[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / ConstantHoisting.cpp
blob535f50d4f904ce85aab289a24da4d194e96ea23e
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/SizeOpts.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <tuple>
71 #include <utility>
73 using namespace llvm;
74 using namespace consthoist;
76 #define DEBUG_TYPE "consthoist"
78 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
79 STATISTIC(NumConstantsRebased, "Number of constants rebased");
81 static cl::opt<bool> ConstHoistWithBlockFrequency(
82 "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
83 cl::desc("Enable the use of the block frequency analysis to reduce the "
84 "chance to execute const materialization more frequently than "
85 "without hoisting."));
87 static cl::opt<bool> ConstHoistGEP(
88 "consthoist-gep", cl::init(false), cl::Hidden,
89 cl::desc("Try hoisting constant gep expressions"));
91 static cl::opt<unsigned>
92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93 cl::desc("Do not rebase if number of dependent constants of a Base is less "
94 "than this number."),
95 cl::init(0), cl::Hidden);
97 namespace {
99 /// The constant hoisting pass.
100 class ConstantHoistingLegacyPass : public FunctionPass {
101 public:
102 static char ID; // Pass identification, replacement for typeid
104 ConstantHoistingLegacyPass() : FunctionPass(ID) {
105 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
108 bool runOnFunction(Function &Fn) override;
110 StringRef getPassName() const override { return "Constant Hoisting"; }
112 void getAnalysisUsage(AnalysisUsage &AU) const override {
113 AU.setPreservesCFG();
114 if (ConstHoistWithBlockFrequency)
115 AU.addRequired<BlockFrequencyInfoWrapperPass>();
116 AU.addRequired<DominatorTreeWrapperPass>();
117 AU.addRequired<ProfileSummaryInfoWrapperPass>();
118 AU.addRequired<TargetTransformInfoWrapperPass>();
121 private:
122 ConstantHoistingPass Impl;
125 } // end anonymous namespace
127 char ConstantHoistingLegacyPass::ID = 0;
129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
130 "Constant Hoisting", false, false)
131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
136 "Constant Hoisting", false, false)
138 FunctionPass *llvm::createConstantHoistingPass() {
139 return new ConstantHoistingLegacyPass();
142 /// Perform the constant hoisting optimization for the given function.
143 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
144 if (skipFunction(Fn))
145 return false;
147 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
150 bool MadeChange =
151 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
152 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
153 ConstHoistWithBlockFrequency
154 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
155 : nullptr,
156 Fn.getEntryBlock(),
157 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
159 if (MadeChange) {
160 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
161 << Fn.getName() << '\n');
162 LLVM_DEBUG(dbgs() << Fn);
164 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
166 return MadeChange;
169 /// Find the constant materialization insertion point.
170 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
171 unsigned Idx) const {
172 // If the operand is a cast instruction, then we have to materialize the
173 // constant before the cast instruction.
174 if (Idx != ~0U) {
175 Value *Opnd = Inst->getOperand(Idx);
176 if (auto CastInst = dyn_cast<Instruction>(Opnd))
177 if (CastInst->isCast())
178 return CastInst;
181 // The simple and common case. This also includes constant expressions.
182 if (!isa<PHINode>(Inst) && !Inst->isEHPad())
183 return Inst;
185 // We can't insert directly before a phi node or an eh pad. Insert before
186 // the terminator of the incoming or dominating block.
187 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
188 BasicBlock *InsertionBlock = nullptr;
189 if (Idx != ~0U && isa<PHINode>(Inst)) {
190 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
191 if (!InsertionBlock->isEHPad()) {
192 return InsertionBlock->getTerminator();
194 } else {
195 InsertionBlock = Inst->getParent();
198 // This must be an EH pad. Iterate over immediate dominators until we find a
199 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
200 // and terminators.
201 auto *IDom = DT->getNode(InsertionBlock)->getIDom();
202 while (IDom->getBlock()->isEHPad()) {
203 assert(Entry != IDom->getBlock() && "eh pad in entry block");
204 IDom = IDom->getIDom();
207 return IDom->getBlock()->getTerminator();
210 /// Given \p BBs as input, find another set of BBs which collectively
211 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
212 /// set found in \p BBs.
