1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/SizeOpts.h"
74 using namespace consthoist
;
76 #define DEBUG_TYPE "consthoist"
78 STATISTIC(NumConstantsHoisted
, "Number of constants hoisted");
79 STATISTIC(NumConstantsRebased
, "Number of constants rebased");
81 static cl::opt
<bool> ConstHoistWithBlockFrequency(
82 "consthoist-with-block-frequency", cl::init(true), cl::Hidden
,
83 cl::desc("Enable the use of the block frequency analysis to reduce the "
84 "chance to execute const materialization more frequently than "
85 "without hoisting."));
87 static cl::opt
<bool> ConstHoistGEP(
88 "consthoist-gep", cl::init(false), cl::Hidden
,
89 cl::desc("Try hoisting constant gep expressions"));
91 static cl::opt
<unsigned>
92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93 cl::desc("Do not rebase if number of dependent constants of a Base is less "
95 cl::init(0), cl::Hidden
);
99 /// The constant hoisting pass.
100 class ConstantHoistingLegacyPass
: public FunctionPass
{
102 static char ID
; // Pass identification, replacement for typeid
104 ConstantHoistingLegacyPass() : FunctionPass(ID
) {
105 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
108 bool runOnFunction(Function
&Fn
) override
;
110 StringRef
getPassName() const override
{ return "Constant Hoisting"; }
112 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
113 AU
.setPreservesCFG();
114 if (ConstHoistWithBlockFrequency
)
115 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
116 AU
.addRequired
<DominatorTreeWrapperPass
>();
117 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
118 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
122 ConstantHoistingPass Impl
;
125 } // end anonymous namespace
127 char ConstantHoistingLegacyPass::ID
= 0;
129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass
, "consthoist",
130 "Constant Hoisting", false, false)
131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass
, "consthoist",
136 "Constant Hoisting", false, false)
138 FunctionPass
*llvm::createConstantHoistingPass() {
139 return new ConstantHoistingLegacyPass();
142 /// Perform the constant hoisting optimization for the given function.
143 bool ConstantHoistingLegacyPass::runOnFunction(Function
&Fn
) {
144 if (skipFunction(Fn
))
147 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148 LLVM_DEBUG(dbgs() << "********** Function: " << Fn
.getName() << '\n');
151 Impl
.runImpl(Fn
, getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(Fn
),
152 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
153 ConstHoistWithBlockFrequency
154 ? &getAnalysis
<BlockFrequencyInfoWrapperPass
>().getBFI()
157 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI());
160 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
161 << Fn
.getName() << '\n');
162 LLVM_DEBUG(dbgs() << Fn
);
164 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
169 /// Find the constant materialization insertion point.
170 Instruction
*ConstantHoistingPass::findMatInsertPt(Instruction
*Inst
,
171 unsigned Idx
) const {
172 // If the operand is a cast instruction, then we have to materialize the
173 // constant before the cast instruction.
175 Value
*Opnd
= Inst
->getOperand(Idx
);
176 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
))
177 if (CastInst
->isCast())
181 // The simple and common case. This also includes constant expressions.
182 if (!isa
<PHINode
>(Inst
) && !Inst
->isEHPad())
185 // We can't insert directly before a phi node or an eh pad. Insert before
186 // the terminator of the incoming or dominating block.
187 assert(Entry
!= Inst
->getParent() && "PHI or landing pad in entry block!");
188 BasicBlock
*InsertionBlock
= nullptr;
189 if (Idx
!= ~0U && isa
<PHINode
>(Inst
)) {
190 InsertionBlock
= cast
<PHINode
>(Inst
)->getIncomingBlock(Idx
);
191 if (!InsertionBlock
->isEHPad()) {
192 return InsertionBlock
->getTerminator();
195 InsertionBlock
= Inst
->getParent();
198 // This must be an EH pad. Iterate over immediate dominators until we find a
199 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
201 auto *IDom
= DT
->getNode(InsertionBlock
)->getIDom();
202 while (IDom
->getBlock()->isEHPad()) {
203 assert(Entry
!= IDom
->getBlock() && "eh pad in entry block");
204 IDom
= IDom
->getIDom();
207 return IDom
->getBlock()->getTerminator();
210 /// Given \p BBs as input, find another set of BBs which collectively
211 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
212 /// set found in \p BBs.
213 static void findBestInsertionSet(DominatorTree
&DT
, BlockFrequencyInfo
&BFI
,
215 SetVector
<BasicBlock
*> &BBs
) {
216 assert(!BBs
.count(Entry
) && "Assume Entry is not in BBs");
217 // Nodes on the current path to the root.
218 SmallPtrSet
<BasicBlock
*, 8> Path
;
219 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
220 // dominated by any other blocks in set 'BBs', and all nodes in the path
221 // in the dominator tree from Entry to 'BB'.
