[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / NewGVN.cpp
bloba137d13c6ea0cef7f1456dba95703ef1f032a05a
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
52 //===----------------------------------------------------------------------===//
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/IR/Argument.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/PatternMatch.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/Use.h"
95 #include "llvm/IR/User.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/InitializePasses.h"
98 #include "llvm/Pass.h"
99 #include "llvm/Support/Allocator.h"
100 #include "llvm/Support/ArrayRecycler.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/DebugCounter.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/PointerLikeTypeTraits.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Scalar/GVNExpression.h"
110 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include "llvm/Transforms/Utils/PredicateInfo.h"
113 #include "llvm/Transforms/Utils/VNCoercion.h"
114 #include <algorithm>
115 #include <cassert>
116 #include <cstdint>
117 #include <iterator>
118 #include <map>
119 #include <memory>
120 #include <set>
121 #include <string>
122 #include <tuple>
123 #include <utility>
124 #include <vector>
126 using namespace llvm;
127 using namespace llvm::GVNExpression;
128 using namespace llvm::VNCoercion;
129 using namespace llvm::PatternMatch;
131 #define DEBUG_TYPE "newgvn"
133 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
134 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
135 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
136 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
137 STATISTIC(NumGVNMaxIterations,
138 "Maximum Number of iterations it took to converge GVN");
139 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
140 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
141 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
142 "Number of avoided sorted leader changes");
143 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
144 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
145 STATISTIC(NumGVNPHIOfOpsEliminations,
146 "Number of things eliminated using PHI of ops");
147 DEBUG_COUNTER(VNCounter, "newgvn-vn",
148 "Controls which instructions are value numbered");
149 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
150 "Controls which instructions we create phi of ops for");
151 // Currently store defining access refinement is too slow due to basicaa being
152 // egregiously slow. This flag lets us keep it working while we work on this
153 // issue.
154 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
155 cl::init(false), cl::Hidden);
157 /// Currently, the generation "phi of ops" can result in correctness issues.
158 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
159 cl::Hidden);
161 //===----------------------------------------------------------------------===//
162 // GVN Pass
163 //===----------------------------------------------------------------------===//
165 // Anchor methods.
166 namespace llvm {
167 namespace GVNExpression {
169 Expression::~Expression() = default;
170 BasicExpression::~BasicExpression() = default;
171 CallExpression::~CallExpression() = default;
172 LoadExpression::~LoadExpression() = default;
173 StoreExpression::~StoreExpression() = default;
174 AggregateValueExpression::~AggregateValueExpression() = default;
175 PHIExpression::~PHIExpression() = default;
177 } // end namespace GVNExpression
178 } // end namespace llvm
180 namespace {
182 // Tarjan's SCC finding algorithm with Nuutila's improvements
183 // SCCIterator is actually fairly complex for the simple thing we want.
184 // It also wants to hand us SCC's that are unrelated to the phi node we ask
185 // about, and have us process them there or risk redoing work.
186 // Graph traits over a filter iterator also doesn't work that well here.
187 // This SCC finder is specialized to walk use-def chains, and only follows
188 // instructions,
189 // not generic values (arguments, etc).
190 struct TarjanSCC {
191 TarjanSCC() : Components(1) {}
193 void Start(const Instruction *Start) {
194 if (Root.lookup(Start) == 0)
195 FindSCC(Start);
198 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
199 unsigned ComponentID = ValueToComponent.lookup(V);
201 assert(ComponentID > 0 &&
202 "Asking for a component for a value we never processed");
203 return Components[ComponentID];
206 private:
207 void FindSCC(const Instruction *I) {
208 Root[I] = ++DFSNum;
209 // Store the DFS Number we had before it possibly gets incremented.
210 unsigned int OurDFS = DFSNum;
211 for (auto &Op : I->operands()) {
212 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
213 if (Root.lookup(Op) == 0)
214 FindSCC(InstOp);
215 if (!InComponent.count(Op))
216 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
219 // See if we really were the root of a component, by seeing if we still have
220 // our DFSNumber. If we do, we are the root of the component, and we have
221 // completed a component. If we do not, we are not the root of a component,
222 // and belong on the component stack.
223 if (Root.lookup(I) == OurDFS) {
224 unsigned ComponentID = Components.size();
225 Components.resize(Components.size() + 1);
226 auto &Component = Components.back();
227 Component.insert(I);
228 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
229 InComponent.insert(I);
230 ValueToComponent[I] = ComponentID;
231 // Pop a component off the stack and label it.
232 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
233 auto *Member = Stack.back();
234 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
235 Component.insert(Member);
236 InComponent.insert(Member);
237 ValueToComponent[Member] = ComponentID;
238 Stack.pop_back();
240 } else {
241 // Part of a component, push to stack
242 Stack.push_back(I);
246 unsigned int DFSNum = 1;
247 SmallPtrSet<const Value *, 8> InComponent;
248 DenseMap<const Value *, unsigned int> Root;
249 SmallVector<const Value *, 8> Stack;
251 // Store the components as vector of ptr sets, because we need the topo order
252 // of SCC's, but not individual member order
253 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
255 DenseMap<const Value *, unsigned> ValueToComponent;
258 // Congruence classes represent the set of expressions/instructions
259 // that are all the same *during some scope in the function*.
260 // That is, because of the way we perform equality propagation, and
261 // because of memory value numbering, it is not correct to assume
262 // you can willy-nilly replace any member with any other at any
263 // point in the function.
265 // For any Value in the Member set, it is valid to replace any dominated member
266 // with that Value.
268 // Every congruence class has a leader, and the leader is used to symbolize
269 // instructions in a canonical way (IE every operand of an instruction that is a
270 // member of the same congruence class will always be replaced with leader
271 // during symbolization). To simplify symbolization, we keep the leader as a
272 // constant if class can be proved to be a constant value. Otherwise, the
273 // leader is the member of the value set with the smallest DFS number. Each
274 // congruence class also has a defining expression, though the expression may be
275 // null. If it exists, it can be used for forward propagation and reassociation
276 // of values.
278 // For memory, we also track a representative MemoryAccess, and a set of memory
279 // members for MemoryPhis (which have no real instructions). Note that for
280 // memory, it seems tempting to try to split the memory members into a
281 // MemoryCongruenceClass or something. Unfortunately, this does not work
282 // easily. The value numbering of a given memory expression depends on the
283 // leader of the memory congruence class, and the leader of memory congruence
284 // class depends on the value numbering of a given memory expression. This
285 // leads to wasted propagation, and in some cases, missed optimization. For
286 // example: If we had value numbered two stores together before, but now do not,
287 // we move them to a new value congruence class. This in turn will move at one
288 // of the memorydefs to a new memory congruence class. Which in turn, affects
289 // the value numbering of the stores we just value numbered (because the memory
290 // congruence class is part of the value number). So while theoretically
291 // possible to split them up, it turns out to be *incredibly* complicated to get
292 // it to work right, because of the interdependency. While structurally
293 // slightly messier, it is algorithmically much simpler and faster to do what we
294 // do here, and track them both at once in the same class.