213 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
214 BasicBlock *Entry,
215 SetVector<BasicBlock *> &BBs) {
216 assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
217 // Nodes on the current path to the root.
218 SmallPtrSet<BasicBlock *, 8> Path;
219 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
220 // dominated by any other blocks in set 'BBs', and all nodes in the path
221 // in the dominator tree from Entry to 'BB'.
222 SmallPtrSet<BasicBlock *, 16> Candidates;
223 for (auto BB : BBs) {
224 // Ignore unreachable basic blocks.
225 if (!DT.isReachableFromEntry(BB))
226 continue;
227 Path.clear();
228 // Walk up the dominator tree until Entry or another BB in BBs
229 // is reached. Insert the nodes on the way to the Path.
230 BasicBlock *Node = BB;
231 // The "Path" is a candidate path to be added into Candidates set.
232 bool isCandidate = false;
233 do {
234 Path.insert(Node);
235 if (Node == Entry || Candidates.count(Node)) {
236 isCandidate = true;
237 break;
239 assert(DT.getNode(Node)->getIDom() &&
240 "Entry doens't dominate current Node");
241 Node = DT.getNode(Node)->getIDom()->getBlock();
242 } while (!BBs.count(Node));
244 // If isCandidate is false, Node is another Block in BBs dominating
245 // current 'BB'. Drop the nodes on the Path.
246 if (!isCandidate)
247 continue;
249 // Add nodes on the Path into Candidates.
250 Candidates.insert(Path.begin(), Path.end());
253 // Sort the nodes in Candidates in top-down order and save the nodes
254 // in Orders.
255 unsigned Idx = 0;
256 SmallVector<BasicBlock *, 16> Orders;
257 Orders.push_back(Entry);
258 while (Idx != Orders.size()) {
259 BasicBlock *Node = Orders[Idx++];
260 for (auto ChildDomNode : DT.getNode(Node)->children()) {
261 if (Candidates.count(ChildDomNode->getBlock()))
262 Orders.push_back(ChildDomNode->getBlock());
266 // Visit Orders in bottom-up order.
267 using InsertPtsCostPair =
268 std::pair<SetVector<BasicBlock *>, BlockFrequency>;
270 // InsertPtsMap is a map from a BB to the best insertion points for the
271 // subtree of BB (subtree not including the BB itself).
272 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
273 InsertPtsMap.reserve(Orders.size() + 1);
274 for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
275 BasicBlock *Node = *RIt;
276 bool NodeInBBs = BBs.count(Node);
277 auto &InsertPts = InsertPtsMap[Node].first;
278 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
280 // Return the optimal insert points in BBs.
281 if (Node == Entry) {
282 BBs.clear();
283 if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
284 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
285 BBs.insert(Entry);
286 else
287 BBs.insert(InsertPts.begin(), InsertPts.end());
288 break;
291 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
292 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293 // will update its parent's ParentInsertPts and ParentPtsFreq.
294 auto &ParentInsertPts = InsertPtsMap[Parent].first;
295 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
296 // Choose to insert in Node or in subtree of Node.
297 // Don't hoist to EHPad because we may not find a proper place to insert
298 // in EHPad.
299 // If the total frequency of InsertPts is the same as the frequency of the
300 // target Node, and InsertPts contains more than one nodes, choose hoisting
301 // to reduce code size.
302 if (NodeInBBs ||
303 (!Node->isEHPad() &&
304 (InsertPtsFreq > BFI.getBlockFreq(Node) ||
305 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
306 ParentInsertPts.insert(Node);
307 ParentPtsFreq += BFI.getBlockFreq(Node);
308 } else {
309 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
310 ParentPtsFreq += InsertPtsFreq;
315 /// Find an insertion point that dominates all uses.
316 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
317 const ConstantInfo &ConstInfo) const {
318 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
319 // Collect all basic blocks.
