[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / JumpThreading.cpp
blob9dc3b03513462e07d7333038c8d369e01849bab6
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/BlockFrequency.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SSAUpdater.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <memory>
81 #include <utility>
83 using namespace llvm;
84 using namespace jumpthreading;
86 #define DEBUG_TYPE "jump-threading"
88 STATISTIC(NumThreads, "Number of jumps threaded");
89 STATISTIC(NumFolds, "Number of terminators folded");
90 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
92 static cl::opt<unsigned>
93 BBDuplicateThreshold("jump-threading-threshold",
94 cl::desc("Max block size to duplicate for jump threading"),
95 cl::init(6), cl::Hidden);
97 static cl::opt<unsigned>
98 ImplicationSearchThreshold(
99 "jump-threading-implication-search-threshold",
100 cl::desc("The number of predecessors to search for a stronger "
101 "condition to use to thread over a weaker condition"),
102 cl::init(3), cl::Hidden);
104 static cl::opt<bool> PrintLVIAfterJumpThreading(
105 "print-lvi-after-jump-threading",
106 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
107 cl::Hidden);
109 static cl::opt<bool> JumpThreadingFreezeSelectCond(
110 "jump-threading-freeze-select-cond",
111 cl::desc("Freeze the condition when unfolding select"), cl::init(false),
112 cl::Hidden);
114 static cl::opt<bool> ThreadAcrossLoopHeaders(
115 "jump-threading-across-loop-headers",
116 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
117 cl::init(false), cl::Hidden);
120 namespace {
122 /// This pass performs 'jump threading', which looks at blocks that have
123 /// multiple predecessors and multiple successors. If one or more of the
124 /// predecessors of the block can be proven to always jump to one of the
125 /// successors, we forward the edge from the predecessor to the successor by
126 /// duplicating the contents of this block.
128 /// An example of when this can occur is code like this:
130 /// if () { ...
131 /// X = 4;
132 /// }
133 /// if (X < 3) {
135 /// In this case, the unconditional branch at the end of the first if can be
136 /// revectored to the false side of the second if.
137 class JumpThreading : public FunctionPass {
138 JumpThreadingPass Impl;
140 public:
141 static char ID; // Pass identification
143 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
144 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
145 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
148 bool runOnFunction(Function &F) override;
150 void getAnalysisUsage(AnalysisUsage &AU) const override {
151 AU.addRequired<DominatorTreeWrapperPass>();
152 AU.addPreserved<DominatorTreeWrapperPass>();
153 AU.addRequired<AAResultsWrapperPass>();
154 AU.addRequired<LazyValueInfoWrapperPass>();
155 AU.addPreserved<LazyValueInfoWrapperPass>();
156 AU.addPreserved<GlobalsAAWrapperPass>();
157 AU.addRequired<TargetLibraryInfoWrapperPass>();
158 AU.addRequired<TargetTransformInfoWrapperPass>();
161 void releaseMemory() override { Impl.releaseMemory(); }
164 } // end anonymous namespace
166 char JumpThreading::ID = 0;
168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
169 "Jump Threading", false, false)
170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
174 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
175 "Jump Threading", false, false)
177 // Public interface to the Jump Threading pass
178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
179 return new JumpThreading(InsertFr, Threshold);
182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
183 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
184 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
187 // Update branch probability information according to conditional
188 // branch probability. This is usually made possible for cloned branches
189 // in inline instances by the context specific profile in the caller.
190 // For instance,
192 // [Block PredBB]
193 // [Branch PredBr]
194 // if (t) {
195 // Block A;
196 // } else {
197 // Block B;
198 // }
200 // [Block BB]
201 // cond = PN([true, %A], [..., %B]); // PHI node
202 // [Branch CondBr]
203 // if (cond) {
204 // ... // P(cond == true) = 1%
205 // }
207 // Here we know that when block A is taken, cond must be true, which means
208 // P(cond == true | A) = 1
210 // Given that P(cond == true) = P(cond == true | A) * P(A) +
211 // P(cond == true | B) * P(B)
212 // we get:
213 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
215 // which gives us:
216 // P(A) is less than P(cond == true), i.e.
217 // P(t == true) <= P(cond == true)
219 // In other words, if we know P(cond == true) is unlikely, we know
220 // that P(t == true) is also unlikely.
222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
223 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
224 if (!CondBr)
225 return;
227 uint64_t TrueWeight, FalseWeight;
228 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
229 return;
231 if (TrueWeight + FalseWeight == 0)
232 // Zero branch_weights do not give a hint for getting branch probabilities.
233 // Technically it would result in division by zero denominator, which is
234 // TrueWeight + FalseWeight.
235 return;
237 // Returns the outgoing edge of the dominating predecessor block
238 // that leads to the PhiNode's incoming block:
239 auto GetPredOutEdge =
240 [](BasicBlock *IncomingBB,
241 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
242 auto *PredBB = IncomingBB;
243 auto *SuccBB = PhiBB;
244 SmallPtrSet<BasicBlock *, 16> Visited;
245 while (true) {
246 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
247 if (PredBr && PredBr->isConditional())
248 return {PredBB, SuccBB};
249 Visited.insert(PredBB);
250 auto *SinglePredBB = PredBB->getSinglePredecessor();
251 if (!SinglePredBB)
252 return {nullptr, nullptr};
254 // Stop searching when SinglePredBB has been visited. It means we see
255 // an unreachable loop.
256 if (Visited.count(SinglePredBB))
257 return {nullptr, nullptr};
259 SuccBB = PredBB;
260 PredBB = SinglePredBB;
264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265 Value *PhiOpnd = PN->getIncomingValue(i);
266 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
268 if (!CI || !CI->getType()->isIntegerTy(1))
269 continue;
271 BranchProbability BP =
272 (CI->isOne() ? BranchProbability::getBranchProbability(
273 TrueWeight, TrueWeight + FalseWeight)
274 : BranchProbability::getBranchProbability(
275 FalseWeight, TrueWeight + FalseWeight));
277 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
278 if (!PredOutEdge.first)
279 return;
281 BasicBlock *PredBB = PredOutEdge.first;
282 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
283 if (!PredBr)
284 return;
286 uint64_t PredTrueWeight, PredFalseWeight;
287 // FIXME: We currently only set the profile data when it is missing.
288 // With PGO, this can be used to refine even existing profile data with
289 // context information. This needs to be done after more performance
290 // testing.
291 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
292 continue;
294 // We can not infer anything useful when BP >= 50%, because BP is the
295 // upper bound probability value.
296 if (BP >= BranchProbability(50, 100))
297 continue;
299 SmallVector<uint32_t, 2> Weights;
300 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
301 Weights.push_back(BP.getNumerator());
302 Weights.push_back(BP.getCompl().getNumerator());
303 } else {
304 Weights.push_back(BP.getCompl().getNumerator());
305 Weights.push_back(BP.getNumerator());
307 PredBr->setMetadata(LLVMContext::MD_prof,
308 MDBuilder(PredBr->getParent()->getContext())
309 .createBranchWeights(Weights));
313 /// runOnFunction - Toplevel algorithm.
314 bool JumpThreading::runOnFunction(Function &F) {
315 if (skipFunction(F))
316 return false;
317 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
318 // Jump Threading has no sense for the targets with divergent CF
319 if (TTI->hasBranchDivergence())
320 return false;
321 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
322 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
323 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
324 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
325 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
326 std::unique_ptr<BlockFrequencyInfo> BFI;
327 std::unique_ptr<BranchProbabilityInfo> BPI;
328 if (F.hasProfileData()) {
329 LoopInfo LI{DominatorTree(F)};
330 BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
331 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
334 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
335 std::move(BFI), std::move(BPI));
336 if (PrintLVIAfterJumpThreading) {
337 dbgs() << "LVI for function '" << F.getName() << "':\n";
338 LVI->printLVI(F, DTU.getDomTree(), dbgs());
340 return Changed;
343 PreservedAnalyses JumpThreadingPass::run(Function &F,
344 FunctionAnalysisManager &AM) {
345 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
346 // Jump Threading has no sense for the targets with divergent CF
347 if (TTI.hasBranchDivergence())
348 return PreservedAnalyses::all();
349 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
350 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
351 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
352 auto &AA = AM.getResult<AAManager>(F);
353 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
355 std::unique_ptr<BlockFrequencyInfo> BFI;
356 std::unique_ptr<BranchProbabilityInfo> BPI;
357 if (F.hasProfileData()) {
358 LoopInfo LI{DominatorTree(F)};
359 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
360 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
363 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
364 std::move(BFI), std::move(BPI));
366 if (PrintLVIAfterJumpThreading) {
367 dbgs() << "LVI for function '" << F.getName() << "':\n";
368 LVI.printLVI(F, DTU.getDomTree(), dbgs());
371 if (!Changed)
372 return PreservedAnalyses::all();
373 PreservedAnalyses PA;
374 PA.preserve<DominatorTreeAnalysis>();
375 PA.preserve<LazyValueAnalysis>();
376 return PA;
379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
380 LazyValueInfo *LVI_, AliasAnalysis *AA_,
381 DomTreeUpdater *DTU_, bool HasProfileData_,
382 std::unique_ptr<BlockFrequencyInfo> BFI_,
383 std::unique_ptr<BranchProbabilityInfo> BPI_) {
384 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
385 TLI = TLI_;
386 LVI = LVI_;
387 AA = AA_;
388 DTU = DTU_;
389 BFI.reset();
390 BPI.reset();
391 // When profile data is available, we need to update edge weights after
392 // successful jump threading, which requires both BPI and BFI being available.
393 HasProfileData = HasProfileData_;
394 auto *GuardDecl = F.getParent()->getFunction(
395 Intrinsic::getName(Intrinsic::experimental_guard));
396 HasGuards = GuardDecl && !GuardDecl->use_empty();
397 if (HasProfileData) {
398 BPI = std::move(BPI_);
399 BFI = std::move(BFI_);
402 // Reduce the number of instructions duplicated when optimizing strictly for
403 // size.
404 if (BBDuplicateThreshold.getNumOccurrences())
405 BBDupThreshold = BBDuplicateThreshold;
406 else if (F.hasFnAttribute(Attribute::MinSize))
407 BBDupThreshold = 3;
408 else
409 BBDupThreshold = DefaultBBDupThreshold;
411 // JumpThreading must not processes blocks unreachable from entry. It's a
412 // waste of compute time and can potentially lead to hangs.
413 SmallPtrSet<BasicBlock *, 16> Unreachable;
414 assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416 DominatorTree &DT = DTU->getDomTree();
417 for (auto &BB : F)
418 if (!DT.isReachableFromEntry(&BB))
419 Unreachable.insert(&BB);
421 if (!ThreadAcrossLoopHeaders)
422 findLoopHeaders(F);
424 bool EverChanged = false;
425 bool Changed;
426 do {
427 Changed = false;
428 for (auto &BB : F) {
429 if (Unreachable.count(&BB))
430 continue;
431 while (processBlock(&BB)) // Thread all of the branches we can over BB.
432 Changed = true;
434 // Jump threading may have introduced redundant debug values into BB
435 // which should be removed.
436 if (Changed)
437 RemoveRedundantDbgInstrs(&BB);
439 // Stop processing BB if it's the entry or is now deleted. The following
440 // routines attempt to eliminate BB and locating a suitable replacement
441 // for the entry is non-trivial.
442 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443 continue;
445 if (pred_empty(&BB)) {
446 // When processBlock makes BB unreachable it doesn't bother to fix up
447 // the instructions in it. We must remove BB to prevent invalid IR.
448 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
449 << "' with terminator: " << *BB.getTerminator()
450 << '\n');
451 LoopHeaders.erase(&BB);
452 LVI->eraseBlock(&BB);
453 DeleteDeadBlock(&BB, DTU);
454 Changed = true;
455 continue;
458 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459 // is "almost empty", we attempt to merge BB with its sole successor.
