[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopUnrollPass.cpp
bloba3aeb670ec143eb24cfc2d297587e7599f28418d
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
72 using namespace llvm;
74 #define DEBUG_TYPE "loop-unroll"
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79 " the current top-most loop. This is sometimes preferred to reduce"
80 " compile time."));
82 static cl::opt<unsigned>
83 UnrollThreshold("unroll-threshold", cl::Hidden,
84 cl::desc("The cost threshold for loop unrolling"));
86 static cl::opt<unsigned>
87 UnrollOptSizeThreshold(
88 "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89 cl::desc("The cost threshold for loop unrolling when optimizing for "
90 "size"));
92 static cl::opt<unsigned> UnrollPartialThreshold(
93 "unroll-partial-threshold", cl::Hidden,
94 cl::desc("The cost threshold for partial loop unrolling"));
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99 "to the threshold when aggressively unrolling a loop due to the "
100 "dynamic cost savings. If completely unrolling a loop will reduce "
101 "the total runtime from X to Y, we boost the loop unroll "
102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103 "X/Y). This limit avoids excessive code bloat."));
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107 cl::desc("Don't allow loop unrolling to simulate more than this number of"
108 "iterations when checking full unroll profitability"));
110 static cl::opt<unsigned> UnrollCount(
111 "unroll-count", cl::Hidden,
112 cl::desc("Use this unroll count for all loops including those with "
113 "unroll_count pragma values, for testing purposes"));
115 static cl::opt<unsigned> UnrollMaxCount(
116 "unroll-max-count", cl::Hidden,
117 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118 "testing purposes"));
120 static cl::opt<unsigned> UnrollFullMaxCount(
121 "unroll-full-max-count", cl::Hidden,
122 cl::desc(
123 "Set the max unroll count for full unrolling, for testing purposes"));
125 static cl::opt<bool>
126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127 cl::desc("Allows loops to be partially unrolled until "
128 "-unroll-threshold loop size is reached."));
130 static cl::opt<bool> UnrollAllowRemainder(
131 "unroll-allow-remainder", cl::Hidden,
132 cl::desc("Allow generation of a loop remainder (extra iterations) "
133 "when unrolling a loop."));
135 static cl::opt<bool>
136 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
137 cl::desc("Unroll loops with run-time trip counts"));
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140 "unroll-max-upperbound", cl::init(8), cl::Hidden,
141 cl::desc(
142 "The max of trip count upper bound that is considered in unrolling"));
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146 cl::desc("Unrolled size limit for loops with an unroll(full) or "
147 "unroll_count pragma."));
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151 cl::desc("If the runtime tripcount for the loop is lower than the "
152 "threshold, the loop is considered as flat and will be less "
153 "aggressively unrolled."));
155 static cl::opt<bool> UnrollUnrollRemainder(
156 "unroll-remainder", cl::Hidden,
157 cl::desc("Allow the loop remainder to be unrolled."));
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163 "unroll-revisit-child-loops", cl::Hidden,
164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165 "This shouldn't typically be needed as child loops (or their "
166 "clones) were already visited."));
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171 "optimizations"));
172 static cl::opt<unsigned>
173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174 cl::Hidden,
175 cl::desc("Default threshold (max size of unrolled "
176 "loop), used in all but O3 optimizations"));
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
188 OptimizationRemarkEmitter &ORE, int OptLevel,
189 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
190 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
191 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
192 TargetTransformInfo::UnrollingPreferences UP;
194 // Set up the defaults
195 UP.Threshold =
196 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
197 UP.MaxPercentThresholdBoost = 400;
198 UP.OptSizeThreshold = UnrollOptSizeThreshold;
199 UP.PartialThreshold = 150;
200 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
201 UP.Count = 0;
202 UP.DefaultUnrollRuntimeCount = 8;
203 UP.MaxCount = std::numeric_limits<unsigned>::max();
204 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
205 UP.BEInsns = 2;
206 UP.Partial = false;
207 UP.Runtime = false;
208 UP.AllowRemainder = true;
209 UP.UnrollRemainder = false;
210 UP.AllowExpensiveTripCount = false;
211 UP.Force = false;
212 UP.UpperBound = false;
213 UP.UnrollAndJam = false;
214 UP.UnrollAndJamInnerLoopThreshold = 60;
215 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
217 // Override with any target specific settings
218 TTI.getUnrollingPreferences(L, SE, UP, &ORE);
220 // Apply size attributes
221 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
222 // Let unroll hints / pragmas take precedence over PGSO.
223 (hasUnrollTransformation(L) != TM_ForcedByUser &&
224 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
225 PGSOQueryType::IRPass));
226 if (OptForSize) {
227 UP.Threshold = UP.OptSizeThreshold;
228 UP.PartialThreshold = UP.PartialOptSizeThreshold;
229 UP.MaxPercentThresholdBoost = 100;
232 // Apply any user values specified by cl::opt
233 if (UnrollThreshold.getNumOccurrences() > 0)
234 UP.Threshold = UnrollThreshold;
235 if (UnrollPartialThreshold.getNumOccurrences() > 0)
236 UP.PartialThreshold = UnrollPartialThreshold;
237 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
238 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
239 if (UnrollMaxCount.getNumOccurrences() > 0)
240 UP.MaxCount = UnrollMaxCount;
241 if (UnrollFullMaxCount.getNumOccurrences() > 0)
242 UP.FullUnrollMaxCount = UnrollFullMaxCount;
243 if (UnrollAllowPartial.getNumOccurrences() > 0)
244 UP.Partial = UnrollAllowPartial;
245 if (UnrollAllowRemainder.getNumOccurrences() > 0)
246 UP.AllowRemainder = UnrollAllowRemainder;
247 if (UnrollRuntime.getNumOccurrences() > 0)
248 UP.Runtime = UnrollRuntime;
249 if (UnrollMaxUpperBound == 0)
250 UP.UpperBound = false;
251 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
252 UP.UnrollRemainder = UnrollUnrollRemainder;
253 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
254 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
256 // Apply user values provided by argument
257 if (UserThreshold.hasValue()) {
258 UP.Threshold = *UserThreshold;
259 UP.PartialThreshold = *UserThreshold;
261 if (UserCount.hasValue())
262 UP.Count = *UserCount;
263 if (UserAllowPartial.hasValue())
264 UP.Partial = *UserAllowPartial;
265 if (UserRuntime.hasValue())
266 UP.Runtime = *UserRuntime;
267 if (UserUpperBound.hasValue())
268 UP.UpperBound = *UserUpperBound;
269 if (UserFullUnrollMaxCount.hasValue())
270 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
272 return UP;
275 namespace {
277 /// A struct to densely store the state of an instruction after unrolling at
278 /// each iteration.
