[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopStrengthReduce.cpp
bloba126c54d4248e4f1f8e70fc1fe2ca1106ba30f8e
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 // ...
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
35 // TODO: More sophistication in the way Formulae are generated and filtered.
37 // TODO: Handle multiple loops at a time.
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 // of a GlobalValue?
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
51 // use kind.
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/Config/llvm-config.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/DebugInfoMetadata.h"
86 #include "llvm/IR/DerivedTypes.h"
87 #include "llvm/IR/Dominators.h"
88 #include "llvm/IR/GlobalValue.h"
89 #include "llvm/IR/IRBuilder.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/Intrinsics.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/OperandTraits.h"
97 #include "llvm/IR/Operator.h"
98 #include "llvm/IR/PassManager.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/IR/Use.h"
101 #include "llvm/IR/User.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Scalar.h"
114 #include "llvm/Transforms/Utils.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstddef>
121 #include <cstdint>
122 #include <cstdlib>
123 #include <iterator>
124 #include <limits>
125 #include <map>
126 #include <numeric>
127 #include <utility>
129 using namespace llvm;
131 #define DEBUG_TYPE "loop-reduce"
133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
134 /// bail out. This threshold is far beyond the number of users that LSR can
135 /// conceivably solve, so it should not affect generated code, but catches the
136 /// worst cases before LSR burns too much compile time and stack space.
137 static const unsigned MaxIVUsers = 200;
139 // Temporary flag to cleanup congruent phis after LSR phi expansion.
140 // It's currently disabled until we can determine whether it's truly useful or
141 // not. The flag should be removed after the v3.0 release.
142 // This is now needed for ivchains.
143 static cl::opt<bool> EnablePhiElim(
144 "enable-lsr-phielim", cl::Hidden, cl::init(true),
145 cl::desc("Enable LSR phi elimination"));
147 // The flag adds instruction count to solutions cost comparision.
148 static cl::opt<bool> InsnsCost(
149 "lsr-insns-cost", cl::Hidden, cl::init(true),
150 cl::desc("Add instruction count to a LSR cost model"));
152 // Flag to choose how to narrow complex lsr solution
153 static cl::opt<bool> LSRExpNarrow(
154 "lsr-exp-narrow", cl::Hidden, cl::init(false),
155 cl::desc("Narrow LSR complex solution using"
156 " expectation of registers number"));
158 // Flag to narrow search space by filtering non-optimal formulae with
159 // the same ScaledReg and Scale.
160 static cl::opt<bool> FilterSameScaledReg(
161 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
162 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
163 " with the same ScaledReg and Scale"));
165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
166 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
167 cl::desc("A flag that overrides the target's preferred addressing mode."),
168 cl::values(clEnumValN(TTI::AMK_None,
169 "none",
170 "Don't prefer any addressing mode"),
171 clEnumValN(TTI::AMK_PreIndexed,
172 "preindexed",
173 "Prefer pre-indexed addressing mode"),
174 clEnumValN(TTI::AMK_PostIndexed,
175 "postindexed",
176 "Prefer post-indexed addressing mode")));
178 static cl::opt<unsigned> ComplexityLimit(
179 "lsr-complexity-limit", cl::Hidden,
180 cl::init(std::numeric_limits<uint16_t>::max()),
181 cl::desc("LSR search space complexity limit"));
183 static cl::opt<unsigned> SetupCostDepthLimit(
184 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
185 cl::desc("The limit on recursion depth for LSRs setup cost"));
187 #ifndef NDEBUG
188 // Stress test IV chain generation.
189 static cl::opt<bool> StressIVChain(
190 "stress-ivchain", cl::Hidden, cl::init(false),
191 cl::desc("Stress test LSR IV chains"));
192 #else
193 static bool StressIVChain = false;
194 #endif
196 namespace {
198 struct MemAccessTy {
199 /// Used in situations where the accessed memory type is unknown.
200 static const unsigned UnknownAddressSpace =
201 std::numeric_limits<unsigned>::max();
203 Type *MemTy = nullptr;
204 unsigned AddrSpace = UnknownAddressSpace;
206 MemAccessTy() = default;
207 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
209 bool operator==(MemAccessTy Other) const {
210 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
213 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
215 static MemAccessTy getUnknown(LLVMContext &Ctx,
216 unsigned AS = UnknownAddressSpace) {
217 return MemAccessTy(Type::getVoidTy(Ctx), AS);
220 Type *getType() { return MemTy; }
223 /// This class holds data which is used to order reuse candidates.
224 class RegSortData {
225 public:
226 /// This represents the set of LSRUse indices which reference
227 /// a particular register.
228 SmallBitVector UsedByIndices;
230 void print(raw_ostream &OS) const;
231 void dump() const;
234 } // end anonymous namespace
236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
237 void RegSortData::print(raw_ostream &OS) const {
238 OS << "[NumUses=" << UsedByIndices.count() << ']';
241 LLVM_DUMP_METHOD void RegSortData::dump() const {
242 print(errs()); errs() << '\n';
244 #endif
246 namespace {
248 /// Map register candidates to information about how they are used.
249 class RegUseTracker {
250 using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
252 RegUsesTy RegUsesMap;
253 SmallVector<const SCEV *, 16> RegSequence;
255 public:
256 void countRegister(const SCEV *Reg, size_t LUIdx);
257 void dropRegister(const SCEV *Reg, size_t LUIdx);
258 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
260 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
262 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
264 void clear();
266 using iterator = SmallVectorImpl<const SCEV *>::iterator;
267 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
269 iterator begin() { return RegSequence.begin(); }
270 iterator end() { return RegSequence.end(); }
271 const_iterator begin() const { return RegSequence.begin(); }
272 const_iterator end() const { return RegSequence.end(); }
275 } // end anonymous namespace
277 void
278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
279 std::pair<RegUsesTy::iterator, bool> Pair =
280 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
281 RegSortData &RSD = Pair.first->second;
282 if (Pair.second)
283 RegSequence.push_back(Reg);
284 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
285 RSD.UsedByIndices.set(LUIdx);
288 void
289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
290 RegUsesTy::iterator It = RegUsesMap.find(Reg);
291 assert(It != RegUsesMap.end());
292 RegSortData &RSD = It->second;
293 assert(RSD.UsedByIndices.size() > LUIdx);
294 RSD.UsedByIndices.reset(LUIdx);
297 void
298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
299 assert(LUIdx <= LastLUIdx);
301 // Update RegUses. The data structure is not optimized for this purpose;
302 // we must iterate through it and update each of the bit vectors.
303 for (auto &Pair : RegUsesMap) {
304 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
305 if (LUIdx < UsedByIndices.size())
306 UsedByIndices[LUIdx] =
307 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
308 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
312 bool
313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
314 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
315 if (I == RegUsesMap.end())
316 return false;
317 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
318 int i = UsedByIndices.find_first();
319 if (i == -1) return false;
320 if ((size_t)i != LUIdx) return true;
321 return UsedByIndices.find_next(i) != -1;
324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
325 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
326 assert(I != RegUsesMap.end() && "Unknown register!");
327 return I->second.UsedByIndices;
330 void RegUseTracker::clear() {
331 RegUsesMap.clear();
332 RegSequence.clear();
335 namespace {
337 /// This class holds information that describes a formula for computing
338 /// satisfying a use. It may include broken-out immediates and scaled registers.
339 struct Formula {
340 /// Global base address used for complex addressing.
341 GlobalValue *BaseGV = nullptr;
343 /// Base offset for complex addressing.
344 int64_t BaseOffset = 0;
346 /// Whether any complex addressing has a base register.
347 bool HasBaseReg = false;
349 /// The scale of any complex addressing.
350 int64_t Scale = 0;
352 /// The list of "base" registers for this use. When this is non-empty. The
353 /// canonical representation of a formula is
354 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
355 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
356 /// 3. The reg containing recurrent expr related with currect loop in the
357 /// formula should be put in the ScaledReg.
358 /// #1 enforces that the scaled register is always used when at least two
359 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
360 /// #2 enforces that 1 * reg is reg.
361 /// #3 ensures invariant regs with respect to current loop can be combined
362 /// together in LSR codegen.
363 /// This invariant can be temporarily broken while building a formula.
364 /// However, every formula inserted into the LSRInstance must be in canonical
365 /// form.
366 SmallVector<const SCEV *, 4> BaseRegs;
368 /// The 'scaled' register for this use. This should be non-null when Scale is
369 /// not zero.
370 const SCEV *ScaledReg = nullptr;
372 /// An additional constant offset which added near the use. This requires a
373 /// temporary register, but the offset itself can live in an add immediate
374 /// field rather than a register.
375 int64_t UnfoldedOffset = 0;
377 Formula() = default;
379 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
381 bool isCanonical(const Loop &L) const;
383 void canonicalize(const Loop &L);
385 bool unscale();
387 bool hasZeroEnd() const;
389 size_t getNumRegs() const;
390 Type *getType() const;
392 void deleteBaseReg(const SCEV *&S);
394 bool referencesReg(const SCEV *S) const;
395 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
396 const RegUseTracker &RegUses) const;
398 void print(raw_ostream &OS) const;
399 void dump() const;
402 } // end anonymous namespace
404 /// Recursion helper for initialMatch.
405 static void DoInitialMatch(const SCEV *S, Loop *L,
406 SmallVectorImpl<const SCEV *> &Good,
407 SmallVectorImpl<const SCEV *> &Bad,
408 ScalarEvolution &SE) {
409 // Collect expressions which properly dominate the loop header.
410 if (SE.properlyDominates(S, L->getHeader())) {
411 Good.push_back(S);
412 return;
415 // Look at add operands.
416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
417 for (const SCEV *S : Add->operands())
418 DoInitialMatch(S, L, Good, Bad, SE);
419 return;
422 // Look at addrec operands.
423 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
424 if (!AR->getStart()->isZero() && AR->isAffine()) {
425 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
426 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
427 AR->getStepRecurrence(SE),
428 // FIXME: AR->getNoWrapFlags()
429 AR->getLoop(), SCEV::FlagAnyWrap),
430 L, Good, Bad, SE);
431 return;
434 // Handle a multiplication by -1 (negation) if it didn't fold.
435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
436 if (Mul->getOperand(0)->isAllOnesValue()) {
437 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
438 const SCEV *NewMul = SE.getMulExpr(Ops);
440 SmallVector<const SCEV *, 4> MyGood;
441 SmallVector<const SCEV *, 4> MyBad;
442 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
443 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
444 SE.getEffectiveSCEVType(NewMul->getType())));
445 for (const SCEV *S : MyGood)
446 Good.push_back(SE.getMulExpr(NegOne, S));
447 for (const SCEV *S : MyBad)
448 Bad.push_back(SE.getMulExpr(NegOne, S));
449 return;
452 // Ok, we can't do anything interesting. Just stuff the whole thing into a
453 // register and hope for the best.
454 Bad.push_back(S);
457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
458 /// all loop-invariant and loop-computable values in a single base register.
459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
460 SmallVector<const SCEV *, 4> Good;
461 SmallVector<const SCEV *, 4> Bad;
462 DoInitialMatch(S, L, Good, Bad, SE);
463 if (!Good.empty()) {
464 const SCEV *Sum = SE.getAddExpr(Good);
465 if (!Sum->isZero())
466 BaseRegs.push_back(Sum);
467 HasBaseReg = true;
469 if (!Bad.empty()) {
470 const SCEV *Sum = SE.getAddExpr(Bad);
471 if (!Sum->isZero())
472 BaseRegs.push_back(Sum);
473 HasBaseReg = true;
475 canonicalize(*L);
478 /// Check whether or not this formula satisfies the canonical
479 /// representation.
480 /// \see Formula::BaseRegs.
481 bool Formula::isCanonical(const Loop &L) const {
482 if (!ScaledReg)
483 return BaseRegs.size() <= 1;
485 if (Scale != 1)
486 return true;
488 if (Scale == 1 && BaseRegs.empty())
489 return false;
491 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
492 if (SAR && SAR->getLoop() == &L)
493 return true;
495 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
496 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
497 // loop, we want to swap the reg in BaseRegs with ScaledReg.
498 auto I = find_if(BaseRegs, [&](const SCEV *S) {
499 return isa<const SCEVAddRecExpr>(S) &&
500 (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
502 return I == BaseRegs.end();
505 /// Helper method to morph a formula into its canonical representation.
506 /// \see Formula::BaseRegs.
507 /// Every formula having more than one base register, must use the ScaledReg
508 /// field. Otherwise, we would have to do special cases everywhere in LSR
509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
510 /// On the other hand, 1*reg should be canonicalized into reg.
511 void Formula::canonicalize(const Loop &L) {
512 if (isCanonical(L))
513 return;
515 if (BaseRegs.empty()) {
516 // No base reg? Use scale reg with scale = 1 as such.
517 assert(ScaledReg && "Expected 1*reg => reg");
518 assert(Scale == 1 && "Expected 1*reg => reg");
519 BaseRegs.push_back(ScaledReg);
520 Scale = 0;
521 ScaledReg = nullptr;
522 return;
525 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
526 if (!ScaledReg) {
527 ScaledReg = BaseRegs.pop_back_val();
528 Scale = 1;
531 // If ScaledReg is an invariant with respect to L, find the reg from
532 // BaseRegs containing the recurrent expr related with Loop L. Swap the
533 // reg with ScaledReg.
534 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
535 if (!SAR || SAR->getLoop() != &L) {
536 auto I = find_if(BaseRegs, [&](const SCEV *S) {
537 return isa<const SCEVAddRecExpr>(S) &&
538 (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
540 if (I != BaseRegs.end())
541 std::swap(ScaledReg, *I);
543 assert(isCanonical(L) && "Failed to canonicalize?");
546 /// Get rid of the scale in the formula.
547 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
548 /// \return true if it was possible to get rid of the scale, false otherwise.
549 /// \note After this operation the formula may not be in the canonical form.
550 bool Formula::unscale() {
551 if (Scale != 1)
552 return false;
553 Scale = 0;
554 BaseRegs.push_back(ScaledReg);
555 ScaledReg = nullptr;
556 return true;
559 bool Formula::hasZeroEnd() const {
560 if (UnfoldedOffset || BaseOffset)
561 return false;
562 if (BaseRegs.size() != 1 || ScaledReg)
563 return false;
564 return true;
567 /// Return the total number of register operands used by this formula. This does
568 /// not include register uses implied by non-constant addrec strides.
569 size_t Formula::getNumRegs() const {
570 return !!ScaledReg + BaseRegs.size();
573 /// Return the type of this formula, if it has one, or null otherwise. This type
574 /// is meaningless except for the bit size.
575 Type *Formula::getType() const {
576 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
577 ScaledReg ? ScaledReg->getType() :
578 BaseGV ? BaseGV->getType() :
579 nullptr;
582 /// Delete the given base reg from the BaseRegs list.
583 void Formula::deleteBaseReg(const SCEV *&S) {
584 if (&S != &BaseRegs.back())
585 std::swap(S, BaseRegs.back());
586 BaseRegs.pop_back();
589 /// Test if this formula references the given register.
590 bool Formula::referencesReg(const SCEV *S) const {
591 return S == ScaledReg || is_contained(BaseRegs, S);
594 /// Test whether this formula uses registers which are used by uses other than
595 /// the use with the given index.
596 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
597 const RegUseTracker &RegUses) const {
598 if (ScaledReg)
599 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
600 return true;
601 for (const SCEV *BaseReg : BaseRegs)
602 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
603 return true;
604 return false;
607 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
608 void Formula::print(raw_ostream &OS) const {
609 bool First = true;
610 if (BaseGV) {
611 if (!First) OS << " + "; else First = false;
612 BaseGV->printAsOperand(OS, /*PrintType=*/false);
614 if (BaseOffset != 0) {
615 if (!First) OS << " + "; else First = false;
616 OS << BaseOffset;
618 for (const SCEV *BaseReg : BaseRegs) {
619 if (!First) OS << " + "; else First = false;
620 OS << "reg(" << *BaseReg << ')';
622 if (HasBaseReg && BaseRegs.empty()) {
623 if (!First) OS << " + "; else First = false;
624 OS << "**error: HasBaseReg**";
625 } else if (!HasBaseReg && !BaseRegs.empty()) {
626 if (!First) OS << " + "; else First = false;
627 OS << "**error: !HasBaseReg**";
629 if (Scale != 0) {
630 if (!First) OS << " + "; else First = false;
631 OS << Scale << "*reg(";
632 if (ScaledReg)
633 OS << *ScaledReg;
634 else
635 OS << "<unknown>";
636 OS << ')';
638 if (UnfoldedOffset != 0) {
639 if (!First) OS << " + ";
640 OS << "imm(" << UnfoldedOffset << ')';
644 LLVM_DUMP_METHOD void Formula::dump() const {
645 print(errs()); errs() << '\n';
647 #endif
649 /// Return true if the given addrec can be sign-extended without changing its
650 /// value.
651 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
652 Type *WideTy =
653 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
654 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
657 /// Return true if the given add can be sign-extended without changing its
658 /// value.
659 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
660 Type *WideTy =
661 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
662 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
665 /// Return true if the given mul can be sign-extended without changing its
666 /// value.
667 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
668 Type *WideTy =
669 IntegerType::get(SE.getContext(),
670 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
671 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
674 /// Return an expression for LHS /s RHS, if it can be determined and if the
675 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
676 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
677 /// the multiplication may overflow, which is useful when the result will be
678 /// used in a context where the most significant bits are ignored.
679 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
680 ScalarEvolution &SE,
681 bool IgnoreSignificantBits = false) {
682 // Handle the trivial case, which works for any SCEV type.
683 if (LHS == RHS)
684 return SE.getConstant(LHS->getType(), 1);
686 // Handle a few RHS special cases.
687 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
688 if (RC) {
689 const APInt &RA = RC->getAPInt();
690 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
691 // some folding.
692 if (RA.isAllOnesValue()) {
693 if (LHS->getType()->isPointerTy())
694 return nullptr;
695 return SE.getMulExpr(LHS, RC);
697 // Handle x /s 1 as x.
698 if (RA == 1)
699 return LHS;
702 // Check for a division of a constant by a constant.
703 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
704 if (!RC)
705 return nullptr;
706 const APInt &LA = C->getAPInt();
707 const APInt &RA = RC->getAPInt();
708 if (LA.srem(RA) != 0)
709 return nullptr;
710 return SE.getConstant(LA.sdiv(RA));
713 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
714 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
715 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
716 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
717 IgnoreSignificantBits);
718 if (!Step) return nullptr;
719 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
720 IgnoreSignificantBits);
721 if (!Start) return nullptr;
722 // FlagNW is independent of the start value, step direction, and is
723 // preserved with smaller magnitude steps.
724 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
725 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
727 return nullptr;
730 // Distribute the sdiv over add operands, if the add doesn't overflow.
731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
732 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
733 SmallVector<const SCEV *, 8> Ops;
734 for (const SCEV *S : Add->operands()) {
735 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
736 if (!Op) return nullptr;
737 Ops.push_back(Op);
739 return SE.getAddExpr(Ops);
741 return nullptr;
744 // Check for a multiply operand that we can pull RHS out of.
745 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
746 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
747 // Handle special case C1*X*Y /s C2*X*Y.
748 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
749 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
750 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
751 const SCEVConstant *RC =
752 dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
753 if (LC && RC) {
754 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
755 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
756 if (LOps == ROps)
757 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
762 SmallVector<const SCEV *, 4> Ops;
763 bool Found = false;
764 for (const SCEV *S : Mul->operands()) {
765 if (!Found)
766 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
767 IgnoreSignificantBits)) {
768 S = Q;
769 Found = true;
771 Ops.push_back(S);
773 return Found ? SE.getMulExpr(Ops) : nullptr;
775 return nullptr;
778 // Otherwise we don't know.
779 return nullptr;
782 /// If S involves the addition of a constant integer value, return that integer
783 /// value, and mutate S to point to a new SCEV with that value excluded.
784 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
785 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
786 if (C->getAPInt().getMinSignedBits() <= 64) {
787 S = SE.getConstant(C->getType(), 0);
788 return C->getValue()->getSExtValue();
790 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
791 SmallVector<const SCEV *, 8> NewOps(Add->operands());
792 int64_t Result = ExtractImmediate(NewOps.front(), SE);
793 if (Result != 0)
794 S = SE.getAddExpr(NewOps);
795 return Result;
796 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
797 SmallVector<const SCEV *, 8> NewOps(AR->operands());
798 int64_t Result = ExtractImmediate(NewOps.front(), SE);
799 if (Result != 0)
800 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
801 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
802 SCEV::FlagAnyWrap);
803 return Result;
805 return 0;
808 /// If S involves the addition of a GlobalValue address, return that symbol, and
809 /// mutate S to point to a new SCEV with that value excluded.
810 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
811 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
812 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
813 S = SE.getConstant(GV->getType(), 0);
814 return GV;
816 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
817 SmallVector<const SCEV *, 8> NewOps(Add->operands());
818 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
819 if (Result)
820 S = SE.getAddExpr(NewOps);
821 return Result;
822 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
823 SmallVector<const SCEV *, 8> NewOps(AR->operands());
824 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
825 if (Result)
826 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
827 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
828 SCEV::FlagAnyWrap);
829 return Result;
831 return nullptr;
834 /// Returns true if the specified instruction is using the specified value as an
835 /// address.
836 static bool isAddressUse(const TargetTransformInfo &TTI,
837 Instruction *Inst, Value *OperandVal) {
838 bool isAddress = isa<LoadInst>(Inst);
839 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
840 if (SI->getPointerOperand() == OperandVal)
841 isAddress = true;
842 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
843 // Addressing modes can also be folded into prefetches and a variety
844 // of intrinsics.
845 switch (II->getIntrinsicID()) {
846 case Intrinsic::memset:
847 case Intrinsic::prefetch:
848 case Intrinsic::masked_load:
849 if (II->getArgOperand(0) == OperandVal)
850 isAddress = true;
851 break;
852 case Intrinsic::masked_store:
853 if (II->getArgOperand(1) == OperandVal)
854 isAddress = true;
855 break;
856 case Intrinsic::memmove:
857 case Intrinsic::memcpy:
858 if (II->getArgOperand(0) == OperandVal ||
859 II->getArgOperand(1) == OperandVal)
860 isAddress = true;
861 break;
862 default: {
863 MemIntrinsicInfo IntrInfo;
864 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
865 if (IntrInfo.PtrVal == OperandVal)
866 isAddress = true;
870 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
871 if (RMW->getPointerOperand() == OperandVal)
872 isAddress = true;
873 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
874 if (CmpX->getPointerOperand() == OperandVal)
875 isAddress = true;
877 return isAddress;
880 /// Return the type of the memory being accessed.
881 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
882 Instruction *Inst, Value *OperandVal) {
883 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
884 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
885 AccessTy.MemTy = SI->getOperand(0)->getType();
886 AccessTy.AddrSpace = SI->getPointerAddressSpace();
887 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
888 AccessTy.AddrSpace = LI->getPointerAddressSpace();
889 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
890 AccessTy.AddrSpace = RMW->getPointerAddressSpace();
891 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
892 AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
893 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
894 switch (II->getIntrinsicID()) {
895 case Intrinsic::prefetch:
896 case Intrinsic::memset:
897 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
898 AccessTy.MemTy = OperandVal->getType();
899 break;
900 case Intrinsic::memmove:
901 case Intrinsic::memcpy:
902 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
903 AccessTy.MemTy = OperandVal->getType();
904 break;
905 case Intrinsic::masked_load:
906 AccessTy.AddrSpace =
907 II->getArgOperand(0)->getType()->getPointerAddressSpace();
908 break;
909 case Intrinsic::masked_store:
910 AccessTy.MemTy = II->getOperand(0)->getType();
911 AccessTy.AddrSpace =
912 II->getArgOperand(1)->getType()->getPointerAddressSpace();
913 break;
914 default: {
915 MemIntrinsicInfo IntrInfo;
916 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
917 AccessTy.AddrSpace
918 = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
921 break;
926 // All pointers have the same requirements, so canonicalize them to an
927 // arbitrary pointer type to minimize variation.
928 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
929 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
930 PTy->getAddressSpace());
932 return AccessTy;
935 /// Return true if this AddRec is already a phi in its loop.