222 SmallPtrSet
<BasicBlock
*, 16> Candidates
;
223 for (auto BB
: BBs
) {
224 // Ignore unreachable basic blocks.
225 if (!DT
.isReachableFromEntry(BB
))
228 // Walk up the dominator tree until Entry or another BB in BBs
229 // is reached. Insert the nodes on the way to the Path.
230 BasicBlock
*Node
= BB
;
231 // The "Path" is a candidate path to be added into Candidates set.
232 bool isCandidate
= false;
235 if (Node
== Entry
|| Candidates
.count(Node
)) {
239 assert(DT
.getNode(Node
)->getIDom() &&
240 "Entry doens't dominate current Node");
241 Node
= DT
.getNode(Node
)->getIDom()->getBlock();
242 } while (!BBs
.count(Node
));
244 // If isCandidate is false, Node is another Block in BBs dominating
245 // current 'BB'. Drop the nodes on the Path.
249 // Add nodes on the Path into Candidates.
250 Candidates
.insert(Path
.begin(), Path
.end());
253 // Sort the nodes in Candidates in top-down order and save the nodes
256 SmallVector
<BasicBlock
*, 16> Orders
;
257 Orders
.push_back(Entry
);
258 while (Idx
!= Orders
.size()) {
259 BasicBlock
*Node
= Orders
[Idx
++];
260 for (auto ChildDomNode
: DT
.getNode(Node
)->children()) {
261 if (Candidates
.count(ChildDomNode
->getBlock()))
262 Orders
.push_back(ChildDomNode
->getBlock());
266 // Visit Orders in bottom-up order.
267 using InsertPtsCostPair
=
268 std::pair
<SetVector
<BasicBlock
*>, BlockFrequency
>;
270 // InsertPtsMap is a map from a BB to the best insertion points for the
271 // subtree of BB (subtree not including the BB itself).
272 DenseMap
<BasicBlock
*, InsertPtsCostPair
> InsertPtsMap
;
273 InsertPtsMap
.reserve(Orders
.size() + 1);
274 for (auto RIt
= Orders
.rbegin(); RIt
!= Orders
.rend(); RIt
++) {
275 BasicBlock
*Node
= *RIt
;
276 bool NodeInBBs
= BBs
.count(Node
);
277 auto &InsertPts
= InsertPtsMap
[Node
].first
;
278 BlockFrequency
&InsertPtsFreq
= InsertPtsMap
[Node
].second
;
280 // Return the optimal insert points in BBs.
283 if (InsertPtsFreq
> BFI
.getBlockFreq(Node
) ||
284 (InsertPtsFreq
== BFI
.getBlockFreq(Node
) && InsertPts
.size() > 1))
287 BBs
.insert(InsertPts
.begin(), InsertPts
.end());
291 BasicBlock
*Parent
= DT
.getNode(Node
)->getIDom()->getBlock();
292 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293 // will update its parent's ParentInsertPts and ParentPtsFreq.
294 auto &ParentInsertPts
= InsertPtsMap
[Parent
].first
;
295 BlockFrequency
&ParentPtsFreq
= InsertPtsMap
[Parent
].second
;
296 // Choose to insert in Node or in subtree of Node.
297 // Don't hoist to EHPad because we may not find a proper place to insert
299 // If the total frequency of InsertPts is the same as the frequency of the
300 // target Node, and InsertPts contains more than one nodes, choose hoisting
301 // to reduce code size.
304 (InsertPtsFreq
> BFI
.getBlockFreq(Node
) ||
305 (InsertPtsFreq
== BFI
.getBlockFreq(Node
) && InsertPts
.size() > 1)))) {
306 ParentInsertPts
.insert(Node
);
307 ParentPtsFreq
+= BFI
.getBlockFreq(Node
);
309 ParentInsertPts
.insert(InsertPts
.begin(), InsertPts
.end());
310 ParentPtsFreq
+= InsertPtsFreq
;
315 /// Find an insertion point that dominates all uses.
316 SetVector
<Instruction
*> ConstantHoistingPass::findConstantInsertionPoint(
317 const ConstantInfo
&ConstInfo
) const {
318 assert(!ConstInfo
.RebasedConstants
.empty() && "Invalid constant info entry.");
319 // Collect all basic blocks.
