);
441 Value *B = Op1->getOperand(0);
442 Value *C = Op1->getOperand(1);
444 // Does "A op B" simplify?
445 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
446 // It simplifies to V. Form "V op C".
447 replaceOperand(I, 0, V);
448 replaceOperand(I, 1, C);
449 // Conservatively clear the optional flags, since they may not be
450 // preserved by the reassociation.
451 ClearSubclassDataAfterReassociation(I);
452 Changed = true;
453 ++NumReassoc;
454 continue;
459 if (I.isAssociative() && I.isCommutative()) {
460 if (simplifyAssocCastAssoc(&I, *this)) {
461 Changed = true;
462 ++NumReassoc;
463 continue;
466 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
467 if (Op0 && Op0->getOpcode() == Opcode) {
468 Value *A = Op0->getOperand(0);
469 Value *B = Op0->getOperand(1);
470 Value *C = I.getOperand(1);
472 // Does "C op A" simplify?
473 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
474 // It simplifies to V. Form "V op B".
475 replaceOperand(I, 0, V);
476 replaceOperand(I, 1, B);
477 // Conservatively clear the optional flags, since they may not be
478 // preserved by the reassociation.
479 ClearSubclassDataAfterReassociation(I);
480 Changed = true;
481 ++NumReassoc;
482 continue;
486 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
487 if (Op1 && Op1->getOpcode() == Opcode) {
488 Value *A = I.getOperand(0);
489 Value *B = Op1->getOperand(0);
490 Value *C = Op1->getOperand(1);
492 // Does "C op A" simplify?
493 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
494 // It simplifies to V. Form "B op V".
495 replaceOperand(I, 0, B);
496 replaceOperand(I, 1, V);
497 // Conservatively clear the optional flags, since they may not be
498 // preserved by the reassociation.
499 ClearSubclassDataAfterReassociation(I);
500 Changed = true;
501 ++NumReassoc;
502 continue;
506 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
507 // if C1 and C2 are constants.
508 Value *A, *B;
509 Constant *C1, *C2;
510 if (Op0 && Op1 &&
511 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
512 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
513 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
514 bool IsNUW = hasNoUnsignedWrap(I) &&
515 hasNoUnsignedWrap(*Op0) &&
516 hasNoUnsignedWrap(*Op1);
517 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
518 BinaryOperator::CreateNUW(Opcode, A, B) :
519 BinaryOperator::Create(Opcode, A, B);
521 if (isa<FPMathOperator>(NewBO)) {
522 FastMathFlags Flags = I.getFastMathFlags();
523 Flags &= Op0->getFastMathFlags();
524 Flags &= Op1->getFastMathFlags();
525 NewBO->setFastMathFlags(Flags);
527 InsertNewInstWith(NewBO, I);
528 NewBO->takeName(Op1);
529 replaceOperand(I, 0, NewBO);
530 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
531 // Conservatively clear the optional flags, since they may not be
532 // preserved by the reassociation.
533 ClearSubclassDataAfterReassociation(I);
534 if (IsNUW)
535 I.setHasNoUnsignedWrap(true);
537 Changed = true;
538 continue;
542 // No further simplifications.
543 return Changed;
544 } while (true);
547 /// Return whether "X LOp (Y ROp Z)" is always equal to
548 /// "(X LOp Y) ROp (X LOp Z)".
549 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
550 Instruction::BinaryOps ROp) {
551 // X & (Y | Z) <--> (X & Y) | (X & Z)
552 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
553 if (LOp == Instruction::And)
554 return ROp == Instruction::Or || ROp == Instruction::Xor;
556 // X | (Y & Z) <--> (X | Y) & (X | Z)
557 if (LOp == Instruction::Or)
558 return ROp == Instruction::And;
560 // X * (Y + Z) <--> (X * Y) + (X * Z)
561 // X * (Y - Z) <--> (X * Y) - (X * Z)
562 if (LOp == Instruction::Mul)
563 return ROp == Instruction::Add || ROp == Instruction::Sub;
565 return false;
568 /// Return whether "(X LOp Y) ROp Z" is always equal to
569 /// "(X ROp Z) LOp (Y ROp Z)".
570 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
571 Instruction::BinaryOps ROp) {
572 if (Instruction::isCommutative(ROp))
573 return leftDistributesOverRight(ROp, LOp);
575 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
576 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
578 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
579 // but this requires knowing that the addition does not overflow and other
580 // such subtleties.
583 /// This function returns identity value for given opcode, which can be used to
584 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
585 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
586 if (isa<Constant>(V))
587 return nullptr;
589 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
592 /// This function predicates factorization using distributive laws. By default,
593 /// it just returns the 'Op' inputs. But for special-cases like
594 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
595 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
596 /// allow more factorization opportunities.
597 static Instruction::BinaryOps
598 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
599 Value *&LHS, Value *&RHS) {
600 assert(Op && "Expected a binary operator");
601 LHS = Op->getOperand(0);
602 RHS = Op->getOperand(1);
603 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
604 Constant *C;
605 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
606 // X << C --> X * (1 << C)
607 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
608 return Instruction::Mul;
610 // TODO: We can add other conversions e.g. shr => div etc.
612 return Op->getOpcode();
615 /// This tries to simplify binary operations by factorizing out common terms
616 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
617 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
618 Instruction::BinaryOps InnerOpcode,
619 Value *A, Value *B, Value *C,
620 Value *D) {
621 assert(A && B && C && D && "All values must be provided");
623 Value *V = nullptr;
624 Value *SimplifiedInst = nullptr;
625 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
626 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
628 // Does "X op' Y" always equal "Y op' X"?
629 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
631 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
632 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
633 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
634 // commutative case, "(A op' B) op (C op' A)"?
635 if (A == C || (InnerCommutative && A == D)) {
636 if (A != C)
637 std::swap(C, D);
638 // Consider forming "A op' (B op D)".
639 // If "B op D" simplifies then it can be formed with no cost.
640 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
641 // If "B op D" doesn't simplify then only go on if both of the existing
642 // operations "A op' B" and "C op' D" will be zapped as no longer used.
643 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
644 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
645 if (V) {
646 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
650 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
651 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
652 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
653 // commutative case, "(A op' B) op (B op' D)"?
654 if (B == D || (InnerCommutative && B == C)) {
655 if (B != D)
656 std::swap(C, D);
657 // Consider forming "(A op C) op' B".
658 // If "A op C" simplifies then it can be formed with no cost.
659 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
661 // If "A op C" doesn't simplify then only go on if both of the existing
662 // operations "A op' B" and "C op' D" will be zapped as no longer used.
663 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
664 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
665 if (V) {
666 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
670 if (SimplifiedInst) {
671 ++NumFactor;
672 SimplifiedInst->takeName(&I);
674 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
675 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
676 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
677 bool HasNSW = false;
678 bool HasNUW = false;
679 if (isa<OverflowingBinaryOperator>(&I)) {
680 HasNSW = I.hasNoSignedWrap();
681 HasNUW = I.hasNoUnsignedWrap();
684 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
685 HasNSW &= LOBO->hasNoSignedWrap();
686 HasNUW &= LOBO->hasNoUnsignedWrap();
689 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
690 HasNSW &= ROBO->hasNoSignedWrap();
691 HasNUW &= ROBO->hasNoUnsignedWrap();
694 if (TopLevelOpcode == Instruction::Add &&
695 InnerOpcode == Instruction::Mul) {
696 // We can propagate 'nsw' if we know that
697 // %Y = mul nsw i16 %X, C
698 // %Z = add nsw i16 %Y, %X
699 // =>
700 // %Z = mul nsw i16 %X, C+1
702 // iff C+1 isn't INT_MIN
703 const APInt *CInt;
704 if (match(V, m_APInt(CInt))) {
705 if (!CInt->isMinSignedValue())
706 BO->setHasNoSignedWrap(HasNSW);
709 // nuw can be propagated with any constant or nuw value.
710 BO->setHasNoUnsignedWrap(HasNUW);
715 return SimplifiedInst;
718 /// This tries to simplify binary operations which some other binary operation
719 /// distributes over either by factorizing out common terms
720 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
721 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
722 /// Returns the simplified value, or null if it didn't simplify.
723 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
724 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
725 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
726 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
727 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
730 // Factorization.
731 Value *A, *B, *C, *D;
732 Instruction::BinaryOps LHSOpcode, RHSOpcode;
733 if (Op0)
734 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
735 if (Op1)
736 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
738 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
739 // a common term.
740 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
741 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
742 return V;
744 // The instruction has the form "(A op' B) op (C)". Try to factorize common
745 // term.
746 if (Op0)
747 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
748 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
749 return V;
751 // The instruction has the form "(B) op (C op' D)". Try to factorize common
752 // term.
753 if (Op1)
754 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
755 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
756 return V;
759 // Expansion.
760 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
761 // The instruction has the form "(A op' B) op C". See if expanding it out
762 // to "(A op C) op' (B op C)" results in simplifications.
763 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
764 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
766 // Disable the use of undef because it's not safe to distribute undef.
767 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
768 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
769 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
771 // Do "A op C" and "B op C" both simplify?
772 if (L && R) {
773 // They do! Return "L op' R".
774 ++NumExpand;
775 C = Builder.CreateBinOp(InnerOpcode, L, R);
776 C->takeName(&I);
777 return C;
780 // Does "A op C" simplify to the identity value for the inner opcode?
781 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
782 // They do! Return "B op C".
783 ++NumExpand;
784 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
785 C->takeName(&I);
786 return C;
789 // Does "B op C" simplify to the identity value for the inner opcode?
790 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
791 // They do! Return "A op C".
792 ++NumExpand;
793 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
794 C->takeName(&I);
795 return C;
799 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
800 // The instruction has the form "A op (B op' C)". See if expanding it out
801 // to "(A op B) op' (A op C)" results in simplifications.
802 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
803 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
805 // Disable the use of undef because it's not safe to distribute undef.
806 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
807 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
808 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
810 // Do "A op B" and "A op C" both simplify?
811 if (L && R) {
812 // They do! Return "L op' R".
813 ++NumExpand;
814 A = Builder.CreateBinOp(InnerOpcode, L, R);
815 A->takeName(&I);
816 return A;
819 // Does "A op B" simplify to the identity value for the inner opcode?
820 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
821 // They do! Return "A op C".
822 ++NumExpand;
823 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
824 A->takeName(&I);
825 return A;
828 // Does "A op C" simplify to the identity value for the inner opcode?
829 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
830 // They do! Return "A op B".
831 ++NumExpand;
832 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
833 A->takeName(&I);
834 return A;
838 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
841 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
842 Value *LHS,
843 Value *RHS) {
844 Value *A, *B, *C, *D, *E, *F;
845 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
846 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
847 if (!LHSIsSelect && !RHSIsSelect)
848 return nullptr;
850 FastMathFlags FMF;
851 BuilderTy::FastMathFlagGuard Guard(Builder);
852 if (isa<FPMathOperator>(&I)) {
853 FMF = I.getFastMathFlags();
854 Builder.setFastMathFlags(FMF);
857 Instruction::BinaryOps Opcode = I.getOpcode();
858 SimplifyQuery Q = SQ.getWithInstruction(&I);
860 Value *Cond, *True = nullptr, *False = nullptr;
861 if (LHSIsSelect && RHSIsSelect && A == D) {
862 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
863 Cond = A;
864 True = SimplifyBinOp(Opcode, B, E, FMF, Q);
865 False = SimplifyBinOp(Opcode, C, F, FMF, Q);
867 if (LHS->hasOneUse() && RHS->hasOneUse()) {
868 if (False && !True)
869 True = Builder.CreateBinOp(Opcode, B, E);
870 else if (True && !False)
871 False = Builder.CreateBinOp(Opcode, C, F);
873 } else if (LHSIsSelect && LHS->hasOneUse()) {
874 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
875 Cond = A;
876 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
877 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
878 } else if (RHSIsSelect && RHS->hasOneUse()) {
879 // X op (D ? E : F) -> D ? (X op E) : (X op F)
880 Cond = D;
881 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
882 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
885 if (!True || !False)
886 return nullptr;
888 Value *SI = Builder.CreateSelect(Cond, True, False);
889 SI->takeName(&I);
890 return SI;
893 /// Freely adapt every user of V as-if V was changed to !V.
894 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
895 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
896 for (User *U : I->users()) {
897 switch (cast<Instruction>(U)->getOpcode()) {
898 case Instruction::Select: {
899 auto *SI = cast<SelectInst>(U);
900 SI->swapValues();
901 SI->swapProfMetadata();
902 break;
904 case Instruction::Br:
905 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
906 break;
907 case Instruction::Xor:
908 replaceInstUsesWith(cast<Instruction>(*U), I);
909 break;
910 default:
911 llvm_unreachable("Got unexpected user - out of sync with "
912 "canFreelyInvertAllUsersOf() ?");
917 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
918 /// constant zero (which is the 'negate' form).
919 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
920 Value *NegV;
921 if (match(V, m_Neg(m_Value(NegV))))
922 return NegV;
924 // Constants can be considered to be negated values if they can be folded.
925 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
926 return ConstantExpr::getNeg(C);
928 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
929 if (C->getType()->getElementType()->isIntegerTy())
930 return ConstantExpr::getNeg(C);
932 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
933 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
934 Constant *Elt = CV->getAggregateElement(i);
935 if (!Elt)
936 return nullptr;
938 if (isa<UndefValue>(Elt))
939 continue;
941 if (!isa<ConstantInt>(Elt))
942 return nullptr;
944 return ConstantExpr::getNeg(CV);
947 // Negate integer vector splats.
948 if (auto *CV = dyn_cast<Constant>(V))
949 if (CV->getType()->isVectorTy() &&
950 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
951 return ConstantExpr::getNeg(CV);
953 return nullptr;
956 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
957 InstCombiner::BuilderTy &Builder) {
958 if (auto *Cast = dyn_cast<CastInst>(&I))
959 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
961 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
962 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
963 "Expected constant-foldable intrinsic");
964 Intrinsic::ID IID = II->getIntrinsicID();
965 if (II->getNumArgOperands() == 1)
966 return Builder.CreateUnaryIntrinsic(IID, SO);
968 // This works for real binary ops like min/max (where we always expect the
969 // constant operand to be canonicalized as op1) and unary ops with a bonus
970 // constant argument like ctlz/cttz.
971 // TODO: Handle non-commutative binary intrinsics as below for binops.
972 assert(II->getNumArgOperands() == 2 && "Expected binary intrinsic");
973 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
974 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
977 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
979 // Figure out if the constant is the left or the right argument.
980 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
981 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
983 if (auto *SOC = dyn_cast<Constant>(SO)) {
984 if (ConstIsRHS)
985 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
986 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
989 Value *Op0 = SO, *Op1 = ConstOperand;
990 if (!ConstIsRHS)
991 std::swap(Op0, Op1);
993 auto *BO = cast<BinaryOperator>(&I);
994 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
995 SO->getName() + ".op");
996 auto *FPInst = dyn_cast<Instruction>(RI);
997 if (FPInst && isa<FPMathOperator>(FPInst))
998 FPInst->copyFastMathFlags(BO);
999 return RI;
1002 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1003 SelectInst *SI) {
1004 // Don't modify shared select instructions.