460 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461 if (BI && BI->isUnconditional()) {
462 BasicBlock *Succ = BI->getSuccessor(0);
463 if (
464 // The terminator must be the only non-phi instruction in BB.
465 BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466 // Don't alter Loop headers and latches to ensure another pass can
467 // detect and transform nested loops later.
468 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470 RemoveRedundantDbgInstrs(Succ);
471 // BB is valid for cleanup here because we passed in DTU. F remains
472 // BB's parent until a DTU->getDomTree() event.
473 LVI->eraseBlock(&BB);
474 Changed = true;
478 EverChanged |= Changed;
479 } while (Changed);
481 LoopHeaders.clear();
482 return EverChanged;
485 // Replace uses of Cond with ToVal when safe to do so. If all uses are
486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487 // because we may incorrectly replace uses when guards/assumes are uses of
488 // of `Cond` and we used the guards/assume to reason about the `Cond` value
489 // at the end of block. RAUW unconditionally replaces all uses
490 // including the guards/assumes themselves and the uses before the
491 // guard/assume.
492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
493 assert(Cond->getType() == ToVal->getType());
494 auto *BB = Cond->getParent();
495 // We can unconditionally replace all uses in non-local blocks (i.e. uses
496 // strictly dominated by BB), since LVI information is true from the
497 // terminator of BB.
498 replaceNonLocalUsesWith(Cond, ToVal);
499 for (Instruction &I : reverse(*BB)) {
500 // Reached the Cond whose uses we are trying to replace, so there are no
501 // more uses.
502 if (&I == Cond)
503 break;
504 // We only replace uses in instructions that are guaranteed to reach the end
505 // of BB, where we know Cond is ToVal.
506 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
507 break;
508 I.replaceUsesOfWith(Cond, ToVal);
510 if (Cond->use_empty() && !Cond->mayHaveSideEffects())
511 Cond->eraseFromParent();
514 /// Return the cost of duplicating a piece of this block from first non-phi
515 /// and before StopAt instruction to thread across it. Stop scanning the block
516 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
517 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
518 Instruction *StopAt,
519 unsigned Threshold) {
520 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
521 /// Ignore PHI nodes, these will be flattened when duplication happens.
522 BasicBlock::const_iterator I(BB->getFirstNonPHI());
524 // FIXME: THREADING will delete values that are just used to compute the
525 // branch, so they shouldn't count against the duplication cost.
527 unsigned Bonus = 0;
528 if (BB->getTerminator() == StopAt) {
529 // Threading through a switch statement is particularly profitable. If this
530 // block ends in a switch, decrease its cost to make it more likely to
531 // happen.
532 if (isa<SwitchInst>(StopAt))
533 Bonus = 6;
535 // The same holds for indirect branches, but slightly more so.
536 if (isa<IndirectBrInst>(StopAt))
537 Bonus = 8;
540 // Bump the threshold up so the early exit from the loop doesn't skip the
541 // terminator-based Size adjustment at the end.
542 Threshold += Bonus;
544 // Sum up the cost of each instruction until we get to the terminator. Don't
545 // include the terminator because the copy won't include it.
546 unsigned Size = 0;
547 for (; &*I != StopAt; ++I) {
549 // Stop scanning the block if we've reached the threshold.
550 if (Size > Threshold)
551 return Size;
553 // Debugger intrinsics don't incur code size.
554 if (isa<DbgInfoIntrinsic>(I)) continue;
556 // Pseudo-probes don't incur code size.
557 if (isa<PseudoProbeInst>(I))
558 continue;
560 // If this is a pointer->pointer bitcast, it is free.
561 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
562 continue;
564 // Freeze instruction is free, too.
565 if (isa<FreezeInst>(I))
566 continue;
568 // Bail out if this instruction gives back a token type, it is not possible
569 // to duplicate it if it is used outside this BB.
570 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
571 return ~0U;
573 // All other instructions count for at least one unit.
574 ++Size;
576 // Calls are more expensive. If they are non-intrinsic calls, we model them
577 // as having cost of 4. If they are a non-vector intrinsic, we model them
578 // as having cost of 2 total, and if they are a vector intrinsic, we model
579 // them as having cost 1.
580 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
581 if (CI->cannotDuplicate() || CI->isConvergent())
582 // Blocks with NoDuplicate are modelled as having infinite cost, so they
583 // are never duplicated.
584 return ~0U;
585 else if (!isa<IntrinsicInst>(CI))
586 Size += 3;
587 else if (!CI->getType()->isVectorTy())
588 Size += 1;
592 return Size > Bonus ? Size - Bonus : 0;
595 /// findLoopHeaders - We do not want jump threading to turn proper loop
596 /// structures into irreducible loops. Doing this breaks up the loop nesting
597 /// hierarchy and pessimizes later transformations. To prevent this from
598 /// happening, we first have to find the loop headers. Here we approximate this
599 /// by finding targets of backedges in the CFG.
601 /// Note that there definitely are cases when we want to allow threading of
602 /// edges across a loop header. For example, threading a jump from outside the
603 /// loop (the preheader) to an exit block of the loop is definitely profitable.
604 /// It is also almost always profitable to thread backedges from within the loop
605 /// to exit blocks, and is often profitable to thread backedges to other blocks
606 /// within the loop (forming a nested loop). This simple analysis is not rich
607 /// enough to track all of these properties and keep it up-to-date as the CFG
608 /// mutates, so we don't allow any of these transformations.
609 void JumpThreadingPass::findLoopHeaders(Function &F) {
610 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
611 FindFunctionBackedges(F, Edges);
613 for (const auto &Edge : Edges)
614 LoopHeaders.insert(Edge.second);
617 /// getKnownConstant - Helper method to determine if we can thread over a
618 /// terminator with the given value as its condition, and if so what value to
619 /// use for that. What kind of value this is depends on whether we want an
620 /// integer or a block address, but an undef is always accepted.
621 /// Returns null if Val is null or not an appropriate constant.
622 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
623 if (!Val)
624 return nullptr;
626 // Undef is "known" enough.
627 if (UndefValue *U = dyn_cast<UndefValue>(Val))
628 return U;
630 if (Preference == WantBlockAddress)
631 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
633 return dyn_cast<ConstantInt>(Val);
636 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
637 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
638 /// in any of our predecessors. If so, return the known list of value and pred
639 /// BB in the result vector.
641 /// This returns true if there were any known values.
642 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
643 Value *V, BasicBlock *BB, PredValueInfo &Result,
644 ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
645 Instruction *CxtI) {
646 // This method walks up use-def chains recursively. Because of this, we could
647 // get into an infinite loop going around loops in the use-def chain. To
648 // prevent this, keep track of what (value, block) pairs we've already visited
649 // and terminate the search if we loop back to them
650 if (!RecursionSet.insert(V).second)
651 return false;
653 // If V is a constant, then it is known in all predecessors.
654 if (Constant *KC = getKnownConstant(V, Preference)) {
655 for (BasicBlock *Pred : predecessors(BB))
656 Result.emplace_back(KC, Pred);
658 return !Result.empty();
661 // If V is a non-instruction value, or an instruction in a different block,
662 // then it can't be derived from a PHI.
663 Instruction *I = dyn_cast<Instruction>(V);
664 if (!I || I->getParent() != BB) {
666 // Okay, if this is a live-in value, see if it has a known value at the end
667 // of any of our predecessors.
669 // FIXME: This should be an edge property, not a block end property.
670 /// TODO: Per PR2563, we could infer value range information about a
671 /// predecessor based on its terminator.
673 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
674 // "I" is a non-local compare-with-a-constant instruction. This would be
675 // able to handle value inequalities better, for example if the compare is
676 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
677 // Perhaps getConstantOnEdge should be smart enough to do this?
678 for (BasicBlock *P : predecessors(BB)) {
679 // If the value is known by LazyValueInfo to be a constant in a
680 // predecessor, use that information to try to thread this block.
681 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
682 if (Constant *KC = getKnownConstant(PredCst, Preference))
683 Result.emplace_back(KC, P);
686 return !Result.empty();
689 /// If I is a PHI node, then we know the incoming values for any constants.
690 if (PHINode *PN = dyn_cast<PHINode>(I)) {
691 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
692 Value *InVal = PN->getIncomingValue(i);
693 if (Constant *KC = getKnownConstant(InVal, Preference)) {
694 Result.emplace_back(KC, PN->getIncomingBlock(i));
695 } else {
696 Constant *CI = LVI->getConstantOnEdge(InVal,
697 PN->getIncomingBlock(i),
698 BB, CxtI);
699 if (Constant *KC = getKnownConstant(CI, Preference))
700 Result.emplace_back(KC, PN->getIncomingBlock(i));
704 return !Result.empty();
707 // Handle Cast instructions.
708 if (CastInst *CI = dyn_cast<CastInst>(I)) {
709 Value *Source = CI->getOperand(0);
710 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
711 RecursionSet, CxtI);
712 if (Result.empty())
713 return false;
715 // Convert the known values.
716 for (auto &R : Result)
717 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
719 return true;
722 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
723 Value *Source = FI->getOperand(0);
724 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
725 RecursionSet, CxtI);
727 erase_if(Result, [](auto &Pair) {
728 return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
731 return !Result.empty();
734 // Handle some boolean conditions.
735 if (I->getType()->getPrimitiveSizeInBits() == 1) {
736 using namespace PatternMatch;
738 assert(Preference == WantInteger && "One-bit non-integer type?");
739 // X | true -> true
740 // X & false -> false
741 Value *Op0, *Op1;
742 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
743 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
744 PredValueInfoTy LHSVals, RHSVals;
746 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
747 RecursionSet, CxtI);
748 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
749 RecursionSet, CxtI);
751 if (LHSVals.empty() && RHSVals.empty())
752 return false;
754 ConstantInt *InterestingVal;
755 if (match(I, m_LogicalOr()))
756 InterestingVal = ConstantInt::getTrue(I->getContext());
757 else
758 InterestingVal = ConstantInt::getFalse(I->getContext());
760 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
762 // Scan for the sentinel. If we find an undef, force it to the
763 // interesting value: x|undef -> true and x&undef -> false.
764 for (const auto &LHSVal : LHSVals)
765 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
766 Result.emplace_back(InterestingVal, LHSVal.second);
767 LHSKnownBBs.insert(LHSVal.second);
769 for (const auto &RHSVal : RHSVals)
770 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
771 // If we already inferred a value for this block on the LHS, don't
772 // re-add it.
773 if (!LHSKnownBBs.count(RHSVal.second))
774 Result.emplace_back(InterestingVal, RHSVal.second);
777 return !Result.empty();
780 // Handle the NOT form of XOR.
781 if (I->getOpcode() == Instruction::Xor &&
782 isa<ConstantInt>(I->getOperand(1)) &&
783 cast<ConstantInt>(I->getOperand(1))->isOne()) {
784 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
785 WantInteger, RecursionSet, CxtI);
786 if (Result.empty())
787 return false;
789 // Invert the known values.
790 for (auto &R : Result)
791 R.first = ConstantExpr::getNot(R.first);
793 return true;
796 // Try to simplify some other binary operator values.
797 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
798 assert(Preference != WantBlockAddress
799 && "A binary operator creating a block address?");
800 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
801 PredValueInfoTy LHSVals;
802 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
803 WantInteger, RecursionSet, CxtI);
805 // Try to use constant folding to simplify the binary operator.
806 for (const auto &LHSVal : LHSVals) {
807 Constant *V = LHSVal.first;
808 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
810 if (Constant *KC = getKnownConstant(Folded, WantInteger))
811 Result.emplace_back(KC, LHSVal.second);
815 return !Result.empty();
818 // Handle compare with phi operand, where the PHI is defined in this block.