320 SetVector
<BasicBlock
*> BBs
;
321 SetVector
<Instruction
*> InsertPts
;
322 for (auto const &RCI
: ConstInfo
.RebasedConstants
)
323 for (auto const &U
: RCI
.Uses
)
324 BBs
.insert(findMatInsertPt(U
.Inst
, U
.OpndIdx
)->getParent());
326 if (BBs
.count(Entry
)) {
327 InsertPts
.insert(&Entry
->front());
332 findBestInsertionSet(*DT
, *BFI
, Entry
, BBs
);
333 for (auto BB
: BBs
) {
334 BasicBlock::iterator InsertPt
= BB
->begin();
335 for (; isa
<PHINode
>(InsertPt
) || InsertPt
->isEHPad(); ++InsertPt
)
337 InsertPts
.insert(&*InsertPt
);
342 while (BBs
.size() >= 2) {
343 BasicBlock
*BB
, *BB1
, *BB2
;
344 BB1
= BBs
.pop_back_val();
345 BB2
= BBs
.pop_back_val();
346 BB
= DT
->findNearestCommonDominator(BB1
, BB2
);
348 InsertPts
.insert(&Entry
->front());
353 assert((BBs
.size() == 1) && "Expected only one element.");
354 Instruction
&FirstInst
= (*BBs
.begin())->front();
355 InsertPts
.insert(findMatInsertPt(&FirstInst
));
359 /// Record constant integer ConstInt for instruction Inst at operand
362 /// The operand at index Idx is not necessarily the constant integer itself. It
363 /// could also be a cast instruction or a constant expression that uses the
364 /// constant integer.
365 void ConstantHoistingPass::collectConstantCandidates(
366 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
,
367 ConstantInt
*ConstInt
) {
368 InstructionCost Cost
;
369 // Ask the target about the cost of materializing the constant for the given
370 // instruction and operand index.
371 if (auto IntrInst
= dyn_cast
<IntrinsicInst
>(Inst
))
372 Cost
= TTI
->getIntImmCostIntrin(IntrInst
->getIntrinsicID(), Idx
,
373 ConstInt
->getValue(), ConstInt
->getType(),
374 TargetTransformInfo::TCK_SizeAndLatency
);
376 Cost
= TTI
->getIntImmCostInst(
377 Inst
->getOpcode(), Idx
, ConstInt
->getValue(), ConstInt
->getType(),
378 TargetTransformInfo::TCK_SizeAndLatency
, Inst
);
380 // Ignore cheap integer constants.
381 if (Cost
> TargetTransformInfo::TCC_Basic
) {
382 ConstCandMapType::iterator Itr
;
384 ConstPtrUnionType Cand
= ConstInt
;
385 std::tie(Itr
, Inserted
) = ConstCandMap
.insert(std::make_pair(Cand
, 0));
387 ConstIntCandVec
.push_back(ConstantCandidate(ConstInt
));
388 Itr
->second
= ConstIntCandVec
.size() - 1;
390 ConstIntCandVec
[Itr
->second
].addUser(Inst
, Idx
, *Cost
.getValue());
391 LLVM_DEBUG(if (isa
<ConstantInt
>(Inst
->getOperand(Idx
))) dbgs()
392 << "Collect constant " << *ConstInt
<< " from " << *Inst
393 << " with cost " << Cost
<< '\n';
394 else dbgs() << "Collect constant " << *ConstInt
395 << " indirectly from " << *Inst
<< " via "
396 << *Inst
->getOperand(Idx
) << " with cost " << Cost
401 /// Record constant GEP expression for instruction Inst at operand index Idx.
402 void ConstantHoistingPass::collectConstantCandidates(
403 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
,
404 ConstantExpr
*ConstExpr
) {
405 // TODO: Handle vector GEPs
406 if (ConstExpr
->getType()->isVectorTy())
409 GlobalVariable
*BaseGV
= dyn_cast
<GlobalVariable
>(ConstExpr
->getOperand(0));
413 // Get offset from the base GV.
414 PointerType
*GVPtrTy
= cast
<PointerType
>(BaseGV
->getType());
415 IntegerType
*PtrIntTy
= DL
->getIntPtrType(*Ctx
, GVPtrTy
->getAddressSpace());
416 APInt
Offset(DL
->getTypeSizeInBits(PtrIntTy
), /*val*/0, /*isSigned*/true);
417 auto *GEPO
= cast
<GEPOperator
>(ConstExpr
);
418 if (!GEPO
->accumulateConstantOffset(*DL
, Offset
))
421 if (!Offset
.isIntN(32))
424 // A constant GEP expression that has a GlobalVariable as base pointer is
425 // usually lowered to a load from constant pool. Such operation is unlikely
426 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
427 // an ADD instruction or folded into Load/Store instruction.
