1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
74 #define DEBUG_TYPE "loop-unroll"
76 cl::opt
<bool> llvm::ForgetSCEVInLoopUnroll(
77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden
,
78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79 " the current top-most loop. This is sometimes preferred to reduce"
82 static cl::opt
<unsigned>
83 UnrollThreshold("unroll-threshold", cl::Hidden
,
84 cl::desc("The cost threshold for loop unrolling"));
86 static cl::opt
<unsigned>
87 UnrollOptSizeThreshold(
88 "unroll-optsize-threshold", cl::init(0), cl::Hidden
,
89 cl::desc("The cost threshold for loop unrolling when optimizing for "
92 static cl::opt
<unsigned> UnrollPartialThreshold(
93 "unroll-partial-threshold", cl::Hidden
,
94 cl::desc("The cost threshold for partial loop unrolling"));
96 static cl::opt
<unsigned> UnrollMaxPercentThresholdBoost(
97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden
,
98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99 "to the threshold when aggressively unrolling a loop due to the "
100 "dynamic cost savings. If completely unrolling a loop will reduce "
101 "the total runtime from X to Y, we boost the loop unroll "
102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103 "X/Y). This limit avoids excessive code bloat."));
105 static cl::opt
<unsigned> UnrollMaxIterationsCountToAnalyze(
106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden
,
107 cl::desc("Don't allow loop unrolling to simulate more than this number of"
108 "iterations when checking full unroll profitability"));
110 static cl::opt
<unsigned> UnrollCount(
111 "unroll-count", cl::Hidden
,
112 cl::desc("Use this unroll count for all loops including those with "
113 "unroll_count pragma values, for testing purposes"));
115 static cl::opt
<unsigned> UnrollMaxCount(
116 "unroll-max-count", cl::Hidden
,
117 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118 "testing purposes"));
120 static cl::opt
<unsigned> UnrollFullMaxCount(
121 "unroll-full-max-count", cl::Hidden
,
123 "Set the max unroll count for full unrolling, for testing purposes"));
126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden
,
127 cl::desc("Allows loops to be partially unrolled until "
128 "-unroll-threshold loop size is reached."));
130 static cl::opt
<bool> UnrollAllowRemainder(
131 "unroll-allow-remainder", cl::Hidden
,
132 cl::desc("Allow generation of a loop remainder (extra iterations) "
133 "when unrolling a loop."));
136 UnrollRuntime("unroll-runtime", cl::ZeroOrMore
, cl::Hidden
,
137 cl::desc("Unroll loops with run-time trip counts"));
139 static cl::opt
<unsigned> UnrollMaxUpperBound(
140 "unroll-max-upperbound", cl::init(8), cl::Hidden
,
142 "The max of trip count upper bound that is considered in unrolling"));
144 static cl::opt
<unsigned> PragmaUnrollThreshold(
145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden
,
146 cl::desc("Unrolled size limit for loops with an unroll(full) or "
147 "unroll_count pragma."));
149 static cl::opt
<unsigned> FlatLoopTripCountThreshold(
150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden
,
151 cl::desc("If the runtime tripcount for the loop is lower than the "
152 "threshold, the loop is considered as flat and will be less "
153 "aggressively unrolled."));
155 static cl::opt
<bool> UnrollUnrollRemainder(
156 "unroll-remainder", cl::Hidden
,
157 cl::desc("Allow the loop remainder to be unrolled."));
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
162 static cl::opt
<bool> UnrollRevisitChildLoops(
163 "unroll-revisit-child-loops", cl::Hidden
,
164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165 "This shouldn't typically be needed as child loops (or their "
166 "clones) were already visited."));
168 static cl::opt
<unsigned> UnrollThresholdAggressive(
169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden
,
170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
172 static cl::opt
<unsigned>
173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
175 cl::desc("Default threshold (max size of unrolled "
176 "loop), used in all but O3 optimizations"));
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold
= std::numeric_limits
<unsigned>::max();
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
185 TargetTransformInfo::UnrollingPreferences
llvm::gatherUnrollingPreferences(
186 Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
,
187 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
188 OptimizationRemarkEmitter
&ORE
, int OptLevel
,
189 Optional
<unsigned> UserThreshold
, Optional
<unsigned> UserCount
,
190 Optional
<bool> UserAllowPartial
, Optional
<bool> UserRuntime
,
191 Optional
<bool> UserUpperBound
, Optional
<unsigned> UserFullUnrollMaxCount
) {
192 TargetTransformInfo::UnrollingPreferences UP
;
194 // Set up the defaults
196 OptLevel
> 2 ? UnrollThresholdAggressive
: UnrollThresholdDefault
;
197 UP
.MaxPercentThresholdBoost
= 400;
198 UP
.OptSizeThreshold
= UnrollOptSizeThreshold
;
199 UP
.PartialThreshold
= 150;
200 UP
.PartialOptSizeThreshold
= UnrollOptSizeThreshold
;
202 UP
.DefaultUnrollRuntimeCount
= 8;
203 UP
.MaxCount
= std::numeric_limits
<unsigned>::max();
204 UP
.FullUnrollMaxCount
= std::numeric_limits
<unsigned>::max();
208 UP
.AllowRemainder
= true;
209 UP
.UnrollRemainder
= false;
210 UP
.AllowExpensiveTripCount
= false;
212 UP
.UpperBound
= false;
213 UP
.UnrollAndJam
= false;
214 UP
.UnrollAndJamInnerLoopThreshold
= 60;
215 UP
.MaxIterationsCountToAnalyze
= UnrollMaxIterationsCountToAnalyze
;
217 // Override with any target specific settings
218 TTI
.getUnrollingPreferences(L
, SE
, UP
, &ORE
);
220 // Apply size attributes
221 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize() ||
222 // Let unroll hints / pragmas take precedence over PGSO.
223 (hasUnrollTransformation(L
) != TM_ForcedByUser
&&
224 llvm::shouldOptimizeForSize(L
->getHeader(), PSI
, BFI
,
225 PGSOQueryType::IRPass
));
227 UP
.Threshold
= UP
.OptSizeThreshold
;
228 UP
.PartialThreshold
= UP
.PartialOptSizeThreshold
;
229 UP
.MaxPercentThresholdBoost
= 100;
232 // Apply any user values specified by cl::opt
233 if (UnrollThreshold
.getNumOccurrences() > 0)
234 UP
.Threshold
= UnrollThreshold
;
235 if (UnrollPartialThreshold
.getNumOccurrences() > 0)
236 UP
.PartialThreshold
= UnrollPartialThreshold
;
237 if (UnrollMaxPercentThresholdBoost
.getNumOccurrences() > 0)
238 UP
.MaxPercentThresholdBoost
= UnrollMaxPercentThresholdBoost
;
239 if (UnrollMaxCount
.getNumOccurrences() > 0)
240 UP
.MaxCount
= UnrollMaxCount
;
241 if (UnrollFullMaxCount
.getNumOccurrences() > 0)
242 UP
.FullUnrollMaxCount
= UnrollFullMaxCount
;
243 if (UnrollAllowPartial
.getNumOccurrences() > 0)
244 UP
.Partial
= UnrollAllowPartial
;
245 if (UnrollAllowRemainder
.getNumOccurrences() > 0)
246 UP
.AllowRemainder
= UnrollAllowRemainder
;
247 if (UnrollRuntime
.getNumOccurrences() > 0)
248 UP
.Runtime
= UnrollRuntime
;
249 if (UnrollMaxUpperBound
== 0)
250 UP
.UpperBound
= false;
251 if (UnrollUnrollRemainder
.getNumOccurrences() > 0)
252 UP
.UnrollRemainder
= UnrollUnrollRemainder
;
253 if (UnrollMaxIterationsCountToAnalyze
.getNumOccurrences() > 0)
254 UP
.MaxIterationsCountToAnalyze
= UnrollMaxIterationsCountToAnalyze
;
256 // Apply user values provided by argument
257 if (UserThreshold
.hasValue()) {
258 UP
.Threshold
= *UserThreshold
;
259 UP
.PartialThreshold
= *UserThreshold
;
261 if (UserCount
.hasValue())
262 UP
.Count
= *UserCount
;
263 if (UserAllowPartial
.hasValue())
264 UP
.Partial
= *UserAllowPartial
;
265 if (UserRuntime
.hasValue())
266 UP
.Runtime
= *UserRuntime
;
267 if (UserUpperBound
.hasValue())
268 UP
.UpperBound
= *UserUpperBound
;
269 if (UserFullUnrollMaxCount
.hasValue())
270 UP
.FullUnrollMaxCount
= *UserFullUnrollMaxCount
;
277 /// A struct to densely store the state of an instruction after unrolling at
280 /// This is designed to work like a tuple of <Instruction *, int> for the
281 /// purposes of hashing and lookup, but to be able to associate two boolean
282 /// states with each key.