936 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
937 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
938 if (SE.isSCEVable(PN.getType()) &&
939 (SE.getEffectiveSCEVType(PN.getType()) ==
940 SE.getEffectiveSCEVType(AR->getType())) &&
941 SE.getSCEV(&PN) == AR)
942 return true;
944 return false;
947 /// Check if expanding this expression is likely to incur significant cost. This
948 /// is tricky because SCEV doesn't track which expressions are actually computed
949 /// by the current IR.
951 /// We currently allow expansion of IV increments that involve adds,
952 /// multiplication by constants, and AddRecs from existing phis.
954 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
955 /// obvious multiple of the UDivExpr.
956 static bool isHighCostExpansion(const SCEV *S,
957 SmallPtrSetImpl<const SCEV*> &Processed,
958 ScalarEvolution &SE) {
959 // Zero/One operand expressions
960 switch (S->getSCEVType()) {
961 case scUnknown:
962 case scConstant:
963 return false;
964 case scTruncate:
965 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
966 Processed, SE);
967 case scZeroExtend:
968 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
969 Processed, SE);
970 case scSignExtend:
971 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
972 Processed, SE);
973 default:
974 break;
977 if (!Processed.insert(S).second)
978 return false;
980 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
981 for (const SCEV *S : Add->operands()) {
982 if (isHighCostExpansion(S, Processed, SE))
983 return true;
985 return false;
988 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
989 if (Mul->getNumOperands() == 2) {
990 // Multiplication by a constant is ok
991 if (isa<SCEVConstant>(Mul->getOperand(0)))
992 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
994 // If we have the value of one operand, check if an existing
995 // multiplication already generates this expression.
996 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
997 Value *UVal = U->getValue();
998 for (User *UR : UVal->users()) {
999 // If U is a constant, it may be used by a ConstantExpr.
1000 Instruction *UI = dyn_cast<Instruction>(UR);
1001 if (UI && UI->getOpcode() == Instruction::Mul &&
1002 SE.isSCEVable(UI->getType())) {
1003 return SE.getSCEV(UI) == Mul;
1010 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1011 if (isExistingPhi(AR, SE))
1012 return false;
1015 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1016 return true;
1019 namespace {
1021 class LSRUse;
1023 } // end anonymous namespace
1025 /// Check if the addressing mode defined by \p F is completely
1026 /// folded in \p LU at isel time.
1027 /// This includes address-mode folding and special icmp tricks.
1028 /// This function returns true if \p LU can accommodate what \p F
1029 /// defines and up to 1 base + 1 scaled + offset.
1030 /// In other words, if \p F has several base registers, this function may
1031 /// still return true. Therefore, users still need to account for
1032 /// additional base registers and/or unfolded offsets to derive an
1033 /// accurate cost model.
1034 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1035 const LSRUse &LU, const Formula &F);
1037 // Get the cost of the scaling factor used in F for LU.
1038 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1039 const LSRUse &LU, const Formula &F,
1040 const Loop &L);
1042 namespace {
1044 /// This class is used to measure and compare candidate formulae.
1045 class Cost {
1046 const Loop *L = nullptr;
1047 ScalarEvolution *SE = nullptr;
1048 const TargetTransformInfo *TTI = nullptr;
1049 TargetTransformInfo::LSRCost C;
1050 TTI::AddressingModeKind AMK = TTI::AMK_None;
1052 public:
1053 Cost() = delete;
1054 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1055 TTI::AddressingModeKind AMK) :
1056 L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1057 C.Insns = 0;
1058 C.NumRegs = 0;
1059 C.AddRecCost = 0;
1060 C.NumIVMuls = 0;
1061 C.NumBaseAdds = 0;
1062 C.ImmCost = 0;
1063 C.SetupCost = 0;
1064 C.ScaleCost = 0;
1067 bool isLess(Cost &Other);
1069 void Lose();
1071 #ifndef NDEBUG
1072 // Once any of the metrics loses, they must all remain losers.
1073 bool isValid() {
1074 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1075 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1076 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1077 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1079 #endif
1081 bool isLoser() {
1082 assert(isValid() && "invalid cost");
1083 return C.NumRegs == ~0u;
1086 void RateFormula(const Formula &F,
1087 SmallPtrSetImpl<const SCEV *> &Regs,
1088 const DenseSet<const SCEV *> &VisitedRegs,
1089 const LSRUse &LU,
1090 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1092 void print(raw_ostream &OS) const;
1093 void dump() const;
1095 private:
1096 void RateRegister(const Formula &F, const SCEV *Reg,
1097 SmallPtrSetImpl<const SCEV *> &Regs);
1098 void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1099 SmallPtrSetImpl<const SCEV *> &Regs,
1100 SmallPtrSetImpl<const SCEV *> *LoserRegs);
1103 /// An operand value in an instruction which is to be replaced with some
1104 /// equivalent, possibly strength-reduced, replacement.
1105 struct LSRFixup {
1106 /// The instruction which will be updated.
1107 Instruction *UserInst = nullptr;
1109 /// The operand of the instruction which will be replaced. The operand may be
1110 /// used more than once; every instance will be replaced.
1111 Value *OperandValToReplace = nullptr;
1113 /// If this user is to use the post-incremented value of an induction
1114 /// variable, this set is non-empty and holds the loops associated with the
1115 /// induction variable.
1116 PostIncLoopSet PostIncLoops;
1118 /// A constant offset to be added to the LSRUse expression. This allows
1119 /// multiple fixups to share the same LSRUse with different offsets, for
1120 /// example in an unrolled loop.
1121 int64_t Offset = 0;
1123 LSRFixup() = default;
1125 bool isUseFullyOutsideLoop(const Loop *L) const;
1127 void print(raw_ostream &OS) const;
1128 void dump() const;
1131 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1132 /// SmallVectors of const SCEV*.
1133 struct UniquifierDenseMapInfo {
1134 static SmallVector<const SCEV *, 4> getEmptyKey() {
1135 SmallVector<const SCEV *, 4> V;
1136 V.push_back(reinterpret_cast<const SCEV *>(-1));
1137 return V;
1140 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1141 SmallVector<const SCEV *, 4> V;
1142 V.push_back(reinterpret_cast<const SCEV *>(-2));
1143 return V;
1146 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1147 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1150 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1151 const SmallVector<const SCEV *, 4> &RHS) {
1152 return LHS == RHS;
1156 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1157 /// as uses invented by LSR itself. It includes information about what kinds of
1158 /// things can be folded into the user, information about the user itself, and
1159 /// information about how the use may be satisfied. TODO: Represent multiple
1160 /// users of the same expression in common?
1161 class LSRUse {
1162 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1164 public:
1165 /// An enum for a kind of use, indicating what types of scaled and immediate
1166 /// operands it might support.
1167 enum KindType {
1168 Basic, ///< A normal use, with no folding.
1169 Special, ///< A special case of basic, allowing -1 scales.
1170 Address, ///< An address use; folding according to TargetLowering
1171 ICmpZero ///< An equality icmp with both operands folded into one.
1172 // TODO: Add a generic icmp too?
1175 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1177 KindType Kind;
1178 MemAccessTy AccessTy;
1180 /// The list of operands which are to be replaced.
1181 SmallVector<LSRFixup, 8> Fixups;
1183 /// Keep track of the min and max offsets of the fixups.
1184 int64_t MinOffset = std::numeric_limits<int64_t>::max();
1185 int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1187 /// This records whether all of the fixups using this LSRUse are outside of
1188 /// the loop, in which case some special-case heuristics may be used.
1189 bool AllFixupsOutsideLoop = true;
1191 /// RigidFormula is set to true to guarantee that this use will be associated
1192 /// with a single formula--the one that initially matched. Some SCEV
1193 /// expressions cannot be expanded. This allows LSR to consider the registers
1194 /// used by those expressions without the need to expand them later after
1195 /// changing the formula.
1196 bool RigidFormula = false;
1198 /// This records the widest use type for any fixup using this
1199 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1200 /// fixup widths to be equivalent, because the narrower one may be relying on
1201 /// the implicit truncation to truncate away bogus bits.
1202 Type *WidestFixupType = nullptr;
1204 /// A list of ways to build a value that can satisfy this user. After the
1205 /// list is populated, one of these is selected heuristically and used to
1206 /// formulate a replacement for OperandValToReplace in UserInst.
1207 SmallVector<Formula, 12> Formulae;
1209 /// The set of register candidates used by all formulae in this LSRUse.
1210 SmallPtrSet<const SCEV *, 4> Regs;
1212 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1214 LSRFixup &getNewFixup() {
1215 Fixups.push_back(LSRFixup());
1216 return Fixups.back();
1219 void pushFixup(LSRFixup &f) {
1220 Fixups.push_back(f);
1221 if (f.Offset > MaxOffset)
1222 MaxOffset = f.Offset;
1223 if (f.Offset < MinOffset)
1224 MinOffset = f.Offset;
1227 bool HasFormulaWithSameRegs(const Formula &F) const;
1228 float getNotSelectedProbability(const SCEV *Reg) const;
1229 bool InsertFormula(const Formula &F, const Loop &L);
1230 void DeleteFormula(Formula &F);
1231 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1233 void print(raw_ostream &OS) const;
1234 void dump() const;
1237 } // end anonymous namespace
1239 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1240 LSRUse::KindType Kind, MemAccessTy AccessTy,
1241 GlobalValue *BaseGV, int64_t BaseOffset,
1242 bool HasBaseReg, int64_t Scale,
1243 Instruction *Fixup = nullptr);
1245 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1246 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1247 return 1;
1248 if (Depth == 0)
1249 return 0;
1250 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1251 return getSetupCost(S->getStart(), Depth - 1);
1252 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1253 return getSetupCost(S->getOperand(), Depth - 1);
1254 if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1255 return std::accumulate(S->op_begin(), S->op_end(), 0,
1256 [&](unsigned i, const SCEV *Reg) {
1257 return i + getSetupCost(Reg, Depth - 1);
1259 if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1260 return getSetupCost(S->getLHS(), Depth - 1) +
1261 getSetupCost(S->getRHS(), Depth - 1);
1262 return 0;
1265 /// Tally up interesting quantities from the given register.
1266 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1267 SmallPtrSetImpl<const SCEV *> &Regs) {
1268 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1269 // If this is an addrec for another loop, it should be an invariant
1270 // with respect to L since L is the innermost loop (at least
1271 // for now LSR only handles innermost loops).
1272 if (AR->getLoop() != L) {
1273 // If the AddRec exists, consider it's register free and leave it alone.
1274 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1275 return;
1277 // It is bad to allow LSR for current loop to add induction variables
1278 // for its sibling loops.
1279 if (!AR->getLoop()->contains(L)) {
1280 Lose();
1281 return;
1284 // Otherwise, it will be an invariant with respect to Loop L.
1285 ++C.NumRegs;
1286 return;
1289 unsigned LoopCost = 1;
1290 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1291 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1293 // If the step size matches the base offset, we could use pre-indexed
1294 // addressing.
1295 if (AMK == TTI::AMK_PreIndexed) {
1296 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1297 if (Step->getAPInt() == F.BaseOffset)
1298 LoopCost = 0;
1299 } else if (AMK == TTI::AMK_PostIndexed) {
1300 const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1301 if (isa<SCEVConstant>(LoopStep)) {
1302 const SCEV *LoopStart = AR->getStart();
1303 if (!isa<SCEVConstant>(LoopStart) &&
1304 SE->isLoopInvariant(LoopStart, L))
1305 LoopCost = 0;
1309 C.AddRecCost += LoopCost;
1311 // Add the step value register, if it needs one.
1312 // TODO: The non-affine case isn't precisely modeled here.
1313 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1314 if (!Regs.count(AR->getOperand(1))) {
1315 RateRegister(F, AR->getOperand(1), Regs);
1316 if (isLoser())
1317 return;
1321 ++C.NumRegs;
1323 // Rough heuristic; favor registers which don't require extra setup
1324 // instructions in the preheader.
1325 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1326 // Ensure we don't, even with the recusion limit, produce invalid costs.
1327 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1329 C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1330 SE->hasComputableLoopEvolution(Reg, L);
1333 /// Record this register in the set. If we haven't seen it before, rate
1334 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1335 /// one of those regs an instant loser.
1336 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1337 SmallPtrSetImpl<const SCEV *> &Regs,
1338 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1339 if (LoserRegs && LoserRegs->count(Reg)) {
1340 Lose();
1341 return;
1343 if (Regs.insert(Reg).second) {
1344 RateRegister(F, Reg, Regs);
1345 if (LoserRegs && isLoser())
1346 LoserRegs->insert(Reg);
1350 void Cost::RateFormula(const Formula &F,
1351 SmallPtrSetImpl<const SCEV *> &Regs,
1352 const DenseSet<const SCEV *> &VisitedRegs,
1353 const LSRUse &LU,
1354 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1355 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1356 // Tally up the registers.
1357 unsigned PrevAddRecCost = C.AddRecCost;
1358 unsigned PrevNumRegs = C.NumRegs;
1359 unsigned PrevNumBaseAdds = C.NumBaseAdds;
1360 if (const SCEV *ScaledReg = F.ScaledReg) {
1361 if (VisitedRegs.count(ScaledReg)) {
1362 Lose();
1363 return;
1365 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1366 if (isLoser())
1367 return;
1369 for (const SCEV *BaseReg : F.BaseRegs) {
1370 if (VisitedRegs.count(BaseReg)) {
1371 Lose();
1372 return;
1374 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1375 if (isLoser())
1376 return;
1379 // Determine how many (unfolded) adds we'll need inside the loop.
1380 size_t NumBaseParts = F.getNumRegs();
1381 if (NumBaseParts > 1)
1382 // Do not count the base and a possible second register if the target
1383 // allows to fold 2 registers.
1384 C.NumBaseAdds +=
1385 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1386 C.NumBaseAdds += (F.UnfoldedOffset != 0);
1388 // Accumulate non-free scaling amounts.
1389 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1391 // Tally up the non-zero immediates.
1392 for (const LSRFixup &Fixup : LU.Fixups) {
1393 int64_t O = Fixup.Offset;
1394 int64_t Offset = (uint64_t)O + F.BaseOffset;
1395 if (F.BaseGV)
1396 C.ImmCost += 64; // Handle symbolic values conservatively.
1397 // TODO: This should probably be the pointer size.
1398 else if (Offset != 0)
1399 C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1401 // Check with target if this offset with this instruction is
1402 // specifically not supported.
1403 if (LU.Kind == LSRUse::Address && Offset != 0 &&
1404 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1405 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1406 C.NumBaseAdds++;
1409 // If we don't count instruction cost exit here.
1410 if (!InsnsCost) {
1411 assert(isValid() && "invalid cost");
1412 return;
1415 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1416 // additional instruction (at least fill).
1417 // TODO: Need distinguish register class?
1418 unsigned TTIRegNum = TTI->getNumberOfRegisters(
1419 TTI->getRegisterClassForType(false, F.getType())) - 1;
1420 if (C.NumRegs > TTIRegNum) {
1421 // Cost already exceeded TTIRegNum, then only newly added register can add
1422 // new instructions.
1423 if (PrevNumRegs > TTIRegNum)
1424 C.Insns += (C.NumRegs - PrevNumRegs);
1425 else
1426 C.Insns += (C.NumRegs - TTIRegNum);
1429 // If ICmpZero formula ends with not 0, it could not be replaced by
1430 // just add or sub. We'll need to compare final result of AddRec.
1431 // That means we'll need an additional instruction. But if the target can
1432 // macro-fuse a compare with a branch, don't count this extra instruction.
1433 // For -10 + {0, +, 1}:
1434 // i = i + 1;
1435 // cmp i, 10
1437 // For {-10, +, 1}:
1438 // i = i + 1;
1439 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1440 !TTI->canMacroFuseCmp())
1441 C.Insns++;
1442 // Each new AddRec adds 1 instruction to calculation.
1443 C.Insns += (C.AddRecCost - PrevAddRecCost);
1445 // BaseAdds adds instructions for unfolded registers.
1446 if (LU.Kind != LSRUse::ICmpZero)
1447 C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1448 assert(isValid() && "invalid cost");
1451 /// Set this cost to a losing value.
1452 void Cost::Lose() {
1453 C.Insns = std::numeric_limits<unsigned>::max();
1454 C.NumRegs = std::numeric_limits<unsigned>::max();
1455 C.AddRecCost = std::numeric_limits<unsigned>::max();
1456 C.NumIVMuls = std::numeric_limits<unsigned>::max();
1457 C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1458 C.ImmCost = std::numeric_limits<unsigned>::max();
1459 C.SetupCost = std::numeric_limits<unsigned>::max();
1460 C.ScaleCost = std::numeric_limits<unsigned>::max();
1463 /// Choose the lower cost.
1464 bool Cost::isLess(Cost &Other) {
1465 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1466 C.Insns != Other.C.Insns)
1467 return C.Insns < Other.C.Insns;
1468 return TTI->isLSRCostLess(C, Other.C);
1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1472 void Cost::print(raw_ostream &OS) const {
1473 if (InsnsCost)
1474 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1475 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1476 if (C.AddRecCost != 0)
1477 OS << ", with addrec cost " << C.AddRecCost;
1478 if (C.NumIVMuls != 0)
1479 OS << ", plus " << C.NumIVMuls << " IV mul"
1480 << (C.NumIVMuls == 1 ? "" : "s");
1481 if (C.NumBaseAdds != 0)
1482 OS << ", plus " << C.NumBaseAdds << " base add"
1483 << (C.NumBaseAdds == 1 ? "" : "s");
1484 if (C.ScaleCost != 0)
1485 OS << ", plus " << C.ScaleCost << " scale cost";
1486 if (C.ImmCost != 0)
1487 OS << ", plus " << C.ImmCost << " imm cost";
1488 if (C.SetupCost != 0)
1489 OS << ", plus " << C.SetupCost << " setup cost";
1492 LLVM_DUMP_METHOD void Cost::dump() const {
1493 print(errs()); errs() << '\n';
1495 #endif
1497 /// Test whether this fixup always uses its value outside of the given loop.
1498 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1499 // PHI nodes use their value in their incoming blocks.
1500 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1501 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1502 if (PN->getIncomingValue(i) == OperandValToReplace &&
1503 L->contains(PN->getIncomingBlock(i)))
1504 return false;
1505 return true;
1508 return !L->contains(UserInst);
1511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1512 void LSRFixup::print(raw_ostream &OS) const {
1513 OS << "UserInst=";
1514 // Store is common and interesting enough to be worth special-casing.
1515 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1516 OS << "store ";
1517 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1518 } else if (UserInst->getType()->isVoidTy())
1519 OS << UserInst->getOpcodeName();
1520 else
1521 UserInst->printAsOperand(OS, /*PrintType=*/false);
1523 OS << ", OperandValToReplace=";
1524 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1526 for (const Loop *PIL : PostIncLoops) {
1527 OS << ", PostIncLoop=";
1528 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1531 if (Offset != 0)
1532 OS << ", Offset=" << Offset;
1535 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1536 print(errs()); errs() << '\n';
1538 #endif
1540 /// Test whether this use as a formula which has the same registers as the given
1541 /// formula.
1542 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1543 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1544 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1545 // Unstable sort by host order ok, because this is only used for uniquifying.
1546 llvm::sort(Key);
1547 return Uniquifier.count(Key);
1550 /// The function returns a probability of selecting formula without Reg.
1551 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1552 unsigned FNum = 0;
1553 for (const Formula &F : Formulae)
1554 if (F.referencesReg(Reg))
1555 FNum++;
1556 return ((float)(Formulae.size() - FNum)) / Formulae.size();
1559 /// If the given formula has not yet been inserted, add it to the list, and
1560 /// return true. Return false otherwise. The formula must be in canonical form.
1561 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1562 assert(F.isCanonical(L) && "Invalid canonical representation");
1564 if (!Formulae.empty() && RigidFormula)
1565 return false;
1567 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1568 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1569 // Unstable sort by host order ok, because this is only used for uniquifying.
1570 llvm::sort(Key);
1572 if (!Uniquifier.insert(Key).second)
1573 return false;
1575 // Using a register to hold the value of 0 is not profitable.
1576 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1577 "Zero allocated in a scaled register!");
1578 #ifndef NDEBUG
1579 for (const SCEV *BaseReg : F.BaseRegs)
1580 assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1581 #endif
1583 // Add the formula to the list.
1584 Formulae.push_back(F);
1586 // Record registers now being used by this use.
1587 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1588 if (F.ScaledReg)
1589 Regs.insert(F.ScaledReg);
1591 return true;
1594 /// Remove the given formula from this use's list.
1595 void LSRUse::DeleteFormula(Formula &F) {
1596 if (&F != &Formulae.back())
1597 std::swap(F, Formulae.back());
1598 Formulae.pop_back();
1601 /// Recompute the Regs field, and update RegUses.
1602 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1603 // Now that we've filtered out some formulae, recompute the Regs set.
1604 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1605 Regs.clear();
1606 for (const Formula &F : Formulae) {
1607 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1608 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1611 // Update the RegTracker.
1612 for (const SCEV *S : OldRegs)
1613 if (!Regs.count(S))
1614 RegUses.dropRegister(S, LUIdx);
1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1618 void LSRUse::print(raw_ostream &OS) const {
1619 OS << "LSR Use: Kind=";
1620 switch (Kind) {
1621 case Basic: OS << "Basic"; break;
1622 case Special: OS << "Special"; break;
1623 case ICmpZero: OS << "ICmpZero"; break;
1624 case Address:
1625 OS << "Address of ";
1626 if (AccessTy.MemTy->isPointerTy())
1627 OS << "pointer"; // the full pointer type could be really verbose
1628 else {
1629 OS << *AccessTy.MemTy;
1632 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1635 OS << ", Offsets={";
1636 bool NeedComma = false;
1637 for (const LSRFixup &Fixup : Fixups) {
1638 if (NeedComma) OS << ',';
1639 OS << Fixup.Offset;
1640 NeedComma = true;
1642 OS << '}';
1644 if (AllFixupsOutsideLoop)
1645 OS << ", all-fixups-outside-loop";
1647 if (WidestFixupType)
1648 OS << ", widest fixup type: " << *WidestFixupType;
1651 LLVM_DUMP_METHOD void LSRUse::dump() const {
1652 print(errs()); errs() << '\n';
1654 #endif
1656 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1657 LSRUse::KindType Kind, MemAccessTy AccessTy,
1658 GlobalValue *BaseGV, int64_t BaseOffset,
1659 bool HasBaseReg, int64_t Scale,
1660 Instruction *Fixup/*= nullptr*/) {
1661 switch (Kind) {
1662 case LSRUse::Address:
1663 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1664 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1666 case LSRUse::ICmpZero:
1667 // There's not even a target hook for querying whether it would be legal to
1668 // fold a GV into an ICmp.
1669 if (BaseGV)
1670 return false;
1672 // ICmp only has two operands; don't allow more than two non-trivial parts.
1673 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1674 return false;
1676 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1677 // putting the scaled register in the other operand of the icmp.
1678 if (Scale != 0 && Scale != -1)
1679 return false;
1681 // If we have low-level target information, ask the target if it can fold an
1682 // integer immediate on an icmp.
1683 if (BaseOffset != 0) {
1684 // We have one of:
1685 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1686 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1687 // Offs is the ICmp immediate.
1688 if (Scale == 0)
1689 // The cast does the right thing with
1690 // std::numeric_limits<int64_t>::min().
1691 BaseOffset = -(uint64_t)BaseOffset;
1692 return TTI.isLegalICmpImmediate(BaseOffset);
1695 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1696 return true;
1698 case LSRUse::Basic:
1699 // Only handle single-register values.
1700 return !BaseGV && Scale == 0 && BaseOffset == 0;
1702 case LSRUse::Special:
1703 // Special case Basic to handle -1 scales.
1704 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1707 llvm_unreachable("Invalid LSRUse Kind!");
1710 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1711 int64_t MinOffset, int64_t MaxOffset,
1712 LSRUse::KindType Kind, MemAccessTy AccessTy,
1713 GlobalValue *BaseGV, int64_t BaseOffset,
1714 bool HasBaseReg, int64_t Scale) {
1715 // Check for overflow.