280 /// This is designed to work like a tuple of <Instruction *, int> for the
281 /// purposes of hashing and lookup, but to be able to associate two boolean
282 /// states with each key.
283 struct UnrolledInstState {
284 Instruction *I;
285 int Iteration : 30;
286 unsigned IsFree : 1;
287 unsigned IsCounted : 1;
290 /// Hashing and equality testing for a set of the instruction states.
291 struct UnrolledInstStateKeyInfo {
292 using PtrInfo = DenseMapInfo<Instruction *>;
293 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
295 static inline UnrolledInstState getEmptyKey() {
296 return {PtrInfo::getEmptyKey(), 0, 0, 0};
299 static inline UnrolledInstState getTombstoneKey() {
300 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
303 static inline unsigned getHashValue(const UnrolledInstState &S) {
304 return PairInfo::getHashValue({S.I, S.Iteration});
307 static inline bool isEqual(const UnrolledInstState &LHS,
308 const UnrolledInstState &RHS) {
309 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
313 struct EstimatedUnrollCost {
314 /// The estimated cost after unrolling.
315 unsigned UnrolledCost;
317 /// The estimated dynamic cost of executing the instructions in the
318 /// rolled form.
319 unsigned RolledDynamicCost;
322 struct PragmaInfo {
323 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
324 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
325 PragmaEnableUnroll(PEU) {}
326 const bool UserUnrollCount;
327 const bool PragmaFullUnroll;
328 const unsigned PragmaCount;
329 const bool PragmaEnableUnroll;
332 } // end anonymous namespace
334 /// Figure out if the loop is worth full unrolling.
336 /// Complete loop unrolling can make some loads constant, and we need to know
337 /// if that would expose any further optimization opportunities. This routine
338 /// estimates this optimization. It computes cost of unrolled loop
339 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
340 /// dynamic cost we mean that we won't count costs of blocks that are known not
341 /// to be executed (i.e. if we have a branch in the loop and we know that at the
342 /// given iteration its condition would be resolved to true, we won't add up the
343 /// cost of the 'false'-block).
344 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
345 /// the analysis failed (no benefits expected from the unrolling, or the loop is
346 /// too big to analyze), the returned value is None.
347 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
348 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
349 const SmallPtrSetImpl<const Value *> &EphValues,
350 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
351 unsigned MaxIterationsCountToAnalyze) {
352 // We want to be able to scale offsets by the trip count and add more offsets
353 // to them without checking for overflows, and we already don't want to
354 // analyze *massive* trip counts, so we force the max to be reasonably small.
355 assert(MaxIterationsCountToAnalyze <
356 (unsigned)(std::numeric_limits<int>::max() / 2) &&
357 "The unroll iterations max is too large!");
359 // Only analyze inner loops. We can't properly estimate cost of nested loops
360 // and we won't visit inner loops again anyway.
361 if (!L->isInnermost())
362 return None;
364 // Don't simulate loops with a big or unknown tripcount
365 if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
366 return None;
368 SmallSetVector<BasicBlock *, 16> BBWorklist;
369 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
370 DenseMap<Value *, Value *> SimplifiedValues;
371 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
373 // The estimated cost of the unrolled form of the loop. We try to estimate
374 // this by simplifying as much as we can while computing the estimate.
375 InstructionCost UnrolledCost = 0;
377 // We also track the estimated dynamic (that is, actually executed) cost in
378 // the rolled form. This helps identify cases when the savings from unrolling
379 // aren't just exposing dead control flows, but actual reduced dynamic
380 // instructions due to the simplifications which we expect to occur after
381 // unrolling.
382 InstructionCost RolledDynamicCost = 0;
384 // We track the simplification of each instruction in each iteration. We use
385 // this to recursively merge costs into the unrolled cost on-demand so that
386 // we don't count the cost of any dead code. This is essentially a map from
387 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
388 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
390 // A small worklist used to accumulate cost of instructions from each
391 // observable and reached root in the loop.
392 SmallVector<Instruction *, 16> CostWorklist;
394 // PHI-used worklist used between iterations while accumulating cost.
395 SmallVector<Instruction *, 4> PHIUsedList;
397 // Helper function to accumulate cost for instructions in the loop.
398 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
399 assert(Iteration >= 0 && "Cannot have a negative iteration!");
400 assert(CostWorklist.empty() && "Must start with an empty cost list");
401 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
402 CostWorklist.push_back(&RootI);
403 TargetTransformInfo::TargetCostKind CostKind =
404 RootI.getFunction()->hasMinSize() ?
405 TargetTransformInfo::TCK_CodeSize :
406 TargetTransformInfo::TCK_SizeAndLatency;
407 for (;; --Iteration) {
408 do {
409 Instruction *I = CostWorklist.pop_back_val();
411 // InstCostMap only uses I and Iteration as a key, the other two values
412 // don't matter here.
413 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
414 if (CostIter == InstCostMap.end())
415 // If an input to a PHI node comes from a dead path through the loop
416 // we may have no cost data for it here. What that actually means is
417 // that it is free.
418 continue;
419 auto &Cost = *CostIter;
420 if (Cost.IsCounted)
421 // Already counted this instruction.
422 continue;
424 // Mark that we are counting the cost of this instruction now.
425 Cost.IsCounted = true;
427 // If this is a PHI node in the loop header, just add it to the PHI set.
428 if (auto *PhiI = dyn_cast<PHINode>(I))
429 if (PhiI->getParent() == L->getHeader()) {
430 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
431 "inherently simplify during unrolling.");
432 if (Iteration == 0)
433 continue;
435 // Push the incoming value from the backedge into the PHI used list
436 // if it is an in-loop instruction. We'll use this to populate the
437 // cost worklist for the next iteration (as we count backwards).
438 if (auto *OpI = dyn_cast<Instruction>(
439 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
440 if (L->contains(OpI))
441 PHIUsedList.push_back(OpI);
442 continue;
445 // First accumulate the cost of this instruction.