283 struct UnrolledInstState
{
287 unsigned IsCounted
: 1;
290 /// Hashing and equality testing for a set of the instruction states.
291 struct UnrolledInstStateKeyInfo
{
292 using PtrInfo
= DenseMapInfo
<Instruction
*>;
293 using PairInfo
= DenseMapInfo
<std::pair
<Instruction
*, int>>;
295 static inline UnrolledInstState
getEmptyKey() {
296 return {PtrInfo::getEmptyKey(), 0, 0, 0};
299 static inline UnrolledInstState
getTombstoneKey() {
300 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
303 static inline unsigned getHashValue(const UnrolledInstState
&S
) {
304 return PairInfo::getHashValue({S
.I
, S
.Iteration
});
307 static inline bool isEqual(const UnrolledInstState
&LHS
,
308 const UnrolledInstState
&RHS
) {
309 return PairInfo::isEqual({LHS
.I
, LHS
.Iteration
}, {RHS
.I
, RHS
.Iteration
});
313 struct EstimatedUnrollCost
{
314 /// The estimated cost after unrolling.
315 unsigned UnrolledCost
;
317 /// The estimated dynamic cost of executing the instructions in the
319 unsigned RolledDynamicCost
;
323 PragmaInfo(bool UUC
, bool PFU
, unsigned PC
, bool PEU
)
324 : UserUnrollCount(UUC
), PragmaFullUnroll(PFU
), PragmaCount(PC
),
325 PragmaEnableUnroll(PEU
) {}
326 const bool UserUnrollCount
;
327 const bool PragmaFullUnroll
;
328 const unsigned PragmaCount
;
329 const bool PragmaEnableUnroll
;
332 } // end anonymous namespace
334 /// Figure out if the loop is worth full unrolling.
336 /// Complete loop unrolling can make some loads constant, and we need to know
337 /// if that would expose any further optimization opportunities. This routine
338 /// estimates this optimization. It computes cost of unrolled loop
339 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
340 /// dynamic cost we mean that we won't count costs of blocks that are known not
341 /// to be executed (i.e. if we have a branch in the loop and we know that at the
342 /// given iteration its condition would be resolved to true, we won't add up the
343 /// cost of the 'false'-block).
344 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
345 /// the analysis failed (no benefits expected from the unrolling, or the loop is
346 /// too big to analyze), the returned value is None.
347 static Optional
<EstimatedUnrollCost
> analyzeLoopUnrollCost(
348 const Loop
*L
, unsigned TripCount
, DominatorTree
&DT
, ScalarEvolution
&SE
,
349 const SmallPtrSetImpl
<const Value
*> &EphValues
,
350 const TargetTransformInfo
&TTI
, unsigned MaxUnrolledLoopSize
,
351 unsigned MaxIterationsCountToAnalyze
) {
352 // We want to be able to scale offsets by the trip count and add more offsets
353 // to them without checking for overflows, and we already don't want to
354 // analyze *massive* trip counts, so we force the max to be reasonably small.
355 assert(MaxIterationsCountToAnalyze
<
356 (unsigned)(std::numeric_limits
<int>::max() / 2) &&
357 "The unroll iterations max is too large!");
359 // Only analyze inner loops. We can't properly estimate cost of nested loops
360 // and we won't visit inner loops again anyway.
361 if (!L
->isInnermost())
364 // Don't simulate loops with a big or unknown tripcount
365 if (!TripCount
|| TripCount
> MaxIterationsCountToAnalyze
)
368 SmallSetVector
<BasicBlock
*, 16> BBWorklist
;
369 SmallSetVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitWorklist
;
370 DenseMap
<Value
*, Value
*> SimplifiedValues
;
371 SmallVector
<std::pair
<Value
*, Value
*>, 4> SimplifiedInputValues
;
373 // The estimated cost of the unrolled form of the loop. We try to estimate
374 // this by simplifying as much as we can while computing the estimate.
375 InstructionCost UnrolledCost
= 0;
377 // We also track the estimated dynamic (that is, actually executed) cost in
378 // the rolled form. This helps identify cases when the savings from unrolling
379 // aren't just exposing dead control flows, but actual reduced dynamic
380 // instructions due to the simplifications which we expect to occur after
382 InstructionCost RolledDynamicCost
= 0;
384 // We track the simplification of each instruction in each iteration. We use
385 // this to recursively merge costs into the unrolled cost on-demand so that
386 // we don't count the cost of any dead code. This is essentially a map from
387 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
388 DenseSet
<UnrolledInstState
, UnrolledInstStateKeyInfo
> InstCostMap
;
390 // A small worklist used to accumulate cost of instructions from each
391 // observable and reached root in the loop.
392 SmallVector
<Instruction
*, 16> CostWorklist
;
394 // PHI-used worklist used between iterations while accumulating cost.
395 SmallVector
<Instruction
*, 4> PHIUsedList
;
397 // Helper function to accumulate cost for instructions in the loop.
398 auto AddCostRecursively
= [&](Instruction
&RootI
, int Iteration
) {
399 assert(Iteration
>= 0 && "Cannot have a negative iteration!");
400 assert(CostWorklist
.empty() && "Must start with an empty cost list");
401 assert(PHIUsedList
.empty() && "Must start with an empty phi used list");
402 CostWorklist
.push_back(&RootI
);
403 TargetTransformInfo::TargetCostKind CostKind
=
404 RootI
.getFunction()->hasMinSize() ?
405 TargetTransformInfo::TCK_CodeSize
:
406 TargetTransformInfo::TCK_SizeAndLatency
;
407 for (;; --Iteration
) {
409 Instruction
*I
= CostWorklist
.pop_back_val();
411 // InstCostMap only uses I and Iteration as a key, the other two values
412 // don't matter here.
413 auto CostIter
= InstCostMap
.find({I
, Iteration
, 0, 0});
414 if (CostIter
== InstCostMap
.end())
415 // If an input to a PHI node comes from a dead path through the loop
416 // we may have no cost data for it here. What that actually means is
419 auto &Cost
= *CostIter
;
421 // Already counted this instruction.
424 // Mark that we are counting the cost of this instruction now.
425 Cost
.IsCounted
= true;
427 // If this is a PHI node in the loop header, just add it to the PHI set.
428 if (auto *PhiI
= dyn_cast
<PHINode
>(I
))
429 if (PhiI
->getParent() == L
->getHeader()) {
430 assert(Cost
.IsFree
&& "Loop PHIs shouldn't be evaluated as they "
431 "inherently simplify during unrolling.");
435 // Push the incoming value from the backedge into the PHI used list
436 // if it is an in-loop instruction. We'll use this to populate the
437 // cost worklist for the next iteration (as we count backwards).
438 if (auto *OpI
= dyn_cast
<Instruction
>(
439 PhiI
->getIncomingValueForBlock(L
->getLoopLatch())))
440 if (L
->contains(OpI
))
441 PHIUsedList
.push_back(OpI
);
445 // First accumulate the cost of this instruction.