1005 if (!SI->hasOneUse())
1006 return nullptr;
1008 Value *TV = SI->getTrueValue();
1009 Value *FV = SI->getFalseValue();
1010 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1011 return nullptr;
1013 // Bool selects with constant operands can be folded to logical ops.
1014 if (SI->getType()->isIntOrIntVectorTy(1))
1015 return nullptr;
1017 // If it's a bitcast involving vectors, make sure it has the same number of
1018 // elements on both sides.
1019 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1020 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1021 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1023 // Verify that either both or neither are vectors.
1024 if ((SrcTy == nullptr) != (DestTy == nullptr))
1025 return nullptr;
1027 // If vectors, verify that they have the same number of elements.
1028 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1029 return nullptr;
1032 // Test if a CmpInst instruction is used exclusively by a select as
1033 // part of a minimum or maximum operation. If so, refrain from doing
1034 // any other folding. This helps out other analyses which understand
1035 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1036 // and CodeGen. And in this case, at least one of the comparison
1037 // operands has at least one user besides the compare (the select),
1038 // which would often largely negate the benefit of folding anyway.
1039 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1040 if (CI->hasOneUse()) {
1041 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1043 // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1044 // We have to ensure that vector constants that only differ with
1045 // undef elements are treated as equivalent.
1046 auto areLooselyEqual = [](Value *A, Value *B) {
1047 if (A == B)
1048 return true;
1050 // Test for vector constants.
1051 Constant *ConstA, *ConstB;
1052 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1053 return false;
1055 // TODO: Deal with FP constants?
1056 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1057 return false;
1059 // Compare for equality including undefs as equal.
1060 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1061 const APInt *C;
1062 return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
1065 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1066 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1067 return nullptr;
1071 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1072 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1073 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1076 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1077 InstCombiner::BuilderTy &Builder) {
1078 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1079 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1081 if (auto *InC = dyn_cast<Constant>(InV)) {
1082 if (ConstIsRHS)
1083 return ConstantExpr::get(I->getOpcode(), InC, C);
1084 return ConstantExpr::get(I->getOpcode(), C, InC);
1087 Value *Op0 = InV, *Op1 = C;
1088 if (!ConstIsRHS)
1089 std::swap(Op0, Op1);
1091 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1092 auto *FPInst = dyn_cast<Instruction>(RI);
1093 if (FPInst && isa<FPMathOperator>(FPInst))
1094 FPInst->copyFastMathFlags(I);
1095 return RI;
1098 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1099 unsigned NumPHIValues = PN->getNumIncomingValues();
1100 if (NumPHIValues == 0)
1101 return nullptr;
1103 // We normally only transform phis with a single use. However, if a PHI has
1104 // multiple uses and they are all the same operation, we can fold *all* of the
1105 // uses into the PHI.
1106 if (!PN->hasOneUse()) {
1107 // Walk the use list for the instruction, comparing them to I.
1108 for (User *U : PN->users()) {
1109 Instruction *UI = cast<Instruction>(U);
1110 if (UI != &I && !I.isIdenticalTo(UI))
1111 return nullptr;
1113 // Otherwise, we can replace *all* users with the new PHI we form.
1116 // Check to see if all of the operands of the PHI are simple constants
1117 // (constantint/constantfp/undef). If there is one non-constant value,
1118 // remember the BB it is in. If there is more than one or if *it* is a PHI,
1119 // bail out. We don't do arbitrary constant expressions here because moving
1120 // their computation can be expensive without a cost model.
1121 BasicBlock *NonConstBB = nullptr;
1122 for (unsigned i = 0; i != NumPHIValues; ++i) {
1123 Value *InVal = PN->getIncomingValue(i);
1124 // If I is a freeze instruction, count undef as a non-constant.
1125 if (match(InVal, m_ImmConstant()) &&
1126 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1127 continue;
1129 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
1130 if (NonConstBB) return nullptr; // More than one non-const value.
1132 NonConstBB = PN->getIncomingBlock(i);
1134 // If the InVal is an invoke at the end of the pred block, then we can't
1135 // insert a computation after it without breaking the edge.
1136 if (isa<InvokeInst>(InVal))
1137 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1138 return nullptr;
1140 // If the incoming non-constant value is in I's block, we will remove one
1141 // instruction, but insert another equivalent one, leading to infinite
1142 // instcombine.
1143 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1144 return nullptr;
1147 // If there is exactly one non-constant value, we can insert a copy of the
1148 // operation in that block. However, if this is a critical edge, we would be
1149 // inserting the computation on some other paths (e.g. inside a loop). Only
1150 // do this if the pred block is unconditionally branching into the phi block.
1151 // Also, make sure that the pred block is not dead code.
1152 if (NonConstBB != nullptr) {
1153 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1154 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1155 return nullptr;
1158 // Okay, we can do the transformation: create the new PHI node.
1159 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1160 InsertNewInstBefore(NewPN, *PN);
1161 NewPN->takeName(PN);
1163 // If we are going to have to insert a new computation, do so right before the
1164 // predecessor's terminator.
1165 if (NonConstBB)
1166 Builder.SetInsertPoint(NonConstBB->getTerminator());
1168 // Next, add all of the operands to the PHI.
1169 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1170 // We only currently try to fold the condition of a select when it is a phi,
1171 // not the true/false values.
1172 Value *TrueV = SI->getTrueValue();
1173 Value *FalseV = SI->getFalseValue();
1174 BasicBlock *PhiTransBB = PN->getParent();
1175 for (unsigned i = 0; i != NumPHIValues; ++i) {
1176 BasicBlock *ThisBB = PN->getIncomingBlock(i);
1177 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1178 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1179 Value *InV = nullptr;
1180 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1181 // even if currently isNullValue gives false.
1182 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1183 // For vector constants, we cannot use isNullValue to fold into
1184 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1185 // elements in the vector, we will incorrectly fold InC to
1186 // `TrueVInPred`.
1187 if (InC && isa<ConstantInt>(InC))
1188 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1189 else {
1190 // Generate the select in the same block as PN's current incoming block.
1191 // Note: ThisBB need not be the NonConstBB because vector constants
1192 // which are constants by definition are handled here.
1193 // FIXME: This can lead to an increase in IR generation because we might
1194 // generate selects for vector constant phi operand, that could not be
1195 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1196 // non-vector phis, this transformation was always profitable because
1197 // the select would be generated exactly once in the NonConstBB.
1198 Builder.SetInsertPoint(ThisBB->getTerminator());
1199 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1200 FalseVInPred, "phi.sel");
1202 NewPN->addIncoming(InV, ThisBB);
1204 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1205 Constant *C = cast<Constant>(I.getOperand(1));
1206 for (unsigned i = 0; i != NumPHIValues; ++i) {
1207 Value *InV = nullptr;
1208 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1209 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1210 else
1211 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1212 C, "phi.cmp");
1213 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1215 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1216 for (unsigned i = 0; i != NumPHIValues; ++i) {
1217 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1218 Builder);
1219 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1221 } else if (isa<FreezeInst>(&I)) {
1222 for (unsigned i = 0; i != NumPHIValues; ++i) {
1223 Value *InV;
1224 if (NonConstBB == PN->getIncomingBlock(i))
1225 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1226 else
1227 InV = PN->getIncomingValue(i);
1228 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1230 } else {
1231 CastInst *CI = cast<CastInst>(&I);
1232 Type *RetTy = CI->getType();
1233 for (unsigned i = 0; i != NumPHIValues; ++i) {
1234 Value *InV;
1235 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1236 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1237 else
1238 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1239 I.getType(), "phi.cast");
1240 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1244 for (User *U : make_early_inc_range(PN->users())) {
1245 Instruction *User = cast<Instruction>(U);
1246 if (User == &I) continue;
1247 replaceInstUsesWith(*User, NewPN);
1248 eraseInstFromFunction(*User);
1250 return replaceInstUsesWith(I, NewPN);
1253 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1254 if (!isa<Constant>(I.getOperand(1)))
1255 return nullptr;
1257 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1258 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1259 return NewSel;
1260 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1261 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1262 return NewPhi;
1264 return nullptr;
1267 /// Given a pointer type and a constant offset, determine whether or not there
1268 /// is a sequence of GEP indices into the pointed type that will land us at the
1269 /// specified offset. If so, fill them into NewIndices and return the resultant
1270 /// element type, otherwise return null.
1271 Type *
1272 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1273 SmallVectorImpl<Value *> &NewIndices) {
1274 Type *Ty = PtrTy->getElementType();
1275 if (!Ty->isSized())
1276 return nullptr;
1278 // Start with the index over the outer type. Note that the type size
1279 // might be zero (even if the offset isn't zero) if the indexed type
1280 // is something like [0 x {int, int}]
1281 Type *IndexTy = DL.getIndexType(PtrTy);
1282 int64_t FirstIdx = 0;
1283 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1284 FirstIdx = Offset/TySize;
1285 Offset -= FirstIdx*TySize;
1287 // Handle hosts where % returns negative instead of values [0..TySize).
1288 if (Offset < 0) {
1289 --FirstIdx;
1290 Offset += TySize;
1291 assert(Offset >= 0);
1293 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1296 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1298 // Index into the types. If we fail, set OrigBase to null.
1299 while (Offset) {
1300 // Indexing into tail padding between struct/array elements.
1301 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1302 return nullptr;
1304 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1305 const StructLayout *SL = DL.getStructLayout(STy);
1306 assert(Offset < (int64_t)SL->getSizeInBytes() &&
1307 "Offset must stay within the indexed type");
1309 unsigned Elt = SL->getElementContainingOffset(Offset);
1310 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1311 Elt));
1313 Offset -= SL->getElementOffset(Elt);
1314 Ty = STy->getElementType(Elt);
1315 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1316 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1317 assert(EltSize && "Cannot index into a zero-sized array");
1318 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1319 Offset %= EltSize;
1320 Ty = AT->getElementType();
1321 } else {
1322 // Otherwise, we can't index into the middle of this atomic type, bail.
1323 return nullptr;
1327 return Ty;
1330 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1331 // If this GEP has only 0 indices, it is the same pointer as
1332 // Src. If Src is not a trivial GEP too, don't combine
1333 // the indices.
1334 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1335 !Src.hasOneUse())
1336 return false;
1337 return true;
1340 /// Return a value X such that Val = X * Scale, or null if none.
1341 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1342 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1343 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1344 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1345 Scale.getBitWidth() && "Scale not compatible with value!");
1347 // If Val is zero or Scale is one then Val = Val * Scale.
1348 if (match(Val, m_Zero()) || Scale == 1) {
1349 NoSignedWrap = true;
1350 return Val;
1353 // If Scale is zero then it does not divide Val.
1354 if (Scale.isMinValue())
1355 return nullptr;
1357 // Look through chains of multiplications, searching for a constant that is
1358 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1359 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1360 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1361 // down from Val:
1363 // Val = M1 * X || Analysis starts here and works down
1364 // M1 = M2 * Y || Doesn't descend into terms with more
1365 // M2 = Z * 4 \/ than one use
1367 // Then to modify a term at the bottom:
1369 // Val = M1 * X
1370 // M1 = Z * Y || Replaced M2 with Z
1372 // Then to work back up correcting nsw flags.
1374 // Op - the term we are currently analyzing. Starts at Val then drills down.
1375 // Replaced with its descaled value before exiting from the drill down loop.
1376 Value *Op = Val;
1378 // Parent - initially null, but after drilling down notes where Op came from.
1379 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1380 // 0'th operand of Val.
1381 std::pair<Instruction *, unsigned> Parent;
1383 // Set if the transform requires a descaling at deeper levels that doesn't
1384 // overflow.
1385 bool RequireNoSignedWrap = false;
1387 // Log base 2 of the scale. Negative if not a power of 2.
1388 int32_t logScale = Scale.exactLogBase2();
1390 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1391 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1392 // If Op is a constant divisible by Scale then descale to the quotient.
1393 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1394 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1395 if (!Remainder.isMinValue())
1396 // Not divisible by Scale.
1397 return nullptr;
1398 // Replace with the quotient in the parent.
1399 Op = ConstantInt::get(CI->getType(), Quotient);
1400 NoSignedWrap = true;
1401 break;
1404 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1405 if (BO->getOpcode() == Instruction::Mul) {
1406 // Multiplication.
1407 NoSignedWrap = BO->hasNoSignedWrap();
1408 if (RequireNoSignedWrap && !NoSignedWrap)
1409 return nullptr;
1411 // There are three cases for multiplication: multiplication by exactly
1412 // the scale, multiplication by a constant different to the scale, and
1413 // multiplication by something else.
1414 Value *LHS = BO->getOperand(0);
1415 Value *RHS = BO->getOperand(1);
1417 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1418 // Multiplication by a constant.
1419 if (CI->getValue() == Scale) {
1420 // Multiplication by exactly the scale, replace the multiplication
1421 // by its left-hand side in the parent.
1422 Op = LHS;
1423 break;
1426 // Otherwise drill down into the constant.
1427 if (!Op->hasOneUse())
1428 return nullptr;
1430 Parent = std::make_pair(BO, 1);
1431 continue;
1434 // Multiplication by something else. Drill down into the left-hand side
1435 // since that's where the reassociate pass puts the good stuff.
1436 if (!Op->hasOneUse())
1437 return nullptr;
1439 Parent = std::make_pair(BO, 0);
1440 continue;
1443 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1444 isa<ConstantInt>(BO->getOperand(1))) {
1445 // Multiplication by a power of 2.
1446 NoSignedWrap = BO->hasNoSignedWrap();
1447 if (RequireNoSignedWrap && !NoSignedWrap)
1448 return nullptr;
1450 Value *LHS = BO->getOperand(0);
1451 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1452 getLimitedValue(Scale.getBitWidth());
1453 // Op = LHS << Amt.
1455 if (Amt == logScale) {
1456 // Multiplication by exactly the scale, replace the multiplication
1457 // by its left-hand side in the parent.
1458 Op = LHS;
1459 break;
1461 if (Amt < logScale || !Op->hasOneUse())
1462 return nullptr;
1464 // Multiplication by more than the scale. Reduce the multiplying amount
1465 // by the scale in the parent.
1466 Parent = std::make_pair(BO, 1);
1467 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1468 break;
1472 if (!Op->hasOneUse())
1473 return nullptr;
1475 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1476 if (Cast->getOpcode() == Instruction::SExt) {
1477 // Op is sign-extended from a smaller type, descale in the smaller type.
1478 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1479 APInt SmallScale = Scale.trunc(SmallSize);
1480 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1481 // descale Op as (sext Y) * Scale. In order to have
1482 // sext (Y * SmallScale) = (sext Y) * Scale
1483 // some conditions need to hold however: SmallScale must sign-extend to
1484 // Scale and the multiplication Y * SmallScale should not overflow.
1485 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1486 // SmallScale does not sign-extend to Scale.