428 InstructionCost Cost
=
429 TTI
->getIntImmCostInst(Instruction::Add
, 1, Offset
, PtrIntTy
,
430 TargetTransformInfo::TCK_SizeAndLatency
, Inst
);
431 ConstCandVecType
&ExprCandVec
= ConstGEPCandMap
[BaseGV
];
432 ConstCandMapType::iterator Itr
;
434 ConstPtrUnionType Cand
= ConstExpr
;
435 std::tie(Itr
, Inserted
) = ConstCandMap
.insert(std::make_pair(Cand
, 0));
437 ExprCandVec
.push_back(ConstantCandidate(
438 ConstantInt::get(Type::getInt32Ty(*Ctx
), Offset
.getLimitedValue()),
440 Itr
->second
= ExprCandVec
.size() - 1;
442 ExprCandVec
[Itr
->second
].addUser(Inst
, Idx
, *Cost
.getValue());
445 /// Check the operand for instruction Inst at index Idx.
446 void ConstantHoistingPass::collectConstantCandidates(
447 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
, unsigned Idx
) {
448 Value
*Opnd
= Inst
->getOperand(Idx
);
450 // Visit constant integers.
451 if (auto ConstInt
= dyn_cast
<ConstantInt
>(Opnd
)) {
452 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
456 // Visit cast instructions that have constant integers.
457 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
)) {
458 // Only visit cast instructions, which have been skipped. All other
459 // instructions should have already been visited.
460 if (!CastInst
->isCast())
463 if (auto *ConstInt
= dyn_cast
<ConstantInt
>(CastInst
->getOperand(0))) {
464 // Pretend the constant is directly used by the instruction and ignore
465 // the cast instruction.
466 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
471 // Visit constant expressions that have constant integers.
472 if (auto ConstExpr
= dyn_cast
<ConstantExpr
>(Opnd
)) {
473 // Handle constant gep expressions.
474 if (ConstHoistGEP
&& ConstExpr
->isGEPWithNoNotionalOverIndexing())
475 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstExpr
);
477 // Only visit constant cast expressions.
478 if (!ConstExpr
->isCast())
481 if (auto ConstInt
= dyn_cast
<ConstantInt
>(ConstExpr
->getOperand(0))) {
482 // Pretend the constant is directly used by the instruction and ignore
483 // the constant expression.
484 collectConstantCandidates(ConstCandMap
, Inst
, Idx
, ConstInt
);
490 /// Scan the instruction for expensive integer constants and record them
491 /// in the constant candidate vector.
492 void ConstantHoistingPass::collectConstantCandidates(
493 ConstCandMapType
&ConstCandMap
, Instruction
*Inst
) {
494 // Skip all cast instructions. They are visited indirectly later on.
498 // Scan all operands.
499 for (unsigned Idx
= 0, E
= Inst
->getNumOperands(); Idx
!= E
; ++Idx
) {
500 // The cost of materializing the constants (defined in
501 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
502 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
503 // So it's safe for us to collect constant candidates from all
505 if (canReplaceOperandWithVariable(Inst
, Idx
)) {
506 collectConstantCandidates(ConstCandMap
, Inst
, Idx
);
508 } // end of for all operands
511 /// Collect all integer constants in the function that cannot be folded
512 /// into an instruction itself.
513 void ConstantHoistingPass::collectConstantCandidates(Function
&Fn
) {
514 ConstCandMapType ConstCandMap
;
515 for (BasicBlock
&BB
: Fn
) {
516 // Ignore unreachable basic blocks.
517 if (!DT
->isReachableFromEntry(&BB
))
519 for (Instruction
&Inst
: BB
)
520 collectConstantCandidates(ConstCandMap
, &Inst
);
524 // This helper function is necessary to deal with values that have different
525 // bit widths (APInt Operator- does not like that). If the value cannot be
526 // represented in uint64 we return an "empty" APInt. This is then interpreted
527 // as the value is not in range.
528 static Optional
<APInt
> calculateOffsetDiff(const APInt
&V1
, const APInt
&V2
) {
529 Optional
<APInt
> Res
= None
;
530 unsigned BW
= V1
.getBitWidth() > V2
.getBitWidth() ?
531 V1
.getBitWidth() : V2
.getBitWidth();
532 uint64_t LimVal1
= V1
.getLimitedValue();
533 uint64_t LimVal2
= V2
.getLimitedValue();
535 if (LimVal1
== ~0ULL || LimVal2
== ~0ULL)
538 uint64_t Diff
= LimVal1
- LimVal2
;
539 return APInt(BW
, Diff
, true);
542 // From a list of constants, one needs to picked as the base and the other
543 // constants will be transformed into an offset from that base constant. The
544 // question is which we can pick best? For example, consider these constants
545 // and their number of uses:
547 // Constants| 2 | 4 | 12 | 42 |
548 // NumUses | 3 | 2 | 8 | 7 |
550 // Selecting constant 12 because it has the most uses will generate negative
551 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
552 // offsets lead to less optimal code generation, then there might be better
553 // solutions. Suppose immediates in the range of 0..35 are most optimally
554 // supported by the architecture, then selecting constant 2 is most optimal
555 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
556 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
557 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
558 // selecting the base constant the range of the offsets is a very important
559 // factor too that we take into account here. This algorithm calculates a total
560 // costs for selecting a constant as the base and substract the costs if
561 // immediates are out of range. It has quadratic complexity, so we call this
562 // function only when we're optimising for size and there are less than 100
563 // constants, we fall back to the straightforward algorithm otherwise
564 // which does not do all the offset calculations.