1716 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1717 (MinOffset > 0))
1718 return false;
1719 MinOffset = (uint64_t)BaseOffset + MinOffset;
1720 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1721 (MaxOffset > 0))
1722 return false;
1723 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1725 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1726 HasBaseReg, Scale) &&
1727 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1728 HasBaseReg, Scale);
1731 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1732 int64_t MinOffset, int64_t MaxOffset,
1733 LSRUse::KindType Kind, MemAccessTy AccessTy,
1734 const Formula &F, const Loop &L) {
1735 // For the purpose of isAMCompletelyFolded either having a canonical formula
1736 // or a scale not equal to zero is correct.
1737 // Problems may arise from non canonical formulae having a scale == 0.
1738 // Strictly speaking it would best to just rely on canonical formulae.
1739 // However, when we generate the scaled formulae, we first check that the
1740 // scaling factor is profitable before computing the actual ScaledReg for
1741 // compile time sake.
1742 assert((F.isCanonical(L) || F.Scale != 0));
1743 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1744 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1747 /// Test whether we know how to expand the current formula.
1748 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1749 int64_t MaxOffset, LSRUse::KindType Kind,
1750 MemAccessTy AccessTy, GlobalValue *BaseGV,
1751 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1752 // We know how to expand completely foldable formulae.
1753 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1754 BaseOffset, HasBaseReg, Scale) ||
1755 // Or formulae that use a base register produced by a sum of base
1756 // registers.
1757 (Scale == 1 &&
1758 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1759 BaseGV, BaseOffset, true, 0));
1762 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1763 int64_t MaxOffset, LSRUse::KindType Kind,
1764 MemAccessTy AccessTy, const Formula &F) {
1765 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1766 F.BaseOffset, F.HasBaseReg, F.Scale);
1769 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1770 const LSRUse &LU, const Formula &F) {
1771 // Target may want to look at the user instructions.
1772 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1773 for (const LSRFixup &Fixup : LU.Fixups)
1774 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1775 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1776 F.Scale, Fixup.UserInst))
1777 return false;
1778 return true;
1781 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1782 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1783 F.Scale);
1786 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1787 const LSRUse &LU, const Formula &F,
1788 const Loop &L) {
1789 if (!F.Scale)
1790 return 0;
1792 // If the use is not completely folded in that instruction, we will have to
1793 // pay an extra cost only for scale != 1.
1794 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1795 LU.AccessTy, F, L))
1796 return F.Scale != 1;
1798 switch (LU.Kind) {
1799 case LSRUse::Address: {
1800 // Check the scaling factor cost with both the min and max offsets.
1801 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1802 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1803 F.Scale, LU.AccessTy.AddrSpace);
1804 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1805 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1806 F.Scale, LU.AccessTy.AddrSpace);
1808 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1809 "Legal addressing mode has an illegal cost!");
1810 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1812 case LSRUse::ICmpZero:
1813 case LSRUse::Basic:
1814 case LSRUse::Special:
1815 // The use is completely folded, i.e., everything is folded into the
1816 // instruction.
1817 return 0;
1820 llvm_unreachable("Invalid LSRUse Kind!");
1823 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1824 LSRUse::KindType Kind, MemAccessTy AccessTy,
1825 GlobalValue *BaseGV, int64_t BaseOffset,
1826 bool HasBaseReg) {
1827 // Fast-path: zero is always foldable.
1828 if (BaseOffset == 0 && !BaseGV) return true;
1830 // Conservatively, create an address with an immediate and a
1831 // base and a scale.
1832 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1834 // Canonicalize a scale of 1 to a base register if the formula doesn't
1835 // already have a base register.
1836 if (!HasBaseReg && Scale == 1) {
1837 Scale = 0;
1838 HasBaseReg = true;
1841 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1842 HasBaseReg, Scale);
1845 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1846 ScalarEvolution &SE, int64_t MinOffset,
1847 int64_t MaxOffset, LSRUse::KindType Kind,
1848 MemAccessTy AccessTy, const SCEV *S,
1849 bool HasBaseReg) {
1850 // Fast-path: zero is always foldable.
1851 if (S->isZero()) return true;
1853 // Conservatively, create an address with an immediate and a
1854 // base and a scale.
1855 int64_t BaseOffset = ExtractImmediate(S, SE);
1856 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1858 // If there's anything else involved, it's not foldable.
1859 if (!S->isZero()) return false;
1861 // Fast-path: zero is always foldable.
1862 if (BaseOffset == 0 && !BaseGV) return true;
1864 // Conservatively, create an address with an immediate and a
1865 // base and a scale.
1866 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1868 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1869 BaseOffset, HasBaseReg, Scale);
1872 namespace {
1874 /// An individual increment in a Chain of IV increments. Relate an IV user to
1875 /// an expression that computes the IV it uses from the IV used by the previous
1876 /// link in the Chain.
1878 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1879 /// original IVOperand. The head of the chain's IVOperand is only valid during
1880 /// chain collection, before LSR replaces IV users. During chain generation,
1881 /// IncExpr can be used to find the new IVOperand that computes the same
1882 /// expression.
1883 struct IVInc {
1884 Instruction *UserInst;
1885 Value* IVOperand;
1886 const SCEV *IncExpr;
1888 IVInc(Instruction *U, Value *O, const SCEV *E)
1889 : UserInst(U), IVOperand(O), IncExpr(E) {}
1892 // The list of IV increments in program order. We typically add the head of a
1893 // chain without finding subsequent links.
1894 struct IVChain {
1895 SmallVector<IVInc, 1> Incs;
1896 const SCEV *ExprBase = nullptr;
1898 IVChain() = default;
1899 IVChain(const IVInc &Head, const SCEV *Base)
1900 : Incs(1, Head), ExprBase(Base) {}
1902 using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1904 // Return the first increment in the chain.
1905 const_iterator begin() const {
1906 assert(!Incs.empty());
1907 return std::next(Incs.begin());
1909 const_iterator end() const {
1910 return Incs.end();
1913 // Returns true if this chain contains any increments.
1914 bool hasIncs() const { return Incs.size() >= 2; }
1916 // Add an IVInc to the end of this chain.
1917 void add(const IVInc &X) { Incs.push_back(X); }
1919 // Returns the last UserInst in the chain.
1920 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1922 // Returns true if IncExpr can be profitably added to this chain.
1923 bool isProfitableIncrement(const SCEV *OperExpr,
1924 const SCEV *IncExpr,
1925 ScalarEvolution&);
1928 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1929 /// between FarUsers that definitely cross IV increments and NearUsers that may
1930 /// be used between IV increments.
1931 struct ChainUsers {
1932 SmallPtrSet<Instruction*, 4> FarUsers;
1933 SmallPtrSet<Instruction*, 4> NearUsers;
1936 /// This class holds state for the main loop strength reduction logic.
1937 class LSRInstance {
1938 IVUsers &IU;
1939 ScalarEvolution &SE;
1940 DominatorTree &DT;
1941 LoopInfo &LI;
1942 AssumptionCache &AC;
1943 TargetLibraryInfo &TLI;
1944 const TargetTransformInfo &TTI;
1945 Loop *const L;
1946 MemorySSAUpdater *MSSAU;
1947 TTI::AddressingModeKind AMK;
1948 bool Changed = false;
1950 /// This is the insert position that the current loop's induction variable
1951 /// increment should be placed. In simple loops, this is the latch block's
1952 /// terminator. But in more complicated cases, this is a position which will
1953 /// dominate all the in-loop post-increment users.
1954 Instruction *IVIncInsertPos = nullptr;
1956 /// Interesting factors between use strides.
1958 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1959 /// default, a SmallDenseSet, because we need to use the full range of
1960 /// int64_ts, and there's currently no good way of doing that with
1961 /// SmallDenseSet.
1962 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1964 /// Interesting use types, to facilitate truncation reuse.
1965 SmallSetVector<Type *, 4> Types;
1967 /// The list of interesting uses.
1968 mutable SmallVector<LSRUse, 16> Uses;
1970 /// Track which uses use which register candidates.
1971 RegUseTracker RegUses;
1973 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1974 // have more than a few IV increment chains in a loop. Missing a Chain falls
1975 // back to normal LSR behavior for those uses.
1976 static const unsigned MaxChains = 8;
1978 /// IV users can form a chain of IV increments.
1979 SmallVector<IVChain, MaxChains> IVChainVec;
1981 /// IV users that belong to profitable IVChains.
1982 SmallPtrSet<Use*, MaxChains> IVIncSet;
1984 /// Induction variables that were generated and inserted by the SCEV Expander.
1985 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
1987 void OptimizeShadowIV();
1988 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1989 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1990 void OptimizeLoopTermCond();
1992 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1993 SmallVectorImpl<ChainUsers> &ChainUsersVec);
1994 void FinalizeChain(IVChain &Chain);
1995 void CollectChains();
1996 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1997 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1999 void CollectInterestingTypesAndFactors();
2000 void CollectFixupsAndInitialFormulae();
2002 // Support for sharing of LSRUses between LSRFixups.
2003 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2004 UseMapTy UseMap;
2006 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2007 LSRUse::KindType Kind, MemAccessTy AccessTy);
2009 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2010 MemAccessTy AccessTy);
2012 void DeleteUse(LSRUse &LU, size_t LUIdx);
2014 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2016 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2017 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2018 void CountRegisters(const Formula &F, size_t LUIdx);
2019 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2021 void CollectLoopInvariantFixupsAndFormulae();
2023 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2024 unsigned Depth = 0);
2026 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2027 const Formula &Base, unsigned Depth,
2028 size_t Idx, bool IsScaledReg = false);
2029 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2030 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2031 const Formula &Base, size_t Idx,
2032 bool IsScaledReg = false);
2033 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2034 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2035 const Formula &Base,
2036 const SmallVectorImpl<int64_t> &Worklist,
2037 size_t Idx, bool IsScaledReg = false);
2038 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2039 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2040 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2041 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2042 void GenerateCrossUseConstantOffsets();
2043 void GenerateAllReuseFormulae();
2045 void FilterOutUndesirableDedicatedRegisters();
2047 size_t EstimateSearchSpaceComplexity() const;
2048 void NarrowSearchSpaceByDetectingSupersets();
2049 void NarrowSearchSpaceByCollapsingUnrolledCode();
2050 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2051 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2052 void NarrowSearchSpaceByFilterPostInc();
2053 void NarrowSearchSpaceByDeletingCostlyFormulas();
2054 void NarrowSearchSpaceByPickingWinnerRegs();
2055 void NarrowSearchSpaceUsingHeuristics();
2057 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2058 Cost &SolutionCost,
2059 SmallVectorImpl<const Formula *> &Workspace,
2060 const Cost &CurCost,
2061 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2062 DenseSet<const SCEV *> &VisitedRegs) const;
2063 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2065 BasicBlock::iterator
2066 HoistInsertPosition(BasicBlock::iterator IP,
2067 const SmallVectorImpl<Instruction *> &Inputs) const;
2068 BasicBlock::iterator
2069 AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2070 const LSRFixup &LF,
2071 const LSRUse &LU,
2072 SCEVExpander &Rewriter) const;
2074 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2075 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2076 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2077 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2078 const Formula &F, SCEVExpander &Rewriter,
2079 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2080 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2081 SCEVExpander &Rewriter,
2082 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2083 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2085 public:
2086 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2087 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2088 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2090 bool getChanged() const { return Changed; }
2091 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2092 return ScalarEvolutionIVs;
2095 void print_factors_and_types(raw_ostream &OS) const;
2096 void print_fixups(raw_ostream &OS) const;
2097 void print_uses(raw_ostream &OS) const;
2098 void print(raw_ostream &OS) const;
2099 void dump() const;
2102 } // end anonymous namespace
2104 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2105 /// the cast operation.
2106 void LSRInstance::OptimizeShadowIV() {
2107 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2108 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2109 return;
2111 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2112 UI != E; /* empty */) {
2113 IVUsers::const_iterator CandidateUI = UI;
2114 ++UI;
2115 Instruction *ShadowUse = CandidateUI->getUser();
2116 Type *DestTy = nullptr;
2117 bool IsSigned = false;
2119 /* If shadow use is a int->float cast then insert a second IV
2120 to eliminate this cast.
2122 for (unsigned i = 0; i < n; ++i)
2123 foo((double)i);
2125 is transformed into
2127 double d = 0.0;
2128 for (unsigned i = 0; i < n; ++i, ++d)
2129 foo(d);
2131 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2132 IsSigned = false;
2133 DestTy = UCast->getDestTy();
2135 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2136 IsSigned = true;
2137 DestTy = SCast->getDestTy();
2139 if (!DestTy) continue;
2141 // If target does not support DestTy natively then do not apply
2142 // this transformation.
2143 if (!TTI.isTypeLegal(DestTy)) continue;
2145 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2146 if (!PH) continue;
2147 if (PH->getNumIncomingValues() != 2) continue;
2149 // If the calculation in integers overflows, the result in FP type will
2150 // differ. So we only can do this transformation if we are guaranteed to not
2151 // deal with overflowing values
2152 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2153 if (!AR) continue;
2154 if (IsSigned && !AR->hasNoSignedWrap()) continue;
2155 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2157 Type *SrcTy = PH->getType();
2158 int Mantissa = DestTy->getFPMantissaWidth();
2159 if (Mantissa == -1) continue;
2160 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2161 continue;
2163 unsigned Entry, Latch;
2164 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2165 Entry = 0;
2166 Latch = 1;
2167 } else {
2168 Entry = 1;
2169 Latch = 0;
2172 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2173 if (!Init) continue;
2174 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2175 (double)Init->getSExtValue() :
2176 (double)Init->getZExtValue());
2178 BinaryOperator *Incr =
2179 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2180 if (!Incr) continue;
2181 if (Incr->getOpcode() != Instruction::Add
2182 && Incr->getOpcode() != Instruction::Sub)
2183 continue;
2185 /* Initialize new IV, double d = 0.0 in above example. */
2186 ConstantInt *C = nullptr;
2187 if (Incr->getOperand(0) == PH)
2188 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2189 else if (Incr->getOperand(1) == PH)
2190 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2191 else
2192 continue;
2194 if (!C) continue;
2196 // Ignore negative constants, as the code below doesn't handle them
2197 // correctly. TODO: Remove this restriction.
2198 if (!C->getValue().isStrictlyPositive()) continue;
2200 /* Add new PHINode. */
2201 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2203 /* create new increment. '++d' in above example. */
2204 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2205 BinaryOperator *NewIncr =
2206 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2207 Instruction::FAdd : Instruction::FSub,
2208 NewPH, CFP, "IV.S.next.", Incr);
2210 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2211 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2213 /* Remove cast operation */
2214 ShadowUse->replaceAllUsesWith(NewPH);
2215 ShadowUse->eraseFromParent();
2216 Changed = true;
2217 break;
2221 /// If Cond has an operand that is an expression of an IV, set the IV user and
2222 /// stride information and return true, otherwise return false.
2223 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2224 for (IVStrideUse &U : IU)
2225 if (U.getUser() == Cond) {
2226 // NOTE: we could handle setcc instructions with multiple uses here, but
2227 // InstCombine does it as well for simple uses, it's not clear that it
2228 // occurs enough in real life to handle.
2229 CondUse = &U;
2230 return true;
2232 return false;
2235 /// Rewrite the loop's terminating condition if it uses a max computation.
2237 /// This is a narrow solution to a specific, but acute, problem. For loops
2238 /// like this:
2240 /// i = 0;
2241 /// do {
2242 /// p[i] = 0.0;
2243 /// } while (++i < n);
2245 /// the trip count isn't just 'n', because 'n' might not be positive. And
2246 /// unfortunately this can come up even for loops where the user didn't use
2247 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2248 /// will commonly be lowered like this:
2250 /// if (n > 0) {
2251 /// i = 0;
2252 /// do {
2253 /// p[i] = 0.0;
2254 /// } while (++i < n);
2255 /// }
2257 /// and then it's possible for subsequent optimization to obscure the if
2258 /// test in such a way that indvars can't find it.
2260 /// When indvars can't find the if test in loops like this, it creates a
2261 /// max expression, which allows it to give the loop a canonical
2262 /// induction variable:
2264 /// i = 0;
2265 /// max = n < 1 ? 1 : n;
2266 /// do {
2267 /// p[i] = 0.0;
2268 /// } while (++i != max);
2270 /// Canonical induction variables are necessary because the loop passes
2271 /// are designed around them. The most obvious example of this is the
2272 /// LoopInfo analysis, which doesn't remember trip count values. It
2273 /// expects to be able to rediscover the trip count each time it is
2274 /// needed, and it does this using a simple analysis that only succeeds if
2275 /// the loop has a canonical induction variable.
2277 /// However, when it comes time to generate code, the maximum operation
2278 /// can be quite costly, especially if it's inside of an outer loop.
2280 /// This function solves this problem by detecting this type of loop and
2281 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2282 /// the instructions for the maximum computation.
2283 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2284 // Check that the loop matches the pattern we're looking for.
2285 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2286 Cond->getPredicate() != CmpInst::ICMP_NE)
2287 return Cond;
2289 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2290 if (!Sel || !Sel->hasOneUse()) return Cond;
2292 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2293 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2294 return Cond;
2295 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2297 // Add one to the backedge-taken count to get the trip count.
2298 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2299 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2301 // Check for a max calculation that matches the pattern. There's no check
2302 // for ICMP_ULE here because the comparison would be with zero, which
2303 // isn't interesting.
2304 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2305 const SCEVNAryExpr *Max = nullptr;
2306 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2307 Pred = ICmpInst::ICMP_SLE;
2308 Max = S;
2309 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2310 Pred = ICmpInst::ICMP_SLT;
2311 Max = S;
2312 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2313 Pred = ICmpInst::ICMP_ULT;
2314 Max = U;
2315 } else {
2316 // No match; bail.
2317 return Cond;
2320 // To handle a max with more than two operands, this optimization would
2321 // require additional checking and setup.
2322 if (Max->getNumOperands() != 2)
2323 return Cond;
2325 const SCEV *MaxLHS = Max->getOperand(0);
2326 const SCEV *MaxRHS = Max->getOperand(1);
2328 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2329 // for a comparison with 1. For <= and >=, a comparison with zero.
2330 if (!MaxLHS ||
2331 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2332 return Cond;
2334 // Check the relevant induction variable for conformance to
2335 // the pattern.
2336 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2337 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2338 if (!AR || !AR->isAffine() ||
2339 AR->getStart() != One ||
2340 AR->getStepRecurrence(SE) != One)
2341 return Cond;
2343 assert(AR->getLoop() == L &&
2344 "Loop condition operand is an addrec in a different loop!");
2346 // Check the right operand of the select, and remember it, as it will
2347 // be used in the new comparison instruction.
2348 Value *NewRHS = nullptr;
2349 if (ICmpInst::isTrueWhenEqual(Pred)) {
2350 // Look for n+1, and grab n.
2351 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2352 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2353 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2354 NewRHS = BO->getOperand(0);
2355 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2356 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2357 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2358 NewRHS = BO->getOperand(0);
2359 if (!NewRHS)
2360 return Cond;
2361 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2362 NewRHS = Sel->getOperand(1);
2363 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2364 NewRHS = Sel->getOperand(2);
2365 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2366 NewRHS = SU->getValue();
2367 else
2368 // Max doesn't match expected pattern.
2369 return Cond;
2371 // Determine the new comparison opcode. It may be signed or unsigned,
2372 // and the original comparison may be either equality or inequality.
2373 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2374 Pred = CmpInst::getInversePredicate(Pred);
2376 // Ok, everything looks ok to change the condition into an SLT or SGE and
2377 // delete the max calculation.
2378 ICmpInst *NewCond =
2379 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2381 // Delete the max calculation instructions.
2382 NewCond->setDebugLoc(Cond->getDebugLoc());
2383 Cond->replaceAllUsesWith(NewCond);
2384 CondUse->setUser(NewCond);
2385 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2386 Cond->eraseFromParent();
2387 Sel->eraseFromParent();
2388 if (Cmp->use_empty())
2389 Cmp->eraseFromParent();
2390 return NewCond;
2393 /// Change loop terminating condition to use the postinc iv when possible.
2394 void
2395 LSRInstance::OptimizeLoopTermCond() {
2396 SmallPtrSet<Instruction *, 4> PostIncs;
2398 // We need a different set of heuristics for rotated and non-rotated loops.
2399 // If a loop is rotated then the latch is also the backedge, so inserting
2400 // post-inc expressions just before the latch is ideal. To reduce live ranges
2401 // it also makes sense to rewrite terminating conditions to use post-inc
2402 // expressions.
2404 // If the loop is not rotated then the latch is not a backedge; the latch
2405 // check is done in the loop head. Adding post-inc expressions before the
2406 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2407 // in the loop body. In this case we do *not* want to use post-inc expressions
2408 // in the latch check, and we want to insert post-inc expressions before
2409 // the backedge.
2410 BasicBlock *LatchBlock = L->getLoopLatch();
2411 SmallVector<BasicBlock*, 8> ExitingBlocks;
2412 L->getExitingBlocks(ExitingBlocks);
2413 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2414 return LatchBlock != BB;
2415 })) {
2416 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2417 IVIncInsertPos = LatchBlock->getTerminator();
2418 return;
2421 // Otherwise treat this as a rotated loop.
2422 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2423 // Get the terminating condition for the loop if possible. If we
2424 // can, we want to change it to use a post-incremented version of its
2425 // induction variable, to allow coalescing the live ranges for the IV into
2426 // one register value.
2428 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2429 if (!TermBr)
2430 continue;
2431 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2432 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2433 continue;
2435 // Search IVUsesByStride to find Cond's IVUse if there is one.
2436 IVStrideUse *CondUse = nullptr;
2437 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2438 if (!FindIVUserForCond(Cond, CondUse))
2439 continue;
2441 // If the trip count is computed in terms of a max (due to ScalarEvolution
2442 // being unable to find a sufficient guard, for example), change the loop
2443 // comparison to use SLT or ULT instead of NE.
2444 // One consequence of doing this now is that it disrupts the count-down
2445 // optimization. That's not always a bad thing though, because in such
2446 // cases it may still be worthwhile to avoid a max.
2447 Cond = OptimizeMax(Cond, CondUse);
2449 // If this exiting block dominates the latch block, it may also use
2450 // the post-inc value if it won't be shared with other uses.
2451 // Check for dominance.
2452 if (!DT.dominates(ExitingBlock, LatchBlock))
2453 continue;
2455 // Conservatively avoid trying to use the post-inc value in non-latch
2456 // exits if there may be pre-inc users in intervening blocks.
2457 if (LatchBlock != ExitingBlock)
2458 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2459 // Test if the use is reachable from the exiting block. This dominator
2460 // query is a conservative approximation of reachability.
2461 if (&*UI != CondUse &&
2462 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2463 // Conservatively assume there may be reuse if the quotient of their
2464 // strides could be a legal scale.
2465 const SCEV *A = IU.getStride(*CondUse, L);
2466 const SCEV *B = IU.getStride(*UI, L);
2467 if (!A || !B) continue;
2468 if (SE.getTypeSizeInBits(A->getType()) !=
2469 SE.getTypeSizeInBits(B->getType())) {
2470 if (SE.getTypeSizeInBits(A->getType()) >
2471 SE.getTypeSizeInBits(B->getType()))
2472 B = SE.getSignExtendExpr(B, A->getType());
2473 else
2474 A = SE.getSignExtendExpr(A, B->getType());
2476 if (const SCEVConstant *D =
2477 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2478 const ConstantInt *C = D->getValue();
2479 // Stride of one or negative one can have reuse with non-addresses.
2480 if (C->isOne() || C->isMinusOne())
2481 goto decline_post_inc;
2482 // Avoid weird situations.
2483 if (C->getValue().getMinSignedBits() >= 64 ||
2484 C->getValue().isMinSignedValue())
2485 goto decline_post_inc;
2486 // Check for possible scaled-address reuse.