320 SetVector<BasicBlock *> BBs;
321 SetVector<Instruction *> InsertPts;
322 for (auto const &RCI : ConstInfo.RebasedConstants)
323 for (auto const &U : RCI.Uses)
324 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
326 if (BBs.count(Entry)) {
327 InsertPts.insert(&Entry->front());
328 return InsertPts;
331 if (BFI) {
332 findBestInsertionSet(*DT, *BFI, Entry, BBs);
333 for (auto BB : BBs) {
334 BasicBlock::iterator InsertPt = BB->begin();
335 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
337 InsertPts.insert(&*InsertPt);
339 return InsertPts;
342 while (BBs.size() >= 2) {
343 BasicBlock *BB, *BB1, *BB2;
344 BB1 = BBs.pop_back_val();
345 BB2 = BBs.pop_back_val();
346 BB = DT->findNearestCommonDominator(BB1, BB2);
347 if (BB == Entry) {
348 InsertPts.insert(&Entry->front());
349 return InsertPts;
351 BBs.insert(BB);
353 assert((BBs.size() == 1) && "Expected only one element.");
354 Instruction &FirstInst = (*BBs.begin())->front();
355 InsertPts.insert(findMatInsertPt(&FirstInst));
356 return InsertPts;
359 /// Record constant integer ConstInt for instruction Inst at operand
360 /// index Idx.
362 /// The operand at index Idx is not necessarily the constant integer itself. It
363 /// could also be a cast instruction or a constant expression that uses the
364 /// constant integer.
365 void ConstantHoistingPass::collectConstantCandidates(
366 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
367 ConstantInt *ConstInt) {
368 InstructionCost Cost;
369 // Ask the target about the cost of materializing the constant for the given
370 // instruction and operand index.
371 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
372 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
373 ConstInt->getValue(), ConstInt->getType(),
374 TargetTransformInfo::TCK_SizeAndLatency);
375 else
376 Cost = TTI->getIntImmCostInst(
377 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
378 TargetTransformInfo::TCK_SizeAndLatency, Inst);
380 // Ignore cheap integer constants.
381 if (Cost > TargetTransformInfo::TCC_Basic) {
382 ConstCandMapType::iterator Itr;
383 bool Inserted;
384 ConstPtrUnionType Cand = ConstInt;
385 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
386 if (Inserted) {
387 ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
388 Itr->second = ConstIntCandVec.size() - 1;
390 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
391 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
392 << "Collect constant " << *ConstInt << " from " << *Inst
393 << " with cost " << Cost << '\n';
394 else dbgs() << "Collect constant " << *ConstInt
395 << " indirectly from " << *Inst << " via "
396 << *Inst->getOperand(Idx) << " with cost " << Cost
397 << '\n';);
401 /// Record constant GEP expression for instruction Inst at operand index Idx.
402 void ConstantHoistingPass::collectConstantCandidates(
403 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
404 ConstantExpr *ConstExpr) {
405 // TODO: Handle vector GEPs
406 if (ConstExpr->getType()->isVectorTy())
407 return;
409 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
410 if (!BaseGV)
411 return;
413 // Get offset from the base GV.
414 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
415 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
416 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
417 auto *GEPO = cast<GEPOperator>(ConstExpr);
418 if (!GEPO->accumulateConstantOffset(*DL, Offset))
419 return;
421 if (!Offset.isIntN(32))
422 return;
424 // A constant GEP expression that has a GlobalVariable as base pointer is
425 // usually lowered to a load from constant pool. Such operation is unlikely
426 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
427 // an ADD instruction or folded into Load/Store instruction.
428 InstructionCost Cost =
429 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
430 TargetTransformInfo::TCK_SizeAndLatency, Inst);
431 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
432 ConstCandMapType::iterator Itr;
433 bool Inserted;
434 ConstPtrUnionType Cand = ConstExpr;
435 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
436 if (Inserted) {
437 ExprCandVec.push_back(ConstantCandidate(
438 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
439 ConstExpr));
440 Itr->second = ExprCandVec.size() - 1;
442 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
445 /// Check the operand for instruction Inst at index Idx.
446 void ConstantHoistingPass::collectConstantCandidates(
447 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
448 Value *Opnd = Inst->getOperand(Idx);
450 // Visit constant integers.
451 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
452 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
453 return;
456 // Visit cast instructions that have constant integers.
457 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
458 // Only visit cast instructions, which have been skipped. All other
459 // instructions should have already been visited.