566 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S
,
567 ConstCandVecType::iterator E
,
568 ConstCandVecType::iterator
&MaxCostItr
) {
569 unsigned NumUses
= 0;
571 bool OptForSize
= Entry
->getParent()->hasOptSize() ||
572 llvm::shouldOptimizeForSize(Entry
->getParent(), PSI
, BFI
,
573 PGSOQueryType::IRPass
);
574 if (!OptForSize
|| std::distance(S
,E
) > 100) {
575 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
576 NumUses
+= ConstCand
->Uses
.size();
577 if (ConstCand
->CumulativeCost
> MaxCostItr
->CumulativeCost
)
578 MaxCostItr
= ConstCand
;
583 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
584 InstructionCost MaxCost
= -1;
585 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
586 auto Value
= ConstCand
->ConstInt
->getValue();
587 Type
*Ty
= ConstCand
->ConstInt
->getType();
588 InstructionCost Cost
= 0;
589 NumUses
+= ConstCand
->Uses
.size();
590 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand
->ConstInt
->getValue()
593 for (auto User
: ConstCand
->Uses
) {
594 unsigned Opcode
= User
.Inst
->getOpcode();
595 unsigned OpndIdx
= User
.OpndIdx
;
596 Cost
+= TTI
->getIntImmCostInst(Opcode
, OpndIdx
, Value
, Ty
,
597 TargetTransformInfo::TCK_SizeAndLatency
);
598 LLVM_DEBUG(dbgs() << "Cost: " << Cost
<< "\n");
600 for (auto C2
= S
; C2
!= E
; ++C2
) {
601 Optional
<APInt
> Diff
= calculateOffsetDiff(
602 C2
->ConstInt
->getValue(),
603 ConstCand
->ConstInt
->getValue());
605 const InstructionCost ImmCosts
=
606 TTI
->getIntImmCodeSizeCost(Opcode
, OpndIdx
, Diff
.getValue(), Ty
);
608 LLVM_DEBUG(dbgs() << "Offset " << Diff
.getValue() << " "
609 << "has penalty: " << ImmCosts
<< "\n"
610 << "Adjusted cost: " << Cost
<< "\n");
614 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost
<< "\n");
615 if (Cost
> MaxCost
) {
617 MaxCostItr
= ConstCand
;
618 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr
->ConstInt
->getValue()
625 /// Find the base constant within the given range and rebase all other
626 /// constants with respect to the base constant.
627 void ConstantHoistingPass::findAndMakeBaseConstant(
628 ConstCandVecType::iterator S
, ConstCandVecType::iterator E
,
629 SmallVectorImpl
<consthoist::ConstantInfo
> &ConstInfoVec
) {
631 unsigned NumUses
= maximizeConstantsInRange(S
, E
, MaxCostItr
);
633 // Don't hoist constants that have only one use.
637 ConstantInt
*ConstInt
= MaxCostItr
->ConstInt
;
638 ConstantExpr
*ConstExpr
= MaxCostItr
->ConstExpr
;
639 ConstantInfo ConstInfo
;
640 ConstInfo
.BaseInt
= ConstInt
;
641 ConstInfo
.BaseExpr
= ConstExpr
;
642 Type
*Ty
= ConstInt
->getType();
644 // Rebase the constants with respect to the base constant.
645 for (auto ConstCand
= S
; ConstCand
!= E
; ++ConstCand
) {
646 APInt Diff
= ConstCand
->ConstInt
->getValue() - ConstInt
->getValue();
647 Constant
*Offset
= Diff
== 0 ? nullptr : ConstantInt::get(Ty
, Diff
);
649 ConstCand
->ConstExpr
? ConstCand
->ConstExpr
->getType() : nullptr;
650 ConstInfo
.RebasedConstants
.push_back(
651 RebasedConstantInfo(std::move(ConstCand
->Uses
), Offset
, ConstTy
));
653 ConstInfoVec
.push_back(std::move(ConstInfo
));
656 /// Finds and combines constant candidates that can be easily
657 /// rematerialized with an add from a common base constant.
658 void ConstantHoistingPass::findBaseConstants(GlobalVariable
*BaseGV
) {
659 // If BaseGV is nullptr, find base among candidate constant integers;
660 // Otherwise find base among constant GEPs that share the same BaseGV.