295 // Note: The default iterators for this class iterate over values
296 class CongruenceClass {
297 public:
298 using MemberType = Value;
299 using MemberSet = SmallPtrSet<MemberType *, 4>;
300 using MemoryMemberType = MemoryPhi;
301 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
303 explicit CongruenceClass(unsigned ID) : ID(ID) {}
304 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
305 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
307 unsigned getID() const { return ID; }
309 // True if this class has no members left. This is mainly used for assertion
310 // purposes, and for skipping empty classes.
311 bool isDead() const {
312 // If it's both dead from a value perspective, and dead from a memory
313 // perspective, it's really dead.
314 return empty() && memory_empty();
317 // Leader functions
318 Value *getLeader() const { return RepLeader; }
319 void setLeader(Value *Leader) { RepLeader = Leader; }
320 const std::pair<Value *, unsigned int> &getNextLeader() const {
321 return NextLeader;
323 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
324 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
325 if (LeaderPair.second < NextLeader.second)
326 NextLeader = LeaderPair;
329 Value *getStoredValue() const { return RepStoredValue; }
330 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
331 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
332 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
334 // Forward propagation info
335 const Expression *getDefiningExpr() const { return DefiningExpr; }
337 // Value member set
338 bool empty() const { return Members.empty(); }
339 unsigned size() const { return Members.size(); }
340 MemberSet::const_iterator begin() const { return Members.begin(); }
341 MemberSet::const_iterator end() const { return Members.end(); }
342 void insert(MemberType *M) { Members.insert(M); }
343 void erase(MemberType *M) { Members.erase(M); }
344 void swap(MemberSet &Other) { Members.swap(Other); }
346 // Memory member set
347 bool memory_empty() const { return MemoryMembers.empty(); }
348 unsigned memory_size() const { return MemoryMembers.size(); }
349 MemoryMemberSet::const_iterator memory_begin() const {
350 return MemoryMembers.begin();
352 MemoryMemberSet::const_iterator memory_end() const {
353 return MemoryMembers.end();
355 iterator_range<MemoryMemberSet::const_iterator> memory() const {
356 return make_range(memory_begin(), memory_end());
359 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
360 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
362 // Store count
363 unsigned getStoreCount() const { return StoreCount; }
364 void incStoreCount() { ++StoreCount; }
365 void decStoreCount() {
366 assert(StoreCount != 0 && "Store count went negative");
367 --StoreCount;
370 // True if this class has no memory members.
371 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
373 // Return true if two congruence classes are equivalent to each other. This
374 // means that every field but the ID number and the dead field are equivalent.
375 bool isEquivalentTo(const CongruenceClass *Other) const {
376 if (!Other)
377 return false;
378 if (this == Other)
379 return true;
381 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
382 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
383 Other->RepMemoryAccess))
384 return false;
385 if (DefiningExpr != Other->DefiningExpr)
386 if (!DefiningExpr || !Other->DefiningExpr ||
387 *DefiningExpr != *Other->DefiningExpr)
388 return false;
390 if (Members.size() != Other->Members.size())
391 return false;
393 return llvm::set_is_subset(Members, Other->Members);
396 private:
397 unsigned ID;
399 // Representative leader.
400 Value *RepLeader = nullptr;
402 // The most dominating leader after our current leader, because the member set
403 // is not sorted and is expensive to keep sorted all the time.
404 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
406 // If this is represented by a store, the value of the store.
407 Value *RepStoredValue = nullptr;
409 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
410 // access.
411 const MemoryAccess *RepMemoryAccess = nullptr;
413 // Defining Expression.
414 const Expression *DefiningExpr = nullptr;
416 // Actual members of this class.
417 MemberSet Members;
419 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
420 // MemoryUses have real instructions representing them, so we only need to
421 // track MemoryPhis here.
422 MemoryMemberSet MemoryMembers;
424 // Number of stores in this congruence class.
425 // This is used so we can detect store equivalence changes properly.
426 int StoreCount = 0;
429 } // end anonymous namespace
431 namespace llvm {
433 struct ExactEqualsExpression {
434 const Expression &E;
436 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
438 hash_code getComputedHash() const { return E.getComputedHash(); }
440 bool operator==(const Expression &Other) const {
441 return E.exactlyEquals(Other);
445 template <> struct DenseMapInfo<const Expression *> {
446 static const Expression *getEmptyKey() {
447 auto Val = static_cast<uintptr_t>(-1);
448 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
449 return reinterpret_cast<const Expression *>(Val);
452 static const Expression *getTombstoneKey() {
453 auto Val = static_cast<uintptr_t>(~1U);
454 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
455 return reinterpret_cast<const Expression *>(Val);
458 static unsigned getHashValue(const Expression *E) {
459 return E->getComputedHash();
462 static unsigned getHashValue(const ExactEqualsExpression &E) {
463 return E.getComputedHash();
466 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
467 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
468 return false;
469 return LHS == *RHS;
472 static bool isEqual(const Expression *LHS, const Expression *RHS) {
473 if (LHS == RHS)
474 return true;
475 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
476 LHS == getEmptyKey() || RHS == getEmptyKey())
477 return false;
478 // Compare hashes before equality. This is *not* what the hashtable does,
479 // since it is computing it modulo the number of buckets, whereas we are
480 // using the full hash keyspace. Since the hashes are precomputed, this
481 // check is *much* faster than equality.
482 if (LHS->getComputedHash() != RHS->getComputedHash())
483 return false;
484 return *LHS == *RHS;
488 } // end namespace llvm
490 namespace {
492 class NewGVN {
493 Function &F;
494 DominatorTree *DT = nullptr;
495 const TargetLibraryInfo *TLI = nullptr;
496 AliasAnalysis *AA = nullptr;
497 MemorySSA *MSSA = nullptr;
498 MemorySSAWalker *MSSAWalker = nullptr;
499 AssumptionCache *AC = nullptr;
500 const DataLayout &DL;
501 std::unique_ptr<PredicateInfo> PredInfo;
503 // These are the only two things the create* functions should have
504 // side-effects on due to allocating memory.
505 mutable BumpPtrAllocator ExpressionAllocator;
506 mutable ArrayRecycler<Value *> ArgRecycler;
507 mutable TarjanSCC SCCFinder;
508 const SimplifyQuery SQ;
510 // Number of function arguments, used by ranking
511 unsigned int NumFuncArgs = 0;
513 // RPOOrdering of basic blocks
514 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
516 // Congruence class info.
518 // This class is called INITIAL in the paper. It is the class everything
519 // startsout in, and represents any value. Being an optimistic analysis,
520 // anything in the TOP class has the value TOP, which is indeterminate and
521 // equivalent to everything.
522 CongruenceClass *TOPClass = nullptr;
523 std::vector<CongruenceClass *> CongruenceClasses;
524 unsigned NextCongruenceNum = 0;
526 // Value Mappings.