447 UnrolledCost
+= TTI
.getUserCost(I
, CostKind
);
448 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
449 << Iteration
<< "): ");
450 LLVM_DEBUG(I
->dump());
453 // We must count the cost of every operand which is not free,
454 // recursively. If we reach a loop PHI node, simply add it to the set
455 // to be considered on the next iteration (backwards!).
456 for (Value
*Op
: I
->operands()) {
457 // Check whether this operand is free due to being a constant or
459 auto *OpI
= dyn_cast
<Instruction
>(Op
);
460 if (!OpI
|| !L
->contains(OpI
))
463 // Otherwise accumulate its cost.
464 CostWorklist
.push_back(OpI
);
466 } while (!CostWorklist
.empty());
468 if (PHIUsedList
.empty())
469 // We've exhausted the search.
472 assert(Iteration
> 0 &&
473 "Cannot track PHI-used values past the first iteration!");
474 CostWorklist
.append(PHIUsedList
.begin(), PHIUsedList
.end());
479 // Ensure that we don't violate the loop structure invariants relied on by
481 assert(L
->isLoopSimplifyForm() && "Must put loop into normal form first.");
482 assert(L
->isLCSSAForm(DT
) &&
483 "Must have loops in LCSSA form to track live-out values.");
485 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
487 TargetTransformInfo::TargetCostKind CostKind
=
488 L
->getHeader()->getParent()->hasMinSize() ?
489 TargetTransformInfo::TCK_CodeSize
: TargetTransformInfo::TCK_SizeAndLatency
;
490 // Simulate execution of each iteration of the loop counting instructions,
491 // which would be simplified.
492 // Since the same load will take different values on different iterations,
493 // we literally have to go through all loop's iterations.
494 for (unsigned Iteration
= 0; Iteration
< TripCount
; ++Iteration
) {
495 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration
<< "\n");
497 // Prepare for the iteration by collecting any simplified entry or backedge
499 for (Instruction
&I
: *L
->getHeader()) {
500 auto *PHI
= dyn_cast
<PHINode
>(&I
);
504 // The loop header PHI nodes must have exactly two input: one from the
505 // loop preheader and one from the loop latch.
507 PHI
->getNumIncomingValues() == 2 &&
508 "Must have an incoming value only for the preheader and the latch.");
510 Value
*V
= PHI
->getIncomingValueForBlock(
511 Iteration
== 0 ? L
->getLoopPreheader() : L
->getLoopLatch());
512 if (Iteration
!= 0 && SimplifiedValues
.count(V
))
513 V
= SimplifiedValues
.lookup(V
);
514 SimplifiedInputValues
.push_back({PHI
, V
});
517 // Now clear and re-populate the map for the next iteration.
518 SimplifiedValues
.clear();
519 while (!SimplifiedInputValues
.empty())
520 SimplifiedValues
.insert(SimplifiedInputValues
.pop_back_val());
522 UnrolledInstAnalyzer
Analyzer(Iteration
, SimplifiedValues
, SE
, L
);
525 BBWorklist
.insert(L
->getHeader());
526 // Note that we *must not* cache the size, this loop grows the worklist.
527 for (unsigned Idx
= 0; Idx
!= BBWorklist
.size(); ++Idx
) {
528 BasicBlock
*BB
= BBWorklist
[Idx
];
530 // Visit all instructions in the given basic block and try to simplify
531 // it. We don't change the actual IR, just count optimization
533 for (Instruction
&I
: *BB
) {
534 // These won't get into the final code - don't even try calculating the
536 if (isa
<DbgInfoIntrinsic
>(I
) || EphValues
.count(&I
))
539 // Track this instruction's expected baseline cost when executing the
541 RolledDynamicCost
+= TTI
.getUserCost(&I
, CostKind
);
543 // Visit the instruction to analyze its loop cost after unrolling,
544 // and if the visitor returns true, mark the instruction as free after
545 // unrolling and continue.
546 bool IsFree
= Analyzer
.visit(I
);
547 bool Inserted
= InstCostMap
.insert({&I
, (int)Iteration
,
549 /*IsCounted*/ false}).second
;
551 assert(Inserted
&& "Cannot have a state for an unvisited instruction!");
556 // Can't properly model a cost of a call.
557 // FIXME: With a proper cost model we should be able to do it.
558 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
559 const Function
*Callee
= CI
->getCalledFunction();
560 if (!Callee
|| TTI
.isLoweredToCall(Callee
)) {
561 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
566 // If the instruction might have a side-effect recursively account for
567 // the cost of it and all the instructions leading up to it.
568 if (I
.mayHaveSideEffects())
569 AddCostRecursively(I
, Iteration
);
571 // If unrolled body turns out to be too big, bail out.
572 if (UnrolledCost
> MaxUnrolledLoopSize
) {
573 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
574 << " UnrolledCost: " << UnrolledCost
575 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
581 Instruction
*TI
= BB
->getTerminator();
583 auto getSimplifiedConstant
= [&](Value
*V
) -> Constant
* {
584 if (SimplifiedValues
.count(V
))
585 V
= SimplifiedValues
.lookup(V
);
586 return dyn_cast
<Constant
>(V
);
589 // Add in the live successors by first checking whether we have terminator
590 // that may be simplified based on the values simplified by this call.
591 BasicBlock
*KnownSucc
= nullptr;
592 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
593 if (BI
->isConditional()) {
594 if (auto *SimpleCond
= getSimplifiedConstant(BI
->getCondition())) {
595 // Just take the first successor if condition is undef
596 if (isa
<UndefValue
>(SimpleCond
))
597 KnownSucc
= BI
->getSuccessor(0);
598 else if (ConstantInt
*SimpleCondVal
=
599 dyn_cast
<ConstantInt
>(SimpleCond
))
600 KnownSucc
= BI
->getSuccessor(SimpleCondVal
->isZero() ? 1 : 0);
603 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
604 if (auto *SimpleCond
= getSimplifiedConstant(SI
->getCondition())) {
605 // Just take the first successor if condition is undef
606 if (isa
<UndefValue
>(SimpleCond
))
607 KnownSucc
= SI
->getSuccessor(0);
608 else if (ConstantInt
*SimpleCondVal
=
609 dyn_cast
<ConstantInt
>(SimpleCond
))
610 KnownSucc
= SI
->findCaseValue(SimpleCondVal
)->getCaseSuccessor();
614 if (L
->contains(KnownSucc
))
615 BBWorklist
.insert(KnownSucc
);
617 ExitWorklist
.insert({BB
, KnownSucc
});
621 // Add BB's successors to the worklist.
622 for (BasicBlock
*Succ
: successors(BB
))
623 if (L
->contains(Succ
))
624 BBWorklist
.insert(Succ
);
626 ExitWorklist
.insert({BB
, Succ
});
627 AddCostRecursively(*TI
, Iteration
);
630 // If we found no optimization opportunities on the first iteration, we
631 // won't find them on later ones too.
632 if (UnrolledCost
== RolledDynamicCost
) {
633 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
634 << " UnrolledCost: " << UnrolledCost
<< "\n");
639 while (!ExitWorklist
.empty()) {
640 BasicBlock
*ExitingBB
, *ExitBB
;
641 std::tie(ExitingBB
, ExitBB
) = ExitWorklist
.pop_back_val();
643 for (Instruction
&I
: *ExitBB
) {
644 auto *PN
= dyn_cast
<PHINode
>(&I
);
648 Value
*Op
= PN
->getIncomingValueForBlock(ExitingBB
);
649 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
650 if (L
->contains(OpI
))
651 AddCostRecursively(*OpI
, TripCount
- 1);
655 assert(UnrolledCost
.isValid() && RolledDynamicCost
.isValid() &&
656 "All instructions must have a valid cost, whether the "
657 "loop is rolled or unrolled.");
659 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
660 << "UnrolledCost: " << UnrolledCost
<< ", "
661 << "RolledDynamicCost: " << RolledDynamicCost
<< "\n");
662 return {{unsigned(*UnrolledCost
.getValue()),
663 unsigned(*RolledDynamicCost
.getValue())}};
666 /// ApproximateLoopSize - Approximate the size of the loop.