661 ConstCandVecType
&ConstCandVec
= BaseGV
?
662 ConstGEPCandMap
[BaseGV
] : ConstIntCandVec
;
663 ConstInfoVecType
&ConstInfoVec
= BaseGV
?
664 ConstGEPInfoMap
[BaseGV
] : ConstIntInfoVec
;
666 // Sort the constants by value and type. This invalidates the mapping!
667 llvm::stable_sort(ConstCandVec
, [](const ConstantCandidate
&LHS
,
668 const ConstantCandidate
&RHS
) {
669 if (LHS
.ConstInt
->getType() != RHS
.ConstInt
->getType())
670 return LHS
.ConstInt
->getType()->getBitWidth() <
671 RHS
.ConstInt
->getType()->getBitWidth();
672 return LHS
.ConstInt
->getValue().ult(RHS
.ConstInt
->getValue());
675 // Simple linear scan through the sorted constant candidate vector for viable
677 auto MinValItr
= ConstCandVec
.begin();
678 for (auto CC
= std::next(ConstCandVec
.begin()), E
= ConstCandVec
.end();
680 if (MinValItr
->ConstInt
->getType() == CC
->ConstInt
->getType()) {
681 Type
*MemUseValTy
= nullptr;
682 for (auto &U
: CC
->Uses
) {
684 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UI
)) {
685 MemUseValTy
= LI
->getType();
687 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
688 // Make sure the constant is used as pointer operand of the StoreInst.
689 if (SI
->getPointerOperand() == SI
->getOperand(U
.OpndIdx
)) {
690 MemUseValTy
= SI
->getValueOperand()->getType();
696 // Check if the constant is in range of an add with immediate.
697 APInt Diff
= CC
->ConstInt
->getValue() - MinValItr
->ConstInt
->getValue();
698 if ((Diff
.getBitWidth() <= 64) &&
699 TTI
->isLegalAddImmediate(Diff
.getSExtValue()) &&
700 // Check if Diff can be used as offset in addressing mode of the user
701 // memory instruction.
702 (!MemUseValTy
|| TTI
->isLegalAddressingMode(MemUseValTy
,
703 /*BaseGV*/nullptr, /*BaseOffset*/Diff
.getSExtValue(),
704 /*HasBaseReg*/true, /*Scale*/0)))
707 // We either have now a different constant type or the constant is not in
708 // range of an add with immediate anymore.
709 findAndMakeBaseConstant(MinValItr
, CC
, ConstInfoVec
);
710 // Start a new base constant search.
713 // Finalize the last base constant search.
714 findAndMakeBaseConstant(MinValItr
, ConstCandVec
.end(), ConstInfoVec
);
717 /// Updates the operand at Idx in instruction Inst with the result of
718 /// instruction Mat. If the instruction is a PHI node then special
719 /// handling for duplicate values form the same incoming basic block is
721 /// \return The update will always succeed, but the return value indicated if
722 /// Mat was used for the update or not.
723 static bool updateOperand(Instruction
*Inst
, unsigned Idx
, Instruction
*Mat
) {
724 if (auto PHI
= dyn_cast
<PHINode
>(Inst
)) {
725 // Check if any previous operand of the PHI node has the same incoming basic
726 // block. This is a very odd case that happens when the incoming basic block
727 // has a switch statement. In this case use the same value as the previous
728 // operand(s), otherwise we will fail verification due to different values.
729 // The values are actually the same, but the variable names are different
730 // and the verifier doesn't like that.
731 BasicBlock
*IncomingBB
= PHI
->getIncomingBlock(Idx
);
732 for (unsigned i
= 0; i
< Idx
; ++i
) {
733 if (PHI
->getIncomingBlock(i
) == IncomingBB
) {
734 Value
*IncomingVal
= PHI
->getIncomingValue(i
);
735 Inst
->setOperand(Idx
, IncomingVal
);
741 Inst
->setOperand(Idx
, Mat
);
745 /// Emit materialization code for all rebased constants and update their
747 void ConstantHoistingPass::emitBaseConstants(Instruction
*Base
,
750 const ConstantUser
&ConstUser
) {
751 Instruction
*Mat
= Base
;
753 // The same offset can be dereferenced to different types in nested struct.
754 if (!Offset
&& Ty
&& Ty
!= Base
->getType())
755 Offset
= ConstantInt::get(Type::getInt32Ty(*Ctx
), 0);
758 Instruction
*InsertionPt
= findMatInsertPt(ConstUser
.Inst
,
761 // Constant being rebased is a ConstantExpr.