1487 return nullptr;
1488 assert(SmallScale.exactLogBase2() == logScale);
1489 // Require that Y * SmallScale must not overflow.
1490 RequireNoSignedWrap = true;
1492 // Drill down through the cast.
1493 Parent = std::make_pair(Cast, 0);
1494 Scale = SmallScale;
1495 continue;
1498 if (Cast->getOpcode() == Instruction::Trunc) {
1499 // Op is truncated from a larger type, descale in the larger type.
1500 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1501 // trunc (Y * sext Scale) = (trunc Y) * Scale
1502 // always holds. However (trunc Y) * Scale may overflow even if
1503 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1504 // from this point up in the expression (see later).
1505 if (RequireNoSignedWrap)
1506 return nullptr;
1508 // Drill down through the cast.
1509 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1510 Parent = std::make_pair(Cast, 0);
1511 Scale = Scale.sext(LargeSize);
1512 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1513 logScale = -1;
1514 assert(Scale.exactLogBase2() == logScale);
1515 continue;
1519 // Unsupported expression, bail out.
1520 return nullptr;
1523 // If Op is zero then Val = Op * Scale.
1524 if (match(Op, m_Zero())) {
1525 NoSignedWrap = true;
1526 return Op;
1529 // We know that we can successfully descale, so from here on we can safely
1530 // modify the IR. Op holds the descaled version of the deepest term in the
1531 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1532 // not to overflow.
1534 if (!Parent.first)
1535 // The expression only had one term.
1536 return Op;
1538 // Rewrite the parent using the descaled version of its operand.
1539 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1540 assert(Op != Parent.first->getOperand(Parent.second) &&
1541 "Descaling was a no-op?");
1542 replaceOperand(*Parent.first, Parent.second, Op);
1543 Worklist.push(Parent.first);
1545 // Now work back up the expression correcting nsw flags. The logic is based
1546 // on the following observation: if X * Y is known not to overflow as a signed
1547 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1548 // then X * Z will not overflow as a signed multiplication either. As we work
1549 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1550 // current level has strictly smaller absolute value than the original.
1551 Instruction *Ancestor = Parent.first;
1552 do {
1553 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1554 // If the multiplication wasn't nsw then we can't say anything about the
1555 // value of the descaled multiplication, and we have to clear nsw flags
1556 // from this point on up.
1557 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1558 NoSignedWrap &= OpNoSignedWrap;
1559 if (NoSignedWrap != OpNoSignedWrap) {
1560 BO->setHasNoSignedWrap(NoSignedWrap);
1561 Worklist.push(Ancestor);
1563 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1564 // The fact that the descaled input to the trunc has smaller absolute
1565 // value than the original input doesn't tell us anything useful about
1566 // the absolute values of the truncations.
1567 NoSignedWrap = false;
1569 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1570 "Failed to keep proper track of nsw flags while drilling down?");
1572 if (Ancestor == Val)
1573 // Got to the top, all done!
1574 return Val;
1576 // Move up one level in the expression.
1577 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1578 Ancestor = Ancestor->user_back();
1579 } while (true);
1582 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1583 if (!isa<VectorType>(Inst.getType()))
1584 return nullptr;
1586 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1587 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1588 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1589 cast<VectorType>(Inst.getType())->getElementCount());
1590 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1591 cast<VectorType>(Inst.getType())->getElementCount());
1593 // If both operands of the binop are vector concatenations, then perform the
1594 // narrow binop on each pair of the source operands followed by concatenation
1595 // of the results.
1596 Value *L0, *L1, *R0, *R1;
1597 ArrayRef<int> Mask;
1598 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1599 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1600 LHS->hasOneUse() && RHS->hasOneUse() &&
1601 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1602 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1603 // This transform does not have the speculative execution constraint as
1604 // below because the shuffle is a concatenation. The new binops are
1605 // operating on exactly the same elements as the existing binop.
1606 // TODO: We could ease the mask requirement to allow different undef lanes,
1607 // but that requires an analysis of the binop-with-undef output value.
1608 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1609 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1610 BO->copyIRFlags(&Inst);
1611 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1612 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1613 BO->copyIRFlags(&Inst);
1614 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1617 // It may not be safe to reorder shuffles and things like div, urem, etc.
1618 // because we may trap when executing those ops on unknown vector elements.
1619 // See PR20059.
1620 if (!isSafeToSpeculativelyExecute(&Inst))
1621 return nullptr;
1623 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1624 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1625 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1626 BO->copyIRFlags(&Inst);
1627 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1630 // If both arguments of the binary operation are shuffles that use the same
1631 // mask and shuffle within a single vector, move the shuffle after the binop.
1632 Value *V1, *V2;
1633 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1634 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1635 V1->getType() == V2->getType() &&
1636 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1637 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1638 return createBinOpShuffle(V1, V2, Mask);
1641 // If both arguments of a commutative binop are select-shuffles that use the
1642 // same mask with commuted operands, the shuffles are unnecessary.
1643 if (Inst.isCommutative() &&
1644 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1645 match(RHS,
1646 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1647 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1648 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1649 // TODO: Allow shuffles that contain undefs in the mask?
1650 // That is legal, but it reduces undef knowledge.
1651 // TODO: Allow arbitrary shuffles by shuffling after binop?
1652 // That might be legal, but we have to deal with poison.
1653 if (LShuf->isSelect() &&
1654 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1655 RShuf->isSelect() &&
1656 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1657 // Example:
1658 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1659 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1660 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1661 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1662 NewBO->copyIRFlags(&Inst);
1663 return NewBO;
1667 // If one argument is a shuffle within one vector and the other is a constant,
1668 // try moving the shuffle after the binary operation. This canonicalization
1669 // intends to move shuffles closer to other shuffles and binops closer to
1670 // other binops, so they can be folded. It may also enable demanded elements
1671 // transforms.
1672 Constant *C;
1673 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1674 if (InstVTy &&
1675 match(&Inst,
1676 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1677 m_ImmConstant(C))) &&
1678 cast<FixedVectorType>(V1->getType())->getNumElements() <=
1679 InstVTy->getNumElements()) {
1680 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1681 "Shuffle should not change scalar type");
1683 // Find constant NewC that has property:
1684 // shuffle(NewC, ShMask) = C
1685 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1686 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1687 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1688 bool ConstOp1 = isa<Constant>(RHS);
1689 ArrayRef<int> ShMask = Mask;
1690 unsigned SrcVecNumElts =
1691 cast<FixedVectorType>(V1->getType())->getNumElements();
1692 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1693 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1694 bool MayChange = true;
1695 unsigned NumElts = InstVTy->getNumElements();
1696 for (unsigned I = 0; I < NumElts; ++I) {
1697 Constant *CElt = C->getAggregateElement(I);
1698 if (ShMask[I] >= 0) {
1699 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1700 Constant *NewCElt = NewVecC[ShMask[I]];
1701 // Bail out if:
1702 // 1. The constant vector contains a constant expression.
1703 // 2. The shuffle needs an element of the constant vector that can't
1704 // be mapped to a new constant vector.
1705 // 3. This is a widening shuffle that copies elements of V1 into the
1706 // extended elements (extending with undef is allowed).
1707 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1708 I >= SrcVecNumElts) {
1709 MayChange = false;
1710 break;
1712 NewVecC[ShMask[I]] = CElt;
1714 // If this is a widening shuffle, we must be able to extend with undef
1715 // elements. If the original binop does not produce an undef in the high
1716 // lanes, then this transform is not safe.
1717 // Similarly for undef lanes due to the shuffle mask, we can only
1718 // transform binops that preserve undef.
1719 // TODO: We could shuffle those non-undef constant values into the
1720 // result by using a constant vector (rather than an undef vector)
1721 // as operand 1 of the new binop, but that might be too aggressive
1722 // for target-independent shuffle creation.
1723 if (I >= SrcVecNumElts || ShMask[I] < 0) {
1724 Constant *MaybeUndef =
1725 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1726 : ConstantExpr::get(Opcode, CElt, UndefScalar);
1727 if (!match(MaybeUndef, m_Undef())) {
1728 MayChange = false;
1729 break;
1733 if (MayChange) {
1734 Constant *NewC = ConstantVector::get(NewVecC);
1735 // It may not be safe to execute a binop on a vector with undef elements
1736 // because the entire instruction can be folded to undef or create poison
1737 // that did not exist in the original code.
1738 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1739 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1741 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1742 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1743 Value *NewLHS = ConstOp1 ? V1 : NewC;
1744 Value *NewRHS = ConstOp1 ? NewC : V1;
1745 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1749 // Try to reassociate to sink a splat shuffle after a binary operation.
1750 if (Inst.isAssociative() && Inst.isCommutative()) {
1751 // Canonicalize shuffle operand as LHS.
1752 if (isa<ShuffleVectorInst>(RHS))
1753 std::swap(LHS, RHS);
1755 Value *X;
1756 ArrayRef<int> MaskC;
1757 int SplatIndex;
1758 BinaryOperator *BO;
1759 if (!match(LHS,
1760 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1761 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1762 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1763 BO->getOpcode() != Opcode)
1764 return nullptr;
1766 // FIXME: This may not be safe if the analysis allows undef elements. By
1767 // moving 'Y' before the splat shuffle, we are implicitly assuming
1768 // that it is not undef/poison at the splat index.
1769 Value *Y, *OtherOp;
1770 if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1771 Y = BO->getOperand(0);
1772 OtherOp = BO->getOperand(1);
1773 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1774 Y = BO->getOperand(1);
1775 OtherOp = BO->getOperand(0);
1776 } else {
1777 return nullptr;
1780 // X and Y are splatted values, so perform the binary operation on those
1781 // values followed by a splat followed by the 2nd binary operation:
1782 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1783 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1784 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1785 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1786 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1788 // Intersect FMF on both new binops. Other (poison-generating) flags are
1789 // dropped to be safe.
1790 if (isa<FPMathOperator>(R)) {
1791 R->copyFastMathFlags(&Inst);
1792 R->andIRFlags(BO);
1794 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1795 NewInstBO->copyIRFlags(R);
1796 return R;
1799 return nullptr;
1802 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1803 /// of a value. This requires a potentially expensive known bits check to make
1804 /// sure the narrow op does not overflow.
1805 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1806 // We need at least one extended operand.
1807 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1809 // If this is a sub, we swap the operands since we always want an extension
1810 // on the RHS. The LHS can be an extension or a constant.
1811 if (BO.getOpcode() == Instruction::Sub)
1812 std::swap(Op0, Op1);
1814 Value *X;
1815 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1816 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1817 return nullptr;
1819 // If both operands are the same extension from the same source type and we
1820 // can eliminate at least one (hasOneUse), this might work.
1821 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1822 Value *Y;
1823 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1824 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1825 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1826 // If that did not match, see if we have a suitable constant operand.
1827 // Truncating and extending must produce the same constant.
1828 Constant *WideC;
1829 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1830 return nullptr;
1831 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1832 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1833 return nullptr;
1834 Y = NarrowC;
1837 // Swap back now that we found our operands.
1838 if (BO.getOpcode() == Instruction::Sub)
1839 std::swap(X, Y);
1841 // Both operands have narrow versions. Last step: the math must not overflow
1842 // in the narrow width.
1843 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1844 return nullptr;
1846 // bo (ext X), (ext Y) --> ext (bo X, Y)
1847 // bo (ext X), C --> ext (bo X, C')
1848 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1849 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1850 if (IsSext)
1851 NewBinOp->setHasNoSignedWrap();
1852 else
1853 NewBinOp->setHasNoUnsignedWrap();
1855 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1858 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1859 // At least one GEP must be inbounds.
1860 if (!GEP1.isInBounds() && !GEP2.isInBounds())
1861 return false;
1863 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1864 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1867 /// Thread a GEP operation with constant indices through the constant true/false
1868 /// arms of a select.
1869 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1870 InstCombiner::BuilderTy &Builder) {
1871 if (!GEP.hasAllConstantIndices())
1872 return nullptr;
1874 Instruction *Sel;
1875 Value *Cond;
1876 Constant *TrueC, *FalseC;
1877 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1878 !match(Sel,
1879 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1880 return nullptr;
1882 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1883 // Propagate 'inbounds' and metadata from existing instructions.
1884 // Note: using IRBuilder to create the constants for efficiency.
1885 SmallVector<Value *, 4> IndexC(GEP.indices());
1886 bool IsInBounds = GEP.isInBounds();
1887 Type *Ty = GEP.getSourceElementType();
1888 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1889 : Builder.CreateGEP(Ty, TrueC, IndexC);
1890 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1891 : Builder.CreateGEP(Ty, FalseC, IndexC);
1892 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1895 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1896 SmallVector<Value *, 8> Ops(GEP.operands());
1897 Type *GEPType = GEP.getType();
1898 Type *GEPEltType = GEP.getSourceElementType();
1899 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1900 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1901 return replaceInstUsesWith(GEP, V);
1903 // For vector geps, use the generic demanded vector support.
1904 // Skip if GEP return type is scalable. The number of elements is unknown at
1905 // compile-time.
1906 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1907 auto VWidth = GEPFVTy->getNumElements();
1908 APInt UndefElts(VWidth, 0);
1909 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1910 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1911 UndefElts)) {
1912 if (V != &GEP)
1913 return replaceInstUsesWith(GEP, V);
1914 return &GEP;
1917 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1918 // possible (decide on canonical form for pointer broadcast), 3) exploit
1919 // undef elements to decrease demanded bits
1922 Value *PtrOp = GEP.getOperand(0);
1924 // Eliminate unneeded casts for indices, and replace indices which displace
1925 // by multiples of a zero size type with zero.
1926 bool MadeChange = false;
1928 // Index width may not be the same width as pointer width.
1929 // Data layout chooses the right type based on supported integer types.
1930 Type *NewScalarIndexTy =
1931 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1933 gep_type_iterator GTI = gep_type_begin(GEP);
1934 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1935 ++I, ++GTI) {
1936 // Skip indices into struct types.
1937 if (GTI.isStruct())
1938 continue;
1940 Type *IndexTy = (*I)->getType();
1941 Type *NewIndexType =
1942 IndexTy->isVectorTy()
1943 ? VectorType::get(NewScalarIndexTy,
1944 cast<VectorType>(IndexTy)->getElementCount())
1945 : NewScalarIndexTy;
1947 // If the element type has zero size then any index over it is equivalent
1948 // to an index of zero, so replace it with zero if it is not zero already.
1949 Type *EltTy = GTI.getIndexedType();
1950 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1951 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1952 *I = Constant::getNullValue(NewIndexType);
1953 MadeChange = true;
1956 if (IndexTy != NewIndexType) {
1957 // If we are using a wider index than needed for this platform, shrink
1958 // it to what we need. If narrower, sign-extend it to what we need.
1959 // This explicit cast can make subsequent optimizations more obvious.
1960 *I = Builder.CreateIntCast(*I, NewIndexType, true);
1961 MadeChange = true;
1964 if (MadeChange)
1965 return &GEP;
1967 // Check to see if the inputs to the PHI node are getelementptr instructions.