460 if (!CastInst->isCast())
461 return;
463 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
464 // Pretend the constant is directly used by the instruction and ignore
465 // the cast instruction.
466 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
467 return;
471 // Visit constant expressions that have constant integers.
472 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
473 // Handle constant gep expressions.
474 if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
475 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
477 // Only visit constant cast expressions.
478 if (!ConstExpr->isCast())
479 return;
481 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
482 // Pretend the constant is directly used by the instruction and ignore
483 // the constant expression.
484 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
485 return;
490 /// Scan the instruction for expensive integer constants and record them
491 /// in the constant candidate vector.
492 void ConstantHoistingPass::collectConstantCandidates(
493 ConstCandMapType &ConstCandMap, Instruction *Inst) {
494 // Skip all cast instructions. They are visited indirectly later on.
495 if (Inst->isCast())
496 return;
498 // Scan all operands.
499 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
500 // The cost of materializing the constants (defined in
501 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
502 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
503 // So it's safe for us to collect constant candidates from all
504 // IntrinsicInsts.
505 if (canReplaceOperandWithVariable(Inst, Idx)) {
506 collectConstantCandidates(ConstCandMap, Inst, Idx);
508 } // end of for all operands
511 /// Collect all integer constants in the function that cannot be folded
512 /// into an instruction itself.
513 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
514 ConstCandMapType ConstCandMap;
515 for (BasicBlock &BB : Fn) {
516 // Ignore unreachable basic blocks.
517 if (!DT->isReachableFromEntry(&BB))
518 continue;
519 for (Instruction &Inst : BB)
520 collectConstantCandidates(ConstCandMap, &Inst);
524 // This helper function is necessary to deal with values that have different
525 // bit widths (APInt Operator- does not like that). If the value cannot be
526 // represented in uint64 we return an "empty" APInt. This is then interpreted
527 // as the value is not in range.
528 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
529 Optional<APInt> Res = None;
530 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
531 V1.getBitWidth() : V2.getBitWidth();
532 uint64_t LimVal1 = V1.getLimitedValue();
533 uint64_t LimVal2 = V2.getLimitedValue();
535 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
536 return Res;
538 uint64_t Diff = LimVal1 - LimVal2;
539 return APInt(BW, Diff, true);
542 // From a list of constants, one needs to picked as the base and the other
543 // constants will be transformed into an offset from that base constant. The
544 // question is which we can pick best? For example, consider these constants
545 // and their number of uses:
547 // Constants| 2 | 4 | 12 | 42 |
548 // NumUses | 3 | 2 | 8 | 7 |
550 // Selecting constant 12 because it has the most uses will generate negative
551 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
552 // offsets lead to less optimal code generation, then there might be better
553 // solutions. Suppose immediates in the range of 0..35 are most optimally
554 // supported by the architecture, then selecting constant 2 is most optimal
555 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
556 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
557 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
558 // selecting the base constant the range of the offsets is a very important
559 // factor too that we take into account here. This algorithm calculates a total
560 // costs for selecting a constant as the base and substract the costs if
561 // immediates are out of range. It has quadratic complexity, so we call this
562 // function only when we're optimising for size and there are less than 100
563 // constants, we fall back to the straightforward algorithm otherwise
564 // which does not do all the offset calculations.