762 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(*Ctx
,
763 cast
<PointerType
>(Ty
)->getAddressSpace());
764 Base
= new BitCastInst(Base
, Int8PtrTy
, "base_bitcast", InsertionPt
);
765 Mat
= GetElementPtrInst::Create(Int8PtrTy
->getElementType(), Base
,
766 Offset
, "mat_gep", InsertionPt
);
767 Mat
= new BitCastInst(Mat
, Ty
, "mat_bitcast", InsertionPt
);
769 // Constant being rebased is a ConstantInt.
770 Mat
= BinaryOperator::Create(Instruction::Add
, Base
, Offset
,
771 "const_mat", InsertionPt
);
773 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base
->getOperand(0)
774 << " + " << *Offset
<< ") in BB "
775 << Mat
->getParent()->getName() << '\n'
777 Mat
->setDebugLoc(ConstUser
.Inst
->getDebugLoc());
779 Value
*Opnd
= ConstUser
.Inst
->getOperand(ConstUser
.OpndIdx
);
781 // Visit constant integer.
782 if (isa
<ConstantInt
>(Opnd
)) {
783 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
784 if (!updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, Mat
) && Offset
)
785 Mat
->eraseFromParent();
786 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
790 // Visit cast instruction.
791 if (auto CastInst
= dyn_cast
<Instruction
>(Opnd
)) {
792 assert(CastInst
->isCast() && "Expected an cast instruction!");
793 // Check if we already have visited this cast instruction before to avoid
794 // unnecessary cloning.
795 Instruction
*&ClonedCastInst
= ClonedCastMap
[CastInst
];
796 if (!ClonedCastInst
) {
797 ClonedCastInst
= CastInst
->clone();
798 ClonedCastInst
->setOperand(0, Mat
);
799 ClonedCastInst
->insertAfter(CastInst
);
800 // Use the same debug location as the original cast instruction.
801 ClonedCastInst
->setDebugLoc(CastInst
->getDebugLoc());
802 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst
<< '\n'
803 << "To : " << *ClonedCastInst
<< '\n');
806 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
807 updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, ClonedCastInst
);
808 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
812 // Visit constant expression.
813 if (auto ConstExpr
= dyn_cast
<ConstantExpr
>(Opnd
)) {
814 if (ConstExpr
->isGEPWithNoNotionalOverIndexing()) {
815 // Operand is a ConstantGEP, replace it.
816 updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, Mat
);
820 // Aside from constant GEPs, only constant cast expressions are collected.
821 assert(ConstExpr
->isCast() && "ConstExpr should be a cast");
822 Instruction
*ConstExprInst
= ConstExpr
->getAsInstruction();
823 ConstExprInst
->setOperand(0, Mat
);
824 ConstExprInst
->insertBefore(findMatInsertPt(ConstUser
.Inst
,
827 // Use the same debug location as the instruction we are about to update.
828 ConstExprInst
->setDebugLoc(ConstUser
.Inst
->getDebugLoc());
830 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst
<< '\n'
831 << "From : " << *ConstExpr
<< '\n');
832 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser
.Inst
<< '\n');
833 if (!updateOperand(ConstUser
.Inst
, ConstUser
.OpndIdx
, ConstExprInst
)) {
834 ConstExprInst
->eraseFromParent();
836 Mat
->eraseFromParent();
838 LLVM_DEBUG(dbgs() << "To : " << *ConstUser
.Inst
<< '\n');
843 /// Hoist and hide the base constant behind a bitcast and emit
844 /// materialization code for derived constants.
845 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable
*BaseGV
) {
846 bool MadeChange
= false;
847 SmallVectorImpl
<consthoist::ConstantInfo
> &ConstInfoVec
=
848 BaseGV
? ConstGEPInfoMap
[BaseGV
] : ConstIntInfoVec
;
849 for (auto const &ConstInfo
: ConstInfoVec
) {
850 SetVector
<Instruction
*> IPSet
= findConstantInsertionPoint(ConstInfo
);
851 // We can have an empty set if the function contains unreachable blocks.
855 unsigned UsesNum
= 0;
856 unsigned ReBasesNum
= 0;
857 unsigned NotRebasedNum
= 0;
858 for (Instruction
*IP
: IPSet
) {
859 // First, collect constants depending on this IP of the base.
861 using RebasedUse
= std::tuple
<Constant
*, Type
*, ConstantUser
>;
862 SmallVector
<RebasedUse
, 4> ToBeRebased
;
863 for (auto const &RCI
: ConstInfo
.RebasedConstants
) {
864 for (auto const &U
: RCI
.Uses
) {
866 BasicBlock
*OrigMatInsertBB
=
867 findMatInsertPt(U
.Inst
, U
.OpndIdx
)->getParent();
868 // If Base constant is to be inserted in multiple places,
869 // generate rebase for U using the Base dominating U.