1968 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1969 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1970 if (!Op1)
1971 return nullptr;
1973 // Don't fold a GEP into itself through a PHI node. This can only happen
1974 // through the back-edge of a loop. Folding a GEP into itself means that
1975 // the value of the previous iteration needs to be stored in the meantime,
1976 // thus requiring an additional register variable to be live, but not
1977 // actually achieving anything (the GEP still needs to be executed once per
1978 // loop iteration).
1979 if (Op1 == &GEP)
1980 return nullptr;
1982 int DI = -1;
1984 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1985 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1986 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1987 return nullptr;
1989 // As for Op1 above, don't try to fold a GEP into itself.
1990 if (Op2 == &GEP)
1991 return nullptr;
1993 // Keep track of the type as we walk the GEP.
1994 Type *CurTy = nullptr;
1996 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1997 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1998 return nullptr;
2000 if (Op1->getOperand(J) != Op2->getOperand(J)) {
2001 if (DI == -1) {
2002 // We have not seen any differences yet in the GEPs feeding the
2003 // PHI yet, so we record this one if it is allowed to be a
2004 // variable.
2006 // The first two arguments can vary for any GEP, the rest have to be
2007 // static for struct slots
2008 if (J > 1) {
2009 assert(CurTy && "No current type?");
2010 if (CurTy->isStructTy())
2011 return nullptr;
2014 DI = J;
2015 } else {
2016 // The GEP is different by more than one input. While this could be
2017 // extended to support GEPs that vary by more than one variable it
2018 // doesn't make sense since it greatly increases the complexity and
2019 // would result in an R+R+R addressing mode which no backend
2020 // directly supports and would need to be broken into several
2021 // simpler instructions anyway.
2022 return nullptr;
2026 // Sink down a layer of the type for the next iteration.
2027 if (J > 0) {
2028 if (J == 1) {
2029 CurTy = Op1->getSourceElementType();
2030 } else {
2031 CurTy =
2032 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2038 // If not all GEPs are identical we'll have to create a new PHI node.
2039 // Check that the old PHI node has only one use so that it will get
2040 // removed.
2041 if (DI != -1 && !PN->hasOneUse())
2042 return nullptr;
2044 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2045 if (DI == -1) {
2046 // All the GEPs feeding the PHI are identical. Clone one down into our
2047 // BB so that it can be merged with the current GEP.
2048 } else {
2049 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2050 // into the current block so it can be merged, and create a new PHI to
2051 // set that index.
2052 PHINode *NewPN;
2054 IRBuilderBase::InsertPointGuard Guard(Builder);
2055 Builder.SetInsertPoint(PN);
2056 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2057 PN->getNumOperands());
2060 for (auto &I : PN->operands())
2061 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2062 PN->getIncomingBlock(I));
2064 NewGEP->setOperand(DI, NewPN);
2067 GEP.getParent()->getInstList().insert(
2068 GEP.getParent()->getFirstInsertionPt(), NewGEP);
2069 replaceOperand(GEP, 0, NewGEP);
2070 PtrOp = NewGEP;
2073 // Combine Indices - If the source pointer to this getelementptr instruction
2074 // is a getelementptr instruction, combine the indices of the two
2075 // getelementptr instructions into a single instruction.
2076 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2077 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2078 return nullptr;
2080 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2081 Src->hasOneUse()) {
2082 Value *GO1 = GEP.getOperand(1);
2083 Value *SO1 = Src->getOperand(1);
2085 if (LI) {
2086 // Try to reassociate loop invariant GEP chains to enable LICM.
2087 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2088 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2089 // invariant: this breaks the dependence between GEPs and allows LICM
2090 // to hoist the invariant part out of the loop.
2091 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2092 // We have to be careful here.
2093 // We have something like:
2094 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2095 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2096 // If we just swap idx & idx2 then we could inadvertantly
2097 // change %src from a vector to a scalar, or vice versa.
2098 // Cases:
2099 // 1) %base a scalar & idx a scalar & idx2 a vector
2100 // => Swapping idx & idx2 turns %src into a vector type.
2101 // 2) %base a scalar & idx a vector & idx2 a scalar
2102 // => Swapping idx & idx2 turns %src in a scalar type
2103 // 3) %base, %idx, and %idx2 are scalars
2104 // => %src & %gep are scalars
2105 // => swapping idx & idx2 is safe
2106 // 4) %base a vector
2107 // => %src is a vector
2108 // => swapping idx & idx2 is safe.
2109 auto *SO0 = Src->getOperand(0);
2110 auto *SO0Ty = SO0->getType();
2111 if (!isa<VectorType>(GEPType) || // case 3
2112 isa<VectorType>(SO0Ty)) { // case 4
2113 Src->setOperand(1, GO1);
2114 GEP.setOperand(1, SO1);
2115 return &GEP;
2116 } else {
2117 // Case 1 or 2
2118 // -- have to recreate %src & %gep
2119 // put NewSrc at same location as %src
2120 Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2121 Value *NewSrc =
2122 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName());
2123 // Propagate 'inbounds' if the new source was not constant-folded.
2124 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
2125 NewSrcGEPI->setIsInBounds(Src->isInBounds());
2126 GetElementPtrInst *NewGEP =
2127 GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2128 NewGEP->setIsInBounds(GEP.isInBounds());
2129 return NewGEP;
2135 // Guard the gep(gep) fold so we don't create an add inside a loop
2136 // when there wasn't an equivalent instruction there before.
2137 bool DifferentLoops = false;
2138 if (LI)
2139 if (auto *GEPLoop = LI->getLoopFor(GEP.getParent()))
2140 if (auto *SrcOpI = dyn_cast<Instruction>(Src))
2141 if (LI->getLoopFor(SrcOpI->getParent()) != GEPLoop)
2142 DifferentLoops = true;
2144 // Fold (gep(gep(Ptr,Idx0),Idx1) -> gep(Ptr,add(Idx0,Idx1))
2145 if (!DifferentLoops && GO1->getType() == SO1->getType()) {
2146 bool NewInBounds = GEP.isInBounds() && Src->isInBounds();
2147 auto *NewIdx =
2148 Builder.CreateAdd(GO1, SO1, GEP.getName() + ".idx",
2149 /*HasNUW*/ false, /*HasNSW*/ NewInBounds);
2150 auto *NewGEP = GetElementPtrInst::Create(
2151 GEPEltType, Src->getPointerOperand(), {NewIdx});
2152 NewGEP->setIsInBounds(NewInBounds);
2153 return NewGEP;
2157 // Note that if our source is a gep chain itself then we wait for that
2158 // chain to be resolved before we perform this transformation. This
2159 // avoids us creating a TON of code in some cases.
2160 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2161 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2162 return nullptr; // Wait until our source is folded to completion.
2164 SmallVector<Value*, 8> Indices;
2166 // Find out whether the last index in the source GEP is a sequential idx.
2167 bool EndsWithSequential = false;
2168 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2169 I != E; ++I)
2170 EndsWithSequential = I.isSequential();
2172 // Can we combine the two pointer arithmetics offsets?
2173 if (EndsWithSequential) {
2174 // Replace: gep (gep %P, long B), long A, ...
2175 // With: T = long A+B; gep %P, T, ...
2176 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2177 Value *GO1 = GEP.getOperand(1);
2179 // If they aren't the same type, then the input hasn't been processed
2180 // by the loop above yet (which canonicalizes sequential index types to
2181 // intptr_t). Just avoid transforming this until the input has been
2182 // normalized.
2183 if (SO1->getType() != GO1->getType())
2184 return nullptr;
2186 Value *Sum =
2187 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2188 // Only do the combine when we are sure the cost after the
2189 // merge is never more than that before the merge.
2190 if (Sum == nullptr)
2191 return nullptr;
2193 // Update the GEP in place if possible.
2194 if (Src->getNumOperands() == 2) {
2195 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2196 replaceOperand(GEP, 0, Src->getOperand(0));
2197 replaceOperand(GEP, 1, Sum);
2198 return &GEP;
2200 Indices.append(Src->op_begin()+1, Src->op_end()-1);
2201 Indices.push_back(Sum);
2202 Indices.append(GEP.op_begin()+2, GEP.op_end());
2203 } else if (isa<Constant>(*GEP.idx_begin()) &&
2204 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2205 Src->getNumOperands() != 1) {
2206 // Otherwise we can do the fold if the first index of the GEP is a zero
2207 Indices.append(Src->op_begin()+1, Src->op_end());
2208 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2211 if (!Indices.empty())
2212 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2213 ? GetElementPtrInst::CreateInBounds(
2214 Src->getSourceElementType(), Src->getOperand(0), Indices,
2215 GEP.getName())
2216 : GetElementPtrInst::Create(Src->getSourceElementType(),
2217 Src->getOperand(0), Indices,
2218 GEP.getName());
2221 // Skip if GEP source element type is scalable. The type alloc size is unknown
2222 // at compile-time.
2223 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2224 unsigned AS = GEP.getPointerAddressSpace();
2225 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2226 DL.getIndexSizeInBits(AS)) {
2227 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2229 bool Matched = false;
2230 uint64_t C;
2231 Value *V = nullptr;
2232 if (TyAllocSize == 1) {
2233 V = GEP.getOperand(1);
2234 Matched = true;
2235 } else if (match(GEP.getOperand(1),
2236 m_AShr(m_Value(V), m_ConstantInt(C)))) {
2237 if (TyAllocSize == 1ULL << C)
2238 Matched = true;
2239 } else if (match(GEP.getOperand(1),
2240 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2241 if (TyAllocSize == C)
2242 Matched = true;
2245 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2246 // only if both point to the same underlying object (otherwise provenance
2247 // is not necessarily retained).
2248 Value *Y;
2249 Value *X = GEP.getOperand(0);
2250 if (Matched &&
2251 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2252 getUnderlyingObject(X) == getUnderlyingObject(Y))
2253 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2257 // We do not handle pointer-vector geps here.
2258 if (GEPType->isVectorTy())
2259 return nullptr;
2261 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2262 Value *StrippedPtr = PtrOp->stripPointerCasts();
2263 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2265 if (StrippedPtr != PtrOp) {
2266 bool HasZeroPointerIndex = false;
2267 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2269 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2270 HasZeroPointerIndex = C->isZero();
2272 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2273 // into : GEP [10 x i8]* X, i32 0, ...
2275 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2276 // into : GEP i8* X, ...
2278 // This occurs when the program declares an array extern like "int X[];"
2279 if (HasZeroPointerIndex) {
2280 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2281 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2282 if (CATy->getElementType() == StrippedPtrEltTy) {
2283 // -> GEP i8* X, ...
2284 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2285 GetElementPtrInst *Res = GetElementPtrInst::Create(
2286 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2287 Res->setIsInBounds(GEP.isInBounds());
2288 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2289 return Res;
2290 // Insert Res, and create an addrspacecast.
2291 // e.g.,
2292 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2293 // ->
2294 // %0 = GEP i8 addrspace(1)* X, ...
2295 // addrspacecast i8 addrspace(1)* %0 to i8*
2296 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2299 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2300 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2301 if (CATy->getElementType() == XATy->getElementType()) {
2302 // -> GEP [10 x i8]* X, i32 0, ...
2303 // At this point, we know that the cast source type is a pointer
2304 // to an array of the same type as the destination pointer
2305 // array. Because the array type is never stepped over (there
2306 // is a leading zero) we can fold the cast into this GEP.
2307 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2308 GEP.setSourceElementType(XATy);
2309 return replaceOperand(GEP, 0, StrippedPtr);
2311 // Cannot replace the base pointer directly because StrippedPtr's
2312 // address space is different. Instead, create a new GEP followed by
2313 // an addrspacecast.
2314 // e.g.,
2315 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2316 // i32 0, ...
2317 // ->
2318 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2319 // addrspacecast i8 addrspace(1)* %0 to i8*
2320 SmallVector<Value *, 8> Idx(GEP.indices());
2321 Value *NewGEP =
2322 GEP.isInBounds()
2323 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2324 Idx, GEP.getName())
2325 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2326 GEP.getName());
2327 return new AddrSpaceCastInst(NewGEP, GEPType);
2331 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2332 // Skip if GEP source element type is scalable. The type alloc size is
2333 // unknown at compile-time.
2334 // Transform things like: %t = getelementptr i32*
2335 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
2336 // x i32]* %str, i32 0, i32 %V; bitcast
2337 if (StrippedPtrEltTy->isArrayTy() &&
2338 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2339 DL.getTypeAllocSize(GEPEltType)) {
2340 Type *IdxType = DL.getIndexType(GEPType);
2341 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2342 Value *NewGEP =
2343 GEP.isInBounds()
2344 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2345 GEP.getName())
2346 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2347 GEP.getName());
2349 // V and GEP are both pointer types --> BitCast
2350 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2353 // Transform things like:
2354 // %V = mul i64 %N, 4
2355 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2356 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2357 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2358 // Check that changing the type amounts to dividing the index by a scale
2359 // factor.
2360 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2361 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2362 if (ResSize && SrcSize % ResSize == 0) {
2363 Value *Idx = GEP.getOperand(1);
2364 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2365 uint64_t Scale = SrcSize / ResSize;
2367 // Earlier transforms ensure that the index has the right type
2368 // according to Data Layout, which considerably simplifies the
2369 // logic by eliminating implicit casts.
2370 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2371 "Index type does not match the Data Layout preferences");
2373 bool NSW;
2374 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2375 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2376 // If the multiplication NewIdx * Scale may overflow then the new
2377 // GEP may not be "inbounds".
2378 Value *NewGEP =
2379 GEP.isInBounds() && NSW
2380 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2381 NewIdx, GEP.getName())
2382 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2383 GEP.getName());
2385 // The NewGEP must be pointer typed, so must the old one -> BitCast
2386 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2387 GEPType);
2392 // Similarly, transform things like:
2393 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2394 // (where tmp = 8*tmp2) into:
2395 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2396 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2397 StrippedPtrEltTy->isArrayTy()) {
2398 // Check that changing to the array element type amounts to dividing the
2399 // index by a scale factor.
2400 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2401 uint64_t ArrayEltSize =
2402 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2403 .getFixedSize();
2404 if (ResSize && ArrayEltSize % ResSize == 0) {
2405 Value *Idx = GEP.getOperand(1);
2406 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2407 uint64_t Scale = ArrayEltSize / ResSize;
2409 // Earlier transforms ensure that the index has the right type
2410 // according to the Data Layout, which considerably simplifies
2411 // the logic by eliminating implicit casts.
2412 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2413 "Index type does not match the Data Layout preferences");
2415 bool NSW;
2416 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2417 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2418 // If the multiplication NewIdx * Scale may overflow then the new
2419 // GEP may not be "inbounds".
2420 Type *IndTy = DL.getIndexType(GEPType);
2421 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2423 Value *NewGEP =
2424 GEP.isInBounds() && NSW
2425 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2426 Off, GEP.getName())
2427 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2428 GEP.getName());
2429 // The NewGEP must be pointer typed, so must the old one -> BitCast
2430 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2431 GEPType);
2438 // addrspacecast between types is canonicalized as a bitcast, then an
2439 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2440 // through the addrspacecast.