565 unsigned
566 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
567 ConstCandVecType::iterator E,
568 ConstCandVecType::iterator &MaxCostItr) {
569 unsigned NumUses = 0;
571 bool OptForSize = Entry->getParent()->hasOptSize() ||
572 llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
573 PGSOQueryType::IRPass);
574 if (!OptForSize || std::distance(S,E) > 100) {
575 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
576 NumUses += ConstCand->Uses.size();
577 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
578 MaxCostItr = ConstCand;
580 return NumUses;
583 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
584 InstructionCost MaxCost = -1;
585 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
586 auto Value = ConstCand->ConstInt->getValue();
587 Type *Ty = ConstCand->ConstInt->getType();
588 InstructionCost Cost = 0;
589 NumUses += ConstCand->Uses.size();
590 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
591 << "\n");
593 for (auto User : ConstCand->Uses) {
594 unsigned Opcode = User.Inst->getOpcode();
595 unsigned OpndIdx = User.OpndIdx;
596 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
597 TargetTransformInfo::TCK_SizeAndLatency);
598 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
600 for (auto C2 = S; C2 != E; ++C2) {
601 Optional<APInt> Diff = calculateOffsetDiff(
602 C2->ConstInt->getValue(),
603 ConstCand->ConstInt->getValue());
604 if (Diff) {
605 const InstructionCost ImmCosts =
606 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
607 Cost -= ImmCosts;
608 LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
609 << "has penalty: " << ImmCosts << "\n"
610 << "Adjusted cost: " << Cost << "\n");
614 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
615 if (Cost > MaxCost) {
616 MaxCost = Cost;
617 MaxCostItr = ConstCand;
618 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
619 << "\n");
622 return NumUses;
625 /// Find the base constant within the given range and rebase all other
626 /// constants with respect to the base constant.
627 void ConstantHoistingPass::findAndMakeBaseConstant(
628 ConstCandVecType::iterator S, ConstCandVecType::iterator E,
629 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
630 auto MaxCostItr = S;
631 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
633 // Don't hoist constants that have only one use.
634 if (NumUses <= 1)
635 return;
637 ConstantInt *ConstInt = MaxCostItr->ConstInt;
638 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
639 ConstantInfo ConstInfo;
640 ConstInfo.BaseInt = ConstInt;
641 ConstInfo.BaseExpr = ConstExpr;
642 Type *Ty = ConstInt->getType();
644 // Rebase the constants with respect to the base constant.
645 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
646 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
647 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
648 Type *ConstTy =
649 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
650 ConstInfo.RebasedConstants.push_back(
651 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
653 ConstInfoVec.push_back(std::move(ConstInfo));
656 /// Finds and combines constant candidates that can be easily
657 /// rematerialized with an add from a common base constant.
658 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
659 // If BaseGV is nullptr, find base among candidate constant integers;
660 // Otherwise find base among constant GEPs that share the same BaseGV.
661 ConstCandVecType &ConstCandVec = BaseGV ?
662 ConstGEPCandMap[BaseGV] : ConstIntCandVec;
663 ConstInfoVecType &ConstInfoVec = BaseGV ?
664 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
666 // Sort the constants by value and type. This invalidates the mapping!
667 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
668 const ConstantCandidate &RHS) {
669 if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
670 return LHS.ConstInt->getType()->getBitWidth() <
671 RHS.ConstInt->getType()->getBitWidth();
672 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
675 // Simple linear scan through the sorted constant candidate vector for viable
676 // merge candidates.
677 auto MinValItr = ConstCandVec.begin();
678 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
679 CC != E; ++CC) {
680 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
681 Type *MemUseValTy = nullptr;
682 for (auto &U : CC->Uses) {
683 auto *UI = U.Inst;
684 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
685 MemUseValTy = LI->getType();
686 break;
687 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
688 // Make sure the constant is used as pointer operand of the StoreInst.
689 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
690 MemUseValTy = SI->getValueOperand()->getType();
691 break;
696 // Check if the constant is in range of an add with immediate.
697 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
698 if ((Diff.getBitWidth() <= 64) &&
699 TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
700 // Check if Diff can be used as offset in addressing mode of the user
701 // memory instruction.
702 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
703 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
704 /*HasBaseReg*/true, /*Scale*/0)))
705 continue;
707 // We either have now a different constant type or the constant is not in
708 // range of an add with immediate anymore.
709 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
710 // Start a new base constant search.
711 MinValItr = CC;
713 // Finalize the last base constant search.
714 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
717 /// Updates the operand at Idx in instruction Inst with the result of
718 /// instruction Mat. If the instruction is a PHI node then special
719 /// handling for duplicate values form the same incoming basic block is
720 /// required.
721 /// \return The update will always succeed, but the return value indicated if
722 /// Mat was used for the update or not.
723 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
724 if (auto PHI = dyn_cast<PHINode>(Inst)) {
725 // Check if any previous operand of the PHI node has the same incoming basic
726 // block. This is a very odd case that happens when the incoming basic block
727 // has a switch statement. In this case use the same value as the previous
728 // operand(s), otherwise we will fail verification due to different values.