446 if (!Cost.IsFree) {
447 UnrolledCost += TTI.getUserCost(I, CostKind);
448 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
449 << Iteration << "): ");
450 LLVM_DEBUG(I->dump());
453 // We must count the cost of every operand which is not free,
454 // recursively. If we reach a loop PHI node, simply add it to the set
455 // to be considered on the next iteration (backwards!).
456 for (Value *Op : I->operands()) {
457 // Check whether this operand is free due to being a constant or
458 // outside the loop.
459 auto *OpI = dyn_cast<Instruction>(Op);
460 if (!OpI || !L->contains(OpI))
461 continue;
463 // Otherwise accumulate its cost.
464 CostWorklist.push_back(OpI);
466 } while (!CostWorklist.empty());
468 if (PHIUsedList.empty())
469 // We've exhausted the search.
470 break;
472 assert(Iteration > 0 &&
473 "Cannot track PHI-used values past the first iteration!");
474 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
475 PHIUsedList.clear();
479 // Ensure that we don't violate the loop structure invariants relied on by
480 // this analysis.
481 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
482 assert(L->isLCSSAForm(DT) &&
483 "Must have loops in LCSSA form to track live-out values.");
485 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
487 TargetTransformInfo::TargetCostKind CostKind =
488 L->getHeader()->getParent()->hasMinSize() ?
489 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
490 // Simulate execution of each iteration of the loop counting instructions,
491 // which would be simplified.
492 // Since the same load will take different values on different iterations,
493 // we literally have to go through all loop's iterations.
494 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
495 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
497 // Prepare for the iteration by collecting any simplified entry or backedge
498 // inputs.
499 for (Instruction &I : *L->getHeader()) {
500 auto *PHI = dyn_cast<PHINode>(&I);
501 if (!PHI)
502 break;
504 // The loop header PHI nodes must have exactly two input: one from the
505 // loop preheader and one from the loop latch.
506 assert(
507 PHI->getNumIncomingValues() == 2 &&
508 "Must have an incoming value only for the preheader and the latch.");
510 Value *V = PHI->getIncomingValueForBlock(
511 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
512 if (Iteration != 0 && SimplifiedValues.count(V))
513 V = SimplifiedValues.lookup(V);
514 SimplifiedInputValues.push_back({PHI, V});
517 // Now clear and re-populate the map for the next iteration.
518 SimplifiedValues.clear();
519 while (!SimplifiedInputValues.empty())
520 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
522 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
524 BBWorklist.clear();
525 BBWorklist.insert(L->getHeader());
526 // Note that we *must not* cache the size, this loop grows the worklist.
527 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
528 BasicBlock *BB = BBWorklist[Idx];
530 // Visit all instructions in the given basic block and try to simplify
531 // it. We don't change the actual IR, just count optimization
532 // opportunities.
533 for (Instruction &I : *BB) {
534 // These won't get into the final code - don't even try calculating the
535 // cost for them.
536 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
537 continue;
539 // Track this instruction's expected baseline cost when executing the
540 // rolled loop form.
541 RolledDynamicCost += TTI.getUserCost(&I, CostKind);
543 // Visit the instruction to analyze its loop cost after unrolling,
544 // and if the visitor returns true, mark the instruction as free after
545 // unrolling and continue.
546 bool IsFree = Analyzer.visit(I);
547 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
548 (unsigned)IsFree,
549 /*IsCounted*/ false}).second;
550 (void)Inserted;
551 assert(Inserted && "Cannot have a state for an unvisited instruction!");
553 if (IsFree)
554 continue;
556 // Can't properly model a cost of a call.
557 // FIXME: With a proper cost model we should be able to do it.
558 if (auto *CI = dyn_cast<CallInst>(&I)) {
559 const Function *Callee = CI->getCalledFunction();
560 if (!Callee || TTI.isLoweredToCall(Callee)) {
561 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
562 return None;
566 // If the instruction might have a side-effect recursively account for
567 // the cost of it and all the instructions leading up to it.
568 if (I.mayHaveSideEffects())
569 AddCostRecursively(I, Iteration);
571 // If unrolled body turns out to be too big, bail out.
572 if (UnrolledCost > MaxUnrolledLoopSize) {
573 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
574 << " UnrolledCost: " << UnrolledCost
575 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
576 << "\n");
577 return None;
581 Instruction *TI = BB->getTerminator();
583 auto getSimplifiedConstant = [&](Value *V) -> Constant * {
584 if (SimplifiedValues.count(V))
585 V = SimplifiedValues.lookup(V);
586 return dyn_cast<Constant>(V);
589 // Add in the live successors by first checking whether we have terminator
590 // that may be simplified based on the values simplified by this call.
591 BasicBlock *KnownSucc = nullptr;
592 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
593 if (BI->isConditional()) {
594 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
595 // Just take the first successor if condition is undef
596 if (isa<UndefValue>(SimpleCond))
597 KnownSucc = BI->getSuccessor(0);
598 else if (ConstantInt *SimpleCondVal =
599 dyn_cast<ConstantInt>(SimpleCond))
600 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
603 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
604 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
605 // Just take the first successor if condition is undef
606 if (isa<UndefValue>(SimpleCond))
607 KnownSucc = SI->getSuccessor(0);
608 else if (ConstantInt *SimpleCondVal =
609 dyn_cast<ConstantInt>(SimpleCond))
610 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
613 if (KnownSucc) {
614 if (L->contains(KnownSucc))
615 BBWorklist.insert(KnownSucc);
616 else
617 ExitWorklist.insert({BB, KnownSucc});
618 continue;
621 // Add BB's successors to the worklist.
622 for (BasicBlock *Succ : successors(BB))
623 if (L->contains(Succ))
624 BBWorklist.insert(Succ);
625 else
626 ExitWorklist.insert({BB, Succ});
627 AddCostRecursively(*TI, Iteration);
630 // If we found no optimization opportunities on the first iteration, we
631 // won't find them on later ones too.