2441 Value *ASCStrippedPtrOp = PtrOp;
2442 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2443 // X = bitcast A addrspace(1)* to B addrspace(1)*
2444 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2445 // Z = gep Y, <...constant indices...>
2446 // Into an addrspacecasted GEP of the struct.
2447 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2448 ASCStrippedPtrOp = BC;
2451 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2452 Value *SrcOp = BCI->getOperand(0);
2453 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2454 Type *SrcEltType = SrcType->getElementType();
2456 // GEP directly using the source operand if this GEP is accessing an element
2457 // of a bitcasted pointer to vector or array of the same dimensions:
2458 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2459 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2460 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2461 const DataLayout &DL) {
2462 auto *VecVTy = cast<FixedVectorType>(VecTy);
2463 return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2464 ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2465 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2467 if (GEP.getNumOperands() == 3 &&
2468 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2469 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2470 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2471 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2473 // Create a new GEP here, as using `setOperand()` followed by
2474 // `setSourceElementType()` won't actually update the type of the
2475 // existing GEP Value. Causing issues if this Value is accessed when
2476 // constructing an AddrSpaceCastInst
2477 Value *NGEP =
2478 GEP.isInBounds()
2479 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2480 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2481 NGEP->takeName(&GEP);
2483 // Preserve GEP address space to satisfy users
2484 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2485 return new AddrSpaceCastInst(NGEP, GEPType);
2487 return replaceInstUsesWith(GEP, NGEP);
2490 // See if we can simplify:
2491 // X = bitcast A* to B*
2492 // Y = gep X, <...constant indices...>
2493 // into a gep of the original struct. This is important for SROA and alias
2494 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2495 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2496 APInt Offset(OffsetBits, 0);
2498 // If the bitcast argument is an allocation, The bitcast is for convertion
2499 // to actual type of allocation. Removing such bitcasts, results in having
2500 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2501 // struct or array hierarchy.
2502 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2503 // a better chance to succeed.
2504 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2505 !isAllocationFn(SrcOp, &TLI)) {
2506 // If this GEP instruction doesn't move the pointer, just replace the GEP
2507 // with a bitcast of the real input to the dest type.
2508 if (!Offset) {
2509 // If the bitcast is of an allocation, and the allocation will be
2510 // converted to match the type of the cast, don't touch this.
2511 if (isa<AllocaInst>(SrcOp)) {
2512 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2513 if (Instruction *I = visitBitCast(*BCI)) {
2514 if (I != BCI) {
2515 I->takeName(BCI);
2516 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2517 replaceInstUsesWith(*BCI, I);
2519 return &GEP;
2523 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2524 return new AddrSpaceCastInst(SrcOp, GEPType);
2525 return new BitCastInst(SrcOp, GEPType);
2528 // Otherwise, if the offset is non-zero, we need to find out if there is a
2529 // field at Offset in 'A's type. If so, we can pull the cast through the
2530 // GEP.
2531 SmallVector<Value*, 8> NewIndices;
2532 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2533 Value *NGEP =
2534 GEP.isInBounds()
2535 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2536 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2538 if (NGEP->getType() == GEPType)
2539 return replaceInstUsesWith(GEP, NGEP);
2540 NGEP->takeName(&GEP);
2542 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2543 return new AddrSpaceCastInst(NGEP, GEPType);
2544 return new BitCastInst(NGEP, GEPType);
2549 if (!GEP.isInBounds()) {
2550 unsigned IdxWidth =
2551 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2552 APInt BasePtrOffset(IdxWidth, 0);
2553 Value *UnderlyingPtrOp =
2554 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2555 BasePtrOffset);
2556 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2557 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2558 BasePtrOffset.isNonNegative()) {
2559 APInt AllocSize(
2560 IdxWidth,
2561 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2562 if (BasePtrOffset.ule(AllocSize)) {
2563 return GetElementPtrInst::CreateInBounds(
2564 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2565 GEP.getName());
2571 if (Instruction *R = foldSelectGEP(GEP, Builder))
2572 return R;
2574 return nullptr;
2577 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2578 Instruction *AI) {
2579 if (isa<ConstantPointerNull>(V))
2580 return true;
2581 if (auto *LI = dyn_cast<LoadInst>(V))
2582 return isa<GlobalVariable>(LI->getPointerOperand());
2583 // Two distinct allocations will never be equal.
2584 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2585 // through bitcasts of V can cause
2586 // the result statement below to be true, even when AI and V (ex:
2587 // i8* ->i32* ->i8* of AI) are the same allocations.
2588 return isAllocLikeFn(V, TLI) && V != AI;
2591 static bool isAllocSiteRemovable(Instruction *AI,
2592 SmallVectorImpl<WeakTrackingVH> &Users,
2593 const TargetLibraryInfo *TLI) {
2594 SmallVector<Instruction*, 4> Worklist;
2595 Worklist.push_back(AI);
2597 do {
2598 Instruction *PI = Worklist.pop_back_val();
2599 for (User *U : PI->users()) {
2600 Instruction *I = cast<Instruction>(U);
2601 switch (I->getOpcode()) {
2602 default:
2603 // Give up the moment we see something we can't handle.
2604 return false;
2606 case Instruction::AddrSpaceCast:
2607 case Instruction::BitCast:
2608 case Instruction::GetElementPtr:
2609 Users.emplace_back(I);
2610 Worklist.push_back(I);
2611 continue;
2613 case Instruction::ICmp: {
2614 ICmpInst *ICI = cast<ICmpInst>(I);
2615 // We can fold eq/ne comparisons with null to false/true, respectively.
2616 // We also fold comparisons in some conditions provided the alloc has
2617 // not escaped (see isNeverEqualToUnescapedAlloc).
2618 if (!ICI->isEquality())
2619 return false;
2620 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2621 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2622 return false;
2623 Users.emplace_back(I);
2624 continue;
2627 case Instruction::Call:
2628 // Ignore no-op and store intrinsics.
2629 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2630 switch (II->getIntrinsicID()) {
2631 default:
2632 return false;
2634 case Intrinsic::memmove:
2635 case Intrinsic::memcpy:
2636 case Intrinsic::memset: {
2637 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2638 if (MI->isVolatile() || MI->getRawDest() != PI)
2639 return false;
2640 LLVM_FALLTHROUGH;
2642 case Intrinsic::assume:
2643 case Intrinsic::invariant_start:
2644 case Intrinsic::invariant_end:
2645 case Intrinsic::lifetime_start:
2646 case Intrinsic::lifetime_end:
2647 case Intrinsic::objectsize:
2648 Users.emplace_back(I);
2649 continue;
2650 case Intrinsic::launder_invariant_group:
2651 case Intrinsic::strip_invariant_group:
2652 Users.emplace_back(I);
2653 Worklist.push_back(I);
2654 continue;
2658 if (isFreeCall(I, TLI)) {
2659 Users.emplace_back(I);
2660 continue;
2662 return false;
2664 case Instruction::Store: {
2665 StoreInst *SI = cast<StoreInst>(I);
2666 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2667 return false;
2668 Users.emplace_back(I);
2669 continue;
2672 llvm_unreachable("missing a return?");
2674 } while (!Worklist.empty());
2675 return true;
2678 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2679 // If we have a malloc call which is only used in any amount of comparisons to
2680 // null and free calls, delete the calls and replace the comparisons with true
2681 // or false as appropriate.
2683 // This is based on the principle that we can substitute our own allocation
2684 // function (which will never return null) rather than knowledge of the
2685 // specific function being called. In some sense this can change the permitted
2686 // outputs of a program (when we convert a malloc to an alloca, the fact that
2687 // the allocation is now on the stack is potentially visible, for example),
2688 // but we believe in a permissible manner.
2689 SmallVector<WeakTrackingVH, 64> Users;
2691 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2692 // before each store.
2693 SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2694 std::unique_ptr<DIBuilder> DIB;
2695 if (isa<AllocaInst>(MI)) {
2696 findDbgUsers(DVIs, &MI);
2697 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2700 if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2701 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2702 // Lowering all @llvm.objectsize calls first because they may
2703 // use a bitcast/GEP of the alloca we are removing.
2704 if (!Users[i])
2705 continue;
2707 Instruction *I = cast<Instruction>(&*Users[i]);
2709 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2710 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2711 Value *Result =
2712 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2713 replaceInstUsesWith(*I, Result);
2714 eraseInstFromFunction(*I);
2715 Users[i] = nullptr; // Skip examining in the next loop.
2719 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2720 if (!Users[i])
2721 continue;
2723 Instruction *I = cast<Instruction>(&*Users[i]);
2725 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2726 replaceInstUsesWith(*C,
2727 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2728 C->isFalseWhenEqual()));
2729 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2730 for (auto *DVI : DVIs)
2731 if (DVI->isAddressOfVariable())
2732 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2733 } else {
2734 // Casts, GEP, or anything else: we're about to delete this instruction,
2735 // so it can not have any valid uses.
2736 replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2738 eraseInstFromFunction(*I);
2741 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2742 // Replace invoke with a NOP intrinsic to maintain the original CFG
2743 Module *M = II->getModule();
2744 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2745 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2746 None, "", II->getParent());
2749 // Remove debug intrinsics which describe the value contained within the
2750 // alloca. In addition to removing dbg.{declare,addr} which simply point to
2751 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2753 // ```
2754 // define void @foo(i32 %0) {
2755 // %a = alloca i32 ; Deleted.
2756 // store i32 %0, i32* %a
2757 // dbg.value(i32 %0, "arg0") ; Not deleted.
2758 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
2759 // call void @trivially_inlinable_no_op(i32* %a)
2760 // ret void
2761 // }
2762 // ```
2764 // This may not be required if we stop describing the contents of allocas
2765 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2766 // the LowerDbgDeclare utility.
2768 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2769 // "arg0" dbg.value may be stale after the call. However, failing to remove
2770 // the DW_OP_deref dbg.value causes large gaps in location coverage.
2771 for (auto *DVI : DVIs)
2772 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2773 DVI->eraseFromParent();
2775 return eraseInstFromFunction(MI);
2777 return nullptr;
2780 /// Move the call to free before a NULL test.
2782 /// Check if this free is accessed after its argument has been test
2783 /// against NULL (property 0).
2784 /// If yes, it is legal to move this call in its predecessor block.
2786 /// The move is performed only if the block containing the call to free
2787 /// will be removed, i.e.:
2788 /// 1. it has only one predecessor P, and P has two successors
2789 /// 2. it contains the call, noops, and an unconditional branch
2790 /// 3. its successor is the same as its predecessor's successor
2792 /// The profitability is out-of concern here and this function should
2793 /// be called only if the caller knows this transformation would be
2794 /// profitable (e.g., for code size).
2795 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2796 const DataLayout &DL) {
2797 Value *Op = FI.getArgOperand(0);
2798 BasicBlock *FreeInstrBB = FI.getParent();
2799 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2801 // Validate part of constraint #1: Only one predecessor
2802 // FIXME: We can extend the number of predecessor, but in that case, we
2803 // would duplicate the call to free in each predecessor and it may
2804 // not be profitable even for code size.
2805 if (!PredBB)
2806 return nullptr;
2808 // Validate constraint #2: Does this block contains only the call to
2809 // free, noops, and an unconditional branch?
2810 BasicBlock *SuccBB;
2811 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2812 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2813 return nullptr;
2815 // If there are only 2 instructions in the block, at this point,
2816 // this is the call to free and unconditional.
2817 // If there are more than 2 instructions, check that they are noops
2818 // i.e., they won't hurt the performance of the generated code.
2819 if (FreeInstrBB->size() != 2) {
2820 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2821 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2822 continue;
2823 auto *Cast = dyn_cast<CastInst>(&Inst);
2824 if (!Cast || !Cast->isNoopCast(DL))
2825 return nullptr;
2828 // Validate the rest of constraint #1 by matching on the pred branch.
2829 Instruction *TI = PredBB->getTerminator();
2830 BasicBlock *TrueBB, *FalseBB;
2831 ICmpInst::Predicate Pred;
2832 if (!match(TI, m_Br(m_ICmp(Pred,
2833 m_CombineOr(m_Specific(Op),
2834 m_Specific(Op->stripPointerCasts())),
2835 m_Zero()),
2836 TrueBB, FalseBB)))
2837 return nullptr;
2838 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2839 return nullptr;
2841 // Validate constraint #3: Ensure the null case just falls through.
2842 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2843 return nullptr;
2844 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2845 "Broken CFG: missing edge from predecessor to successor");
2847 // At this point, we know that everything in FreeInstrBB can be moved
2848 // before TI.
2849 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2850 It != End;) {
2851 Instruction &Instr = *It++;
2852 if (&Instr == FreeInstrBBTerminator)
2853 break;
2854 Instr.moveBefore(TI);
2856 assert(FreeInstrBB->size() == 1 &&
2857 "Only the branch instruction should remain");
2858 return &FI;
2861 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2862 Value *Op = FI.getArgOperand(0);
2864 // free undef -> unreachable.
2865 if (isa<UndefValue>(Op)) {
2866 // Leave a marker since we can't modify the CFG here.
2867 CreateNonTerminatorUnreachable(&FI);
2868 return eraseInstFromFunction(FI);
2871 // If we have 'free null' delete the instruction. This can happen in stl code
2872 // when lots of inlining happens.
2873 if (isa<ConstantPointerNull>(Op))
2874 return eraseInstFromFunction(FI);
2876 // If we optimize for code size, try to move the call to free before the null
2877 // test so that simplify cfg can remove the empty block and dead code
2878 // elimination the branch. I.e., helps to turn something like:
2879 // if (foo) free(foo);
2880 // into
2881 // free(foo);
2883 // Note that we can only do this for 'free' and not for any flavor of
2884 // 'operator delete'; there is no 'operator delete' symbol for which we are
2885 // permitted to invent a call, even if we're passing in a null pointer.
2886 if (MinimizeSize) {
2887 LibFunc Func;
2888 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2889 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2890 return I;
2893 return nullptr;
2896 static bool isMustTailCall(Value *V) {
2897 if (auto *CI = dyn_cast<CallInst>(V))
2898 return CI->isMustTailCall();
2899 return false;
2902 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2903 if (RI.getNumOperands() == 0) // ret void
2904 return nullptr;
2906 Value *ResultOp = RI.getOperand(0);
2907 Type *VTy = ResultOp->getType();
2908 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2909 return nullptr;
2911 // Don't replace result of musttail calls.
2912 if (isMustTailCall(ResultOp))
2913 return nullptr;
2915 // There might be assume intrinsics dominating this return that completely
2916 // determine the value. If so, constant fold it.
2917 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2918 if (Known.isConstant())
2919 return replaceOperand(RI, 0,
2920 Constant::getIntegerValue(VTy, Known.getConstant()));
2922 return nullptr;
2925 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
2926 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2927 // Try to remove the previous instruction if it must lead to unreachable.