729 // The values are actually the same, but the variable names are different
730 // and the verifier doesn't like that.
731 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
732 for (unsigned i = 0; i < Idx; ++i) {
733 if (PHI->getIncomingBlock(i) == IncomingBB) {
734 Value *IncomingVal = PHI->getIncomingValue(i);
735 Inst->setOperand(Idx, IncomingVal);
736 return false;
741 Inst->setOperand(Idx, Mat);
742 return true;
745 /// Emit materialization code for all rebased constants and update their
746 /// users.
747 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
748 Constant *Offset,
749 Type *Ty,
750 const ConstantUser &ConstUser) {
751 Instruction *Mat = Base;
753 // The same offset can be dereferenced to different types in nested struct.
754 if (!Offset && Ty && Ty != Base->getType())
755 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
757 if (Offset) {
758 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
759 ConstUser.OpndIdx);
760 if (Ty) {
761 // Constant being rebased is a ConstantExpr.
762 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
763 cast<PointerType>(Ty)->getAddressSpace());
764 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
765 Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
766 Offset, "mat_gep", InsertionPt);
767 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
768 } else
769 // Constant being rebased is a ConstantInt.
770 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
771 "const_mat", InsertionPt);
773 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
774 << " + " << *Offset << ") in BB "
775 << Mat->getParent()->getName() << '\n'
776 << *Mat << '\n');
777 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
779 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
781 // Visit constant integer.
782 if (isa<ConstantInt>(Opnd)) {
783 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
784 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
785 Mat->eraseFromParent();
786 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
787 return;
790 // Visit cast instruction.
791 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
792 assert(CastInst->isCast() && "Expected an cast instruction!");
793 // Check if we already have visited this cast instruction before to avoid
794 // unnecessary cloning.
795 Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
796 if (!ClonedCastInst) {
797 ClonedCastInst = CastInst->clone();
798 ClonedCastInst->setOperand(0, Mat);
799 ClonedCastInst->insertAfter(CastInst);
800 // Use the same debug location as the original cast instruction.
801 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
802 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
803 << "To : " << *ClonedCastInst << '\n');
806 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
807 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
808 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
809 return;
812 // Visit constant expression.
813 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
814 if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
815 // Operand is a ConstantGEP, replace it.
816 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
817 return;
820 // Aside from constant GEPs, only constant cast expressions are collected.
821 assert(ConstExpr->isCast() && "ConstExpr should be a cast");
822 Instruction *ConstExprInst = ConstExpr->getAsInstruction();
823 ConstExprInst->setOperand(0, Mat);
824 ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
825 ConstUser.OpndIdx));
827 // Use the same debug location as the instruction we are about to update.
828 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
830 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
831 << "From : " << *ConstExpr << '\n');
832 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
833 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
834 ConstExprInst->eraseFromParent();
835 if (Offset)
836 Mat->eraseFromParent();
838 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
839 return;
843 /// Hoist and hide the base constant behind a bitcast and emit
844 /// materialization code for derived constants.
845 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
846 bool MadeChange = false;
847 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
848 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
849 for (auto const &ConstInfo : ConstInfoVec) {
850 SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
851 // We can have an empty set if the function contains unreachable blocks.
852 if (IPSet.empty())
853 continue;
855 unsigned UsesNum = 0;
856 unsigned ReBasesNum = 0;
857 unsigned NotRebasedNum = 0;
858 for (Instruction *IP : IPSet) {
859 // First, collect constants depending on this IP of the base.
860 unsigned Uses = 0;
861 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
862 SmallVector<RebasedUse, 4> ToBeRebased;
863 for (auto const &RCI : ConstInfo.RebasedConstants) {
864 for (auto const &U : RCI.Uses) {
865 Uses++;
866 BasicBlock *OrigMatInsertBB =
867 findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
868 // If Base constant is to be inserted in multiple places,
869 // generate rebase for U using the Base dominating U.
870 if (IPSet.size() == 1 ||
871 DT->dominates(IP->getParent(), OrigMatInsertBB))
872 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
875 UsesNum = Uses;
877 // If only few constants depend on this IP of base, skip rebasing,
878 // assuming the base and the rebased have the same materialization cost.