632 if (UnrolledCost == RolledDynamicCost) {
633 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
634 << " UnrolledCost: " << UnrolledCost << "\n");
635 return None;
639 while (!ExitWorklist.empty()) {
640 BasicBlock *ExitingBB, *ExitBB;
641 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
643 for (Instruction &I : *ExitBB) {
644 auto *PN = dyn_cast<PHINode>(&I);
645 if (!PN)
646 break;
648 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
649 if (auto *OpI = dyn_cast<Instruction>(Op))
650 if (L->contains(OpI))
651 AddCostRecursively(*OpI, TripCount - 1);
655 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
656 "All instructions must have a valid cost, whether the "
657 "loop is rolled or unrolled.");
659 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
660 << "UnrolledCost: " << UnrolledCost << ", "
661 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
662 return {{unsigned(*UnrolledCost.getValue()),
663 unsigned(*RolledDynamicCost.getValue())}};
666 /// ApproximateLoopSize - Approximate the size of the loop.
667 unsigned llvm::ApproximateLoopSize(
668 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
669 const TargetTransformInfo &TTI,
670 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
671 CodeMetrics Metrics;
672 for (BasicBlock *BB : L->blocks())
673 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
674 NumCalls = Metrics.NumInlineCandidates;
675 NotDuplicatable = Metrics.notDuplicatable;
676 Convergent = Metrics.convergent;
678 unsigned LoopSize = Metrics.NumInsts;
680 // Don't allow an estimate of size zero. This would allows unrolling of loops
681 // with huge iteration counts, which is a compile time problem even if it's
682 // not a problem for code quality. Also, the code using this size may assume
683 // that each loop has at least three instructions (likely a conditional
684 // branch, a comparison feeding that branch, and some kind of loop increment
685 // feeding that comparison instruction).
686 LoopSize = std::max(LoopSize, BEInsns + 1);
688 return LoopSize;
691 // Returns the loop hint metadata node with the given name (for example,
692 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
693 // returned.
694 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
695 if (MDNode *LoopID = L->getLoopID())
696 return GetUnrollMetadata(LoopID, Name);
697 return nullptr;
700 // Returns true if the loop has an unroll(full) pragma.
701 static bool hasUnrollFullPragma(const Loop *L) {
702 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
705 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
706 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
707 static bool hasUnrollEnablePragma(const Loop *L) {
708 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
711 // Returns true if the loop has an runtime unroll(disable) pragma.
712 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
713 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
716 // If loop has an unroll_count pragma return the (necessarily
717 // positive) value from the pragma. Otherwise return 0.
718 static unsigned unrollCountPragmaValue(const Loop *L) {
719 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
720 if (MD) {
721 assert(MD->getNumOperands() == 2 &&
722 "Unroll count hint metadata should have two operands.");
723 unsigned Count =
724 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
725 assert(Count >= 1 && "Unroll count must be positive.");
726 return Count;
728 return 0;
731 // Computes the boosting factor for complete unrolling.
732 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
733 // be beneficial to fully unroll the loop even if unrolledcost is large. We
734 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
735 // the unroll threshold.
736 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
737 unsigned MaxPercentThresholdBoost) {
738 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
739 return 100;
740 else if (Cost.UnrolledCost != 0)
741 // The boosting factor is RolledDynamicCost / UnrolledCost
742 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
743 MaxPercentThresholdBoost);
744 else
745 return MaxPercentThresholdBoost;
748 // Produce an estimate of the unrolled cost of the specified loop. This
749 // is used to a) produce a cost estimate for partial unrolling and b) to
750 // cheaply estimate cost for full unrolling when we don't want to symbolically
751 // evaluate all iterations.
752 class UnrollCostEstimator {
753 const unsigned LoopSize;
755 public:
756 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
758 // Returns loop size estimation for unrolled loop, given the unrolling
759 // configuration specified by UP.
760 uint64_t
761 getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP,
762 const unsigned CountOverwrite = 0) const {
763 assert(LoopSize >= UP.BEInsns &&
764 "LoopSize should not be less than BEInsns!");
765 if (CountOverwrite)
766 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite +
767 UP.BEInsns;
768 else
769 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count +
770 UP.BEInsns;
774 static Optional<unsigned>
775 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
776 const unsigned TripMultiple, const unsigned TripCount,
777 const UnrollCostEstimator UCE,
778 const TargetTransformInfo::UnrollingPreferences &UP) {
780 // Using unroll pragma
781 // 1st priority is unroll count set by "unroll-count" option.
783 if (PInfo.UserUnrollCount) {
784 if (UP.AllowRemainder &&
785 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
786 return (unsigned)UnrollCount;
789 // 2nd priority is unroll count set by pragma.
790 if (PInfo.PragmaCount > 0) {
791 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)) &&
792 UCE.getUnrolledLoopSize(UP, PInfo.PragmaCount) < PragmaUnrollThreshold)
793 return PInfo.PragmaCount;
796 if (PInfo.PragmaFullUnroll && TripCount != 0) {
797 if (UCE.getUnrolledLoopSize(UP, TripCount) < PragmaUnrollThreshold)
798 return TripCount;
800 // if didn't return until here, should continue to other priorties
801 return None;
804 static Optional<unsigned> shouldFullUnroll(
805 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
806 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
807 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
808 const TargetTransformInfo::UnrollingPreferences &UP) {
810 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
811 // When computing the unrolled size, note that BEInsns are not replicated
812 // like the rest of the loop body.
813 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) {
814 return FullUnrollTripCount;
816 } else {
817 // The loop isn't that small, but we still can fully unroll it if that
818 // helps to remove a significant number of instructions.
819 // To check that, run additional analysis on the loop.
820 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
821 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
822 UP.Threshold * UP.MaxPercentThresholdBoost / 100,
823 UP.MaxIterationsCountToAnalyze)) {
824 unsigned Boost =
825 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
826 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
827 return FullUnrollTripCount;
832 return None;
835 static Optional<unsigned>
836 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
837 const UnrollCostEstimator UCE,
838 const TargetTransformInfo::UnrollingPreferences &UP) {
840 unsigned count = UP.Count;
841 if (TripCount) {
842 if (!UP.Partial) {
843 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
844 << "-unroll-allow-partial not given\n");
845 count = 0;
846 return count;
848 if (count == 0)
849 count = TripCount;
850 if (UP.PartialThreshold != NoThreshold) {
851 // Reduce unroll count to be modulo of TripCount for partial unrolling.
852 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
853 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
854 (LoopSize - UP.BEInsns);
855 if (count > UP.MaxCount)
856 count = UP.MaxCount;
857 while (count != 0 && TripCount % count != 0)
858 count--;
859 if (UP.AllowRemainder && count <= 1) {
860 // If there is no Count that is modulo of TripCount, set Count to
861 // largest power-of-two factor that satisfies the threshold limit.
862 // As we'll create fixup loop, do the type of unrolling only if
863 // remainder loop is allowed.
864 count = UP.DefaultUnrollRuntimeCount;
865 while (count != 0 &&
866 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
867 count >>= 1;
869 if (count < 2) {
870 count = 0;
872 } else {
873 count = TripCount;
875 if (count > UP.MaxCount)
876 count = UP.MaxCount;
878 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n");
880 return count;
883 // if didn't return until here, should continue to other priorties
884 return None;
886 // Returns true if unroll count was set explicitly.
887 // Calculates unroll count and writes it to UP.Count.
888 // Unless IgnoreUser is true, will also use metadata and command-line options
889 // that are specific to to the LoopUnroll pass (which, for instance, are
890 // irrelevant for the LoopUnrollAndJam pass).
891 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
892 // many LoopUnroll-specific options. The shared functionality should be
893 // refactored into it own function.
894 bool llvm::computeUnrollCount(
895 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
896 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
897 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
898 bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
899 TargetTransformInfo::UnrollingPreferences &UP,
900 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
902 UnrollCostEstimator UCE(*L, LoopSize);
903 Optional<unsigned> UnrollFactor;
905 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
906 const bool PragmaFullUnroll = hasUnrollFullPragma(L);
907 const unsigned PragmaCount = unrollCountPragmaValue(L);
908 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
910 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
911 PragmaEnableUnroll || UserUnrollCount;
913 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
914 PragmaEnableUnroll);
915 // Use an explicit peel count that has been specified for testing. In this
916 // case it's not permitted to also specify an explicit unroll count.
917 if (PP.PeelCount) {
918 if (UnrollCount.getNumOccurrences() > 0) {
919 report_fatal_error("Cannot specify both explicit peel count and "
920 "explicit unroll count");
922 UP.Count = 1;
923 UP.Runtime = false;
924 return true;
926 // Check for explicit Count.
927 // 1st priority is unroll count set by "unroll-count" option.
928 // 2nd priority is unroll count set by pragma.
929 UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, UCE, UP);
931 if (UnrollFactor) {
932 UP.Count = *UnrollFactor;
934 if (UserUnrollCount || (PragmaCount > 0)) {
935 UP.AllowExpensiveTripCount = true;
936 UP.Force = true;
938 UP.Runtime |= (PragmaCount > 0);
939 return ExplicitUnroll;
940 } else {
941 if (ExplicitUnroll && TripCount != 0) {
942 // If the loop has an unrolling pragma, we want to be more aggressive with
943 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
944 // value which is larger than the default limits.
945 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
946 UP.PartialThreshold =
947 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
951 // 3rd priority is full unroll count.
952 // Full unroll makes sense only when TripCount or its upper bound could be
953 // statically calculated.
954 // Also we need to check if we exceed FullUnrollMaxCount.
956 // We can unroll by the upper bound amount if it's generally allowed or if
957 // we know that the loop is executed either the upper bound or zero times.
958 // (MaxOrZero unrolling keeps only the first loop test, so the number of
959 // loop tests remains the same compared to the non-unrolled version, whereas
960 // the generic upper bound unrolling keeps all but the last loop test so the
961 // number of loop tests goes up which may end up being worse on targets with
962 // constrained branch predictor resources so is controlled by an option.)
963 // In addition we only unroll small upper bounds.
964 unsigned FullUnrollMaxTripCount = MaxTripCount;
965 if (!(UP.UpperBound || MaxOrZero) ||
966 FullUnrollMaxTripCount > UnrollMaxUpperBound)
967 FullUnrollMaxTripCount = 0;
969 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
970 // compute the former when the latter is zero.
971 unsigned ExactTripCount = TripCount;
972 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
973 "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
975 unsigned FullUnrollTripCount =
976 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
977 UP.Count = FullUnrollTripCount;
979 UnrollFactor =
980 shouldFullUnroll(L, TTI, DT, SE, EphValues, FullUnrollTripCount, UCE, UP);
982 // if shouldFullUnroll can do the unrolling, some side parameteres should be
983 // set
984 if (UnrollFactor) {
985 UP.Count = *UnrollFactor;
986 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
987 TripCount = FullUnrollTripCount;
988 TripMultiple = UP.UpperBound ? 1 : TripMultiple;
989 return ExplicitUnroll;
990 } else {
991 UP.Count = FullUnrollTripCount;
994 // 4th priority is loop peeling.
995 computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold);
996 if (PP.PeelCount) {
997 UP.Runtime = false;
998 UP.Count = 1;
999 return ExplicitUnroll;
1002 // Before starting partial unrolling, set up.partial to true,
1003 // if user explicitly asked for unrolling
1004 if (TripCount)
1005 UP.Partial |= ExplicitUnroll;
1007 // 5th priority is partial unrolling.
1008 // Try partial unroll only when TripCount could be statically calculated.
1009 UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP);
1011 if (UnrollFactor) {
1012 UP.Count = *UnrollFactor;
1014 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1015 UP.Count != TripCount)
1016 ORE->emit([&]() {
1017 return OptimizationRemarkMissed(DEBUG_TYPE,
1018 "FullUnrollAsDirectedTooLarge",
1019 L->getStartLoc(), L->getHeader())
1020 << "Unable to fully unroll loop as directed by unroll pragma "
1021 "because "
1022 "unrolled size is too large.";
1025 if (UP.PartialThreshold != NoThreshold) {
1026 if (UP.Count == 0) {
1027 if (PragmaEnableUnroll)
1028 ORE->emit([&]() {
1029 return OptimizationRemarkMissed(DEBUG_TYPE,
1030 "UnrollAsDirectedTooLarge",
1031 L->getStartLoc(), L->getHeader())
1032 << "Unable to unroll loop as directed by unroll(enable) "
1033 "pragma "
1034 "because unrolled size is too large.";
1038 return ExplicitUnroll;
1040 assert(TripCount == 0 &&
1041 "All cases when TripCount is constant should be covered here.");
1042 if (PragmaFullUnroll)
1043 ORE->emit([&]() {
1044 return OptimizationRemarkMissed(
1045 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1046 L->getStartLoc(), L->getHeader())
1047 << "Unable to fully unroll loop as directed by unroll(full) "
1048 "pragma "
1049 "because loop has a runtime trip count.";
1052 // 6th priority is runtime unrolling.
1053 // Don't unroll a runtime trip count loop when it is disabled.
1054 if (hasRuntimeUnrollDisablePragma(L)) {
1055 UP.Count = 0;
1056 return false;
1059 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1060 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
1061 UP.Count = 0;
1062 return false;
1065 // Check if the runtime trip count is too small when profile is available.
1066 if (L->getHeader()->getParent()->hasProfileData()) {
1067 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1068 if (*ProfileTripCount < FlatLoopTripCountThreshold)
1069 return false;
1070 else
1071 UP.AllowExpensiveTripCount = true;
1074 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1075 if (!UP.Runtime) {
1076 LLVM_DEBUG(
1077 dbgs() << " will not try to unroll loop with runtime trip count "
1078 << "-unroll-runtime not given\n");
1079 UP.Count = 0;
1080 return false;
1082 if (UP.Count == 0)
1083 UP.Count = UP.DefaultUnrollRuntimeCount;
1085 // Reduce unroll count to be the largest power-of-two factor of
1086 // the original count which satisfies the threshold limit.
1087 while (UP.Count != 0 &&
1088 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1089 UP.Count >>= 1;
1091 #ifndef NDEBUG
1092 unsigned OrigCount = UP.Count;
1093 #endif
1095 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1096 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1097 UP.Count >>= 1;
1098 LLVM_DEBUG(
1099 dbgs() << "Remainder loop is restricted (that could architecture "
1100 "specific or because the loop contains a convergent "
1101 "instruction), so unroll count must divide the trip "
1102 "multiple, "
1103 << TripMultiple << ". Reducing unroll count from " << OrigCount
1104 << " to " << UP.Count << ".\n");
1106 using namespace ore;
1108 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1109 ORE->emit([&]() {
1110 return OptimizationRemarkMissed(DEBUG_TYPE,
1111 "DifferentUnrollCountFromDirected",
1112 L->getStartLoc(), L->getHeader())
1113 << "Unable to unroll loop the number of times directed by "
1114 "unroll_count pragma because remainder loop is restricted "
1115 "(that could architecture specific or because the loop "
1116 "contains a convergent instruction) and so must have an "
1117 "unroll "
1118 "count that divides the loop trip multiple of "
1119 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
1120 << NV("UnrollCount", UP.Count) << " time(s).";
1124 if (UP.Count > UP.MaxCount)
1125 UP.Count = UP.MaxCount;
1127 if (MaxTripCount && UP.Count > MaxTripCount)
1128 UP.Count = MaxTripCount;
1130 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
1131 << "\n");
1132 if (UP.Count < 2)
1133 UP.Count = 0;
1134 return ExplicitUnroll;
1137 static LoopUnrollResult tryToUnrollLoop(
1138 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1139 const TargetTransformInfo &TTI, AssumptionCache &AC,
1140 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1141 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1142 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1143 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1144 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1145 Optional<bool> ProvidedAllowPeeling,
1146 Optional<bool> ProvidedAllowProfileBasedPeeling,
1147 Optional<unsigned> ProvidedFullUnrollMaxCount) {
1148 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1149 << L->getHeader()->getParent()->getName() << "] Loop %"
1150 << L->getHeader()->getName() << "\n");
1151 TransformationMode TM = hasUnrollTransformation(L);
1152 if (TM & TM_Disable)
1153 return LoopUnrollResult::Unmodified;
1154 if (!L->isLoopSimplifyForm()) {
1155 LLVM_DEBUG(
1156 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1157 return LoopUnrollResult::Unmodified;
1160 // When automatic unrolling is disabled, do not unroll unless overridden for
1161 // this loop.
1162 if (OnlyWhenForced && !(TM & TM_Enable))
1163 return LoopUnrollResult::Unmodified;
1165 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1166 unsigned NumInlineCandidates;
1167 bool NotDuplicatable;
1168 bool Convergent;
1169 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1170 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1171 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1172 ProvidedFullUnrollMaxCount);
1173 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1174 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1176 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1177 // as threshold later on.
1178 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1179 !OptForSize)
1180 return LoopUnrollResult::Unmodified;
1182 SmallPtrSet<const Value *, 32> EphValues;
1183 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1185 unsigned LoopSize =
1186 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1187 TTI, EphValues, UP.BEInsns);
1188 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1189 if (NotDuplicatable) {
1190 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1191 << " instructions.\n");
1192 return LoopUnrollResult::Unmodified;
1195 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1196 // later), to (fully) unroll loops, if it does not increase code size.
1197 if (OptForSize)
1198 UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1200 if (NumInlineCandidates != 0) {
1201 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1202 return LoopUnrollResult::Unmodified;
1205 // Find the smallest exact trip count for any exit. This is an upper bound
1206 // on the loop trip count, but an exit at an earlier iteration is still
1207 // possible. An unroll by the smallest exact trip count guarantees that all
1208 // brnaches relating to at least one exit can be eliminated. This is unlike
1209 // the max trip count, which only guarantees that the backedge can be broken.
1210 unsigned TripCount = 0;
1211 unsigned TripMultiple = 1;
1212 SmallVector<BasicBlock *, 8> ExitingBlocks;
1213 L->getExitingBlocks(ExitingBlocks);
1214 for (BasicBlock *ExitingBlock : ExitingBlocks)
1215 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1216 if (!TripCount || TC < TripCount)
1217 TripCount = TripMultiple = TC;
1219 if (!TripCount) {
1220 // If no exact trip count is known, determine the trip multiple of either
1221 // the loop latch or the single exiting block.
1222 // TODO: Relax for multiple exits.
1223 BasicBlock *ExitingBlock = L->getLoopLatch();
1224 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1225 ExitingBlock = L->getExitingBlock();
1226 if (ExitingBlock)
1227 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1230 // If the loop contains a convergent operation, the prelude we'd add
1231 // to do the first few instructions before we hit the unrolled loop
1232 // is unsafe -- it adds a control-flow dependency to the convergent
1233 // operation. Therefore restrict remainder loop (try unrolling without).
1235 // TODO: This is quite conservative. In practice, convergent_op()
1236 // is likely to be called unconditionally in the loop. In this
1237 // case, the program would be ill-formed (on most architectures)
1238 // unless n were the same on all threads in a thread group.
1239 // Assuming n is the same on all threads, any kind of unrolling is
1240 // safe. But currently llvm's notion of convergence isn't powerful
1241 // enough to express this.
1242 if (Convergent)
1243 UP.AllowRemainder = false;
1245 // Try to find the trip count upper bound if we cannot find the exact trip
1246 // count.
1247 unsigned MaxTripCount = 0;
1248 bool MaxOrZero = false;
1249 if (!TripCount) {
1250 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1251 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1254 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1255 // fully unroll the loop.
1256 bool UseUpperBound = false;
1257 bool IsCountSetExplicitly = computeUnrollCount(
1258 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1259 TripMultiple, LoopSize, UP, PP, UseUpperBound);
1260 if (!UP.Count)
1261 return LoopUnrollResult::Unmodified;
1263 if (PP.PeelCount) {
1264 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1265 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1266 << " with iteration count " << PP.PeelCount << "!\n");
1267 ORE.emit([&]() {
1268 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1269 L->getHeader())
1270 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1271 << " iterations";
1274 if (peelLoop(L, PP.PeelCount, LI, &SE, &DT, &AC, PreserveLCSSA)) {
1275 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1276 // If the loop was peeled, we already "used up" the profile information
1277 // we had, so we don't want to unroll or peel again.
1278 if (PP.PeelProfiledIterations)
1279 L->setLoopAlreadyUnrolled();
1280 return LoopUnrollResult::PartiallyUnrolled;
1282 return LoopUnrollResult::Unmodified;
1285 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1286 // However, we only want to actually perform it if we don't know the trip
1287 // count and the unroll count doesn't divide the known trip multiple.
1288 // TODO: This decision should probably be pushed up into
1289 // computeUnrollCount().
1290 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1292 // Save loop properties before it is transformed.
1293 MDNode *OrigLoopID = L->getLoopID();
1295 // Unroll the loop.
1296 Loop *RemainderLoop = nullptr;
1297 LoopUnrollResult UnrollResult = UnrollLoop(
1299 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1300 UP.UnrollRemainder, ForgetAllSCEV},
1301 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1302 if (UnrollResult == LoopUnrollResult::Unmodified)
1303 return LoopUnrollResult::Unmodified;
1305 if (RemainderLoop) {
1306 Optional<MDNode *> RemainderLoopID =
1307 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1308 LLVMLoopUnrollFollowupRemainder});
1309 if (RemainderLoopID.hasValue())
1310 RemainderLoop->setLoopID(RemainderLoopID.getValue());
1313 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1314 Optional<MDNode *> NewLoopID =
1315 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1316 LLVMLoopUnrollFollowupUnrolled});
1317 if (NewLoopID.hasValue()) {
1318 L->setLoopID(NewLoopID.getValue());
1320 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1321 // explicitly.
1322 return UnrollResult;
1326 // If loop has an unroll count pragma or unrolled by explicitly set count
1327 // mark loop as unrolled to prevent unrolling beyond that requested.
1328 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1329 L->setLoopAlreadyUnrolled();
1331 return UnrollResult;
1334 namespace {
1336 class LoopUnroll : public LoopPass {
1337 public:
1338 static char ID; // Pass ID, replacement for typeid
1340 int OptLevel;
1342 /// If false, use a cost model to determine whether unrolling of a loop is
1343 /// profitable. If true, only loops that explicitly request unrolling via
1344 /// metadata are considered. All other loops are skipped.
1345 bool OnlyWhenForced;
1347 /// If false, when SCEV is invalidated, only forget everything in the
1348 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1349 /// Otherwise, forgetAllLoops and rebuild when needed next.
1350 bool ForgetAllSCEV;
1352 Optional<unsigned> ProvidedCount;
1353 Optional<unsigned> ProvidedThreshold;
1354 Optional<bool> ProvidedAllowPartial;
1355 Optional<bool> ProvidedRuntime;
1356 Optional<bool> ProvidedUpperBound;
1357 Optional<bool> ProvidedAllowPeeling;
1358 Optional<bool> ProvidedAllowProfileBasedPeeling;
1359 Optional<unsigned> ProvidedFullUnrollMaxCount;
1361 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1362 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1363 Optional<unsigned> Count = None,
1364 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1365 Optional<bool> UpperBound = None,
1366 Optional<bool> AllowPeeling = None,
1367 Optional<bool> AllowProfileBasedPeeling = None,
1368 Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1369 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1370 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1371 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1372 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1373 ProvidedAllowPeeling(AllowPeeling),
1374 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1375 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1376 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1379 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1380 if (skipLoop(L))
1381 return false;
1383 Function &F = *L->getHeader()->getParent();
1385 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1386 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1387 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1388 const TargetTransformInfo &TTI =
1389 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1390 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1391 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1392 // pass. Function analyses need to be preserved across loop transformations
1393 // but ORE cannot be preserved (see comment before the pass definition).
1394 OptimizationRemarkEmitter ORE(&F);
1395 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1397 LoopUnrollResult Result = tryToUnrollLoop(
1398 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1399 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1400 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1401 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1402 ProvidedFullUnrollMaxCount);
1404 if (Result == LoopUnrollResult::FullyUnrolled)
1405 LPM.markLoopAsDeleted(*L);
1407 return Result != LoopUnrollResult::Unmodified;
1410 /// This transformation requires natural loop information & requires that
1411 /// loop preheaders be inserted into the CFG...
1412 void getAnalysisUsage(AnalysisUsage &AU) const override {
1413 AU.addRequired<AssumptionCacheTracker>();
1414 AU.addRequired<TargetTransformInfoWrapperPass>();
1415 // FIXME: Loop passes are required to preserve domtree, and for now we just
1416 // recreate dom info if anything gets unrolled.
1417 getLoopAnalysisUsage(AU);
1421 } // end anonymous namespace
1423 char LoopUnroll::ID = 0;
1425 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1426 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1427 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1428 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1429 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1431 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1432 bool ForgetAllSCEV, int Threshold, int Count,
1433 int AllowPartial, int Runtime, int UpperBound,
1434 int AllowPeeling) {
1435 // TODO: It would make more sense for this function to take the optionals
1436 // directly, but that's dangerous since it would silently break out of tree
1437 // callers.
1438 return new LoopUnroll(
1439 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1440 Threshold == -1 ? None : Optional<unsigned>(Threshold),
1441 Count == -1 ? None : Optional<unsigned>(Count),
1442 AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1443 Runtime == -1 ? None : Optional<bool>(Runtime),
1444 UpperBound == -1 ? None : Optional<bool>(UpperBound),
1445 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1448 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1449 bool ForgetAllSCEV) {
1450 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1451 0, 0, 0, 1);
1454 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1455 LoopStandardAnalysisResults &AR,
1456 LPMUpdater &Updater) {
1457 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1458 // pass. Function analyses need to be preserved across loop transformations
1459 // but ORE cannot be preserved (see comment before the pass definition).
1460 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1462 // Keep track of the previous loop structure so we can identify new loops
1463 // created by unrolling.
1464 Loop *ParentL = L.getParentLoop();
1465 SmallPtrSet<Loop *, 4> OldLoops;
1466 if (ParentL)
1467 OldLoops.insert(ParentL->begin(), ParentL->end());
1468 else
1469 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1471 std::string LoopName = std::string(L.getName());
1473 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1474 /*BFI*/ nullptr, /*PSI*/ nullptr,
1475 /*PreserveLCSSA*/ true, OptLevel,
1476 OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1477 /*Threshold*/ None, /*AllowPartial*/ false,
1478 /*Runtime*/ false, /*UpperBound*/ false,
1479 /*AllowPeeling*/ true,
1480 /*AllowProfileBasedPeeling*/ false,
1481 /*FullUnrollMaxCount*/ None) !=
1482 LoopUnrollResult::Unmodified;
1483 if (!Changed)
1484 return PreservedAnalyses::all();
1486 // The parent must not be damaged by unrolling!
1487 #ifndef NDEBUG
1488 if (ParentL)
1489 ParentL->verifyLoop();
1490 #endif
1492 // Unrolling can do several things to introduce new loops into a loop nest:
1493 // - Full unrolling clones child loops within the current loop but then
1494 // removes the current loop making all of the children appear to be new
1495 // sibling loops.
1497 // When a new loop appears as a sibling loop after fully unrolling,
1498 // its nesting structure has fundamentally changed and we want to revisit
1499 // it to reflect that.
1501 // When unrolling has removed the current loop, we need to tell the
1502 // infrastructure that it is gone.
1504 // Finally, we support a debugging/testing mode where we revisit child loops
1505 // as well. These are not expected to require further optimizations as either
1506 // they or the loop they were cloned from have been directly visited already.
1507 // But the debugging mode allows us to check this assumption.
1508 bool IsCurrentLoopValid = false;
1509 SmallVector<Loop *, 4> SibLoops;
1510 if (ParentL)
1511 SibLoops.append(ParentL->begin(), ParentL->end());
1512 else
1513 SibLoops.append(AR.LI.begin(), AR.LI.end());
1514 erase_if(SibLoops, [&](Loop *SibLoop) {
1515 if (SibLoop == &L) {
1516 IsCurrentLoopValid = true;
1517 return true;
1520 // Otherwise erase the loop from the list if it was in the old loops.
1521 return OldLoops.contains(SibLoop);
1523 Updater.addSiblingLoops(SibLoops);
1525 if (!IsCurrentLoopValid) {
1526 Updater.markLoopAsDeleted(L, LoopName);
1527 } else {
1528 // We can only walk child loops if the current loop remained valid.
1529 if (UnrollRevisitChildLoops) {
1530 // Walk *all* of the child loops.
1531 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1532 Updater.addChildLoops(ChildLoops);
1536 return getLoopPassPreservedAnalyses();
1539 PreservedAnalyses LoopUnrollPass::run(Function &F,
1540 FunctionAnalysisManager &AM) {
1541 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1542 auto &LI = AM.getResult<LoopAnalysis>(F);
1543 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1544 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1545 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1546 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1548 LoopAnalysisManager *LAM = nullptr;
1549 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1550 LAM = &LAMProxy->getManager();
1552 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1553 ProfileSummaryInfo *PSI =
1554 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1555 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1556 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1558 bool Changed = false;
1560 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1561 // Since simplification may add new inner loops, it has to run before the
1562 // legality and profitability checks. This means running the loop unroller
1563 // will simplify all loops, regardless of whether anything end up being
1564 // unrolled.
1565 for (auto &L : LI) {
1566 Changed |=
1567 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1568 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1571 // Add the loop nests in the reverse order of LoopInfo. See method
1572 // declaration.
1573 SmallPriorityWorklist<Loop *, 4> Worklist;
1574 appendLoopsToWorklist(LI, Worklist);
1576 while (!Worklist.empty()) {
1577 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1578 // from back to front so that we work forward across the CFG, which
1579 // for unrolling is only needed to get optimization remarks emitted in
1580 // a forward order.
1581 Loop &L = *Worklist.pop_back_val();
1582 #ifndef NDEBUG
1583 Loop *ParentL = L.getParentLoop();
1584 #endif
1586 // Check if the profile summary indicates that the profiled application
1587 // has a huge working set size, in which case we disable peeling to avoid
1588 // bloating it further.
1589 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1590 if (PSI && PSI->hasHugeWorkingSetSize())
1591 LocalAllowPeeling = false;
1592 std::string LoopName = std::string(L.getName());
1593 // The API here is quite complex to call and we allow to select some
1594 // flavors of unrolling during construction time (by setting UnrollOpts).
1595 LoopUnrollResult Result = tryToUnrollLoop(
1596 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1597 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1598 UnrollOpts.ForgetSCEV, /*Count*/ None,
1599 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1600 UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1601 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1602 Changed |= Result != LoopUnrollResult::Unmodified;
1604 // The parent must not be damaged by unrolling!
1605 #ifndef NDEBUG
1606 if (Result != LoopUnrollResult::Unmodified && ParentL)
1607 ParentL->verifyLoop();
1608 #endif
1610 // Clear any cached analysis results for L if we removed it completely.
1611 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1612 LAM->clear(L, LoopName);
1615 if (!Changed)
1616 return PreservedAnalyses::all();
1618 return getLoopPassPreservedAnalyses();