527 DenseMap<Value *, CongruenceClass *> ValueToClass;
528 DenseMap<Value *, const Expression *> ValueToExpression;
530 // Value PHI handling, used to make equivalence between phi(op, op) and
531 // op(phi, phi).
532 // These mappings just store various data that would normally be part of the
533 // IR.
534 SmallPtrSet<const Instruction *, 8> PHINodeUses;
536 DenseMap<const Value *, bool> OpSafeForPHIOfOps;
538 // Map a temporary instruction we created to a parent block.
539 DenseMap<const Value *, BasicBlock *> TempToBlock;
541 // Map between the already in-program instructions and the temporary phis we
542 // created that they are known equivalent to.
543 DenseMap<const Value *, PHINode *> RealToTemp;
545 // In order to know when we should re-process instructions that have
546 // phi-of-ops, we track the set of expressions that they needed as
547 // leaders. When we discover new leaders for those expressions, we process the
548 // associated phi-of-op instructions again in case they have changed. The
549 // other way they may change is if they had leaders, and those leaders
550 // disappear. However, at the point they have leaders, there are uses of the
551 // relevant operands in the created phi node, and so they will get reprocessed
552 // through the normal user marking we perform.
553 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
554 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
555 ExpressionToPhiOfOps;
557 // Map from temporary operation to MemoryAccess.
558 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
560 // Set of all temporary instructions we created.
561 // Note: This will include instructions that were just created during value
562 // numbering. The way to test if something is using them is to check
563 // RealToTemp.
564 DenseSet<Instruction *> AllTempInstructions;
566 // This is the set of instructions to revisit on a reachability change. At
567 // the end of the main iteration loop it will contain at least all the phi of
568 // ops instructions that will be changed to phis, as well as regular phis.
569 // During the iteration loop, it may contain other things, such as phi of ops
570 // instructions that used edge reachability to reach a result, and so need to
571 // be revisited when the edge changes, independent of whether the phi they
572 // depended on changes.
573 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
575 // Mapping from predicate info we used to the instructions we used it with.
576 // In order to correctly ensure propagation, we must keep track of what
577 // comparisons we used, so that when the values of the comparisons change, we
578 // propagate the information to the places we used the comparison.
579 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
580 PredicateToUsers;
582 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
583 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
584 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
585 MemoryToUsers;
587 // A table storing which memorydefs/phis represent a memory state provably
588 // equivalent to another memory state.
589 // We could use the congruence class machinery, but the MemoryAccess's are
590 // abstract memory states, so they can only ever be equivalent to each other,
591 // and not to constants, etc.
592 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
594 // We could, if we wanted, build MemoryPhiExpressions and
595 // MemoryVariableExpressions, etc, and value number them the same way we value
596 // number phi expressions. For the moment, this seems like overkill. They
597 // can only exist in one of three states: they can be TOP (equal to
598 // everything), Equivalent to something else, or unique. Because we do not
599 // create expressions for them, we need to simulate leader change not just
600 // when they change class, but when they change state. Note: We can do the
601 // same thing for phis, and avoid having phi expressions if we wanted, We
602 // should eventually unify in one direction or the other, so this is a little
603 // bit of an experiment in which turns out easier to maintain.
604 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
605 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
607 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
608 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
610 // Expression to class mapping.
611 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
612 ExpressionClassMap ExpressionToClass;
614 // We have a single expression that represents currently DeadExpressions.
615 // For dead expressions we can prove will stay dead, we mark them with
616 // DFS number zero. However, it's possible in the case of phi nodes
617 // for us to assume/prove all arguments are dead during fixpointing.
618 // We use DeadExpression for that case.
619 DeadExpression *SingletonDeadExpression = nullptr;
621 // Which values have changed as a result of leader changes.
622 SmallPtrSet<Value *, 8> LeaderChanges;
624 // Reachability info.
625 using BlockEdge = BasicBlockEdge;
626 DenseSet<BlockEdge> ReachableEdges;
627 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
629 // This is a bitvector because, on larger functions, we may have
630 // thousands of touched instructions at once (entire blocks,
631 // instructions with hundreds of uses, etc). Even with optimization
632 // for when we mark whole blocks as touched, when this was a
633 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
634 // the time in GVN just managing this list. The bitvector, on the
635 // other hand, efficiently supports test/set/clear of both
636 // individual and ranges, as well as "find next element" This
637 // enables us to use it as a worklist with essentially 0 cost.
638 BitVector TouchedInstructions;
640 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
642 #ifndef NDEBUG
643 // Debugging for how many times each block and instruction got processed.
644 DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
647 // DFS info.
648 // This contains a mapping from Instructions to DFS numbers.
649 // The numbering starts at 1. An instruction with DFS number zero
650 // means that the instruction is dead.
651 DenseMap<const Value *, unsigned> InstrDFS;
653 // This contains the mapping DFS numbers to instructions.
654 SmallVector<Value *, 32> DFSToInstr;
656 // Deletion info.
657 SmallPtrSet<Instruction *, 8> InstructionsToErase;
659 public:
660 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662 const DataLayout &DL)
663 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666 /*CanUseUndef=*/false) {}
668 bool runGVN();
670 private:
671 /// Helper struct return a Expression with an optional extra dependency.
672 struct ExprResult {
673 const Expression *Expr;
674 Value *ExtraDep;
675 const PredicateBase *PredDep;
677 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
678 const PredicateBase *PredDep = nullptr)
679 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
680 ExprResult(const ExprResult &) = delete;
681 ExprResult(ExprResult &&Other)
682 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
683 Other.Expr = nullptr;
684 Other.ExtraDep = nullptr;
685 Other.PredDep = nullptr;
687 ExprResult &operator=(const ExprResult &Other) = delete;
688 ExprResult &operator=(ExprResult &&Other) = delete;
690 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
692 operator bool() const { return Expr; }
694 static ExprResult none() { return {nullptr, nullptr, nullptr}; }
695 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
696 return {Expr, ExtraDep, nullptr};
698 static ExprResult some(const Expression *Expr,
699 const PredicateBase *PredDep) {
700 return {Expr, nullptr, PredDep};
702 static ExprResult some(const Expression *Expr, Value *ExtraDep,
703 const PredicateBase *PredDep) {
704 return {Expr, ExtraDep, PredDep};
708 // Expression handling.
709 ExprResult createExpression(Instruction *) const;
710 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
711 Instruction *) const;
713 // Our canonical form for phi arguments is a pair of incoming value, incoming
714 // basic block.