667 unsigned llvm::ApproximateLoopSize(
668 const Loop
*L
, unsigned &NumCalls
, bool &NotDuplicatable
, bool &Convergent
,
669 const TargetTransformInfo
&TTI
,
670 const SmallPtrSetImpl
<const Value
*> &EphValues
, unsigned BEInsns
) {
672 for (BasicBlock
*BB
: L
->blocks())
673 Metrics
.analyzeBasicBlock(BB
, TTI
, EphValues
);
674 NumCalls
= Metrics
.NumInlineCandidates
;
675 NotDuplicatable
= Metrics
.notDuplicatable
;
676 Convergent
= Metrics
.convergent
;
678 unsigned LoopSize
= Metrics
.NumInsts
;
680 // Don't allow an estimate of size zero. This would allows unrolling of loops
681 // with huge iteration counts, which is a compile time problem even if it's
682 // not a problem for code quality. Also, the code using this size may assume
683 // that each loop has at least three instructions (likely a conditional
684 // branch, a comparison feeding that branch, and some kind of loop increment
685 // feeding that comparison instruction).
686 LoopSize
= std::max(LoopSize
, BEInsns
+ 1);
691 // Returns the loop hint metadata node with the given name (for example,
692 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
694 static MDNode
*getUnrollMetadataForLoop(const Loop
*L
, StringRef Name
) {
695 if (MDNode
*LoopID
= L
->getLoopID())
696 return GetUnrollMetadata(LoopID
, Name
);
700 // Returns true if the loop has an unroll(full) pragma.
701 static bool hasUnrollFullPragma(const Loop
*L
) {
702 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.full");
705 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
706 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
707 static bool hasUnrollEnablePragma(const Loop
*L
) {
708 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.enable");
711 // Returns true if the loop has an runtime unroll(disable) pragma.
712 static bool hasRuntimeUnrollDisablePragma(const Loop
*L
) {
713 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.runtime.disable");
716 // If loop has an unroll_count pragma return the (necessarily
717 // positive) value from the pragma. Otherwise return 0.
718 static unsigned unrollCountPragmaValue(const Loop
*L
) {
719 MDNode
*MD
= getUnrollMetadataForLoop(L
, "llvm.loop.unroll.count");
721 assert(MD
->getNumOperands() == 2 &&
722 "Unroll count hint metadata should have two operands.");
724 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
725 assert(Count
>= 1 && "Unroll count must be positive.");
731 // Computes the boosting factor for complete unrolling.
732 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
733 // be beneficial to fully unroll the loop even if unrolledcost is large. We
734 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
735 // the unroll threshold.
736 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost
&Cost
,
737 unsigned MaxPercentThresholdBoost
) {
738 if (Cost
.RolledDynamicCost
>= std::numeric_limits
<unsigned>::max() / 100)
740 else if (Cost
.UnrolledCost
!= 0)
741 // The boosting factor is RolledDynamicCost / UnrolledCost
742 return std::min(100 * Cost
.RolledDynamicCost
/ Cost
.UnrolledCost
,
743 MaxPercentThresholdBoost
);
745 return MaxPercentThresholdBoost
;
748 // Produce an estimate of the unrolled cost of the specified loop. This
749 // is used to a) produce a cost estimate for partial unrolling and b) to
750 // cheaply estimate cost for full unrolling when we don't want to symbolically
751 // evaluate all iterations.
752 class UnrollCostEstimator
{
753 const unsigned LoopSize
;
756 UnrollCostEstimator(Loop
&L
, unsigned LoopSize
) : LoopSize(LoopSize
) {}
758 // Returns loop size estimation for unrolled loop, given the unrolling
759 // configuration specified by UP.
761 getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences
&UP
,
762 const unsigned CountOverwrite
= 0) const {
763 assert(LoopSize
>= UP
.BEInsns
&&
764 "LoopSize should not be less than BEInsns!");
766 return static_cast<uint64_t>(LoopSize
- UP
.BEInsns
) * CountOverwrite
+
769 return static_cast<uint64_t>(LoopSize
- UP
.BEInsns
) * UP
.Count
+
774 static Optional
<unsigned>
775 shouldPragmaUnroll(Loop
*L
, const PragmaInfo
&PInfo
,
776 const unsigned TripMultiple
, const unsigned TripCount
,
777 const UnrollCostEstimator UCE
,
778 const TargetTransformInfo::UnrollingPreferences
&UP
) {
780 // Using unroll pragma
781 // 1st priority is unroll count set by "unroll-count" option.
783 if (PInfo
.UserUnrollCount
) {
784 if (UP
.AllowRemainder
&&
785 UCE
.getUnrolledLoopSize(UP
, (unsigned)UnrollCount
) < UP
.Threshold
)
786 return (unsigned)UnrollCount
;
789 // 2nd priority is unroll count set by pragma.
790 if (PInfo
.PragmaCount
> 0) {
791 if ((UP
.AllowRemainder
|| (TripMultiple
% PInfo
.PragmaCount
== 0)) &&
792 UCE
.getUnrolledLoopSize(UP
, PInfo
.PragmaCount
) < PragmaUnrollThreshold
)
793 return PInfo
.PragmaCount
;
796 if (PInfo
.PragmaFullUnroll
&& TripCount
!= 0) {
797 if (UCE
.getUnrolledLoopSize(UP
, TripCount
) < PragmaUnrollThreshold
)
800 // if didn't return until here, should continue to other priorties
804 static Optional
<unsigned> shouldFullUnroll(
805 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
,
806 ScalarEvolution
&SE
, const SmallPtrSetImpl
<const Value
*> &EphValues
,
807 const unsigned FullUnrollTripCount
, const UnrollCostEstimator UCE
,
808 const TargetTransformInfo::UnrollingPreferences
&UP
) {
810 if (FullUnrollTripCount
&& FullUnrollTripCount
<= UP
.FullUnrollMaxCount
) {
811 // When computing the unrolled size, note that BEInsns are not replicated
812 // like the rest of the loop body.
813 if (UCE
.getUnrolledLoopSize(UP
) < UP
.Threshold
) {
814 return FullUnrollTripCount
;
817 // The loop isn't that small, but we still can fully unroll it if that
818 // helps to remove a significant number of instructions.
819 // To check that, run additional analysis on the loop.
820 if (Optional
<EstimatedUnrollCost
> Cost
= analyzeLoopUnrollCost(
821 L
, FullUnrollTripCount
, DT
, SE
, EphValues
, TTI
,
822 UP
.Threshold
* UP
.MaxPercentThresholdBoost
/ 100,
823 UP
.MaxIterationsCountToAnalyze
)) {
825 getFullUnrollBoostingFactor(*Cost
, UP
.MaxPercentThresholdBoost
);
826 if (Cost
->UnrolledCost
< UP
.Threshold
* Boost
/ 100) {
827 return FullUnrollTripCount
;
835 static Optional
<unsigned>
836 shouldPartialUnroll(const unsigned LoopSize
, const unsigned TripCount
,
837 const UnrollCostEstimator UCE
,
838 const TargetTransformInfo::UnrollingPreferences
&UP
) {
840 unsigned count
= UP
.Count
;
843 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
844 << "-unroll-allow-partial not given\n");
850 if (UP
.PartialThreshold
!= NoThreshold
) {
851 // Reduce unroll count to be modulo of TripCount for partial unrolling.