2487 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2488 MemAccessTy AccessTy = getAccessType(
2489 TTI, UI->getUser(), UI->getOperandValToReplace());
2490 int64_t Scale = C->getSExtValue();
2491 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2492 /*BaseOffset=*/0,
2493 /*HasBaseReg=*/false, Scale,
2494 AccessTy.AddrSpace))
2495 goto decline_post_inc;
2496 Scale = -Scale;
2497 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2498 /*BaseOffset=*/0,
2499 /*HasBaseReg=*/false, Scale,
2500 AccessTy.AddrSpace))
2501 goto decline_post_inc;
2506 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2507 << *Cond << '\n');
2509 // It's possible for the setcc instruction to be anywhere in the loop, and
2510 // possible for it to have multiple users. If it is not immediately before
2511 // the exiting block branch, move it.
2512 if (Cond->getNextNonDebugInstruction() != TermBr) {
2513 if (Cond->hasOneUse()) {
2514 Cond->moveBefore(TermBr);
2515 } else {
2516 // Clone the terminating condition and insert into the loopend.
2517 ICmpInst *OldCond = Cond;
2518 Cond = cast<ICmpInst>(Cond->clone());
2519 Cond->setName(L->getHeader()->getName() + ".termcond");
2520 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2522 // Clone the IVUse, as the old use still exists!
2523 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2524 TermBr->replaceUsesOfWith(OldCond, Cond);
2528 // If we get to here, we know that we can transform the setcc instruction to
2529 // use the post-incremented version of the IV, allowing us to coalesce the
2530 // live ranges for the IV correctly.
2531 CondUse->transformToPostInc(L);
2532 Changed = true;
2534 PostIncs.insert(Cond);
2535 decline_post_inc:;
2538 // Determine an insertion point for the loop induction variable increment. It
2539 // must dominate all the post-inc comparisons we just set up, and it must
2540 // dominate the loop latch edge.
2541 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2542 for (Instruction *Inst : PostIncs) {
2543 BasicBlock *BB =
2544 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2545 Inst->getParent());
2546 if (BB == Inst->getParent())
2547 IVIncInsertPos = Inst;
2548 else if (BB != IVIncInsertPos->getParent())
2549 IVIncInsertPos = BB->getTerminator();
2553 /// Determine if the given use can accommodate a fixup at the given offset and
2554 /// other details. If so, update the use and return true.
2555 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2556 bool HasBaseReg, LSRUse::KindType Kind,
2557 MemAccessTy AccessTy) {
2558 int64_t NewMinOffset = LU.MinOffset;
2559 int64_t NewMaxOffset = LU.MaxOffset;
2560 MemAccessTy NewAccessTy = AccessTy;
2562 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2563 // something conservative, however this can pessimize in the case that one of
2564 // the uses will have all its uses outside the loop, for example.
2565 if (LU.Kind != Kind)
2566 return false;
2568 // Check for a mismatched access type, and fall back conservatively as needed.
2569 // TODO: Be less conservative when the type is similar and can use the same
2570 // addressing modes.
2571 if (Kind == LSRUse::Address) {
2572 if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2573 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2574 AccessTy.AddrSpace);
2578 // Conservatively assume HasBaseReg is true for now.
2579 if (NewOffset < LU.MinOffset) {
2580 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2581 LU.MaxOffset - NewOffset, HasBaseReg))
2582 return false;
2583 NewMinOffset = NewOffset;
2584 } else if (NewOffset > LU.MaxOffset) {
2585 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2586 NewOffset - LU.MinOffset, HasBaseReg))
2587 return false;
2588 NewMaxOffset = NewOffset;
2591 // Update the use.
2592 LU.MinOffset = NewMinOffset;
2593 LU.MaxOffset = NewMaxOffset;
2594 LU.AccessTy = NewAccessTy;
2595 return true;
2598 /// Return an LSRUse index and an offset value for a fixup which needs the given
2599 /// expression, with the given kind and optional access type. Either reuse an
2600 /// existing use or create a new one, as needed.
2601 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2602 LSRUse::KindType Kind,
2603 MemAccessTy AccessTy) {
2604 const SCEV *Copy = Expr;
2605 int64_t Offset = ExtractImmediate(Expr, SE);
2607 // Basic uses can't accept any offset, for example.
2608 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2609 Offset, /*HasBaseReg=*/ true)) {
2610 Expr = Copy;
2611 Offset = 0;
2614 std::pair<UseMapTy::iterator, bool> P =
2615 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2616 if (!P.second) {
2617 // A use already existed with this base.
2618 size_t LUIdx = P.first->second;
2619 LSRUse &LU = Uses[LUIdx];
2620 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2621 // Reuse this use.
2622 return std::make_pair(LUIdx, Offset);
2625 // Create a new use.
2626 size_t LUIdx = Uses.size();
2627 P.first->second = LUIdx;
2628 Uses.push_back(LSRUse(Kind, AccessTy));
2629 LSRUse &LU = Uses[LUIdx];
2631 LU.MinOffset = Offset;
2632 LU.MaxOffset = Offset;
2633 return std::make_pair(LUIdx, Offset);
2636 /// Delete the given use from the Uses list.
2637 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2638 if (&LU != &Uses.back())
2639 std::swap(LU, Uses.back());
2640 Uses.pop_back();
2642 // Update RegUses.
2643 RegUses.swapAndDropUse(LUIdx, Uses.size());
2646 /// Look for a use distinct from OrigLU which is has a formula that has the same
2647 /// registers as the given formula.
2648 LSRUse *
2649 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2650 const LSRUse &OrigLU) {
2651 // Search all uses for the formula. This could be more clever.
2652 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2653 LSRUse &LU = Uses[LUIdx];
2654 // Check whether this use is close enough to OrigLU, to see whether it's
2655 // worthwhile looking through its formulae.
2656 // Ignore ICmpZero uses because they may contain formulae generated by
2657 // GenerateICmpZeroScales, in which case adding fixup offsets may
2658 // be invalid.
2659 if (&LU != &OrigLU &&
2660 LU.Kind != LSRUse::ICmpZero &&
2661 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2662 LU.WidestFixupType == OrigLU.WidestFixupType &&
2663 LU.HasFormulaWithSameRegs(OrigF)) {
2664 // Scan through this use's formulae.
2665 for (const Formula &F : LU.Formulae) {
2666 // Check to see if this formula has the same registers and symbols
2667 // as OrigF.
2668 if (F.BaseRegs == OrigF.BaseRegs &&
2669 F.ScaledReg == OrigF.ScaledReg &&
2670 F.BaseGV == OrigF.BaseGV &&
2671 F.Scale == OrigF.Scale &&
2672 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2673 if (F.BaseOffset == 0)
2674 return &LU;
2675 // This is the formula where all the registers and symbols matched;
2676 // there aren't going to be any others. Since we declined it, we
2677 // can skip the rest of the formulae and proceed to the next LSRUse.
2678 break;
2684 // Nothing looked good.
2685 return nullptr;
2688 void LSRInstance::CollectInterestingTypesAndFactors() {
2689 SmallSetVector<const SCEV *, 4> Strides;
2691 // Collect interesting types and strides.
2692 SmallVector<const SCEV *, 4> Worklist;
2693 for (const IVStrideUse &U : IU) {
2694 const SCEV *Expr = IU.getExpr(U);
2696 // Collect interesting types.
2697 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2699 // Add strides for mentioned loops.
2700 Worklist.push_back(Expr);
2701 do {
2702 const SCEV *S = Worklist.pop_back_val();
2703 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2704 if (AR->getLoop() == L)
2705 Strides.insert(AR->getStepRecurrence(SE));
2706 Worklist.push_back(AR->getStart());
2707 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2708 Worklist.append(Add->op_begin(), Add->op_end());
2710 } while (!Worklist.empty());
2713 // Compute interesting factors from the set of interesting strides.
2714 for (SmallSetVector<const SCEV *, 4>::const_iterator
2715 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2716 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2717 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2718 const SCEV *OldStride = *I;
2719 const SCEV *NewStride = *NewStrideIter;
2721 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2722 SE.getTypeSizeInBits(NewStride->getType())) {
2723 if (SE.getTypeSizeInBits(OldStride->getType()) >
2724 SE.getTypeSizeInBits(NewStride->getType()))
2725 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2726 else
2727 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2729 if (const SCEVConstant *Factor =
2730 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2731 SE, true))) {
2732 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2733 Factors.insert(Factor->getAPInt().getSExtValue());
2734 } else if (const SCEVConstant *Factor =
2735 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2736 NewStride,
2737 SE, true))) {
2738 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2739 Factors.insert(Factor->getAPInt().getSExtValue());
2743 // If all uses use the same type, don't bother looking for truncation-based
2744 // reuse.
2745 if (Types.size() == 1)
2746 Types.clear();
2748 LLVM_DEBUG(print_factors_and_types(dbgs()));
2751 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2752 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2753 /// IVStrideUses, we could partially skip this.
2754 static User::op_iterator
2755 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2756 Loop *L, ScalarEvolution &SE) {
2757 for(; OI != OE; ++OI) {
2758 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2759 if (!SE.isSCEVable(Oper->getType()))
2760 continue;
2762 if (const SCEVAddRecExpr *AR =
2763 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2764 if (AR->getLoop() == L)
2765 break;
2769 return OI;
2772 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2773 /// a convenient helper.
2774 static Value *getWideOperand(Value *Oper) {
2775 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2776 return Trunc->getOperand(0);
2777 return Oper;
2780 /// Return true if we allow an IV chain to include both types.
2781 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2782 Type *LType = LVal->getType();
2783 Type *RType = RVal->getType();
2784 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2785 // Different address spaces means (possibly)
2786 // different types of the pointer implementation,
2787 // e.g. i16 vs i32 so disallow that.
2788 (LType->getPointerAddressSpace() ==
2789 RType->getPointerAddressSpace()));
2792 /// Return an approximation of this SCEV expression's "base", or NULL for any
2793 /// constant. Returning the expression itself is conservative. Returning a
2794 /// deeper subexpression is more precise and valid as long as it isn't less
2795 /// complex than another subexpression. For expressions involving multiple
2796 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2797 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2798 /// IVInc==b-a.
2800 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2801 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2802 static const SCEV *getExprBase(const SCEV *S) {
2803 switch (S->getSCEVType()) {
2804 default: // uncluding scUnknown.
2805 return S;
2806 case scConstant:
2807 return nullptr;
2808 case scTruncate:
2809 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2810 case scZeroExtend:
2811 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2812 case scSignExtend:
2813 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2814 case scAddExpr: {
2815 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2816 // there's nothing more complex.
2817 // FIXME: not sure if we want to recognize negation.
2818 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2819 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2820 E(Add->op_begin()); I != E; ++I) {
2821 const SCEV *SubExpr = *I;
2822 if (SubExpr->getSCEVType() == scAddExpr)
2823 return getExprBase(SubExpr);
2825 if (SubExpr->getSCEVType() != scMulExpr)
2826 return SubExpr;
2828 return S; // all operands are scaled, be conservative.
2830 case scAddRecExpr:
2831 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2833 llvm_unreachable("Unknown SCEV kind!");
2836 /// Return true if the chain increment is profitable to expand into a loop
2837 /// invariant value, which may require its own register. A profitable chain
2838 /// increment will be an offset relative to the same base. We allow such offsets
2839 /// to potentially be used as chain increment as long as it's not obviously
2840 /// expensive to expand using real instructions.
2841 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2842 const SCEV *IncExpr,
2843 ScalarEvolution &SE) {
2844 // Aggressively form chains when -stress-ivchain.
2845 if (StressIVChain)
2846 return true;
2848 // Do not replace a constant offset from IV head with a nonconstant IV
2849 // increment.
2850 if (!isa<SCEVConstant>(IncExpr)) {
2851 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2852 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2853 return false;
2856 SmallPtrSet<const SCEV*, 8> Processed;
2857 return !isHighCostExpansion(IncExpr, Processed, SE);
2860 /// Return true if the number of registers needed for the chain is estimated to
2861 /// be less than the number required for the individual IV users. First prohibit
2862 /// any IV users that keep the IV live across increments (the Users set should
2863 /// be empty). Next count the number and type of increments in the chain.
2865 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2866 /// effectively use postinc addressing modes. Only consider it profitable it the
2867 /// increments can be computed in fewer registers when chained.
2869 /// TODO: Consider IVInc free if it's already used in another chains.
2870 static bool isProfitableChain(IVChain &Chain,
2871 SmallPtrSetImpl<Instruction *> &Users,
2872 ScalarEvolution &SE,
2873 const TargetTransformInfo &TTI) {
2874 if (StressIVChain)
2875 return true;
2877 if (!Chain.hasIncs())
2878 return false;
2880 if (!Users.empty()) {
2881 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2882 for (Instruction *Inst
2883 : Users) { dbgs() << " " << *Inst << "\n"; });
2884 return false;
2886 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2888 // The chain itself may require a register, so intialize cost to 1.
2889 int cost = 1;
2891 // A complete chain likely eliminates the need for keeping the original IV in
2892 // a register. LSR does not currently know how to form a complete chain unless
2893 // the header phi already exists.
2894 if (isa<PHINode>(Chain.tailUserInst())
2895 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2896 --cost;
2898 const SCEV *LastIncExpr = nullptr;
2899 unsigned NumConstIncrements = 0;
2900 unsigned NumVarIncrements = 0;
2901 unsigned NumReusedIncrements = 0;
2903 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2904 return true;
2906 for (const IVInc &Inc : Chain) {
2907 if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2908 return true;
2909 if (Inc.IncExpr->isZero())
2910 continue;
2912 // Incrementing by zero or some constant is neutral. We assume constants can
2913 // be folded into an addressing mode or an add's immediate operand.
2914 if (isa<SCEVConstant>(Inc.IncExpr)) {
2915 ++NumConstIncrements;
2916 continue;
2919 if (Inc.IncExpr == LastIncExpr)
2920 ++NumReusedIncrements;
2921 else
2922 ++NumVarIncrements;
2924 LastIncExpr = Inc.IncExpr;
2926 // An IV chain with a single increment is handled by LSR's postinc
2927 // uses. However, a chain with multiple increments requires keeping the IV's
2928 // value live longer than it needs to be if chained.
2929 if (NumConstIncrements > 1)
2930 --cost;
2932 // Materializing increment expressions in the preheader that didn't exist in
2933 // the original code may cost a register. For example, sign-extended array
2934 // indices can produce ridiculous increments like this:
2935 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2936 cost += NumVarIncrements;
2938 // Reusing variable increments likely saves a register to hold the multiple of
2939 // the stride.
2940 cost -= NumReusedIncrements;
2942 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2943 << "\n");
2945 return cost < 0;
2948 /// Add this IV user to an existing chain or make it the head of a new chain.
2949 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2950 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2951 // When IVs are used as types of varying widths, they are generally converted
2952 // to a wider type with some uses remaining narrow under a (free) trunc.
2953 Value *const NextIV = getWideOperand(IVOper);
2954 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2955 const SCEV *const OperExprBase = getExprBase(OperExpr);
2957 // Visit all existing chains. Check if its IVOper can be computed as a
2958 // profitable loop invariant increment from the last link in the Chain.
2959 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2960 const SCEV *LastIncExpr = nullptr;
2961 for (; ChainIdx < NChains; ++ChainIdx) {
2962 IVChain &Chain = IVChainVec[ChainIdx];
2964 // Prune the solution space aggressively by checking that both IV operands
2965 // are expressions that operate on the same unscaled SCEVUnknown. This
2966 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2967 // first avoids creating extra SCEV expressions.
2968 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2969 continue;
2971 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2972 if (!isCompatibleIVType(PrevIV, NextIV))
2973 continue;
2975 // A phi node terminates a chain.
2976 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2977 continue;
2979 // The increment must be loop-invariant so it can be kept in a register.
2980 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2981 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2982 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2983 continue;
2985 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2986 LastIncExpr = IncExpr;
2987 break;
2990 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2991 // bother for phi nodes, because they must be last in the chain.
2992 if (ChainIdx == NChains) {
2993 if (isa<PHINode>(UserInst))
2994 return;
2995 if (NChains >= MaxChains && !StressIVChain) {
2996 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2997 return;
2999 LastIncExpr = OperExpr;
3000 // IVUsers may have skipped over sign/zero extensions. We don't currently
3001 // attempt to form chains involving extensions unless they can be hoisted
3002 // into this loop's AddRec.
3003 if (!isa<SCEVAddRecExpr>(LastIncExpr))
3004 return;
3005 ++NChains;
3006 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3007 OperExprBase));
3008 ChainUsersVec.resize(NChains);
3009 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3010 << ") IV=" << *LastIncExpr << "\n");
3011 } else {
3012 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
3013 << ") IV+" << *LastIncExpr << "\n");
3014 // Add this IV user to the end of the chain.
3015 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3017 IVChain &Chain = IVChainVec[ChainIdx];
3019 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3020 // This chain's NearUsers become FarUsers.
3021 if (!LastIncExpr->isZero()) {
3022 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3023 NearUsers.end());
3024 NearUsers.clear();
3027 // All other uses of IVOperand become near uses of the chain.
3028 // We currently ignore intermediate values within SCEV expressions, assuming
3029 // they will eventually be used be the current chain, or can be computed
3030 // from one of the chain increments. To be more precise we could
3031 // transitively follow its user and only add leaf IV users to the set.
3032 for (User *U : IVOper->users()) {
3033 Instruction *OtherUse = dyn_cast<Instruction>(U);
3034 if (!OtherUse)
3035 continue;
3036 // Uses in the chain will no longer be uses if the chain is formed.
3037 // Include the head of the chain in this iteration (not Chain.begin()).
3038 IVChain::const_iterator IncIter = Chain.Incs.begin();
3039 IVChain::const_iterator IncEnd = Chain.Incs.end();
3040 for( ; IncIter != IncEnd; ++IncIter) {
3041 if (IncIter->UserInst == OtherUse)
3042 break;
3044 if (IncIter != IncEnd)
3045 continue;
3047 if (SE.isSCEVable(OtherUse->getType())
3048 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3049 && IU.isIVUserOrOperand(OtherUse)) {
3050 continue;
3052 NearUsers.insert(OtherUse);
3055 // Since this user is part of the chain, it's no longer considered a use
3056 // of the chain.
3057 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3060 /// Populate the vector of Chains.
3062 /// This decreases ILP at the architecture level. Targets with ample registers,
3063 /// multiple memory ports, and no register renaming probably don't want
3064 /// this. However, such targets should probably disable LSR altogether.
3066 /// The job of LSR is to make a reasonable choice of induction variables across
3067 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3068 /// ILP *within the loop* if the target wants it.
3070 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3071 /// will not reorder memory operations, it will recognize this as a chain, but
3072 /// will generate redundant IV increments. Ideally this would be corrected later
3073 /// by a smart scheduler:
3074 /// = A[i]
3075 /// = A[i+x]
3076 /// A[i] =
3077 /// A[i+x] =
3079 /// TODO: Walk the entire domtree within this loop, not just the path to the
3080 /// loop latch. This will discover chains on side paths, but requires
3081 /// maintaining multiple copies of the Chains state.
3082 void LSRInstance::CollectChains() {
3083 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3084 SmallVector<ChainUsers, 8> ChainUsersVec;
3086 SmallVector<BasicBlock *,8> LatchPath;
3087 BasicBlock *LoopHeader = L->getHeader();
3088 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3089 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3090 LatchPath.push_back(Rung->getBlock());
3092 LatchPath.push_back(LoopHeader);
3094 // Walk the instruction stream from the loop header to the loop latch.
3095 for (BasicBlock *BB : reverse(LatchPath)) {
3096 for (Instruction &I : *BB) {
3097 // Skip instructions that weren't seen by IVUsers analysis.
3098 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3099 continue;
3101 // Ignore users that are part of a SCEV expression. This way we only
3102 // consider leaf IV Users. This effectively rediscovers a portion of
3103 // IVUsers analysis but in program order this time.
3104 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3105 continue;
3107 // Remove this instruction from any NearUsers set it may be in.
3108 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3109 ChainIdx < NChains; ++ChainIdx) {
3110 ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3112 // Search for operands that can be chained.
3113 SmallPtrSet<Instruction*, 4> UniqueOperands;
3114 User::op_iterator IVOpEnd = I.op_end();
3115 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3116 while (IVOpIter != IVOpEnd) {
3117 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3118 if (UniqueOperands.insert(IVOpInst).second)
3119 ChainInstruction(&I, IVOpInst, ChainUsersVec);
3120 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3122 } // Continue walking down the instructions.
3123 } // Continue walking down the domtree.
3124 // Visit phi backedges to determine if the chain can generate the IV postinc.
3125 for (PHINode &PN : L->getHeader()->phis()) {
3126 if (!SE.isSCEVable(PN.getType()))
3127 continue;
3129 Instruction *IncV =
3130 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3131 if (IncV)
3132 ChainInstruction(&PN, IncV, ChainUsersVec);
3134 // Remove any unprofitable chains.
3135 unsigned ChainIdx = 0;
3136 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3137 UsersIdx < NChains; ++UsersIdx) {
3138 if (!isProfitableChain(IVChainVec[UsersIdx],
3139 ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3140 continue;
3141 // Preserve the chain at UsesIdx.
3142 if (ChainIdx != UsersIdx)
3143 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3144 FinalizeChain(IVChainVec[ChainIdx]);
3145 ++ChainIdx;
3147 IVChainVec.resize(ChainIdx);
3150 void LSRInstance::FinalizeChain(IVChain &Chain) {
3151 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3152 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3154 for (const IVInc &Inc : Chain) {
3155 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
3156 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3157 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3158 IVIncSet.insert(UseI);
3162 /// Return true if the IVInc can be folded into an addressing mode.
3163 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3164 Value *Operand, const TargetTransformInfo &TTI) {
3165 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3166 if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3167 return false;
3169 if (IncConst->getAPInt().getMinSignedBits() > 64)
3170 return false;
3172 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3173 int64_t IncOffset = IncConst->getValue()->getSExtValue();
3174 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3175 IncOffset, /*HasBaseReg=*/false))
3176 return false;
3178 return true;
3181 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3182 /// user's operand from the previous IV user's operand.
3183 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3184 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3185 // Find the new IVOperand for the head of the chain. It may have been replaced
3186 // by LSR.
3187 const IVInc &Head = Chain.Incs[0];
3188 User::op_iterator IVOpEnd = Head.UserInst->op_end();
3189 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3190 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3191 IVOpEnd, L, SE);
3192 Value *IVSrc = nullptr;
3193 while (IVOpIter != IVOpEnd) {
3194 IVSrc = getWideOperand(*IVOpIter);
3196 // If this operand computes the expression that the chain needs, we may use
3197 // it. (Check this after setting IVSrc which is used below.)
3199 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3200 // narrow for the chain, so we can no longer use it. We do allow using a
3201 // wider phi, assuming the LSR checked for free truncation. In that case we
3202 // should already have a truncate on this operand such that
3203 // getSCEV(IVSrc) == IncExpr.
3204 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3205 || SE.getSCEV(IVSrc) == Head.IncExpr) {
3206 break;
3208 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3210 if (IVOpIter == IVOpEnd) {
3211 // Gracefully give up on this chain.
3212 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3213 return;
3215 assert(IVSrc && "Failed to find IV chain source");
3217 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3218 Type *IVTy = IVSrc->getType();
3219 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3220 const SCEV *LeftOverExpr = nullptr;
3221 for (const IVInc &Inc : Chain) {
3222 Instruction *InsertPt = Inc.UserInst;
3223 if (isa<PHINode>(InsertPt))
3224 InsertPt = L->getLoopLatch()->getTerminator();
3226 // IVOper will replace the current IV User's operand. IVSrc is the IV
3227 // value currently held in a register.
3228 Value *IVOper = IVSrc;
3229 if (!Inc.IncExpr->isZero()) {
3230 // IncExpr was the result of subtraction of two narrow values, so must
3231 // be signed.
3232 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3233 LeftOverExpr = LeftOverExpr ?
3234 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3236 if (LeftOverExpr && !LeftOverExpr->isZero()) {
3237 // Expand the IV increment.
3238 Rewriter.clearPostInc();
3239 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3240 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3241 SE.getUnknown(IncV));
3242 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3244 // If an IV increment can't be folded, use it as the next IV value.