870 if (IPSet
.size() == 1 ||
871 DT
->dominates(IP
->getParent(), OrigMatInsertBB
))
872 ToBeRebased
.push_back(RebasedUse(RCI
.Offset
, RCI
.Ty
, U
));
877 // If only few constants depend on this IP of base, skip rebasing,
878 // assuming the base and the rebased have the same materialization cost.
879 if (ToBeRebased
.size() < MinNumOfDependentToRebase
) {
880 NotRebasedNum
+= ToBeRebased
.size();
884 // Emit an instance of the base at this IP.
885 Instruction
*Base
= nullptr;
886 // Hoist and hide the base constant behind a bitcast.
887 if (ConstInfo
.BaseExpr
) {
888 assert(BaseGV
&& "A base constant expression must have an base GV");
889 Type
*Ty
= ConstInfo
.BaseExpr
->getType();
890 Base
= new BitCastInst(ConstInfo
.BaseExpr
, Ty
, "const", IP
);
892 IntegerType
*Ty
= ConstInfo
.BaseInt
->getType();
893 Base
= new BitCastInst(ConstInfo
.BaseInt
, Ty
, "const", IP
);
896 Base
->setDebugLoc(IP
->getDebugLoc());
898 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo
.BaseInt
899 << ") to BB " << IP
->getParent()->getName() << '\n'
902 // Emit materialization code for rebased constants depending on this IP.
903 for (auto const &R
: ToBeRebased
) {
904 Constant
*Off
= std::get
<0>(R
);
905 Type
*Ty
= std::get
<1>(R
);
906 ConstantUser U
= std::get
<2>(R
);
907 emitBaseConstants(Base
, Off
, Ty
, U
);
909 // Use the same debug location as the last user of the constant.
910 Base
->setDebugLoc(DILocation::getMergedLocation(
911 Base
->getDebugLoc(), U
.Inst
->getDebugLoc()));
913 assert(!Base
->use_empty() && "The use list is empty!?");
914 assert(isa
<Instruction
>(Base
->user_back()) &&
915 "All uses should be instructions.");
920 // Expect all uses are rebased after rebase is done.
921 assert(UsesNum
== (ReBasesNum
+ NotRebasedNum
) &&
922 "Not all uses are rebased");
924 NumConstantsHoisted
++;
926 // Base constant is also included in ConstInfo.RebasedConstants, so
927 // deduct 1 from ConstInfo.RebasedConstants.size().
928 NumConstantsRebased
+= ConstInfo
.RebasedConstants
.size() - 1;
935 /// Check all cast instructions we made a copy of and remove them if they
936 /// have no more users.
937 void ConstantHoistingPass::deleteDeadCastInst() const {
938 for (auto const &I
: ClonedCastMap
)
939 if (I
.first
->use_empty())
940 I
.first
->eraseFromParent();
943 /// Optimize expensive integer constants in the given function.
944 bool ConstantHoistingPass::runImpl(Function
&Fn
, TargetTransformInfo
&TTI
,
945 DominatorTree
&DT
, BlockFrequencyInfo
*BFI
,
946 BasicBlock
&Entry
, ProfileSummaryInfo
*PSI
) {
950 this->DL
= &Fn
.getParent()->getDataLayout();
951 this->Ctx
= &Fn
.getContext();
952 this->Entry
= &Entry
;
954 // Collect all constant candidates.
955 collectConstantCandidates(Fn
);
957 // Combine constants that can be easily materialized with an add from a common
959 if (!ConstIntCandVec
.empty())
960 findBaseConstants(nullptr);
961 for (const auto &MapEntry
: ConstGEPCandMap
)
962 if (!MapEntry
.second
.empty())
963 findBaseConstants(MapEntry
.first
);
965 // Finally hoist the base constant and emit materialization code for dependent
967 bool MadeChange
= false;
968 if (!ConstIntInfoVec
.empty())
969 MadeChange
= emitBaseConstants(nullptr);
970 for (const auto &MapEntry
: ConstGEPInfoMap
)
971 if (!MapEntry
.second
.empty())
972 MadeChange
|= emitBaseConstants(MapEntry
.first
);
975 // Cleanup dead instructions.
976 deleteDeadCastInst();
983 PreservedAnalyses
ConstantHoistingPass::run(Function
&F
,
984 FunctionAnalysisManager
&AM
) {
985 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
986 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
987 auto BFI
= ConstHoistWithBlockFrequency
988 ? &AM
.getResult
<BlockFrequencyAnalysis
>(F
)
990 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
991 auto *PSI
= MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
992 if (!runImpl(F
, TTI
, DT
, BFI
, F
.getEntryBlock(), PSI
))
993 return PreservedAnalyses::all();
995 PreservedAnalyses PA
;
996 PA
.preserveSet
<CFGAnalyses
>();