879 if (ToBeRebased.size() < MinNumOfDependentToRebase) {
880 NotRebasedNum += ToBeRebased.size();
881 continue;
884 // Emit an instance of the base at this IP.
885 Instruction *Base = nullptr;
886 // Hoist and hide the base constant behind a bitcast.
887 if (ConstInfo.BaseExpr) {
888 assert(BaseGV && "A base constant expression must have an base GV");
889 Type *Ty = ConstInfo.BaseExpr->getType();
890 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
891 } else {
892 IntegerType *Ty = ConstInfo.BaseInt->getType();
893 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
896 Base->setDebugLoc(IP->getDebugLoc());
898 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
899 << ") to BB " << IP->getParent()->getName() << '\n'
900 << *Base << '\n');
902 // Emit materialization code for rebased constants depending on this IP.
903 for (auto const &R : ToBeRebased) {
904 Constant *Off = std::get<0>(R);
905 Type *Ty = std::get<1>(R);
906 ConstantUser U = std::get<2>(R);
907 emitBaseConstants(Base, Off, Ty, U);
908 ReBasesNum++;
909 // Use the same debug location as the last user of the constant.
910 Base->setDebugLoc(DILocation::getMergedLocation(
911 Base->getDebugLoc(), U.Inst->getDebugLoc()));
913 assert(!Base->use_empty() && "The use list is empty!?");
914 assert(isa<Instruction>(Base->user_back()) &&
915 "All uses should be instructions.");
917 (void)UsesNum;
918 (void)ReBasesNum;
919 (void)NotRebasedNum;
920 // Expect all uses are rebased after rebase is done.
921 assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
922 "Not all uses are rebased");
924 NumConstantsHoisted++;
926 // Base constant is also included in ConstInfo.RebasedConstants, so
927 // deduct 1 from ConstInfo.RebasedConstants.size().
928 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
930 MadeChange = true;
932 return MadeChange;
935 /// Check all cast instructions we made a copy of and remove them if they
936 /// have no more users.
937 void ConstantHoistingPass::deleteDeadCastInst() const {
938 for (auto const &I : ClonedCastMap)
939 if (I.first->use_empty())
940 I.first->eraseFromParent();
943 /// Optimize expensive integer constants in the given function.
944 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
945 DominatorTree &DT, BlockFrequencyInfo *BFI,
946 BasicBlock &Entry, ProfileSummaryInfo *PSI) {
947 this->TTI = &TTI;
948 this->DT = &DT;
949 this->BFI = BFI;
950 this->DL = &Fn.getParent()->getDataLayout();
951 this->Ctx = &Fn.getContext();
952 this->Entry = &Entry;
953 this->PSI = PSI;
954 // Collect all constant candidates.
955 collectConstantCandidates(Fn);
957 // Combine constants that can be easily materialized with an add from a common
958 // base constant.
959 if (!ConstIntCandVec.empty())
960 findBaseConstants(nullptr);
961 for (const auto &MapEntry : ConstGEPCandMap)
962 if (!MapEntry.second.empty())
963 findBaseConstants(MapEntry.first);
965 // Finally hoist the base constant and emit materialization code for dependent
966 // constants.
967 bool MadeChange = false;
968 if (!ConstIntInfoVec.empty())
969 MadeChange = emitBaseConstants(nullptr);
970 for (const auto &MapEntry : ConstGEPInfoMap)
971 if (!MapEntry.second.empty())
972 MadeChange |= emitBaseConstants(MapEntry.first);
975 // Cleanup dead instructions.
976 deleteDeadCastInst();
978 cleanup();
980 return MadeChange;
983 PreservedAnalyses ConstantHoistingPass::run(Function &F,
984 FunctionAnalysisManager &AM) {
985 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
986 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
987 auto BFI = ConstHoistWithBlockFrequency
988 ? &AM.getResult<BlockFrequencyAnalysis>(F)
989 : nullptr;
990 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
991 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
992 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
993 return PreservedAnalyses::all();
995 PreservedAnalyses PA;
996 PA.preserveSet<CFGAnalyses>();
997 return PA;