852 if (UCE
.getUnrolledLoopSize(UP
, count
) > UP
.PartialThreshold
)
853 count
= (std::max(UP
.PartialThreshold
, UP
.BEInsns
+ 1) - UP
.BEInsns
) /
854 (LoopSize
- UP
.BEInsns
);
855 if (count
> UP
.MaxCount
)
857 while (count
!= 0 && TripCount
% count
!= 0)
859 if (UP
.AllowRemainder
&& count
<= 1) {
860 // If there is no Count that is modulo of TripCount, set Count to
861 // largest power-of-two factor that satisfies the threshold limit.
862 // As we'll create fixup loop, do the type of unrolling only if
863 // remainder loop is allowed.
864 count
= UP
.DefaultUnrollRuntimeCount
;
866 UCE
.getUnrolledLoopSize(UP
, count
) > UP
.PartialThreshold
)
875 if (count
> UP
.MaxCount
)
878 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count
<< "\n");
883 // if didn't return until here, should continue to other priorties
886 // Returns true if unroll count was set explicitly.
887 // Calculates unroll count and writes it to UP.Count.
888 // Unless IgnoreUser is true, will also use metadata and command-line options
889 // that are specific to to the LoopUnroll pass (which, for instance, are
890 // irrelevant for the LoopUnrollAndJam pass).
891 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
892 // many LoopUnroll-specific options. The shared functionality should be
893 // refactored into it own function.
894 bool llvm::computeUnrollCount(
895 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
, LoopInfo
*LI
,
896 ScalarEvolution
&SE
, const SmallPtrSetImpl
<const Value
*> &EphValues
,
897 OptimizationRemarkEmitter
*ORE
, unsigned TripCount
, unsigned MaxTripCount
,
898 bool MaxOrZero
, unsigned TripMultiple
, unsigned LoopSize
,
899 TargetTransformInfo::UnrollingPreferences
&UP
,
900 TargetTransformInfo::PeelingPreferences
&PP
, bool &UseUpperBound
) {
902 UnrollCostEstimator
UCE(*L
, LoopSize
);
903 Optional
<unsigned> UnrollFactor
;
905 const bool UserUnrollCount
= UnrollCount
.getNumOccurrences() > 0;
906 const bool PragmaFullUnroll
= hasUnrollFullPragma(L
);
907 const unsigned PragmaCount
= unrollCountPragmaValue(L
);
908 const bool PragmaEnableUnroll
= hasUnrollEnablePragma(L
);
910 const bool ExplicitUnroll
= PragmaCount
> 0 || PragmaFullUnroll
||
911 PragmaEnableUnroll
|| UserUnrollCount
;
913 PragmaInfo
PInfo(UserUnrollCount
, PragmaFullUnroll
, PragmaCount
,
915 // Use an explicit peel count that has been specified for testing. In this
916 // case it's not permitted to also specify an explicit unroll count.
918 if (UnrollCount
.getNumOccurrences() > 0) {
919 report_fatal_error("Cannot specify both explicit peel count and "
920 "explicit unroll count");
926 // Check for explicit Count.
927 // 1st priority is unroll count set by "unroll-count" option.
928 // 2nd priority is unroll count set by pragma.
929 UnrollFactor
= shouldPragmaUnroll(L
, PInfo
, TripMultiple
, TripCount
, UCE
, UP
);
932 UP
.Count
= *UnrollFactor
;
934 if (UserUnrollCount
|| (PragmaCount
> 0)) {
935 UP
.AllowExpensiveTripCount
= true;
938 UP
.Runtime
|= (PragmaCount
> 0);
939 return ExplicitUnroll
;
941 if (ExplicitUnroll
&& TripCount
!= 0) {
942 // If the loop has an unrolling pragma, we want to be more aggressive with
943 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
944 // value which is larger than the default limits.
945 UP
.Threshold
= std::max
<unsigned>(UP
.Threshold
, PragmaUnrollThreshold
);
946 UP
.PartialThreshold
=
947 std::max
<unsigned>(UP
.PartialThreshold
, PragmaUnrollThreshold
);
951 // 3rd priority is full unroll count.
952 // Full unroll makes sense only when TripCount or its upper bound could be
953 // statically calculated.
954 // Also we need to check if we exceed FullUnrollMaxCount.
956 // We can unroll by the upper bound amount if it's generally allowed or if
957 // we know that the loop is executed either the upper bound or zero times.
958 // (MaxOrZero unrolling keeps only the first loop test, so the number of
959 // loop tests remains the same compared to the non-unrolled version, whereas
960 // the generic upper bound unrolling keeps all but the last loop test so the
961 // number of loop tests goes up which may end up being worse on targets with
962 // constrained branch predictor resources so is controlled by an option.)
963 // In addition we only unroll small upper bounds.
964 unsigned FullUnrollMaxTripCount
= MaxTripCount
;
965 if (!(UP
.UpperBound
|| MaxOrZero
) ||
966 FullUnrollMaxTripCount
> UnrollMaxUpperBound
)
967 FullUnrollMaxTripCount
= 0;
969 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
970 // compute the former when the latter is zero.
971 unsigned ExactTripCount
= TripCount
;
972 assert((ExactTripCount
== 0 || FullUnrollMaxTripCount
== 0) &&
973 "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
975 unsigned FullUnrollTripCount
=
976 ExactTripCount
? ExactTripCount
: FullUnrollMaxTripCount
;
977 UP
.Count
= FullUnrollTripCount
;
980 shouldFullUnroll(L
, TTI
, DT
, SE
, EphValues
, FullUnrollTripCount
, UCE
, UP
);
982 // if shouldFullUnroll can do the unrolling, some side parameteres should be
985 UP
.Count
= *UnrollFactor
;
986 UseUpperBound
= (FullUnrollMaxTripCount
== FullUnrollTripCount
);
987 TripCount
= FullUnrollTripCount
;
988 TripMultiple
= UP
.UpperBound
? 1 : TripMultiple
;
989 return ExplicitUnroll
;
991 UP
.Count
= FullUnrollTripCount
;
994 // 4th priority is loop peeling.
995 computePeelCount(L
, LoopSize
, PP
, TripCount
, SE
, UP
.Threshold
);
999 return ExplicitUnroll
;
1002 // Before starting partial unrolling, set up.partial to true,
1003 // if user explicitly asked for unrolling
1005 UP
.Partial
|= ExplicitUnroll
;
1007 // 5th priority is partial unrolling.
1008 // Try partial unroll only when TripCount could be statically calculated.
1009 UnrollFactor
= shouldPartialUnroll(LoopSize
, TripCount
, UCE
, UP
);
1012 UP
.Count
= *UnrollFactor
;
1014 if ((PragmaFullUnroll
|| PragmaEnableUnroll
) && TripCount
&&
1015 UP
.Count
!= TripCount
)
1017 return OptimizationRemarkMissed(DEBUG_TYPE
,
1018 "FullUnrollAsDirectedTooLarge",
1019 L
->getStartLoc(), L
->getHeader())
1020 << "Unable to fully unroll loop as directed by unroll pragma "
1022 "unrolled size is too large.";
1025 if (UP
.PartialThreshold
!= NoThreshold
) {
1026 if (UP
.Count
== 0) {
1027 if (PragmaEnableUnroll
)
1029 return OptimizationRemarkMissed(DEBUG_TYPE
,
1030 "UnrollAsDirectedTooLarge",
1031 L
->getStartLoc(), L
->getHeader())
1032 << "Unable to unroll loop as directed by unroll(enable) "
1034 "because unrolled size is too large.";
1038 return ExplicitUnroll
;
1040 assert(TripCount
== 0 &&
1041 "All cases when TripCount is constant should be covered here.");
1042 if (PragmaFullUnroll
)
1044 return OptimizationRemarkMissed(
1045 DEBUG_TYPE
, "CantFullUnrollAsDirectedRuntimeTripCount",
1046 L
->getStartLoc(), L
->getHeader())
1047 << "Unable to fully unroll loop as directed by unroll(full) "
1049 "because loop has a runtime trip count.";
1052 // 6th priority is runtime unrolling.
1053 // Don't unroll a runtime trip count loop when it is disabled.
1054 if (hasRuntimeUnrollDisablePragma(L
)) {
1059 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1060 if (MaxTripCount
&& !UP
.Force
&& MaxTripCount
< UnrollMaxUpperBound
) {
1065 // Check if the runtime trip count is too small when profile is available.
1066 if (L
->getHeader()->getParent()->hasProfileData()) {
1067 if (auto ProfileTripCount
= getLoopEstimatedTripCount(L
)) {
1068 if (*ProfileTripCount
< FlatLoopTripCountThreshold
)
1071 UP
.AllowExpensiveTripCount
= true;
1074 UP
.Runtime
|= PragmaEnableUnroll
|| PragmaCount
> 0 || UserUnrollCount
;
1077 dbgs() << " will not try to unroll loop with runtime trip count "
1078 << "-unroll-runtime not given\n");
1083 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
1085 // Reduce unroll count to be the largest power-of-two factor of
1086 // the original count which satisfies the threshold limit.
1087 while (UP
.Count
!= 0 &&
1088 UCE
.getUnrolledLoopSize(UP
) > UP
.PartialThreshold
)
1092 unsigned OrigCount
= UP
.Count
;
1095 if (!UP
.AllowRemainder
&& UP
.Count
!= 0 && (TripMultiple
% UP
.Count
) != 0) {
1096 while (UP
.Count
!= 0 && TripMultiple
% UP
.Count
!= 0)
1099 dbgs() << "Remainder loop is restricted (that could architecture "
1100 "specific or because the loop contains a convergent "
1101 "instruction), so unroll count must divide the trip "
1103 << TripMultiple
<< ". Reducing unroll count from " << OrigCount
1104 << " to " << UP
.Count
<< ".\n");
1106 using namespace ore
;
1108 if (unrollCountPragmaValue(L
) > 0 && !UP
.AllowRemainder
)
1110 return OptimizationRemarkMissed(DEBUG_TYPE
,
1111 "DifferentUnrollCountFromDirected",
1112 L
->getStartLoc(), L
->getHeader())
1113 << "Unable to unroll loop the number of times directed by "
1114 "unroll_count pragma because remainder loop is restricted "
1115 "(that could architecture specific or because the loop "
1116 "contains a convergent instruction) and so must have an "
1118 "count that divides the loop trip multiple of "
1119 << NV("TripMultiple", TripMultiple
) << ". Unrolling instead "
1120 << NV("UnrollCount", UP
.Count
) << " time(s).";
1124 if (UP
.Count
> UP
.MaxCount
)
1125 UP
.Count
= UP
.MaxCount
;
1127 if (MaxTripCount
&& UP
.Count
> MaxTripCount
)
1128 UP
.Count
= MaxTripCount
;
1130 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP
.Count
1134 return ExplicitUnroll
;
1137 static LoopUnrollResult
tryToUnrollLoop(
1138 Loop
*L
, DominatorTree
&DT
, LoopInfo
*LI
, ScalarEvolution
&SE
,
1139 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
1140 OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
1141 ProfileSummaryInfo
*PSI
, bool PreserveLCSSA
, int OptLevel
,
1142 bool OnlyWhenForced
, bool ForgetAllSCEV
, Optional
<unsigned> ProvidedCount
,
1143 Optional
<unsigned> ProvidedThreshold
, Optional
<bool> ProvidedAllowPartial
,
1144 Optional
<bool> ProvidedRuntime
, Optional
<bool> ProvidedUpperBound
,
1145 Optional
<bool> ProvidedAllowPeeling
,
1146 Optional
<bool> ProvidedAllowProfileBasedPeeling
,
1147 Optional
<unsigned> ProvidedFullUnrollMaxCount
) {
1148 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1149 << L
->getHeader()->getParent()->getName() << "] Loop %"
1150 << L
->getHeader()->getName() << "\n");
1151 TransformationMode TM
= hasUnrollTransformation(L
);
1152 if (TM
& TM_Disable
)
1153 return LoopUnrollResult::Unmodified
;
1154 if (!L
->isLoopSimplifyForm()) {
1156 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1157 return LoopUnrollResult::Unmodified
;
1160 // When automatic unrolling is disabled, do not unroll unless overridden for
1162 if (OnlyWhenForced
&& !(TM
& TM_Enable
))
1163 return LoopUnrollResult::Unmodified
;
1165 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize();
1166 unsigned NumInlineCandidates
;
1167 bool NotDuplicatable
;
1169 TargetTransformInfo::UnrollingPreferences UP
= gatherUnrollingPreferences(
1170 L
, SE
, TTI
, BFI
, PSI
, ORE
, OptLevel
, ProvidedThreshold
, ProvidedCount
,
1171 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1172 ProvidedFullUnrollMaxCount
);
1173 TargetTransformInfo::PeelingPreferences PP
= gatherPeelingPreferences(
1174 L
, SE
, TTI
, ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
, true);
1176 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1177 // as threshold later on.
1178 if (UP
.Threshold
== 0 && (!UP
.Partial
|| UP
.PartialThreshold
== 0) &&
1180 return LoopUnrollResult::Unmodified
;
1182 SmallPtrSet
<const Value
*, 32> EphValues
;
1183 CodeMetrics::collectEphemeralValues(L
, &AC
, EphValues
);
1186 ApproximateLoopSize(L
, NumInlineCandidates
, NotDuplicatable
, Convergent
,
1187 TTI
, EphValues
, UP
.BEInsns
);
1188 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize
<< "\n");
1189 if (NotDuplicatable
) {
1190 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1191 << " instructions.\n");
1192 return LoopUnrollResult::Unmodified
;
1195 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1196 // later), to (fully) unroll loops, if it does not increase code size.
1198 UP
.Threshold
= std::max(UP
.Threshold
, LoopSize
+ 1);
1200 if (NumInlineCandidates
!= 0) {
1201 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1202 return LoopUnrollResult::Unmodified
;
1205 // Find the smallest exact trip count for any exit. This is an upper bound
1206 // on the loop trip count, but an exit at an earlier iteration is still
1207 // possible. An unroll by the smallest exact trip count guarantees that all
1208 // brnaches relating to at least one exit can be eliminated. This is unlike
1209 // the max trip count, which only guarantees that the backedge can be broken.
1210 unsigned TripCount
= 0;
1211 unsigned TripMultiple
= 1;
1212 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
1213 L
->getExitingBlocks(ExitingBlocks
);
1214 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
1215 if (unsigned TC
= SE
.getSmallConstantTripCount(L
, ExitingBlock
))
1216 if (!TripCount
|| TC
< TripCount
)
1217 TripCount
= TripMultiple
= TC
;
1220 // If no exact trip count is known, determine the trip multiple of either
1221 // the loop latch or the single exiting block.
1222 // TODO: Relax for multiple exits.
1223 BasicBlock
*ExitingBlock
= L
->getLoopLatch();
1224 if (!ExitingBlock
|| !L
->isLoopExiting(ExitingBlock
))
1225 ExitingBlock
= L
->getExitingBlock();
1227 TripMultiple
= SE
.getSmallConstantTripMultiple(L
, ExitingBlock
);
1230 // If the loop contains a convergent operation, the prelude we'd add
1231 // to do the first few instructions before we hit the unrolled loop
1232 // is unsafe -- it adds a control-flow dependency to the convergent
1233 // operation. Therefore restrict remainder loop (try unrolling without).
1235 // TODO: This is quite conservative. In practice, convergent_op()
1236 // is likely to be called unconditionally in the loop. In this
1237 // case, the program would be ill-formed (on most architectures)
1238 // unless n were the same on all threads in a thread group.
1239 // Assuming n is the same on all threads, any kind of unrolling is
1240 // safe. But currently llvm's notion of convergence isn't powerful
1241 // enough to express this.