819 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
820 assert(Preference == WantInteger && "Compares only produce integers");
821 Type *CmpType = Cmp->getType();
822 Value *CmpLHS = Cmp->getOperand(0);
823 Value *CmpRHS = Cmp->getOperand(1);
824 CmpInst::Predicate Pred = Cmp->getPredicate();
826 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
827 if (!PN)
828 PN = dyn_cast<PHINode>(CmpRHS);
829 if (PN && PN->getParent() == BB) {
830 const DataLayout &DL = PN->getModule()->getDataLayout();
831 // We can do this simplification if any comparisons fold to true or false.
832 // See if any do.
833 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
834 BasicBlock *PredBB = PN->getIncomingBlock(i);
835 Value *LHS, *RHS;
836 if (PN == CmpLHS) {
837 LHS = PN->getIncomingValue(i);
838 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
839 } else {
840 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
841 RHS = PN->getIncomingValue(i);
843 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
844 if (!Res) {
845 if (!isa<Constant>(RHS))
846 continue;
848 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
849 auto LHSInst = dyn_cast<Instruction>(LHS);
850 if (LHSInst && LHSInst->getParent() == BB)
851 continue;
853 LazyValueInfo::Tristate
854 ResT = LVI->getPredicateOnEdge(Pred, LHS,
855 cast<Constant>(RHS), PredBB, BB,
856 CxtI ? CxtI : Cmp);
857 if (ResT == LazyValueInfo::Unknown)
858 continue;
859 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
862 if (Constant *KC = getKnownConstant(Res, WantInteger))
863 Result.emplace_back(KC, PredBB);
866 return !Result.empty();
869 // If comparing a live-in value against a constant, see if we know the
870 // live-in value on any predecessors.
871 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
872 Constant *CmpConst = cast<Constant>(CmpRHS);
874 if (!isa<Instruction>(CmpLHS) ||
875 cast<Instruction>(CmpLHS)->getParent() != BB) {
876 for (BasicBlock *P : predecessors(BB)) {
877 // If the value is known by LazyValueInfo to be a constant in a
878 // predecessor, use that information to try to thread this block.
879 LazyValueInfo::Tristate Res =
880 LVI->getPredicateOnEdge(Pred, CmpLHS,
881 CmpConst, P, BB, CxtI ? CxtI : Cmp);
882 if (Res == LazyValueInfo::Unknown)
883 continue;
885 Constant *ResC = ConstantInt::get(CmpType, Res);
886 Result.emplace_back(ResC, P);
889 return !Result.empty();
892 // InstCombine can fold some forms of constant range checks into
893 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
894 // x as a live-in.
896 using namespace PatternMatch;
898 Value *AddLHS;
899 ConstantInt *AddConst;
900 if (isa<ConstantInt>(CmpConst) &&
901 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
902 if (!isa<Instruction>(AddLHS) ||
903 cast<Instruction>(AddLHS)->getParent() != BB) {
904 for (BasicBlock *P : predecessors(BB)) {
905 // If the value is known by LazyValueInfo to be a ConstantRange in
906 // a predecessor, use that information to try to thread this
907 // block.
908 ConstantRange CR = LVI->getConstantRangeOnEdge(
909 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
910 // Propagate the range through the addition.
911 CR = CR.add(AddConst->getValue());
913 // Get the range where the compare returns true.
914 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
915 Pred, cast<ConstantInt>(CmpConst)->getValue());
917 Constant *ResC;
918 if (CmpRange.contains(CR))
919 ResC = ConstantInt::getTrue(CmpType);
920 else if (CmpRange.inverse().contains(CR))
921 ResC = ConstantInt::getFalse(CmpType);
922 else
923 continue;
925 Result.emplace_back(ResC, P);
928 return !Result.empty();
933 // Try to find a constant value for the LHS of a comparison,
934 // and evaluate it statically if we can.
935 PredValueInfoTy LHSVals;
936 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
937 WantInteger, RecursionSet, CxtI);
939 for (const auto &LHSVal : LHSVals) {
940 Constant *V = LHSVal.first;
941 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
942 if (Constant *KC = getKnownConstant(Folded, WantInteger))
943 Result.emplace_back(KC, LHSVal.second);
946 return !Result.empty();
950 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
951 // Handle select instructions where at least one operand is a known constant
952 // and we can figure out the condition value for any predecessor block.
953 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
954 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
955 PredValueInfoTy Conds;
956 if ((TrueVal || FalseVal) &&
957 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
958 WantInteger, RecursionSet, CxtI)) {
959 for (auto &C : Conds) {
960 Constant *Cond = C.first;
962 // Figure out what value to use for the condition.
963 bool KnownCond;
964 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
965 // A known boolean.
966 KnownCond = CI->isOne();
967 } else {
968 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
969 // Either operand will do, so be sure to pick the one that's a known
970 // constant.
971 // FIXME: Do this more cleverly if both values are known constants?
972 KnownCond = (TrueVal != nullptr);
975 // See if the select has a known constant value for this predecessor.
976 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
977 Result.emplace_back(Val, C.second);
980 return !Result.empty();
984 // If all else fails, see if LVI can figure out a constant value for us.
985 assert(CxtI->getParent() == BB && "CxtI should be in BB");
986 Constant *CI = LVI->getConstant(V, CxtI);
987 if (Constant *KC = getKnownConstant(CI, Preference)) {
988 for (BasicBlock *Pred : predecessors(BB))
989 Result.emplace_back(KC, Pred);
992 return !Result.empty();
995 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
996 /// in an undefined jump, decide which block is best to revector to.
998 /// Since we can pick an arbitrary destination, we pick the successor with the
999 /// fewest predecessors. This should reduce the in-degree of the others.
1000 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
1001 Instruction *BBTerm = BB->getTerminator();
1002 unsigned MinSucc = 0;
1003 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
1004 // Compute the successor with the minimum number of predecessors.
1005 unsigned MinNumPreds = pred_size(TestBB);
1006 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1007 TestBB = BBTerm->getSuccessor(i);
1008 unsigned NumPreds = pred_size(TestBB);
1009 if (NumPreds < MinNumPreds) {
1010 MinSucc = i;
1011 MinNumPreds = NumPreds;
1015 return MinSucc;
1018 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1019 if (!BB->hasAddressTaken()) return false;
1021 // If the block has its address taken, it may be a tree of dead constants
1022 // hanging off of it. These shouldn't keep the block alive.
1023 BlockAddress *BA = BlockAddress::get(BB);
1024 BA->removeDeadConstantUsers();
1025 return !BA->use_empty();
1028 /// processBlock - If there are any predecessors whose control can be threaded
1029 /// through to a successor, transform them now.
1030 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1031 // If the block is trivially dead, just return and let the caller nuke it.
1032 // This simplifies other transformations.
1033 if (DTU->isBBPendingDeletion(BB) ||
1034 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1035 return false;
1037 // If this block has a single predecessor, and if that pred has a single
1038 // successor, merge the blocks. This encourages recursive jump threading
1039 // because now the condition in this block can be threaded through
1040 // predecessors of our predecessor block.
1041 if (maybeMergeBasicBlockIntoOnlyPred(BB))
1042 return true;
1044 if (tryToUnfoldSelectInCurrBB(BB))
1045 return true;
1047 // Look if we can propagate guards to predecessors.
1048 if (HasGuards && processGuards(BB))
1049 return true;
1051 // What kind of constant we're looking for.
1052 ConstantPreference Preference = WantInteger;
1054 // Look to see if the terminator is a conditional branch, switch or indirect
1055 // branch, if not we can't thread it.
1056 Value *Condition;
1057 Instruction *Terminator = BB->getTerminator();
1058 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1059 // Can't thread an unconditional jump.
1060 if (BI->isUnconditional()) return false;
1061 Condition = BI->getCondition();
1062 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1063 Condition = SI->getCondition();
1064 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1065 // Can't thread indirect branch with no successors.
1066 if (IB->getNumSuccessors() == 0) return false;
1067 Condition = IB->getAddress()->stripPointerCasts();
1068 Preference = WantBlockAddress;
1069 } else {
1070 return false; // Must be an invoke or callbr.
1073 // Keep track if we constant folded the condition in this invocation.
1074 bool ConstantFolded = false;
1076 // Run constant folding to see if we can reduce the condition to a simple
1077 // constant.
1078 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1079 Value *SimpleVal =
1080 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1081 if (SimpleVal) {
1082 I->replaceAllUsesWith(SimpleVal);
1083 if (isInstructionTriviallyDead(I, TLI))
1084 I->eraseFromParent();
1085 Condition = SimpleVal;
1086 ConstantFolded = true;
1090 // If the terminator is branching on an undef or freeze undef, we can pick any
1091 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1092 auto *FI = dyn_cast<FreezeInst>(Condition);
1093 if (isa<UndefValue>(Condition) ||
1094 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1095 unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1096 std::vector<DominatorTree::UpdateType> Updates;
1098 // Fold the branch/switch.
1099 Instruction *BBTerm = BB->getTerminator();
1100 Updates.reserve(BBTerm->getNumSuccessors());
1101 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1102 if (i == BestSucc) continue;
1103 BasicBlock *Succ = BBTerm->getSuccessor(i);
1104 Succ->removePredecessor(BB, true);
1105 Updates.push_back({DominatorTree::Delete, BB, Succ});
1108 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1109 << "' folding undef terminator: " << *BBTerm << '\n');
1110 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1111 ++NumFolds;
1112 BBTerm->eraseFromParent();
1113 DTU->applyUpdatesPermissive(Updates);
1114 if (FI)
1115 FI->eraseFromParent();
1116 return true;
1119 // If the terminator of this block is branching on a constant, simplify the
1120 // terminator to an unconditional branch. This can occur due to threading in
1121 // other blocks.
1122 if (getKnownConstant(Condition, Preference)) {
1123 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1124 << "' folding terminator: " << *BB->getTerminator()
1125 << '\n');
1126 ++NumFolds;
1127 ConstantFoldTerminator(BB, true, nullptr, DTU);
1128 if (HasProfileData)
1129 BPI->eraseBlock(BB);
1130 return true;
1133 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1135 // All the rest of our checks depend on the condition being an instruction.
1136 if (!CondInst) {
1137 // FIXME: Unify this with code below.
1138 if (processThreadableEdges(Condition, BB, Preference, Terminator))
1139 return true;
1140 return ConstantFolded;
1143 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1144 // If we're branching on a conditional, LVI might be able to determine
1145 // it's value at the branch instruction. We only handle comparisons
1146 // against a constant at this time.
1147 // TODO: This should be extended to handle switches as well.
1148 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1149 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1150 if (CondBr && CondConst) {
1151 // We should have returned as soon as we turn a conditional branch to
1152 // unconditional. Because its no longer interesting as far as jump
1153 // threading is concerned.
1154 assert(CondBr->isConditional() && "Threading on unconditional terminator");
1156 LazyValueInfo::Tristate Ret =
1157 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1158 CondConst, CondBr, /*UseBlockValue=*/false);
1159 if (Ret != LazyValueInfo::Unknown) {
1160 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1161 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1162 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1163 ToRemoveSucc->removePredecessor(BB, true);
1164 BranchInst *UncondBr =
1165 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1166 UncondBr->setDebugLoc(CondBr->getDebugLoc());
1167 ++NumFolds;
1168 CondBr->eraseFromParent();
1169 if (CondCmp->use_empty())
1170 CondCmp->eraseFromParent();
1171 // We can safely replace *some* uses of the CondInst if it has
1172 // exactly one value as returned by LVI. RAUW is incorrect in the
1173 // presence of guards and assumes, that have the `Cond` as the use. This
1174 // is because we use the guards/assume to reason about the `Cond` value
1175 // at the end of block, but RAUW unconditionally replaces all uses
1176 // including the guards/assumes themselves and the uses before the
1177 // guard/assume.
1178 else if (CondCmp->getParent() == BB) {
1179 auto *CI = Ret == LazyValueInfo::True ?
