[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / Float2Int.cpp
blob8a5d4f568774b9ce7784dbf33d9832d236670694
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/InitializePasses.h"
15 #include "llvm/Support/CommandLine.h"
16 #include "llvm/Transforms/Scalar/Float2Int.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include <deque>
31 #include <functional> // For std::function
33 #define DEBUG_TYPE "float2int"
35 using namespace llvm;
37 // The algorithm is simple. Start at instructions that convert from the
38 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
39 // graph, using an equivalence datastructure to unify graphs that interfere.
41 // Mappable instructions are those with an integer corrollary that, given
42 // integer domain inputs, produce an integer output; fadd, for example.
44 // If a non-mappable instruction is seen, this entire def-use graph is marked
45 // as non-transformable. If we see an instruction that converts from the
46 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
48 /// The largest integer type worth dealing with.
49 static cl::opt<unsigned>
50 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
51 cl::desc("Max integer bitwidth to consider in float2int"
52 "(default=64)"));
54 namespace {
55 struct Float2IntLegacyPass : public FunctionPass {
56 static char ID; // Pass identification, replacement for typeid
57 Float2IntLegacyPass() : FunctionPass(ID) {
58 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
61 bool runOnFunction(Function &F) override {
62 if (skipFunction(F))
63 return false;
65 const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
66 return Impl.runImpl(F, DT);
69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.setPreservesCFG();
71 AU.addRequired<DominatorTreeWrapperPass>();
72 AU.addPreserved<GlobalsAAWrapperPass>();
75 private:
76 Float2IntPass Impl;
80 char Float2IntLegacyPass::ID = 0;
81 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
83 // Given a FCmp predicate, return a matching ICmp predicate if one
84 // exists, otherwise return BAD_ICMP_PREDICATE.
85 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
86 switch (P) {
87 case CmpInst::FCMP_OEQ:
88 case CmpInst::FCMP_UEQ:
89 return CmpInst::ICMP_EQ;
90 case CmpInst::FCMP_OGT:
91 case CmpInst::FCMP_UGT:
92 return CmpInst::ICMP_SGT;
93 case CmpInst::FCMP_OGE:
94 case CmpInst::FCMP_UGE:
95 return CmpInst::ICMP_SGE;
96 case CmpInst::FCMP_OLT:
97 case CmpInst::FCMP_ULT:
98 return CmpInst::ICMP_SLT;
99 case CmpInst::FCMP_OLE:
100 case CmpInst::FCMP_ULE:
101 return CmpInst::ICMP_SLE;
102 case CmpInst::FCMP_ONE:
103 case CmpInst::FCMP_UNE:
104 return CmpInst::ICMP_NE;
105 default:
106 return CmpInst::BAD_ICMP_PREDICATE;
110 // Given a floating point binary operator, return the matching
111 // integer version.
112 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
113 switch (Opcode) {
114 default: llvm_unreachable("Unhandled opcode!");
115 case Instruction::FAdd: return Instruction::Add;
116 case Instruction::FSub: return Instruction::Sub;
117 case Instruction::FMul: return Instruction::Mul;
121 // Find the roots - instructions that convert from the FP domain to
122 // integer domain.
123 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) {
124 for (BasicBlock &BB : F) {
125 // Unreachable code can take on strange forms that we are not prepared to
126 // handle. For example, an instruction may have itself as an operand.
127 if (!DT.isReachableFromEntry(&BB))
128 continue;
130 for (Instruction &I : BB) {
131 if (isa<VectorType>(I.getType()))
132 continue;
133 switch (I.getOpcode()) {
134 default: break;
135 case Instruction::FPToUI:
136 case Instruction::FPToSI:
137 Roots.insert(&I);
138 break;
139 case Instruction::FCmp:
140 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
141 CmpInst::BAD_ICMP_PREDICATE)
142 Roots.insert(&I);
143 break;
149 // Helper - mark I as having been traversed, having range R.