1243 UP
.AllowRemainder
= false;
1245 // Try to find the trip count upper bound if we cannot find the exact trip
1247 unsigned MaxTripCount
= 0;
1248 bool MaxOrZero
= false;
1250 MaxTripCount
= SE
.getSmallConstantMaxTripCount(L
);
1251 MaxOrZero
= SE
.isBackedgeTakenCountMaxOrZero(L
);
1254 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1255 // fully unroll the loop.
1256 bool UseUpperBound
= false;
1257 bool IsCountSetExplicitly
= computeUnrollCount(
1258 L
, TTI
, DT
, LI
, SE
, EphValues
, &ORE
, TripCount
, MaxTripCount
, MaxOrZero
,
1259 TripMultiple
, LoopSize
, UP
, PP
, UseUpperBound
);
1261 return LoopUnrollResult::Unmodified
;
1264 assert(UP
.Count
== 1 && "Cannot perform peel and unroll in the same step");
1265 LLVM_DEBUG(dbgs() << "PEELING loop %" << L
->getHeader()->getName()
1266 << " with iteration count " << PP
.PeelCount
<< "!\n");
1268 return OptimizationRemark(DEBUG_TYPE
, "Peeled", L
->getStartLoc(),
1270 << " peeled loop by " << ore::NV("PeelCount", PP
.PeelCount
)
1274 if (peelLoop(L
, PP
.PeelCount
, LI
, &SE
, &DT
, &AC
, PreserveLCSSA
)) {
1275 simplifyLoopAfterUnroll(L
, true, LI
, &SE
, &DT
, &AC
, &TTI
);
1276 // If the loop was peeled, we already "used up" the profile information
1277 // we had, so we don't want to unroll or peel again.
1278 if (PP
.PeelProfiledIterations
)
1279 L
->setLoopAlreadyUnrolled();
1280 return LoopUnrollResult::PartiallyUnrolled
;
1282 return LoopUnrollResult::Unmodified
;
1285 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1286 // However, we only want to actually perform it if we don't know the trip
1287 // count and the unroll count doesn't divide the known trip multiple.
1288 // TODO: This decision should probably be pushed up into
1289 // computeUnrollCount().
1290 UP
.Runtime
&= TripCount
== 0 && TripMultiple
% UP
.Count
!= 0;
1292 // Save loop properties before it is transformed.
1293 MDNode
*OrigLoopID
= L
->getLoopID();
1296 Loop
*RemainderLoop
= nullptr;
1297 LoopUnrollResult UnrollResult
= UnrollLoop(
1299 {UP
.Count
, UP
.Force
, UP
.Runtime
, UP
.AllowExpensiveTripCount
,
1300 UP
.UnrollRemainder
, ForgetAllSCEV
},
1301 LI
, &SE
, &DT
, &AC
, &TTI
, &ORE
, PreserveLCSSA
, &RemainderLoop
);
1302 if (UnrollResult
== LoopUnrollResult::Unmodified
)
1303 return LoopUnrollResult::Unmodified
;
1305 if (RemainderLoop
) {
1306 Optional
<MDNode
*> RemainderLoopID
=
1307 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1308 LLVMLoopUnrollFollowupRemainder
});
1309 if (RemainderLoopID
.hasValue())
1310 RemainderLoop
->setLoopID(RemainderLoopID
.getValue());
1313 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
) {
1314 Optional
<MDNode
*> NewLoopID
=
1315 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1316 LLVMLoopUnrollFollowupUnrolled
});
1317 if (NewLoopID
.hasValue()) {
1318 L
->setLoopID(NewLoopID
.getValue());
1320 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1322 return UnrollResult
;
1326 // If loop has an unroll count pragma or unrolled by explicitly set count
1327 // mark loop as unrolled to prevent unrolling beyond that requested.
1328 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
&& IsCountSetExplicitly
)
1329 L
->setLoopAlreadyUnrolled();
1331 return UnrollResult
;
1336 class LoopUnroll
: public LoopPass
{
1338 static char ID
; // Pass ID, replacement for typeid
1342 /// If false, use a cost model to determine whether unrolling of a loop is
1343 /// profitable. If true, only loops that explicitly request unrolling via
1344 /// metadata are considered. All other loops are skipped.
1345 bool OnlyWhenForced
;
1347 /// If false, when SCEV is invalidated, only forget everything in the
1348 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1349 /// Otherwise, forgetAllLoops and rebuild when needed next.
1352 Optional
<unsigned> ProvidedCount
;
1353 Optional
<unsigned> ProvidedThreshold
;
1354 Optional
<bool> ProvidedAllowPartial
;
1355 Optional
<bool> ProvidedRuntime
;
1356 Optional
<bool> ProvidedUpperBound
;
1357 Optional
<bool> ProvidedAllowPeeling
;
1358 Optional
<bool> ProvidedAllowProfileBasedPeeling
;
1359 Optional
<unsigned> ProvidedFullUnrollMaxCount
;
1361 LoopUnroll(int OptLevel
= 2, bool OnlyWhenForced
= false,
1362 bool ForgetAllSCEV
= false, Optional
<unsigned> Threshold
= None
,
1363 Optional
<unsigned> Count
= None
,
1364 Optional
<bool> AllowPartial
= None
, Optional
<bool> Runtime
= None
,
1365 Optional
<bool> UpperBound
= None
,
1366 Optional
<bool> AllowPeeling
= None
,
1367 Optional
<bool> AllowProfileBasedPeeling
= None
,
1368 Optional
<unsigned> ProvidedFullUnrollMaxCount
= None
)
1369 : LoopPass(ID
), OptLevel(OptLevel
), OnlyWhenForced(OnlyWhenForced
),
1370 ForgetAllSCEV(ForgetAllSCEV
), ProvidedCount(std::move(Count
)),
1371 ProvidedThreshold(Threshold
), ProvidedAllowPartial(AllowPartial
),
1372 ProvidedRuntime(Runtime
), ProvidedUpperBound(UpperBound
),
1373 ProvidedAllowPeeling(AllowPeeling
),
1374 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling
),
1375 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount
) {
1376 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1379 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
1383 Function
&F
= *L
->getHeader()->getParent();
1385 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1386 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1387 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1388 const TargetTransformInfo
&TTI
=
1389 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1390 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1391 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1392 // pass. Function analyses need to be preserved across loop transformations
1393 // but ORE cannot be preserved (see comment before the pass definition).
1394 OptimizationRemarkEmitter
ORE(&F
);
1395 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
1397 LoopUnrollResult Result
= tryToUnrollLoop(
1398 L
, DT
, LI
, SE
, TTI
, AC
, ORE
, nullptr, nullptr, PreserveLCSSA
, OptLevel
,
1399 OnlyWhenForced
, ForgetAllSCEV
, ProvidedCount
, ProvidedThreshold
,
1400 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1401 ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
,
1402 ProvidedFullUnrollMaxCount
);
1404 if (Result
== LoopUnrollResult::FullyUnrolled
)
1405 LPM
.markLoopAsDeleted(*L
);
1407 return Result
!= LoopUnrollResult::Unmodified
;
1410 /// This transformation requires natural loop information & requires that
1411 /// loop preheaders be inserted into the CFG...
1412 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1413 AU
.addRequired
<AssumptionCacheTracker
>();
1414 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
1415 // FIXME: Loop passes are required to preserve domtree, and for now we just
1416 // recreate dom info if anything gets unrolled.