1180 ConstantInt::getTrue(CondCmp->getType()) :
1181 ConstantInt::getFalse(CondCmp->getType());
1182 replaceFoldableUses(CondCmp, CI);
1184 DTU->applyUpdatesPermissive(
1185 {{DominatorTree::Delete, BB, ToRemoveSucc}});
1186 if (HasProfileData)
1187 BPI->eraseBlock(BB);
1188 return true;
1191 // We did not manage to simplify this branch, try to see whether
1192 // CondCmp depends on a known phi-select pattern.
1193 if (tryToUnfoldSelect(CondCmp, BB))
1194 return true;
1198 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1199 if (tryToUnfoldSelect(SI, BB))
1200 return true;
1202 // Check for some cases that are worth simplifying. Right now we want to look
1203 // for loads that are used by a switch or by the condition for the branch. If
1204 // we see one, check to see if it's partially redundant. If so, insert a PHI
1205 // which can then be used to thread the values.
1206 Value *SimplifyValue = CondInst;
1208 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1209 // Look into freeze's operand
1210 SimplifyValue = FI->getOperand(0);
1212 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1213 if (isa<Constant>(CondCmp->getOperand(1)))
1214 SimplifyValue = CondCmp->getOperand(0);
1216 // TODO: There are other places where load PRE would be profitable, such as
1217 // more complex comparisons.
1218 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1219 if (simplifyPartiallyRedundantLoad(LoadI))
1220 return true;
1222 // Before threading, try to propagate profile data backwards:
1223 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1224 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1225 updatePredecessorProfileMetadata(PN, BB);
1227 // Handle a variety of cases where we are branching on something derived from
1228 // a PHI node in the current block. If we can prove that any predecessors
1229 // compute a predictable value based on a PHI node, thread those predecessors.
1230 if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1231 return true;
1233 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1234 // the current block, see if we can simplify.
1235 PHINode *PN = dyn_cast<PHINode>(
1236 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1237 : CondInst);
1239 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1240 return processBranchOnPHI(PN);
1242 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1243 if (CondInst->getOpcode() == Instruction::Xor &&
1244 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1245 return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1247 // Search for a stronger dominating condition that can be used to simplify a
1248 // conditional branch leaving BB.
1249 if (processImpliedCondition(BB))
1250 return true;
1252 return false;
1255 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1256 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1257 if (!BI || !BI->isConditional())
1258 return false;
1260 Value *Cond = BI->getCondition();
1261 BasicBlock *CurrentBB = BB;
1262 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1263 unsigned Iter = 0;
1265 auto &DL = BB->getModule()->getDataLayout();
1267 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1268 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1269 if (!PBI || !PBI->isConditional())
1270 return false;
1271 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1272 return false;
1274 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1275 Optional<bool> Implication =
1276 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1277 if (Implication) {
1278 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1279 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1280 RemoveSucc->removePredecessor(BB);
1281 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1282 UncondBI->setDebugLoc(BI->getDebugLoc());
1283 ++NumFolds;
1284 BI->eraseFromParent();
1285 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1286 if (HasProfileData)
1287 BPI->eraseBlock(BB);
1288 return true;
1290 CurrentBB = CurrentPred;
1291 CurrentPred = CurrentBB->getSinglePredecessor();
1294 return false;
1297 /// Return true if Op is an instruction defined in the given block.
1298 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1299 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1300 if (OpInst->getParent() == BB)
1301 return true;
1302 return false;
1305 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1306 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1307 /// This is an important optimization that encourages jump threading, and needs
1308 /// to be run interlaced with other jump threading tasks.
1309 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1310 // Don't hack volatile and ordered loads.
1311 if (!LoadI->isUnordered()) return false;
1313 // If the load is defined in a block with exactly one predecessor, it can't be
1314 // partially redundant.
1315 BasicBlock *LoadBB = LoadI->getParent();
1316 if (LoadBB->getSinglePredecessor())
1317 return false;
1319 // If the load is defined in an EH pad, it can't be partially redundant,
1320 // because the edges between the invoke and the EH pad cannot have other
1321 // instructions between them.
1322 if (LoadBB->isEHPad())
1323 return false;
1325 Value *LoadedPtr = LoadI->getOperand(0);
1327 // If the loaded operand is defined in the LoadBB and its not a phi,
1328 // it can't be available in predecessors.
1329 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1330 return false;
1332 // Scan a few instructions up from the load, to see if it is obviously live at
1333 // the entry to its block.
1334 BasicBlock::iterator BBIt(LoadI);
1335 bool IsLoadCSE;
1336 if (Value *AvailableVal = FindAvailableLoadedValue(
1337 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1338 // If the value of the load is locally available within the block, just use
1339 // it. This frequently occurs for reg2mem'd allocas.
1341 if (IsLoadCSE) {
1342 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1343 combineMetadataForCSE(NLoadI, LoadI, false);
1346 // If the returned value is the load itself, replace with an undef. This can
1347 // only happen in dead loops.
1348 if (AvailableVal == LoadI)
1349 AvailableVal = UndefValue::get(LoadI->getType());
1350 if (AvailableVal->getType() != LoadI->getType())
1351 AvailableVal = CastInst::CreateBitOrPointerCast(
1352 AvailableVal, LoadI->getType(), "", LoadI);
1353 LoadI->replaceAllUsesWith(AvailableVal);
1354 LoadI->eraseFromParent();
1355 return true;
1358 // Otherwise, if we scanned the whole block and got to the top of the block,
1359 // we know the block is locally transparent to the load. If not, something
1360 // might clobber its value.
1361 if (BBIt != LoadBB->begin())
1362 return false;
1364 // If all of the loads and stores that feed the value have the same AA tags,
1365 // then we can propagate them onto any newly inserted loads.
1366 AAMDNodes AATags;
1367 LoadI->getAAMetadata(AATags);
1369 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1371 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1373 AvailablePredsTy AvailablePreds;
1374 BasicBlock *OneUnavailablePred = nullptr;
1375 SmallVector<LoadInst*, 8> CSELoads;
1377 // If we got here, the loaded value is transparent through to the start of the
1378 // block. Check to see if it is available in any of the predecessor blocks.
1379 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1380 // If we already scanned this predecessor, skip it.
1381 if (!PredsScanned.insert(PredBB).second)
1382 continue;
1384 BBIt = PredBB->end();
1385 unsigned NumScanedInst = 0;
1386 Value *PredAvailable = nullptr;
1387 // NOTE: We don't CSE load that is volatile or anything stronger than
1388 // unordered, that should have been checked when we entered the function.
1389 assert(LoadI->isUnordered() &&
1390 "Attempting to CSE volatile or atomic loads");
1391 // If this is a load on a phi pointer, phi-translate it and search
1392 // for available load/store to the pointer in predecessors.
1393 Type *AccessTy = LoadI->getType();
1394 const auto &DL = LoadI->getModule()->getDataLayout();
1395 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1396 LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1397 AATags);
1398 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1399 PredBB, BBIt, DefMaxInstsToScan,
1400 AA, &IsLoadCSE, &NumScanedInst);
1402 // If PredBB has a single predecessor, continue scanning through the
1403 // single predecessor.
1404 BasicBlock *SinglePredBB = PredBB;
1405 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1406 NumScanedInst < DefMaxInstsToScan) {
1407 SinglePredBB = SinglePredBB->getSinglePredecessor();
1408 if (SinglePredBB) {
1409 BBIt = SinglePredBB->end();
1410 PredAvailable = findAvailablePtrLoadStore(
1411 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1412 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1413 &NumScanedInst);
1417 if (!PredAvailable) {
1418 OneUnavailablePred = PredBB;
1419 continue;
1422 if (IsLoadCSE)
1423 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1425 // If so, this load is partially redundant. Remember this info so that we
1426 // can create a PHI node.
1427 AvailablePreds.emplace_back(PredBB, PredAvailable);
1430 // If the loaded value isn't available in any predecessor, it isn't partially
1431 // redundant.
1432 if (AvailablePreds.empty()) return false;
1434 // Okay, the loaded value is available in at least one (and maybe all!)
1435 // predecessors. If the value is unavailable in more than one unique
1436 // predecessor, we want to insert a merge block for those common predecessors.
1437 // This ensures that we only have to insert one reload, thus not increasing
1438 // code size.
1439 BasicBlock *UnavailablePred = nullptr;
1441 // If the value is unavailable in one of predecessors, we will end up
1442 // inserting a new instruction into them. It is only valid if all the
1443 // instructions before LoadI are guaranteed to pass execution to its
1444 // successor, or if LoadI is safe to speculate.
1445 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1446 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1447 // It requires domination tree analysis, so for this simple case it is an
1448 // overkill.
1449 if (PredsScanned.size() != AvailablePreds.size() &&
1450 !isSafeToSpeculativelyExecute(LoadI))
1451 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1452 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1453 return false;
1455 // If there is exactly one predecessor where the value is unavailable, the
1456 // already computed 'OneUnavailablePred' block is it. If it ends in an
1457 // unconditional branch, we know that it isn't a critical edge.
1458 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1459 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1460 UnavailablePred = OneUnavailablePred;
1461 } else if (PredsScanned.size() != AvailablePreds.size()) {
1462 // Otherwise, we had multiple unavailable predecessors or we had a critical
1463 // edge from the one.
1464 SmallVector<BasicBlock*, 8> PredsToSplit;
1465 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1467 for (const auto &AvailablePred : AvailablePreds)
1468 AvailablePredSet.insert(AvailablePred.first);
1470 // Add all the unavailable predecessors to the PredsToSplit list.
1471 for (BasicBlock *P : predecessors(LoadBB)) {
1472 // If the predecessor is an indirect goto, we can't split the edge.
1473 // Same for CallBr.
1474 if (isa<IndirectBrInst>(P->getTerminator()) ||
1475 isa<CallBrInst>(P->getTerminator()))
1476 return false;
1478 if (!AvailablePredSet.count(P))
1479 PredsToSplit.push_back(P);
1482 // Split them out to their own block.
1483 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1486 // If the value isn't available in all predecessors, then there will be
1487 // exactly one where it isn't available. Insert a load on that edge and add
1488 // it to the AvailablePreds list.
1489 if (UnavailablePred) {
1490 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1491 "Can't handle critical edge here!");
1492 LoadInst *NewVal = new LoadInst(
1493 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1494 LoadI->getName() + ".pr", false, LoadI->getAlign(),
1495 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1496 UnavailablePred->getTerminator());
1497 NewVal->setDebugLoc(LoadI->getDebugLoc());
1498 if (AATags)
1499 NewVal->setAAMetadata(AATags);
1501 AvailablePreds.emplace_back(UnavailablePred, NewVal);
1504 // Now we know that each predecessor of this block has a value in
1505 // AvailablePreds, sort them for efficient access as we're walking the preds.
1506 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1508 // Create a PHI node at the start of the block for the PRE'd load value.
1509 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1510 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1511 &LoadBB->front());
1512 PN->takeName(LoadI);
1513 PN->setDebugLoc(LoadI->getDebugLoc());
1515 // Insert new entries into the PHI for each predecessor. A single block may
1516 // have multiple entries here.
1517 for (pred_iterator PI = PB; PI != PE; ++PI) {
1518 BasicBlock *P = *PI;
1519 AvailablePredsTy::iterator I =
1520 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1522 assert(I != AvailablePreds.end() && I->first == P &&
1523 "Didn't find entry for predecessor!");
1525 // If we have an available predecessor but it requires casting, insert the
1526 // cast in the predecessor and use the cast. Note that we have to update the
1527 // AvailablePreds vector as we go so that all of the PHI entries for this
1528 // predecessor use the same bitcast.
1529 Value *&PredV = I->second;
1530 if (PredV->getType() != LoadI->getType())
1531 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1532 P->getTerminator());
1534 PN->addIncoming(PredV, I->first);
1537 for (LoadInst *PredLoadI : CSELoads) {
1538 combineMetadataForCSE(PredLoadI, LoadI, true);
1541 LoadI->replaceAllUsesWith(PN);
1542 LoadI->eraseFromParent();
1544 return true;
1547 /// findMostPopularDest - The specified list contains multiple possible
1548 /// threadable destinations. Pick the one that occurs the most frequently in
1549 /// the list.