715 using ValPair = std::pair<Value *, BasicBlock *>;
717 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
718 BasicBlock *, bool &HasBackEdge,
719 bool &OriginalOpsConstant) const;
720 const DeadExpression *createDeadExpression() const;
721 const VariableExpression *createVariableExpression(Value *) const;
722 const ConstantExpression *createConstantExpression(Constant *) const;
723 const Expression *createVariableOrConstant(Value *V) const;
724 const UnknownExpression *createUnknownExpression(Instruction *) const;
725 const StoreExpression *createStoreExpression(StoreInst *,
726 const MemoryAccess *) const;
727 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
728 const MemoryAccess *) const;
729 const CallExpression *createCallExpression(CallInst *,
730 const MemoryAccess *) const;
731 const AggregateValueExpression *
732 createAggregateValueExpression(Instruction *) const;
733 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
735 // Congruence class handling.
736 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
737 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
738 CongruenceClasses.emplace_back(result);
739 return result;
742 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
743 auto *CC = createCongruenceClass(nullptr, nullptr);
744 CC->setMemoryLeader(MA);
745 return CC;
748 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
749 auto *CC = getMemoryClass(MA);
750 if (CC->getMemoryLeader() != MA)
751 CC = createMemoryClass(MA);
752 return CC;
755 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
756 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
757 CClass->insert(Member);
758 ValueToClass[Member] = CClass;
759 return CClass;
762 void initializeCongruenceClasses(Function &F);
763 const Expression *makePossiblePHIOfOps(Instruction *,
764 SmallPtrSetImpl<Value *> &);
765 Value *findLeaderForInst(Instruction *ValueOp,
766 SmallPtrSetImpl<Value *> &Visited,
767 MemoryAccess *MemAccess, Instruction *OrigInst,
768 BasicBlock *PredBB);
769 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
770 SmallPtrSetImpl<const Value *> &Visited,
771 SmallVectorImpl<Instruction *> &Worklist);
772 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
773 SmallPtrSetImpl<const Value *> &);
774 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
775 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
777 // Value number an Instruction or MemoryPhi.
778 void valueNumberMemoryPhi(MemoryPhi *);
779 void valueNumberInstruction(Instruction *);
781 // Symbolic evaluation.
782 ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
783 ExprResult performSymbolicEvaluation(Value *,
784 SmallPtrSetImpl<Value *> &) const;
785 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
786 Instruction *,
787 MemoryAccess *) const;
788 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
789 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
790 ExprResult performSymbolicCallEvaluation(Instruction *) const;
791 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
792 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
793 Instruction *I,
794 BasicBlock *PHIBlock) const;
795 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
796 ExprResult performSymbolicCmpEvaluation(Instruction *) const;
797 ExprResult performSymbolicPredicateInfoEvaluation(Instruction *) const;
799 // Congruence finding.
800 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
801 Value *lookupOperandLeader(Value *) const;
802 CongruenceClass *getClassForExpression(const Expression *E) const;
803 void performCongruenceFinding(Instruction *, const Expression *);
804 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
805 CongruenceClass *, CongruenceClass *);
806 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
807 CongruenceClass *, CongruenceClass *);
808 Value *getNextValueLeader(CongruenceClass *) const;
809 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
810 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
811 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
812 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
813 bool isMemoryAccessTOP(const MemoryAccess *) const;
815 // Ranking
816 unsigned int getRank(const Value *) const;
817 bool shouldSwapOperands(const Value *, const Value *) const;
819 // Reachability handling.
820 void updateReachableEdge(BasicBlock *, BasicBlock *);
821 void processOutgoingEdges(Instruction *, BasicBlock *);
822 Value *findConditionEquivalence(Value *) const;
824 // Elimination.
825 struct ValueDFS;
826 void convertClassToDFSOrdered(const CongruenceClass &,
827 SmallVectorImpl<ValueDFS> &,
828 DenseMap<const Value *, unsigned int> &,
829 SmallPtrSetImpl<Instruction *> &) const;
830 void convertClassToLoadsAndStores(const CongruenceClass &,
831 SmallVectorImpl<ValueDFS> &) const;
833 bool eliminateInstructions(Function &);
834 void replaceInstruction(Instruction *, Value *);
835 void markInstructionForDeletion(Instruction *);
836 void deleteInstructionsInBlock(BasicBlock *);
837 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
838 const BasicBlock *) const;
840 // Various instruction touch utilities
841 template <typename Map, typename KeyType>
842 void touchAndErase(Map &, const KeyType &);
843 void markUsersTouched(Value *);
844 void markMemoryUsersTouched(const MemoryAccess *);
845 void markMemoryDefTouched(const MemoryAccess *);
846 void markPredicateUsersTouched(Instruction *);
847 void markValueLeaderChangeTouched(CongruenceClass *CC);
848 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
849 void markPhiOfOpsChanged(const Expression *E);
850 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
851 void addAdditionalUsers(Value *To, Value *User) const;
852 void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
854 // Main loop of value numbering
855 void iterateTouchedInstructions();
857 // Utilities.
858 void cleanupTables();
859 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
860 void updateProcessedCount(const Value *V);
861 void verifyMemoryCongruency() const;
862 void verifyIterationSettled(Function &F);
863 void verifyStoreExpressions() const;
864 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
865 const MemoryAccess *, const MemoryAccess *) const;
866 BasicBlock *getBlockForValue(Value *V) const;
867 void deleteExpression(const Expression *E) const;
868 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
869 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
870 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
872 unsigned InstrToDFSNum(const Value *V) const {
873 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
874 return InstrDFS.lookup(V);
877 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
878 return MemoryToDFSNum(MA);
881 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
883 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
884 // This deliberately takes a value so it can be used with Use's, which will
885 // auto-convert to Value's but not to MemoryAccess's.
886 unsigned MemoryToDFSNum(const Value *MA) const {
887 assert(isa<MemoryAccess>(MA) &&
888 "This should not be used with instructions");
889 return isa<MemoryUseOrDef>(MA)
890 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
891 : InstrDFS.lookup(MA);
894 bool isCycleFree(const Instruction *) const;
895 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
897 // Debug counter info. When verifying, we have to reset the value numbering
898 // debug counter to the same state it started in to get the same results.
899 int64_t StartingVNCounter = 0;
902 } // end anonymous namespace
904 template <typename T>
905 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
906 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
907 return false;
908 return LHS.MemoryExpression::equals(RHS);
911 bool LoadExpression::equals(const Expression &Other) const {
912 return equalsLoadStoreHelper(*this, Other);
915 bool StoreExpression::equals(const Expression &Other) const {
916 if (!equalsLoadStoreHelper(*this, Other))
917 return false;
918 // Make sure that store vs store includes the value operand.
919 if (const auto *S = dyn_cast<StoreExpression>(&Other))
920 if (getStoredValue() != S->getStoredValue())
921 return false;
922 return true;
925 // Determine if the edge From->To is a backedge
926 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
927 return From == To ||
928 RPOOrdering.lookup(DT->getNode(From)) >=
929 RPOOrdering.lookup(DT->getNode(To));
932 #ifndef NDEBUG
933 static std::string getBlockName(const BasicBlock *B) {
934 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
936 #endif
938 // Get a MemoryAccess for an instruction, fake or real.