1417 getLoopAnalysisUsage(AU
);
1421 } // end anonymous namespace
1423 char LoopUnroll::ID
= 0;
1425 INITIALIZE_PASS_BEGIN(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1426 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1427 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1428 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1429 INITIALIZE_PASS_END(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1431 Pass
*llvm::createLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1432 bool ForgetAllSCEV
, int Threshold
, int Count
,
1433 int AllowPartial
, int Runtime
, int UpperBound
,
1435 // TODO: It would make more sense for this function to take the optionals
1436 // directly, but that's dangerous since it would silently break out of tree
1438 return new LoopUnroll(
1439 OptLevel
, OnlyWhenForced
, ForgetAllSCEV
,
1440 Threshold
== -1 ? None
: Optional
<unsigned>(Threshold
),
1441 Count
== -1 ? None
: Optional
<unsigned>(Count
),
1442 AllowPartial
== -1 ? None
: Optional
<bool>(AllowPartial
),
1443 Runtime
== -1 ? None
: Optional
<bool>(Runtime
),
1444 UpperBound
== -1 ? None
: Optional
<bool>(UpperBound
),
1445 AllowPeeling
== -1 ? None
: Optional
<bool>(AllowPeeling
));
1448 Pass
*llvm::createSimpleLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1449 bool ForgetAllSCEV
) {
1450 return createLoopUnrollPass(OptLevel
, OnlyWhenForced
, ForgetAllSCEV
, -1, -1,
1454 PreservedAnalyses
LoopFullUnrollPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
1455 LoopStandardAnalysisResults
&AR
,
1456 LPMUpdater
&Updater
) {
1457 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1458 // pass. Function analyses need to be preserved across loop transformations
1459 // but ORE cannot be preserved (see comment before the pass definition).
1460 OptimizationRemarkEmitter
ORE(L
.getHeader()->getParent());
1462 // Keep track of the previous loop structure so we can identify new loops
1463 // created by unrolling.
1464 Loop
*ParentL
= L
.getParentLoop();
1465 SmallPtrSet
<Loop
*, 4> OldLoops
;
1467 OldLoops
.insert(ParentL
->begin(), ParentL
->end());
1469 OldLoops
.insert(AR
.LI
.begin(), AR
.LI
.end());
1471 std::string LoopName
= std::string(L
.getName());
1473 bool Changed
= tryToUnrollLoop(&L
, AR
.DT
, &AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AC
, ORE
,
1474 /*BFI*/ nullptr, /*PSI*/ nullptr,
1475 /*PreserveLCSSA*/ true, OptLevel
,
1476 OnlyWhenForced
, ForgetSCEV
, /*Count*/ None
,
1477 /*Threshold*/ None
, /*AllowPartial*/ false,
1478 /*Runtime*/ false, /*UpperBound*/ false,
1479 /*AllowPeeling*/ true,
1480 /*AllowProfileBasedPeeling*/ false,
1481 /*FullUnrollMaxCount*/ None
) !=
1482 LoopUnrollResult::Unmodified
;
1484 return PreservedAnalyses::all();
1486 // The parent must not be damaged by unrolling!
1489 ParentL
->verifyLoop();
1492 // Unrolling can do several things to introduce new loops into a loop nest:
1493 // - Full unrolling clones child loops within the current loop but then
1494 // removes the current loop making all of the children appear to be new
1497 // When a new loop appears as a sibling loop after fully unrolling,
1498 // its nesting structure has fundamentally changed and we want to revisit
1499 // it to reflect that.
1501 // When unrolling has removed the current loop, we need to tell the
1502 // infrastructure that it is gone.
1504 // Finally, we support a debugging/testing mode where we revisit child loops
1505 // as well. These are not expected to require further optimizations as either
1506 // they or the loop they were cloned from have been directly visited already.
1507 // But the debugging mode allows us to check this assumption.
1508 bool IsCurrentLoopValid
= false;
1509 SmallVector
<Loop
*, 4> SibLoops
;
1511 SibLoops
.append(ParentL
->begin(), ParentL
->end());
1513 SibLoops
.append(AR
.LI
.begin(), AR
.LI
.end());
1514 erase_if(SibLoops
, [&](Loop
*SibLoop
) {
1515 if (SibLoop
== &L
) {
1516 IsCurrentLoopValid
= true;
1520 // Otherwise erase the loop from the list if it was in the old loops.
1521 return OldLoops
.contains(SibLoop
);
1523 Updater
.addSiblingLoops(SibLoops
);
1525 if (!IsCurrentLoopValid
) {
1526 Updater
.markLoopAsDeleted(L
, LoopName
);
1528 // We can only walk child loops if the current loop remained valid.
1529 if (UnrollRevisitChildLoops
) {
1530 // Walk *all* of the child loops.
1531 SmallVector
<Loop
*, 4> ChildLoops(L
.begin(), L
.end());
1532 Updater
.addChildLoops(ChildLoops
);
1536 return getLoopPassPreservedAnalyses();
1539 PreservedAnalyses
LoopUnrollPass::run(Function
&F
,
1540 FunctionAnalysisManager
&AM
) {
1541 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1542 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1543 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
1544 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1545 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
1546 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1548 LoopAnalysisManager
*LAM
= nullptr;
1549 if (auto *LAMProxy
= AM
.getCachedResult
<LoopAnalysisManagerFunctionProxy
>(F
))
1550 LAM
= &LAMProxy
->getManager();
1552 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1553 ProfileSummaryInfo
*PSI
=
1554 MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
1555 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
1556 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
1558 bool Changed
= false;
1560 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1561 // Since simplification may add new inner loops, it has to run before the
1562 // legality and profitability checks. This means running the loop unroller
1563 // will simplify all loops, regardless of whether anything end up being
1565 for (auto &L
: LI
) {
1567 simplifyLoop(L
, &DT
, &LI
, &SE
, &AC
, nullptr, false /* PreserveLCSSA */);
1568 Changed
|= formLCSSARecursively(*L
, DT
, &LI
, &SE
);
1571 // Add the loop nests in the reverse order of LoopInfo. See method
1573 SmallPriorityWorklist
<Loop
*, 4> Worklist
;
1574 appendLoopsToWorklist(LI
, Worklist
);
1576 while (!Worklist
.empty()) {
1577 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1578 // from back to front so that we work forward across the CFG, which
1579 // for unrolling is only needed to get optimization remarks emitted in
1581 Loop
&L
= *Worklist
.pop_back_val();
1583 Loop
*ParentL
= L
.getParentLoop();
1586 // Check if the profile summary indicates that the profiled application
1587 // has a huge working set size, in which case we disable peeling to avoid
1588 // bloating it further.
1589 Optional
<bool> LocalAllowPeeling
= UnrollOpts
.AllowPeeling
;
1590 if (PSI
&& PSI
->hasHugeWorkingSetSize())
1591 LocalAllowPeeling
= false;
1592 std::string LoopName
= std::string(L
.getName());
1593 // The API here is quite complex to call and we allow to select some
1594 // flavors of unrolling during construction time (by setting UnrollOpts).
1595 LoopUnrollResult Result
= tryToUnrollLoop(
1596 &L
, DT
, &LI
, SE
, TTI
, AC
, ORE
, BFI
, PSI
,
1597 /*PreserveLCSSA*/ true, UnrollOpts
.OptLevel
, UnrollOpts
.OnlyWhenForced
,
1598 UnrollOpts
.ForgetSCEV
, /*Count*/ None
,
1599 /*Threshold*/ None
, UnrollOpts
.AllowPartial
, UnrollOpts
.AllowRuntime
,
1600 UnrollOpts
.AllowUpperBound
, LocalAllowPeeling
,
1601 UnrollOpts
.AllowProfileBasedPeeling
, UnrollOpts
.FullUnrollMaxCount
);
1602 Changed
|= Result
!= LoopUnrollResult::Unmodified
;
1604 // The parent must not be damaged by unrolling!
1606 if (Result
!= LoopUnrollResult::Unmodified
&& ParentL
)
1607 ParentL
->verifyLoop();
1610 // Clear any cached analysis results for L if we removed it completely.
1611 if (LAM
&& Result
== LoopUnrollResult::FullyUnrolled
)
1612 LAM
->clear(L
, LoopName
);
1616 return PreservedAnalyses::all();
1618 return getLoopPassPreservedAnalyses();