3245 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3246 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3247 IVSrc = IVOper;
3248 LeftOverExpr = nullptr;
3251 Type *OperTy = Inc.IVOperand->getType();
3252 if (IVTy != OperTy) {
3253 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3254 "cannot extend a chained IV");
3255 IRBuilder<> Builder(InsertPt);
3256 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3258 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3259 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3260 DeadInsts.emplace_back(OperandIsInstr);
3262 // If LSR created a new, wider phi, we may also replace its postinc. We only
3263 // do this if we also found a wide value for the head of the chain.
3264 if (isa<PHINode>(Chain.tailUserInst())) {
3265 for (PHINode &Phi : L->getHeader()->phis()) {
3266 if (!isCompatibleIVType(&Phi, IVSrc))
3267 continue;
3268 Instruction *PostIncV = dyn_cast<Instruction>(
3269 Phi.getIncomingValueForBlock(L->getLoopLatch()));
3270 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3271 continue;
3272 Value *IVOper = IVSrc;
3273 Type *PostIncTy = PostIncV->getType();
3274 if (IVTy != PostIncTy) {
3275 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3276 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3277 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3278 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3280 Phi.replaceUsesOfWith(PostIncV, IVOper);
3281 DeadInsts.emplace_back(PostIncV);
3286 void LSRInstance::CollectFixupsAndInitialFormulae() {
3287 BranchInst *ExitBranch = nullptr;
3288 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3290 for (const IVStrideUse &U : IU) {
3291 Instruction *UserInst = U.getUser();
3292 // Skip IV users that are part of profitable IV Chains.
3293 User::op_iterator UseI =
3294 find(UserInst->operands(), U.getOperandValToReplace());
3295 assert(UseI != UserInst->op_end() && "cannot find IV operand");
3296 if (IVIncSet.count(UseI)) {
3297 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3298 continue;
3301 LSRUse::KindType Kind = LSRUse::Basic;
3302 MemAccessTy AccessTy;
3303 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3304 Kind = LSRUse::Address;
3305 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3308 const SCEV *S = IU.getExpr(U);
3309 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3311 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3312 // (N - i == 0), and this allows (N - i) to be the expression that we work
3313 // with rather than just N or i, so we can consider the register
3314 // requirements for both N and i at the same time. Limiting this code to
3315 // equality icmps is not a problem because all interesting loops use
3316 // equality icmps, thanks to IndVarSimplify.
3317 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3318 // If CI can be saved in some target, like replaced inside hardware loop
3319 // in PowerPC, no need to generate initial formulae for it.
3320 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3321 continue;
3322 if (CI->isEquality()) {
3323 // Swap the operands if needed to put the OperandValToReplace on the
3324 // left, for consistency.
3325 Value *NV = CI->getOperand(1);
3326 if (NV == U.getOperandValToReplace()) {
3327 CI->setOperand(1, CI->getOperand(0));
3328 CI->setOperand(0, NV);
3329 NV = CI->getOperand(1);
3330 Changed = true;
3333 // x == y --> x - y == 0
3334 const SCEV *N = SE.getSCEV(NV);
3335 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) &&
3336 (!NV->getType()->isPointerTy() ||
3337 SE.getPointerBase(N) == SE.getPointerBase(S))) {
3338 // S is normalized, so normalize N before folding it into S
3339 // to keep the result normalized.
3340 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3341 Kind = LSRUse::ICmpZero;
3342 S = SE.getMinusSCEV(N, S);
3345 // -1 and the negations of all interesting strides (except the negation
3346 // of -1) are now also interesting.
3347 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3348 if (Factors[i] != -1)
3349 Factors.insert(-(uint64_t)Factors[i]);
3350 Factors.insert(-1);
3354 // Get or create an LSRUse.
3355 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3356 size_t LUIdx = P.first;
3357 int64_t Offset = P.second;
3358 LSRUse &LU = Uses[LUIdx];
3360 // Record the fixup.
3361 LSRFixup &LF = LU.getNewFixup();
3362 LF.UserInst = UserInst;
3363 LF.OperandValToReplace = U.getOperandValToReplace();
3364 LF.PostIncLoops = TmpPostIncLoops;
3365 LF.Offset = Offset;
3366 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3368 if (!LU.WidestFixupType ||
3369 SE.getTypeSizeInBits(LU.WidestFixupType) <
3370 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3371 LU.WidestFixupType = LF.OperandValToReplace->getType();
3373 // If this is the first use of this LSRUse, give it a formula.
3374 if (LU.Formulae.empty()) {
3375 InsertInitialFormula(S, LU, LUIdx);
3376 CountRegisters(LU.Formulae.back(), LUIdx);
3380 LLVM_DEBUG(print_fixups(dbgs()));
3383 /// Insert a formula for the given expression into the given use, separating out
3384 /// loop-variant portions from loop-invariant and loop-computable portions.
3385 void
3386 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3387 // Mark uses whose expressions cannot be expanded.
3388 if (!isSafeToExpand(S, SE))
3389 LU.RigidFormula = true;
3391 Formula F;
3392 F.initialMatch(S, L, SE);
3393 bool Inserted = InsertFormula(LU, LUIdx, F);
3394 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3397 /// Insert a simple single-register formula for the given expression into the
3398 /// given use.
3399 void
3400 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3401 LSRUse &LU, size_t LUIdx) {
3402 Formula F;
3403 F.BaseRegs.push_back(S);
3404 F.HasBaseReg = true;
3405 bool Inserted = InsertFormula(LU, LUIdx, F);
3406 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3409 /// Note which registers are used by the given formula, updating RegUses.
3410 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3411 if (F.ScaledReg)
3412 RegUses.countRegister(F.ScaledReg, LUIdx);
3413 for (const SCEV *BaseReg : F.BaseRegs)
3414 RegUses.countRegister(BaseReg, LUIdx);
3417 /// If the given formula has not yet been inserted, add it to the list, and
3418 /// return true. Return false otherwise.
3419 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3420 // Do not insert formula that we will not be able to expand.
3421 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3422 "Formula is illegal");
3424 if (!LU.InsertFormula(F, *L))
3425 return false;
3427 CountRegisters(F, LUIdx);
3428 return true;
3431 /// Check for other uses of loop-invariant values which we're tracking. These
3432 /// other uses will pin these values in registers, making them less profitable
3433 /// for elimination.
3434 /// TODO: This currently misses non-constant addrec step registers.
3435 /// TODO: Should this give more weight to users inside the loop?
3436 void
3437 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3438 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3439 SmallPtrSet<const SCEV *, 32> Visited;
3441 while (!Worklist.empty()) {
3442 const SCEV *S = Worklist.pop_back_val();
3444 // Don't process the same SCEV twice
3445 if (!Visited.insert(S).second)
3446 continue;
3448 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3449 Worklist.append(N->op_begin(), N->op_end());
3450 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3451 Worklist.push_back(C->getOperand());
3452 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3453 Worklist.push_back(D->getLHS());
3454 Worklist.push_back(D->getRHS());
3455 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3456 const Value *V = US->getValue();
3457 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3458 // Look for instructions defined outside the loop.
3459 if (L->contains(Inst)) continue;
3460 } else if (isa<UndefValue>(V))
3461 // Undef doesn't have a live range, so it doesn't matter.
3462 continue;
3463 for (const Use &U : V->uses()) {
3464 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3465 // Ignore non-instructions.
3466 if (!UserInst)
3467 continue;
3468 // Don't bother if the instruction is an EHPad.
3469 if (UserInst->isEHPad())
3470 continue;
3471 // Ignore instructions in other functions (as can happen with
3472 // Constants).
3473 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3474 continue;
3475 // Ignore instructions not dominated by the loop.
3476 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3477 UserInst->getParent() :
3478 cast<PHINode>(UserInst)->getIncomingBlock(
3479 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3480 if (!DT.dominates(L->getHeader(), UseBB))
3481 continue;
3482 // Don't bother if the instruction is in a BB which ends in an EHPad.
3483 if (UseBB->getTerminator()->isEHPad())
3484 continue;
3485 // Don't bother rewriting PHIs in catchswitch blocks.
3486 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3487 continue;
3488 // Ignore uses which are part of other SCEV expressions, to avoid
3489 // analyzing them multiple times.
3490 if (SE.isSCEVable(UserInst->getType())) {
3491 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3492 // If the user is a no-op, look through to its uses.
3493 if (!isa<SCEVUnknown>(UserS))
3494 continue;
3495 if (UserS == US) {
3496 Worklist.push_back(
3497 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3498 continue;
3501 // Ignore icmp instructions which are already being analyzed.
3502 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3503 unsigned OtherIdx = !U.getOperandNo();
3504 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3505 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3506 continue;
3509 std::pair<size_t, int64_t> P = getUse(
3510 S, LSRUse::Basic, MemAccessTy());
3511 size_t LUIdx = P.first;
3512 int64_t Offset = P.second;
3513 LSRUse &LU = Uses[LUIdx];
3514 LSRFixup &LF = LU.getNewFixup();
3515 LF.UserInst = const_cast<Instruction *>(UserInst);
3516 LF.OperandValToReplace = U;
3517 LF.Offset = Offset;
3518 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3519 if (!LU.WidestFixupType ||
3520 SE.getTypeSizeInBits(LU.WidestFixupType) <
3521 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3522 LU.WidestFixupType = LF.OperandValToReplace->getType();
3523 InsertSupplementalFormula(US, LU, LUIdx);
3524 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3525 break;
3531 /// Split S into subexpressions which can be pulled out into separate
3532 /// registers. If C is non-null, multiply each subexpression by C.
3534 /// Return remainder expression after factoring the subexpressions captured by
3535 /// Ops. If Ops is complete, return NULL.
3536 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3537 SmallVectorImpl<const SCEV *> &Ops,
3538 const Loop *L,
3539 ScalarEvolution &SE,
3540 unsigned Depth = 0) {
3541 // Arbitrarily cap recursion to protect compile time.
3542 if (Depth >= 3)
3543 return S;
3545 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3546 // Break out add operands.
3547 for (const SCEV *S : Add->operands()) {
3548 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3549 if (Remainder)
3550 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3552 return nullptr;
3553 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3554 // Split a non-zero base out of an addrec.
3555 if (AR->getStart()->isZero() || !AR->isAffine())
3556 return S;
3558 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3559 C, Ops, L, SE, Depth+1);
3560 // Split the non-zero AddRec unless it is part of a nested recurrence that
3561 // does not pertain to this loop.
3562 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3563 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3564 Remainder = nullptr;
3566 if (Remainder != AR->getStart()) {
3567 if (!Remainder)
3568 Remainder = SE.getConstant(AR->getType(), 0);
3569 return SE.getAddRecExpr(Remainder,
3570 AR->getStepRecurrence(SE),
3571 AR->getLoop(),
3572 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3573 SCEV::FlagAnyWrap);
3575 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3576 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3577 if (Mul->getNumOperands() != 2)
3578 return S;
3579 if (const SCEVConstant *Op0 =
3580 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3581 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3582 const SCEV *Remainder =
3583 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3584 if (Remainder)
3585 Ops.push_back(SE.getMulExpr(C, Remainder));
3586 return nullptr;
3589 return S;
3592 /// Return true if the SCEV represents a value that may end up as a
3593 /// post-increment operation.
3594 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3595 LSRUse &LU, const SCEV *S, const Loop *L,
3596 ScalarEvolution &SE) {
3597 if (LU.Kind != LSRUse::Address ||
3598 !LU.AccessTy.getType()->isIntOrIntVectorTy())
3599 return false;
3600 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3601 if (!AR)
3602 return false;
3603 const SCEV *LoopStep = AR->getStepRecurrence(SE);
3604 if (!isa<SCEVConstant>(LoopStep))
3605 return false;
3606 // Check if a post-indexed load/store can be used.
3607 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3608 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3609 const SCEV *LoopStart = AR->getStart();
3610 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3611 return true;
3613 return false;
3616 /// Helper function for LSRInstance::GenerateReassociations.
3617 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3618 const Formula &Base,
3619 unsigned Depth, size_t Idx,
3620 bool IsScaledReg) {
3621 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3622 // Don't generate reassociations for the base register of a value that
3623 // may generate a post-increment operator. The reason is that the
3624 // reassociations cause extra base+register formula to be created,
3625 // and possibly chosen, but the post-increment is more efficient.
3626 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3627 return;
3628 SmallVector<const SCEV *, 8> AddOps;
3629 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3630 if (Remainder)
3631 AddOps.push_back(Remainder);
3633 if (AddOps.size() == 1)
3634 return;
3636 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3637 JE = AddOps.end();
3638 J != JE; ++J) {
3639 // Loop-variant "unknown" values are uninteresting; we won't be able to
3640 // do anything meaningful with them.
3641 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3642 continue;
3644 // Don't pull a constant into a register if the constant could be folded
3645 // into an immediate field.
3646 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3647 LU.AccessTy, *J, Base.getNumRegs() > 1))
3648 continue;
3650 // Collect all operands except *J.
3651 SmallVector<const SCEV *, 8> InnerAddOps(
3652 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3653 InnerAddOps.append(std::next(J),
3654 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3656 // Don't leave just a constant behind in a register if the constant could
3657 // be folded into an immediate field.
3658 if (InnerAddOps.size() == 1 &&
3659 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3660 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3661 continue;
3663 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3664 if (InnerSum->isZero())
3665 continue;
3666 Formula F = Base;
3668 // Add the remaining pieces of the add back into the new formula.
3669 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3670 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3671 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3672 InnerSumSC->getValue()->getZExtValue())) {
3673 F.UnfoldedOffset =
3674 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3675 if (IsScaledReg)
3676 F.ScaledReg = nullptr;
3677 else
3678 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3679 } else if (IsScaledReg)
3680 F.ScaledReg = InnerSum;
3681 else
3682 F.BaseRegs[Idx] = InnerSum;
3684 // Add J as its own register, or an unfolded immediate.
3685 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3686 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3687 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3688 SC->getValue()->getZExtValue()))
3689 F.UnfoldedOffset =
3690 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3691 else
3692 F.BaseRegs.push_back(*J);
3693 // We may have changed the number of register in base regs, adjust the
3694 // formula accordingly.
3695 F.canonicalize(*L);
3697 if (InsertFormula(LU, LUIdx, F))
3698 // If that formula hadn't been seen before, recurse to find more like
3699 // it.
3700 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3701 // Because just Depth is not enough to bound compile time.
3702 // This means that every time AddOps.size() is greater 16^x we will add
3703 // x to Depth.
3704 GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3705 Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3709 /// Split out subexpressions from adds and the bases of addrecs.
3710 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3711 Formula Base, unsigned Depth) {
3712 assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3713 // Arbitrarily cap recursion to protect compile time.
3714 if (Depth >= 3)
3715 return;
3717 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3718 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3720 if (Base.Scale == 1)
3721 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3722 /* Idx */ -1, /* IsScaledReg */ true);
3725 /// Generate a formula consisting of all of the loop-dominating registers added
3726 /// into a single register.
3727 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3728 Formula Base) {
3729 // This method is only interesting on a plurality of registers.
3730 if (Base.BaseRegs.size() + (Base.Scale == 1) +
3731 (Base.UnfoldedOffset != 0) <= 1)
3732 return;
3734 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3735 // processing the formula.
3736 Base.unscale();
3737 SmallVector<const SCEV *, 4> Ops;
3738 Formula NewBase = Base;
3739 NewBase.BaseRegs.clear();
3740 Type *CombinedIntegerType = nullptr;
3741 for (const SCEV *BaseReg : Base.BaseRegs) {
3742 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3743 !SE.hasComputableLoopEvolution(BaseReg, L)) {
3744 if (!CombinedIntegerType)
3745 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3746 Ops.push_back(BaseReg);
3748 else
3749 NewBase.BaseRegs.push_back(BaseReg);
3752 // If no register is relevant, we're done.
3753 if (Ops.size() == 0)
3754 return;
3756 // Utility function for generating the required variants of the combined
3757 // registers.
3758 auto GenerateFormula = [&](const SCEV *Sum) {
3759 Formula F = NewBase;
3761 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3762 // opportunity to fold something. For now, just ignore such cases
3763 // rather than proceed with zero in a register.
3764 if (Sum->isZero())
3765 return;
3767 F.BaseRegs.push_back(Sum);
3768 F.canonicalize(*L);
3769 (void)InsertFormula(LU, LUIdx, F);
3772 // If we collected at least two registers, generate a formula combining them.
3773 if (Ops.size() > 1) {
3774 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3775 GenerateFormula(SE.getAddExpr(OpsCopy));
3778 // If we have an unfolded offset, generate a formula combining it with the
3779 // registers collected.
3780 if (NewBase.UnfoldedOffset) {
3781 assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3782 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3783 true));
3784 NewBase.UnfoldedOffset = 0;
3785 GenerateFormula(SE.getAddExpr(Ops));
3789 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3790 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3791 const Formula &Base, size_t Idx,
3792 bool IsScaledReg) {
3793 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3794 GlobalValue *GV = ExtractSymbol(G, SE);
3795 if (G->isZero() || !GV)
3796 return;
3797 Formula F = Base;
3798 F.BaseGV = GV;
3799 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3800 return;
3801 if (IsScaledReg)
3802 F.ScaledReg = G;
3803 else
3804 F.BaseRegs[Idx] = G;
3805 (void)InsertFormula(LU, LUIdx, F);
3808 /// Generate reuse formulae using symbolic offsets.
3809 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3810 Formula Base) {
3811 // We can't add a symbolic offset if the address already contains one.
3812 if (Base.BaseGV) return;
3814 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3815 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3816 if (Base.Scale == 1)
3817 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3818 /* IsScaledReg */ true);
3821 /// Helper function for LSRInstance::GenerateConstantOffsets.
3822 void LSRInstance::GenerateConstantOffsetsImpl(
3823 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3824 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3826 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3827 Formula F = Base;
3828 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3830 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3831 // Add the offset to the base register.
3832 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3833 // If it cancelled out, drop the base register, otherwise update it.
3834 if (NewG->isZero()) {
3835 if (IsScaledReg) {
3836 F.Scale = 0;
3837 F.ScaledReg = nullptr;
3838 } else
3839 F.deleteBaseReg(F.BaseRegs[Idx]);
3840 F.canonicalize(*L);
3841 } else if (IsScaledReg)
3842 F.ScaledReg = NewG;
3843 else
3844 F.BaseRegs[Idx] = NewG;
3846 (void)InsertFormula(LU, LUIdx, F);
3850 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3852 // With constant offsets and constant steps, we can generate pre-inc
3853 // accesses by having the offset equal the step. So, for access #0 with a
3854 // step of 8, we generate a G - 8 base which would require the first access
3855 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3856 // for itself and hopefully becomes the base for other accesses. This means
3857 // means that a single pre-indexed access can be generated to become the new
3858 // base pointer for each iteration of the loop, resulting in no extra add/sub
3859 // instructions for pointer updating.
3860 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3861 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3862 if (auto *StepRec =
3863 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3864 const APInt &StepInt = StepRec->getAPInt();
3865 int64_t Step = StepInt.isNegative() ?
3866 StepInt.getSExtValue() : StepInt.getZExtValue();
3868 for (int64_t Offset : Worklist) {
3869 Offset -= Step;
3870 GenerateOffset(G, Offset);
3875 for (int64_t Offset : Worklist)
3876 GenerateOffset(G, Offset);
3878 int64_t Imm = ExtractImmediate(G, SE);
3879 if (G->isZero() || Imm == 0)
3880 return;
3881 Formula F = Base;
3882 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3883 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3884 return;
3885 if (IsScaledReg) {
3886 F.ScaledReg = G;
3887 } else {
3888 F.BaseRegs[Idx] = G;
3889 // We may generate non canonical Formula if G is a recurrent expr reg
3890 // related with current loop while F.ScaledReg is not.
3891 F.canonicalize(*L);
3893 (void)InsertFormula(LU, LUIdx, F);
3896 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3897 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3898 Formula Base) {
3899 // TODO: For now, just add the min and max offset, because it usually isn't
3900 // worthwhile looking at everything inbetween.
3901 SmallVector<int64_t, 2> Worklist;
3902 Worklist.push_back(LU.MinOffset);
3903 if (LU.MaxOffset != LU.MinOffset)
3904 Worklist.push_back(LU.MaxOffset);
3906 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3907 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3908 if (Base.Scale == 1)
3909 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3910 /* IsScaledReg */ true);
3913 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3914 /// == y -> x*c == y*c.
3915 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3916 Formula Base) {
3917 if (LU.Kind != LSRUse::ICmpZero) return;
3919 // Determine the integer type for the base formula.
3920 Type *IntTy = Base.getType();
3921 if (!IntTy) return;
3922 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3924 // Don't do this if there is more than one offset.
3925 if (LU.MinOffset != LU.MaxOffset) return;
3927 // Check if transformation is valid. It is illegal to multiply pointer.
3928 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3929 return;
3930 for (const SCEV *BaseReg : Base.BaseRegs)
3931 if (BaseReg->getType()->isPointerTy())
3932 return;
3933 assert(!Base.BaseGV && "ICmpZero use is not legal!");
3935 // Check each interesting stride.
3936 for (int64_t Factor : Factors) {
3937 // Check that the multiplication doesn't overflow.
3938 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3939 continue;
3940 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3941 assert(Factor != 0 && "Zero factor not expected!");
3942 if (NewBaseOffset / Factor != Base.BaseOffset)
3943 continue;
3944 // If the offset will be truncated at this use, check that it is in bounds.
3945 if (!IntTy->isPointerTy() &&
3946 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3947 continue;
3949 // Check that multiplying with the use offset doesn't overflow.
3950 int64_t Offset = LU.MinOffset;
3951 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3952 continue;
3953 Offset = (uint64_t)Offset * Factor;
3954 if (Offset / Factor != LU.MinOffset)
3955 continue;
3956 // If the offset will be truncated at this use, check that it is in bounds.
3957 if (!IntTy->isPointerTy() &&
3958 !ConstantInt::isValueValidForType(IntTy, Offset))
3959 continue;
3961 Formula F = Base;
3962 F.BaseOffset = NewBaseOffset;
3964 // Check that this scale is legal.
3965 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3966 continue;
3968 // Compensate for the use having MinOffset built into it.
3969 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3971 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3973 // Check that multiplying with each base register doesn't overflow.
3974 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3975 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3976 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3977 goto next;
3980 // Check that multiplying with the scaled register doesn't overflow.
3981 if (F.ScaledReg) {
3982 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3983 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3984 continue;
3987 // Check that multiplying with the unfolded offset doesn't overflow.
3988 if (F.UnfoldedOffset != 0) {
3989 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3990 Factor == -1)
3991 continue;
3992 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3993 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3994 continue;
3995 // If the offset will be truncated, check that it is in bounds.
3996 if (!IntTy->isPointerTy() &&
3997 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3998 continue;
4001 // If we make it here and it's legal, add it.
4002 (void)InsertFormula(LU, LUIdx, F);
4003 next:;
4007 /// Generate stride factor reuse formulae by making use of scaled-offset address
4008 /// modes, for example.
4009 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4010 // Determine the integer type for the base formula.
4011 Type *IntTy = Base.getType();
4012 if (!IntTy) return;
4014 // If this Formula already has a scaled register, we can't add another one.
4015 // Try to unscale the formula to generate a better scale.
4016 if (Base.Scale != 0 && !Base.unscale())
4017 return;
4019 assert(Base.Scale == 0 && "unscale did not did its job!");
4021 // Check each interesting stride.
4022 for (int64_t Factor : Factors) {
4023 Base.Scale = Factor;
4024 Base.HasBaseReg = Base.BaseRegs.size() > 1;
4025 // Check whether this scale is going to be legal.
4026 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4027 Base)) {
4028 // As a special-case, handle special out-of-loop Basic users specially.
4029 // TODO: Reconsider this special case.
4030 if (LU.Kind == LSRUse::Basic &&
4031 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4032 LU.AccessTy, Base) &&
4033 LU.AllFixupsOutsideLoop)
4034 LU.Kind = LSRUse::Special;
4035 else
4036 continue;
4038 // For an ICmpZero, negating a solitary base register won't lead to
4039 // new solutions.
4040 if (LU.Kind == LSRUse::ICmpZero &&
4041 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4042 continue;
4043 // For each addrec base reg, if its loop is current loop, apply the scale.
4044 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4045 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4046 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4047 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4048 if (FactorS->isZero())
4049 continue;
4050 // Divide out the factor, ignoring high bits, since we'll be
4051 // scaling the value back up in the end.