150 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
151 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
152 auto IT = SeenInsts.find(I);
153 if (IT != SeenInsts.end())
154 IT->second = std::move(R);
155 else
156 SeenInsts.insert(std::make_pair(I, std::move(R)));
159 // Helper - get a range representing a poison value.
160 ConstantRange Float2IntPass::badRange() {
161 return ConstantRange::getFull(MaxIntegerBW + 1);
163 ConstantRange Float2IntPass::unknownRange() {
164 return ConstantRange::getEmpty(MaxIntegerBW + 1);
166 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
167 if (R.getBitWidth() > MaxIntegerBW + 1)
168 return badRange();
169 return R;
172 // The most obvious way to structure the search is a depth-first, eager
173 // search from each root. However, that require direct recursion and so
174 // can only handle small instruction sequences. Instead, we split the search
175 // up into two phases:
176 // - walkBackwards: A breadth-first walk of the use-def graph starting from
177 // the roots. Populate "SeenInsts" with interesting
178 // instructions and poison values if they're obvious and
179 // cheap to compute. Calculate the equivalance set structure
180 // while we're here too.
181 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit
182 // defs before their uses. Calculate the real range info.
184 // Breadth-first walk of the use-def graph; determine the set of nodes
185 // we care about and eagerly determine if some of them are poisonous.
186 void Float2IntPass::walkBackwards() {
187 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
188 while (!Worklist.empty()) {
189 Instruction *I = Worklist.back();
190 Worklist.pop_back();
192 if (SeenInsts.find(I) != SeenInsts.end())
193 // Seen already.
194 continue;
196 switch (I->getOpcode()) {
197 // FIXME: Handle select and phi nodes.
198 default:
199 // Path terminated uncleanly.
200 seen(I, badRange());
201 break;
203 case Instruction::UIToFP:
204 case Instruction::SIToFP: {
205 // Path terminated cleanly - use the type of the integer input to seed
206 // the analysis.
207 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
208 auto Input = ConstantRange::getFull(BW);
209 auto CastOp = (Instruction::CastOps)I->getOpcode();
210 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
211 continue;
214 case Instruction::FNeg:
215 case Instruction::FAdd:
216 case Instruction::FSub:
217 case Instruction::FMul:
218 case Instruction::FPToUI:
219 case Instruction::FPToSI:
220 case Instruction::FCmp:
221 seen(I, unknownRange());
222 break;
225 for (Value *O : I->operands()) {
226 if (Instruction *OI = dyn_cast<Instruction>(O)) {
227 // Unify def-use chains if they interfere.
228 ECs.unionSets(I, OI);
229 if (SeenInsts.find(I)->second != badRange())
230 Worklist.push_back(OI);
231 } else if (!isa<ConstantFP>(O)) {
232 // Not an instruction or ConstantFP? we can't do anything.
233 seen(I, badRange());
239 // Walk forwards down the list of seen instructions, so we visit defs before
240 // uses.
241 void Float2IntPass::walkForwards() {
242 for (auto &It : reverse(SeenInsts)) {
243 if (It.second != unknownRange())
244 continue;
246 Instruction *I = It.first;
247 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
248 switch (I->getOpcode()) {
249 // FIXME: Handle select and phi nodes.
250 default:
251 case Instruction::UIToFP:
252 case Instruction::SIToFP:
253 llvm_unreachable("Should have been handled in walkForwards!");
255 case Instruction::FNeg:
256 Op = [](ArrayRef<ConstantRange> Ops) {
257 assert(Ops.size() == 1 && "FNeg is a unary operator!");
258 unsigned Size = Ops[0].getBitWidth();
259 auto Zero = ConstantRange(APInt::getNullValue(Size));
260 return Zero.sub(Ops[0]);
262 break;
264 case Instruction::FAdd:
265 case Instruction::FSub:
266 case Instruction::FMul:
267 Op = [I](ArrayRef<ConstantRange> Ops) {
268 assert(Ops.size() == 2 && "its a binary operator!");
269 auto BinOp = (Instruction::BinaryOps) I->getOpcode();
270 return Ops[0].binaryOp(BinOp, Ops[1]);
272 break;
275 // Root-only instructions - we'll only see these if they're the
276 // first node in a walk.
278 case Instruction::FPToUI:
279 case Instruction::FPToSI:
280 Op = [I](ArrayRef<ConstantRange> Ops) {
281 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
282 // Note: We're ignoring the casts output size here as that's what the
283 // caller expects.
284 auto CastOp = (Instruction::CastOps)I->getOpcode();
285 return Ops[0].castOp(CastOp, MaxIntegerBW+1);
287 break;
289 case Instruction::FCmp:
290 Op = [](ArrayRef<ConstantRange> Ops) {
291 assert(Ops.size() == 2 && "FCmp is a binary operator!");
292 return Ops[0].unionWith(Ops[1]);
294 break;
297 bool Abort = false;
298 SmallVector<ConstantRange,4> OpRanges;
299 for (Value *O : I->operands()) {
300 if (Instruction *OI = dyn_cast<Instruction>(O)) {
301 assert(SeenInsts.find(OI) != SeenInsts.end() &&
302 "def not seen before use!");
303 OpRanges.push_back(SeenInsts.find(OI)->second);
304 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
305 // Work out if the floating point number can be losslessly represented
306 // as an integer.
307 // APFloat::convertToInteger(&Exact) purports to do what we want, but
308 // the exactness can be too precise. For example, negative zero can
309 // never be exactly converted to an integer.
311 // Instead, we ask APFloat to round itself to an integral value - this
312 // preserves sign-of-zero - then compare the result with the original.
314 const APFloat &F = CF->getValueAPF();
316 // First, weed out obviously incorrect values. Non-finite numbers
317 // can't be represented and neither can negative zero, unless
318 // we're in fast math mode.
319 if (!F.isFinite() ||
320 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
321 !I->hasNoSignedZeros())) {
322 seen(I, badRange());
323 Abort = true;
324 break;
327 APFloat NewF = F;
328 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
329 if (Res != APFloat::opOK || NewF != F) {
330 seen(I, badRange());
331 Abort = true;
332 break;
334 // OK, it's representable. Now get it.
335 APSInt Int(MaxIntegerBW+1, false);
336 bool Exact;
337 CF->getValueAPF().convertToInteger(Int,
338 APFloat::rmNearestTiesToEven,
339 &Exact);
340 OpRanges.push_back(ConstantRange(Int));
341 } else {
342 llvm_unreachable("Should have already marked this as badRange!");
346 // Reduce the operands' ranges to a single range and return.
347 if (!Abort)
348 seen(I, Op(OpRanges));
352 // If there is a valid transform to be done, do it.
353 bool Float2IntPass::validateAndTransform() {
354 bool MadeChange = false;
356 // Iterate over every disjoint partition of the def-use graph.
357 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
358 ConstantRange R(MaxIntegerBW + 1, false);
359 bool Fail = false;
360 Type *ConvertedToTy = nullptr;
362 // For every member of the partition, union all the ranges together.
363 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
364 MI != ME; ++MI) {
365 Instruction *I = *MI;
366 auto SeenI = SeenInsts.find(I);
367 if (SeenI == SeenInsts.end())
368 continue;
370 R = R.unionWith(SeenI->second);
371 // We need to ensure I has no users that have not been seen.
372 // If it does, transformation would be illegal.
374 // Don't count the roots, as they terminate the graphs.
375 if (Roots.count(I) == 0) {
376 // Set the type of the conversion while we're here.
377 if (!ConvertedToTy)
378 ConvertedToTy = I->getType();
379 for (User *U : I->users()) {
380 Instruction *UI = dyn_cast<Instruction>(U);
381 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
382 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
383 Fail = true;
384 break;
388 if (Fail)
389 break;
392 // If the set was empty, or we failed, or the range is poisonous,
393 // bail out.
394 if (ECs.member_begin(It) == ECs.member_end() || Fail ||
395 R.isFullSet() || R.isSignWrappedSet())
396 continue;
397 assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
399 // The number of bits required is the maximum of the upper and
400 // lower limits, plus one so it can be signed.
401 unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
402 R.getUpper().getMinSignedBits()) + 1;
403 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
405 // If we've run off the realms of the exactly representable integers,
406 // the floating point result will differ from an integer approximation.
408 // Do we need more bits than are in the mantissa of the type we converted
409 // to? semanticsPrecision returns the number of mantissa bits plus one
410 // for the sign bit.
411 unsigned MaxRepresentableBits
412 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
413 if (MinBW > MaxRepresentableBits) {
414 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
415 continue;
417 if (MinBW > 64) {
418 LLVM_DEBUG(
419 dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
420 continue;
423 // OK, R is known to be representable. Now pick a type for it.
424 // FIXME: Pick the smallest legal type that will fit.
425 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
427 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
428 MI != ME; ++MI)
429 convert(*MI, Ty);
430 MadeChange = true;
433 return MadeChange;
436 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
437 if (ConvertedInsts.find(I) != ConvertedInsts.end())
438 // Already converted this instruction.
439 return ConvertedInsts[I];
441 SmallVector<Value*,4> NewOperands;
442 for (Value *V : I->operands()) {
443 // Don't recurse if we're an instruction that terminates the path.
444 if (I->getOpcode() == Instruction::UIToFP ||
445 I->getOpcode() == Instruction::SIToFP) {
446 NewOperands.push_back(V);
447 } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
448 NewOperands.push_back(convert(VI, ToTy));
449 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
450 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
451 bool Exact;
452 CF->getValueAPF().convertToInteger(Val,
453 APFloat::rmNearestTiesToEven,
454 &Exact);
455 NewOperands.push_back(ConstantInt::get(ToTy, Val));
456 } else {
457 llvm_unreachable("Unhandled operand type?");
461 // Now create a new instruction.
462 IRBuilder<> IRB(I);
463 Value *NewV = nullptr;
464 switch (I->getOpcode()) {
465 default: llvm_unreachable("Unhandled instruction!");
467 case Instruction::FPToUI:
468 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
469 break;
471 case Instruction::FPToSI:
472 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
473 break;
475 case Instruction::FCmp: {
476 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
477 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
478 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
479 break;
482 case Instruction::UIToFP:
483 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
484 break;
486 case Instruction::SIToFP:
487 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
488 break;
490 case Instruction::FNeg:
491 NewV = IRB.CreateNeg(NewOperands[0], I->getName());
492 break;
494 case Instruction::FAdd:
495 case Instruction::FSub:
496 case Instruction::FMul:
497 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
498 NewOperands[0], NewOperands[1],
499 I->getName());
500 break;
503 // If we're a root instruction, RAUW.
504 if (Roots.count(I))
505 I->replaceAllUsesWith(NewV);
507 ConvertedInsts[I] = NewV;
508 return NewV;
511 // Perform dead code elimination on the instructions we just modified.
512 void Float2IntPass::cleanup() {
513 for (auto &I : reverse(ConvertedInsts))
514 I.first->eraseFromParent();
517 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) {
518 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
519 // Clear out all state.
520 ECs = EquivalenceClasses<Instruction*>();
521 SeenInsts.clear();
522 ConvertedInsts.clear();
523 Roots.clear();
525 Ctx = &F.getParent()->getContext();
527 findRoots(F, DT);
529 walkBackwards();
530 walkForwards();
532 bool Modified = validateAndTransform();
533 if (Modified)
534 cleanup();
535 return Modified;
538 namespace llvm {
539 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
541 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) {
542 const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
543 if (!runImpl(F, DT))
544 return PreservedAnalyses::all();
546 PreservedAnalyses PA;
547 PA.preserveSet<CFGAnalyses>();
548 return PA;
550 } // End namespace llvm