2928 // This includes instructions like stores and "llvm.assume" that may not get
2929 // removed by simple dead code elimination.
2930 while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
2931 // While we theoretically can erase EH, that would result in a block that
2932 // used to start with an EH no longer starting with EH, which is invalid.
2933 // To make it valid, we'd need to fixup predecessors to no longer refer to
2934 // this block, but that changes CFG, which is not allowed in InstCombine.
2935 if (Prev->isEHPad())
2936 return nullptr; // Can not drop any more instructions. We're done here.
2938 if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
2939 return nullptr; // Can not drop any more instructions. We're done here.
2940 // Otherwise, this instruction can be freely erased,
2941 // even if it is not side-effect free.
2943 // A value may still have uses before we process it here (for example, in
2944 // another unreachable block), so convert those to poison.
2945 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
2946 eraseInstFromFunction(*Prev);
2948 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
2949 // FIXME: recurse into unconditional predecessors?
2950 return nullptr;
2953 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2954 assert(BI.isUnconditional() && "Only for unconditional branches.");
2956 // If this store is the second-to-last instruction in the basic block
2957 // (excluding debug info and bitcasts of pointers) and if the block ends with
2958 // an unconditional branch, try to move the store to the successor block.
2960 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2961 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2962 return isa<DbgInfoIntrinsic>(BBI) ||
2963 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2966 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2967 do {
2968 if (BBI != FirstInstr)
2969 --BBI;
2970 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2972 return dyn_cast<StoreInst>(BBI);
2975 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2976 if (mergeStoreIntoSuccessor(*SI))
2977 return &BI;
2979 return nullptr;
2982 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2983 if (BI.isUnconditional())
2984 return visitUnconditionalBranchInst(BI);
2986 // Change br (not X), label True, label False to: br X, label False, True
2987 Value *X = nullptr;
2988 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2989 !isa<Constant>(X)) {
2990 // Swap Destinations and condition...
2991 BI.swapSuccessors();
2992 return replaceOperand(BI, 0, X);
2995 // If the condition is irrelevant, remove the use so that other
2996 // transforms on the condition become more effective.
2997 if (!isa<ConstantInt>(BI.getCondition()) &&
2998 BI.getSuccessor(0) == BI.getSuccessor(1))
2999 return replaceOperand(
3000 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
3002 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3003 CmpInst::Predicate Pred;
3004 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
3005 m_BasicBlock(), m_BasicBlock())) &&
3006 !isCanonicalPredicate(Pred)) {
3007 // Swap destinations and condition.
3008 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
3009 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
3010 BI.swapSuccessors();
3011 Worklist.push(Cond);
3012 return &BI;
3015 return nullptr;
3018 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3019 Value *Cond = SI.getCondition();
3020 Value *Op0;
3021 ConstantInt *AddRHS;
3022 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3023 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3024 for (auto Case : SI.cases()) {
3025 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3026 assert(isa<ConstantInt>(NewCase) &&
3027 "Result of expression should be constant");
3028 Case.setValue(cast<ConstantInt>(NewCase));
3030 return replaceOperand(SI, 0, Op0);
3033 KnownBits Known = computeKnownBits(Cond, 0, &SI);
3034 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3035 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3037 // Compute the number of leading bits we can ignore.
3038 // TODO: A better way to determine this would use ComputeNumSignBits().
3039 for (auto &C : SI.cases()) {
3040 LeadingKnownZeros = std::min(
3041 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3042 LeadingKnownOnes = std::min(
3043 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3046 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3048 // Shrink the condition operand if the new type is smaller than the old type.
3049 // But do not shrink to a non-standard type, because backend can't generate
3050 // good code for that yet.
3051 // TODO: We can make it aggressive again after fixing PR39569.
3052 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3053 shouldChangeType(Known.getBitWidth(), NewWidth)) {
3054 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3055 Builder.SetInsertPoint(&SI);
3056 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3058 for (auto Case : SI.cases()) {
3059 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3060 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3062 return replaceOperand(SI, 0, NewCond);
3065 return nullptr;
3068 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3069 Value *Agg = EV.getAggregateOperand();
3071 if (!EV.hasIndices())
3072 return replaceInstUsesWith(EV, Agg);
3074 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3075 SQ.getWithInstruction(&EV)))
3076 return replaceInstUsesWith(EV, V);
3078 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3079 // We're extracting from an insertvalue instruction, compare the indices
3080 const unsigned *exti, *exte, *insi, *inse;
3081 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3082 exte = EV.idx_end(), inse = IV->idx_end();
3083 exti != exte && insi != inse;
3084 ++exti, ++insi) {
3085 if (*insi != *exti)
3086 // The insert and extract both reference distinctly different elements.
3087 // This means the extract is not influenced by the insert, and we can
3088 // replace the aggregate operand of the extract with the aggregate
3089 // operand of the insert. i.e., replace
3090 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3091 // %E = extractvalue { i32, { i32 } } %I, 0
3092 // with
3093 // %E = extractvalue { i32, { i32 } } %A, 0
3094 return ExtractValueInst::Create(IV->getAggregateOperand(),
3095 EV.getIndices());
3097 if (exti == exte && insi == inse)
3098 // Both iterators are at the end: Index lists are identical. Replace
3099 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3100 // %C = extractvalue { i32, { i32 } } %B, 1, 0
3101 // with "i32 42"
3102 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3103 if (exti == exte) {
3104 // The extract list is a prefix of the insert list. i.e. replace
3105 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3106 // %E = extractvalue { i32, { i32 } } %I, 1
3107 // with
3108 // %X = extractvalue { i32, { i32 } } %A, 1
3109 // %E = insertvalue { i32 } %X, i32 42, 0
3110 // by switching the order of the insert and extract (though the
3111 // insertvalue should be left in, since it may have other uses).
3112 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3113 EV.getIndices());
3114 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3115 makeArrayRef(insi, inse));
3117 if (insi == inse)
3118 // The insert list is a prefix of the extract list
3119 // We can simply remove the common indices from the extract and make it
3120 // operate on the inserted value instead of the insertvalue result.
3121 // i.e., replace
3122 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3123 // %E = extractvalue { i32, { i32 } } %I, 1, 0
3124 // with
3125 // %E extractvalue { i32 } { i32 42 }, 0
3126 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3127 makeArrayRef(exti, exte));
3129 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3130 // We're extracting from an overflow intrinsic, see if we're the only user,
3131 // which allows us to simplify multiple result intrinsics to simpler
3132 // things that just get one value.
3133 if (WO->hasOneUse()) {
3134 // Check if we're grabbing only the result of a 'with overflow' intrinsic
3135 // and replace it with a traditional binary instruction.
3136 if (*EV.idx_begin() == 0) {
3137 Instruction::BinaryOps BinOp = WO->getBinaryOp();
3138 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3139 // Replace the old instruction's uses with poison.
3140 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3141 eraseInstFromFunction(*WO);
3142 return BinaryOperator::Create(BinOp, LHS, RHS);
3145 assert(*EV.idx_begin() == 1 &&
3146 "unexpected extract index for overflow inst");
3148 // If only the overflow result is used, and the right hand side is a
3149 // constant (or constant splat), we can remove the intrinsic by directly
3150 // checking for overflow.
3151 const APInt *C;
3152 if (match(WO->getRHS(), m_APInt(C))) {
3153 // Compute the no-wrap range [X,Y) for LHS given RHS=C, then
3154 // check for the inverted range using range offset trick (i.e.
3155 // use a subtract to shift the range to bottom of either the
3156 // signed or unsigned domain and then use a single compare to
3157 // check range membership).
3158 ConstantRange NWR =
3159 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3160 WO->getNoWrapKind());
3161 APInt Min = WO->isSigned() ? NWR.getSignedMin() : NWR.getUnsignedMin();
3162 NWR = NWR.subtract(Min);
3164 CmpInst::Predicate Pred;
3165 APInt NewRHSC;
3166 if (NWR.getEquivalentICmp(Pred, NewRHSC)) {
3167 auto *OpTy = WO->getRHS()->getType();
3168 auto *NewLHS = Builder.CreateSub(WO->getLHS(),
3169 ConstantInt::get(OpTy, Min));
3170 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3171 ConstantInt::get(OpTy, NewRHSC));
3176 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3177 // If the (non-volatile) load only has one use, we can rewrite this to a
3178 // load from a GEP. This reduces the size of the load. If a load is used
3179 // only by extractvalue instructions then this either must have been
3180 // optimized before, or it is a struct with padding, in which case we
3181 // don't want to do the transformation as it loses padding knowledge.
3182 if (L->isSimple() && L->hasOneUse()) {
3183 // extractvalue has integer indices, getelementptr has Value*s. Convert.
3184 SmallVector<Value*, 4> Indices;
3185 // Prefix an i32 0 since we need the first element.
3186 Indices.push_back(Builder.getInt32(0));
3187 for (unsigned Idx : EV.indices())
3188 Indices.push_back(Builder.getInt32(Idx));
3190 // We need to insert these at the location of the old load, not at that of
3191 // the extractvalue.
3192 Builder.SetInsertPoint(L);
3193 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3194 L->getPointerOperand(), Indices);
3195 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3196 // Whatever aliasing information we had for the orignal load must also
3197 // hold for the smaller load, so propagate the annotations.
3198 AAMDNodes Nodes;
3199 L->getAAMetadata(Nodes);
3200 NL->setAAMetadata(Nodes);
3201 // Returning the load directly will cause the main loop to insert it in
3202 // the wrong spot, so use replaceInstUsesWith().
3203 return replaceInstUsesWith(EV, NL);
3205 // We could simplify extracts from other values. Note that nested extracts may
3206 // already be simplified implicitly by the above: extract (extract (insert) )
3207 // will be translated into extract ( insert ( extract ) ) first and then just
3208 // the value inserted, if appropriate. Similarly for extracts from single-use
3209 // loads: extract (extract (load)) will be translated to extract (load (gep))
3210 // and if again single-use then via load (gep (gep)) to load (gep).
3211 // However, double extracts from e.g. function arguments or return values
3212 // aren't handled yet.
3213 return nullptr;
3216 /// Return 'true' if the given typeinfo will match anything.
3217 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3218 switch (Personality) {
3219 case EHPersonality::GNU_C:
3220 case EHPersonality::GNU_C_SjLj:
3221 case EHPersonality::Rust:
3222 // The GCC C EH and Rust personality only exists to support cleanups, so
3223 // it's not clear what the semantics of catch clauses are.
3224 return false;
3225 case EHPersonality::Unknown:
3226 return false;
3227 case EHPersonality::GNU_Ada:
3228 // While __gnat_all_others_value will match any Ada exception, it doesn't
3229 // match foreign exceptions (or didn't, before gcc-4.7).
3230 return false;
3231 case EHPersonality::GNU_CXX:
3232 case EHPersonality::GNU_CXX_SjLj:
3233 case EHPersonality::GNU_ObjC:
3234 case EHPersonality::MSVC_X86SEH:
3235 case EHPersonality::MSVC_TableSEH:
3236 case EHPersonality::MSVC_CXX:
3237 case EHPersonality::CoreCLR:
3238 case EHPersonality::Wasm_CXX:
3239 case EHPersonality::XL_CXX:
3240 return TypeInfo->isNullValue();
3242 llvm_unreachable("invalid enum");
3245 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3246 return
3247 cast<ArrayType>(LHS->getType())->getNumElements()
3249 cast<ArrayType>(RHS->getType())->getNumElements();
3252 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3253 // The logic here should be correct for any real-world personality function.
3254 // However if that turns out not to be true, the offending logic can always
3255 // be conditioned on the personality function, like the catch-all logic is.
3256 EHPersonality Personality =
3257 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3259 // Simplify the list of clauses, eg by removing repeated catch clauses
3260 // (these are often created by inlining).
3261 bool MakeNewInstruction = false; // If true, recreate using the following:
3262 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3263 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
3265 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3266 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3267 bool isLastClause = i + 1 == e;
3268 if (LI.isCatch(i)) {
3269 // A catch clause.
3270 Constant *CatchClause = LI.getClause(i);
3271 Constant *TypeInfo = CatchClause->stripPointerCasts();
3273 // If we already saw this clause, there is no point in having a second
3274 // copy of it.
3275 if (AlreadyCaught.insert(TypeInfo).second) {
3276 // This catch clause was not already seen.
3277 NewClauses.push_back(CatchClause);
3278 } else {
3279 // Repeated catch clause - drop the redundant copy.
3280 MakeNewInstruction = true;
3283 // If this is a catch-all then there is no point in keeping any following
3284 // clauses or marking the landingpad as having a cleanup.
3285 if (isCatchAll(Personality, TypeInfo)) {
3286 if (!isLastClause)
3287 MakeNewInstruction = true;
3288 CleanupFlag = false;
3289 break;
3291 } else {
3292 // A filter clause. If any of the filter elements were already caught
3293 // then they can be dropped from the filter. It is tempting to try to
3294 // exploit the filter further by saying that any typeinfo that does not
3295 // occur in the filter can't be caught later (and thus can be dropped).
3296 // However this would be wrong, since typeinfos can match without being
3297 // equal (for example if one represents a C++ class, and the other some
3298 // class derived from it).
3299 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3300 Constant *FilterClause = LI.getClause(i);
3301 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3302 unsigned NumTypeInfos = FilterType->getNumElements();
3304 // An empty filter catches everything, so there is no point in keeping any
3305 // following clauses or marking the landingpad as having a cleanup. By
3306 // dealing with this case here the following code is made a bit simpler.
3307 if (!NumTypeInfos) {
3308 NewClauses.push_back(FilterClause);
3309 if (!isLastClause)
3310 MakeNewInstruction = true;
3311 CleanupFlag = false;
3312 break;
3315 bool MakeNewFilter = false; // If true, make a new filter.
3316 SmallVector<Constant *, 16> NewFilterElts; // New elements.
3317 if (isa<ConstantAggregateZero>(FilterClause)) {
3318 // Not an empty filter - it contains at least one null typeinfo.
3319 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3320 Constant *TypeInfo =
3321 Constant::getNullValue(FilterType->getElementType());
3322 // If this typeinfo is a catch-all then the filter can never match.
3323 if (isCatchAll(Personality, TypeInfo)) {
3324 // Throw the filter away.
3325 MakeNewInstruction = true;
3326 continue;
3329 // There is no point in having multiple copies of this typeinfo, so
3330 // discard all but the first copy if there is more than one.
3331 NewFilterElts.push_back(TypeInfo);
3332 if (NumTypeInfos > 1)
3333 MakeNewFilter = true;
3334 } else {
3335 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3336 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3337 NewFilterElts.reserve(NumTypeInfos);
3339 // Remove any filter elements that were already caught or that already
3340 // occurred in the filter. While there, see if any of the elements are
3341 // catch-alls. If so, the filter can be discarded.
3342 bool SawCatchAll = false;
3343 for (unsigned j = 0; j != NumTypeInfos; ++j) {
3344 Constant *Elt = Filter->getOperand(j);
3345 Constant *TypeInfo = Elt->stripPointerCasts();
3346 if (isCatchAll(Personality, TypeInfo)) {
3347 // This element is a catch-all. Bail out, noting this fact.
3348 SawCatchAll = true;
3349 break;
3352 // Even if we've seen a type in a catch clause, we don't want to
3353 // remove it from the filter. An unexpected type handler may be
3354 // set up for a call site which throws an exception of the same
3355 // type caught. In order for the exception thrown by the unexpected
3356 // handler to propagate correctly, the filter must be correctly
3357 // described for the call site.
3359 // Example:
3361 // void unexpected() { throw 1;}
3362 // void foo() throw (int) {
3363 // std::set_unexpected(unexpected);
3364 // try {
3365 // throw 2.0;
3366 // } catch (int i) {}
3367 // }
3369 // There is no point in having multiple copies of the same typeinfo in
3370 // a filter, so only add it if we didn't already.
3371 if (SeenInFilter.insert(TypeInfo).second)
3372 NewFilterElts.push_back(cast<Constant>(Elt));
3374 // A filter containing a catch-all cannot match anything by definition.
3375 if (SawCatchAll) {
3376 // Throw the filter away.
3377 MakeNewInstruction = true;
3378 continue;
3381 // If we dropped something from the filter, make a new one.
3382 if (NewFilterElts.size() < NumTypeInfos)
3383 MakeNewFilter = true;
3385 if (MakeNewFilter) {
3386 FilterType = ArrayType::get(FilterType->getElementType(),
3387 NewFilterElts.size());
3388 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3389 MakeNewInstruction = true;
3392 NewClauses.push_back(FilterClause);
3394 // If the new filter is empty then it will catch everything so there is
3395 // no point in keeping any following clauses or marking the landingpad
3396 // as having a cleanup. The case of the original filter being empty was
3397 // already handled above.
3398 if (MakeNewFilter && !NewFilterElts.size()) {
3399 assert(MakeNewInstruction && "New filter but not a new instruction!");
3400 CleanupFlag = false;
3401 break;
3406 // If several filters occur in a row then reorder them so that the shortest
3407 // filters come first (those with the smallest number of elements). This is
3408 // advantageous because shorter filters are more likely to match, speeding up
3409 // unwinding, but mostly because it increases the effectiveness of the other
3410 // filter optimizations below.
3411 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3412 unsigned j;
3413 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3414 for (j = i; j != e; ++j)
3415 if (!isa<ArrayType>(NewClauses[j]->getType()))
3416 break;
3418 // Check whether the filters are already sorted by length. We need to know
3419 // if sorting them is actually going to do anything so that we only make a
3420 // new landingpad instruction if it does.
3421 for (unsigned k = i; k + 1 < j; ++k)
3422 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3423 // Not sorted, so sort the filters now. Doing an unstable sort would be
3424 // correct too but reordering filters pointlessly might confuse users.
3425 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3426 shorter_filter);
3427 MakeNewInstruction = true;
3428 break;
3431 // Look for the next batch of filters.
3432 i = j + 1;
3435 // If typeinfos matched if and only if equal, then the elements of a filter L
3436 // that occurs later than a filter F could be replaced by the intersection of
3437 // the elements of F and L. In reality two typeinfos can match without being
3438 // equal (for example if one represents a C++ class, and the other some class
3439 // derived from it) so it would be wrong to perform this transform in general.
3440 // However the transform is correct and useful if F is a subset of L. In that
3441 // case L can be replaced by F, and thus removed altogether since repeating a
3442 // filter is pointless. So here we look at all pairs of filters F and L where
3443 // L follows F in the list of clauses, and remove L if every element of F is
3444 // an element of L. This can occur when inlining C++ functions with exception
3445 // specifications.
3446 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3447 // Examine each filter in turn.
3448 Value *Filter = NewClauses[i];
3449 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3450 if (!FTy)
3451 // Not a filter - skip it.
3452 continue;
3453 unsigned FElts = FTy->getNumElements();
3454 // Examine each filter following this one. Doing this backwards means that
3455 // we don't have to worry about filters disappearing under us when removed.
3456 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3457 Value *LFilter = NewClauses[j];
3458 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3459 if (!LTy)
3460 // Not a filter - skip it.
3461 continue;
3462 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3463 // an element of LFilter, then discard LFilter.
3464 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3465 // If Filter is empty then it is a subset of LFilter.
3466 if (!FElts) {
3467 // Discard LFilter.
3468 NewClauses.erase(J);
3469 MakeNewInstruction = true;
3470 // Move on to the next filter.
3471 continue;
3473 unsigned LElts = LTy->getNumElements();
3474 // If Filter is longer than LFilter then it cannot be a subset of it.
3475 if (FElts > LElts)
3476 // Move on to the next filter.
3477 continue;
3478 // At this point we know that LFilter has at least one element.
3479 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3480 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3481 // already know that Filter is not longer than LFilter).
3482 if (isa<ConstantAggregateZero>(Filter)) {
3483 assert(FElts <= LElts && "Should have handled this case earlier!");
3484 // Discard LFilter.
3485 NewClauses.erase(J);
3486 MakeNewInstruction = true;
3488 // Move on to the next filter.
3489 continue;
3491 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3492 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3493 // Since Filter is non-empty and contains only zeros, it is a subset of
3494 // LFilter iff LFilter contains a zero.
3495 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3496 for (unsigned l = 0; l != LElts; ++l)
3497 if (LArray->getOperand(l)->isNullValue()) {
3498 // LFilter contains a zero - discard it.
3499 NewClauses.erase(J);
3500 MakeNewInstruction = true;
3501 break;
3503 // Move on to the next filter.
3504 continue;
3506 // At this point we know that both filters are ConstantArrays. Loop over
3507 // operands to see whether every element of Filter is also an element of
3508 // LFilter. Since filters tend to be short this is probably faster than
3509 // using a method that scales nicely.
3510 ConstantArray *FArray = cast<ConstantArray>(Filter);
3511 bool AllFound = true;
3512 for (unsigned f = 0; f != FElts; ++f) {
3513 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3514 AllFound = false;
3515 for (unsigned l = 0; l != LElts; ++l) {
3516 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3517 if (LTypeInfo == FTypeInfo) {
3518 AllFound = true;
3519 break;
3522 if (!AllFound)
3523 break;
3525 if (AllFound) {
3526 // Discard LFilter.
3527 NewClauses.erase(J);
3528 MakeNewInstruction = true;
3530 // Move on to the next filter.
3534 // If we changed any of the clauses, replace the old landingpad instruction
3535 // with a new one.
3536 if (MakeNewInstruction) {
3537 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3538 NewClauses.size());
3539 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3540 NLI->addClause(NewClauses[i]);
3541 // A landing pad with no clauses must have the cleanup flag set. It is
3542 // theoretically possible, though highly unlikely, that we eliminated all
3543 // clauses. If so, force the cleanup flag to true.
3544 if (NewClauses.empty())
3545 CleanupFlag = true;
3546 NLI->setCleanup(CleanupFlag);
3547 return NLI;
3550 // Even if none of the clauses changed, we may nonetheless have understood
3551 // that the cleanup flag is pointless. Clear it if so.
3552 if (LI.isCleanup() != CleanupFlag) {
3553 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3554 LI.setCleanup(CleanupFlag);
3555 return &LI;
3558 return nullptr;
3561 Value *
3562 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3563 // Try to push freeze through instructions that propagate but don't produce
3564 // poison as far as possible. If an operand of freeze follows three
3565 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3566 // guaranteed-non-poison operands then push the freeze through to the one
3567 // operand that is not guaranteed non-poison. The actual transform is as
3568 // follows.
3569 // Op1 = ... ; Op1 can be posion
3570 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3571 // ; single guaranteed-non-poison operands
3572 // ... = Freeze(Op0)
3573 // =>
3574 // Op1 = ...
3575 // Op1.fr = Freeze(Op1)
3576 // ... = Inst(Op1.fr, NonPoisonOps...)
3577 auto *OrigOp = OrigFI.getOperand(0);
3578 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3580 // While we could change the other users of OrigOp to use freeze(OrigOp), that
3581 // potentially reduces their optimization potential, so let's only do this iff
3582 // the OrigOp is only used by the freeze.
3583 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp) ||
3584 canCreateUndefOrPoison(dyn_cast<Operator>(OrigOp)))
3585 return nullptr;
3587 // If operand is guaranteed not to be poison, there is no need to add freeze
3588 // to the operand. So we first find the operand that is not guaranteed to be
3589 // poison.
3590 Use *MaybePoisonOperand = nullptr;
3591 for (Use &U : OrigOpInst->operands()) {
3592 if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3593 continue;
3594 if (!MaybePoisonOperand)
3595 MaybePoisonOperand = &U;
3596 else
3597 return nullptr;
3600 // If all operands are guaranteed to be non-poison, we can drop freeze.
3601 if (!MaybePoisonOperand)
3602 return OrigOp;
3604 auto *FrozenMaybePoisonOperand = new FreezeInst(
3605 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3607 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3608 FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3609 return OrigOp;
3612 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3613 Value *Op = FI.getOperand(0);
3615 if (isa<Constant>(Op))
3616 return false;
3618 bool Changed = false;
3619 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3620 bool Dominates = DT.dominates(&FI, U);
3621 Changed |= Dominates;
3622 return Dominates;
3625 return Changed;
3628 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3629 Value *Op0 = I.getOperand(0);
3631 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3632 return replaceInstUsesWith(I, V);
3634 // freeze (phi const, x) --> phi const, (freeze x)
3635 if (auto *PN = dyn_cast<PHINode>(Op0)) {
3636 if (Instruction *NV = foldOpIntoPhi(I, PN))
3637 return NV;
3640 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3641 return replaceInstUsesWith(I, NI);
3643 if (match(Op0, m_Undef())) {
3644 // If I is freeze(undef), see its uses and fold it to the best constant.
3645 // - or: pick -1
3646 // - select's condition: pick the value that leads to choosing a constant
3647 // - other ops: pick 0
3648 Constant *BestValue = nullptr;
3649 Constant *NullValue = Constant::getNullValue(I.getType());
3650 for (const auto *U : I.users()) {
3651 Constant *C = NullValue;
3653 if (match(U, m_Or(m_Value(), m_Value())))
3654 C = Constant::getAllOnesValue(I.getType());
3655 else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3656 if (SI->getCondition() == &I) {
3657 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3658 C = Constant::getIntegerValue(I.getType(), CondVal);
3662 if (!BestValue)
3663 BestValue = C;
3664 else if (BestValue != C)
3665 BestValue = NullValue;
3668 return replaceInstUsesWith(I, BestValue);
3671 // Replace all dominated uses of Op to freeze(Op).
3672 if (freezeDominatedUses(I))
3673 return &I;
3675 return nullptr;
3678 /// Try to move the specified instruction from its current block into the
3679 /// beginning of DestBlock, which can only happen if it's safe to move the
3680 /// instruction past all of the instructions between it and the end of its
3681 /// block.
3682 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3683 assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3684 BasicBlock *SrcBlock = I->getParent();
3686 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3687 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3688 I->isTerminator())
3689 return false;
3691 // Do not sink static or dynamic alloca instructions. Static allocas must
3692 // remain in the entry block, and dynamic allocas must not be sunk in between
3693 // a stacksave / stackrestore pair, which would incorrectly shorten its
3694 // lifetime.
3695 if (isa<AllocaInst>(I))
3696 return false;
3698 // Do not sink into catchswitch blocks.
3699 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3700 return false;
3702 // Do not sink convergent call instructions.
3703 if (auto *CI = dyn_cast<CallInst>(I)) {
3704 if (CI->isConvergent())
3705 return false;
3707 // We can only sink load instructions if there is nothing between the load and
3708 // the end of block that could change the value.
3709 if (I->mayReadFromMemory()) {
3710 // We don't want to do any sophisticated alias analysis, so we only check
3711 // the instructions after I in I's parent block if we try to sink to its
3712 // successor block.
3713 if (DestBlock->getUniquePredecessor() != I->getParent())
3714 return false;
3715 for (BasicBlock::iterator Scan = I->getIterator(),
3716 E = I->getParent()->end();
3717 Scan != E; ++Scan)
3718 if (Scan->mayWriteToMemory())
3719 return false;
3722 I->dropDroppableUses([DestBlock](const Use *U) {
3723 if (auto *I = dyn_cast<Instruction>(U->getUser()))
3724 return I->getParent() != DestBlock;
3725 return true;
3727 /// FIXME: We could remove droppable uses that are not dominated by
3728 /// the new position.
3730 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3731 I->moveBefore(&*InsertPos);
3732 ++NumSunkInst;
3734 // Also sink all related debug uses from the source basic block. Otherwise we
3735 // get debug use before the def. Attempt to salvage debug uses first, to
3736 // maximise the range variables have location for. If we cannot salvage, then
3737 // mark the location undef: we know it was supposed to receive a new location
3738 // here, but that computation has been sunk.
3739 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3740 findDbgUsers(DbgUsers, I);
3741 // Process the sinking DbgUsers in reverse order, as we only want to clone the
3742 // last appearing debug intrinsic for each given variable.
3743 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3744 for (DbgVariableIntrinsic *DVI : DbgUsers)
3745 if (DVI->getParent() == SrcBlock)
3746 DbgUsersToSink.push_back(DVI);
3747 llvm::sort(DbgUsersToSink,
3748 [](auto *A, auto *B) { return B->comesBefore(A); });
3750 SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3751 SmallSet<DebugVariable, 4> SunkVariables;
3752 for (auto User : DbgUsersToSink) {
3753 // A dbg.declare instruction should not be cloned, since there can only be
3754 // one per variable fragment. It should be left in the original place
3755 // because the sunk instruction is not an alloca (otherwise we could not be
3756 // here).
3757 if (isa<DbgDeclareInst>(User))
3758 continue;
3760 DebugVariable DbgUserVariable =
3761 DebugVariable(User->getVariable(), User->getExpression(),
3762 User->getDebugLoc()->getInlinedAt());
3764 if (!SunkVariables.insert(DbgUserVariable).second)
3765 continue;
3767 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3768 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3769 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3770 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3773 // Perform salvaging without the clones, then sink the clones.
3774 if (!DIIClones.empty()) {
3775 salvageDebugInfoForDbgValues(*I, DbgUsers);
3776 // The clones are in reverse order of original appearance, reverse again to
3777 // maintain the original order.
3778 for (auto &DIIClone : llvm::reverse(DIIClones)) {
3779 DIIClone->insertBefore(&*InsertPos);
3780 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3784 return true;
3787 bool InstCombinerImpl::run() {
3788 while (!Worklist.isEmpty()) {
3789 // Walk deferred instructions in reverse order, and push them to the
3790 // worklist, which means they'll end up popped from the worklist in-order.
3791 while (Instruction *I = Worklist.popDeferred()) {
3792 // Check to see if we can DCE the instruction. We do this already here to
3793 // reduce the number of uses and thus allow other folds to trigger.