4052 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4053 // TODO: This could be optimized to avoid all the copying.
4054 Formula F = Base;
4055 F.ScaledReg = Quotient;
4056 F.deleteBaseReg(F.BaseRegs[i]);
4057 // The canonical representation of 1*reg is reg, which is already in
4058 // Base. In that case, do not try to insert the formula, it will be
4059 // rejected anyway.
4060 if (F.Scale == 1 && (F.BaseRegs.empty() ||
4061 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4062 continue;
4063 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4064 // non canonical Formula with ScaledReg's loop not being L.
4065 if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4066 F.canonicalize(*L);
4067 (void)InsertFormula(LU, LUIdx, F);
4074 /// Generate reuse formulae from different IV types.
4075 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4076 // Don't bother truncating symbolic values.
4077 if (Base.BaseGV) return;
4079 // Determine the integer type for the base formula.
4080 Type *DstTy = Base.getType();
4081 if (!DstTy) return;
4082 if (DstTy->isPointerTy())
4083 return;
4085 // It is invalid to extend a pointer type so exit early if ScaledReg or
4086 // any of the BaseRegs are pointers.
4087 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4088 return;
4089 if (any_of(Base.BaseRegs,
4090 [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4091 return;
4093 for (Type *SrcTy : Types) {
4094 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4095 Formula F = Base;
4097 // Sometimes SCEV is able to prove zero during ext transform. It may
4098 // happen if SCEV did not do all possible transforms while creating the
4099 // initial node (maybe due to depth limitations), but it can do them while
4100 // taking ext.
4101 if (F.ScaledReg) {
4102 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4103 if (NewScaledReg->isZero())
4104 continue;
4105 F.ScaledReg = NewScaledReg;
4107 bool HasZeroBaseReg = false;
4108 for (const SCEV *&BaseReg : F.BaseRegs) {
4109 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4110 if (NewBaseReg->isZero()) {
4111 HasZeroBaseReg = true;
4112 break;
4114 BaseReg = NewBaseReg;
4116 if (HasZeroBaseReg)
4117 continue;
4119 // TODO: This assumes we've done basic processing on all uses and
4120 // have an idea what the register usage is.
4121 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4122 continue;
4124 F.canonicalize(*L);
4125 (void)InsertFormula(LU, LUIdx, F);
4130 namespace {
4132 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4133 /// modifications so that the search phase doesn't have to worry about the data
4134 /// structures moving underneath it.
4135 struct WorkItem {
4136 size_t LUIdx;
4137 int64_t Imm;
4138 const SCEV *OrigReg;
4140 WorkItem(size_t LI, int64_t I, const SCEV *R)
4141 : LUIdx(LI), Imm(I), OrigReg(R) {}
4143 void print(raw_ostream &OS) const;
4144 void dump() const;
4147 } // end anonymous namespace
4149 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4150 void WorkItem::print(raw_ostream &OS) const {
4151 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4152 << " , add offset " << Imm;
4155 LLVM_DUMP_METHOD void WorkItem::dump() const {
4156 print(errs()); errs() << '\n';
4158 #endif
4160 /// Look for registers which are a constant distance apart and try to form reuse
4161 /// opportunities between them.
4162 void LSRInstance::GenerateCrossUseConstantOffsets() {
4163 // Group the registers by their value without any added constant offset.
4164 using ImmMapTy = std::map<int64_t, const SCEV *>;
4166 DenseMap<const SCEV *, ImmMapTy> Map;
4167 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4168 SmallVector<const SCEV *, 8> Sequence;
4169 for (const SCEV *Use : RegUses) {
4170 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4171 int64_t Imm = ExtractImmediate(Reg, SE);
4172 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4173 if (Pair.second)
4174 Sequence.push_back(Reg);
4175 Pair.first->second.insert(std::make_pair(Imm, Use));
4176 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4179 // Now examine each set of registers with the same base value. Build up
4180 // a list of work to do and do the work in a separate step so that we're
4181 // not adding formulae and register counts while we're searching.
4182 SmallVector<WorkItem, 32> WorkItems;
4183 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4184 for (const SCEV *Reg : Sequence) {
4185 const ImmMapTy &Imms = Map.find(Reg)->second;
4187 // It's not worthwhile looking for reuse if there's only one offset.
4188 if (Imms.size() == 1)
4189 continue;
4191 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4192 for (const auto &Entry
4193 : Imms) dbgs()
4194 << ' ' << Entry.first;
4195 dbgs() << '\n');
4197 // Examine each offset.
4198 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4199 J != JE; ++J) {
4200 const SCEV *OrigReg = J->second;
4202 int64_t JImm = J->first;
4203 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4205 if (!isa<SCEVConstant>(OrigReg) &&
4206 UsedByIndicesMap[Reg].count() == 1) {
4207 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4208 << '\n');
4209 continue;
4212 // Conservatively examine offsets between this orig reg a few selected
4213 // other orig regs.
4214 int64_t First = Imms.begin()->first;
4215 int64_t Last = std::prev(Imms.end())->first;
4216 // Compute (First + Last) / 2 without overflow using the fact that
4217 // First + Last = 2 * (First + Last) + (First ^ Last).
4218 int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4219 // If the result is negative and First is odd and Last even (or vice versa),
4220 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4221 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4222 ImmMapTy::const_iterator OtherImms[] = {
4223 Imms.begin(), std::prev(Imms.end()),
4224 Imms.lower_bound(Avg)};
4225 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4226 ImmMapTy::const_iterator M = OtherImms[i];
4227 if (M == J || M == JE) continue;
4229 // Compute the difference between the two.
4230 int64_t Imm = (uint64_t)JImm - M->first;
4231 for (unsigned LUIdx : UsedByIndices.set_bits())
4232 // Make a memo of this use, offset, and register tuple.
4233 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4234 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4239 Map.clear();
4240 Sequence.clear();
4241 UsedByIndicesMap.clear();
4242 UniqueItems.clear();
4244 // Now iterate through the worklist and add new formulae.
4245 for (const WorkItem &WI : WorkItems) {
4246 size_t LUIdx = WI.LUIdx;
4247 LSRUse &LU = Uses[LUIdx];
4248 int64_t Imm = WI.Imm;
4249 const SCEV *OrigReg = WI.OrigReg;
4251 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4252 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4253 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4255 // TODO: Use a more targeted data structure.
4256 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4257 Formula F = LU.Formulae[L];
4258 // FIXME: The code for the scaled and unscaled registers looks
4259 // very similar but slightly different. Investigate if they
4260 // could be merged. That way, we would not have to unscale the
4261 // Formula.
4262 F.unscale();
4263 // Use the immediate in the scaled register.
4264 if (F.ScaledReg == OrigReg) {
4265 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4266 // Don't create 50 + reg(-50).
4267 if (F.referencesReg(SE.getSCEV(
4268 ConstantInt::get(IntTy, -(uint64_t)Offset))))
4269 continue;
4270 Formula NewF = F;
4271 NewF.BaseOffset = Offset;
4272 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4273 NewF))
4274 continue;
4275 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4277 // If the new scale is a constant in a register, and adding the constant
4278 // value to the immediate would produce a value closer to zero than the
4279 // immediate itself, then the formula isn't worthwhile.
4280 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4281 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4282 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4283 .ule(std::abs(NewF.BaseOffset)))
4284 continue;
4286 // OK, looks good.
4287 NewF.canonicalize(*this->L);
4288 (void)InsertFormula(LU, LUIdx, NewF);
4289 } else {
4290 // Use the immediate in a base register.
4291 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4292 const SCEV *BaseReg = F.BaseRegs[N];
4293 if (BaseReg != OrigReg)
4294 continue;
4295 Formula NewF = F;
4296 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4297 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4298 LU.Kind, LU.AccessTy, NewF)) {
4299 if (AMK == TTI::AMK_PostIndexed &&
4300 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4301 continue;
4302 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4303 continue;
4304 NewF = F;
4305 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4307 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4309 // If the new formula has a constant in a register, and adding the
4310 // constant value to the immediate would produce a value closer to
4311 // zero than the immediate itself, then the formula isn't worthwhile.
4312 for (const SCEV *NewReg : NewF.BaseRegs)
4313 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4314 if ((C->getAPInt() + NewF.BaseOffset)
4315 .abs()
4316 .slt(std::abs(NewF.BaseOffset)) &&
4317 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4318 countTrailingZeros<uint64_t>(NewF.BaseOffset))
4319 goto skip_formula;
4321 // Ok, looks good.
4322 NewF.canonicalize(*this->L);
4323 (void)InsertFormula(LU, LUIdx, NewF);
4324 break;
4325 skip_formula:;
4332 /// Generate formulae for each use.
4333 void
4334 LSRInstance::GenerateAllReuseFormulae() {
4335 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4336 // queries are more precise.
4337 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4338 LSRUse &LU = Uses[LUIdx];
4339 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4340 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4341 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4342 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4344 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4345 LSRUse &LU = Uses[LUIdx];
4346 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4347 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4348 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4349 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4350 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4351 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4352 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4353 GenerateScales(LU, LUIdx, LU.Formulae[i]);
4355 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4356 LSRUse &LU = Uses[LUIdx];
4357 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4358 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4361 GenerateCrossUseConstantOffsets();
4363 LLVM_DEBUG(dbgs() << "\n"
4364 "After generating reuse formulae:\n";
4365 print_uses(dbgs()));
4368 /// If there are multiple formulae with the same set of registers used
4369 /// by other uses, pick the best one and delete the others.
4370 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4371 DenseSet<const SCEV *> VisitedRegs;
4372 SmallPtrSet<const SCEV *, 16> Regs;
4373 SmallPtrSet<const SCEV *, 16> LoserRegs;
4374 #ifndef NDEBUG
4375 bool ChangedFormulae = false;
4376 #endif
4378 // Collect the best formula for each unique set of shared registers. This
4379 // is reset for each use.
4380 using BestFormulaeTy =
4381 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4383 BestFormulaeTy BestFormulae;
4385 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4386 LSRUse &LU = Uses[LUIdx];
4387 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4388 dbgs() << '\n');
4390 bool Any = false;
4391 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4392 FIdx != NumForms; ++FIdx) {
4393 Formula &F = LU.Formulae[FIdx];
4395 // Some formulas are instant losers. For example, they may depend on
4396 // nonexistent AddRecs from other loops. These need to be filtered
4397 // immediately, otherwise heuristics could choose them over others leading
4398 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4399 // avoids the need to recompute this information across formulae using the
4400 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4401 // the corresponding bad register from the Regs set.
4402 Cost CostF(L, SE, TTI, AMK);
4403 Regs.clear();
4404 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4405 if (CostF.isLoser()) {
4406 // During initial formula generation, undesirable formulae are generated
4407 // by uses within other loops that have some non-trivial address mode or
4408 // use the postinc form of the IV. LSR needs to provide these formulae
4409 // as the basis of rediscovering the desired formula that uses an AddRec
4410 // corresponding to the existing phi. Once all formulae have been
4411 // generated, these initial losers may be pruned.
4412 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
4413 dbgs() << "\n");
4415 else {
4416 SmallVector<const SCEV *, 4> Key;
4417 for (const SCEV *Reg : F.BaseRegs) {
4418 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4419 Key.push_back(Reg);
4421 if (F.ScaledReg &&
4422 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4423 Key.push_back(F.ScaledReg);
4424 // Unstable sort by host order ok, because this is only used for
4425 // uniquifying.
4426 llvm::sort(Key);
4428 std::pair<BestFormulaeTy::const_iterator, bool> P =
4429 BestFormulae.insert(std::make_pair(Key, FIdx));
4430 if (P.second)
4431 continue;
4433 Formula &Best = LU.Formulae[P.first->second];
4435 Cost CostBest(L, SE, TTI, AMK);
4436 Regs.clear();
4437 CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4438 if (CostF.isLess(CostBest))
4439 std::swap(F, Best);
4440 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4441 dbgs() << "\n"
4442 " in favor of formula ";
4443 Best.print(dbgs()); dbgs() << '\n');
4445 #ifndef NDEBUG
4446 ChangedFormulae = true;
4447 #endif
4448 LU.DeleteFormula(F);
4449 --FIdx;
4450 --NumForms;
4451 Any = true;
4454 // Now that we've filtered out some formulae, recompute the Regs set.
4455 if (Any)
4456 LU.RecomputeRegs(LUIdx, RegUses);
4458 // Reset this to prepare for the next use.
4459 BestFormulae.clear();
4462 LLVM_DEBUG(if (ChangedFormulae) {
4463 dbgs() << "\n"
4464 "After filtering out undesirable candidates:\n";
4465 print_uses(dbgs());
4469 /// Estimate the worst-case number of solutions the solver might have to
4470 /// consider. It almost never considers this many solutions because it prune the
4471 /// search space, but the pruning isn't always sufficient.
4472 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4473 size_t Power = 1;
4474 for (const LSRUse &LU : Uses) {
4475 size_t FSize = LU.Formulae.size();
4476 if (FSize >= ComplexityLimit) {
4477 Power = ComplexityLimit;
4478 break;
4480 Power *= FSize;
4481 if (Power >= ComplexityLimit)
4482 break;
4484 return Power;
4487 /// When one formula uses a superset of the registers of another formula, it
4488 /// won't help reduce register pressure (though it may not necessarily hurt
4489 /// register pressure); remove it to simplify the system.
4490 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4491 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4492 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4494 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4495 "which use a superset of registers used by other "
4496 "formulae.\n");
4498 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4499 LSRUse &LU = Uses[LUIdx];
4500 bool Any = false;
4501 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4502 Formula &F = LU.Formulae[i];
4503 // Look for a formula with a constant or GV in a register. If the use
4504 // also has a formula with that same value in an immediate field,
4505 // delete the one that uses a register.
4506 for (SmallVectorImpl<const SCEV *>::const_iterator
4507 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4508 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4509 Formula NewF = F;
4510 //FIXME: Formulas should store bitwidth to do wrapping properly.
4511 // See PR41034.
4512 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4513 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4514 (I - F.BaseRegs.begin()));
4515 if (LU.HasFormulaWithSameRegs(NewF)) {
4516 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4517 dbgs() << '\n');
4518 LU.DeleteFormula(F);
4519 --i;
4520 --e;
4521 Any = true;
4522 break;
4524 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4525 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4526 if (!F.BaseGV) {
4527 Formula NewF = F;
4528 NewF.BaseGV = GV;
4529 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4530 (I - F.BaseRegs.begin()));
4531 if (LU.HasFormulaWithSameRegs(NewF)) {
4532 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4533 dbgs() << '\n');
4534 LU.DeleteFormula(F);
4535 --i;
4536 --e;
4537 Any = true;
4538 break;
4544 if (Any)
4545 LU.RecomputeRegs(LUIdx, RegUses);
4548 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4552 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4553 /// allocate a single register for them.
4554 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4555 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4556 return;
4558 LLVM_DEBUG(
4559 dbgs() << "The search space is too complex.\n"
4560 "Narrowing the search space by assuming that uses separated "
4561 "by a constant offset will use the same registers.\n");
4563 // This is especially useful for unrolled loops.
4565 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4566 LSRUse &LU = Uses[LUIdx];
4567 for (const Formula &F : LU.Formulae) {
4568 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4569 continue;
4571 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4572 if (!LUThatHas)
4573 continue;
4575 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4576 LU.Kind, LU.AccessTy))
4577 continue;
4579 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4581 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4583 // Transfer the fixups of LU to LUThatHas.
4584 for (LSRFixup &Fixup : LU.Fixups) {
4585 Fixup.Offset += F.BaseOffset;
4586 LUThatHas->pushFixup(Fixup);
4587 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4590 // Delete formulae from the new use which are no longer legal.
4591 bool Any = false;
4592 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4593 Formula &F = LUThatHas->Formulae[i];
4594 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4595 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4596 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4597 LUThatHas->DeleteFormula(F);
4598 --i;
4599 --e;
4600 Any = true;
4604 if (Any)
4605 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4607 // Delete the old use.
4608 DeleteUse(LU, LUIdx);
4609 --LUIdx;
4610 --NumUses;
4611 break;
4615 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4618 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4619 /// we've done more filtering, as it may be able to find more formulae to
4620 /// eliminate.
4621 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4622 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4623 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4625 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4626 "undesirable dedicated registers.\n");
4628 FilterOutUndesirableDedicatedRegisters();
4630 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4634 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4635 /// Pick the best one and delete the others.
4636 /// This narrowing heuristic is to keep as many formulae with different
4637 /// Scale and ScaledReg pair as possible while narrowing the search space.
4638 /// The benefit is that it is more likely to find out a better solution
4639 /// from a formulae set with more Scale and ScaledReg variations than
4640 /// a formulae set with the same Scale and ScaledReg. The picking winner
4641 /// reg heuristic will often keep the formulae with the same Scale and
4642 /// ScaledReg and filter others, and we want to avoid that if possible.
4643 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4644 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4645 return;
4647 LLVM_DEBUG(
4648 dbgs() << "The search space is too complex.\n"
4649 "Narrowing the search space by choosing the best Formula "
4650 "from the Formulae with the same Scale and ScaledReg.\n");
4652 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4653 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4655 BestFormulaeTy BestFormulae;
4656 #ifndef NDEBUG
4657 bool ChangedFormulae = false;
4658 #endif
4659 DenseSet<const SCEV *> VisitedRegs;
4660 SmallPtrSet<const SCEV *, 16> Regs;
4662 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4663 LSRUse &LU = Uses[LUIdx];
4664 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4665 dbgs() << '\n');
4667 // Return true if Formula FA is better than Formula FB.
4668 auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4669 // First we will try to choose the Formula with fewer new registers.
4670 // For a register used by current Formula, the more the register is
4671 // shared among LSRUses, the less we increase the register number
4672 // counter of the formula.
4673 size_t FARegNum = 0;
4674 for (const SCEV *Reg : FA.BaseRegs) {
4675 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4676 FARegNum += (NumUses - UsedByIndices.count() + 1);
4678 size_t FBRegNum = 0;
4679 for (const SCEV *Reg : FB.BaseRegs) {
4680 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4681 FBRegNum += (NumUses - UsedByIndices.count() + 1);
4683 if (FARegNum != FBRegNum)
4684 return FARegNum < FBRegNum;
4686 // If the new register numbers are the same, choose the Formula with
4687 // less Cost.
4688 Cost CostFA(L, SE, TTI, AMK);
4689 Cost CostFB(L, SE, TTI, AMK);
4690 Regs.clear();
4691 CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4692 Regs.clear();
4693 CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4694 return CostFA.isLess(CostFB);
4697 bool Any = false;
4698 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4699 ++FIdx) {
4700 Formula &F = LU.Formulae[FIdx];
4701 if (!F.ScaledReg)
4702 continue;
4703 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4704 if (P.second)
4705 continue;
4707 Formula &Best = LU.Formulae[P.first->second];
4708 if (IsBetterThan(F, Best))
4709 std::swap(F, Best);
4710 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4711 dbgs() << "\n"
4712 " in favor of formula ";
4713 Best.print(dbgs()); dbgs() << '\n');
4714 #ifndef NDEBUG
4715 ChangedFormulae = true;
4716 #endif
4717 LU.DeleteFormula(F);
4718 --FIdx;
4719 --NumForms;
4720 Any = true;
4722 if (Any)
4723 LU.RecomputeRegs(LUIdx, RegUses);
4725 // Reset this to prepare for the next use.
4726 BestFormulae.clear();
4729 LLVM_DEBUG(if (ChangedFormulae) {
4730 dbgs() << "\n"
4731 "After filtering out undesirable candidates:\n";
4732 print_uses(dbgs());
4736 /// If we are over the complexity limit, filter out any post-inc prefering
4737 /// variables to only post-inc values.
4738 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4739 if (AMK != TTI::AMK_PostIndexed)
4740 return;
4741 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4742 return;
4744 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4745 "Narrowing the search space by choosing the lowest "
4746 "register Formula for PostInc Uses.\n");
4748 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4749 LSRUse &LU = Uses[LUIdx];
4751 if (LU.Kind != LSRUse::Address)
4752 continue;
4753 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4754 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4755 continue;
4757 size_t MinRegs = std::numeric_limits<size_t>::max();
4758 for (const Formula &F : LU.Formulae)
4759 MinRegs = std::min(F.getNumRegs(), MinRegs);
4761 bool Any = false;
4762 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4763 ++FIdx) {
4764 Formula &F = LU.Formulae[FIdx];
4765 if (F.getNumRegs() > MinRegs) {
4766 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4767 dbgs() << "\n");
4768 LU.DeleteFormula(F);
4769 --FIdx;
4770 --NumForms;
4771 Any = true;
4774 if (Any)
4775 LU.RecomputeRegs(LUIdx, RegUses);
4777 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4778 break;
4781 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4784 /// The function delete formulas with high registers number expectation.
4785 /// Assuming we don't know the value of each formula (already delete
4786 /// all inefficient), generate probability of not selecting for each
4787 /// register.
4788 /// For example,
4789 /// Use1:
4790 /// reg(a) + reg({0,+,1})
4791 /// reg(a) + reg({-1,+,1}) + 1
4792 /// reg({a,+,1})
4793 /// Use2:
4794 /// reg(b) + reg({0,+,1})
4795 /// reg(b) + reg({-1,+,1}) + 1
4796 /// reg({b,+,1})
4797 /// Use3:
4798 /// reg(c) + reg(b) + reg({0,+,1})
4799 /// reg(c) + reg({b,+,1})
4801 /// Probability of not selecting
4802 /// Use1 Use2 Use3
4803 /// reg(a) (1/3) * 1 * 1
4804 /// reg(b) 1 * (1/3) * (1/2)
4805 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4806 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4807 /// reg({a,+,1}) (2/3) * 1 * 1
4808 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4809 /// reg(c) 1 * 1 * 0
4811 /// Now count registers number mathematical expectation for each formula:
4812 /// Note that for each use we exclude probability if not selecting for the use.
4813 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4814 /// probabilty 1/3 of not selecting for Use1).
4815 /// Use1:
4816 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4817 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4818 /// reg({a,+,1}) 1
4819 /// Use2:
4820 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4821 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4822 /// reg({b,+,1}) 2/3
4823 /// Use3:
4824 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4825 /// reg(c) + reg({b,+,1}) 1 + 2/3
4826 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4827 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4828 return;
4829 // Ok, we have too many of formulae on our hands to conveniently handle.
4830 // Use a rough heuristic to thin out the list.
4832 // Set of Regs wich will be 100% used in final solution.
4833 // Used in each formula of a solution (in example above this is reg(c)).
4834 // We can skip them in calculations.
4835 SmallPtrSet<const SCEV *, 4> UniqRegs;
4836 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4838 // Map each register to probability of not selecting
4839 DenseMap <const SCEV *, float> RegNumMap;
4840 for (const SCEV *Reg : RegUses) {
4841 if (UniqRegs.count(Reg))
4842 continue;
4843 float PNotSel = 1;
4844 for (const LSRUse &LU : Uses) {
4845 if (!LU.Regs.count(Reg))
4846 continue;
4847 float P = LU.getNotSelectedProbability(Reg);
4848 if (P != 0.0)
4849 PNotSel *= P;
4850 else
4851 UniqRegs.insert(Reg);
4853 RegNumMap.insert(std::make_pair(Reg, PNotSel));
4856 LLVM_DEBUG(
4857 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4859 // Delete formulas where registers number expectation is high.
4860 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4861 LSRUse &LU = Uses[LUIdx];
4862 // If nothing to delete - continue.
4863 if (LU.Formulae.size() < 2)
4864 continue;
4865 // This is temporary solution to test performance. Float should be
4866 // replaced with round independent type (based on integers) to avoid
4867 // different results for different target builds.