1550 static BasicBlock *
1551 findMostPopularDest(BasicBlock *BB,
1552 const SmallVectorImpl<std::pair<BasicBlock *,
1553 BasicBlock *>> &PredToDestList) {
1554 assert(!PredToDestList.empty());
1556 // Determine popularity. If there are multiple possible destinations, we
1557 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1558 // blocks with known and real destinations to threading undef. We'll handle
1559 // them later if interesting.
1560 MapVector<BasicBlock *, unsigned> DestPopularity;
1562 // Populate DestPopularity with the successors in the order they appear in the
1563 // successor list. This way, we ensure determinism by iterating it in the
1564 // same order in std::max_element below. We map nullptr to 0 so that we can
1565 // return nullptr when PredToDestList contains nullptr only.
1566 DestPopularity[nullptr] = 0;
1567 for (auto *SuccBB : successors(BB))
1568 DestPopularity[SuccBB] = 0;
1570 for (const auto &PredToDest : PredToDestList)
1571 if (PredToDest.second)
1572 DestPopularity[PredToDest.second]++;
1574 // Find the most popular dest.
1575 using VT = decltype(DestPopularity)::value_type;
1576 auto MostPopular = std::max_element(
1577 DestPopularity.begin(), DestPopularity.end(),
1578 [](const VT &L, const VT &R) { return L.second < R.second; });
1580 // Okay, we have finally picked the most popular destination.
1581 return MostPopular->first;
1584 // Try to evaluate the value of V when the control flows from PredPredBB to
1585 // BB->getSinglePredecessor() and then on to BB.
1586 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1587 BasicBlock *PredPredBB,
1588 Value *V) {
1589 BasicBlock *PredBB = BB->getSinglePredecessor();
1590 assert(PredBB && "Expected a single predecessor");
1592 if (Constant *Cst = dyn_cast<Constant>(V)) {
1593 return Cst;
1596 // Consult LVI if V is not an instruction in BB or PredBB.
1597 Instruction *I = dyn_cast<Instruction>(V);
1598 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1599 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1602 // Look into a PHI argument.
1603 if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1604 if (PHI->getParent() == PredBB)
1605 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1606 return nullptr;
1609 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1610 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1611 if (CondCmp->getParent() == BB) {
1612 Constant *Op0 =
1613 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1614 Constant *Op1 =
1615 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1616 if (Op0 && Op1) {
1617 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1620 return nullptr;
1623 return nullptr;
1626 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1627 ConstantPreference Preference,
1628 Instruction *CxtI) {
1629 // If threading this would thread across a loop header, don't even try to
1630 // thread the edge.
1631 if (LoopHeaders.count(BB))
1632 return false;
1634 PredValueInfoTy PredValues;
1635 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1636 CxtI)) {
1637 // We don't have known values in predecessors. See if we can thread through
1638 // BB and its sole predecessor.
1639 return maybethreadThroughTwoBasicBlocks(BB, Cond);
1642 assert(!PredValues.empty() &&
1643 "computeValueKnownInPredecessors returned true with no values");
1645 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1646 for (const auto &PredValue : PredValues) {
1647 dbgs() << " BB '" << BB->getName()
1648 << "': FOUND condition = " << *PredValue.first
1649 << " for pred '" << PredValue.second->getName() << "'.\n";
1652 // Decide what we want to thread through. Convert our list of known values to
1653 // a list of known destinations for each pred. This also discards duplicate
1654 // predecessors and keeps track of the undefined inputs (which are represented
1655 // as a null dest in the PredToDestList).
1656 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1657 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1659 BasicBlock *OnlyDest = nullptr;
1660 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1661 Constant *OnlyVal = nullptr;
1662 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1664 for (const auto &PredValue : PredValues) {
1665 BasicBlock *Pred = PredValue.second;
1666 if (!SeenPreds.insert(Pred).second)
1667 continue; // Duplicate predecessor entry.
1669 Constant *Val = PredValue.first;
1671 BasicBlock *DestBB;
1672 if (isa<UndefValue>(Val))
1673 DestBB = nullptr;
1674 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1675 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1676 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1677 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1678 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1679 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1680 } else {
1681 assert(isa<IndirectBrInst>(BB->getTerminator())
1682 && "Unexpected terminator");
1683 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1684 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1687 // If we have exactly one destination, remember it for efficiency below.
1688 if (PredToDestList.empty()) {
1689 OnlyDest = DestBB;
1690 OnlyVal = Val;
1691 } else {
1692 if (OnlyDest != DestBB)
1693 OnlyDest = MultipleDestSentinel;
1694 // It possible we have same destination, but different value, e.g. default
1695 // case in switchinst.
1696 if (Val != OnlyVal)
1697 OnlyVal = MultipleVal;
1700 // If the predecessor ends with an indirect goto, we can't change its
1701 // destination. Same for CallBr.
1702 if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1703 isa<CallBrInst>(Pred->getTerminator()))
1704 continue;
1706 PredToDestList.emplace_back(Pred, DestBB);
1709 // If all edges were unthreadable, we fail.
1710 if (PredToDestList.empty())
1711 return false;
1713 // If all the predecessors go to a single known successor, we want to fold,
1714 // not thread. By doing so, we do not need to duplicate the current block and
1715 // also miss potential opportunities in case we dont/cant duplicate.
1716 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1717 if (BB->hasNPredecessors(PredToDestList.size())) {
1718 bool SeenFirstBranchToOnlyDest = false;
1719 std::vector <DominatorTree::UpdateType> Updates;
1720 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1721 for (BasicBlock *SuccBB : successors(BB)) {
1722 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1723 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1724 } else {
1725 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1726 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1730 // Finally update the terminator.
1731 Instruction *Term = BB->getTerminator();
1732 BranchInst::Create(OnlyDest, Term);
1733 ++NumFolds;
1734 Term->eraseFromParent();
1735 DTU->applyUpdatesPermissive(Updates);
1736 if (HasProfileData)
1737 BPI->eraseBlock(BB);
1739 // If the condition is now dead due to the removal of the old terminator,
1740 // erase it.
1741 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1742 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1743 CondInst->eraseFromParent();
1744 // We can safely replace *some* uses of the CondInst if it has
1745 // exactly one value as returned by LVI. RAUW is incorrect in the
1746 // presence of guards and assumes, that have the `Cond` as the use. This
1747 // is because we use the guards/assume to reason about the `Cond` value
1748 // at the end of block, but RAUW unconditionally replaces all uses
1749 // including the guards/assumes themselves and the uses before the
1750 // guard/assume.
1751 else if (OnlyVal && OnlyVal != MultipleVal &&
1752 CondInst->getParent() == BB)
1753 replaceFoldableUses(CondInst, OnlyVal);
1755 return true;
1759 // Determine which is the most common successor. If we have many inputs and
1760 // this block is a switch, we want to start by threading the batch that goes
1761 // to the most popular destination first. If we only know about one
1762 // threadable destination (the common case) we can avoid this.
1763 BasicBlock *MostPopularDest = OnlyDest;
1765 if (MostPopularDest == MultipleDestSentinel) {
1766 // Remove any loop headers from the Dest list, threadEdge conservatively
1767 // won't process them, but we might have other destination that are eligible
1768 // and we still want to process.
1769 erase_if(PredToDestList,
1770 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1771 return LoopHeaders.contains(PredToDest.second);
1774 if (PredToDestList.empty())
1775 return false;
1777 MostPopularDest = findMostPopularDest(BB, PredToDestList);
1780 // Now that we know what the most popular destination is, factor all
1781 // predecessors that will jump to it into a single predecessor.
1782 SmallVector<BasicBlock*, 16> PredsToFactor;
1783 for (const auto &PredToDest : PredToDestList)
1784 if (PredToDest.second == MostPopularDest) {
1785 BasicBlock *Pred = PredToDest.first;
1787 // This predecessor may be a switch or something else that has multiple
1788 // edges to the block. Factor each of these edges by listing them
1789 // according to # occurrences in PredsToFactor.
1790 for (BasicBlock *Succ : successors(Pred))
1791 if (Succ == BB)
1792 PredsToFactor.push_back(Pred);
1795 // If the threadable edges are branching on an undefined value, we get to pick
1796 // the destination that these predecessors should get to.
1797 if (!MostPopularDest)
1798 MostPopularDest = BB->getTerminator()->
1799 getSuccessor(getBestDestForJumpOnUndef(BB));
1801 // Ok, try to thread it!
1802 return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1805 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1806 /// a PHI node (or freeze PHI) in the current block. See if there are any
1807 /// simplifications we can do based on inputs to the phi node.
1808 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1809 BasicBlock *BB = PN->getParent();
1811 // TODO: We could make use of this to do it once for blocks with common PHI
1812 // values.
1813 SmallVector<BasicBlock*, 1> PredBBs;
1814 PredBBs.resize(1);
1816 // If any of the predecessor blocks end in an unconditional branch, we can
1817 // *duplicate* the conditional branch into that block in order to further
1818 // encourage jump threading and to eliminate cases where we have branch on a
1819 // phi of an icmp (branch on icmp is much better).
1820 // This is still beneficial when a frozen phi is used as the branch condition
1821 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1822 // to br(icmp(freeze ...)).
1823 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1824 BasicBlock *PredBB = PN->getIncomingBlock(i);
1825 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1826 if (PredBr->isUnconditional()) {
1827 PredBBs[0] = PredBB;
1828 // Try to duplicate BB into PredBB.
1829 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1830 return true;
1834 return false;
1837 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1838 /// a xor instruction in the current block. See if there are any
1839 /// simplifications we can do based on inputs to the xor.
1840 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1841 BasicBlock *BB = BO->getParent();
1843 // If either the LHS or RHS of the xor is a constant, don't do this
1844 // optimization.
1845 if (isa<ConstantInt>(BO->getOperand(0)) ||
1846 isa<ConstantInt>(BO->getOperand(1)))
1847 return false;
1849 // If the first instruction in BB isn't a phi, we won't be able to infer
1850 // anything special about any particular predecessor.
1851 if (!isa<PHINode>(BB->front()))
1852 return false;
1854 // If this BB is a landing pad, we won't be able to split the edge into it.
1855 if (BB->isEHPad())
1856 return false;
1858 // If we have a xor as the branch input to this block, and we know that the
1859 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1860 // the condition into the predecessor and fix that value to true, saving some
1861 // logical ops on that path and encouraging other paths to simplify.
1863 // This copies something like this:
1865 // BB:
1866 // %X = phi i1 [1], [%X']
1867 // %Y = icmp eq i32 %A, %B
1868 // %Z = xor i1 %X, %Y
1869 // br i1 %Z, ...
1871 // Into:
1872 // BB':
1873 // %Y = icmp ne i32 %A, %B
1874 // br i1 %Y, ...
1876 PredValueInfoTy XorOpValues;
1877 bool isLHS = true;
1878 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1879 WantInteger, BO)) {
1880 assert(XorOpValues.empty());
1881 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1882 WantInteger, BO))
1883 return false;
1884 isLHS = false;
1887 assert(!XorOpValues.empty() &&
1888 "computeValueKnownInPredecessors returned true with no values");
1890 // Scan the information to see which is most popular: true or false. The
1891 // predecessors can be of the set true, false, or undef.
1892 unsigned NumTrue = 0, NumFalse = 0;
1893 for (const auto &XorOpValue : XorOpValues) {
1894 if (isa<UndefValue>(XorOpValue.first))
1895 // Ignore undefs for the count.
1896 continue;
1897 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1898 ++NumFalse;
1899 else
1900 ++NumTrue;
1903 // Determine which value to split on, true, false, or undef if neither.