3794 // Note that eraseInstFromFunction() may push additional instructions on
3795 // the deferred worklist, so this will DCE whole instruction chains.
3796 if (isInstructionTriviallyDead(I, &TLI)) {
3797 eraseInstFromFunction(*I);
3798 ++NumDeadInst;
3799 continue;
3802 Worklist.push(I);
3805 Instruction *I = Worklist.removeOne();
3806 if (I == nullptr) continue; // skip null values.
3808 // Check to see if we can DCE the instruction.
3809 if (isInstructionTriviallyDead(I, &TLI)) {
3810 eraseInstFromFunction(*I);
3811 ++NumDeadInst;
3812 continue;
3815 if (!DebugCounter::shouldExecute(VisitCounter))
3816 continue;
3818 // Instruction isn't dead, see if we can constant propagate it.
3819 if (!I->use_empty() &&
3820 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3821 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3822 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3823 << '\n');
3825 // Add operands to the worklist.
3826 replaceInstUsesWith(*I, C);
3827 ++NumConstProp;
3828 if (isInstructionTriviallyDead(I, &TLI))
3829 eraseInstFromFunction(*I);
3830 MadeIRChange = true;
3831 continue;
3835 // See if we can trivially sink this instruction to its user if we can
3836 // prove that the successor is not executed more frequently than our block.
3837 if (EnableCodeSinking)
3838 if (Use *SingleUse = I->getSingleUndroppableUse()) {
3839 BasicBlock *BB = I->getParent();
3840 Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3841 BasicBlock *UserParent;
3843 // Get the block the use occurs in.
3844 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3845 UserParent = PN->getIncomingBlock(*SingleUse);
3846 else
3847 UserParent = UserInst->getParent();
3849 // Try sinking to another block. If that block is unreachable, then do
3850 // not bother. SimplifyCFG should handle it.
3851 if (UserParent != BB && DT.isReachableFromEntry(UserParent)) {
3852 // See if the user is one of our successors that has only one
3853 // predecessor, so that we don't have to split the critical edge.
3854 bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3855 // Another option where we can sink is a block that ends with a
3856 // terminator that does not pass control to other block (such as
3857 // return or unreachable). In this case:
3858 // - I dominates the User (by SSA form);
3859 // - the User will be executed at most once.
3860 // So sinking I down to User is always profitable or neutral.
3861 if (!ShouldSink) {
3862 auto *Term = UserParent->getTerminator();
3863 ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3865 if (ShouldSink) {
3866 assert(DT.dominates(BB, UserParent) &&
3867 "Dominance relation broken?");
3868 // Okay, the CFG is simple enough, try to sink this instruction.
3869 if (TryToSinkInstruction(I, UserParent)) {
3870 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3871 MadeIRChange = true;
3872 // We'll add uses of the sunk instruction below, but since sinking
3873 // can expose opportunities for it's *operands* add them to the
3874 // worklist
3875 for (Use &U : I->operands())
3876 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3877 Worklist.push(OpI);
3883 // Now that we have an instruction, try combining it to simplify it.
3884 Builder.SetInsertPoint(I);
3885 Builder.CollectMetadataToCopy(
3886 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3888 #ifndef NDEBUG
3889 std::string OrigI;
3890 #endif
3891 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3892 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3894 if (Instruction *Result = visit(*I)) {
3895 ++NumCombined;
3896 // Should we replace the old instruction with a new one?
3897 if (Result != I) {
3898 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3899 << " New = " << *Result << '\n');
3901 Result->copyMetadata(*I,
3902 {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3903 // Everything uses the new instruction now.
3904 I->replaceAllUsesWith(Result);
3906 // Move the name to the new instruction first.
3907 Result->takeName(I);
3909 // Insert the new instruction into the basic block...
3910 BasicBlock *InstParent = I->getParent();
3911 BasicBlock::iterator InsertPos = I->getIterator();
3913 // Are we replace a PHI with something that isn't a PHI, or vice versa?
3914 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3915 // We need to fix up the insertion point.
3916 if (isa<PHINode>(I)) // PHI -> Non-PHI
3917 InsertPos = InstParent->getFirstInsertionPt();
3918 else // Non-PHI -> PHI
3919 InsertPos = InstParent->getFirstNonPHI()->getIterator();
3922 InstParent->getInstList().insert(InsertPos, Result);
3924 // Push the new instruction and any users onto the worklist.
3925 Worklist.pushUsersToWorkList(*Result);
3926 Worklist.push(Result);
3928 eraseInstFromFunction(*I);
3929 } else {
3930 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3931 << " New = " << *I << '\n');
3933 // If the instruction was modified, it's possible that it is now dead.
3934 // if so, remove it.
3935 if (isInstructionTriviallyDead(I, &TLI)) {
3936 eraseInstFromFunction(*I);
3937 } else {
3938 Worklist.pushUsersToWorkList(*I);
3939 Worklist.push(I);
3942 MadeIRChange = true;
3946 Worklist.zap();
3947 return MadeIRChange;
3950 // Track the scopes used by !alias.scope and !noalias. In a function, a
3951 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3952 // by both sets. If not, the declaration of the scope can be safely omitted.
3953 // The MDNode of the scope can be omitted as well for the instructions that are
3954 // part of this function. We do not do that at this point, as this might become
3955 // too time consuming to do.
3956 class AliasScopeTracker {
3957 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3958 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3960 public:
3961 void analyse(Instruction *I) {
3962 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3963 if (!I->hasMetadataOtherThanDebugLoc())
3964 return;
3966 auto Track = [](Metadata *ScopeList, auto &Container) {
3967 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3968 if (!MDScopeList || !Container.insert(MDScopeList).second)
3969 return;
3970 for (auto &MDOperand : MDScopeList->operands())
3971 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3972 Container.insert(MDScope);
3975 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3976 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3979 bool isNoAliasScopeDeclDead(Instruction *Inst) {
3980 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3981 if (!Decl)
3982 return false;
3984 assert(Decl->use_empty() &&
3985 "llvm.experimental.noalias.scope.decl in use ?");
3986 const MDNode *MDSL = Decl->getScopeList();
3987 assert(MDSL->getNumOperands() == 1 &&
3988 "llvm.experimental.noalias.scope should refer to a single scope");
3989 auto &MDOperand = MDSL->getOperand(0);
3990 if (auto *MD = dyn_cast<MDNode>(MDOperand))
3991 return !UsedAliasScopesAndLists.contains(MD) ||
3992 !UsedNoAliasScopesAndLists.contains(MD);
3994 // Not an MDNode ? throw away.
3995 return true;
3999 /// Populate the IC worklist from a function, by walking it in depth-first
4000 /// order and adding all reachable code to the worklist.
4002 /// This has a couple of tricks to make the code faster and more powerful. In
4003 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4004 /// them to the worklist (this significantly speeds up instcombine on code where
4005 /// many instructions are dead or constant). Additionally, if we find a branch
4006 /// whose condition is a known constant, we only visit the reachable successors.
4007 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4008 const TargetLibraryInfo *TLI,
4009 InstCombineWorklist &ICWorklist) {
4010 bool MadeIRChange = false;
4011 SmallPtrSet<BasicBlock *, 32> Visited;
4012 SmallVector<BasicBlock*, 256> Worklist;
4013 Worklist.push_back(&F.front());
4015 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
4016 DenseMap<Constant *, Constant *> FoldedConstants;
4017 AliasScopeTracker SeenAliasScopes;
4019 do {
4020 BasicBlock *BB = Worklist.pop_back_val();
4022 // We have now visited this block! If we've already been here, ignore it.
4023 if (!Visited.insert(BB).second)
4024 continue;
4026 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
4027 Instruction *Inst = &*BBI++;
4029 // ConstantProp instruction if trivially constant.
4030 if (!Inst->use_empty() &&
4031 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
4032 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
4033 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
4034 << '\n');
4035 Inst->replaceAllUsesWith(C);
4036 ++NumConstProp;
4037 if (isInstructionTriviallyDead(Inst, TLI))
4038 Inst->eraseFromParent();
4039 MadeIRChange = true;
4040 continue;
4043 // See if we can constant fold its operands.
4044 for (Use &U : Inst->operands()) {
4045 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4046 continue;
4048 auto *C = cast<Constant>(U);
4049 Constant *&FoldRes = FoldedConstants[C];
4050 if (!FoldRes)
4051 FoldRes = ConstantFoldConstant(C, DL, TLI);
4053 if (FoldRes != C) {
4054 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
4055 << "\n Old = " << *C
4056 << "\n New = " << *FoldRes << '\n');
4057 U = FoldRes;
4058 MadeIRChange = true;
4062 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4063 // these call instructions consumes non-trivial amount of time and
4064 // provides no value for the optimization.
4065 if (!Inst->isDebugOrPseudoInst()) {
4066 InstrsForInstCombineWorklist.push_back(Inst);
4067 SeenAliasScopes.analyse(Inst);
4071 // Recursively visit successors. If this is a branch or switch on a
4072 // constant, only visit the reachable successor.
4073 Instruction *TI = BB->getTerminator();
4074 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4075 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4076 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4077 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4078 Worklist.push_back(ReachableBB);
4079 continue;
4081 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4082 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4083 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4084 continue;
4088 append_range(Worklist, successors(TI));
4089 } while (!Worklist.empty());
4091 // Remove instructions inside unreachable blocks. This prevents the
4092 // instcombine code from having to deal with some bad special cases, and
4093 // reduces use counts of instructions.
4094 for (BasicBlock &BB : F) {
4095 if (Visited.count(&BB))
4096 continue;
4098 unsigned NumDeadInstInBB;
4099 unsigned NumDeadDbgInstInBB;
4100 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4101 removeAllNonTerminatorAndEHPadInstructions(&BB);
4103 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4104 NumDeadInst += NumDeadInstInBB;
4107 // Once we've found all of the instructions to add to instcombine's worklist,
4108 // add them in reverse order. This way instcombine will visit from the top
4109 // of the function down. This jives well with the way that it adds all uses
4110 // of instructions to the worklist after doing a transformation, thus avoiding
4111 // some N^2 behavior in pathological cases.
4112 ICWorklist.reserve(InstrsForInstCombineWorklist.size());
4113 for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
4114 // DCE instruction if trivially dead. As we iterate in reverse program
4115 // order here, we will clean up whole chains of dead instructions.
4116 if (isInstructionTriviallyDead(Inst, TLI) ||
4117 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4118 ++NumDeadInst;
4119 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4120 salvageDebugInfo(*Inst);
4121 Inst->eraseFromParent();
4122 MadeIRChange = true;
4123 continue;
4126 ICWorklist.push(Inst);
4129 return MadeIRChange;
4132 static bool combineInstructionsOverFunction(
4133 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
4134 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4135 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4136 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4137 auto &DL = F.getParent()->getDataLayout();
4138 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4140 /// Builder - This is an IRBuilder that automatically inserts new
4141 /// instructions into the worklist when they are created.
4142 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4143 F.getContext(), TargetFolder(DL),
4144 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4145 Worklist.add(I);
4146 if (auto *Assume = dyn_cast<AssumeInst>(I))
4147 AC.registerAssumption(Assume);
4148 }));
4150 // Lower dbg.declare intrinsics otherwise their value may be clobbered
4151 // by instcombiner.
4152 bool MadeIRChange = false;
4153 if (ShouldLowerDbgDeclare)
4154 MadeIRChange = LowerDbgDeclare(F);
4156 // Iterate while there is work to do.
4157 unsigned Iteration = 0;
4158 while (true) {
4159 ++NumWorklistIterations;
4160 ++Iteration;
4162 if (Iteration > InfiniteLoopDetectionThreshold) {
4163 report_fatal_error(
4164 "Instruction Combining seems stuck in an infinite loop after " +
4165 Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4168 if (Iteration > MaxIterations) {
4169 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4170 << " on " << F.getName()
4171 << " reached; stopping before reaching a fixpoint\n");
4172 break;
4175 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4176 << F.getName() << "\n");
4178 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4180 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4181 ORE, BFI, PSI, DL, LI);
4182 IC.MaxArraySizeForCombine = MaxArraySize;
4184 if (!IC.run())
4185 break;
4187 MadeIRChange = true;
4190 return MadeIRChange;
4193 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4195 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4196 : MaxIterations(MaxIterations) {}
4198 PreservedAnalyses InstCombinePass::run(Function &F,
4199 FunctionAnalysisManager &AM) {
4200 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4201 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4202 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4203 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4204 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4206 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4208 auto *AA = &AM.getResult<AAManager>(F);
4209 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4210 ProfileSummaryInfo *PSI =
4211 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4212 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4213 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4215 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4216 BFI, PSI, MaxIterations, LI))
4217 // No changes, all analyses are preserved.
4218 return PreservedAnalyses::all();
4220 // Mark all the analyses that instcombine updates as preserved.
4221 PreservedAnalyses PA;
4222 PA.preserveSet<CFGAnalyses>();
4223 return PA;
4226 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4227 AU.setPreservesCFG();
4228 AU.addRequired<AAResultsWrapperPass>();
4229 AU.addRequired<AssumptionCacheTracker>();
4230 AU.addRequired<TargetLibraryInfoWrapperPass>();
4231 AU.addRequired<TargetTransformInfoWrapperPass>();
4232 AU.addRequired<DominatorTreeWrapperPass>();
4233 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4234 AU.addPreserved<DominatorTreeWrapperPass>();
4235 AU.addPreserved<AAResultsWrapperPass>();
4236 AU.addPreserved<BasicAAWrapperPass>();
4237 AU.addPreserved<GlobalsAAWrapperPass>();
4238 AU.addRequired<ProfileSummaryInfoWrapperPass>();
4239 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4242 bool InstructionCombiningPass::runOnFunction(Function &F) {
4243 if (skipFunction(F))
4244 return false;
4246 // Required analyses.
4247 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4248 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4249 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4250 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4251 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4252 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4254 // Optional analyses.
4255 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4256 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4257 ProfileSummaryInfo *PSI =
4258 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4259 BlockFrequencyInfo *BFI =
4260 (PSI && PSI->hasProfileSummary()) ?
4261 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4262 nullptr;
4264 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4265 BFI, PSI, MaxIterations, LI);
4268 char InstructionCombiningPass::ID = 0;
4270 InstructionCombiningPass::InstructionCombiningPass()
4271 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4272 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4275 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4276 : FunctionPass(ID), MaxIterations(MaxIterations) {
4277 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4280 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4281 "Combine redundant instructions", false, false)
4282 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4283 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4284 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4285 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4286 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4287 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4288 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4289 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4290 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4291 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4292 "Combine redundant instructions", false, false)
4294 // Initialization Routines
4295 void llvm::initializeInstCombine(PassRegistry &Registry) {
4296 initializeInstructionCombiningPassPass(Registry);
4299 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4300 initializeInstructionCombiningPassPass(*unwrap(R));
4303 FunctionPass *llvm::createInstructionCombiningPass() {
4304 return new InstructionCombiningPass();
4307 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4308 return new InstructionCombiningPass(MaxIterations);
4311 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4312 unwrap(PM)->add(createInstructionCombiningPass());