4868 float FMinRegNum = LU.Formulae[0].getNumRegs();
4869 float FMinARegNum = LU.Formulae[0].getNumRegs();
4870 size_t MinIdx = 0;
4871 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4872 Formula &F = LU.Formulae[i];
4873 float FRegNum = 0;
4874 float FARegNum = 0;
4875 for (const SCEV *BaseReg : F.BaseRegs) {
4876 if (UniqRegs.count(BaseReg))
4877 continue;
4878 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4879 if (isa<SCEVAddRecExpr>(BaseReg))
4880 FARegNum +=
4881 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4883 if (const SCEV *ScaledReg = F.ScaledReg) {
4884 if (!UniqRegs.count(ScaledReg)) {
4885 FRegNum +=
4886 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4887 if (isa<SCEVAddRecExpr>(ScaledReg))
4888 FARegNum +=
4889 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4892 if (FMinRegNum > FRegNum ||
4893 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4894 FMinRegNum = FRegNum;
4895 FMinARegNum = FARegNum;
4896 MinIdx = i;
4899 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
4900 dbgs() << " with min reg num " << FMinRegNum << '\n');
4901 if (MinIdx != 0)
4902 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4903 while (LU.Formulae.size() != 1) {
4904 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
4905 dbgs() << '\n');
4906 LU.Formulae.pop_back();
4908 LU.RecomputeRegs(LUIdx, RegUses);
4909 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4910 Formula &F = LU.Formulae[0];
4911 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
4912 // When we choose the formula, the regs become unique.
4913 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4914 if (F.ScaledReg)
4915 UniqRegs.insert(F.ScaledReg);
4917 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4920 /// Pick a register which seems likely to be profitable, and then in any use
4921 /// which has any reference to that register, delete all formulae which do not
4922 /// reference that register.
4923 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4924 // With all other options exhausted, loop until the system is simple
4925 // enough to handle.
4926 SmallPtrSet<const SCEV *, 4> Taken;
4927 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4928 // Ok, we have too many of formulae on our hands to conveniently handle.
4929 // Use a rough heuristic to thin out the list.
4930 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4932 // Pick the register which is used by the most LSRUses, which is likely
4933 // to be a good reuse register candidate.
4934 const SCEV *Best = nullptr;
4935 unsigned BestNum = 0;
4936 for (const SCEV *Reg : RegUses) {
4937 if (Taken.count(Reg))
4938 continue;
4939 if (!Best) {
4940 Best = Reg;
4941 BestNum = RegUses.getUsedByIndices(Reg).count();
4942 } else {
4943 unsigned Count = RegUses.getUsedByIndices(Reg).count();
4944 if (Count > BestNum) {
4945 Best = Reg;
4946 BestNum = Count;
4950 assert(Best && "Failed to find best LSRUse candidate");
4952 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4953 << " will yield profitable reuse.\n");
4954 Taken.insert(Best);
4956 // In any use with formulae which references this register, delete formulae
4957 // which don't reference it.
4958 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4959 LSRUse &LU = Uses[LUIdx];
4960 if (!LU.Regs.count(Best)) continue;
4962 bool Any = false;
4963 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4964 Formula &F = LU.Formulae[i];
4965 if (!F.referencesReg(Best)) {
4966 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4967 LU.DeleteFormula(F);
4968 --e;
4969 --i;
4970 Any = true;
4971 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4972 continue;
4976 if (Any)
4977 LU.RecomputeRegs(LUIdx, RegUses);
4980 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4984 /// If there are an extraordinary number of formulae to choose from, use some
4985 /// rough heuristics to prune down the number of formulae. This keeps the main
4986 /// solver from taking an extraordinary amount of time in some worst-case
4987 /// scenarios.
4988 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4989 NarrowSearchSpaceByDetectingSupersets();
4990 NarrowSearchSpaceByCollapsingUnrolledCode();
4991 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4992 if (FilterSameScaledReg)
4993 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4994 NarrowSearchSpaceByFilterPostInc();
4995 if (LSRExpNarrow)
4996 NarrowSearchSpaceByDeletingCostlyFormulas();
4997 else
4998 NarrowSearchSpaceByPickingWinnerRegs();
5001 /// This is the recursive solver.
5002 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5003 Cost &SolutionCost,
5004 SmallVectorImpl<const Formula *> &Workspace,
5005 const Cost &CurCost,
5006 const SmallPtrSet<const SCEV *, 16> &CurRegs,
5007 DenseSet<const SCEV *> &VisitedRegs) const {
5008 // Some ideas:
5009 // - prune more:
5010 // - use more aggressive filtering
5011 // - sort the formula so that the most profitable solutions are found first
5012 // - sort the uses too
5013 // - search faster:
5014 // - don't compute a cost, and then compare. compare while computing a cost
5015 // and bail early.
5016 // - track register sets with SmallBitVector
5018 const LSRUse &LU = Uses[Workspace.size()];
5020 // If this use references any register that's already a part of the
5021 // in-progress solution, consider it a requirement that a formula must
5022 // reference that register in order to be considered. This prunes out
5023 // unprofitable searching.
5024 SmallSetVector<const SCEV *, 4> ReqRegs;
5025 for (const SCEV *S : CurRegs)
5026 if (LU.Regs.count(S))
5027 ReqRegs.insert(S);
5029 SmallPtrSet<const SCEV *, 16> NewRegs;
5030 Cost NewCost(L, SE, TTI, AMK);
5031 for (const Formula &F : LU.Formulae) {
5032 // Ignore formulae which may not be ideal in terms of register reuse of
5033 // ReqRegs. The formula should use all required registers before
5034 // introducing new ones.
5035 // This can sometimes (notably when trying to favour postinc) lead to
5036 // sub-optimial decisions. There it is best left to the cost modelling to
5037 // get correct.
5038 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5039 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5040 for (const SCEV *Reg : ReqRegs) {
5041 if ((F.ScaledReg && F.ScaledReg == Reg) ||
5042 is_contained(F.BaseRegs, Reg)) {
5043 --NumReqRegsToFind;
5044 if (NumReqRegsToFind == 0)
5045 break;
5048 if (NumReqRegsToFind != 0) {
5049 // If none of the formulae satisfied the required registers, then we could
5050 // clear ReqRegs and try again. Currently, we simply give up in this case.
5051 continue;
5055 // Evaluate the cost of the current formula. If it's already worse than
5056 // the current best, prune the search at that point.
5057 NewCost = CurCost;
5058 NewRegs = CurRegs;
5059 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5060 if (NewCost.isLess(SolutionCost)) {
5061 Workspace.push_back(&F);
5062 if (Workspace.size() != Uses.size()) {
5063 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5064 NewRegs, VisitedRegs);
5065 if (F.getNumRegs() == 1 && Workspace.size() == 1)
5066 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5067 } else {
5068 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5069 dbgs() << ".\nRegs:\n";
5070 for (const SCEV *S : NewRegs) dbgs()
5071 << "- " << *S << "\n";
5072 dbgs() << '\n');
5074 SolutionCost = NewCost;
5075 Solution = Workspace;
5077 Workspace.pop_back();
5082 /// Choose one formula from each use. Return the results in the given Solution
5083 /// vector.
5084 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5085 SmallVector<const Formula *, 8> Workspace;
5086 Cost SolutionCost(L, SE, TTI, AMK);
5087 SolutionCost.Lose();
5088 Cost CurCost(L, SE, TTI, AMK);
5089 SmallPtrSet<const SCEV *, 16> CurRegs;
5090 DenseSet<const SCEV *> VisitedRegs;
5091 Workspace.reserve(Uses.size());
5093 // SolveRecurse does all the work.
5094 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5095 CurRegs, VisitedRegs);
5096 if (Solution.empty()) {
5097 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5098 return;
5101 // Ok, we've now made all our decisions.
5102 LLVM_DEBUG(dbgs() << "\n"
5103 "The chosen solution requires ";
5104 SolutionCost.print(dbgs()); dbgs() << ":\n";
5105 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5106 dbgs() << " ";
5107 Uses[i].print(dbgs());
5108 dbgs() << "\n"
5109 " ";
5110 Solution[i]->print(dbgs());
5111 dbgs() << '\n';
5114 assert(Solution.size() == Uses.size() && "Malformed solution!");
5117 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5118 /// we can go while still being dominated by the input positions. This helps
5119 /// canonicalize the insert position, which encourages sharing.
5120 BasicBlock::iterator
5121 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5122 const SmallVectorImpl<Instruction *> &Inputs)
5123 const {
5124 Instruction *Tentative = &*IP;
5125 while (true) {
5126 bool AllDominate = true;
5127 Instruction *BetterPos = nullptr;
5128 // Don't bother attempting to insert before a catchswitch, their basic block
5129 // cannot have other non-PHI instructions.
5130 if (isa<CatchSwitchInst>(Tentative))
5131 return IP;
5133 for (Instruction *Inst : Inputs) {
5134 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5135 AllDominate = false;
5136 break;
5138 // Attempt to find an insert position in the middle of the block,
5139 // instead of at the end, so that it can be used for other expansions.
5140 if (Tentative->getParent() == Inst->getParent() &&
5141 (!BetterPos || !DT.dominates(Inst, BetterPos)))
5142 BetterPos = &*std::next(BasicBlock::iterator(Inst));
5144 if (!AllDominate)
5145 break;
5146 if (BetterPos)
5147 IP = BetterPos->getIterator();
5148 else
5149 IP = Tentative->getIterator();
5151 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5152 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5154 BasicBlock *IDom;
5155 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5156 if (!Rung) return IP;
5157 Rung = Rung->getIDom();
5158 if (!Rung) return IP;
5159 IDom = Rung->getBlock();
5161 // Don't climb into a loop though.
5162 const Loop *IDomLoop = LI.getLoopFor(IDom);
5163 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5164 if (IDomDepth <= IPLoopDepth &&
5165 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5166 break;
5169 Tentative = IDom->getTerminator();
5172 return IP;
5175 /// Determine an input position which will be dominated by the operands and
5176 /// which will dominate the result.
5177 BasicBlock::iterator
5178 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5179 const LSRFixup &LF,
5180 const LSRUse &LU,
5181 SCEVExpander &Rewriter) const {
5182 // Collect some instructions which must be dominated by the
5183 // expanding replacement. These must be dominated by any operands that
5184 // will be required in the expansion.
5185 SmallVector<Instruction *, 4> Inputs;
5186 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5187 Inputs.push_back(I);
5188 if (LU.Kind == LSRUse::ICmpZero)
5189 if (Instruction *I =
5190 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5191 Inputs.push_back(I);
5192 if (LF.PostIncLoops.count(L)) {
5193 if (LF.isUseFullyOutsideLoop(L))
5194 Inputs.push_back(L->getLoopLatch()->getTerminator());
5195 else
5196 Inputs.push_back(IVIncInsertPos);
5198 // The expansion must also be dominated by the increment positions of any
5199 // loops it for which it is using post-inc mode.
5200 for (const Loop *PIL : LF.PostIncLoops) {
5201 if (PIL == L) continue;
5203 // Be dominated by the loop exit.
5204 SmallVector<BasicBlock *, 4> ExitingBlocks;
5205 PIL->getExitingBlocks(ExitingBlocks);
5206 if (!ExitingBlocks.empty()) {
5207 BasicBlock *BB = ExitingBlocks[0];
5208 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5209 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5210 Inputs.push_back(BB->getTerminator());
5214 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5215 && !isa<DbgInfoIntrinsic>(LowestIP) &&
5216 "Insertion point must be a normal instruction");
5218 // Then, climb up the immediate dominator tree as far as we can go while
5219 // still being dominated by the input positions.
5220 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5222 // Don't insert instructions before PHI nodes.
5223 while (isa<PHINode>(IP)) ++IP;
5225 // Ignore landingpad instructions.
5226 while (IP->isEHPad()) ++IP;
5228 // Ignore debug intrinsics.
5229 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5231 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5232 // IP consistent across expansions and allows the previously inserted
5233 // instructions to be reused by subsequent expansion.
5234 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5235 ++IP;
5237 return IP;
5240 /// Emit instructions for the leading candidate expression for this LSRUse (this
5241 /// is called "expanding").
5242 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5243 const Formula &F, BasicBlock::iterator IP,
5244 SCEVExpander &Rewriter,
5245 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5246 if (LU.RigidFormula)
5247 return LF.OperandValToReplace;
5249 // Determine an input position which will be dominated by the operands and
5250 // which will dominate the result.
5251 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5252 Rewriter.setInsertPoint(&*IP);
5254 // Inform the Rewriter if we have a post-increment use, so that it can
5255 // perform an advantageous expansion.
5256 Rewriter.setPostInc(LF.PostIncLoops);
5258 // This is the type that the user actually needs.
5259 Type *OpTy = LF.OperandValToReplace->getType();
5260 // This will be the type that we'll initially expand to.
5261 Type *Ty = F.getType();
5262 if (!Ty)
5263 // No type known; just expand directly to the ultimate type.
5264 Ty = OpTy;
5265 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5266 // Expand directly to the ultimate type if it's the right size.
5267 Ty = OpTy;
5268 // This is the type to do integer arithmetic in.
5269 Type *IntTy = SE.getEffectiveSCEVType(Ty);
5271 // Build up a list of operands to add together to form the full base.
5272 SmallVector<const SCEV *, 8> Ops;
5274 // Expand the BaseRegs portion.
5275 for (const SCEV *Reg : F.BaseRegs) {
5276 assert(!Reg->isZero() && "Zero allocated in a base register!");
5278 // If we're expanding for a post-inc user, make the post-inc adjustment.
5279 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5280 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5283 // Expand the ScaledReg portion.
5284 Value *ICmpScaledV = nullptr;
5285 if (F.Scale != 0) {
5286 const SCEV *ScaledS = F.ScaledReg;
5288 // If we're expanding for a post-inc user, make the post-inc adjustment.
5289 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5290 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5292 if (LU.Kind == LSRUse::ICmpZero) {
5293 // Expand ScaleReg as if it was part of the base regs.
5294 if (F.Scale == 1)
5295 Ops.push_back(
5296 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5297 else {
5298 // An interesting way of "folding" with an icmp is to use a negated
5299 // scale, which we'll implement by inserting it into the other operand
5300 // of the icmp.
5301 assert(F.Scale == -1 &&
5302 "The only scale supported by ICmpZero uses is -1!");
5303 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5305 } else {
5306 // Otherwise just expand the scaled register and an explicit scale,
5307 // which is expected to be matched as part of the address.
5309 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5310 // Unless the addressing mode will not be folded.
5311 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5312 isAMCompletelyFolded(TTI, LU, F)) {
5313 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5314 Ops.clear();
5315 Ops.push_back(SE.getUnknown(FullV));
5317 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5318 if (F.Scale != 1)
5319 ScaledS =
5320 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5321 Ops.push_back(ScaledS);
5325 // Expand the GV portion.
5326 if (F.BaseGV) {
5327 // Flush the operand list to suppress SCEVExpander hoisting.
5328 if (!Ops.empty()) {
5329 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5330 Ops.clear();
5331 Ops.push_back(SE.getUnknown(FullV));
5333 Ops.push_back(SE.getUnknown(F.BaseGV));
5336 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5337 // unfolded offsets. LSR assumes they both live next to their uses.
5338 if (!Ops.empty()) {
5339 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5340 Ops.clear();
5341 Ops.push_back(SE.getUnknown(FullV));
5344 // Expand the immediate portion.
5345 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5346 if (Offset != 0) {
5347 if (LU.Kind == LSRUse::ICmpZero) {
5348 // The other interesting way of "folding" with an ICmpZero is to use a
5349 // negated immediate.
5350 if (!ICmpScaledV)
5351 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5352 else {
5353 Ops.push_back(SE.getUnknown(ICmpScaledV));
5354 ICmpScaledV = ConstantInt::get(IntTy, Offset);
5356 } else {
5357 // Just add the immediate values. These again are expected to be matched
5358 // as part of the address.
5359 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5363 // Expand the unfolded offset portion.
5364 int64_t UnfoldedOffset = F.UnfoldedOffset;
5365 if (UnfoldedOffset != 0) {
5366 // Just add the immediate values.
5367 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5368 UnfoldedOffset)));
5371 // Emit instructions summing all the operands.
5372 const SCEV *FullS = Ops.empty() ?
5373 SE.getConstant(IntTy, 0) :
5374 SE.getAddExpr(Ops);
5375 Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5377 // We're done expanding now, so reset the rewriter.
5378 Rewriter.clearPostInc();
5380 // An ICmpZero Formula represents an ICmp which we're handling as a
5381 // comparison against zero. Now that we've expanded an expression for that
5382 // form, update the ICmp's other operand.
5383 if (LU.Kind == LSRUse::ICmpZero) {
5384 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5385 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5386 DeadInsts.emplace_back(OperandIsInstr);
5387 assert(!F.BaseGV && "ICmp does not support folding a global value and "
5388 "a scale at the same time!");
5389 if (F.Scale == -1) {
5390 if (ICmpScaledV->getType() != OpTy) {
5391 Instruction *Cast =
5392 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5393 OpTy, false),
5394 ICmpScaledV, OpTy, "tmp", CI);
5395 ICmpScaledV = Cast;
5397 CI->setOperand(1, ICmpScaledV);
5398 } else {
5399 // A scale of 1 means that the scale has been expanded as part of the
5400 // base regs.
5401 assert((F.Scale == 0 || F.Scale == 1) &&
5402 "ICmp does not support folding a global value and "
5403 "a scale at the same time!");
5404 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5405 -(uint64_t)Offset);
5406 if (C->getType() != OpTy)
5407 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5408 OpTy, false),
5409 C, OpTy);
5411 CI->setOperand(1, C);
5415 return FullV;
5418 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5419 /// effectively happens in their predecessor blocks, so the expression may need
5420 /// to be expanded in multiple places.
5421 void LSRInstance::RewriteForPHI(
5422 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5423 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5424 DenseMap<BasicBlock *, Value *> Inserted;
5425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5426 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5427 bool needUpdateFixups = false;
5428 BasicBlock *BB = PN->getIncomingBlock(i);
5430 // If this is a critical edge, split the edge so that we do not insert
5431 // the code on all predecessor/successor paths. We do this unless this
5432 // is the canonical backedge for this loop, which complicates post-inc
5433 // users.
5434 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5435 !isa<IndirectBrInst>(BB->getTerminator()) &&
5436 !isa<CatchSwitchInst>(BB->getTerminator())) {
5437 BasicBlock *Parent = PN->getParent();
5438 Loop *PNLoop = LI.getLoopFor(Parent);
5439 if (!PNLoop || Parent != PNLoop->getHeader()) {
5440 // Split the critical edge.
5441 BasicBlock *NewBB = nullptr;
5442 if (!Parent->isLandingPad()) {
5443 NewBB =
5444 SplitCriticalEdge(BB, Parent,
5445 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5446 .setMergeIdenticalEdges()
5447 .setKeepOneInputPHIs());
5448 } else {
5449 SmallVector<BasicBlock*, 2> NewBBs;
5450 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5451 NewBB = NewBBs[0];
5453 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5454 // phi predecessors are identical. The simple thing to do is skip
5455 // splitting in this case rather than complicate the API.
5456 if (NewBB) {
5457 // If PN is outside of the loop and BB is in the loop, we want to
5458 // move the block to be immediately before the PHI block, not
5459 // immediately after BB.
5460 if (L->contains(BB) && !L->contains(PN))
5461 NewBB->moveBefore(PN->getParent());
5463 // Splitting the edge can reduce the number of PHI entries we have.
5464 e = PN->getNumIncomingValues();
5465 BB = NewBB;
5466 i = PN->getBasicBlockIndex(BB);
5468 needUpdateFixups = true;
5473 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5474 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5475 if (!Pair.second)
5476 PN->setIncomingValue(i, Pair.first->second);
5477 else {
5478 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5479 Rewriter, DeadInsts);
5481 // If this is reuse-by-noop-cast, insert the noop cast.
5482 Type *OpTy = LF.OperandValToReplace->getType();
5483 if (FullV->getType() != OpTy)
5484 FullV =
5485 CastInst::Create(CastInst::getCastOpcode(FullV, false,
5486 OpTy, false),
5487 FullV, LF.OperandValToReplace->getType(),
5488 "tmp", BB->getTerminator());
5490 PN->setIncomingValue(i, FullV);
5491 Pair.first->second = FullV;
5494 // If LSR splits critical edge and phi node has other pending
5495 // fixup operands, we need to update those pending fixups. Otherwise
5496 // formulae will not be implemented completely and some instructions
5497 // will not be eliminated.
5498 if (needUpdateFixups) {
5499 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5500 for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5501 // If fixup is supposed to rewrite some operand in the phi
5502 // that was just updated, it may be already moved to
5503 // another phi node. Such fixup requires update.
5504 if (Fixup.UserInst == PN) {
5505 // Check if the operand we try to replace still exists in the
5506 // original phi.
5507 bool foundInOriginalPHI = false;
5508 for (const auto &val : PN->incoming_values())
5509 if (val == Fixup.OperandValToReplace) {
5510 foundInOriginalPHI = true;
5511 break;
5514 // If fixup operand found in original PHI - nothing to do.
5515 if (foundInOriginalPHI)
5516 continue;
5518 // Otherwise it might be moved to another PHI and requires update.
5519 // If fixup operand not found in any of the incoming blocks that
5520 // means we have already rewritten it - nothing to do.
5521 for (const auto &Block : PN->blocks())
5522 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5523 ++I) {
5524 PHINode *NewPN = cast<PHINode>(I);
5525 for (const auto &val : NewPN->incoming_values())
5526 if (val == Fixup.OperandValToReplace)
5527 Fixup.UserInst = NewPN;
5534 /// Emit instructions for the leading candidate expression for this LSRUse (this
5535 /// is called "expanding"), and update the UserInst to reference the newly
5536 /// expanded value.
5537 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5538 const Formula &F, SCEVExpander &Rewriter,
5539 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5540 // First, find an insertion point that dominates UserInst. For PHI nodes,
5541 // find the nearest block which dominates all the relevant uses.
5542 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5543 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5544 } else {
5545 Value *FullV =
5546 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5548 // If this is reuse-by-noop-cast, insert the noop cast.
5549 Type *OpTy = LF.OperandValToReplace->getType();
5550 if (FullV->getType() != OpTy) {
5551 Instruction *Cast =
5552 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5553 FullV, OpTy, "tmp", LF.UserInst);
5554 FullV = Cast;
5557 // Update the user. ICmpZero is handled specially here (for now) because
5558 // Expand may have updated one of the operands of the icmp already, and
5559 // its new value may happen to be equal to LF.OperandValToReplace, in
5560 // which case doing replaceUsesOfWith leads to replacing both operands
5561 // with the same value. TODO: Reorganize this.
5562 if (LU.Kind == LSRUse::ICmpZero)
5563 LF.UserInst->setOperand(0, FullV);
5564 else
5565 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5568 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5569 DeadInsts.emplace_back(OperandIsInstr);
5572 /// Rewrite all the fixup locations with new values, following the chosen
5573 /// solution.
5574 void LSRInstance::ImplementSolution(
5575 const SmallVectorImpl<const Formula *> &Solution) {
5576 // Keep track of instructions we may have made dead, so that
5577 // we can remove them after we are done working.
5578 SmallVector<WeakTrackingVH, 16> DeadInsts;
5580 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5581 false);
5582 #ifndef NDEBUG
5583 Rewriter.setDebugType(DEBUG_TYPE);
5584 #endif
5585 Rewriter.disableCanonicalMode();
5586 Rewriter.enableLSRMode();
5587 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5589 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5590 for (const IVChain &Chain : IVChainVec) {
5591 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5592 Rewriter.setChainedPhi(PN);
5595 // Expand the new value definitions and update the users.
5596 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5597 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5598 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5599 Changed = true;
5602 for (const IVChain &Chain : IVChainVec) {
5603 GenerateIVChain(Chain, Rewriter, DeadInsts);
5604 Changed = true;
5607 for (const WeakVH &IV : Rewriter.getInsertedIVs())
5608 if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5609 ScalarEvolutionIVs.push_back(IV);
5611 // Clean up after ourselves. This must be done before deleting any
5612 // instructions.
5613 Rewriter.clear();
5615 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5616 &TLI, MSSAU);
5618 // In our cost analysis above, we assume that each addrec consumes exactly
5619 // one register, and arrange to have increments inserted just before the
5620 // latch to maximimize the chance this is true. However, if we reused
5621 // existing IVs, we now need to move the increments to match our
5622 // expectations. Otherwise, our cost modeling results in us having a
5623 // chosen a non-optimal result for the actual schedule. (And yes, this
5624 // scheduling decision does impact later codegen.)