939 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
940 auto *Result = MSSA->getMemoryAccess(I);
941 return Result ? Result : TempToMemory.lookup(I);
944 // Get a MemoryPhi for a basic block. These are all real.
945 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
946 return MSSA->getMemoryAccess(BB);
949 // Get the basic block from an instruction/memory value.
950 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
951 if (auto *I = dyn_cast<Instruction>(V)) {
952 auto *Parent = I->getParent();
953 if (Parent)
954 return Parent;
955 Parent = TempToBlock.lookup(V);
956 assert(Parent && "Every fake instruction should have a block");
957 return Parent;
960 auto *MP = dyn_cast<MemoryPhi>(V);
961 assert(MP && "Should have been an instruction or a MemoryPhi");
962 return MP->getBlock();
965 // Delete a definitely dead expression, so it can be reused by the expression
966 // allocator. Some of these are not in creation functions, so we have to accept
967 // const versions.
968 void NewGVN::deleteExpression(const Expression *E) const {
969 assert(isa<BasicExpression>(E));
970 auto *BE = cast<BasicExpression>(E);
971 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
972 ExpressionAllocator.Deallocate(E);
975 // If V is a predicateinfo copy, get the thing it is a copy of.
976 static Value *getCopyOf(const Value *V) {
977 if (auto *II = dyn_cast<IntrinsicInst>(V))
978 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
979 return II->getOperand(0);
980 return nullptr;
983 // Return true if V is really PN, even accounting for predicateinfo copies.
984 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
985 return V == PN || getCopyOf(V) == PN;
988 static bool isCopyOfAPHI(const Value *V) {
989 auto *CO = getCopyOf(V);
990 return CO && isa<PHINode>(CO);
993 // Sort PHI Operands into a canonical order. What we use here is an RPO
994 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
995 // blocks.
996 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
997 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
998 return BlockInstRange.lookup(P1.second).first <
999 BlockInstRange.lookup(P2.second).first;
1003 // Return true if V is a value that will always be available (IE can
1004 // be placed anywhere) in the function. We don't do globals here
1005 // because they are often worse to put in place.
1006 static bool alwaysAvailable(Value *V) {
1007 return isa<Constant>(V) || isa<Argument>(V);
1010 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
1011 // the original instruction we are creating a PHIExpression for (but may not be
1012 // a phi node). We require, as an invariant, that all the PHIOperands in the
1013 // same block are sorted the same way. sortPHIOps will sort them into a
1014 // canonical order.
1015 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1016 const Instruction *I,
1017 BasicBlock *PHIBlock,
1018 bool &HasBackedge,
1019 bool &OriginalOpsConstant) const {
1020 unsigned NumOps = PHIOperands.size();
1021 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1023 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1024 E->setType(PHIOperands.begin()->first->getType());
1025 E->setOpcode(Instruction::PHI);
1027 // Filter out unreachable phi operands.
1028 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1029 auto *BB = P.second;
1030 if (auto *PHIOp = dyn_cast<PHINode>(I))
1031 if (isCopyOfPHI(P.first, PHIOp))
1032 return false;
1033 if (!ReachableEdges.count({BB, PHIBlock}))
1034 return false;
1035 // Things in TOPClass are equivalent to everything.
1036 if (ValueToClass.lookup(P.first) == TOPClass)
1037 return false;
1038 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1039 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1040 return lookupOperandLeader(P.first) != I;
1042 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1043 [&](const ValPair &P) -> Value * {
1044 return lookupOperandLeader(P.first);
1046 return E;
1049 // Set basic expression info (Arguments, type, opcode) for Expression
1050 // E from Instruction I in block B.
1051 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1052 bool AllConstant = true;
1053 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1054 E->setType(GEP->getSourceElementType());
1055 else
1056 E->setType(I->getType());
1057 E->setOpcode(I->getOpcode());
1058 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1060 // Transform the operand array into an operand leader array, and keep track of
1061 // whether all members are constant.
1062 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1063 auto Operand = lookupOperandLeader(O);
1064 AllConstant = AllConstant && isa<Constant>(Operand);
1065 return Operand;
1068 return AllConstant;
1071 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1072 Value *Arg1, Value *Arg2,
1073 Instruction *I) const {
1074 auto *E = new (ExpressionAllocator) BasicExpression(2);
1076 E->setType(T);
1077 E->setOpcode(Opcode);
1078 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1079 if (Instruction::isCommutative(Opcode)) {
1080 // Ensure that commutative instructions that only differ by a permutation
1081 // of their operands get the same value number by sorting the operand value
1082 // numbers. Since all commutative instructions have two operands it is more
1083 // efficient to sort by hand rather than using, say, std::sort.
1084 if (shouldSwapOperands(Arg1, Arg2))
1085 std::swap(Arg1, Arg2);
1087 E->op_push_back(lookupOperandLeader(Arg1));
1088 E->op_push_back(lookupOperandLeader(Arg2));
1090 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1091 if (auto Simplified = checkExprResults(E, I, V)) {
1092 addAdditionalUsers(Simplified, I);
1093 return Simplified.Expr;
1095 return E;
1098 // Take a Value returned by simplification of Expression E/Instruction
1099 // I, and see if it resulted in a simpler expression. If so, return
1100 // that expression.
1101 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1102 Value *V) const {
1103 if (!V)
1104 return ExprResult::none();
1106 if (auto *C = dyn_cast<Constant>(V)) {
1107 if (I)
1108 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1109 << " constant " << *C << "\n");
1110 NumGVNOpsSimplified++;
1111 assert(isa<BasicExpression>(E) &&
1112 "We should always have had a basic expression here");
1113 deleteExpression(E);
1114 return ExprResult::some(createConstantExpression(C));
1115 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1116 if (I)
1117 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1118 << " variable " << *V << "\n");
1119 deleteExpression(E);
1120 return ExprResult::some(createVariableExpression(V));
1123 CongruenceClass *CC = ValueToClass.lookup(V);
1124 if (CC) {
1125 if (CC->getLeader() && CC->getLeader() != I) {
1126 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1128 if (CC->getDefiningExpr()) {
1129 if (I)
1130 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1131 << " expression " << *CC->getDefiningExpr() << "\n");
1132 NumGVNOpsSimplified++;
1133 deleteExpression(E);
1134 return ExprResult::some(CC->getDefiningExpr(), V);
1138 return ExprResult::none();
1141 // Create a value expression from the instruction I, replacing operands with
1142 // their leaders.
1144 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1145 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1147 bool AllConstant = setBasicExpressionInfo(I, E);
1149 if (I->isCommutative()) {
1150 // Ensure that commutative instructions that only differ by a permutation
1151 // of their operands get the same value number by sorting the operand value
1152 // numbers. Since all commutative instructions have two operands it is more
1153 // efficient to sort by hand rather than using, say, std::sort.
1154 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1155 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1156 E->swapOperands(0, 1);
1158 // Perform simplification.
1159 if (auto *CI = dyn_cast<CmpInst>(I)) {
1160 // Sort the operand value numbers so x<y and y>x get the same value
1161 // number.
1162 CmpInst::Predicate Predicate = CI->getPredicate();
1163 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1164 E->swapOperands(0, 1);
1165 Predicate = CmpInst::getSwappedPredicate(Predicate);
1167 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1168 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1169 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1170 "Wrong types on cmp instruction");
1171 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1172 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1173 Value *V =
1174 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1175 if (auto Simplified = checkExprResults(E, I, V))
1176 return Simplified;
1177 } else if (isa<SelectInst>(I)) {
1178 if (isa<Constant>(E->getOperand(0)) ||
1179 E->getOperand(1) == E->getOperand(2)) {
1180 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1181 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1182 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1183 E->getOperand(2), SQ);
1184 if (auto Simplified = checkExprResults(E, I, V))
1185 return Simplified;
1187 } else if (I->isBinaryOp()) {
1188 Value *V =
1189 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1190 if (auto Simplified = checkExprResults(E, I, V))
1191 return Simplified;
1192 } else if (auto *CI = dyn_cast<CastInst>(I)) {
1193 Value *V =
1194 SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1195 if (auto Simplified = checkExprResults(E, I, V))
1196 return Simplified;
1197 } else if (isa<GetElementPtrInst>(I)) {
1198 Value *V = SimplifyGEPInst(
1199 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1200 if (auto Simplified = checkExprResults(E, I, V))
1201 return Simplified;
1202 } else if (AllConstant) {
1203 // We don't bother trying to simplify unless all of the operands
1204 // were constant.
1205 // TODO: There are a lot of Simplify*'s we could call here, if we
1206 // wanted to. The original motivating case for this code was a
1207 // zext i1 false to i8, which we don't have an interface to
1208 // simplify (IE there is no SimplifyZExt).
1210 SmallVector<Constant *, 8> C;
1211 for (Value *Arg : E->operands())
1212 C.emplace_back(cast<Constant>(Arg));
1214 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1215 if (auto Simplified = checkExprResults(E, I, V))
1216 return Simplified;
1218 return ExprResult::some(E);
1221 const AggregateValueExpression *
1222 NewGVN::createAggregateValueExpression(Instruction *I) const {
1223 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1224 auto *E = new (ExpressionAllocator)
1225 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1226 setBasicExpressionInfo(I, E);
1227 E->allocateIntOperands(ExpressionAllocator);
1228 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1229 return E;
1230 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1231 auto *E = new (ExpressionAllocator)
1232 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1233 setBasicExpressionInfo(EI, E);
1234 E->allocateIntOperands(ExpressionAllocator);
1235 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1236 return E;
1238 llvm_unreachable("Unhandled type of aggregate value operation");
1241 const DeadExpression *NewGVN::createDeadExpression() const {
1242 // DeadExpression has no arguments and all DeadExpression's are the same,
1243 // so we only need one of them.
1244 return SingletonDeadExpression;
1247 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1248 auto *E = new (ExpressionAllocator) VariableExpression(V);
1249 E->setOpcode(V->getValueID());
1250 return E;
1253 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1254 if (auto *C = dyn_cast<Constant>(V))
1255 return createConstantExpression(C);
1256 return createVariableExpression(V);
1259 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1260 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1261 E->setOpcode(C->getValueID());
1262 return E;
1265 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1266 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1267 E->setOpcode(I->getOpcode());
1268 return E;
1271 const CallExpression *
1272 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1273 // FIXME: Add operand bundles for calls.
1274 // FIXME: Allow commutative matching for intrinsics.
1275 auto *E =
1276 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1277 setBasicExpressionInfo(CI, E);
1278 return E;
1281 // Return true if some equivalent of instruction Inst dominates instruction U.
1282 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1283 const Instruction *U) const {
1284 auto *CC = ValueToClass.lookup(Inst);
1285 // This must be an instruction because we are only called from phi nodes
1286 // in the case that the value it needs to check against is an instruction.
1288 // The most likely candidates for dominance are the leader and the next leader.
1289 // The leader or nextleader will dominate in all cases where there is an
1290 // equivalent that is higher up in the dom tree.
1291 // We can't *only* check them, however, because the
1292 // dominator tree could have an infinite number of non-dominating siblings
1293 // with instructions that are in the right congruence class.
1294 // A
1295 // B C D E F G
1296 // |
1297 // H
1298 // Instruction U could be in H, with equivalents in every other sibling.
1299 // Depending on the rpo order picked, the leader could be the equivalent in
1300 // any of these siblings.
1301 if (!CC)
1302 return false;
1303 if (alwaysAvailable(CC->getLeader()))
1304 return true;
1305 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1306 return true;
1307 if (CC->getNextLeader().first &&
1308 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1309 return true;
1310 return llvm::any_of(*CC, [&](const Value *Member) {
1311 return Member != CC->getLeader() &&
1312 DT->dominates(cast<Instruction>(Member), U);
1316 // See if we have a congruence class and leader for this operand, and if so,
1317 // return it. Otherwise, return the operand itself.
1318 Value *NewGVN::lookupOperandLeader(Value *V) const {
1319 CongruenceClass *CC = ValueToClass.lookup(V);
1320 if (CC) {
1321 // Everything in TOP is represented by undef, as it can be any value.
1322 // We do have to make sure we get the type right though, so we can't set the
1323 // RepLeader to undef.
1324 if (CC == TOPClass)
1325 return UndefValue::get(V->getType());
1326 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1329 return V;
1332 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1333 auto *CC = getMemoryClass(MA);
1334 assert(CC->getMemoryLeader() &&
1335 "Every MemoryAccess should be mapped to a congruence class with a "
1336 "representative memory access");
1337 return CC->getMemoryLeader();
1340 // Return true if the MemoryAccess is really equivalent to everything. This is
1341 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1342 // state of all MemoryAccesses.
1343 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1344 return getMemoryClass(MA) == TOPClass;
1347 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1348 LoadInst *LI,
1349 const MemoryAccess *MA) const {
1350 auto *E =
1351 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1352 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1353 E->setType(LoadType);
1355 // Give store and loads same opcode so they value number together.
1356 E->setOpcode(0);
1357 E->op_push_back(PointerOp);
1359 // TODO: Value number heap versions. We may be able to discover
1360 // things alias analysis can't on it's own (IE that a store and a
1361 // load have the same value, and thus, it isn't clobbering the load).
1362 return E;
1365 const StoreExpression *
1366 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1367 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1368 auto *E = new (ExpressionAllocator)
1369 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1370 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1371 E->setType(SI->getValueOperand()->getType());
1373 // Give store and loads same opcode so they value number together.
1374 E->setOpcode(0);
1375 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1377 // TODO: Value number heap versions. We may be able to discover
1378 // things alias analysis can't on it's own (IE that a store and a
1379 // load have the same value, and thus, it isn't clobbering the load).
1380 return E;
1383 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1384 // Unlike loads, we never try to eliminate stores, so we do not check if they
1385 // are simple and avoid value numbering them.
1386 auto *SI = cast<StoreInst>(I);
1387 auto *StoreAccess = getMemoryAccess(SI);
1388 // Get the expression, if any, for the RHS of the MemoryDef.
1389 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1390 if (EnableStoreRefinement)
1391 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1392 // If we bypassed the use-def chains, make sure we add a use.
1393 StoreRHS = lookupMemoryLeader(StoreRHS);
1394 if (StoreRHS != StoreAccess->getDefiningAccess())
1395 addMemoryUsers(StoreRHS, StoreAccess);
1396 // If we are defined by ourselves, use the live on entry def.
1397 if (StoreRHS == StoreAccess)
1398 StoreRHS = MSSA->getLiveOnEntryDef();
1400 if (SI->isSimple()) {
1401 // See if we are defined by a previous store expression, it already has a
1402 // value, and it's the same value as our current store. FIXME: Right now, we
1403 // only do this for simple stores, we should expand to cover memcpys, etc.
1404 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1405 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1406 // We really want to check whether the expression we matched was a store. No
1407 // easy way to do that. However, we can check that the class we found has a
1408 // store, which, assuming the value numbering state is not corrupt, is
1409 // sufficient, because we must also be equivalent to that store's expression
1410 // for it to be in the same class as the load.
1411 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1412 return LastStore;
1413 // Also check if our value operand is defined by a load of the same memory
1414 // location, and the memory state is the same as it was then (otherwise, it
1415 // could have been overwritten later. See test32 in
1416 // transforms/DeadStoreElimination/simple.ll).
1417 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1418 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1419 LastStore->getOperand(0)) &&
1420 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1421 StoreRHS))
1422 return LastStore;
1423 deleteExpression(LastStore);
1426 // If the store is not equivalent to anything, value number it as a store that
1427 // produces a unique memory state (instead of using it's MemoryUse, we use
1428 // it's MemoryDef).
1429 return createStoreExpression(SI, StoreAccess);
1432 // See if we can extract the value of a loaded pointer from a load, a store, or
1433 // a memory instruction.
1434 const Expression *
1435 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1436 LoadInst *LI, Instruction *DepInst,
1437 MemoryAccess *DefiningAccess) const {
1438 assert((!LI || LI->isSimple()) && "Not a simple load");
1439 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1440 // Can't forward from non-atomic to atomic without violating memory model.
1441 // Also don't need to coerce if they are the same type, we will just
1442 // propagate.
1443 if (LI->isAtomic() > DepSI->isAtomic() ||
1444 LoadType == DepSI->getValueOperand()->getType())
1445 return nullptr;
1446 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1447 if (Offset >= 0) {
1448 if (auto *C = dyn_cast<Constant>(
1449 lookupOperandLeader(DepSI->getValueOperand()))) {
1450 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1451 << " to constant " << *C << "\n");
1452 return createConstantExpression(
1453 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1456 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1457 // Can't forward from non-atomic to atomic without violating memory model.
1458 if (LI->isAtomic() > DepLI->isAtomic())
1459 return nullptr;
1460 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1461 if (Offset >= 0) {
1462 // We can coerce a constant load into a load.
1463 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1464 if (auto *PossibleConstant =
1465 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1466 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1467 << " to constant " << *PossibleConstant << "\n");
1468 return createConstantExpression(PossibleConstant);
1471 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1472 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1473 if (Offset >= 0) {
1474 if (auto *PossibleConstant =
1475 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1476 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1477 << " to constant " << *PossibleConstant << "\n");
1478 return createConstantExpression(PossibleConstant);
1483 // All of the below are only true if the loaded pointer is produced
1484 // by the dependent instruction.
1485 if (LoadPtr != lookupOperandLeader(DepInst) &&
1486 !AA->isMustAlias(LoadPtr, DepInst))
1487 return nullptr;
1488 // If this load really doesn't depend on anything, then we must be loading an
1489 // undef value. This can happen when loading for a fresh allocation with no
1490 // intervening stores, for example. Note that this is only true in the case
1491 // that the result of the allocation is pointer equal to the load ptr.
1492 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1493 isAlignedAllocLikeFn(DepInst, TLI)) {
1494 return createConstantExpression(UndefValue::get(LoadType));
1496 // If this load occurs either right after a lifetime begin,
1497 // then the loaded value is undefined.
1498 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1499 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1500 return createConstantExpression(UndefValue::get(LoadType));
1502 // If this load follows a calloc (which zero initializes memory),
1503 // then the loaded value is zero
1504 else if (isCallocLikeFn(DepInst, TLI)) {
1505 return createConstantExpression(Constant::getNullValue(LoadType));
1508 return nullptr;
1511 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1512 auto *LI = cast<LoadInst>(I);
1514 // We can eliminate in favor of non-simple loads, but we won't be able to
1515 // eliminate the loads themselves.
1516 if (!LI->isSimple())
1517 return nullptr;
1519 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1520 // Load of undef is undef.
1521 if (isa<UndefValue>(LoadAddressLeader))
1522 return createConstantExpression(UndefValue::get(LI->getType()));
1523 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1524 MemoryAccess *DefiningAccess =
1525 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1527 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1528 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1529 Instruction *DefiningInst = MD->getMemoryInst();
1530 // If the defining instruction is not reachable, replace with undef.
1531 if (!ReachableBlocks.count(DefiningInst->getParent()))
1532 return createConstantExpression(UndefValue::get(LI->getType()));
1533 // This will handle stores and memory insts. We only do if it the
1534 // defining access has a different type, or it is a pointer produced by
1535 // certain memory operations that cause the memory to have a fixed value
1536 // (IE things like calloc).
1537 if (const auto *CoercionResult =
1538 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1539 DefiningInst, DefiningAccess))
1540 return CoercionResult;
1544 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1545 DefiningAccess);
1546 // If our MemoryLeader is not our defining access, add a use to the
1547 // MemoryLeader, so that we get reprocessed when it changes.
1548 if (LE->getMemoryLeader() != DefiningAccess)
1549 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1550 return LE;
1553 NewGVN::ExprResult
1554 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1555 auto *PI = PredInfo->getPredicateInfoFor(I);
1556 if (!PI)
1557 return ExprResult::none();
1559 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1561 const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1562 if (!Constraint)
1563 return ExprResult::none();
1565 CmpInst::Predicate Predicate = Constraint->Predicate;
1566 Value *CmpOp0 = I->getOperand(0);
1567 Value *CmpOp1 = Constraint->OtherOp;
1569 Value *FirstOp = lookupOperandLeader(CmpOp0);
1570 Value *SecondOp = lookupOperandLeader(CmpOp1);
1571 Value *AdditionallyUsedValue = CmpOp0;
1573 // Sort the ops.