1904 ConstantInt *SplitVal = nullptr;
1905 if (NumTrue > NumFalse)
1906 SplitVal = ConstantInt::getTrue(BB->getContext());
1907 else if (NumTrue != 0 || NumFalse != 0)
1908 SplitVal = ConstantInt::getFalse(BB->getContext());
1910 // Collect all of the blocks that this can be folded into so that we can
1911 // factor this once and clone it once.
1912 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1913 for (const auto &XorOpValue : XorOpValues) {
1914 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1915 continue;
1917 BlocksToFoldInto.push_back(XorOpValue.second);
1920 // If we inferred a value for all of the predecessors, then duplication won't
1921 // help us. However, we can just replace the LHS or RHS with the constant.
1922 if (BlocksToFoldInto.size() ==
1923 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1924 if (!SplitVal) {
1925 // If all preds provide undef, just nuke the xor, because it is undef too.
1926 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1927 BO->eraseFromParent();
1928 } else if (SplitVal->isZero()) {
1929 // If all preds provide 0, replace the xor with the other input.
1930 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1931 BO->eraseFromParent();
1932 } else {
1933 // If all preds provide 1, set the computed value to 1.
1934 BO->setOperand(!isLHS, SplitVal);
1937 return true;
1940 // If any of predecessors end with an indirect goto, we can't change its
1941 // destination. Same for CallBr.
1942 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1943 return isa<IndirectBrInst>(Pred->getTerminator()) ||
1944 isa<CallBrInst>(Pred->getTerminator());
1946 return false;
1948 // Try to duplicate BB into PredBB.
1949 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1952 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1953 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1954 /// NewPred using the entries from OldPred (suitably mapped).
1955 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1956 BasicBlock *OldPred,
1957 BasicBlock *NewPred,
1958 DenseMap<Instruction*, Value*> &ValueMap) {
1959 for (PHINode &PN : PHIBB->phis()) {
1960 // Ok, we have a PHI node. Figure out what the incoming value was for the
1961 // DestBlock.
1962 Value *IV = PN.getIncomingValueForBlock(OldPred);
1964 // Remap the value if necessary.
1965 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1966 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1967 if (I != ValueMap.end())
1968 IV = I->second;
1971 PN.addIncoming(IV, NewPred);
1975 /// Merge basic block BB into its sole predecessor if possible.
1976 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1977 BasicBlock *SinglePred = BB->getSinglePredecessor();
1978 if (!SinglePred)
1979 return false;
1981 const Instruction *TI = SinglePred->getTerminator();
1982 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1983 SinglePred == BB || hasAddressTakenAndUsed(BB))
1984 return false;
1986 // If SinglePred was a loop header, BB becomes one.
1987 if (LoopHeaders.erase(SinglePred))
1988 LoopHeaders.insert(BB);
1990 LVI->eraseBlock(SinglePred);
1991 MergeBasicBlockIntoOnlyPred(BB, DTU);
1993 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1994 // BB code within one basic block `BB`), we need to invalidate the LVI
1995 // information associated with BB, because the LVI information need not be
1996 // true for all of BB after the merge. For example,
1997 // Before the merge, LVI info and code is as follows:
1998 // SinglePred: <LVI info1 for %p val>
1999 // %y = use of %p
2000 // call @exit() // need not transfer execution to successor.
2001 // assume(%p) // from this point on %p is true
2002 // br label %BB
2003 // BB: <LVI info2 for %p val, i.e. %p is true>
2004 // %x = use of %p
2005 // br label exit
2007 // Note that this LVI info for blocks BB and SinglPred is correct for %p
2008 // (info2 and info1 respectively). After the merge and the deletion of the
2009 // LVI info1 for SinglePred. We have the following code:
2010 // BB: <LVI info2 for %p val>
2011 // %y = use of %p
2012 // call @exit()
2013 // assume(%p)
2014 // %x = use of %p <-- LVI info2 is correct from here onwards.
2015 // br label exit
2016 // LVI info2 for BB is incorrect at the beginning of BB.
2018 // Invalidate LVI information for BB if the LVI is not provably true for
2019 // all of BB.
2020 if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2021 LVI->eraseBlock(BB);
2022 return true;
2025 /// Update the SSA form. NewBB contains instructions that are copied from BB.
2026 /// ValueMapping maps old values in BB to new ones in NewBB.
2027 void JumpThreadingPass::updateSSA(
2028 BasicBlock *BB, BasicBlock *NewBB,
2029 DenseMap<Instruction *, Value *> &ValueMapping) {
2030 // If there were values defined in BB that are used outside the block, then we
2031 // now have to update all uses of the value to use either the original value,
2032 // the cloned value, or some PHI derived value. This can require arbitrary
2033 // PHI insertion, of which we are prepared to do, clean these up now.
2034 SSAUpdater SSAUpdate;
2035 SmallVector<Use *, 16> UsesToRename;
2037 for (Instruction &I : *BB) {
2038 // Scan all uses of this instruction to see if it is used outside of its
2039 // block, and if so, record them in UsesToRename.
2040 for (Use &U : I.uses()) {
2041 Instruction *User = cast<Instruction>(U.getUser());
2042 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2043 if (UserPN->getIncomingBlock(U) == BB)
2044 continue;
2045 } else if (User->getParent() == BB)
2046 continue;
2048 UsesToRename.push_back(&U);
2051 // If there are no uses outside the block, we're done with this instruction.
2052 if (UsesToRename.empty())
2053 continue;
2054 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2056 // We found a use of I outside of BB. Rename all uses of I that are outside
2057 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2058 // with the two values we know.
2059 SSAUpdate.Initialize(I.getType(), I.getName());
2060 SSAUpdate.AddAvailableValue(BB, &I);
2061 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2063 while (!UsesToRename.empty())
2064 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2065 LLVM_DEBUG(dbgs() << "\n");
2069 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
2070 /// arguments that come from PredBB. Return the map from the variables in the
2071 /// source basic block to the variables in the newly created basic block.
2072 DenseMap<Instruction *, Value *>
2073 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2074 BasicBlock::iterator BE, BasicBlock *NewBB,
2075 BasicBlock *PredBB) {
2076 // We are going to have to map operands from the source basic block to the new
2077 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2078 // block, evaluate them to account for entry from PredBB.
2079 DenseMap<Instruction *, Value *> ValueMapping;
2081 // Clone the phi nodes of the source basic block into NewBB. The resulting
2082 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2083 // might need to rewrite the operand of the cloned phi.
2084 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2085 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2086 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2087 ValueMapping[PN] = NewPN;
2090 // Clone noalias scope declarations in the threaded block. When threading a
2091 // loop exit, we would otherwise end up with two idential scope declarations
2092 // visible at the same time.
2093 SmallVector<MDNode *> NoAliasScopes;
2094 DenseMap<MDNode *, MDNode *> ClonedScopes;
2095 LLVMContext &Context = PredBB->getContext();
2096 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2097 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2099 // Clone the non-phi instructions of the source basic block into NewBB,
2100 // keeping track of the mapping and using it to remap operands in the cloned
2101 // instructions.
2102 for (; BI != BE; ++BI) {
2103 Instruction *New = BI->clone();
2104 New->setName(BI->getName());
2105 NewBB->getInstList().push_back(New);
2106 ValueMapping[&*BI] = New;
2107 adaptNoAliasScopes(New, ClonedScopes, Context);
2109 // Remap operands to patch up intra-block references.
2110 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2111 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2112 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2113 if (I != ValueMapping.end())
2114 New->setOperand(i, I->second);
2118 return ValueMapping;
2121 /// Attempt to thread through two successive basic blocks.
2122 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2123 Value *Cond) {
2124 // Consider:
2126 // PredBB:
2127 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2128 // %tobool = icmp eq i32 %cond, 0
2129 // br i1 %tobool, label %BB, label ...
2131 // BB:
2132 // %cmp = icmp eq i32* %var, null
2133 // br i1 %cmp, label ..., label ...
2135 // We don't know the value of %var at BB even if we know which incoming edge
2136 // we take to BB. However, once we duplicate PredBB for each of its incoming
2137 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2138 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2140 // Require that BB end with a Branch for simplicity.
2141 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2142 if (!CondBr)
2143 return false;
2145 // BB must have exactly one predecessor.
2146 BasicBlock *PredBB = BB->getSinglePredecessor();
2147 if (!PredBB)
2148 return false;
2150 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2151 // unconditional branch, we should be merging PredBB and BB instead. For
2152 // simplicity, we don't deal with a switch.
2153 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2154 if (!PredBBBranch || PredBBBranch->isUnconditional())
2155 return false;
2157 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2158 // PredBB.
2159 if (PredBB->getSinglePredecessor())
2160 return false;
2162 // Don't thread through PredBB if it contains a successor edge to itself, in
2163 // which case we would infinite loop. Suppose we are threading an edge from
2164 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2165 // successor edge to itself. If we allowed jump threading in this case, we
2166 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2167 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2168 // with another jump threading opportunity from PredBB.thread through PredBB
2169 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2170 // would keep peeling one iteration from PredBB.
2171 if (llvm::is_contained(successors(PredBB), PredBB))
2172 return false;
2174 // Don't thread across a loop header.
2175 if (LoopHeaders.count(PredBB))
2176 return false;
2178 // Avoid complication with duplicating EH pads.
2179 if (PredBB->isEHPad())
2180 return false;
2182 // Find a predecessor that we can thread. For simplicity, we only consider a
2183 // successor edge out of BB to which we thread exactly one incoming edge into
2184 // PredBB.
2185 unsigned ZeroCount = 0;
2186 unsigned OneCount = 0;
2187 BasicBlock *ZeroPred = nullptr;
2188 BasicBlock *OnePred = nullptr;
2189 for (BasicBlock *P : predecessors(PredBB)) {
2190 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2191 evaluateOnPredecessorEdge(BB, P, Cond))) {
2192 if (CI->isZero()) {
2193 ZeroCount++;
2194 ZeroPred = P;
2195 } else if (CI->isOne()) {
2196 OneCount++;
2197 OnePred = P;
2202 // Disregard complicated cases where we have to thread multiple edges.
2203 BasicBlock *PredPredBB;
2204 if (ZeroCount == 1) {
2205 PredPredBB = ZeroPred;
2206 } else if (OneCount == 1) {
2207 PredPredBB = OnePred;
2208 } else {
2209 return false;
2212 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2214 // If threading to the same block as we come from, we would infinite loop.
2215 if (SuccBB == BB) {
2216 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2217 << "' - would thread to self!\n");
2218 return false;
2221 // If threading this would thread across a loop header, don't thread the edge.
2222 // See the comments above findLoopHeaders for justifications and caveats.
2223 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2224 LLVM_DEBUG({
2225 bool BBIsHeader = LoopHeaders.count(BB);
2226 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2227 dbgs() << " Not threading across "
2228 << (BBIsHeader ? "loop header BB '" : "block BB '")
2229 << BB->getName() << "' to dest "
2230 << (SuccIsHeader ? "loop header BB '" : "block BB '")
2231 << SuccBB->getName()
2232 << "' - it might create an irreducible loop!\n";
2234 return false;
2237 // Compute the cost of duplicating BB and PredBB.
2238 unsigned BBCost =
2239 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2240 unsigned PredBBCost = getJumpThreadDuplicationCost(
2241 PredBB, PredBB->getTerminator(), BBDupThreshold);
2243 // Give up if costs are too high. We need to check BBCost and PredBBCost
2244 // individually before checking their sum because getJumpThreadDuplicationCost
2245 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2246 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2247 BBCost + PredBBCost > BBDupThreshold) {
2248 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2249 << "' - Cost is too high: " << PredBBCost
2250 << " for PredBB, " << BBCost << "for BB\n");
2251 return false;
2254 // Now we are ready to duplicate PredBB.
2255 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2256 return true;
2259 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2260 BasicBlock *PredBB,
2261 BasicBlock *BB,
2262 BasicBlock *SuccBB) {
2263 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"
2264 << BB->getName() << "'\n");
2266 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2267 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2269 BasicBlock *NewBB =
2270 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2271 PredBB->getParent(), PredBB);
2272 NewBB->moveAfter(PredBB);
2274 // Set the block frequency of NewBB.
2275 if (HasProfileData) {
2276 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2277 BPI->getEdgeProbability(PredPredBB, PredBB);
2278 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2281 // We are going to have to map operands from the original BB block to the new
2282 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2283 // to account for entry from PredPredBB.
2284 DenseMap<Instruction *, Value *> ValueMapping =
2285 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2287 // Copy the edge probabilities from PredBB to NewBB.
2288 if (HasProfileData)
2289 BPI->copyEdgeProbabilities(PredBB, NewBB);
2291 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2292 // This eliminates predecessors from PredPredBB, which requires us to simplify
2293 // any PHI nodes in PredBB.
2294 Instruction *PredPredTerm = PredPredBB->getTerminator();
2295 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2296 if (PredPredTerm->getSuccessor(i) == PredBB) {
2297 PredBB->removePredecessor(PredPredBB, true);
2298 PredPredTerm->setSuccessor(i, NewBB);
2301 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2302 ValueMapping);
2303 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2304 ValueMapping);
2306 DTU->applyUpdatesPermissive(
2307 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2308 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2309 {DominatorTree::Insert, PredPredBB, NewBB},
2310 {DominatorTree::Delete, PredPredBB, PredBB}});
2312 updateSSA(PredBB, NewBB, ValueMapping);
2314 // Clean up things like PHI nodes with single operands, dead instructions,
2315 // etc.
2316 SimplifyInstructionsInBlock(NewBB, TLI);
2317 SimplifyInstructionsInBlock(PredBB, TLI);
2319 SmallVector<BasicBlock *, 1> PredsToFactor;
2320 PredsToFactor.push_back(NewBB);
2321 threadEdge(BB, PredsToFactor, SuccBB);
2324 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2325 bool JumpThreadingPass::tryThreadEdge(
2326 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2327 BasicBlock *SuccBB) {
2328 // If threading to the same block as we come from, we would infinite loop.
2329 if (SuccBB == BB) {
2330 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2331 << "' - would thread to self!\n");
2332 return false;
2335 // If threading this would thread across a loop header, don't thread the edge.
2336 // See the comments above findLoopHeaders for justifications and caveats.
2337 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2338 LLVM_DEBUG({
2339 bool BBIsHeader = LoopHeaders.count(BB);
2340 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2341 dbgs() << " Not threading across "
2342 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2343 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2344 << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2346 return false;
2349 unsigned JumpThreadCost =
2350 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2351 if (JumpThreadCost > BBDupThreshold) {
2352 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2353 << "' - Cost is too high: " << JumpThreadCost << "\n");
2354 return false;
2357 threadEdge(BB, PredBBs, SuccBB);
2358 return true;
2361 /// threadEdge - We have decided that it is safe and profitable to factor the
2362 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2363 /// across BB. Transform the IR to reflect this change.
2364 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2365 const SmallVectorImpl<BasicBlock *> &PredBBs,
2366 BasicBlock *SuccBB) {
2367 assert(SuccBB != BB && "Don't create an infinite loop");
2369 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2370 "Don't thread across loop headers");
2372 // And finally, do it! Start by factoring the predecessors if needed.
2373 BasicBlock *PredBB;
2374 if (PredBBs.size() == 1)
2375 PredBB = PredBBs[0];
2376 else {
2377 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2378 << " common predecessors.\n");
2379 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2382 // And finally, do it!
2383 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
2384 << "' to '" << SuccBB->getName()
2385 << ", across block:\n " << *BB << "\n");
2387 LVI->threadEdge(PredBB, BB, SuccBB);
2389 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2390 BB->getName()+".thread",
2391 BB->getParent(), BB);
2392 NewBB->moveAfter(PredBB);
2394 // Set the block frequency of NewBB.
2395 if (HasProfileData) {
2396 auto NewBBFreq =
2397 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2398 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2401 // Copy all the instructions from BB to NewBB except the terminator.
2402 DenseMap<Instruction *, Value *> ValueMapping =
2403 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2405 // We didn't copy the terminator from BB over to NewBB, because there is now
2406 // an unconditional jump to SuccBB. Insert the unconditional jump.
2407 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2408 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2410 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2411 // PHI nodes for NewBB now.
2412 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2414 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2415 // eliminates predecessors from BB, which requires us to simplify any PHI
2416 // nodes in BB.
2417 Instruction *PredTerm = PredBB->getTerminator();
2418 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2419 if (PredTerm->getSuccessor(i) == BB) {
2420 BB->removePredecessor(PredBB, true);
2421 PredTerm->setSuccessor(i, NewBB);
2424 // Enqueue required DT updates.
2425 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2426 {DominatorTree::Insert, PredBB, NewBB},
2427 {DominatorTree::Delete, PredBB, BB}});
2429 updateSSA(BB, NewBB, ValueMapping);
2431 // At this point, the IR is fully up to date and consistent. Do a quick scan
2432 // over the new instructions and zap any that are constants or dead. This
2433 // frequently happens because of phi translation.
2434 SimplifyInstructionsInBlock(NewBB, TLI);
2436 // Update the edge weight from BB to SuccBB, which should be less than before.
2437 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2439 // Threaded an edge!
2440 ++NumThreads;
2443 /// Create a new basic block that will be the predecessor of BB and successor of
2444 /// all blocks in Preds. When profile data is available, update the frequency of
2445 /// this new block.
2446 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2447 ArrayRef<BasicBlock *> Preds,
2448 const char *Suffix) {
2449 SmallVector<BasicBlock *, 2> NewBBs;
2451 // Collect the frequencies of all predecessors of BB, which will be used to
2452 // update the edge weight of the result of splitting predecessors.
2453 DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2454 if (HasProfileData)
2455 for (auto Pred : Preds)
2456 FreqMap.insert(std::make_pair(
2457 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2459 // In the case when BB is a LandingPad block we create 2 new predecessors
2460 // instead of just one.
2461 if (BB->isLandingPad()) {
2462 std::string NewName = std::string(Suffix) + ".split-lp";
2463 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2464 } else {
2465 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2468 std::vector<DominatorTree::UpdateType> Updates;
2469 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2470 for (auto NewBB : NewBBs) {
2471 BlockFrequency NewBBFreq(0);
2472 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2473 for (auto Pred : predecessors(NewBB)) {
2474 Updates.push_back({DominatorTree::Delete, Pred, BB});
2475 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2476 if (HasProfileData) // Update frequencies between Pred -> NewBB.
2477 NewBBFreq += FreqMap.lookup(Pred);
2479 if (HasProfileData) // Apply the summed frequency to NewBB.
2480 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2483 DTU->applyUpdatesPermissive(Updates);
2484 return NewBBs[0];
2487 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2488 const Instruction *TI = BB->getTerminator();
2489 assert(TI->getNumSuccessors() > 1 && "not a split");
2491 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2492 if (!WeightsNode)
2493 return false;
2495 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2496 if (MDName->getString() != "branch_weights")
2497 return false;
2499 // Ensure there are weights for all of the successors. Note that the first
2500 // operand to the metadata node is a name, not a weight.
2501 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2504 /// Update the block frequency of BB and branch weight and the metadata on the
2505 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2506 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2507 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2508 BasicBlock *BB,
2509 BasicBlock *NewBB,
2510 BasicBlock *SuccBB) {
2511 if (!HasProfileData)
2512 return;
2514 assert(BFI && BPI && "BFI & BPI should have been created here");
2516 // As the edge from PredBB to BB is deleted, we have to update the block
2517 // frequency of BB.
2518 auto BBOrigFreq = BFI->getBlockFreq(BB);
2519 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2520 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2521 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2522 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2524 // Collect updated outgoing edges' frequencies from BB and use them to update
2525 // edge probabilities.
2526 SmallVector<uint64_t, 4> BBSuccFreq;
2527 for (BasicBlock *Succ : successors(BB)) {
2528 auto SuccFreq = (Succ == SuccBB)
2529 ? BB2SuccBBFreq - NewBBFreq
2530 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2531 BBSuccFreq.push_back(SuccFreq.getFrequency());
2534 uint64_t MaxBBSuccFreq =
2535 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2537 SmallVector<BranchProbability, 4> BBSuccProbs;
2538 if (MaxBBSuccFreq == 0)
2539 BBSuccProbs.assign(BBSuccFreq.size(),
2540 {1, static_cast<unsigned>(BBSuccFreq.size())});
2541 else {
2542 for (uint64_t Freq : BBSuccFreq)
2543 BBSuccProbs.push_back(
2544 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2545 // Normalize edge probabilities so that they sum up to one.
2546 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2547 BBSuccProbs.end());
2550 // Update edge probabilities in BPI.
2551 BPI->setEdgeProbability(BB, BBSuccProbs);
2553 // Update the profile metadata as well.
2555 // Don't do this if the profile of the transformed blocks was statically
2556 // estimated. (This could occur despite the function having an entry
2557 // frequency in completely cold parts of the CFG.)
2559 // In this case we don't want to suggest to subsequent passes that the
2560 // calculated weights are fully consistent. Consider this graph:
2562 // check_1
2563 // 50% / |
2564 // eq_1 | 50%
2565 // \ |
2566 // check_2
2567 // 50% / |
2568 // eq_2 | 50%
2569 // \ |
2570 // check_3
2571 // 50% / |
2572 // eq_3 | 50%
2573 // \ |
2575 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2576 // the overall probabilities are inconsistent; the total probability that the
2577 // value is either 1, 2 or 3 is 150%.
2579 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2580 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2581 // the loop exit edge. Then based solely on static estimation we would assume
2582 // the loop was extremely hot.
2584 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2585 // shouldn't make edges extremely likely or unlikely based solely on static
2586 // estimation.
2587 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2588 SmallVector<uint32_t, 4> Weights;
2589 for (auto Prob : BBSuccProbs)
2590 Weights.push_back(Prob.getNumerator());
2592 auto TI = BB->getTerminator();
2593 TI->setMetadata(
2594 LLVMContext::MD_prof,
2595 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2599 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2600 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2601 /// If we can duplicate the contents of BB up into PredBB do so now, this
2602 /// improves the odds that the branch will be on an analyzable instruction like
2603 /// a compare.
2604 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2605 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2606 assert(!PredBBs.empty() && "Can't handle an empty set");
2608 // If BB is a loop header, then duplicating this block outside the loop would
2609 // cause us to transform this into an irreducible loop, don't do this.
2610 // See the comments above findLoopHeaders for justifications and caveats.
2611 if (LoopHeaders.count(BB)) {
2612 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2613 << "' into predecessor block '" << PredBBs[0]->getName()
2614 << "' - it might create an irreducible loop!\n");
2615 return false;
2618 unsigned DuplicationCost =
2619 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2620 if (DuplicationCost > BBDupThreshold) {
2621 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2622 << "' - Cost is too high: " << DuplicationCost << "\n");
2623 return false;
2626 // And finally, do it! Start by factoring the predecessors if needed.
2627 std::vector<DominatorTree::UpdateType> Updates;
2628 BasicBlock *PredBB;
2629 if (PredBBs.size() == 1)
2630 PredBB = PredBBs[0];
2631 else {
2632 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2633 << " common predecessors.\n");
2634 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2636 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2638 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2639 // of PredBB.
2640 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2641 << "' into end of '" << PredBB->getName()
2642 << "' to eliminate branch on phi. Cost: "
2643 << DuplicationCost << " block is:" << *BB << "\n");
2645 // Unless PredBB ends with an unconditional branch, split the edge so that we
2646 // can just clone the bits from BB into the end of the new PredBB.
2647 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2649 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2650 BasicBlock *OldPredBB = PredBB;
2651 PredBB = SplitEdge(OldPredBB, BB);
2652 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2653 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2654 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2655 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2658 // We are going to have to map operands from the original BB block into the
2659 // PredBB block. Evaluate PHI nodes in BB.
2660 DenseMap<Instruction*, Value*> ValueMapping;
2662 BasicBlock::iterator BI = BB->begin();
2663 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2664 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2665 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2666 // mapping and using it to remap operands in the cloned instructions.
2667 for (; BI != BB->end(); ++BI) {
2668 Instruction *New = BI->clone();
2670 // Remap operands to patch up intra-block references.
2671 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2672 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2673 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2674 if (I != ValueMapping.end())
2675 New->setOperand(i, I->second);
2678 // If this instruction can be simplified after the operands are updated,
2679 // just use the simplified value instead. This frequently happens due to
2680 // phi translation.
2681 if (Value *IV = SimplifyInstruction(
2682 New,
2683 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2684 ValueMapping[&*BI] = IV;
2685 if (!New->mayHaveSideEffects()) {
2686 New->deleteValue();
2687 New = nullptr;
2689 } else {
2690 ValueMapping[&*BI] = New;
2692 if (New) {
2693 // Otherwise, insert the new instruction into the block.
2694 New->setName(BI->getName());
2695 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2696 // Update Dominance from simplified New instruction operands.
2697 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2698 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2699 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2703 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2704 // add entries to the PHI nodes for branch from PredBB now.
2705 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2706 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2707 ValueMapping);
2708 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2709 ValueMapping);
2711 updateSSA(BB, PredBB, ValueMapping);
2713 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2714 // that we nuked.
2715 BB->removePredecessor(PredBB, true);
2717 // Remove the unconditional branch at the end of the PredBB block.
2718 OldPredBranch->eraseFromParent();
2719 if (HasProfileData)
2720 BPI->copyEdgeProbabilities(BB, PredBB);
2721 DTU->applyUpdatesPermissive(Updates);
2723 ++NumDupes;
2724 return true;
2727 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2728 // a Select instruction in Pred. BB has other predecessors and SI is used in
2729 // a PHI node in BB. SI has no other use.
2730 // A new basic block, NewBB, is created and SI is converted to compare and
2731 // conditional branch. SI is erased from parent.
2732 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2733 SelectInst *SI, PHINode *SIUse,
2734 unsigned Idx) {
2735 // Expand the select.
2737 // Pred --
2738 // | v
2739 // | NewBB
2740 // | |
2741 // |-----
2742 // v
2743 // BB
2744 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2745 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2746 BB->getParent(), BB);
2747 // Move the unconditional branch to NewBB.
2748 PredTerm->removeFromParent();
2749 NewBB->getInstList().insert(NewBB->end(), PredTerm);
2750 // Create a conditional branch and update PHI nodes.
2751 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2752 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2753 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2754 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2756 // The select is now dead.
2757 SI->eraseFromParent();
2758 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2759 {DominatorTree::Insert, Pred, NewBB}});
2761 // Update any other PHI nodes in BB.
2762 for (BasicBlock::iterator BI = BB->begin();
2763 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2764 if (Phi != SIUse)
2765 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2768 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2769 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2771 if (!CondPHI || CondPHI->getParent() != BB)
2772 return false;
2774 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2775 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2776 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2778 // The second and third condition can be potentially relaxed. Currently
2779 // the conditions help to simplify the code and allow us to reuse existing
2780 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2781 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2782 continue;
2784 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2785 if (!PredTerm || !PredTerm->isUnconditional())
2786 continue;
2788 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2789 return true;
2791 return false;
2794 /// tryToUnfoldSelect - Look for blocks of the form
2795 /// bb1:
2796 /// %a = select
2797 /// br bb2
2799 /// bb2:
2800 /// %p = phi [%a, %bb1] ...
2801 /// %c = icmp %p
2802 /// br i1 %c
2804 /// And expand the select into a branch structure if one of its arms allows %c
2805 /// to be folded. This later enables threading from bb1 over bb2.
2806 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2807 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2808 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2809 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2811 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2812 CondLHS->getParent() != BB)
2813 return false;
2815 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2816 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2817 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2819 // Look if one of the incoming values is a select in the corresponding
2820 // predecessor.
2821 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2822 continue;
2824 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2825 if (!PredTerm || !PredTerm->isUnconditional())
2826 continue;
2828 // Now check if one of the select values would allow us to constant fold the
2829 // terminator in BB. We don't do the transform if both sides fold, those
2830 // cases will be threaded in any case.
2831 LazyValueInfo::Tristate LHSFolds =
2832 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2833 CondRHS, Pred, BB, CondCmp);
2834 LazyValueInfo::Tristate RHSFolds =
2835 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2836 CondRHS, Pred, BB, CondCmp);
2837 if ((LHSFolds != LazyValueInfo::Unknown ||
2838 RHSFolds != LazyValueInfo::Unknown) &&
2839 LHSFolds != RHSFolds) {
2840 unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2841 return true;
2844 return false;
2847 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2848 /// same BB in the form
2849 /// bb:
2850 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2851 /// %s = select %p, trueval, falseval
2853 /// or
2855 /// bb:
2856 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2857 /// %c = cmp %p, 0
2858 /// %s = select %c, trueval, falseval
2860 /// And expand the select into a branch structure. This later enables
2861 /// jump-threading over bb in this pass.
2863 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2864 /// select if the associated PHI has at least one constant. If the unfolded
2865 /// select is not jump-threaded, it will be folded again in the later
2866 /// optimizations.
2867 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2868 // This transform would reduce the quality of msan diagnostics.
2869 // Disable this transform under MemorySanitizer.
2870 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2871 return false;
2873 // If threading this would thread across a loop header, don't thread the edge.
2874 // See the comments above findLoopHeaders for justifications and caveats.
2875 if (LoopHeaders.count(BB))
2876 return false;
2878 for (BasicBlock::iterator BI = BB->begin();
2879 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2880 // Look for a Phi having at least one constant incoming value.
2881 if (llvm::all_of(PN->incoming_values(),
2882 [](Value *V) { return !isa<ConstantInt>(V); }))
2883 continue;
2885 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2886 using namespace PatternMatch;
2888 // Check if SI is in BB and use V as condition.
2889 if (SI->getParent() != BB)
2890 return false;
2891 Value *Cond = SI->getCondition();
2892 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2893 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2896 SelectInst *SI = nullptr;
2897 for (Use &U : PN->uses()) {
2898 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2899 // Look for a ICmp in BB that compares PN with a constant and is the
2900 // condition of a Select.
2901 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2902 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2903 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2904 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2905 SI = SelectI;
2906 break;
2908 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2909 // Look for a Select in BB that uses PN as condition.
2910 if (isUnfoldCandidate(SelectI, U.get())) {
2911 SI = SelectI;
2912 break;
2917 if (!SI)
2918 continue;
2919 // Expand the select.
2920 Value *Cond = SI->getCondition();
2921 if (InsertFreezeWhenUnfoldingSelect &&
2922 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2923 &DTU->getDomTree()))
2924 Cond = new FreezeInst(Cond, "cond.fr", SI);
2925 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2926 BasicBlock *SplitBB = SI->getParent();
2927 BasicBlock *NewBB = Term->getParent();
2928 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2929 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2930 NewPN->addIncoming(SI->getFalseValue(), BB);
2931 SI->replaceAllUsesWith(NewPN);
2932 SI->eraseFromParent();
2933 // NewBB and SplitBB are newly created blocks which require insertion.
2934 std::vector<DominatorTree::UpdateType> Updates;
2935 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2936 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2937 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2938 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2939 // BB's successors were moved to SplitBB, update DTU accordingly.
2940 for (auto *Succ : successors(SplitBB)) {
2941 Updates.push_back({DominatorTree::Delete, BB, Succ});
2942 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2944 DTU->applyUpdatesPermissive(Updates);
2945 return true;
2947 return false;
2950 /// Try to propagate a guard from the current BB into one of its predecessors
2951 /// in case if another branch of execution implies that the condition of this
2952 /// guard is always true. Currently we only process the simplest case that
2953 /// looks like:
2955 /// Start:
2956 /// %cond = ...
2957 /// br i1 %cond, label %T1, label %F1
2958 /// T1:
2959 /// br label %Merge
2960 /// F1:
2961 /// br label %Merge
2962 /// Merge:
2963 /// %condGuard = ...
2964 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2966 /// And cond either implies condGuard or !condGuard. In this case all the
2967 /// instructions before the guard can be duplicated in both branches, and the
2968 /// guard is then threaded to one of them.
2969 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2970 using namespace PatternMatch;
2972 // We only want to deal with two predecessors.
2973 BasicBlock *Pred1, *Pred2;
2974 auto PI = pred_begin(BB), PE = pred_end(BB);
2975 if (PI == PE)
2976 return false;
2977 Pred1 = *PI++;
2978 if (PI == PE)
2979 return false;
2980 Pred2 = *PI++;
2981 if (PI != PE)
2982 return false;
2983 if (Pred1 == Pred2)
2984 return false;
2986 // Try to thread one of the guards of the block.
2987 // TODO: Look up deeper than to immediate predecessor?
2988 auto *Parent = Pred1->getSinglePredecessor();
2989 if (!Parent || Parent != Pred2->getSinglePredecessor())
2990 return false;
2992 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2993 for (auto &I : *BB)
2994 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2995 return true;
2997 return false;
3000 /// Try to propagate the guard from BB which is the lower block of a diamond
3001 /// to one of its branches, in case if diamond's condition implies guard's
3002 /// condition.
3003 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3004 BranchInst *BI) {
3005 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3006 assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3007 Value *GuardCond = Guard->getArgOperand(0);
3008 Value *BranchCond = BI->getCondition();
3009 BasicBlock *TrueDest = BI->getSuccessor(0);
3010 BasicBlock *FalseDest = BI->getSuccessor(1);
3012 auto &DL = BB->getModule()->getDataLayout();
3013 bool TrueDestIsSafe = false;
3014 bool FalseDestIsSafe = false;
3016 // True dest is safe if BranchCond => GuardCond.
3017 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3018 if (Impl && *Impl)
3019 TrueDestIsSafe = true;
3020 else {
3021 // False dest is safe if !BranchCond => GuardCond.
3022 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3023 if (Impl && *Impl)
3024 FalseDestIsSafe = true;
3027 if (!TrueDestIsSafe && !FalseDestIsSafe)
3028 return false;
3030 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3031 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3033 ValueToValueMapTy UnguardedMapping, GuardedMapping;
3034 Instruction *AfterGuard = Guard->getNextNode();
3035 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
3036 if (Cost > BBDupThreshold)
3037 return false;
3038 // Duplicate all instructions before the guard and the guard itself to the
3039 // branch where implication is not proved.
3040 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3041 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3042 assert(GuardedBlock && "Could not create the guarded block?");
3043 // Duplicate all instructions before the guard in the unguarded branch.
3044 // Since we have successfully duplicated the guarded block and this block
3045 // has fewer instructions, we expect it to succeed.
3046 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3047 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3048 assert(UnguardedBlock && "Could not create the unguarded block?");
3049 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3050 << GuardedBlock->getName() << "\n");
3051 // Some instructions before the guard may still have uses. For them, we need
3052 // to create Phi nodes merging their copies in both guarded and unguarded
3053 // branches. Those instructions that have no uses can be just removed.
3054 SmallVector<Instruction *, 4> ToRemove;
3055 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3056 if (!isa<PHINode>(&*BI))
3057 ToRemove.push_back(&*BI);
3059 Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3060 assert(InsertionPoint && "Empty block?");
3061 // Substitute with Phis & remove.
3062 for (auto *Inst : reverse(ToRemove)) {
3063 if (!Inst->use_empty()) {
3064 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3065 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3066 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3067 NewPN->insertBefore(InsertionPoint);
3068 Inst->replaceAllUsesWith(NewPN);
3070 Inst->eraseFromParent();
3072 return true;