5625 for (PHINode &PN : L->getHeader()->phis()) {
5626 BinaryOperator *BO = nullptr;
5627 Value *Start = nullptr, *Step = nullptr;
5628 if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5629 continue;
5631 switch (BO->getOpcode()) {
5632 case Instruction::Sub:
5633 if (BO->getOperand(0) != &PN)
5634 // sub is non-commutative - match handling elsewhere in LSR
5635 continue;
5636 break;
5637 case Instruction::Add:
5638 break;
5639 default:
5640 continue;
5643 if (!isa<Constant>(Step))
5644 // If not a constant step, might increase register pressure
5645 // (We assume constants have been canonicalized to RHS)
5646 continue;
5648 if (BO->getParent() == IVIncInsertPos->getParent())
5649 // Only bother moving across blocks. Isel can handle block local case.
5650 continue;
5652 // Can we legally schedule inc at the desired point?
5653 if (!llvm::all_of(BO->uses(),
5654 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5655 continue;
5656 BO->moveBefore(IVIncInsertPos);
5657 Changed = true;
5663 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5664 DominatorTree &DT, LoopInfo &LI,
5665 const TargetTransformInfo &TTI, AssumptionCache &AC,
5666 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5667 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5668 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ?
5669 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) {
5670 // If LoopSimplify form is not available, stay out of trouble.
5671 if (!L->isLoopSimplifyForm())
5672 return;
5674 // If there's no interesting work to be done, bail early.
5675 if (IU.empty()) return;
5677 // If there's too much analysis to be done, bail early. We won't be able to
5678 // model the problem anyway.
5679 unsigned NumUsers = 0;
5680 for (const IVStrideUse &U : IU) {
5681 if (++NumUsers > MaxIVUsers) {
5682 (void)U;
5683 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5684 << "\n");
5685 return;
5687 // Bail out if we have a PHI on an EHPad that gets a value from a
5688 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5689 // no good place to stick any instructions.
5690 if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5691 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5692 if (isa<FuncletPadInst>(FirstNonPHI) ||
5693 isa<CatchSwitchInst>(FirstNonPHI))
5694 for (BasicBlock *PredBB : PN->blocks())
5695 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5696 return;
5700 #ifndef NDEBUG
5701 // All dominating loops must have preheaders, or SCEVExpander may not be able
5702 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5704 // IVUsers analysis should only create users that are dominated by simple loop
5705 // headers. Since this loop should dominate all of its users, its user list
5706 // should be empty if this loop itself is not within a simple loop nest.
5707 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5708 Rung; Rung = Rung->getIDom()) {
5709 BasicBlock *BB = Rung->getBlock();
5710 const Loop *DomLoop = LI.getLoopFor(BB);
5711 if (DomLoop && DomLoop->getHeader() == BB) {
5712 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5715 #endif // DEBUG
5717 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5718 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5719 dbgs() << ":\n");
5721 // First, perform some low-level loop optimizations.
5722 OptimizeShadowIV();
5723 OptimizeLoopTermCond();
5725 // If loop preparation eliminates all interesting IV users, bail.
5726 if (IU.empty()) return;
5728 // Skip nested loops until we can model them better with formulae.
5729 if (!L->isInnermost()) {
5730 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5731 return;
5734 // Start collecting data and preparing for the solver.
5735 // If number of registers is not the major cost, we cannot benefit from the
5736 // current profitable chain optimization which is based on number of
5737 // registers.
5738 // FIXME: add profitable chain optimization for other kinds major cost, for
5739 // example number of instructions.
5740 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5741 CollectChains();
5742 CollectInterestingTypesAndFactors();
5743 CollectFixupsAndInitialFormulae();
5744 CollectLoopInvariantFixupsAndFormulae();
5746 if (Uses.empty())
5747 return;
5749 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5750 print_uses(dbgs()));
5752 // Now use the reuse data to generate a bunch of interesting ways
5753 // to formulate the values needed for the uses.
5754 GenerateAllReuseFormulae();
5756 FilterOutUndesirableDedicatedRegisters();
5757 NarrowSearchSpaceUsingHeuristics();
5759 SmallVector<const Formula *, 8> Solution;
5760 Solve(Solution);
5762 // Release memory that is no longer needed.
5763 Factors.clear();
5764 Types.clear();
5765 RegUses.clear();
5767 if (Solution.empty())
5768 return;
5770 #ifndef NDEBUG
5771 // Formulae should be legal.
5772 for (const LSRUse &LU : Uses) {
5773 for (const Formula &F : LU.Formulae)
5774 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5775 F) && "Illegal formula generated!");
5777 #endif
5779 // Now that we've decided what we want, make it so.
5780 ImplementSolution(Solution);
5783 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5784 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5785 if (Factors.empty() && Types.empty()) return;
5787 OS << "LSR has identified the following interesting factors and types: ";
5788 bool First = true;
5790 for (int64_t Factor : Factors) {
5791 if (!First) OS << ", ";
5792 First = false;
5793 OS << '*' << Factor;
5796 for (Type *Ty : Types) {
5797 if (!First) OS << ", ";
5798 First = false;
5799 OS << '(' << *Ty << ')';
5801 OS << '\n';
5804 void LSRInstance::print_fixups(raw_ostream &OS) const {
5805 OS << "LSR is examining the following fixup sites:\n";
5806 for (const LSRUse &LU : Uses)
5807 for (const LSRFixup &LF : LU.Fixups) {
5808 dbgs() << " ";
5809 LF.print(OS);
5810 OS << '\n';
5814 void LSRInstance::print_uses(raw_ostream &OS) const {
5815 OS << "LSR is examining the following uses:\n";
5816 for (const LSRUse &LU : Uses) {
5817 dbgs() << " ";
5818 LU.print(OS);
5819 OS << '\n';
5820 for (const Formula &F : LU.Formulae) {
5821 OS << " ";
5822 F.print(OS);
5823 OS << '\n';
5828 void LSRInstance::print(raw_ostream &OS) const {
5829 print_factors_and_types(OS);
5830 print_fixups(OS);
5831 print_uses(OS);
5834 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5835 print(errs()); errs() << '\n';
5837 #endif
5839 namespace {
5841 class LoopStrengthReduce : public LoopPass {
5842 public:
5843 static char ID; // Pass ID, replacement for typeid
5845 LoopStrengthReduce();
5847 private:
5848 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5849 void getAnalysisUsage(AnalysisUsage &AU) const override;
5852 } // end anonymous namespace
5854 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5855 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5858 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5859 // We split critical edges, so we change the CFG. However, we do update
5860 // many analyses if they are around.
5861 AU.addPreservedID(LoopSimplifyID);
5863 AU.addRequired<LoopInfoWrapperPass>();
5864 AU.addPreserved<LoopInfoWrapperPass>();
5865 AU.addRequiredID(LoopSimplifyID);
5866 AU.addRequired<DominatorTreeWrapperPass>();
5867 AU.addPreserved<DominatorTreeWrapperPass>();
5868 AU.addRequired<ScalarEvolutionWrapperPass>();
5869 AU.addPreserved<ScalarEvolutionWrapperPass>();
5870 AU.addRequired<AssumptionCacheTracker>();
5871 AU.addRequired<TargetLibraryInfoWrapperPass>();
5872 // Requiring LoopSimplify a second time here prevents IVUsers from running
5873 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5874 AU.addRequiredID(LoopSimplifyID);
5875 AU.addRequired<IVUsersWrapperPass>();
5876 AU.addPreserved<IVUsersWrapperPass>();
5877 AU.addRequired<TargetTransformInfoWrapperPass>();
5878 AU.addPreserved<MemorySSAWrapperPass>();
5881 struct SCEVDbgValueBuilder {
5882 SCEVDbgValueBuilder() = default;
5883 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) {
5884 Values = Base.Values;
5885 Expr = Base.Expr;
5888 /// The DIExpression as we translate the SCEV.
5889 SmallVector<uint64_t, 6> Expr;
5890 /// The location ops of the DIExpression.
5891 SmallVector<llvm::ValueAsMetadata *, 2> Values;
5893 void pushOperator(uint64_t Op) { Expr.push_back(Op); }
5894 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
5896 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
5897 /// in the set of values referenced by the expression.
5898 void pushValue(llvm::Value *V) {
5899 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
5900 auto *It =
5901 std::find(Values.begin(), Values.end(), llvm::ValueAsMetadata::get(V));
5902 unsigned ArgIndex = 0;
5903 if (It != Values.end()) {
5904 ArgIndex = std::distance(Values.begin(), It);
5905 } else {
5906 ArgIndex = Values.size();
5907 Values.push_back(llvm::ValueAsMetadata::get(V));
5909 Expr.push_back(ArgIndex);
5912 void pushValue(const SCEVUnknown *U) {
5913 llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
5914 pushValue(V);
5917 bool pushConst(const SCEVConstant *C) {
5918 if (C->getAPInt().getMinSignedBits() > 64)
5919 return false;
5920 Expr.push_back(llvm::dwarf::DW_OP_consts);
5921 Expr.push_back(C->getAPInt().getSExtValue());
5922 return true;
5925 /// Several SCEV types are sequences of the same arithmetic operator applied
5926 /// to constants and values that may be extended or truncated.
5927 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
5928 uint64_t DwarfOp) {
5929 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
5930 "Expected arithmetic SCEV type");
5931 bool Success = true;
5932 unsigned EmitOperator = 0;
5933 for (auto &Op : CommExpr->operands()) {
5934 Success &= pushSCEV(Op);
5936 if (EmitOperator >= 1)
5937 pushOperator(DwarfOp);
5938 ++EmitOperator;
5940 return Success;
5943 // TODO: Identify and omit noop casts.
5944 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
5945 const llvm::SCEV *Inner = C->getOperand(0);
5946 const llvm::Type *Type = C->getType();
5947 uint64_t ToWidth = Type->getIntegerBitWidth();
5948 bool Success = pushSCEV(Inner);
5949 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
5950 IsSigned ? llvm::dwarf::DW_ATE_signed
5951 : llvm::dwarf::DW_ATE_unsigned};
5952 for (const auto &Op : CastOps)
5953 pushOperator(Op);
5954 return Success;
5957 // TODO: MinMax - although these haven't been encountered in the test suite.
5958 bool pushSCEV(const llvm::SCEV *S) {
5959 bool Success = true;
5960 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
5961 Success &= pushConst(StartInt);
5963 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5964 if (!U->getValue())
5965 return false;
5966 pushValue(U->getValue());
5968 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
5969 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
5971 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5972 Success &= pushSCEV(UDiv->getLHS());
5973 Success &= pushSCEV(UDiv->getRHS());
5974 pushOperator(llvm::dwarf::DW_OP_div);
5976 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
5977 // Assert if a new and unknown SCEVCastEXpr type is encountered.
5978 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
5979 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
5980 "Unexpected cast type in SCEV.");
5981 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
5983 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
5984 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
5986 } else if (isa<SCEVAddRecExpr>(S)) {
5987 // Nested SCEVAddRecExpr are generated by nested loops and are currently
5988 // unsupported.
5989 return false;
5991 } else {
5992 return false;
5994 return Success;
5997 void setFinalExpression(llvm::DbgValueInst &DI, const DIExpression *OldExpr) {
5998 // Re-state assumption that this dbg.value is not variadic. Any remaining
5999 // opcodes in its expression operate on a single value already on the
6000 // expression stack. Prepend our operations, which will re-compute and
6001 // place that value on the expression stack.
6002 assert(!DI.hasArgList());
6003 auto *NewExpr =
6004 DIExpression::prependOpcodes(OldExpr, Expr, /*StackValue*/ true);
6005 DI.setExpression(NewExpr);
6007 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(Values);
6008 DI.setRawLocation(llvm::DIArgList::get(DI.getContext(), ValArrayRef));
6011 /// If a DVI can be emitted without a DIArgList, omit DW_OP_llvm_arg and the
6012 /// location op index 0.
6013 void setShortFinalExpression(llvm::DbgValueInst &DI,
6014 const DIExpression *OldExpr) {
6015 assert((Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && Expr[1] == 0) &&
6016 "Expected DW_OP_llvm_arg and 0.");
6017 DI.replaceVariableLocationOp(
6018 0u, llvm::MetadataAsValue::get(DI.getContext(), Values[0]));
6020 // See setFinalExpression: prepend our opcodes on the start of any old
6021 // expression opcodes.
6022 assert(!DI.hasArgList());
6023 llvm::SmallVector<uint64_t, 6> FinalExpr(Expr.begin() + 2, Expr.end());
6024 auto *NewExpr =
6025 DIExpression::prependOpcodes(OldExpr, FinalExpr, /*StackValue*/ true);
6026 DI.setExpression(NewExpr);
6029 /// Once the IV and variable SCEV translation is complete, write it to the
6030 /// source DVI.
6031 void applyExprToDbgValue(llvm::DbgValueInst &DI,
6032 const DIExpression *OldExpr) {
6033 assert(!Expr.empty() && "Unexpected empty expression.");
6034 // Emit a simpler form if only a single location is referenced.
6035 if (Values.size() == 1 && Expr[0] == llvm::dwarf::DW_OP_LLVM_arg &&
6036 Expr[1] == 0) {
6037 setShortFinalExpression(DI, OldExpr);
6038 } else {
6039 setFinalExpression(DI, OldExpr);
6043 /// Return true if the combination of arithmetic operator and underlying
6044 /// SCEV constant value is an identity function.
6045 bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6046 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6047 if (C->getAPInt().getMinSignedBits() > 64)
6048 return false;
6049 int64_t I = C->getAPInt().getSExtValue();
6050 switch (Op) {
6051 case llvm::dwarf::DW_OP_plus:
6052 case llvm::dwarf::DW_OP_minus:
6053 return I == 0;
6054 case llvm::dwarf::DW_OP_mul:
6055 case llvm::dwarf::DW_OP_div:
6056 return I == 1;
6059 return false;
6062 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6063 /// builder's expression stack. The stack should already contain an
6064 /// expression for the iteration count, so that it can be multiplied by
6065 /// the stride and added to the start.
6066 /// Components of the expression are omitted if they are an identity function.
6067 /// Chain (non-affine) SCEVs are not supported.
6068 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6069 assert(SAR.isAffine() && "Expected affine SCEV");
6070 // TODO: Is this check needed?
6071 if (isa<SCEVAddRecExpr>(SAR.getStart()))
6072 return false;
6074 const SCEV *Start = SAR.getStart();
6075 const SCEV *Stride = SAR.getStepRecurrence(SE);
6077 // Skip pushing arithmetic noops.
6078 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6079 if (!pushSCEV(Stride))
6080 return false;
6081 pushOperator(llvm::dwarf::DW_OP_mul);
6083 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6084 if (!pushSCEV(Start))
6085 return false;
6086 pushOperator(llvm::dwarf::DW_OP_plus);
6088 return true;
6091 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6092 /// builder's expression stack. The stack should already contain an
6093 /// expression for the iteration count, so that it can be multiplied by
6094 /// the stride and added to the start.
6095 /// Components of the expression are omitted if they are an identity function.
6096 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6097 ScalarEvolution &SE) {
6098 assert(SAR.isAffine() && "Expected affine SCEV");
6099 if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6100 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6101 << SAR << '\n');
6102 return false;
6104 const SCEV *Start = SAR.getStart();
6105 const SCEV *Stride = SAR.getStepRecurrence(SE);
6107 // Skip pushing arithmetic noops.
6108 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6109 if (!pushSCEV(Start))
6110 return false;
6111 pushOperator(llvm::dwarf::DW_OP_minus);
6113 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6114 if (!pushSCEV(Stride))
6115 return false;
6116 pushOperator(llvm::dwarf::DW_OP_div);
6118 return true;
6122 struct DVIRecoveryRec {
6123 DbgValueInst *DVI;
6124 DIExpression *Expr;
6125 Metadata *LocationOp;
6126 const llvm::SCEV *SCEV;
6129 static bool RewriteDVIUsingIterCount(DVIRecoveryRec CachedDVI,
6130 const SCEVDbgValueBuilder &IterationCount,
6131 ScalarEvolution &SE) {
6132 // LSR may add locations to previously single location-op DVIs which
6133 // are currently not supported.
6134 if (CachedDVI.DVI->getNumVariableLocationOps() != 1)
6135 return false;
6137 // SCEVs for SSA values are most frquently of the form
6138 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6139 // This is because %a is a PHI node that is not the IV. However, these
6140 // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6141 // so its not expected this point will be reached.
6142 if (!isa<SCEVAddRecExpr>(CachedDVI.SCEV))
6143 return false;
6145 LLVM_DEBUG(dbgs() << "scev-salvage: Value to salvage SCEV: "
6146 << *CachedDVI.SCEV << '\n');
6148 const auto *Rec = cast<SCEVAddRecExpr>(CachedDVI.SCEV);
6149 if (!Rec->isAffine())
6150 return false;
6152 // Initialise a new builder with the iteration count expression. In
6153 // combination with the value's SCEV this enables recovery.
6154 SCEVDbgValueBuilder RecoverValue(IterationCount);
6155 if (!RecoverValue.SCEVToValueExpr(*Rec, SE))
6156 return false;
6158 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *CachedDVI.DVI << '\n');
6159 RecoverValue.applyExprToDbgValue(*CachedDVI.DVI, CachedDVI.Expr);
6160 LLVM_DEBUG(dbgs() << "scev-salvage: to: " << *CachedDVI.DVI << '\n');
6161 return true;
6164 static bool
6165 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6166 llvm::PHINode *LSRInductionVar,
6167 SmallVector<DVIRecoveryRec, 2> &DVIToUpdate) {
6168 if (DVIToUpdate.empty())
6169 return false;
6171 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6172 assert(SCEVInductionVar &&
6173 "Anticipated a SCEV for the post-LSR induction variable");
6175 bool Changed = false;
6176 if (const SCEVAddRecExpr *IVAddRec =
6177 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6178 if (!IVAddRec->isAffine())
6179 return false;
6181 SCEVDbgValueBuilder IterCountExpr;
6182 IterCountExpr.pushValue(LSRInductionVar);
6183 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6184 return false;
6186 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6187 << '\n');
6189 // Needn't salvage if the location op hasn't been undef'd by LSR.
6190 for (auto &DVIRec : DVIToUpdate) {
6191 if (!DVIRec.DVI->isUndef())
6192 continue;
6194 // Some DVIs that were single location-op when cached are now multi-op,
6195 // due to LSR optimisations. However, multi-op salvaging is not yet
6196 // supported by SCEV salvaging. But, we can attempt a salvage by restoring
6197 // the pre-LSR single-op expression.
6198 if (DVIRec.DVI->hasArgList()) {
6199 if (!DVIRec.DVI->getVariableLocationOp(0))
6200 continue;
6201 llvm::Type *Ty = DVIRec.DVI->getVariableLocationOp(0)->getType();
6202 DVIRec.DVI->setRawLocation(
6203 llvm::ValueAsMetadata::get(UndefValue::get(Ty)));
6204 DVIRec.DVI->setExpression(DVIRec.Expr);
6207 Changed |= RewriteDVIUsingIterCount(DVIRec, IterCountExpr, SE);
6210 return Changed;
6213 /// Identify and cache salvageable DVI locations and expressions along with the
6214 /// corresponding SCEV(s). Also ensure that the DVI is not deleted before
6215 static void
6216 DbgGatherSalvagableDVI(Loop *L, ScalarEvolution &SE,
6217 SmallVector<DVIRecoveryRec, 2> &SalvageableDVISCEVs,
6218 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6219 for (auto &B : L->getBlocks()) {
6220 for (auto &I : *B) {
6221 auto DVI = dyn_cast<DbgValueInst>(&I);
6222 if (!DVI)
6223 continue;
6225 if (DVI->isUndef())
6226 continue;
6228 if (DVI->hasArgList())
6229 continue;
6231 if (!DVI->getVariableLocationOp(0) ||
6232 !SE.isSCEVable(DVI->getVariableLocationOp(0)->getType()))
6233 continue;
6235 SalvageableDVISCEVs.push_back(
6236 {DVI, DVI->getExpression(), DVI->getRawLocation(),
6237 SE.getSCEV(DVI->getVariableLocationOp(0))});
6238 DVIHandles.insert(DVI);
6243 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6244 /// any PHi from the loop header is usable, but may have less chance of
6245 /// surviving subsequent transforms.
6246 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6247 const LSRInstance &LSR) {
6248 // For now, just pick the first IV generated and inserted. Ideally pick an IV
6249 // that is unlikely to be optimised away by subsequent transforms.
6250 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6251 if (!IV)
6252 continue;
6254 assert(isa<PHINode>(&*IV) && "Expected PhI node.");
6255 if (SE.isSCEVable((*IV).getType())) {
6256 PHINode *Phi = dyn_cast<PHINode>(&*IV);
6257 LLVM_DEBUG(dbgs() << "scev-salvage: IV : " << *IV
6258 << "with SCEV: " << *SE.getSCEV(Phi) << "\n");
6259 return Phi;
6263 for (PHINode &Phi : L.getHeader()->phis()) {
6264 if (!SE.isSCEVable(Phi.getType()))
6265 continue;
6267 const llvm::SCEV *PhiSCEV = SE.getSCEV(&Phi);
6268 if (const llvm::SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(PhiSCEV))
6269 if (!Rec->isAffine())
6270 continue;
6272 LLVM_DEBUG(dbgs() << "scev-salvage: Selected IV from loop header: " << Phi
6273 << " with SCEV: " << *PhiSCEV << "\n");
6274 return &Phi;
6276 return nullptr;
6279 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6280 DominatorTree &DT, LoopInfo &LI,
6281 const TargetTransformInfo &TTI,
6282 AssumptionCache &AC, TargetLibraryInfo &TLI,
6283 MemorySSA *MSSA) {
6285 // Debug preservation - before we start removing anything identify which DVI
6286 // meet the salvageable criteria and store their DIExpression and SCEVs.
6287 SmallVector<DVIRecoveryRec, 2> SalvageableDVI;
6288 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6289 DbgGatherSalvagableDVI(L, SE, SalvageableDVI, DVIHandles);
6291 bool Changed = false;
6292 std::unique_ptr<MemorySSAUpdater> MSSAU;
6293 if (MSSA)
6294 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6296 // Run the main LSR transformation.
6297 const LSRInstance &Reducer =
6298 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6299 Changed |= Reducer.getChanged();
6301 // Remove any extra phis created by processing inner loops.
6302 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6303 if (EnablePhiElim && L->isLoopSimplifyForm()) {
6304 SmallVector<WeakTrackingVH, 16> DeadInsts;
6305 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6306 SCEVExpander Rewriter(SE, DL, "lsr", false);
6307 #ifndef NDEBUG
6308 Rewriter.setDebugType(DEBUG_TYPE);
6309 #endif
6310 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6311 if (numFolded) {
6312 Changed = true;
6313 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6314 MSSAU.get());
6315 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6319 if (SalvageableDVI.empty())
6320 return Changed;
6322 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
6323 // expressions composed using the derived iteration count.
6324 // TODO: Allow for multiple IV references for nested AddRecSCEVs
6325 for (auto &L : LI) {
6326 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
6327 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVI);
6328 else {
6329 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
6330 "could not be identified.\n");
6334 DVIHandles.clear();
6335 return Changed;
6338 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
6339 if (skipLoop(L))
6340 return false;
6342 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
6343 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6344 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6345 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6346 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
6347 *L->getHeader()->getParent());
6348 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
6349 *L->getHeader()->getParent());
6350 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
6351 *L->getHeader()->getParent());
6352 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
6353 MemorySSA *MSSA = nullptr;
6354 if (MSSAAnalysis)
6355 MSSA = &MSSAAnalysis->getMSSA();
6356 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
6359 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
6360 LoopStandardAnalysisResults &AR,
6361 LPMUpdater &) {
6362 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
6363 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
6364 return PreservedAnalyses::all();
6366 auto PA = getLoopPassPreservedAnalyses();
6367 if (AR.MSSA)
6368 PA.preserve<MemorySSAAnalysis>();
6369 return PA;
6372 char LoopStrengthReduce::ID = 0;
6374 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
6375 "Loop Strength Reduction", false, false)
6376 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6377 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6378 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6379 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6380 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6381 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6382 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6383 "Loop Strength Reduction", false, false)
6385 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }