1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
52 //===----------------------------------------------------------------------===//
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/IR/Argument.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/PatternMatch.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/Use.h"
95 #include "llvm/IR/User.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/InitializePasses.h"
98 #include "llvm/Pass.h"
99 #include "llvm/Support/Allocator.h"
100 #include "llvm/Support/ArrayRecycler.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/DebugCounter.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/PointerLikeTypeTraits.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Scalar/GVNExpression.h"
110 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include "llvm/Transforms/Utils/PredicateInfo.h"
113 #include "llvm/Transforms/Utils/VNCoercion.h"
126 using namespace llvm
;
127 using namespace llvm::GVNExpression
;
128 using namespace llvm::VNCoercion
;
129 using namespace llvm::PatternMatch
;
131 #define DEBUG_TYPE "newgvn"
133 STATISTIC(NumGVNInstrDeleted
, "Number of instructions deleted");
134 STATISTIC(NumGVNBlocksDeleted
, "Number of blocks deleted");
135 STATISTIC(NumGVNOpsSimplified
, "Number of Expressions simplified");
136 STATISTIC(NumGVNPhisAllSame
, "Number of PHIs whos arguments are all the same");
137 STATISTIC(NumGVNMaxIterations
,
138 "Maximum Number of iterations it took to converge GVN");
139 STATISTIC(NumGVNLeaderChanges
, "Number of leader changes");
140 STATISTIC(NumGVNSortedLeaderChanges
, "Number of sorted leader changes");
141 STATISTIC(NumGVNAvoidedSortedLeaderChanges
,
142 "Number of avoided sorted leader changes");
143 STATISTIC(NumGVNDeadStores
, "Number of redundant/dead stores eliminated");
144 STATISTIC(NumGVNPHIOfOpsCreated
, "Number of PHI of ops created");
145 STATISTIC(NumGVNPHIOfOpsEliminations
,
146 "Number of things eliminated using PHI of ops");
147 DEBUG_COUNTER(VNCounter
, "newgvn-vn",
148 "Controls which instructions are value numbered");
149 DEBUG_COUNTER(PHIOfOpsCounter
, "newgvn-phi",
150 "Controls which instructions we create phi of ops for");
151 // Currently store defining access refinement is too slow due to basicaa being
152 // egregiously slow. This flag lets us keep it working while we work on this
154 static cl::opt
<bool> EnableStoreRefinement("enable-store-refinement",
155 cl::init(false), cl::Hidden
);
157 /// Currently, the generation "phi of ops" can result in correctness issues.
158 static cl::opt
<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
161 //===----------------------------------------------------------------------===//
163 //===----------------------------------------------------------------------===//
167 namespace GVNExpression
{
169 Expression::~Expression() = default;
170 BasicExpression::~BasicExpression() = default;
171 CallExpression::~CallExpression() = default;
172 LoadExpression::~LoadExpression() = default;
173 StoreExpression::~StoreExpression() = default;
174 AggregateValueExpression::~AggregateValueExpression() = default;
175 PHIExpression::~PHIExpression() = default;
177 } // end namespace GVNExpression
178 } // end namespace llvm
182 // Tarjan's SCC finding algorithm with Nuutila's improvements
183 // SCCIterator is actually fairly complex for the simple thing we want.
184 // It also wants to hand us SCC's that are unrelated to the phi node we ask
185 // about, and have us process them there or risk redoing work.
186 // Graph traits over a filter iterator also doesn't work that well here.
187 // This SCC finder is specialized to walk use-def chains, and only follows
189 // not generic values (arguments, etc).
191 TarjanSCC() : Components(1) {}
193 void Start(const Instruction
*Start
) {
194 if (Root
.lookup(Start
) == 0)
198 const SmallPtrSetImpl
<const Value
*> &getComponentFor(const Value
*V
) const {
199 unsigned ComponentID
= ValueToComponent
.lookup(V
);
201 assert(ComponentID
> 0 &&
202 "Asking for a component for a value we never processed");
203 return Components
[ComponentID
];
207 void FindSCC(const Instruction
*I
) {
209 // Store the DFS Number we had before it possibly gets incremented.
210 unsigned int OurDFS
= DFSNum
;
211 for (auto &Op
: I
->operands()) {
212 if (auto *InstOp
= dyn_cast
<Instruction
>(Op
)) {
213 if (Root
.lookup(Op
) == 0)
215 if (!InComponent
.count(Op
))
216 Root
[I
] = std::min(Root
.lookup(I
), Root
.lookup(Op
));
219 // See if we really were the root of a component, by seeing if we still have
220 // our DFSNumber. If we do, we are the root of the component, and we have
221 // completed a component. If we do not, we are not the root of a component,
222 // and belong on the component stack.
223 if (Root
.lookup(I
) == OurDFS
) {
224 unsigned ComponentID
= Components
.size();
225 Components
.resize(Components
.size() + 1);
226 auto &Component
= Components
.back();
228 LLVM_DEBUG(dbgs() << "Component root is " << *I
<< "\n");
229 InComponent
.insert(I
);
230 ValueToComponent
[I
] = ComponentID
;
231 // Pop a component off the stack and label it.
232 while (!Stack
.empty() && Root
.lookup(Stack
.back()) >= OurDFS
) {
233 auto *Member
= Stack
.back();
234 LLVM_DEBUG(dbgs() << "Component member is " << *Member
<< "\n");
235 Component
.insert(Member
);
236 InComponent
.insert(Member
);
237 ValueToComponent
[Member
] = ComponentID
;
241 // Part of a component, push to stack
246 unsigned int DFSNum
= 1;
247 SmallPtrSet
<const Value
*, 8> InComponent
;
248 DenseMap
<const Value
*, unsigned int> Root
;
249 SmallVector
<const Value
*, 8> Stack
;
251 // Store the components as vector of ptr sets, because we need the topo order
252 // of SCC's, but not individual member order
253 SmallVector
<SmallPtrSet
<const Value
*, 8>, 8> Components
;
255 DenseMap
<const Value
*, unsigned> ValueToComponent
;
258 // Congruence classes represent the set of expressions/instructions
259 // that are all the same *during some scope in the function*.
260 // That is, because of the way we perform equality propagation, and
261 // because of memory value numbering, it is not correct to assume
262 // you can willy-nilly replace any member with any other at any
263 // point in the function.
265 // For any Value in the Member set, it is valid to replace any dominated member
268 // Every congruence class has a leader, and the leader is used to symbolize
269 // instructions in a canonical way (IE every operand of an instruction that is a
270 // member of the same congruence class will always be replaced with leader
271 // during symbolization). To simplify symbolization, we keep the leader as a
272 // constant if class can be proved to be a constant value. Otherwise, the
273 // leader is the member of the value set with the smallest DFS number. Each
274 // congruence class also has a defining expression, though the expression may be
275 // null. If it exists, it can be used for forward propagation and reassociation
278 // For memory, we also track a representative MemoryAccess, and a set of memory
279 // members for MemoryPhis (which have no real instructions). Note that for
280 // memory, it seems tempting to try to split the memory members into a
281 // MemoryCongruenceClass or something. Unfortunately, this does not work
282 // easily. The value numbering of a given memory expression depends on the
283 // leader of the memory congruence class, and the leader of memory congruence
284 // class depends on the value numbering of a given memory expression. This
285 // leads to wasted propagation, and in some cases, missed optimization. For
286 // example: If we had value numbered two stores together before, but now do not,
287 // we move them to a new value congruence class. This in turn will move at one
288 // of the memorydefs to a new memory congruence class. Which in turn, affects
289 // the value numbering of the stores we just value numbered (because the memory
290 // congruence class is part of the value number). So while theoretically
291 // possible to split them up, it turns out to be *incredibly* complicated to get
292 // it to work right, because of the interdependency. While structurally
293 // slightly messier, it is algorithmically much simpler and faster to do what we
294 // do here, and track them both at once in the same class.
295 // Note: The default iterators for this class iterate over values
296 class CongruenceClass
{
298 using MemberType
= Value
;
299 using MemberSet
= SmallPtrSet
<MemberType
*, 4>;
300 using MemoryMemberType
= MemoryPhi
;
301 using MemoryMemberSet
= SmallPtrSet
<const MemoryMemberType
*, 2>;
303 explicit CongruenceClass(unsigned ID
) : ID(ID
) {}
304 CongruenceClass(unsigned ID
, Value
*Leader
, const Expression
*E
)
305 : ID(ID
), RepLeader(Leader
), DefiningExpr(E
) {}
307 unsigned getID() const { return ID
; }
309 // True if this class has no members left. This is mainly used for assertion
310 // purposes, and for skipping empty classes.
311 bool isDead() const {
312 // If it's both dead from a value perspective, and dead from a memory
313 // perspective, it's really dead.
314 return empty() && memory_empty();
318 Value
*getLeader() const { return RepLeader
; }
319 void setLeader(Value
*Leader
) { RepLeader
= Leader
; }
320 const std::pair
<Value
*, unsigned int> &getNextLeader() const {
323 void resetNextLeader() { NextLeader
= {nullptr, ~0}; }
324 void addPossibleNextLeader(std::pair
<Value
*, unsigned int> LeaderPair
) {
325 if (LeaderPair
.second
< NextLeader
.second
)
326 NextLeader
= LeaderPair
;
329 Value
*getStoredValue() const { return RepStoredValue
; }
330 void setStoredValue(Value
*Leader
) { RepStoredValue
= Leader
; }
331 const MemoryAccess
*getMemoryLeader() const { return RepMemoryAccess
; }
332 void setMemoryLeader(const MemoryAccess
*Leader
) { RepMemoryAccess
= Leader
; }
334 // Forward propagation info
335 const Expression
*getDefiningExpr() const { return DefiningExpr
; }
338 bool empty() const { return Members
.empty(); }
339 unsigned size() const { return Members
.size(); }
340 MemberSet::const_iterator
begin() const { return Members
.begin(); }
341 MemberSet::const_iterator
end() const { return Members
.end(); }
342 void insert(MemberType
*M
) { Members
.insert(M
); }
343 void erase(MemberType
*M
) { Members
.erase(M
); }
344 void swap(MemberSet
&Other
) { Members
.swap(Other
); }
347 bool memory_empty() const { return MemoryMembers
.empty(); }
348 unsigned memory_size() const { return MemoryMembers
.size(); }
349 MemoryMemberSet::const_iterator
memory_begin() const {
350 return MemoryMembers
.begin();
352 MemoryMemberSet::const_iterator
memory_end() const {
353 return MemoryMembers
.end();
355 iterator_range
<MemoryMemberSet::const_iterator
> memory() const {
356 return make_range(memory_begin(), memory_end());
359 void memory_insert(const MemoryMemberType
*M
) { MemoryMembers
.insert(M
); }
360 void memory_erase(const MemoryMemberType
*M
) { MemoryMembers
.erase(M
); }
363 unsigned getStoreCount() const { return StoreCount
; }
364 void incStoreCount() { ++StoreCount
; }
365 void decStoreCount() {
366 assert(StoreCount
!= 0 && "Store count went negative");
370 // True if this class has no memory members.
371 bool definesNoMemory() const { return StoreCount
== 0 && memory_empty(); }
373 // Return true if two congruence classes are equivalent to each other. This
374 // means that every field but the ID number and the dead field are equivalent.
375 bool isEquivalentTo(const CongruenceClass
*Other
) const {
381 if (std::tie(StoreCount
, RepLeader
, RepStoredValue
, RepMemoryAccess
) !=
382 std::tie(Other
->StoreCount
, Other
->RepLeader
, Other
->RepStoredValue
,
383 Other
->RepMemoryAccess
))
385 if (DefiningExpr
!= Other
->DefiningExpr
)
386 if (!DefiningExpr
|| !Other
->DefiningExpr
||
387 *DefiningExpr
!= *Other
->DefiningExpr
)
390 if (Members
.size() != Other
->Members
.size())
393 return llvm::set_is_subset(Members
, Other
->Members
);
399 // Representative leader.
400 Value
*RepLeader
= nullptr;
402 // The most dominating leader after our current leader, because the member set
403 // is not sorted and is expensive to keep sorted all the time.
404 std::pair
<Value
*, unsigned int> NextLeader
= {nullptr, ~0U};
406 // If this is represented by a store, the value of the store.
407 Value
*RepStoredValue
= nullptr;
409 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
411 const MemoryAccess
*RepMemoryAccess
= nullptr;
413 // Defining Expression.
414 const Expression
*DefiningExpr
= nullptr;
416 // Actual members of this class.
419 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
420 // MemoryUses have real instructions representing them, so we only need to
421 // track MemoryPhis here.
422 MemoryMemberSet MemoryMembers
;
424 // Number of stores in this congruence class.
425 // This is used so we can detect store equivalence changes properly.
429 } // end anonymous namespace
433 struct ExactEqualsExpression
{
436 explicit ExactEqualsExpression(const Expression
&E
) : E(E
) {}
438 hash_code
getComputedHash() const { return E
.getComputedHash(); }
440 bool operator==(const Expression
&Other
) const {
441 return E
.exactlyEquals(Other
);
445 template <> struct DenseMapInfo
<const Expression
*> {
446 static const Expression
*getEmptyKey() {
447 auto Val
= static_cast<uintptr_t>(-1);
448 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
449 return reinterpret_cast<const Expression
*>(Val
);
452 static const Expression
*getTombstoneKey() {
453 auto Val
= static_cast<uintptr_t>(~1U);
454 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
455 return reinterpret_cast<const Expression
*>(Val
);
458 static unsigned getHashValue(const Expression
*E
) {
459 return E
->getComputedHash();
462 static unsigned getHashValue(const ExactEqualsExpression
&E
) {
463 return E
.getComputedHash();
466 static bool isEqual(const ExactEqualsExpression
&LHS
, const Expression
*RHS
) {
467 if (RHS
== getTombstoneKey() || RHS
== getEmptyKey())
472 static bool isEqual(const Expression
*LHS
, const Expression
*RHS
) {
475 if (LHS
== getTombstoneKey() || RHS
== getTombstoneKey() ||
476 LHS
== getEmptyKey() || RHS
== getEmptyKey())
478 // Compare hashes before equality. This is *not* what the hashtable does,
479 // since it is computing it modulo the number of buckets, whereas we are
480 // using the full hash keyspace. Since the hashes are precomputed, this
481 // check is *much* faster than equality.
482 if (LHS
->getComputedHash() != RHS
->getComputedHash())
488 } // end namespace llvm
494 DominatorTree
*DT
= nullptr;
495 const TargetLibraryInfo
*TLI
= nullptr;
496 AliasAnalysis
*AA
= nullptr;
497 MemorySSA
*MSSA
= nullptr;
498 MemorySSAWalker
*MSSAWalker
= nullptr;
499 AssumptionCache
*AC
= nullptr;
500 const DataLayout
&DL
;
501 std::unique_ptr
<PredicateInfo
> PredInfo
;
503 // These are the only two things the create* functions should have
504 // side-effects on due to allocating memory.
505 mutable BumpPtrAllocator ExpressionAllocator
;
506 mutable ArrayRecycler
<Value
*> ArgRecycler
;
507 mutable TarjanSCC SCCFinder
;
508 const SimplifyQuery SQ
;
510 // Number of function arguments, used by ranking
511 unsigned int NumFuncArgs
= 0;
513 // RPOOrdering of basic blocks
514 DenseMap
<const DomTreeNode
*, unsigned> RPOOrdering
;
516 // Congruence class info.
518 // This class is called INITIAL in the paper. It is the class everything
519 // startsout in, and represents any value. Being an optimistic analysis,
520 // anything in the TOP class has the value TOP, which is indeterminate and
521 // equivalent to everything.
522 CongruenceClass
*TOPClass
= nullptr;
523 std::vector
<CongruenceClass
*> CongruenceClasses
;
524 unsigned NextCongruenceNum
= 0;
527 DenseMap
<Value
*, CongruenceClass
*> ValueToClass
;
528 DenseMap
<Value
*, const Expression
*> ValueToExpression
;
530 // Value PHI handling, used to make equivalence between phi(op, op) and
532 // These mappings just store various data that would normally be part of the
534 SmallPtrSet
<const Instruction
*, 8> PHINodeUses
;
536 DenseMap
<const Value
*, bool> OpSafeForPHIOfOps
;
538 // Map a temporary instruction we created to a parent block.
539 DenseMap
<const Value
*, BasicBlock
*> TempToBlock
;
541 // Map between the already in-program instructions and the temporary phis we
542 // created that they are known equivalent to.
543 DenseMap
<const Value
*, PHINode
*> RealToTemp
;
545 // In order to know when we should re-process instructions that have
546 // phi-of-ops, we track the set of expressions that they needed as
547 // leaders. When we discover new leaders for those expressions, we process the
548 // associated phi-of-op instructions again in case they have changed. The
549 // other way they may change is if they had leaders, and those leaders
550 // disappear. However, at the point they have leaders, there are uses of the
551 // relevant operands in the created phi node, and so they will get reprocessed
552 // through the normal user marking we perform.
553 mutable DenseMap
<const Value
*, SmallPtrSet
<Value
*, 2>> AdditionalUsers
;
554 DenseMap
<const Expression
*, SmallPtrSet
<Instruction
*, 2>>
555 ExpressionToPhiOfOps
;
557 // Map from temporary operation to MemoryAccess.
558 DenseMap
<const Instruction
*, MemoryUseOrDef
*> TempToMemory
;
560 // Set of all temporary instructions we created.
561 // Note: This will include instructions that were just created during value
562 // numbering. The way to test if something is using them is to check
564 DenseSet
<Instruction
*> AllTempInstructions
;
566 // This is the set of instructions to revisit on a reachability change. At
567 // the end of the main iteration loop it will contain at least all the phi of
568 // ops instructions that will be changed to phis, as well as regular phis.
569 // During the iteration loop, it may contain other things, such as phi of ops
570 // instructions that used edge reachability to reach a result, and so need to
571 // be revisited when the edge changes, independent of whether the phi they
572 // depended on changes.
573 DenseMap
<BasicBlock
*, SparseBitVector
<>> RevisitOnReachabilityChange
;
575 // Mapping from predicate info we used to the instructions we used it with.
576 // In order to correctly ensure propagation, we must keep track of what
577 // comparisons we used, so that when the values of the comparisons change, we
578 // propagate the information to the places we used the comparison.
579 mutable DenseMap
<const Value
*, SmallPtrSet
<Instruction
*, 2>>
582 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
583 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
584 mutable DenseMap
<const MemoryAccess
*, SmallPtrSet
<MemoryAccess
*, 2>>
587 // A table storing which memorydefs/phis represent a memory state provably
588 // equivalent to another memory state.
589 // We could use the congruence class machinery, but the MemoryAccess's are
590 // abstract memory states, so they can only ever be equivalent to each other,
591 // and not to constants, etc.
592 DenseMap
<const MemoryAccess
*, CongruenceClass
*> MemoryAccessToClass
;
594 // We could, if we wanted, build MemoryPhiExpressions and
595 // MemoryVariableExpressions, etc, and value number them the same way we value
596 // number phi expressions. For the moment, this seems like overkill. They
597 // can only exist in one of three states: they can be TOP (equal to
598 // everything), Equivalent to something else, or unique. Because we do not
599 // create expressions for them, we need to simulate leader change not just
600 // when they change class, but when they change state. Note: We can do the
601 // same thing for phis, and avoid having phi expressions if we wanted, We
602 // should eventually unify in one direction or the other, so this is a little
603 // bit of an experiment in which turns out easier to maintain.
604 enum MemoryPhiState
{ MPS_Invalid
, MPS_TOP
, MPS_Equivalent
, MPS_Unique
};
605 DenseMap
<const MemoryPhi
*, MemoryPhiState
> MemoryPhiState
;
607 enum InstCycleState
{ ICS_Unknown
, ICS_CycleFree
, ICS_Cycle
};
608 mutable DenseMap
<const Instruction
*, InstCycleState
> InstCycleState
;
610 // Expression to class mapping.
611 using ExpressionClassMap
= DenseMap
<const Expression
*, CongruenceClass
*>;
612 ExpressionClassMap ExpressionToClass
;
614 // We have a single expression that represents currently DeadExpressions.
615 // For dead expressions we can prove will stay dead, we mark them with
616 // DFS number zero. However, it's possible in the case of phi nodes
617 // for us to assume/prove all arguments are dead during fixpointing.
618 // We use DeadExpression for that case.
619 DeadExpression
*SingletonDeadExpression
= nullptr;
621 // Which values have changed as a result of leader changes.
622 SmallPtrSet
<Value
*, 8> LeaderChanges
;
624 // Reachability info.
625 using BlockEdge
= BasicBlockEdge
;
626 DenseSet
<BlockEdge
> ReachableEdges
;
627 SmallPtrSet
<const BasicBlock
*, 8> ReachableBlocks
;
629 // This is a bitvector because, on larger functions, we may have
630 // thousands of touched instructions at once (entire blocks,
631 // instructions with hundreds of uses, etc). Even with optimization
632 // for when we mark whole blocks as touched, when this was a
633 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
634 // the time in GVN just managing this list. The bitvector, on the
635 // other hand, efficiently supports test/set/clear of both
636 // individual and ranges, as well as "find next element" This
637 // enables us to use it as a worklist with essentially 0 cost.
638 BitVector TouchedInstructions
;
640 DenseMap
<const BasicBlock
*, std::pair
<unsigned, unsigned>> BlockInstRange
;
643 // Debugging for how many times each block and instruction got processed.
644 DenseMap
<const Value
*, unsigned> ProcessedCount
;
648 // This contains a mapping from Instructions to DFS numbers.
649 // The numbering starts at 1. An instruction with DFS number zero
650 // means that the instruction is dead.
651 DenseMap
<const Value
*, unsigned> InstrDFS
;
653 // This contains the mapping DFS numbers to instructions.
654 SmallVector
<Value
*, 32> DFSToInstr
;
657 SmallPtrSet
<Instruction
*, 8> InstructionsToErase
;
660 NewGVN(Function
&F
, DominatorTree
*DT
, AssumptionCache
*AC
,
661 TargetLibraryInfo
*TLI
, AliasAnalysis
*AA
, MemorySSA
*MSSA
,
662 const DataLayout
&DL
)
663 : F(F
), DT(DT
), TLI(TLI
), AA(AA
), MSSA(MSSA
), AC(AC
), DL(DL
),
664 PredInfo(std::make_unique
<PredicateInfo
>(F
, *DT
, *AC
)),
665 SQ(DL
, TLI
, DT
, AC
, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666 /*CanUseUndef=*/false) {}
671 /// Helper struct return a Expression with an optional extra dependency.
673 const Expression
*Expr
;
675 const PredicateBase
*PredDep
;
677 ExprResult(const Expression
*Expr
, Value
*ExtraDep
= nullptr,
678 const PredicateBase
*PredDep
= nullptr)
679 : Expr(Expr
), ExtraDep(ExtraDep
), PredDep(PredDep
) {}
680 ExprResult(const ExprResult
&) = delete;
681 ExprResult(ExprResult
&&Other
)
682 : Expr(Other
.Expr
), ExtraDep(Other
.ExtraDep
), PredDep(Other
.PredDep
) {
683 Other
.Expr
= nullptr;
684 Other
.ExtraDep
= nullptr;
685 Other
.PredDep
= nullptr;
687 ExprResult
&operator=(const ExprResult
&Other
) = delete;
688 ExprResult
&operator=(ExprResult
&&Other
) = delete;
690 ~ExprResult() { assert(!ExtraDep
&& "unhandled ExtraDep"); }
692 operator bool() const { return Expr
; }
694 static ExprResult
none() { return {nullptr, nullptr, nullptr}; }
695 static ExprResult
some(const Expression
*Expr
, Value
*ExtraDep
= nullptr) {
696 return {Expr
, ExtraDep
, nullptr};
698 static ExprResult
some(const Expression
*Expr
,
699 const PredicateBase
*PredDep
) {
700 return {Expr
, nullptr, PredDep
};
702 static ExprResult
some(const Expression
*Expr
, Value
*ExtraDep
,
703 const PredicateBase
*PredDep
) {
704 return {Expr
, ExtraDep
, PredDep
};
708 // Expression handling.
709 ExprResult
createExpression(Instruction
*) const;
710 const Expression
*createBinaryExpression(unsigned, Type
*, Value
*, Value
*,
711 Instruction
*) const;
713 // Our canonical form for phi arguments is a pair of incoming value, incoming
715 using ValPair
= std::pair
<Value
*, BasicBlock
*>;
717 PHIExpression
*createPHIExpression(ArrayRef
<ValPair
>, const Instruction
*,
718 BasicBlock
*, bool &HasBackEdge
,
719 bool &OriginalOpsConstant
) const;
720 const DeadExpression
*createDeadExpression() const;
721 const VariableExpression
*createVariableExpression(Value
*) const;
722 const ConstantExpression
*createConstantExpression(Constant
*) const;
723 const Expression
*createVariableOrConstant(Value
*V
) const;
724 const UnknownExpression
*createUnknownExpression(Instruction
*) const;
725 const StoreExpression
*createStoreExpression(StoreInst
*,
726 const MemoryAccess
*) const;
727 LoadExpression
*createLoadExpression(Type
*, Value
*, LoadInst
*,
728 const MemoryAccess
*) const;
729 const CallExpression
*createCallExpression(CallInst
*,
730 const MemoryAccess
*) const;
731 const AggregateValueExpression
*
732 createAggregateValueExpression(Instruction
*) const;
733 bool setBasicExpressionInfo(Instruction
*, BasicExpression
*) const;
735 // Congruence class handling.
736 CongruenceClass
*createCongruenceClass(Value
*Leader
, const Expression
*E
) {
737 auto *result
= new CongruenceClass(NextCongruenceNum
++, Leader
, E
);
738 CongruenceClasses
.emplace_back(result
);
742 CongruenceClass
*createMemoryClass(MemoryAccess
*MA
) {
743 auto *CC
= createCongruenceClass(nullptr, nullptr);
744 CC
->setMemoryLeader(MA
);
748 CongruenceClass
*ensureLeaderOfMemoryClass(MemoryAccess
*MA
) {
749 auto *CC
= getMemoryClass(MA
);
750 if (CC
->getMemoryLeader() != MA
)
751 CC
= createMemoryClass(MA
);
755 CongruenceClass
*createSingletonCongruenceClass(Value
*Member
) {
756 CongruenceClass
*CClass
= createCongruenceClass(Member
, nullptr);
757 CClass
->insert(Member
);
758 ValueToClass
[Member
] = CClass
;
762 void initializeCongruenceClasses(Function
&F
);
763 const Expression
*makePossiblePHIOfOps(Instruction
*,
764 SmallPtrSetImpl
<Value
*> &);
765 Value
*findLeaderForInst(Instruction
*ValueOp
,
766 SmallPtrSetImpl
<Value
*> &Visited
,
767 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
769 bool OpIsSafeForPHIOfOpsHelper(Value
*V
, const BasicBlock
*PHIBlock
,
770 SmallPtrSetImpl
<const Value
*> &Visited
,
771 SmallVectorImpl
<Instruction
*> &Worklist
);
772 bool OpIsSafeForPHIOfOps(Value
*Op
, const BasicBlock
*PHIBlock
,
773 SmallPtrSetImpl
<const Value
*> &);
774 void addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
, Instruction
*ExistingValue
);
775 void removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
);
777 // Value number an Instruction or MemoryPhi.
778 void valueNumberMemoryPhi(MemoryPhi
*);
779 void valueNumberInstruction(Instruction
*);
781 // Symbolic evaluation.
782 ExprResult
checkExprResults(Expression
*, Instruction
*, Value
*) const;
783 ExprResult
performSymbolicEvaluation(Value
*,
784 SmallPtrSetImpl
<Value
*> &) const;
785 const Expression
*performSymbolicLoadCoercion(Type
*, Value
*, LoadInst
*,
787 MemoryAccess
*) const;
788 const Expression
*performSymbolicLoadEvaluation(Instruction
*) const;
789 const Expression
*performSymbolicStoreEvaluation(Instruction
*) const;
790 ExprResult
performSymbolicCallEvaluation(Instruction
*) const;
791 void sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const;
792 const Expression
*performSymbolicPHIEvaluation(ArrayRef
<ValPair
>,
794 BasicBlock
*PHIBlock
) const;
795 const Expression
*performSymbolicAggrValueEvaluation(Instruction
*) const;
796 ExprResult
performSymbolicCmpEvaluation(Instruction
*) const;
797 ExprResult
performSymbolicPredicateInfoEvaluation(Instruction
*) const;
799 // Congruence finding.
800 bool someEquivalentDominates(const Instruction
*, const Instruction
*) const;
801 Value
*lookupOperandLeader(Value
*) const;
802 CongruenceClass
*getClassForExpression(const Expression
*E
) const;
803 void performCongruenceFinding(Instruction
*, const Expression
*);
804 void moveValueToNewCongruenceClass(Instruction
*, const Expression
*,
805 CongruenceClass
*, CongruenceClass
*);
806 void moveMemoryToNewCongruenceClass(Instruction
*, MemoryAccess
*,
807 CongruenceClass
*, CongruenceClass
*);
808 Value
*getNextValueLeader(CongruenceClass
*) const;
809 const MemoryAccess
*getNextMemoryLeader(CongruenceClass
*) const;
810 bool setMemoryClass(const MemoryAccess
*From
, CongruenceClass
*To
);
811 CongruenceClass
*getMemoryClass(const MemoryAccess
*MA
) const;
812 const MemoryAccess
*lookupMemoryLeader(const MemoryAccess
*) const;
813 bool isMemoryAccessTOP(const MemoryAccess
*) const;
816 unsigned int getRank(const Value
*) const;
817 bool shouldSwapOperands(const Value
*, const Value
*) const;
819 // Reachability handling.
820 void updateReachableEdge(BasicBlock
*, BasicBlock
*);
821 void processOutgoingEdges(Instruction
*, BasicBlock
*);
822 Value
*findConditionEquivalence(Value
*) const;
826 void convertClassToDFSOrdered(const CongruenceClass
&,
827 SmallVectorImpl
<ValueDFS
> &,
828 DenseMap
<const Value
*, unsigned int> &,
829 SmallPtrSetImpl
<Instruction
*> &) const;
830 void convertClassToLoadsAndStores(const CongruenceClass
&,
831 SmallVectorImpl
<ValueDFS
> &) const;
833 bool eliminateInstructions(Function
&);
834 void replaceInstruction(Instruction
*, Value
*);
835 void markInstructionForDeletion(Instruction
*);
836 void deleteInstructionsInBlock(BasicBlock
*);
837 Value
*findPHIOfOpsLeader(const Expression
*, const Instruction
*,
838 const BasicBlock
*) const;
840 // Various instruction touch utilities
841 template <typename Map
, typename KeyType
>
842 void touchAndErase(Map
&, const KeyType
&);
843 void markUsersTouched(Value
*);
844 void markMemoryUsersTouched(const MemoryAccess
*);
845 void markMemoryDefTouched(const MemoryAccess
*);
846 void markPredicateUsersTouched(Instruction
*);
847 void markValueLeaderChangeTouched(CongruenceClass
*CC
);
848 void markMemoryLeaderChangeTouched(CongruenceClass
*CC
);
849 void markPhiOfOpsChanged(const Expression
*E
);
850 void addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const;
851 void addAdditionalUsers(Value
*To
, Value
*User
) const;
852 void addAdditionalUsers(ExprResult
&Res
, Instruction
*User
) const;
854 // Main loop of value numbering
855 void iterateTouchedInstructions();
858 void cleanupTables();
859 std::pair
<unsigned, unsigned> assignDFSNumbers(BasicBlock
*, unsigned);
860 void updateProcessedCount(const Value
*V
);
861 void verifyMemoryCongruency() const;
862 void verifyIterationSettled(Function
&F
);
863 void verifyStoreExpressions() const;
864 bool singleReachablePHIPath(SmallPtrSet
<const MemoryAccess
*, 8> &,
865 const MemoryAccess
*, const MemoryAccess
*) const;
866 BasicBlock
*getBlockForValue(Value
*V
) const;
867 void deleteExpression(const Expression
*E
) const;
868 MemoryUseOrDef
*getMemoryAccess(const Instruction
*) const;
869 MemoryPhi
*getMemoryAccess(const BasicBlock
*) const;
870 template <class T
, class Range
> T
*getMinDFSOfRange(const Range
&) const;
872 unsigned InstrToDFSNum(const Value
*V
) const {
873 assert(isa
<Instruction
>(V
) && "This should not be used for MemoryAccesses");
874 return InstrDFS
.lookup(V
);
877 unsigned InstrToDFSNum(const MemoryAccess
*MA
) const {
878 return MemoryToDFSNum(MA
);
881 Value
*InstrFromDFSNum(unsigned DFSNum
) { return DFSToInstr
[DFSNum
]; }
883 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
884 // This deliberately takes a value so it can be used with Use's, which will
885 // auto-convert to Value's but not to MemoryAccess's.
886 unsigned MemoryToDFSNum(const Value
*MA
) const {
887 assert(isa
<MemoryAccess
>(MA
) &&
888 "This should not be used with instructions");
889 return isa
<MemoryUseOrDef
>(MA
)
890 ? InstrToDFSNum(cast
<MemoryUseOrDef
>(MA
)->getMemoryInst())
891 : InstrDFS
.lookup(MA
);
894 bool isCycleFree(const Instruction
*) const;
895 bool isBackedge(BasicBlock
*From
, BasicBlock
*To
) const;
897 // Debug counter info. When verifying, we have to reset the value numbering
898 // debug counter to the same state it started in to get the same results.
899 int64_t StartingVNCounter
= 0;
902 } // end anonymous namespace
904 template <typename T
>
905 static bool equalsLoadStoreHelper(const T
&LHS
, const Expression
&RHS
) {
906 if (!isa
<LoadExpression
>(RHS
) && !isa
<StoreExpression
>(RHS
))
908 return LHS
.MemoryExpression::equals(RHS
);
911 bool LoadExpression::equals(const Expression
&Other
) const {
912 return equalsLoadStoreHelper(*this, Other
);
915 bool StoreExpression::equals(const Expression
&Other
) const {
916 if (!equalsLoadStoreHelper(*this, Other
))
918 // Make sure that store vs store includes the value operand.
919 if (const auto *S
= dyn_cast
<StoreExpression
>(&Other
))
920 if (getStoredValue() != S
->getStoredValue())
925 // Determine if the edge From->To is a backedge
926 bool NewGVN::isBackedge(BasicBlock
*From
, BasicBlock
*To
) const {
928 RPOOrdering
.lookup(DT
->getNode(From
)) >=
929 RPOOrdering
.lookup(DT
->getNode(To
));
933 static std::string
getBlockName(const BasicBlock
*B
) {
934 return DOTGraphTraits
<DOTFuncInfo
*>::getSimpleNodeLabel(B
, nullptr);
938 // Get a MemoryAccess for an instruction, fake or real.
939 MemoryUseOrDef
*NewGVN::getMemoryAccess(const Instruction
*I
) const {
940 auto *Result
= MSSA
->getMemoryAccess(I
);
941 return Result
? Result
: TempToMemory
.lookup(I
);
944 // Get a MemoryPhi for a basic block. These are all real.
945 MemoryPhi
*NewGVN::getMemoryAccess(const BasicBlock
*BB
) const {
946 return MSSA
->getMemoryAccess(BB
);
949 // Get the basic block from an instruction/memory value.
950 BasicBlock
*NewGVN::getBlockForValue(Value
*V
) const {
951 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
952 auto *Parent
= I
->getParent();
955 Parent
= TempToBlock
.lookup(V
);
956 assert(Parent
&& "Every fake instruction should have a block");
960 auto *MP
= dyn_cast
<MemoryPhi
>(V
);
961 assert(MP
&& "Should have been an instruction or a MemoryPhi");
962 return MP
->getBlock();
965 // Delete a definitely dead expression, so it can be reused by the expression
966 // allocator. Some of these are not in creation functions, so we have to accept
968 void NewGVN::deleteExpression(const Expression
*E
) const {
969 assert(isa
<BasicExpression
>(E
));
970 auto *BE
= cast
<BasicExpression
>(E
);
971 const_cast<BasicExpression
*>(BE
)->deallocateOperands(ArgRecycler
);
972 ExpressionAllocator
.Deallocate(E
);
975 // If V is a predicateinfo copy, get the thing it is a copy of.
976 static Value
*getCopyOf(const Value
*V
) {
977 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
978 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
979 return II
->getOperand(0);
983 // Return true if V is really PN, even accounting for predicateinfo copies.
984 static bool isCopyOfPHI(const Value
*V
, const PHINode
*PN
) {
985 return V
== PN
|| getCopyOf(V
) == PN
;
988 static bool isCopyOfAPHI(const Value
*V
) {
989 auto *CO
= getCopyOf(V
);
990 return CO
&& isa
<PHINode
>(CO
);
993 // Sort PHI Operands into a canonical order. What we use here is an RPO
994 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
996 void NewGVN::sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const {
997 llvm::sort(Ops
, [&](const ValPair
&P1
, const ValPair
&P2
) {
998 return BlockInstRange
.lookup(P1
.second
).first
<
999 BlockInstRange
.lookup(P2
.second
).first
;
1003 // Return true if V is a value that will always be available (IE can
1004 // be placed anywhere) in the function. We don't do globals here
1005 // because they are often worse to put in place.
1006 static bool alwaysAvailable(Value
*V
) {
1007 return isa
<Constant
>(V
) || isa
<Argument
>(V
);
1010 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
1011 // the original instruction we are creating a PHIExpression for (but may not be
1012 // a phi node). We require, as an invariant, that all the PHIOperands in the
1013 // same block are sorted the same way. sortPHIOps will sort them into a
1015 PHIExpression
*NewGVN::createPHIExpression(ArrayRef
<ValPair
> PHIOperands
,
1016 const Instruction
*I
,
1017 BasicBlock
*PHIBlock
,
1019 bool &OriginalOpsConstant
) const {
1020 unsigned NumOps
= PHIOperands
.size();
1021 auto *E
= new (ExpressionAllocator
) PHIExpression(NumOps
, PHIBlock
);
1023 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1024 E
->setType(PHIOperands
.begin()->first
->getType());
1025 E
->setOpcode(Instruction::PHI
);
1027 // Filter out unreachable phi operands.
1028 auto Filtered
= make_filter_range(PHIOperands
, [&](const ValPair
&P
) {
1029 auto *BB
= P
.second
;
1030 if (auto *PHIOp
= dyn_cast
<PHINode
>(I
))
1031 if (isCopyOfPHI(P
.first
, PHIOp
))
1033 if (!ReachableEdges
.count({BB
, PHIBlock
}))
1035 // Things in TOPClass are equivalent to everything.
1036 if (ValueToClass
.lookup(P
.first
) == TOPClass
)
1038 OriginalOpsConstant
= OriginalOpsConstant
&& isa
<Constant
>(P
.first
);
1039 HasBackedge
= HasBackedge
|| isBackedge(BB
, PHIBlock
);
1040 return lookupOperandLeader(P
.first
) != I
;
1042 std::transform(Filtered
.begin(), Filtered
.end(), op_inserter(E
),
1043 [&](const ValPair
&P
) -> Value
* {
1044 return lookupOperandLeader(P
.first
);
1049 // Set basic expression info (Arguments, type, opcode) for Expression
1050 // E from Instruction I in block B.
1051 bool NewGVN::setBasicExpressionInfo(Instruction
*I
, BasicExpression
*E
) const {
1052 bool AllConstant
= true;
1053 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
))
1054 E
->setType(GEP
->getSourceElementType());
1056 E
->setType(I
->getType());
1057 E
->setOpcode(I
->getOpcode());
1058 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1060 // Transform the operand array into an operand leader array, and keep track of
1061 // whether all members are constant.
1062 std::transform(I
->op_begin(), I
->op_end(), op_inserter(E
), [&](Value
*O
) {
1063 auto Operand
= lookupOperandLeader(O
);
1064 AllConstant
= AllConstant
&& isa
<Constant
>(Operand
);
1071 const Expression
*NewGVN::createBinaryExpression(unsigned Opcode
, Type
*T
,
1072 Value
*Arg1
, Value
*Arg2
,
1073 Instruction
*I
) const {
1074 auto *E
= new (ExpressionAllocator
) BasicExpression(2);
1077 E
->setOpcode(Opcode
);
1078 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1079 if (Instruction::isCommutative(Opcode
)) {
1080 // Ensure that commutative instructions that only differ by a permutation
1081 // of their operands get the same value number by sorting the operand value
1082 // numbers. Since all commutative instructions have two operands it is more
1083 // efficient to sort by hand rather than using, say, std::sort.
1084 if (shouldSwapOperands(Arg1
, Arg2
))
1085 std::swap(Arg1
, Arg2
);
1087 E
->op_push_back(lookupOperandLeader(Arg1
));
1088 E
->op_push_back(lookupOperandLeader(Arg2
));
1090 Value
*V
= SimplifyBinOp(Opcode
, E
->getOperand(0), E
->getOperand(1), SQ
);
1091 if (auto Simplified
= checkExprResults(E
, I
, V
)) {
1092 addAdditionalUsers(Simplified
, I
);
1093 return Simplified
.Expr
;
1098 // Take a Value returned by simplification of Expression E/Instruction
1099 // I, and see if it resulted in a simpler expression. If so, return
1101 NewGVN::ExprResult
NewGVN::checkExprResults(Expression
*E
, Instruction
*I
,
1104 return ExprResult::none();
1106 if (auto *C
= dyn_cast
<Constant
>(V
)) {
1108 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1109 << " constant " << *C
<< "\n");
1110 NumGVNOpsSimplified
++;
1111 assert(isa
<BasicExpression
>(E
) &&
1112 "We should always have had a basic expression here");
1113 deleteExpression(E
);
1114 return ExprResult::some(createConstantExpression(C
));
1115 } else if (isa
<Argument
>(V
) || isa
<GlobalVariable
>(V
)) {
1117 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1118 << " variable " << *V
<< "\n");
1119 deleteExpression(E
);
1120 return ExprResult::some(createVariableExpression(V
));
1123 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1125 if (CC
->getLeader() && CC
->getLeader() != I
) {
1126 return ExprResult::some(createVariableOrConstant(CC
->getLeader()), V
);
1128 if (CC
->getDefiningExpr()) {
1130 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1131 << " expression " << *CC
->getDefiningExpr() << "\n");
1132 NumGVNOpsSimplified
++;
1133 deleteExpression(E
);
1134 return ExprResult::some(CC
->getDefiningExpr(), V
);
1138 return ExprResult::none();
1141 // Create a value expression from the instruction I, replacing operands with
1144 NewGVN::ExprResult
NewGVN::createExpression(Instruction
*I
) const {
1145 auto *E
= new (ExpressionAllocator
) BasicExpression(I
->getNumOperands());
1147 bool AllConstant
= setBasicExpressionInfo(I
, E
);
1149 if (I
->isCommutative()) {
1150 // Ensure that commutative instructions that only differ by a permutation
1151 // of their operands get the same value number by sorting the operand value
1152 // numbers. Since all commutative instructions have two operands it is more
1153 // efficient to sort by hand rather than using, say, std::sort.
1154 assert(I
->getNumOperands() == 2 && "Unsupported commutative instruction!");
1155 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1)))
1156 E
->swapOperands(0, 1);
1158 // Perform simplification.
1159 if (auto *CI
= dyn_cast
<CmpInst
>(I
)) {
1160 // Sort the operand value numbers so x<y and y>x get the same value
1162 CmpInst::Predicate Predicate
= CI
->getPredicate();
1163 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1))) {
1164 E
->swapOperands(0, 1);
1165 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1167 E
->setOpcode((CI
->getOpcode() << 8) | Predicate
);
1168 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1169 assert(I
->getOperand(0)->getType() == I
->getOperand(1)->getType() &&
1170 "Wrong types on cmp instruction");
1171 assert((E
->getOperand(0)->getType() == I
->getOperand(0)->getType() &&
1172 E
->getOperand(1)->getType() == I
->getOperand(1)->getType()));
1174 SimplifyCmpInst(Predicate
, E
->getOperand(0), E
->getOperand(1), SQ
);
1175 if (auto Simplified
= checkExprResults(E
, I
, V
))
1177 } else if (isa
<SelectInst
>(I
)) {
1178 if (isa
<Constant
>(E
->getOperand(0)) ||
1179 E
->getOperand(1) == E
->getOperand(2)) {
1180 assert(E
->getOperand(1)->getType() == I
->getOperand(1)->getType() &&
1181 E
->getOperand(2)->getType() == I
->getOperand(2)->getType());
1182 Value
*V
= SimplifySelectInst(E
->getOperand(0), E
->getOperand(1),
1183 E
->getOperand(2), SQ
);
1184 if (auto Simplified
= checkExprResults(E
, I
, V
))
1187 } else if (I
->isBinaryOp()) {
1189 SimplifyBinOp(E
->getOpcode(), E
->getOperand(0), E
->getOperand(1), SQ
);
1190 if (auto Simplified
= checkExprResults(E
, I
, V
))
1192 } else if (auto *CI
= dyn_cast
<CastInst
>(I
)) {
1194 SimplifyCastInst(CI
->getOpcode(), E
->getOperand(0), CI
->getType(), SQ
);
1195 if (auto Simplified
= checkExprResults(E
, I
, V
))
1197 } else if (isa
<GetElementPtrInst
>(I
)) {
1198 Value
*V
= SimplifyGEPInst(
1199 E
->getType(), ArrayRef
<Value
*>(E
->op_begin(), E
->op_end()), SQ
);
1200 if (auto Simplified
= checkExprResults(E
, I
, V
))
1202 } else if (AllConstant
) {
1203 // We don't bother trying to simplify unless all of the operands
1205 // TODO: There are a lot of Simplify*'s we could call here, if we
1206 // wanted to. The original motivating case for this code was a
1207 // zext i1 false to i8, which we don't have an interface to
1208 // simplify (IE there is no SimplifyZExt).
1210 SmallVector
<Constant
*, 8> C
;
1211 for (Value
*Arg
: E
->operands())
1212 C
.emplace_back(cast
<Constant
>(Arg
));
1214 if (Value
*V
= ConstantFoldInstOperands(I
, C
, DL
, TLI
))
1215 if (auto Simplified
= checkExprResults(E
, I
, V
))
1218 return ExprResult::some(E
);
1221 const AggregateValueExpression
*
1222 NewGVN::createAggregateValueExpression(Instruction
*I
) const {
1223 if (auto *II
= dyn_cast
<InsertValueInst
>(I
)) {
1224 auto *E
= new (ExpressionAllocator
)
1225 AggregateValueExpression(I
->getNumOperands(), II
->getNumIndices());
1226 setBasicExpressionInfo(I
, E
);
1227 E
->allocateIntOperands(ExpressionAllocator
);
1228 std::copy(II
->idx_begin(), II
->idx_end(), int_op_inserter(E
));
1230 } else if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1231 auto *E
= new (ExpressionAllocator
)
1232 AggregateValueExpression(I
->getNumOperands(), EI
->getNumIndices());
1233 setBasicExpressionInfo(EI
, E
);
1234 E
->allocateIntOperands(ExpressionAllocator
);
1235 std::copy(EI
->idx_begin(), EI
->idx_end(), int_op_inserter(E
));
1238 llvm_unreachable("Unhandled type of aggregate value operation");
1241 const DeadExpression
*NewGVN::createDeadExpression() const {
1242 // DeadExpression has no arguments and all DeadExpression's are the same,
1243 // so we only need one of them.
1244 return SingletonDeadExpression
;
1247 const VariableExpression
*NewGVN::createVariableExpression(Value
*V
) const {
1248 auto *E
= new (ExpressionAllocator
) VariableExpression(V
);
1249 E
->setOpcode(V
->getValueID());
1253 const Expression
*NewGVN::createVariableOrConstant(Value
*V
) const {
1254 if (auto *C
= dyn_cast
<Constant
>(V
))
1255 return createConstantExpression(C
);
1256 return createVariableExpression(V
);
1259 const ConstantExpression
*NewGVN::createConstantExpression(Constant
*C
) const {
1260 auto *E
= new (ExpressionAllocator
) ConstantExpression(C
);
1261 E
->setOpcode(C
->getValueID());
1265 const UnknownExpression
*NewGVN::createUnknownExpression(Instruction
*I
) const {
1266 auto *E
= new (ExpressionAllocator
) UnknownExpression(I
);
1267 E
->setOpcode(I
->getOpcode());
1271 const CallExpression
*
1272 NewGVN::createCallExpression(CallInst
*CI
, const MemoryAccess
*MA
) const {
1273 // FIXME: Add operand bundles for calls.
1274 // FIXME: Allow commutative matching for intrinsics.
1276 new (ExpressionAllocator
) CallExpression(CI
->getNumOperands(), CI
, MA
);
1277 setBasicExpressionInfo(CI
, E
);
1281 // Return true if some equivalent of instruction Inst dominates instruction U.
1282 bool NewGVN::someEquivalentDominates(const Instruction
*Inst
,
1283 const Instruction
*U
) const {
1284 auto *CC
= ValueToClass
.lookup(Inst
);
1285 // This must be an instruction because we are only called from phi nodes
1286 // in the case that the value it needs to check against is an instruction.
1288 // The most likely candidates for dominance are the leader and the next leader.
1289 // The leader or nextleader will dominate in all cases where there is an
1290 // equivalent that is higher up in the dom tree.
1291 // We can't *only* check them, however, because the
1292 // dominator tree could have an infinite number of non-dominating siblings
1293 // with instructions that are in the right congruence class.
1298 // Instruction U could be in H, with equivalents in every other sibling.
1299 // Depending on the rpo order picked, the leader could be the equivalent in
1300 // any of these siblings.
1303 if (alwaysAvailable(CC
->getLeader()))
1305 if (DT
->dominates(cast
<Instruction
>(CC
->getLeader()), U
))
1307 if (CC
->getNextLeader().first
&&
1308 DT
->dominates(cast
<Instruction
>(CC
->getNextLeader().first
), U
))
1310 return llvm::any_of(*CC
, [&](const Value
*Member
) {
1311 return Member
!= CC
->getLeader() &&
1312 DT
->dominates(cast
<Instruction
>(Member
), U
);
1316 // See if we have a congruence class and leader for this operand, and if so,
1317 // return it. Otherwise, return the operand itself.
1318 Value
*NewGVN::lookupOperandLeader(Value
*V
) const {
1319 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1321 // Everything in TOP is represented by undef, as it can be any value.
1322 // We do have to make sure we get the type right though, so we can't set the
1323 // RepLeader to undef.
1325 return UndefValue::get(V
->getType());
1326 return CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
1332 const MemoryAccess
*NewGVN::lookupMemoryLeader(const MemoryAccess
*MA
) const {
1333 auto *CC
= getMemoryClass(MA
);
1334 assert(CC
->getMemoryLeader() &&
1335 "Every MemoryAccess should be mapped to a congruence class with a "
1336 "representative memory access");
1337 return CC
->getMemoryLeader();
1340 // Return true if the MemoryAccess is really equivalent to everything. This is
1341 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1342 // state of all MemoryAccesses.
1343 bool NewGVN::isMemoryAccessTOP(const MemoryAccess
*MA
) const {
1344 return getMemoryClass(MA
) == TOPClass
;
1347 LoadExpression
*NewGVN::createLoadExpression(Type
*LoadType
, Value
*PointerOp
,
1349 const MemoryAccess
*MA
) const {
1351 new (ExpressionAllocator
) LoadExpression(1, LI
, lookupMemoryLeader(MA
));
1352 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1353 E
->setType(LoadType
);
1355 // Give store and loads same opcode so they value number together.
1357 E
->op_push_back(PointerOp
);
1359 // TODO: Value number heap versions. We may be able to discover
1360 // things alias analysis can't on it's own (IE that a store and a
1361 // load have the same value, and thus, it isn't clobbering the load).
1365 const StoreExpression
*
1366 NewGVN::createStoreExpression(StoreInst
*SI
, const MemoryAccess
*MA
) const {
1367 auto *StoredValueLeader
= lookupOperandLeader(SI
->getValueOperand());
1368 auto *E
= new (ExpressionAllocator
)
1369 StoreExpression(SI
->getNumOperands(), SI
, StoredValueLeader
, MA
);
1370 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1371 E
->setType(SI
->getValueOperand()->getType());
1373 // Give store and loads same opcode so they value number together.
1375 E
->op_push_back(lookupOperandLeader(SI
->getPointerOperand()));
1377 // TODO: Value number heap versions. We may be able to discover
1378 // things alias analysis can't on it's own (IE that a store and a
1379 // load have the same value, and thus, it isn't clobbering the load).
1383 const Expression
*NewGVN::performSymbolicStoreEvaluation(Instruction
*I
) const {
1384 // Unlike loads, we never try to eliminate stores, so we do not check if they
1385 // are simple and avoid value numbering them.
1386 auto *SI
= cast
<StoreInst
>(I
);
1387 auto *StoreAccess
= getMemoryAccess(SI
);
1388 // Get the expression, if any, for the RHS of the MemoryDef.
1389 const MemoryAccess
*StoreRHS
= StoreAccess
->getDefiningAccess();
1390 if (EnableStoreRefinement
)
1391 StoreRHS
= MSSAWalker
->getClobberingMemoryAccess(StoreAccess
);
1392 // If we bypassed the use-def chains, make sure we add a use.
1393 StoreRHS
= lookupMemoryLeader(StoreRHS
);
1394 if (StoreRHS
!= StoreAccess
->getDefiningAccess())
1395 addMemoryUsers(StoreRHS
, StoreAccess
);
1396 // If we are defined by ourselves, use the live on entry def.
1397 if (StoreRHS
== StoreAccess
)
1398 StoreRHS
= MSSA
->getLiveOnEntryDef();
1400 if (SI
->isSimple()) {
1401 // See if we are defined by a previous store expression, it already has a
1402 // value, and it's the same value as our current store. FIXME: Right now, we
1403 // only do this for simple stores, we should expand to cover memcpys, etc.
1404 const auto *LastStore
= createStoreExpression(SI
, StoreRHS
);
1405 const auto *LastCC
= ExpressionToClass
.lookup(LastStore
);
1406 // We really want to check whether the expression we matched was a store. No
1407 // easy way to do that. However, we can check that the class we found has a
1408 // store, which, assuming the value numbering state is not corrupt, is
1409 // sufficient, because we must also be equivalent to that store's expression
1410 // for it to be in the same class as the load.
1411 if (LastCC
&& LastCC
->getStoredValue() == LastStore
->getStoredValue())
1413 // Also check if our value operand is defined by a load of the same memory
1414 // location, and the memory state is the same as it was then (otherwise, it
1415 // could have been overwritten later. See test32 in
1416 // transforms/DeadStoreElimination/simple.ll).
1417 if (auto *LI
= dyn_cast
<LoadInst
>(LastStore
->getStoredValue()))
1418 if ((lookupOperandLeader(LI
->getPointerOperand()) ==
1419 LastStore
->getOperand(0)) &&
1420 (lookupMemoryLeader(getMemoryAccess(LI
)->getDefiningAccess()) ==
1423 deleteExpression(LastStore
);
1426 // If the store is not equivalent to anything, value number it as a store that
1427 // produces a unique memory state (instead of using it's MemoryUse, we use
1429 return createStoreExpression(SI
, StoreAccess
);
1432 // See if we can extract the value of a loaded pointer from a load, a store, or
1433 // a memory instruction.
1435 NewGVN::performSymbolicLoadCoercion(Type
*LoadType
, Value
*LoadPtr
,
1436 LoadInst
*LI
, Instruction
*DepInst
,
1437 MemoryAccess
*DefiningAccess
) const {
1438 assert((!LI
|| LI
->isSimple()) && "Not a simple load");
1439 if (auto *DepSI
= dyn_cast
<StoreInst
>(DepInst
)) {
1440 // Can't forward from non-atomic to atomic without violating memory model.
1441 // Also don't need to coerce if they are the same type, we will just
1443 if (LI
->isAtomic() > DepSI
->isAtomic() ||
1444 LoadType
== DepSI
->getValueOperand()->getType())
1446 int Offset
= analyzeLoadFromClobberingStore(LoadType
, LoadPtr
, DepSI
, DL
);
1448 if (auto *C
= dyn_cast
<Constant
>(
1449 lookupOperandLeader(DepSI
->getValueOperand()))) {
1450 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1451 << " to constant " << *C
<< "\n");
1452 return createConstantExpression(
1453 getConstantStoreValueForLoad(C
, Offset
, LoadType
, DL
));
1456 } else if (auto *DepLI
= dyn_cast
<LoadInst
>(DepInst
)) {
1457 // Can't forward from non-atomic to atomic without violating memory model.
1458 if (LI
->isAtomic() > DepLI
->isAtomic())
1460 int Offset
= analyzeLoadFromClobberingLoad(LoadType
, LoadPtr
, DepLI
, DL
);
1462 // We can coerce a constant load into a load.
1463 if (auto *C
= dyn_cast
<Constant
>(lookupOperandLeader(DepLI
)))
1464 if (auto *PossibleConstant
=
1465 getConstantLoadValueForLoad(C
, Offset
, LoadType
, DL
)) {
1466 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1467 << " to constant " << *PossibleConstant
<< "\n");
1468 return createConstantExpression(PossibleConstant
);
1471 } else if (auto *DepMI
= dyn_cast
<MemIntrinsic
>(DepInst
)) {
1472 int Offset
= analyzeLoadFromClobberingMemInst(LoadType
, LoadPtr
, DepMI
, DL
);
1474 if (auto *PossibleConstant
=
1475 getConstantMemInstValueForLoad(DepMI
, Offset
, LoadType
, DL
)) {
1476 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1477 << " to constant " << *PossibleConstant
<< "\n");
1478 return createConstantExpression(PossibleConstant
);
1483 // All of the below are only true if the loaded pointer is produced
1484 // by the dependent instruction.
1485 if (LoadPtr
!= lookupOperandLeader(DepInst
) &&
1486 !AA
->isMustAlias(LoadPtr
, DepInst
))
1488 // If this load really doesn't depend on anything, then we must be loading an
1489 // undef value. This can happen when loading for a fresh allocation with no
1490 // intervening stores, for example. Note that this is only true in the case
1491 // that the result of the allocation is pointer equal to the load ptr.
1492 if (isa
<AllocaInst
>(DepInst
) || isMallocLikeFn(DepInst
, TLI
) ||
1493 isAlignedAllocLikeFn(DepInst
, TLI
)) {
1494 return createConstantExpression(UndefValue::get(LoadType
));
1496 // If this load occurs either right after a lifetime begin,
1497 // then the loaded value is undefined.
1498 else if (auto *II
= dyn_cast
<IntrinsicInst
>(DepInst
)) {
1499 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
)
1500 return createConstantExpression(UndefValue::get(LoadType
));
1502 // If this load follows a calloc (which zero initializes memory),
1503 // then the loaded value is zero
1504 else if (isCallocLikeFn(DepInst
, TLI
)) {
1505 return createConstantExpression(Constant::getNullValue(LoadType
));
1511 const Expression
*NewGVN::performSymbolicLoadEvaluation(Instruction
*I
) const {
1512 auto *LI
= cast
<LoadInst
>(I
);
1514 // We can eliminate in favor of non-simple loads, but we won't be able to
1515 // eliminate the loads themselves.
1516 if (!LI
->isSimple())
1519 Value
*LoadAddressLeader
= lookupOperandLeader(LI
->getPointerOperand());
1520 // Load of undef is undef.
1521 if (isa
<UndefValue
>(LoadAddressLeader
))
1522 return createConstantExpression(UndefValue::get(LI
->getType()));
1523 MemoryAccess
*OriginalAccess
= getMemoryAccess(I
);
1524 MemoryAccess
*DefiningAccess
=
1525 MSSAWalker
->getClobberingMemoryAccess(OriginalAccess
);
1527 if (!MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
1528 if (auto *MD
= dyn_cast
<MemoryDef
>(DefiningAccess
)) {
1529 Instruction
*DefiningInst
= MD
->getMemoryInst();
1530 // If the defining instruction is not reachable, replace with undef.
1531 if (!ReachableBlocks
.count(DefiningInst
->getParent()))
1532 return createConstantExpression(UndefValue::get(LI
->getType()));
1533 // This will handle stores and memory insts. We only do if it the
1534 // defining access has a different type, or it is a pointer produced by
1535 // certain memory operations that cause the memory to have a fixed value
1536 // (IE things like calloc).
1537 if (const auto *CoercionResult
=
1538 performSymbolicLoadCoercion(LI
->getType(), LoadAddressLeader
, LI
,
1539 DefiningInst
, DefiningAccess
))
1540 return CoercionResult
;
1544 const auto *LE
= createLoadExpression(LI
->getType(), LoadAddressLeader
, LI
,
1546 // If our MemoryLeader is not our defining access, add a use to the
1547 // MemoryLeader, so that we get reprocessed when it changes.
1548 if (LE
->getMemoryLeader() != DefiningAccess
)
1549 addMemoryUsers(LE
->getMemoryLeader(), OriginalAccess
);
1554 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction
*I
) const {
1555 auto *PI
= PredInfo
->getPredicateInfoFor(I
);
1557 return ExprResult::none();
1559 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1561 const Optional
<PredicateConstraint
> &Constraint
= PI
->getConstraint();
1563 return ExprResult::none();
1565 CmpInst::Predicate Predicate
= Constraint
->Predicate
;
1566 Value
*CmpOp0
= I
->getOperand(0);
1567 Value
*CmpOp1
= Constraint
->OtherOp
;
1569 Value
*FirstOp
= lookupOperandLeader(CmpOp0
);
1570 Value
*SecondOp
= lookupOperandLeader(CmpOp1
);
1571 Value
*AdditionallyUsedValue
= CmpOp0
;
1574 if (shouldSwapOperands(FirstOp
, SecondOp
)) {
1575 std::swap(FirstOp
, SecondOp
);
1576 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1577 AdditionallyUsedValue
= CmpOp1
;
1580 if (Predicate
== CmpInst::ICMP_EQ
)
1581 return ExprResult::some(createVariableOrConstant(FirstOp
),
1582 AdditionallyUsedValue
, PI
);
1584 // Handle the special case of floating point.
1585 if (Predicate
== CmpInst::FCMP_OEQ
&& isa
<ConstantFP
>(FirstOp
) &&
1586 !cast
<ConstantFP
>(FirstOp
)->isZero())
1587 return ExprResult::some(createConstantExpression(cast
<Constant
>(FirstOp
)),
1588 AdditionallyUsedValue
, PI
);
1590 return ExprResult::none();
1593 // Evaluate read only and pure calls, and create an expression result.
1594 NewGVN::ExprResult
NewGVN::performSymbolicCallEvaluation(Instruction
*I
) const {
1595 auto *CI
= cast
<CallInst
>(I
);
1596 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
1597 // Intrinsics with the returned attribute are copies of arguments.
1598 if (auto *ReturnedValue
= II
->getReturnedArgOperand()) {
1599 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
1600 if (auto Res
= performSymbolicPredicateInfoEvaluation(I
))
1602 return ExprResult::some(createVariableOrConstant(ReturnedValue
));
1605 if (AA
->doesNotAccessMemory(CI
)) {
1606 return ExprResult::some(
1607 createCallExpression(CI
, TOPClass
->getMemoryLeader()));
1608 } else if (AA
->onlyReadsMemory(CI
)) {
1609 if (auto *MA
= MSSA
->getMemoryAccess(CI
)) {
1610 auto *DefiningAccess
= MSSAWalker
->getClobberingMemoryAccess(MA
);
1611 return ExprResult::some(createCallExpression(CI
, DefiningAccess
));
1612 } else // MSSA determined that CI does not access memory.
1613 return ExprResult::some(
1614 createCallExpression(CI
, TOPClass
->getMemoryLeader()));
1616 return ExprResult::none();
1619 // Retrieve the memory class for a given MemoryAccess.
1620 CongruenceClass
*NewGVN::getMemoryClass(const MemoryAccess
*MA
) const {
1621 auto *Result
= MemoryAccessToClass
.lookup(MA
);
1622 assert(Result
&& "Should have found memory class");
1626 // Update the MemoryAccess equivalence table to say that From is equal to To,
1627 // and return true if this is different from what already existed in the table.
1628 bool NewGVN::setMemoryClass(const MemoryAccess
*From
,
1629 CongruenceClass
*NewClass
) {
1631 "Every MemoryAccess should be getting mapped to a non-null class");
1632 LLVM_DEBUG(dbgs() << "Setting " << *From
);
1633 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1634 LLVM_DEBUG(dbgs() << NewClass
->getID()
1635 << " with current MemoryAccess leader ");
1636 LLVM_DEBUG(dbgs() << *NewClass
->getMemoryLeader() << "\n");
1638 auto LookupResult
= MemoryAccessToClass
.find(From
);
1639 bool Changed
= false;
1640 // If it's already in the table, see if the value changed.
1641 if (LookupResult
!= MemoryAccessToClass
.end()) {
1642 auto *OldClass
= LookupResult
->second
;
1643 if (OldClass
!= NewClass
) {
1644 // If this is a phi, we have to handle memory member updates.
1645 if (auto *MP
= dyn_cast
<MemoryPhi
>(From
)) {
1646 OldClass
->memory_erase(MP
);
1647 NewClass
->memory_insert(MP
);
1648 // This may have killed the class if it had no non-memory members
1649 if (OldClass
->getMemoryLeader() == From
) {
1650 if (OldClass
->definesNoMemory()) {
1651 OldClass
->setMemoryLeader(nullptr);
1653 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
1654 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1655 << OldClass
->getID() << " to "
1656 << *OldClass
->getMemoryLeader()
1657 << " due to removal of a memory member " << *From
1659 markMemoryLeaderChangeTouched(OldClass
);
1663 // It wasn't equivalent before, and now it is.
1664 LookupResult
->second
= NewClass
;
1672 // Determine if a instruction is cycle-free. That means the values in the
1673 // instruction don't depend on any expressions that can change value as a result
1674 // of the instruction. For example, a non-cycle free instruction would be v =
1676 bool NewGVN::isCycleFree(const Instruction
*I
) const {
1677 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1678 // and see what kind of SCC it ends up in. If it is a singleton, it is
1679 // cycle-free. If it is not in a singleton, it is only cycle free if the
1680 // other members are all phi nodes (as they do not compute anything, they are
1682 auto ICS
= InstCycleState
.lookup(I
);
1683 if (ICS
== ICS_Unknown
) {
1685 auto &SCC
= SCCFinder
.getComponentFor(I
);
1686 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1687 if (SCC
.size() == 1)
1688 InstCycleState
.insert({I
, ICS_CycleFree
});
1690 bool AllPhis
= llvm::all_of(SCC
, [](const Value
*V
) {
1691 return isa
<PHINode
>(V
) || isCopyOfAPHI(V
);
1693 ICS
= AllPhis
? ICS_CycleFree
: ICS_Cycle
;
1694 for (auto *Member
: SCC
)
1695 if (auto *MemberPhi
= dyn_cast
<PHINode
>(Member
))
1696 InstCycleState
.insert({MemberPhi
, ICS
});
1699 if (ICS
== ICS_Cycle
)
1704 // Evaluate PHI nodes symbolically and create an expression result.
1706 NewGVN::performSymbolicPHIEvaluation(ArrayRef
<ValPair
> PHIOps
,
1708 BasicBlock
*PHIBlock
) const {
1709 // True if one of the incoming phi edges is a backedge.
1710 bool HasBackedge
= false;
1711 // All constant tracks the state of whether all the *original* phi operands
1712 // This is really shorthand for "this phi cannot cycle due to forward
1713 // change in value of the phi is guaranteed not to later change the value of
1714 // the phi. IE it can't be v = phi(undef, v+1)
1715 bool OriginalOpsConstant
= true;
1716 auto *E
= cast
<PHIExpression
>(createPHIExpression(
1717 PHIOps
, I
, PHIBlock
, HasBackedge
, OriginalOpsConstant
));
1718 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1719 // See if all arguments are the same.
1720 // We track if any were undef because they need special handling.
1721 bool HasUndef
= false;
1722 auto Filtered
= make_filter_range(E
->operands(), [&](Value
*Arg
) {
1723 if (isa
<UndefValue
>(Arg
)) {
1729 // If we are left with no operands, it's dead.
1730 if (Filtered
.empty()) {
1731 // If it has undef at this point, it means there are no-non-undef arguments,
1732 // and thus, the value of the phi node must be undef.
1735 dbgs() << "PHI Node " << *I
1736 << " has no non-undef arguments, valuing it as undef\n");
1737 return createConstantExpression(UndefValue::get(I
->getType()));
1740 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I
<< " are live\n");
1741 deleteExpression(E
);
1742 return createDeadExpression();
1744 Value
*AllSameValue
= *(Filtered
.begin());
1746 // Can't use std::equal here, sadly, because filter.begin moves.
1747 if (llvm::all_of(Filtered
, [&](Value
*Arg
) { return Arg
== AllSameValue
; })) {
1748 // In LLVM's non-standard representation of phi nodes, it's possible to have
1749 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1750 // on the original phi node), especially in weird CFG's where some arguments
1751 // are unreachable, or uninitialized along certain paths. This can cause
1752 // infinite loops during evaluation. We work around this by not trying to
1753 // really evaluate them independently, but instead using a variable
1754 // expression to say if one is equivalent to the other.
1755 // We also special case undef, so that if we have an undef, we can't use the
1756 // common value unless it dominates the phi block.
1758 // If we have undef and at least one other value, this is really a
1759 // multivalued phi, and we need to know if it's cycle free in order to
1760 // evaluate whether we can ignore the undef. The other parts of this are
1761 // just shortcuts. If there is no backedge, or all operands are
1762 // constants, it also must be cycle free.
1763 if (HasBackedge
&& !OriginalOpsConstant
&&
1764 !isa
<UndefValue
>(AllSameValue
) && !isCycleFree(I
))
1767 // Only have to check for instructions
1768 if (auto *AllSameInst
= dyn_cast
<Instruction
>(AllSameValue
))
1769 if (!someEquivalentDominates(AllSameInst
, I
))
1772 // Can't simplify to something that comes later in the iteration.
1773 // Otherwise, when and if it changes congruence class, we will never catch
1774 // up. We will always be a class behind it.
1775 if (isa
<Instruction
>(AllSameValue
) &&
1776 InstrToDFSNum(AllSameValue
) > InstrToDFSNum(I
))
1778 NumGVNPhisAllSame
++;
1779 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I
<< " to " << *AllSameValue
1781 deleteExpression(E
);
1782 return createVariableOrConstant(AllSameValue
);
1788 NewGVN::performSymbolicAggrValueEvaluation(Instruction
*I
) const {
1789 if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1790 auto *WO
= dyn_cast
<WithOverflowInst
>(EI
->getAggregateOperand());
1791 if (WO
&& EI
->getNumIndices() == 1 && *EI
->idx_begin() == 0)
1792 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1793 // a semantically equivalent expression instead of an extract value
1795 return createBinaryExpression(WO
->getBinaryOp(), EI
->getType(),
1796 WO
->getLHS(), WO
->getRHS(), I
);
1799 return createAggregateValueExpression(I
);
1802 NewGVN::ExprResult
NewGVN::performSymbolicCmpEvaluation(Instruction
*I
) const {
1803 assert(isa
<CmpInst
>(I
) && "Expected a cmp instruction.");
1805 auto *CI
= cast
<CmpInst
>(I
);
1806 // See if our operands are equal to those of a previous predicate, and if so,
1807 // if it implies true or false.
1808 auto Op0
= lookupOperandLeader(CI
->getOperand(0));
1809 auto Op1
= lookupOperandLeader(CI
->getOperand(1));
1810 auto OurPredicate
= CI
->getPredicate();
1811 if (shouldSwapOperands(Op0
, Op1
)) {
1812 std::swap(Op0
, Op1
);
1813 OurPredicate
= CI
->getSwappedPredicate();
1816 // Avoid processing the same info twice.
1817 const PredicateBase
*LastPredInfo
= nullptr;
1818 // See if we know something about the comparison itself, like it is the target
1820 auto *CmpPI
= PredInfo
->getPredicateInfoFor(I
);
1821 if (dyn_cast_or_null
<PredicateAssume
>(CmpPI
))
1822 return ExprResult::some(
1823 createConstantExpression(ConstantInt::getTrue(CI
->getType())));
1826 // This condition does not depend on predicates, no need to add users
1827 if (CI
->isTrueWhenEqual())
1828 return ExprResult::some(
1829 createConstantExpression(ConstantInt::getTrue(CI
->getType())));
1830 else if (CI
->isFalseWhenEqual())
1831 return ExprResult::some(
1832 createConstantExpression(ConstantInt::getFalse(CI
->getType())));
1835 // NOTE: Because we are comparing both operands here and below, and using
1836 // previous comparisons, we rely on fact that predicateinfo knows to mark
1837 // comparisons that use renamed operands as users of the earlier comparisons.
1838 // It is *not* enough to just mark predicateinfo renamed operands as users of
1839 // the earlier comparisons, because the *other* operand may have changed in a
1840 // previous iteration.
1843 // %b.0 = ssa.copy(%b)
1845 // icmp slt %c, %b.0
1847 // %c and %a may start out equal, and thus, the code below will say the second
1848 // %icmp is false. c may become equal to something else, and in that case the
1849 // %second icmp *must* be reexamined, but would not if only the renamed
1850 // %operands are considered users of the icmp.
1852 // *Currently* we only check one level of comparisons back, and only mark one
1853 // level back as touched when changes happen. If you modify this code to look
1854 // back farther through comparisons, you *must* mark the appropriate
1855 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1856 // we know something just from the operands themselves
1858 // See if our operands have predicate info, so that we may be able to derive
1859 // something from a previous comparison.
1860 for (const auto &Op
: CI
->operands()) {
1861 auto *PI
= PredInfo
->getPredicateInfoFor(Op
);
1862 if (const auto *PBranch
= dyn_cast_or_null
<PredicateBranch
>(PI
)) {
1863 if (PI
== LastPredInfo
)
1866 // In phi of ops cases, we may have predicate info that we are evaluating
1867 // in a different context.
1868 if (!DT
->dominates(PBranch
->To
, getBlockForValue(I
)))
1870 // TODO: Along the false edge, we may know more things too, like
1872 // same operands is false.
1873 // TODO: We only handle actual comparison conditions below, not
1875 auto *BranchCond
= dyn_cast
<CmpInst
>(PBranch
->Condition
);
1878 auto *BranchOp0
= lookupOperandLeader(BranchCond
->getOperand(0));
1879 auto *BranchOp1
= lookupOperandLeader(BranchCond
->getOperand(1));
1880 auto BranchPredicate
= BranchCond
->getPredicate();
1881 if (shouldSwapOperands(BranchOp0
, BranchOp1
)) {
1882 std::swap(BranchOp0
, BranchOp1
);
1883 BranchPredicate
= BranchCond
->getSwappedPredicate();
1885 if (BranchOp0
== Op0
&& BranchOp1
== Op1
) {
1886 if (PBranch
->TrueEdge
) {
1887 // If we know the previous predicate is true and we are in the true
1888 // edge then we may be implied true or false.
1889 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate
,
1891 return ExprResult::some(
1892 createConstantExpression(ConstantInt::getTrue(CI
->getType())),
1896 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate
,
1898 return ExprResult::some(
1899 createConstantExpression(ConstantInt::getFalse(CI
->getType())),
1903 // Just handle the ne and eq cases, where if we have the same
1904 // operands, we may know something.
1905 if (BranchPredicate
== OurPredicate
) {
1906 // Same predicate, same ops,we know it was false, so this is false.
1907 return ExprResult::some(
1908 createConstantExpression(ConstantInt::getFalse(CI
->getType())),
1910 } else if (BranchPredicate
==
1911 CmpInst::getInversePredicate(OurPredicate
)) {
1912 // Inverse predicate, we know the other was false, so this is true.
1913 return ExprResult::some(
1914 createConstantExpression(ConstantInt::getTrue(CI
->getType())),
1921 // Create expression will take care of simplifyCmpInst
1922 return createExpression(I
);
1925 // Substitute and symbolize the value before value numbering.
1927 NewGVN::performSymbolicEvaluation(Value
*V
,
1928 SmallPtrSetImpl
<Value
*> &Visited
) const {
1930 const Expression
*E
= nullptr;
1931 if (auto *C
= dyn_cast
<Constant
>(V
))
1932 E
= createConstantExpression(C
);
1933 else if (isa
<Argument
>(V
) || isa
<GlobalVariable
>(V
)) {
1934 E
= createVariableExpression(V
);
1936 // TODO: memory intrinsics.
1937 // TODO: Some day, we should do the forward propagation and reassociation
1938 // parts of the algorithm.
1939 auto *I
= cast
<Instruction
>(V
);
1940 switch (I
->getOpcode()) {
1941 case Instruction::ExtractValue
:
1942 case Instruction::InsertValue
:
1943 E
= performSymbolicAggrValueEvaluation(I
);
1945 case Instruction::PHI
: {
1946 SmallVector
<ValPair
, 3> Ops
;
1947 auto *PN
= cast
<PHINode
>(I
);
1948 for (unsigned i
= 0; i
< PN
->getNumOperands(); ++i
)
1949 Ops
.push_back({PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
)});
1950 // Sort to ensure the invariant createPHIExpression requires is met.
1952 E
= performSymbolicPHIEvaluation(Ops
, I
, getBlockForValue(I
));
1954 case Instruction::Call
:
1955 return performSymbolicCallEvaluation(I
);
1957 case Instruction::Store
:
1958 E
= performSymbolicStoreEvaluation(I
);
1960 case Instruction::Load
:
1961 E
= performSymbolicLoadEvaluation(I
);
1963 case Instruction::BitCast
:
1964 case Instruction::AddrSpaceCast
:
1965 return createExpression(I
);
1967 case Instruction::ICmp
:
1968 case Instruction::FCmp
:
1969 return performSymbolicCmpEvaluation(I
);
1971 case Instruction::FNeg
:
1972 case Instruction::Add
:
1973 case Instruction::FAdd
:
1974 case Instruction::Sub
:
1975 case Instruction::FSub
:
1976 case Instruction::Mul
:
1977 case Instruction::FMul
:
1978 case Instruction::UDiv
:
1979 case Instruction::SDiv
:
1980 case Instruction::FDiv
:
1981 case Instruction::URem
:
1982 case Instruction::SRem
:
1983 case Instruction::FRem
:
1984 case Instruction::Shl
:
1985 case Instruction::LShr
:
1986 case Instruction::AShr
:
1987 case Instruction::And
:
1988 case Instruction::Or
:
1989 case Instruction::Xor
:
1990 case Instruction::Trunc
:
1991 case Instruction::ZExt
:
1992 case Instruction::SExt
:
1993 case Instruction::FPToUI
:
1994 case Instruction::FPToSI
:
1995 case Instruction::UIToFP
:
1996 case Instruction::SIToFP
:
1997 case Instruction::FPTrunc
:
1998 case Instruction::FPExt
:
1999 case Instruction::PtrToInt
:
2000 case Instruction::IntToPtr
:
2001 case Instruction::Select
:
2002 case Instruction::ExtractElement
:
2003 case Instruction::InsertElement
:
2004 case Instruction::GetElementPtr
:
2005 return createExpression(I
);
2007 case Instruction::ShuffleVector
:
2008 // FIXME: Add support for shufflevector to createExpression.
2009 return ExprResult::none();
2011 return ExprResult::none();
2014 return ExprResult::some(E
);
2017 // Look up a container of values/instructions in a map, and touch all the
2018 // instructions in the container. Then erase value from the map.
2019 template <typename Map
, typename KeyType
>
2020 void NewGVN::touchAndErase(Map
&M
, const KeyType
&Key
) {
2021 const auto Result
= M
.find_as(Key
);
2022 if (Result
!= M
.end()) {
2023 for (const typename
Map::mapped_type::value_type Mapped
: Result
->second
)
2024 TouchedInstructions
.set(InstrToDFSNum(Mapped
));
2029 void NewGVN::addAdditionalUsers(Value
*To
, Value
*User
) const {
2030 assert(User
&& To
!= User
);
2031 if (isa
<Instruction
>(To
))
2032 AdditionalUsers
[To
].insert(User
);
2035 void NewGVN::addAdditionalUsers(ExprResult
&Res
, Instruction
*User
) const {
2036 if (Res
.ExtraDep
&& Res
.ExtraDep
!= User
)
2037 addAdditionalUsers(Res
.ExtraDep
, User
);
2038 Res
.ExtraDep
= nullptr;
2041 if (const auto *PBranch
= dyn_cast
<PredicateBranch
>(Res
.PredDep
))
2042 PredicateToUsers
[PBranch
->Condition
].insert(User
);
2043 else if (const auto *PAssume
= dyn_cast
<PredicateAssume
>(Res
.PredDep
))
2044 PredicateToUsers
[PAssume
->Condition
].insert(User
);
2046 Res
.PredDep
= nullptr;
2049 void NewGVN::markUsersTouched(Value
*V
) {
2050 // Now mark the users as touched.
2051 for (auto *User
: V
->users()) {
2052 assert(isa
<Instruction
>(User
) && "Use of value not within an instruction?");
2053 TouchedInstructions
.set(InstrToDFSNum(User
));
2055 touchAndErase(AdditionalUsers
, V
);
2058 void NewGVN::addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const {
2059 LLVM_DEBUG(dbgs() << "Adding memory user " << *U
<< " to " << *To
<< "\n");
2060 MemoryToUsers
[To
].insert(U
);
2063 void NewGVN::markMemoryDefTouched(const MemoryAccess
*MA
) {
2064 TouchedInstructions
.set(MemoryToDFSNum(MA
));
2067 void NewGVN::markMemoryUsersTouched(const MemoryAccess
*MA
) {
2068 if (isa
<MemoryUse
>(MA
))
2070 for (auto U
: MA
->users())
2071 TouchedInstructions
.set(MemoryToDFSNum(U
));
2072 touchAndErase(MemoryToUsers
, MA
);
2075 // Touch all the predicates that depend on this instruction.
2076 void NewGVN::markPredicateUsersTouched(Instruction
*I
) {
2077 touchAndErase(PredicateToUsers
, I
);
2080 // Mark users affected by a memory leader change.
2081 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass
*CC
) {
2082 for (auto M
: CC
->memory())
2083 markMemoryDefTouched(M
);
2086 // Touch the instructions that need to be updated after a congruence class has a
2087 // leader change, and mark changed values.
2088 void NewGVN::markValueLeaderChangeTouched(CongruenceClass
*CC
) {
2089 for (auto M
: *CC
) {
2090 if (auto *I
= dyn_cast
<Instruction
>(M
))
2091 TouchedInstructions
.set(InstrToDFSNum(I
));
2092 LeaderChanges
.insert(M
);
2096 // Give a range of things that have instruction DFS numbers, this will return
2097 // the member of the range with the smallest dfs number.
2098 template <class T
, class Range
>
2099 T
*NewGVN::getMinDFSOfRange(const Range
&R
) const {
2100 std::pair
<T
*, unsigned> MinDFS
= {nullptr, ~0U};
2101 for (const auto X
: R
) {
2102 auto DFSNum
= InstrToDFSNum(X
);
2103 if (DFSNum
< MinDFS
.second
)
2104 MinDFS
= {X
, DFSNum
};
2106 return MinDFS
.first
;
2109 // This function returns the MemoryAccess that should be the next leader of
2110 // congruence class CC, under the assumption that the current leader is going to
2112 const MemoryAccess
*NewGVN::getNextMemoryLeader(CongruenceClass
*CC
) const {
2113 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2114 // do for regular leaders.
2115 // Make sure there will be a leader to find.
2116 assert(!CC
->definesNoMemory() && "Can't get next leader if there is none");
2117 if (CC
->getStoreCount() > 0) {
2118 if (auto *NL
= dyn_cast_or_null
<StoreInst
>(CC
->getNextLeader().first
))
2119 return getMemoryAccess(NL
);
2120 // Find the store with the minimum DFS number.
2121 auto *V
= getMinDFSOfRange
<Value
>(make_filter_range(
2122 *CC
, [&](const Value
*V
) { return isa
<StoreInst
>(V
); }));
2123 return getMemoryAccess(cast
<StoreInst
>(V
));
2125 assert(CC
->getStoreCount() == 0);
2127 // Given our assertion, hitting this part must mean
2128 // !OldClass->memory_empty()
2129 if (CC
->memory_size() == 1)
2130 return *CC
->memory_begin();
2131 return getMinDFSOfRange
<const MemoryPhi
>(CC
->memory());
2134 // This function returns the next value leader of a congruence class, under the
2135 // assumption that the current leader is going away. This should end up being
2136 // the next most dominating member.
2137 Value
*NewGVN::getNextValueLeader(CongruenceClass
*CC
) const {
2138 // We don't need to sort members if there is only 1, and we don't care about
2139 // sorting the TOP class because everything either gets out of it or is
2142 if (CC
->size() == 1 || CC
== TOPClass
) {
2143 return *(CC
->begin());
2144 } else if (CC
->getNextLeader().first
) {
2145 ++NumGVNAvoidedSortedLeaderChanges
;
2146 return CC
->getNextLeader().first
;
2148 ++NumGVNSortedLeaderChanges
;
2149 // NOTE: If this ends up to slow, we can maintain a dual structure for
2150 // member testing/insertion, or keep things mostly sorted, and sort only
2151 // here, or use SparseBitVector or ....
2152 return getMinDFSOfRange
<Value
>(*CC
);
2156 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2157 // the memory members, etc for the move.
2159 // The invariants of this function are:
2161 // - I must be moving to NewClass from OldClass
2162 // - The StoreCount of OldClass and NewClass is expected to have been updated
2163 // for I already if it is a store.
2164 // - The OldClass memory leader has not been updated yet if I was the leader.
2165 void NewGVN::moveMemoryToNewCongruenceClass(Instruction
*I
,
2166 MemoryAccess
*InstMA
,
2167 CongruenceClass
*OldClass
,
2168 CongruenceClass
*NewClass
) {
2169 // If the leader is I, and we had a representative MemoryAccess, it should
2170 // be the MemoryAccess of OldClass.
2171 assert((!InstMA
|| !OldClass
->getMemoryLeader() ||
2172 OldClass
->getLeader() != I
||
2173 MemoryAccessToClass
.lookup(OldClass
->getMemoryLeader()) ==
2174 MemoryAccessToClass
.lookup(InstMA
)) &&
2175 "Representative MemoryAccess mismatch");
2176 // First, see what happens to the new class
2177 if (!NewClass
->getMemoryLeader()) {
2178 // Should be a new class, or a store becoming a leader of a new class.
2179 assert(NewClass
->size() == 1 ||
2180 (isa
<StoreInst
>(I
) && NewClass
->getStoreCount() == 1));
2181 NewClass
->setMemoryLeader(InstMA
);
2182 // Mark it touched if we didn't just create a singleton
2183 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2184 << NewClass
->getID()
2185 << " due to new memory instruction becoming leader\n");
2186 markMemoryLeaderChangeTouched(NewClass
);
2188 setMemoryClass(InstMA
, NewClass
);
2189 // Now, fixup the old class if necessary
2190 if (OldClass
->getMemoryLeader() == InstMA
) {
2191 if (!OldClass
->definesNoMemory()) {
2192 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
2193 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2194 << OldClass
->getID() << " to "
2195 << *OldClass
->getMemoryLeader()
2196 << " due to removal of old leader " << *InstMA
<< "\n");
2197 markMemoryLeaderChangeTouched(OldClass
);
2199 OldClass
->setMemoryLeader(nullptr);
2203 // Move a value, currently in OldClass, to be part of NewClass
2204 // Update OldClass and NewClass for the move (including changing leaders, etc).
2205 void NewGVN::moveValueToNewCongruenceClass(Instruction
*I
, const Expression
*E
,
2206 CongruenceClass
*OldClass
,
2207 CongruenceClass
*NewClass
) {
2208 if (I
== OldClass
->getNextLeader().first
)
2209 OldClass
->resetNextLeader();
2212 NewClass
->insert(I
);
2214 if (NewClass
->getLeader() != I
)
2215 NewClass
->addPossibleNextLeader({I
, InstrToDFSNum(I
)});
2216 // Handle our special casing of stores.
2217 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
2218 OldClass
->decStoreCount();
2219 // Okay, so when do we want to make a store a leader of a class?
2220 // If we have a store defined by an earlier load, we want the earlier load
2221 // to lead the class.
2222 // If we have a store defined by something else, we want the store to lead
2223 // the class so everything else gets the "something else" as a value.
2224 // If we have a store as the single member of the class, we want the store
2226 if (NewClass
->getStoreCount() == 0 && !NewClass
->getStoredValue()) {
2227 // If it's a store expression we are using, it means we are not equivalent
2228 // to something earlier.
2229 if (auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2230 NewClass
->setStoredValue(SE
->getStoredValue());
2231 markValueLeaderChangeTouched(NewClass
);
2232 // Shift the new class leader to be the store
2233 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2234 << NewClass
->getID() << " from "
2235 << *NewClass
->getLeader() << " to " << *SI
2236 << " because store joined class\n");
2237 // If we changed the leader, we have to mark it changed because we don't
2238 // know what it will do to symbolic evaluation.
2239 NewClass
->setLeader(SI
);
2241 // We rely on the code below handling the MemoryAccess change.
2243 NewClass
->incStoreCount();
2245 // True if there is no memory instructions left in a class that had memory
2246 // instructions before.
2248 // If it's not a memory use, set the MemoryAccess equivalence
2249 auto *InstMA
= dyn_cast_or_null
<MemoryDef
>(getMemoryAccess(I
));
2251 moveMemoryToNewCongruenceClass(I
, InstMA
, OldClass
, NewClass
);
2252 ValueToClass
[I
] = NewClass
;
2253 // See if we destroyed the class or need to swap leaders.
2254 if (OldClass
->empty() && OldClass
!= TOPClass
) {
2255 if (OldClass
->getDefiningExpr()) {
2256 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass
->getDefiningExpr()
2257 << " from table\n");
2258 // We erase it as an exact expression to make sure we don't just erase an
2260 auto Iter
= ExpressionToClass
.find_as(
2261 ExactEqualsExpression(*OldClass
->getDefiningExpr()));
2262 if (Iter
!= ExpressionToClass
.end())
2263 ExpressionToClass
.erase(Iter
);
2264 #ifdef EXPENSIVE_CHECKS
2266 (*OldClass
->getDefiningExpr() != *E
|| ExpressionToClass
.lookup(E
)) &&
2267 "We erased the expression we just inserted, which should not happen");
2270 } else if (OldClass
->getLeader() == I
) {
2271 // When the leader changes, the value numbering of
2272 // everything may change due to symbolization changes, so we need to
2274 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2275 << OldClass
->getID() << "\n");
2276 ++NumGVNLeaderChanges
;
2277 // Destroy the stored value if there are no more stores to represent it.
2278 // Note that this is basically clean up for the expression removal that
2279 // happens below. If we remove stores from a class, we may leave it as a
2280 // class of equivalent memory phis.
2281 if (OldClass
->getStoreCount() == 0) {
2282 if (OldClass
->getStoredValue())
2283 OldClass
->setStoredValue(nullptr);
2285 OldClass
->setLeader(getNextValueLeader(OldClass
));
2286 OldClass
->resetNextLeader();
2287 markValueLeaderChangeTouched(OldClass
);
2291 // For a given expression, mark the phi of ops instructions that could have
2292 // changed as a result.
2293 void NewGVN::markPhiOfOpsChanged(const Expression
*E
) {
2294 touchAndErase(ExpressionToPhiOfOps
, E
);
2297 // Perform congruence finding on a given value numbering expression.
2298 void NewGVN::performCongruenceFinding(Instruction
*I
, const Expression
*E
) {
2299 // This is guaranteed to return something, since it will at least find
2302 CongruenceClass
*IClass
= ValueToClass
.lookup(I
);
2303 assert(IClass
&& "Should have found a IClass");
2304 // Dead classes should have been eliminated from the mapping.
2305 assert(!IClass
->isDead() && "Found a dead class");
2307 CongruenceClass
*EClass
= nullptr;
2308 if (const auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
2309 EClass
= ValueToClass
.lookup(VE
->getVariableValue());
2310 } else if (isa
<DeadExpression
>(E
)) {
2314 auto lookupResult
= ExpressionToClass
.insert({E
, nullptr});
2316 // If it's not in the value table, create a new congruence class.
2317 if (lookupResult
.second
) {
2318 CongruenceClass
*NewClass
= createCongruenceClass(nullptr, E
);
2319 auto place
= lookupResult
.first
;
2320 place
->second
= NewClass
;
2322 // Constants and variables should always be made the leader.
2323 if (const auto *CE
= dyn_cast
<ConstantExpression
>(E
)) {
2324 NewClass
->setLeader(CE
->getConstantValue());
2325 } else if (const auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2326 StoreInst
*SI
= SE
->getStoreInst();
2327 NewClass
->setLeader(SI
);
2328 NewClass
->setStoredValue(SE
->getStoredValue());
2329 // The RepMemoryAccess field will be filled in properly by the
2330 // moveValueToNewCongruenceClass call.
2332 NewClass
->setLeader(I
);
2334 assert(!isa
<VariableExpression
>(E
) &&
2335 "VariableExpression should have been handled already");
2338 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2339 << " using expression " << *E
<< " at "
2340 << NewClass
->getID() << " and leader "
2341 << *(NewClass
->getLeader()));
2342 if (NewClass
->getStoredValue())
2343 LLVM_DEBUG(dbgs() << " and stored value "
2344 << *(NewClass
->getStoredValue()));
2345 LLVM_DEBUG(dbgs() << "\n");
2347 EClass
= lookupResult
.first
->second
;
2348 if (isa
<ConstantExpression
>(E
))
2349 assert((isa
<Constant
>(EClass
->getLeader()) ||
2350 (EClass
->getStoredValue() &&
2351 isa
<Constant
>(EClass
->getStoredValue()))) &&
2352 "Any class with a constant expression should have a "
2355 assert(EClass
&& "Somehow don't have an eclass");
2357 assert(!EClass
->isDead() && "We accidentally looked up a dead class");
2360 bool ClassChanged
= IClass
!= EClass
;
2361 bool LeaderChanged
= LeaderChanges
.erase(I
);
2362 if (ClassChanged
|| LeaderChanged
) {
2363 LLVM_DEBUG(dbgs() << "New class " << EClass
->getID() << " for expression "
2366 moveValueToNewCongruenceClass(I
, E
, IClass
, EClass
);
2367 markPhiOfOpsChanged(E
);
2370 markUsersTouched(I
);
2371 if (MemoryAccess
*MA
= getMemoryAccess(I
))
2372 markMemoryUsersTouched(MA
);
2373 if (auto *CI
= dyn_cast
<CmpInst
>(I
))
2374 markPredicateUsersTouched(CI
);
2376 // If we changed the class of the store, we want to ensure nothing finds the
2377 // old store expression. In particular, loads do not compare against stored
2378 // value, so they will find old store expressions (and associated class
2379 // mappings) if we leave them in the table.
2380 if (ClassChanged
&& isa
<StoreInst
>(I
)) {
2381 auto *OldE
= ValueToExpression
.lookup(I
);
2382 // It could just be that the old class died. We don't want to erase it if we
2383 // just moved classes.
2384 if (OldE
&& isa
<StoreExpression
>(OldE
) && *E
!= *OldE
) {
2385 // Erase this as an exact expression to ensure we don't erase expressions
2386 // equivalent to it.
2387 auto Iter
= ExpressionToClass
.find_as(ExactEqualsExpression(*OldE
));
2388 if (Iter
!= ExpressionToClass
.end())
2389 ExpressionToClass
.erase(Iter
);
2392 ValueToExpression
[I
] = E
;
2395 // Process the fact that Edge (from, to) is reachable, including marking
2396 // any newly reachable blocks and instructions for processing.
2397 void NewGVN::updateReachableEdge(BasicBlock
*From
, BasicBlock
*To
) {
2398 // Check if the Edge was reachable before.
2399 if (ReachableEdges
.insert({From
, To
}).second
) {
2400 // If this block wasn't reachable before, all instructions are touched.
2401 if (ReachableBlocks
.insert(To
).second
) {
2402 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2403 << " marked reachable\n");
2404 const auto &InstRange
= BlockInstRange
.lookup(To
);
2405 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
2407 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2408 << " was reachable, but new edge {"
2409 << getBlockName(From
) << "," << getBlockName(To
)
2410 << "} to it found\n");
2412 // We've made an edge reachable to an existing block, which may
2413 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2414 // they are the only thing that depend on new edges. Anything using their
2415 // values will get propagated to if necessary.
2416 if (MemoryAccess
*MemPhi
= getMemoryAccess(To
))
2417 TouchedInstructions
.set(InstrToDFSNum(MemPhi
));
2419 // FIXME: We should just add a union op on a Bitvector and
2420 // SparseBitVector. We can do it word by word faster than we are doing it
2422 for (auto InstNum
: RevisitOnReachabilityChange
[To
])
2423 TouchedInstructions
.set(InstNum
);
2428 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2429 // see if we know some constant value for it already.
2430 Value
*NewGVN::findConditionEquivalence(Value
*Cond
) const {
2431 auto Result
= lookupOperandLeader(Cond
);
2432 return isa
<Constant
>(Result
) ? Result
: nullptr;
2435 // Process the outgoing edges of a block for reachability.
2436 void NewGVN::processOutgoingEdges(Instruction
*TI
, BasicBlock
*B
) {
2437 // Evaluate reachability of terminator instruction.
2439 BasicBlock
*TrueSucc
, *FalseSucc
;
2440 if (match(TI
, m_Br(m_Value(Cond
), TrueSucc
, FalseSucc
))) {
2441 Value
*CondEvaluated
= findConditionEquivalence(Cond
);
2442 if (!CondEvaluated
) {
2443 if (auto *I
= dyn_cast
<Instruction
>(Cond
)) {
2444 SmallPtrSet
<Value
*, 4> Visited
;
2445 auto Res
= performSymbolicEvaluation(I
, Visited
);
2446 if (const auto *CE
= dyn_cast_or_null
<ConstantExpression
>(Res
.Expr
)) {
2447 CondEvaluated
= CE
->getConstantValue();
2448 addAdditionalUsers(Res
, I
);
2450 // Did not use simplification result, no need to add the extra
2452 Res
.ExtraDep
= nullptr;
2454 } else if (isa
<ConstantInt
>(Cond
)) {
2455 CondEvaluated
= Cond
;
2459 if (CondEvaluated
&& (CI
= dyn_cast
<ConstantInt
>(CondEvaluated
))) {
2461 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2462 << " evaluated to true\n");
2463 updateReachableEdge(B
, TrueSucc
);
2464 } else if (CI
->isZero()) {
2465 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2466 << " evaluated to false\n");
2467 updateReachableEdge(B
, FalseSucc
);
2470 updateReachableEdge(B
, TrueSucc
);
2471 updateReachableEdge(B
, FalseSucc
);
2473 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
2474 // For switches, propagate the case values into the case
2477 Value
*SwitchCond
= SI
->getCondition();
2478 Value
*CondEvaluated
= findConditionEquivalence(SwitchCond
);
2479 // See if we were able to turn this switch statement into a constant.
2480 if (CondEvaluated
&& isa
<ConstantInt
>(CondEvaluated
)) {
2481 auto *CondVal
= cast
<ConstantInt
>(CondEvaluated
);
2482 // We should be able to get case value for this.
2483 auto Case
= *SI
->findCaseValue(CondVal
);
2484 if (Case
.getCaseSuccessor() == SI
->getDefaultDest()) {
2485 // We proved the value is outside of the range of the case.
2486 // We can't do anything other than mark the default dest as reachable,
2488 updateReachableEdge(B
, SI
->getDefaultDest());
2491 // Now get where it goes and mark it reachable.
2492 BasicBlock
*TargetBlock
= Case
.getCaseSuccessor();
2493 updateReachableEdge(B
, TargetBlock
);
2495 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
2496 BasicBlock
*TargetBlock
= SI
->getSuccessor(i
);
2497 updateReachableEdge(B
, TargetBlock
);
2501 // Otherwise this is either unconditional, or a type we have no
2502 // idea about. Just mark successors as reachable.
2503 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
2504 BasicBlock
*TargetBlock
= TI
->getSuccessor(i
);
2505 updateReachableEdge(B
, TargetBlock
);
2508 // This also may be a memory defining terminator, in which case, set it
2509 // equivalent only to itself.
2511 auto *MA
= getMemoryAccess(TI
);
2512 if (MA
&& !isa
<MemoryUse
>(MA
)) {
2513 auto *CC
= ensureLeaderOfMemoryClass(MA
);
2514 if (setMemoryClass(MA
, CC
))
2515 markMemoryUsersTouched(MA
);
2520 // Remove the PHI of Ops PHI for I
2521 void NewGVN::removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
) {
2522 InstrDFS
.erase(PHITemp
);
2523 // It's still a temp instruction. We keep it in the array so it gets erased.
2524 // However, it's no longer used by I, or in the block
2525 TempToBlock
.erase(PHITemp
);
2526 RealToTemp
.erase(I
);
2527 // We don't remove the users from the phi node uses. This wastes a little
2528 // time, but such is life. We could use two sets to track which were there
2529 // are the start of NewGVN, and which were added, but right nowt he cost of
2530 // tracking is more than the cost of checking for more phi of ops.
2533 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2534 void NewGVN::addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
,
2535 Instruction
*ExistingValue
) {
2536 InstrDFS
[Op
] = InstrToDFSNum(ExistingValue
);
2537 AllTempInstructions
.insert(Op
);
2538 TempToBlock
[Op
] = BB
;
2539 RealToTemp
[ExistingValue
] = Op
;
2540 // Add all users to phi node use, as they are now uses of the phi of ops phis
2541 // and may themselves be phi of ops.
2542 for (auto *U
: ExistingValue
->users())
2543 if (auto *UI
= dyn_cast
<Instruction
>(U
))
2544 PHINodeUses
.insert(UI
);
2547 static bool okayForPHIOfOps(const Instruction
*I
) {
2548 if (!EnablePhiOfOps
)
2550 return isa
<BinaryOperator
>(I
) || isa
<SelectInst
>(I
) || isa
<CmpInst
>(I
) ||
2554 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2555 Value
*V
, const BasicBlock
*PHIBlock
,
2556 SmallPtrSetImpl
<const Value
*> &Visited
,
2557 SmallVectorImpl
<Instruction
*> &Worklist
) {
2559 if (!isa
<Instruction
>(V
))
2561 auto OISIt
= OpSafeForPHIOfOps
.find(V
);
2562 if (OISIt
!= OpSafeForPHIOfOps
.end())
2563 return OISIt
->second
;
2565 // Keep walking until we either dominate the phi block, or hit a phi, or run
2566 // out of things to check.
2567 if (DT
->properlyDominates(getBlockForValue(V
), PHIBlock
)) {
2568 OpSafeForPHIOfOps
.insert({V
, true});
2571 // PHI in the same block.
2572 if (isa
<PHINode
>(V
) && getBlockForValue(V
) == PHIBlock
) {
2573 OpSafeForPHIOfOps
.insert({V
, false});
2577 auto *OrigI
= cast
<Instruction
>(V
);
2578 for (auto *Op
: OrigI
->operand_values()) {
2579 if (!isa
<Instruction
>(Op
))
2581 // Stop now if we find an unsafe operand.
2582 auto OISIt
= OpSafeForPHIOfOps
.find(OrigI
);
2583 if (OISIt
!= OpSafeForPHIOfOps
.end()) {
2584 if (!OISIt
->second
) {
2585 OpSafeForPHIOfOps
.insert({V
, false});
2590 if (!Visited
.insert(Op
).second
)
2592 Worklist
.push_back(cast
<Instruction
>(Op
));
2597 // Return true if this operand will be safe to use for phi of ops.
2599 // The reason some operands are unsafe is that we are not trying to recursively
2600 // translate everything back through phi nodes. We actually expect some lookups
2601 // of expressions to fail. In particular, a lookup where the expression cannot
2602 // exist in the predecessor. This is true even if the expression, as shown, can
2603 // be determined to be constant.
2604 bool NewGVN::OpIsSafeForPHIOfOps(Value
*V
, const BasicBlock
*PHIBlock
,
2605 SmallPtrSetImpl
<const Value
*> &Visited
) {
2606 SmallVector
<Instruction
*, 4> Worklist
;
2607 if (!OpIsSafeForPHIOfOpsHelper(V
, PHIBlock
, Visited
, Worklist
))
2609 while (!Worklist
.empty()) {
2610 auto *I
= Worklist
.pop_back_val();
2611 if (!OpIsSafeForPHIOfOpsHelper(I
, PHIBlock
, Visited
, Worklist
))
2614 OpSafeForPHIOfOps
.insert({V
, true});
2618 // Try to find a leader for instruction TransInst, which is a phi translated
2619 // version of something in our original program. Visited is used to ensure we
2620 // don't infinite loop during translations of cycles. OrigInst is the
2621 // instruction in the original program, and PredBB is the predecessor we
2622 // translated it through.
2623 Value
*NewGVN::findLeaderForInst(Instruction
*TransInst
,
2624 SmallPtrSetImpl
<Value
*> &Visited
,
2625 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
2626 BasicBlock
*PredBB
) {
2627 unsigned IDFSNum
= InstrToDFSNum(OrigInst
);
2628 // Make sure it's marked as a temporary instruction.
2629 AllTempInstructions
.insert(TransInst
);
2630 // and make sure anything that tries to add it's DFS number is
2631 // redirected to the instruction we are making a phi of ops
2633 TempToBlock
.insert({TransInst
, PredBB
});
2634 InstrDFS
.insert({TransInst
, IDFSNum
});
2636 auto Res
= performSymbolicEvaluation(TransInst
, Visited
);
2637 const Expression
*E
= Res
.Expr
;
2638 addAdditionalUsers(Res
, OrigInst
);
2639 InstrDFS
.erase(TransInst
);
2640 AllTempInstructions
.erase(TransInst
);
2641 TempToBlock
.erase(TransInst
);
2643 TempToMemory
.erase(TransInst
);
2646 auto *FoundVal
= findPHIOfOpsLeader(E
, OrigInst
, PredBB
);
2648 ExpressionToPhiOfOps
[E
].insert(OrigInst
);
2649 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2650 << " in block " << getBlockName(PredBB
) << "\n");
2653 if (auto *SI
= dyn_cast
<StoreInst
>(FoundVal
))
2654 FoundVal
= SI
->getValueOperand();
2658 // When we see an instruction that is an op of phis, generate the equivalent phi
2661 NewGVN::makePossiblePHIOfOps(Instruction
*I
,
2662 SmallPtrSetImpl
<Value
*> &Visited
) {
2663 if (!okayForPHIOfOps(I
))
2666 if (!Visited
.insert(I
).second
)
2668 // For now, we require the instruction be cycle free because we don't
2669 // *always* create a phi of ops for instructions that could be done as phi
2670 // of ops, we only do it if we think it is useful. If we did do it all the
2671 // time, we could remove the cycle free check.
2672 if (!isCycleFree(I
))
2675 SmallPtrSet
<const Value
*, 8> ProcessedPHIs
;
2676 // TODO: We don't do phi translation on memory accesses because it's
2677 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2678 // which we don't have a good way of doing ATM.
2679 auto *MemAccess
= getMemoryAccess(I
);
2680 // If the memory operation is defined by a memory operation this block that
2681 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2682 // can't help, as it would still be killed by that memory operation.
2683 if (MemAccess
&& !isa
<MemoryPhi
>(MemAccess
->getDefiningAccess()) &&
2684 MemAccess
->getDefiningAccess()->getBlock() == I
->getParent())
2687 // Convert op of phis to phi of ops
2688 SmallPtrSet
<const Value
*, 10> VisitedOps
;
2689 SmallVector
<Value
*, 4> Ops(I
->operand_values());
2690 BasicBlock
*SamePHIBlock
= nullptr;
2691 PHINode
*OpPHI
= nullptr;
2692 if (!DebugCounter::shouldExecute(PHIOfOpsCounter
))
2694 for (auto *Op
: Ops
) {
2695 if (!isa
<PHINode
>(Op
)) {
2696 auto *ValuePHI
= RealToTemp
.lookup(Op
);
2699 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2702 OpPHI
= cast
<PHINode
>(Op
);
2703 if (!SamePHIBlock
) {
2704 SamePHIBlock
= getBlockForValue(OpPHI
);
2705 } else if (SamePHIBlock
!= getBlockForValue(OpPHI
)) {
2708 << "PHIs for operands are not all in the same block, aborting\n");
2711 // No point in doing this for one-operand phis.
2712 if (OpPHI
->getNumOperands() == 1) {
2721 SmallVector
<ValPair
, 4> PHIOps
;
2722 SmallPtrSet
<Value
*, 4> Deps
;
2723 auto *PHIBlock
= getBlockForValue(OpPHI
);
2724 RevisitOnReachabilityChange
[PHIBlock
].reset(InstrToDFSNum(I
));
2725 for (unsigned PredNum
= 0; PredNum
< OpPHI
->getNumOperands(); ++PredNum
) {
2726 auto *PredBB
= OpPHI
->getIncomingBlock(PredNum
);
2727 Value
*FoundVal
= nullptr;
2728 SmallPtrSet
<Value
*, 4> CurrentDeps
;
2729 // We could just skip unreachable edges entirely but it's tricky to do
2730 // with rewriting existing phi nodes.
2731 if (ReachableEdges
.count({PredBB
, PHIBlock
})) {
2732 // Clone the instruction, create an expression from it that is
2733 // translated back into the predecessor, and see if we have a leader.
2734 Instruction
*ValueOp
= I
->clone();
2736 TempToMemory
.insert({ValueOp
, MemAccess
});
2737 bool SafeForPHIOfOps
= true;
2739 for (auto &Op
: ValueOp
->operands()) {
2740 auto *OrigOp
= &*Op
;
2741 // When these operand changes, it could change whether there is a
2742 // leader for us or not, so we have to add additional users.
2743 if (isa
<PHINode
>(Op
)) {
2744 Op
= Op
->DoPHITranslation(PHIBlock
, PredBB
);
2745 if (Op
!= OrigOp
&& Op
!= I
)
2746 CurrentDeps
.insert(Op
);
2747 } else if (auto *ValuePHI
= RealToTemp
.lookup(Op
)) {
2748 if (getBlockForValue(ValuePHI
) == PHIBlock
)
2749 Op
= ValuePHI
->getIncomingValueForBlock(PredBB
);
2751 // If we phi-translated the op, it must be safe.
2754 (Op
!= OrigOp
|| OpIsSafeForPHIOfOps(Op
, PHIBlock
, VisitedOps
));
2756 // FIXME: For those things that are not safe we could generate
2757 // expressions all the way down, and see if this comes out to a
2758 // constant. For anything where that is true, and unsafe, we should
2759 // have made a phi-of-ops (or value numbered it equivalent to something)
2760 // for the pieces already.
2761 FoundVal
= !SafeForPHIOfOps
? nullptr
2762 : findLeaderForInst(ValueOp
, Visited
,
2763 MemAccess
, I
, PredBB
);
2764 ValueOp
->deleteValue();
2766 // We failed to find a leader for the current ValueOp, but this might
2767 // change in case of the translated operands change.
2768 if (SafeForPHIOfOps
)
2769 for (auto Dep
: CurrentDeps
)
2770 addAdditionalUsers(Dep
, I
);
2774 Deps
.insert(CurrentDeps
.begin(), CurrentDeps
.end());
2776 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2777 << getBlockName(PredBB
)
2778 << " because the block is unreachable\n");
2779 FoundVal
= UndefValue::get(I
->getType());
2780 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2783 PHIOps
.push_back({FoundVal
, PredBB
});
2784 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal
<< " in "
2785 << getBlockName(PredBB
) << "\n");
2787 for (auto Dep
: Deps
)
2788 addAdditionalUsers(Dep
, I
);
2790 auto *E
= performSymbolicPHIEvaluation(PHIOps
, I
, PHIBlock
);
2791 if (isa
<ConstantExpression
>(E
) || isa
<VariableExpression
>(E
)) {
2794 << "Not creating real PHI of ops because it simplified to existing "
2795 "value or constant\n");
2796 // We have leaders for all operands, but do not create a real PHI node with
2797 // those leaders as operands, so the link between the operands and the
2798 // PHI-of-ops is not materialized in the IR. If any of those leaders
2799 // changes, the PHI-of-op may change also, so we need to add the operands as
2800 // additional users.
2801 for (auto &O
: PHIOps
)
2802 addAdditionalUsers(O
.first
, I
);
2806 auto *ValuePHI
= RealToTemp
.lookup(I
);
2807 bool NewPHI
= false;
2810 PHINode::Create(I
->getType(), OpPHI
->getNumOperands(), "phiofops");
2811 addPhiOfOps(ValuePHI
, PHIBlock
, I
);
2813 NumGVNPHIOfOpsCreated
++;
2816 for (auto PHIOp
: PHIOps
)
2817 ValuePHI
->addIncoming(PHIOp
.first
, PHIOp
.second
);
2819 TempToBlock
[ValuePHI
] = PHIBlock
;
2821 for (auto PHIOp
: PHIOps
) {
2822 ValuePHI
->setIncomingValue(i
, PHIOp
.first
);
2823 ValuePHI
->setIncomingBlock(i
, PHIOp
.second
);
2827 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2828 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI
<< " for " << *I
2834 // The algorithm initially places the values of the routine in the TOP
2835 // congruence class. The leader of TOP is the undetermined value `undef`.
2836 // When the algorithm has finished, values still in TOP are unreachable.
2837 void NewGVN::initializeCongruenceClasses(Function
&F
) {
2838 NextCongruenceNum
= 0;
2840 // Note that even though we use the live on entry def as a representative
2841 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2842 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2843 // should be checking whether the MemoryAccess is top if we want to know if it
2844 // is equivalent to everything. Otherwise, what this really signifies is that
2845 // the access "it reaches all the way back to the beginning of the function"
2847 // Initialize all other instructions to be in TOP class.
2848 TOPClass
= createCongruenceClass(nullptr, nullptr);
2849 TOPClass
->setMemoryLeader(MSSA
->getLiveOnEntryDef());
2850 // The live on entry def gets put into it's own class
2851 MemoryAccessToClass
[MSSA
->getLiveOnEntryDef()] =
2852 createMemoryClass(MSSA
->getLiveOnEntryDef());
2854 for (auto DTN
: nodes(DT
)) {
2855 BasicBlock
*BB
= DTN
->getBlock();
2856 // All MemoryAccesses are equivalent to live on entry to start. They must
2857 // be initialized to something so that initial changes are noticed. For
2858 // the maximal answer, we initialize them all to be the same as
2860 auto *MemoryBlockDefs
= MSSA
->getBlockDefs(BB
);
2861 if (MemoryBlockDefs
)
2862 for (const auto &Def
: *MemoryBlockDefs
) {
2863 MemoryAccessToClass
[&Def
] = TOPClass
;
2864 auto *MD
= dyn_cast
<MemoryDef
>(&Def
);
2865 // Insert the memory phis into the member list.
2867 const MemoryPhi
*MP
= cast
<MemoryPhi
>(&Def
);
2868 TOPClass
->memory_insert(MP
);
2869 MemoryPhiState
.insert({MP
, MPS_TOP
});
2872 if (MD
&& isa
<StoreInst
>(MD
->getMemoryInst()))
2873 TOPClass
->incStoreCount();
2876 // FIXME: This is trying to discover which instructions are uses of phi
2877 // nodes. We should move this into one of the myriad of places that walk
2878 // all the operands already.
2879 for (auto &I
: *BB
) {
2880 if (isa
<PHINode
>(&I
))
2881 for (auto *U
: I
.users())
2882 if (auto *UInst
= dyn_cast
<Instruction
>(U
))
2883 if (InstrToDFSNum(UInst
) != 0 && okayForPHIOfOps(UInst
))
2884 PHINodeUses
.insert(UInst
);
2885 // Don't insert void terminators into the class. We don't value number
2886 // them, and they just end up sitting in TOP.
2887 if (I
.isTerminator() && I
.getType()->isVoidTy())
2889 TOPClass
->insert(&I
);
2890 ValueToClass
[&I
] = TOPClass
;
2894 // Initialize arguments to be in their own unique congruence classes
2895 for (auto &FA
: F
.args())
2896 createSingletonCongruenceClass(&FA
);
2899 void NewGVN::cleanupTables() {
2900 for (unsigned i
= 0, e
= CongruenceClasses
.size(); i
!= e
; ++i
) {
2901 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses
[i
]->getID()
2902 << " has " << CongruenceClasses
[i
]->size()
2904 // Make sure we delete the congruence class (probably worth switching to
2905 // a unique_ptr at some point.
2906 delete CongruenceClasses
[i
];
2907 CongruenceClasses
[i
] = nullptr;
2910 // Destroy the value expressions
2911 SmallVector
<Instruction
*, 8> TempInst(AllTempInstructions
.begin(),
2912 AllTempInstructions
.end());
2913 AllTempInstructions
.clear();
2915 // We have to drop all references for everything first, so there are no uses
2916 // left as we delete them.
2917 for (auto *I
: TempInst
) {
2918 I
->dropAllReferences();
2921 while (!TempInst
.empty()) {
2922 auto *I
= TempInst
.pop_back_val();
2926 ValueToClass
.clear();
2927 ArgRecycler
.clear(ExpressionAllocator
);
2928 ExpressionAllocator
.Reset();
2929 CongruenceClasses
.clear();
2930 ExpressionToClass
.clear();
2931 ValueToExpression
.clear();
2933 AdditionalUsers
.clear();
2934 ExpressionToPhiOfOps
.clear();
2935 TempToBlock
.clear();
2936 TempToMemory
.clear();
2937 PHINodeUses
.clear();
2938 OpSafeForPHIOfOps
.clear();
2939 ReachableBlocks
.clear();
2940 ReachableEdges
.clear();
2942 ProcessedCount
.clear();
2945 InstructionsToErase
.clear();
2947 BlockInstRange
.clear();
2948 TouchedInstructions
.clear();
2949 MemoryAccessToClass
.clear();
2950 PredicateToUsers
.clear();
2951 MemoryToUsers
.clear();
2952 RevisitOnReachabilityChange
.clear();
2955 // Assign local DFS number mapping to instructions, and leave space for Value
2957 std::pair
<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock
*B
,
2959 unsigned End
= Start
;
2960 if (MemoryAccess
*MemPhi
= getMemoryAccess(B
)) {
2961 InstrDFS
[MemPhi
] = End
++;
2962 DFSToInstr
.emplace_back(MemPhi
);
2965 // Then the real block goes next.
2966 for (auto &I
: *B
) {
2967 // There's no need to call isInstructionTriviallyDead more than once on
2968 // an instruction. Therefore, once we know that an instruction is dead
2969 // we change its DFS number so that it doesn't get value numbered.
2970 if (isInstructionTriviallyDead(&I
, TLI
)) {
2972 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I
<< "\n");
2973 markInstructionForDeletion(&I
);
2976 if (isa
<PHINode
>(&I
))
2977 RevisitOnReachabilityChange
[B
].set(End
);
2978 InstrDFS
[&I
] = End
++;
2979 DFSToInstr
.emplace_back(&I
);
2982 // All of the range functions taken half-open ranges (open on the end side).
2983 // So we do not subtract one from count, because at this point it is one
2984 // greater than the last instruction.
2985 return std::make_pair(Start
, End
);
2988 void NewGVN::updateProcessedCount(const Value
*V
) {
2990 if (ProcessedCount
.count(V
) == 0) {
2991 ProcessedCount
.insert({V
, 1});
2993 ++ProcessedCount
[V
];
2994 assert(ProcessedCount
[V
] < 100 &&
2995 "Seem to have processed the same Value a lot");
3000 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3001 void NewGVN::valueNumberMemoryPhi(MemoryPhi
*MP
) {
3002 // If all the arguments are the same, the MemoryPhi has the same value as the
3003 // argument. Filter out unreachable blocks and self phis from our operands.
3004 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3005 // self-phi checking.
3006 const BasicBlock
*PHIBlock
= MP
->getBlock();
3007 auto Filtered
= make_filter_range(MP
->operands(), [&](const Use
&U
) {
3008 return cast
<MemoryAccess
>(U
) != MP
&&
3009 !isMemoryAccessTOP(cast
<MemoryAccess
>(U
)) &&
3010 ReachableEdges
.count({MP
->getIncomingBlock(U
), PHIBlock
});
3012 // If all that is left is nothing, our memoryphi is undef. We keep it as
3013 // InitialClass. Note: The only case this should happen is if we have at
3014 // least one self-argument.
3015 if (Filtered
.begin() == Filtered
.end()) {
3016 if (setMemoryClass(MP
, TOPClass
))
3017 markMemoryUsersTouched(MP
);
3021 // Transform the remaining operands into operand leaders.
3022 // FIXME: mapped_iterator should have a range version.
3023 auto LookupFunc
= [&](const Use
&U
) {
3024 return lookupMemoryLeader(cast
<MemoryAccess
>(U
));
3026 auto MappedBegin
= map_iterator(Filtered
.begin(), LookupFunc
);
3027 auto MappedEnd
= map_iterator(Filtered
.end(), LookupFunc
);
3029 // and now check if all the elements are equal.
3030 // Sadly, we can't use std::equals since these are random access iterators.
3031 const auto *AllSameValue
= *MappedBegin
;
3033 bool AllEqual
= std::all_of(
3034 MappedBegin
, MappedEnd
,
3035 [&AllSameValue
](const MemoryAccess
*V
) { return V
== AllSameValue
; });
3038 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3041 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3042 // If it's equal to something, it's in that class. Otherwise, it has to be in
3043 // a class where it is the leader (other things may be equivalent to it, but
3044 // it needs to start off in its own class, which means it must have been the
3045 // leader, and it can't have stopped being the leader because it was never
3047 CongruenceClass
*CC
=
3048 AllEqual
? getMemoryClass(AllSameValue
) : ensureLeaderOfMemoryClass(MP
);
3049 auto OldState
= MemoryPhiState
.lookup(MP
);
3050 assert(OldState
!= MPS_Invalid
&& "Invalid memory phi state");
3051 auto NewState
= AllEqual
? MPS_Equivalent
: MPS_Unique
;
3052 MemoryPhiState
[MP
] = NewState
;
3053 if (setMemoryClass(MP
, CC
) || OldState
!= NewState
)
3054 markMemoryUsersTouched(MP
);
3057 // Value number a single instruction, symbolically evaluating, performing
3058 // congruence finding, and updating mappings.
3059 void NewGVN::valueNumberInstruction(Instruction
*I
) {
3060 LLVM_DEBUG(dbgs() << "Processing instruction " << *I
<< "\n");
3061 if (!I
->isTerminator()) {
3062 const Expression
*Symbolized
= nullptr;
3063 SmallPtrSet
<Value
*, 2> Visited
;
3064 if (DebugCounter::shouldExecute(VNCounter
)) {
3065 auto Res
= performSymbolicEvaluation(I
, Visited
);
3066 Symbolized
= Res
.Expr
;
3067 addAdditionalUsers(Res
, I
);
3069 // Make a phi of ops if necessary
3070 if (Symbolized
&& !isa
<ConstantExpression
>(Symbolized
) &&
3071 !isa
<VariableExpression
>(Symbolized
) && PHINodeUses
.count(I
)) {
3072 auto *PHIE
= makePossiblePHIOfOps(I
, Visited
);
3073 // If we created a phi of ops, use it.
3074 // If we couldn't create one, make sure we don't leave one lying around
3077 } else if (auto *Op
= RealToTemp
.lookup(I
)) {
3078 removePhiOfOps(I
, Op
);
3082 // Mark the instruction as unused so we don't value number it again.
3085 // If we couldn't come up with a symbolic expression, use the unknown
3087 if (Symbolized
== nullptr)
3088 Symbolized
= createUnknownExpression(I
);
3089 performCongruenceFinding(I
, Symbolized
);
3091 // Handle terminators that return values. All of them produce values we
3092 // don't currently understand. We don't place non-value producing
3093 // terminators in a class.
3094 if (!I
->getType()->isVoidTy()) {
3095 auto *Symbolized
= createUnknownExpression(I
);
3096 performCongruenceFinding(I
, Symbolized
);
3098 processOutgoingEdges(I
, I
->getParent());
3102 // Check if there is a path, using single or equal argument phi nodes, from
3104 bool NewGVN::singleReachablePHIPath(
3105 SmallPtrSet
<const MemoryAccess
*, 8> &Visited
, const MemoryAccess
*First
,
3106 const MemoryAccess
*Second
) const {
3107 if (First
== Second
)
3109 if (MSSA
->isLiveOnEntryDef(First
))
3112 // This is not perfect, but as we're just verifying here, we can live with
3113 // the loss of precision. The real solution would be that of doing strongly
3114 // connected component finding in this routine, and it's probably not worth
3115 // the complexity for the time being. So, we just keep a set of visited
3116 // MemoryAccess and return true when we hit a cycle.
3117 if (Visited
.count(First
))
3119 Visited
.insert(First
);
3121 const auto *EndDef
= First
;
3122 for (auto *ChainDef
: optimized_def_chain(First
)) {
3123 if (ChainDef
== Second
)
3125 if (MSSA
->isLiveOnEntryDef(ChainDef
))
3129 auto *MP
= cast
<MemoryPhi
>(EndDef
);
3130 auto ReachableOperandPred
= [&](const Use
&U
) {
3131 return ReachableEdges
.count({MP
->getIncomingBlock(U
), MP
->getBlock()});
3133 auto FilteredPhiArgs
=
3134 make_filter_range(MP
->operands(), ReachableOperandPred
);
3135 SmallVector
<const Value
*, 32> OperandList
;
3136 llvm::copy(FilteredPhiArgs
, std::back_inserter(OperandList
));
3137 bool Okay
= is_splat(OperandList
);
3139 return singleReachablePHIPath(Visited
, cast
<MemoryAccess
>(OperandList
[0]),
3144 // Verify the that the memory equivalence table makes sense relative to the
3145 // congruence classes. Note that this checking is not perfect, and is currently
3146 // subject to very rare false negatives. It is only useful for
3147 // testing/debugging.
3148 void NewGVN::verifyMemoryCongruency() const {
3150 // Verify that the memory table equivalence and memory member set match
3151 for (const auto *CC
: CongruenceClasses
) {
3152 if (CC
== TOPClass
|| CC
->isDead())
3154 if (CC
->getStoreCount() != 0) {
3155 assert((CC
->getStoredValue() || !isa
<StoreInst
>(CC
->getLeader())) &&
3156 "Any class with a store as a leader should have a "
3157 "representative stored value");
3158 assert(CC
->getMemoryLeader() &&
3159 "Any congruence class with a store should have a "
3160 "representative access");
3163 if (CC
->getMemoryLeader())
3164 assert(MemoryAccessToClass
.lookup(CC
->getMemoryLeader()) == CC
&&
3165 "Representative MemoryAccess does not appear to be reverse "
3167 for (auto M
: CC
->memory())
3168 assert(MemoryAccessToClass
.lookup(M
) == CC
&&
3169 "Memory member does not appear to be reverse mapped properly");
3172 // Anything equivalent in the MemoryAccess table should be in the same
3173 // congruence class.
3175 // Filter out the unreachable and trivially dead entries, because they may
3176 // never have been updated if the instructions were not processed.
3177 auto ReachableAccessPred
=
3178 [&](const std::pair
<const MemoryAccess
*, CongruenceClass
*> Pair
) {
3179 bool Result
= ReachableBlocks
.count(Pair
.first
->getBlock());
3180 if (!Result
|| MSSA
->isLiveOnEntryDef(Pair
.first
) ||
3181 MemoryToDFSNum(Pair
.first
) == 0)
3183 if (auto *MemDef
= dyn_cast
<MemoryDef
>(Pair
.first
))
3184 return !isInstructionTriviallyDead(MemDef
->getMemoryInst());
3186 // We could have phi nodes which operands are all trivially dead,
3187 // so we don't process them.
3188 if (auto *MemPHI
= dyn_cast
<MemoryPhi
>(Pair
.first
)) {
3189 for (auto &U
: MemPHI
->incoming_values()) {
3190 if (auto *I
= dyn_cast
<Instruction
>(&*U
)) {
3191 if (!isInstructionTriviallyDead(I
))
3201 auto Filtered
= make_filter_range(MemoryAccessToClass
, ReachableAccessPred
);
3202 for (auto KV
: Filtered
) {
3203 if (auto *FirstMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.first
)) {
3204 auto *SecondMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.second
->getMemoryLeader());
3205 if (FirstMUD
&& SecondMUD
) {
3206 SmallPtrSet
<const MemoryAccess
*, 8> VisitedMAS
;
3207 assert((singleReachablePHIPath(VisitedMAS
, FirstMUD
, SecondMUD
) ||
3208 ValueToClass
.lookup(FirstMUD
->getMemoryInst()) ==
3209 ValueToClass
.lookup(SecondMUD
->getMemoryInst())) &&
3210 "The instructions for these memory operations should have "
3211 "been in the same congruence class or reachable through"
3212 "a single argument phi");
3214 } else if (auto *FirstMP
= dyn_cast
<MemoryPhi
>(KV
.first
)) {
3215 // We can only sanely verify that MemoryDefs in the operand list all have
3217 auto ReachableOperandPred
= [&](const Use
&U
) {
3218 return ReachableEdges
.count(
3219 {FirstMP
->getIncomingBlock(U
), FirstMP
->getBlock()}) &&
3223 // All arguments should in the same class, ignoring unreachable arguments
3224 auto FilteredPhiArgs
=
3225 make_filter_range(FirstMP
->operands(), ReachableOperandPred
);
3226 SmallVector
<const CongruenceClass
*, 16> PhiOpClasses
;
3227 std::transform(FilteredPhiArgs
.begin(), FilteredPhiArgs
.end(),
3228 std::back_inserter(PhiOpClasses
), [&](const Use
&U
) {
3229 const MemoryDef
*MD
= cast
<MemoryDef
>(U
);
3230 return ValueToClass
.lookup(MD
->getMemoryInst());
3232 assert(is_splat(PhiOpClasses
) &&
3233 "All MemoryPhi arguments should be in the same class");
3239 // Verify that the sparse propagation we did actually found the maximal fixpoint
3240 // We do this by storing the value to class mapping, touching all instructions,
3241 // and redoing the iteration to see if anything changed.
3242 void NewGVN::verifyIterationSettled(Function
&F
) {
3244 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3245 if (DebugCounter::isCounterSet(VNCounter
))
3246 DebugCounter::setCounterValue(VNCounter
, StartingVNCounter
);
3248 // Note that we have to store the actual classes, as we may change existing
3249 // classes during iteration. This is because our memory iteration propagation
3250 // is not perfect, and so may waste a little work. But it should generate
3251 // exactly the same congruence classes we have now, with different IDs.
3252 std::map
<const Value
*, CongruenceClass
> BeforeIteration
;
3254 for (auto &KV
: ValueToClass
) {
3255 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3256 // Skip unused/dead instructions.
3257 if (InstrToDFSNum(I
) == 0)
3259 BeforeIteration
.insert({KV
.first
, *KV
.second
});
3262 TouchedInstructions
.set();
3263 TouchedInstructions
.reset(0);
3264 iterateTouchedInstructions();
3265 DenseSet
<std::pair
<const CongruenceClass
*, const CongruenceClass
*>>
3267 for (const auto &KV
: ValueToClass
) {
3268 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3269 // Skip unused/dead instructions.
3270 if (InstrToDFSNum(I
) == 0)
3272 // We could sink these uses, but i think this adds a bit of clarity here as
3273 // to what we are comparing.
3274 auto *BeforeCC
= &BeforeIteration
.find(KV
.first
)->second
;
3275 auto *AfterCC
= KV
.second
;
3276 // Note that the classes can't change at this point, so we memoize the set
3278 if (!EqualClasses
.count({BeforeCC
, AfterCC
})) {
3279 assert(BeforeCC
->isEquivalentTo(AfterCC
) &&
3280 "Value number changed after main loop completed!");
3281 EqualClasses
.insert({BeforeCC
, AfterCC
});
3287 // Verify that for each store expression in the expression to class mapping,
3288 // only the latest appears, and multiple ones do not appear.
3289 // Because loads do not use the stored value when doing equality with stores,
3290 // if we don't erase the old store expressions from the table, a load can find
3291 // a no-longer valid StoreExpression.
3292 void NewGVN::verifyStoreExpressions() const {
3294 // This is the only use of this, and it's not worth defining a complicated
3295 // densemapinfo hash/equality function for it.
3297 std::pair
<const Value
*,
3298 std::tuple
<const Value
*, const CongruenceClass
*, Value
*>>>
3300 for (const auto &KV
: ExpressionToClass
) {
3301 if (auto *SE
= dyn_cast
<StoreExpression
>(KV
.first
)) {
3302 // Make sure a version that will conflict with loads is not already there
3303 auto Res
= StoreExpressionSet
.insert(
3304 {SE
->getOperand(0), std::make_tuple(SE
->getMemoryLeader(), KV
.second
,
3305 SE
->getStoredValue())});
3306 bool Okay
= Res
.second
;
3307 // It's okay to have the same expression already in there if it is
3308 // identical in nature.
3309 // This can happen when the leader of the stored value changes over time.
3311 Okay
= (std::get
<1>(Res
.first
->second
) == KV
.second
) &&
3312 (lookupOperandLeader(std::get
<2>(Res
.first
->second
)) ==
3313 lookupOperandLeader(SE
->getStoredValue()));
3314 assert(Okay
&& "Stored expression conflict exists in expression table");
3315 auto *ValueExpr
= ValueToExpression
.lookup(SE
->getStoreInst());
3316 assert(ValueExpr
&& ValueExpr
->equals(*SE
) &&
3317 "StoreExpression in ExpressionToClass is not latest "
3318 "StoreExpression for value");
3324 // This is the main value numbering loop, it iterates over the initial touched
3325 // instruction set, propagating value numbers, marking things touched, etc,
3326 // until the set of touched instructions is completely empty.
3327 void NewGVN::iterateTouchedInstructions() {
3328 unsigned int Iterations
= 0;
3329 // Figure out where touchedinstructions starts
3330 int FirstInstr
= TouchedInstructions
.find_first();
3331 // Nothing set, nothing to iterate, just return.
3332 if (FirstInstr
== -1)
3334 const BasicBlock
*LastBlock
= getBlockForValue(InstrFromDFSNum(FirstInstr
));
3335 while (TouchedInstructions
.any()) {
3337 // Walk through all the instructions in all the blocks in RPO.
3338 // TODO: As we hit a new block, we should push and pop equalities into a
3339 // table lookupOperandLeader can use, to catch things PredicateInfo
3340 // might miss, like edge-only equivalences.
3341 for (unsigned InstrNum
: TouchedInstructions
.set_bits()) {
3343 // This instruction was found to be dead. We don't bother looking
3345 if (InstrNum
== 0) {
3346 TouchedInstructions
.reset(InstrNum
);
3350 Value
*V
= InstrFromDFSNum(InstrNum
);
3351 const BasicBlock
*CurrBlock
= getBlockForValue(V
);
3353 // If we hit a new block, do reachability processing.
3354 if (CurrBlock
!= LastBlock
) {
3355 LastBlock
= CurrBlock
;
3356 bool BlockReachable
= ReachableBlocks
.count(CurrBlock
);
3357 const auto &CurrInstRange
= BlockInstRange
.lookup(CurrBlock
);
3359 // If it's not reachable, erase any touched instructions and move on.
3360 if (!BlockReachable
) {
3361 TouchedInstructions
.reset(CurrInstRange
.first
, CurrInstRange
.second
);
3362 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3363 << getBlockName(CurrBlock
)
3364 << " because it is unreachable\n");
3367 updateProcessedCount(CurrBlock
);
3369 // Reset after processing (because we may mark ourselves as touched when
3370 // we propagate equalities).
3371 TouchedInstructions
.reset(InstrNum
);
3373 if (auto *MP
= dyn_cast
<MemoryPhi
>(V
)) {
3374 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP
<< "\n");
3375 valueNumberMemoryPhi(MP
);
3376 } else if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3377 valueNumberInstruction(I
);
3379 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3381 updateProcessedCount(V
);
3384 NumGVNMaxIterations
= std::max(NumGVNMaxIterations
.getValue(), Iterations
);
3387 // This is the main transformation entry point.
3388 bool NewGVN::runGVN() {
3389 if (DebugCounter::isCounterSet(VNCounter
))
3390 StartingVNCounter
= DebugCounter::getCounterValue(VNCounter
);
3391 bool Changed
= false;
3392 NumFuncArgs
= F
.arg_size();
3393 MSSAWalker
= MSSA
->getWalker();
3394 SingletonDeadExpression
= new (ExpressionAllocator
) DeadExpression();
3396 // Count number of instructions for sizing of hash tables, and come
3397 // up with a global dfs numbering for instructions.
3398 unsigned ICount
= 1;
3399 // Add an empty instruction to account for the fact that we start at 1
3400 DFSToInstr
.emplace_back(nullptr);
3401 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3402 // same as dominator tree order, particularly with regard whether backedges
3403 // get visited first or second, given a block with multiple successors.
3404 // If we visit in the wrong order, we will end up performing N times as many
3406 // The dominator tree does guarantee that, for a given dom tree node, it's
3407 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3409 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
3410 unsigned Counter
= 0;
3411 for (auto &B
: RPOT
) {
3412 auto *Node
= DT
->getNode(B
);
3413 assert(Node
&& "RPO and Dominator tree should have same reachability");
3414 RPOOrdering
[Node
] = ++Counter
;
3416 // Sort dominator tree children arrays into RPO.
3417 for (auto &B
: RPOT
) {
3418 auto *Node
= DT
->getNode(B
);
3419 if (Node
->getNumChildren() > 1)
3420 llvm::sort(*Node
, [&](const DomTreeNode
*A
, const DomTreeNode
*B
) {
3421 return RPOOrdering
[A
] < RPOOrdering
[B
];
3425 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3426 for (auto DTN
: depth_first(DT
->getRootNode())) {
3427 BasicBlock
*B
= DTN
->getBlock();
3428 const auto &BlockRange
= assignDFSNumbers(B
, ICount
);
3429 BlockInstRange
.insert({B
, BlockRange
});
3430 ICount
+= BlockRange
.second
- BlockRange
.first
;
3432 initializeCongruenceClasses(F
);
3434 TouchedInstructions
.resize(ICount
);
3435 // Ensure we don't end up resizing the expressionToClass map, as
3436 // that can be quite expensive. At most, we have one expression per
3438 ExpressionToClass
.reserve(ICount
);
3440 // Initialize the touched instructions to include the entry block.
3441 const auto &InstRange
= BlockInstRange
.lookup(&F
.getEntryBlock());
3442 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
3443 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F
.getEntryBlock())
3444 << " marked reachable\n");
3445 ReachableBlocks
.insert(&F
.getEntryBlock());
3447 iterateTouchedInstructions();
3448 verifyMemoryCongruency();
3449 verifyIterationSettled(F
);
3450 verifyStoreExpressions();
3452 Changed
|= eliminateInstructions(F
);
3454 // Delete all instructions marked for deletion.
3455 for (Instruction
*ToErase
: InstructionsToErase
) {
3456 if (!ToErase
->use_empty())
3457 ToErase
->replaceAllUsesWith(UndefValue::get(ToErase
->getType()));
3459 assert(ToErase
->getParent() &&
3460 "BB containing ToErase deleted unexpectedly!");
3461 ToErase
->eraseFromParent();
3463 Changed
|= !InstructionsToErase
.empty();
3465 // Delete all unreachable blocks.
3466 auto UnreachableBlockPred
= [&](const BasicBlock
&BB
) {
3467 return !ReachableBlocks
.count(&BB
);
3470 for (auto &BB
: make_filter_range(F
, UnreachableBlockPred
)) {
3471 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB
)
3472 << " is unreachable\n");
3473 deleteInstructionsInBlock(&BB
);
3481 struct NewGVN::ValueDFS
{
3486 // Only one of Def and U will be set.
3487 // The bool in the Def tells us whether the Def is the stored value of a
3489 PointerIntPair
<Value
*, 1, bool> Def
;
3492 bool operator<(const ValueDFS
&Other
) const {
3493 // It's not enough that any given field be less than - we have sets
3494 // of fields that need to be evaluated together to give a proper ordering.
3495 // For example, if you have;
3500 // We want the second to be less than the first, but if we just go field
3501 // by field, we will get to Val 0 < Val 50 and say the first is less than
3502 // the second. We only want it to be less than if the DFS orders are equal.
3504 // Each LLVM instruction only produces one value, and thus the lowest-level
3505 // differentiator that really matters for the stack (and what we use as as a
3506 // replacement) is the local dfs number.
3507 // Everything else in the structure is instruction level, and only affects
3508 // the order in which we will replace operands of a given instruction.
3510 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3511 // the order of replacement of uses does not matter.
3515 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3517 // The .val will be the same as well.
3518 // The .u's will be different.
3519 // You will replace both, and it does not matter what order you replace them
3520 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3522 // Similarly for the case of same dfsin, dfsout, localnum, but different
3527 // in c, we will a valuedfs for a, and one for b,with everything the same
3529 // It does not matter what order we replace these operands in.
3530 // You will always end up with the same IR, and this is guaranteed.
3531 return std::tie(DFSIn
, DFSOut
, LocalNum
, Def
, U
) <
3532 std::tie(Other
.DFSIn
, Other
.DFSOut
, Other
.LocalNum
, Other
.Def
,
3537 // This function converts the set of members for a congruence class from values,
3538 // to sets of defs and uses with associated DFS info. The total number of
3539 // reachable uses for each value is stored in UseCount, and instructions that
3541 // dead (have no non-dead uses) are stored in ProbablyDead.
3542 void NewGVN::convertClassToDFSOrdered(
3543 const CongruenceClass
&Dense
, SmallVectorImpl
<ValueDFS
> &DFSOrderedSet
,
3544 DenseMap
<const Value
*, unsigned int> &UseCounts
,
3545 SmallPtrSetImpl
<Instruction
*> &ProbablyDead
) const {
3546 for (auto D
: Dense
) {
3547 // First add the value.
3548 BasicBlock
*BB
= getBlockForValue(D
);
3549 // Constants are handled prior to ever calling this function, so
3550 // we should only be left with instructions as members.
3551 assert(BB
&& "Should have figured out a basic block for value");
3553 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3554 VDDef
.DFSIn
= DomNode
->getDFSNumIn();
3555 VDDef
.DFSOut
= DomNode
->getDFSNumOut();
3556 // If it's a store, use the leader of the value operand, if it's always
3557 // available, or the value operand. TODO: We could do dominance checks to
3558 // find a dominating leader, but not worth it ATM.
3559 if (auto *SI
= dyn_cast
<StoreInst
>(D
)) {
3560 auto Leader
= lookupOperandLeader(SI
->getValueOperand());
3561 if (alwaysAvailable(Leader
)) {
3562 VDDef
.Def
.setPointer(Leader
);
3564 VDDef
.Def
.setPointer(SI
->getValueOperand());
3565 VDDef
.Def
.setInt(true);
3568 VDDef
.Def
.setPointer(D
);
3570 assert(isa
<Instruction
>(D
) &&
3571 "The dense set member should always be an instruction");
3572 Instruction
*Def
= cast
<Instruction
>(D
);
3573 VDDef
.LocalNum
= InstrToDFSNum(D
);
3574 DFSOrderedSet
.push_back(VDDef
);
3575 // If there is a phi node equivalent, add it
3576 if (auto *PN
= RealToTemp
.lookup(Def
)) {
3578 dyn_cast_or_null
<PHIExpression
>(ValueToExpression
.lookup(Def
));
3580 VDDef
.Def
.setInt(false);
3581 VDDef
.Def
.setPointer(PN
);
3583 DFSOrderedSet
.push_back(VDDef
);
3587 unsigned int UseCount
= 0;
3588 // Now add the uses.
3589 for (auto &U
: Def
->uses()) {
3590 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser())) {
3591 // Don't try to replace into dead uses
3592 if (InstructionsToErase
.count(I
))
3595 // Put the phi node uses in the incoming block.
3597 if (auto *P
= dyn_cast
<PHINode
>(I
)) {
3598 IBlock
= P
->getIncomingBlock(U
);
3599 // Make phi node users appear last in the incoming block
3601 VDUse
.LocalNum
= InstrDFS
.size() + 1;
3603 IBlock
= getBlockForValue(I
);
3604 VDUse
.LocalNum
= InstrToDFSNum(I
);
3607 // Skip uses in unreachable blocks, as we're going
3609 if (ReachableBlocks
.count(IBlock
) == 0)
3612 DomTreeNode
*DomNode
= DT
->getNode(IBlock
);
3613 VDUse
.DFSIn
= DomNode
->getDFSNumIn();
3614 VDUse
.DFSOut
= DomNode
->getDFSNumOut();
3617 DFSOrderedSet
.emplace_back(VDUse
);
3621 // If there are no uses, it's probably dead (but it may have side-effects,
3622 // so not definitely dead. Otherwise, store the number of uses so we can
3623 // track if it becomes dead later).
3625 ProbablyDead
.insert(Def
);
3627 UseCounts
[Def
] = UseCount
;
3631 // This function converts the set of members for a congruence class from values,
3632 // to the set of defs for loads and stores, with associated DFS info.
3633 void NewGVN::convertClassToLoadsAndStores(
3634 const CongruenceClass
&Dense
,
3635 SmallVectorImpl
<ValueDFS
> &LoadsAndStores
) const {
3636 for (auto D
: Dense
) {
3637 if (!isa
<LoadInst
>(D
) && !isa
<StoreInst
>(D
))
3640 BasicBlock
*BB
= getBlockForValue(D
);
3642 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3643 VD
.DFSIn
= DomNode
->getDFSNumIn();
3644 VD
.DFSOut
= DomNode
->getDFSNumOut();
3645 VD
.Def
.setPointer(D
);
3647 // If it's an instruction, use the real local dfs number.
3648 if (auto *I
= dyn_cast
<Instruction
>(D
))
3649 VD
.LocalNum
= InstrToDFSNum(I
);
3651 llvm_unreachable("Should have been an instruction");
3653 LoadsAndStores
.emplace_back(VD
);
3657 static void patchAndReplaceAllUsesWith(Instruction
*I
, Value
*Repl
) {
3658 patchReplacementInstruction(I
, Repl
);
3659 I
->replaceAllUsesWith(Repl
);
3662 void NewGVN::deleteInstructionsInBlock(BasicBlock
*BB
) {
3663 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB
);
3664 ++NumGVNBlocksDeleted
;
3666 // Delete the instructions backwards, as it has a reduced likelihood of having
3667 // to update as many def-use and use-def chains. Start after the terminator.
3668 auto StartPoint
= BB
->rbegin();
3670 // Note that we explicitly recalculate BB->rend() on each iteration,
3671 // as it may change when we remove the first instruction.
3672 for (BasicBlock::reverse_iterator
I(StartPoint
); I
!= BB
->rend();) {
3673 Instruction
&Inst
= *I
++;
3674 if (!Inst
.use_empty())
3675 Inst
.replaceAllUsesWith(UndefValue::get(Inst
.getType()));
3676 if (isa
<LandingPadInst
>(Inst
))
3678 salvageKnowledge(&Inst
, AC
);
3680 Inst
.eraseFromParent();
3681 ++NumGVNInstrDeleted
;
3683 // Now insert something that simplifycfg will turn into an unreachable.
3684 Type
*Int8Ty
= Type::getInt8Ty(BB
->getContext());
3685 new StoreInst(UndefValue::get(Int8Ty
),
3686 Constant::getNullValue(Int8Ty
->getPointerTo()),
3687 BB
->getTerminator());
3690 void NewGVN::markInstructionForDeletion(Instruction
*I
) {
3691 LLVM_DEBUG(dbgs() << "Marking " << *I
<< " for deletion\n");
3692 InstructionsToErase
.insert(I
);
3695 void NewGVN::replaceInstruction(Instruction
*I
, Value
*V
) {
3696 LLVM_DEBUG(dbgs() << "Replacing " << *I
<< " with " << *V
<< "\n");
3697 patchAndReplaceAllUsesWith(I
, V
);
3698 // We save the actual erasing to avoid invalidating memory
3699 // dependencies until we are done with everything.
3700 markInstructionForDeletion(I
);
3705 // This is a stack that contains both the value and dfs info of where
3706 // that value is valid.
3707 class ValueDFSStack
{
3709 Value
*back() const { return ValueStack
.back(); }
3710 std::pair
<int, int> dfs_back() const { return DFSStack
.back(); }
3712 void push_back(Value
*V
, int DFSIn
, int DFSOut
) {
3713 ValueStack
.emplace_back(V
);
3714 DFSStack
.emplace_back(DFSIn
, DFSOut
);
3717 bool empty() const { return DFSStack
.empty(); }
3719 bool isInScope(int DFSIn
, int DFSOut
) const {
3722 return DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
;
3725 void popUntilDFSScope(int DFSIn
, int DFSOut
) {
3727 // These two should always be in sync at this point.
3728 assert(ValueStack
.size() == DFSStack
.size() &&
3729 "Mismatch between ValueStack and DFSStack");
3731 !DFSStack
.empty() &&
3732 !(DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
)) {
3733 DFSStack
.pop_back();
3734 ValueStack
.pop_back();
3739 SmallVector
<Value
*, 8> ValueStack
;
3740 SmallVector
<std::pair
<int, int>, 8> DFSStack
;
3743 } // end anonymous namespace
3745 // Given an expression, get the congruence class for it.
3746 CongruenceClass
*NewGVN::getClassForExpression(const Expression
*E
) const {
3747 if (auto *VE
= dyn_cast
<VariableExpression
>(E
))
3748 return ValueToClass
.lookup(VE
->getVariableValue());
3749 else if (isa
<DeadExpression
>(E
))
3751 return ExpressionToClass
.lookup(E
);
3754 // Given a value and a basic block we are trying to see if it is available in,
3755 // see if the value has a leader available in that block.
3756 Value
*NewGVN::findPHIOfOpsLeader(const Expression
*E
,
3757 const Instruction
*OrigInst
,
3758 const BasicBlock
*BB
) const {
3759 // It would already be constant if we could make it constant
3760 if (auto *CE
= dyn_cast
<ConstantExpression
>(E
))
3761 return CE
->getConstantValue();
3762 if (auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
3763 auto *V
= VE
->getVariableValue();
3764 if (alwaysAvailable(V
) || DT
->dominates(getBlockForValue(V
), BB
))
3765 return VE
->getVariableValue();
3768 auto *CC
= getClassForExpression(E
);
3771 if (alwaysAvailable(CC
->getLeader()))
3772 return CC
->getLeader();
3774 for (auto Member
: *CC
) {
3775 auto *MemberInst
= dyn_cast
<Instruction
>(Member
);
3776 if (MemberInst
== OrigInst
)
3778 // Anything that isn't an instruction is always available.
3781 if (DT
->dominates(getBlockForValue(MemberInst
), BB
))
3787 bool NewGVN::eliminateInstructions(Function
&F
) {
3788 // This is a non-standard eliminator. The normal way to eliminate is
3789 // to walk the dominator tree in order, keeping track of available
3790 // values, and eliminating them. However, this is mildly
3791 // pointless. It requires doing lookups on every instruction,
3792 // regardless of whether we will ever eliminate it. For
3793 // instructions part of most singleton congruence classes, we know we
3794 // will never eliminate them.
3796 // Instead, this eliminator looks at the congruence classes directly, sorts
3797 // them into a DFS ordering of the dominator tree, and then we just
3798 // perform elimination straight on the sets by walking the congruence
3799 // class member uses in order, and eliminate the ones dominated by the
3800 // last member. This is worst case O(E log E) where E = number of
3801 // instructions in a single congruence class. In theory, this is all
3802 // instructions. In practice, it is much faster, as most instructions are
3803 // either in singleton congruence classes or can't possibly be eliminated
3804 // anyway (if there are no overlapping DFS ranges in class).
3805 // When we find something not dominated, it becomes the new leader
3806 // for elimination purposes.
3807 // TODO: If we wanted to be faster, We could remove any members with no
3808 // overlapping ranges while sorting, as we will never eliminate anything
3809 // with those members, as they don't dominate anything else in our set.
3811 bool AnythingReplaced
= false;
3813 // Since we are going to walk the domtree anyway, and we can't guarantee the
3814 // DFS numbers are updated, we compute some ourselves.
3815 DT
->updateDFSNumbers();
3817 // Go through all of our phi nodes, and kill the arguments associated with
3818 // unreachable edges.
3819 auto ReplaceUnreachablePHIArgs
= [&](PHINode
*PHI
, BasicBlock
*BB
) {
3820 for (auto &Operand
: PHI
->incoming_values())
3821 if (!ReachableEdges
.count({PHI
->getIncomingBlock(Operand
), BB
})) {
3822 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3824 << getBlockName(PHI
->getIncomingBlock(Operand
))
3825 << " with undef due to it being unreachable\n");
3826 Operand
.set(UndefValue::get(PHI
->getType()));
3829 // Replace unreachable phi arguments.
3830 // At this point, RevisitOnReachabilityChange only contains:
3833 // 2. Temporaries that will convert to PHIs
3834 // 3. Operations that are affected by an unreachable edge but do not fit into
3836 // So it is a slight overshoot of what we want. We could make it exact by
3837 // using two SparseBitVectors per block.
3838 DenseMap
<const BasicBlock
*, unsigned> ReachablePredCount
;
3839 for (auto &KV
: ReachableEdges
)
3840 ReachablePredCount
[KV
.getEnd()]++;
3841 for (auto &BBPair
: RevisitOnReachabilityChange
) {
3842 for (auto InstNum
: BBPair
.second
) {
3843 auto *Inst
= InstrFromDFSNum(InstNum
);
3844 auto *PHI
= dyn_cast
<PHINode
>(Inst
);
3845 PHI
= PHI
? PHI
: dyn_cast_or_null
<PHINode
>(RealToTemp
.lookup(Inst
));
3848 auto *BB
= BBPair
.first
;
3849 if (ReachablePredCount
.lookup(BB
) != PHI
->getNumIncomingValues())
3850 ReplaceUnreachablePHIArgs(PHI
, BB
);
3854 // Map to store the use counts
3855 DenseMap
<const Value
*, unsigned int> UseCounts
;
3856 for (auto *CC
: reverse(CongruenceClasses
)) {
3857 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC
->getID()
3859 // Track the equivalent store info so we can decide whether to try
3860 // dead store elimination.
3861 SmallVector
<ValueDFS
, 8> PossibleDeadStores
;
3862 SmallPtrSet
<Instruction
*, 8> ProbablyDead
;
3863 if (CC
->isDead() || CC
->empty())
3865 // Everything still in the TOP class is unreachable or dead.
3866 if (CC
== TOPClass
) {
3867 for (auto M
: *CC
) {
3868 auto *VTE
= ValueToExpression
.lookup(M
);
3869 if (VTE
&& isa
<DeadExpression
>(VTE
))
3870 markInstructionForDeletion(cast
<Instruction
>(M
));
3871 assert((!ReachableBlocks
.count(cast
<Instruction
>(M
)->getParent()) ||
3872 InstructionsToErase
.count(cast
<Instruction
>(M
))) &&
3873 "Everything in TOP should be unreachable or dead at this "
3879 assert(CC
->getLeader() && "We should have had a leader");
3880 // If this is a leader that is always available, and it's a
3881 // constant or has no equivalences, just replace everything with
3882 // it. We then update the congruence class with whatever members
3885 CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
3886 if (alwaysAvailable(Leader
)) {
3887 CongruenceClass::MemberSet MembersLeft
;
3888 for (auto M
: *CC
) {
3890 // Void things have no uses we can replace.
3891 if (Member
== Leader
|| !isa
<Instruction
>(Member
) ||
3892 Member
->getType()->isVoidTy()) {
3893 MembersLeft
.insert(Member
);
3896 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader
) << " for "
3897 << *Member
<< "\n");
3898 auto *I
= cast
<Instruction
>(Member
);
3899 assert(Leader
!= I
&& "About to accidentally remove our leader");
3900 replaceInstruction(I
, Leader
);
3901 AnythingReplaced
= true;
3903 CC
->swap(MembersLeft
);
3905 // If this is a singleton, we can skip it.
3906 if (CC
->size() != 1 || RealToTemp
.count(Leader
)) {
3907 // This is a stack because equality replacement/etc may place
3908 // constants in the middle of the member list, and we want to use
3909 // those constant values in preference to the current leader, over
3910 // the scope of those constants.
3911 ValueDFSStack EliminationStack
;
3913 // Convert the members to DFS ordered sets and then merge them.
3914 SmallVector
<ValueDFS
, 8> DFSOrderedSet
;
3915 convertClassToDFSOrdered(*CC
, DFSOrderedSet
, UseCounts
, ProbablyDead
);
3917 // Sort the whole thing.
3918 llvm::sort(DFSOrderedSet
);
3919 for (auto &VD
: DFSOrderedSet
) {
3920 int MemberDFSIn
= VD
.DFSIn
;
3921 int MemberDFSOut
= VD
.DFSOut
;
3922 Value
*Def
= VD
.Def
.getPointer();
3923 bool FromStore
= VD
.Def
.getInt();
3925 // We ignore void things because we can't get a value from them.
3926 if (Def
&& Def
->getType()->isVoidTy())
3928 auto *DefInst
= dyn_cast_or_null
<Instruction
>(Def
);
3929 if (DefInst
&& AllTempInstructions
.count(DefInst
)) {
3930 auto *PN
= cast
<PHINode
>(DefInst
);
3932 // If this is a value phi and that's the expression we used, insert
3933 // it into the program
3934 // remove from temp instruction list.
3935 AllTempInstructions
.erase(PN
);
3936 auto *DefBlock
= getBlockForValue(Def
);
3937 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3939 << getBlockName(getBlockForValue(Def
)) << "\n");
3940 PN
->insertBefore(&DefBlock
->front());
3942 NumGVNPHIOfOpsEliminations
++;
3945 if (EliminationStack
.empty()) {
3946 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3948 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3949 << EliminationStack
.dfs_back().first
<< ","
3950 << EliminationStack
.dfs_back().second
<< ")\n");
3953 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn
<< ","
3954 << MemberDFSOut
<< ")\n");
3955 // First, we see if we are out of scope or empty. If so,
3956 // and there equivalences, we try to replace the top of
3957 // stack with equivalences (if it's on the stack, it must
3958 // not have been eliminated yet).
3959 // Then we synchronize to our current scope, by
3960 // popping until we are back within a DFS scope that
3961 // dominates the current member.
3962 // Then, what happens depends on a few factors
3963 // If the stack is now empty, we need to push
3964 // If we have a constant or a local equivalence we want to
3965 // start using, we also push.
3966 // Otherwise, we walk along, processing members who are
3967 // dominated by this scope, and eliminate them.
3968 bool ShouldPush
= Def
&& EliminationStack
.empty();
3970 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
);
3972 if (OutOfScope
|| ShouldPush
) {
3973 // Sync to our current scope.
3974 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
3975 bool ShouldPush
= Def
&& EliminationStack
.empty();
3977 EliminationStack
.push_back(Def
, MemberDFSIn
, MemberDFSOut
);
3981 // Skip the Def's, we only want to eliminate on their uses. But mark
3982 // dominated defs as dead.
3984 // For anything in this case, what and how we value number
3985 // guarantees that any side-effets that would have occurred (ie
3986 // throwing, etc) can be proven to either still occur (because it's
3987 // dominated by something that has the same side-effects), or never
3988 // occur. Otherwise, we would not have been able to prove it value
3989 // equivalent to something else. For these things, we can just mark
3990 // it all dead. Note that this is different from the "ProbablyDead"
3991 // set, which may not be dominated by anything, and thus, are only
3992 // easy to prove dead if they are also side-effect free. Note that
3993 // because stores are put in terms of the stored value, we skip
3994 // stored values here. If the stored value is really dead, it will
3995 // still be marked for deletion when we process it in its own class.
3996 if (!EliminationStack
.empty() && Def
!= EliminationStack
.back() &&
3997 isa
<Instruction
>(Def
) && !FromStore
)
3998 markInstructionForDeletion(cast
<Instruction
>(Def
));
4001 // At this point, we know it is a Use we are trying to possibly
4004 assert(isa
<Instruction
>(U
->get()) &&
4005 "Current def should have been an instruction");
4006 assert(isa
<Instruction
>(U
->getUser()) &&
4007 "Current user should have been an instruction");
4009 // If the thing we are replacing into is already marked to be dead,
4010 // this use is dead. Note that this is true regardless of whether
4011 // we have anything dominating the use or not. We do this here
4012 // because we are already walking all the uses anyway.
4013 Instruction
*InstUse
= cast
<Instruction
>(U
->getUser());
4014 if (InstructionsToErase
.count(InstUse
)) {
4015 auto &UseCount
= UseCounts
[U
->get()];
4016 if (--UseCount
== 0) {
4017 ProbablyDead
.insert(cast
<Instruction
>(U
->get()));
4021 // If we get to this point, and the stack is empty we must have a use
4022 // with nothing we can use to eliminate this use, so just skip it.
4023 if (EliminationStack
.empty())
4026 Value
*DominatingLeader
= EliminationStack
.back();
4028 auto *II
= dyn_cast
<IntrinsicInst
>(DominatingLeader
);
4029 bool isSSACopy
= II
&& II
->getIntrinsicID() == Intrinsic::ssa_copy
;
4031 DominatingLeader
= II
->getOperand(0);
4033 // Don't replace our existing users with ourselves.
4034 if (U
->get() == DominatingLeader
)
4037 << "Found replacement " << *DominatingLeader
<< " for "
4038 << *U
->get() << " in " << *(U
->getUser()) << "\n");
4040 // If we replaced something in an instruction, handle the patching of
4041 // metadata. Skip this if we are replacing predicateinfo with its
4042 // original operand, as we already know we can just drop it.
4043 auto *ReplacedInst
= cast
<Instruction
>(U
->get());
4044 auto *PI
= PredInfo
->getPredicateInfoFor(ReplacedInst
);
4045 if (!PI
|| DominatingLeader
!= PI
->OriginalOp
)
4046 patchReplacementInstruction(ReplacedInst
, DominatingLeader
);
4047 U
->set(DominatingLeader
);
4048 // This is now a use of the dominating leader, which means if the
4049 // dominating leader was dead, it's now live!
4050 auto &LeaderUseCount
= UseCounts
[DominatingLeader
];
4051 // It's about to be alive again.
4052 if (LeaderUseCount
== 0 && isa
<Instruction
>(DominatingLeader
))
4053 ProbablyDead
.erase(cast
<Instruction
>(DominatingLeader
));
4054 // For copy instructions, we use their operand as a leader,
4055 // which means we remove a user of the copy and it may become dead.
4057 unsigned &IIUseCount
= UseCounts
[II
];
4058 if (--IIUseCount
== 0)
4059 ProbablyDead
.insert(II
);
4062 AnythingReplaced
= true;
4067 // At this point, anything still in the ProbablyDead set is actually dead if
4068 // would be trivially dead.
4069 for (auto *I
: ProbablyDead
)
4070 if (wouldInstructionBeTriviallyDead(I
))
4071 markInstructionForDeletion(I
);
4073 // Cleanup the congruence class.
4074 CongruenceClass::MemberSet MembersLeft
;
4075 for (auto *Member
: *CC
)
4076 if (!isa
<Instruction
>(Member
) ||
4077 !InstructionsToErase
.count(cast
<Instruction
>(Member
)))
4078 MembersLeft
.insert(Member
);
4079 CC
->swap(MembersLeft
);
4081 // If we have possible dead stores to look at, try to eliminate them.
4082 if (CC
->getStoreCount() > 0) {
4083 convertClassToLoadsAndStores(*CC
, PossibleDeadStores
);
4084 llvm::sort(PossibleDeadStores
);
4085 ValueDFSStack EliminationStack
;
4086 for (auto &VD
: PossibleDeadStores
) {
4087 int MemberDFSIn
= VD
.DFSIn
;
4088 int MemberDFSOut
= VD
.DFSOut
;
4089 Instruction
*Member
= cast
<Instruction
>(VD
.Def
.getPointer());
4090 if (EliminationStack
.empty() ||
4091 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
)) {
4092 // Sync to our current scope.
4093 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
4094 if (EliminationStack
.empty()) {
4095 EliminationStack
.push_back(Member
, MemberDFSIn
, MemberDFSOut
);
4099 // We already did load elimination, so nothing to do here.
4100 if (isa
<LoadInst
>(Member
))
4102 assert(!EliminationStack
.empty());
4103 Instruction
*Leader
= cast
<Instruction
>(EliminationStack
.back());
4105 assert(DT
->dominates(Leader
->getParent(), Member
->getParent()));
4106 // Member is dominater by Leader, and thus dead
4107 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4108 << " that is dominated by " << *Leader
<< "\n");
4109 markInstructionForDeletion(Member
);
4115 return AnythingReplaced
;
4118 // This function provides global ranking of operations so that we can place them
4119 // in a canonical order. Note that rank alone is not necessarily enough for a
4120 // complete ordering, as constants all have the same rank. However, generally,
4121 // we will simplify an operation with all constants so that it doesn't matter
4122 // what order they appear in.
4123 unsigned int NewGVN::getRank(const Value
*V
) const {
4124 // Prefer constants to undef to anything else
4125 // Undef is a constant, have to check it first.
4126 // Prefer smaller constants to constantexprs
4127 if (isa
<ConstantExpr
>(V
))
4129 if (isa
<UndefValue
>(V
))
4131 if (isa
<Constant
>(V
))
4133 else if (auto *A
= dyn_cast
<Argument
>(V
))
4134 return 3 + A
->getArgNo();
4136 // Need to shift the instruction DFS by number of arguments + 3 to account for
4137 // the constant and argument ranking above.
4138 unsigned Result
= InstrToDFSNum(V
);
4140 return 4 + NumFuncArgs
+ Result
;
4141 // Unreachable or something else, just return a really large number.
4145 // This is a function that says whether two commutative operations should
4146 // have their order swapped when canonicalizing.
4147 bool NewGVN::shouldSwapOperands(const Value
*A
, const Value
*B
) const {
4148 // Because we only care about a total ordering, and don't rewrite expressions
4149 // in this order, we order by rank, which will give a strict weak ordering to
4150 // everything but constants, and then we order by pointer address.
4151 return std::make_pair(getRank(A
), A
) > std::make_pair(getRank(B
), B
);
4156 class NewGVNLegacyPass
: public FunctionPass
{
4158 // Pass identification, replacement for typeid.
4161 NewGVNLegacyPass() : FunctionPass(ID
) {
4162 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4165 bool runOnFunction(Function
&F
) override
;
4168 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4169 AU
.addRequired
<AssumptionCacheTracker
>();
4170 AU
.addRequired
<DominatorTreeWrapperPass
>();
4171 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
4172 AU
.addRequired
<MemorySSAWrapperPass
>();
4173 AU
.addRequired
<AAResultsWrapperPass
>();
4174 AU
.addPreserved
<DominatorTreeWrapperPass
>();
4175 AU
.addPreserved
<GlobalsAAWrapperPass
>();
4179 } // end anonymous namespace
4181 bool NewGVNLegacyPass::runOnFunction(Function
&F
) {
4182 if (skipFunction(F
))
4184 return NewGVN(F
, &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
4185 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
4186 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
),
4187 &getAnalysis
<AAResultsWrapperPass
>().getAAResults(),
4188 &getAnalysis
<MemorySSAWrapperPass
>().getMSSA(),
4189 F
.getParent()->getDataLayout())
4193 char NewGVNLegacyPass::ID
= 0;
4195 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass
, "newgvn", "Global Value Numbering",
4197 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
4198 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
4199 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
4200 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
4201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
4202 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
4203 INITIALIZE_PASS_END(NewGVNLegacyPass
, "newgvn", "Global Value Numbering", false,
4206 // createGVNPass - The public interface to this file.
4207 FunctionPass
*llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4209 PreservedAnalyses
NewGVNPass::run(Function
&F
, AnalysisManager
<Function
> &AM
) {
4210 // Apparently the order in which we get these results matter for
4211 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4212 // the same order here, just in case.
4213 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
4214 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
4215 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
4216 auto &AA
= AM
.getResult
<AAManager
>(F
);
4217 auto &MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
4219 NewGVN(F
, &DT
, &AC
, &TLI
, &AA
, &MSSA
, F
.getParent()->getDataLayout())
4222 return PreservedAnalyses::all();
4223 PreservedAnalyses PA
;
4224 PA
.preserve
<DominatorTreeAnalysis
>();