1574 if (shouldSwapOperands(FirstOp, SecondOp)) {
1575 std::swap(FirstOp, SecondOp);
1576 Predicate = CmpInst::getSwappedPredicate(Predicate);
1577 AdditionallyUsedValue = CmpOp1;
1580 if (Predicate == CmpInst::ICMP_EQ)
1581 return ExprResult::some(createVariableOrConstant(FirstOp),
1582 AdditionallyUsedValue, PI);
1584 // Handle the special case of floating point.
1585 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1586 !cast<ConstantFP>(FirstOp)->isZero())
1587 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1588 AdditionallyUsedValue, PI);
1590 return ExprResult::none();
1593 // Evaluate read only and pure calls, and create an expression result.
1594 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1595 auto *CI = cast<CallInst>(I);
1596 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1597 // Intrinsics with the returned attribute are copies of arguments.
1598 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1599 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1600 if (auto Res = performSymbolicPredicateInfoEvaluation(I))
1601 return Res;
1602 return ExprResult::some(createVariableOrConstant(ReturnedValue));
1605 if (AA->doesNotAccessMemory(CI)) {
1606 return ExprResult::some(
1607 createCallExpression(CI, TOPClass->getMemoryLeader()));
1608 } else if (AA->onlyReadsMemory(CI)) {
1609 if (auto *MA = MSSA->getMemoryAccess(CI)) {
1610 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1611 return ExprResult::some(createCallExpression(CI, DefiningAccess));
1612 } else // MSSA determined that CI does not access memory.
1613 return ExprResult::some(
1614 createCallExpression(CI, TOPClass->getMemoryLeader()));
1616 return ExprResult::none();
1619 // Retrieve the memory class for a given MemoryAccess.
1620 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1621 auto *Result = MemoryAccessToClass.lookup(MA);
1622 assert(Result && "Should have found memory class");
1623 return Result;
1626 // Update the MemoryAccess equivalence table to say that From is equal to To,
1627 // and return true if this is different from what already existed in the table.
1628 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1629 CongruenceClass *NewClass) {
1630 assert(NewClass &&
1631 "Every MemoryAccess should be getting mapped to a non-null class");
1632 LLVM_DEBUG(dbgs() << "Setting " << *From);
1633 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1634 LLVM_DEBUG(dbgs() << NewClass->getID()
1635 << " with current MemoryAccess leader ");
1636 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1638 auto LookupResult = MemoryAccessToClass.find(From);
1639 bool Changed = false;
1640 // If it's already in the table, see if the value changed.
1641 if (LookupResult != MemoryAccessToClass.end()) {
1642 auto *OldClass = LookupResult->second;
1643 if (OldClass != NewClass) {
1644 // If this is a phi, we have to handle memory member updates.
1645 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1646 OldClass->memory_erase(MP);
1647 NewClass->memory_insert(MP);
1648 // This may have killed the class if it had no non-memory members
1649 if (OldClass->getMemoryLeader() == From) {
1650 if (OldClass->definesNoMemory()) {
1651 OldClass->setMemoryLeader(nullptr);
1652 } else {
1653 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1654 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1655 << OldClass->getID() << " to "
1656 << *OldClass->getMemoryLeader()
1657 << " due to removal of a memory member " << *From
1658 << "\n");
1659 markMemoryLeaderChangeTouched(OldClass);
1663 // It wasn't equivalent before, and now it is.
1664 LookupResult->second = NewClass;
1665 Changed = true;
1669 return Changed;
1672 // Determine if a instruction is cycle-free. That means the values in the
1673 // instruction don't depend on any expressions that can change value as a result
1674 // of the instruction. For example, a non-cycle free instruction would be v =
1675 // phi(0, v+1).
1676 bool NewGVN::isCycleFree(const Instruction *I) const {
1677 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1678 // and see what kind of SCC it ends up in. If it is a singleton, it is
1679 // cycle-free. If it is not in a singleton, it is only cycle free if the
1680 // other members are all phi nodes (as they do not compute anything, they are
1681 // copies).
1682 auto ICS = InstCycleState.lookup(I);
1683 if (ICS == ICS_Unknown) {
1684 SCCFinder.Start(I);
1685 auto &SCC = SCCFinder.getComponentFor(I);
1686 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1687 if (SCC.size() == 1)
1688 InstCycleState.insert({I, ICS_CycleFree});
1689 else {
1690 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1691 return isa<PHINode>(V) || isCopyOfAPHI(V);
1693 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1694 for (auto *Member : SCC)
1695 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1696 InstCycleState.insert({MemberPhi, ICS});
1699 if (ICS == ICS_Cycle)
1700 return false;
1701 return true;
1704 // Evaluate PHI nodes symbolically and create an expression result.
1705 const Expression *
1706 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1707 Instruction *I,
1708 BasicBlock *PHIBlock) const {
1709 // True if one of the incoming phi edges is a backedge.
1710 bool HasBackedge = false;
1711 // All constant tracks the state of whether all the *original* phi operands
1712 // This is really shorthand for "this phi cannot cycle due to forward
1713 // change in value of the phi is guaranteed not to later change the value of
1714 // the phi. IE it can't be v = phi(undef, v+1)
1715 bool OriginalOpsConstant = true;
1716 auto *E = cast<PHIExpression>(createPHIExpression(
1717 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1718 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1719 // See if all arguments are the same.
1720 // We track if any were undef because they need special handling.
1721 bool HasUndef = false;
1722 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1723 if (isa<UndefValue>(Arg)) {
1724 HasUndef = true;
1725 return false;
1727 return true;
1729 // If we are left with no operands, it's dead.
1730 if (Filtered.empty()) {
1731 // If it has undef at this point, it means there are no-non-undef arguments,
1732 // and thus, the value of the phi node must be undef.
1733 if (HasUndef) {
1734 LLVM_DEBUG(
1735 dbgs() << "PHI Node " << *I
1736 << " has no non-undef arguments, valuing it as undef\n");
1737 return createConstantExpression(UndefValue::get(I->getType()));
1740 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1741 deleteExpression(E);
1742 return createDeadExpression();
1744 Value *AllSameValue = *(Filtered.begin());
1745 ++Filtered.begin();
1746 // Can't use std::equal here, sadly, because filter.begin moves.
1747 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1748 // In LLVM's non-standard representation of phi nodes, it's possible to have
1749 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1750 // on the original phi node), especially in weird CFG's where some arguments
1751 // are unreachable, or uninitialized along certain paths. This can cause
1752 // infinite loops during evaluation. We work around this by not trying to
1753 // really evaluate them independently, but instead using a variable
1754 // expression to say if one is equivalent to the other.
1755 // We also special case undef, so that if we have an undef, we can't use the
1756 // common value unless it dominates the phi block.
1757 if (HasUndef) {
1758 // If we have undef and at least one other value, this is really a
1759 // multivalued phi, and we need to know if it's cycle free in order to
1760 // evaluate whether we can ignore the undef. The other parts of this are
1761 // just shortcuts. If there is no backedge, or all operands are
1762 // constants, it also must be cycle free.
1763 if (HasBackedge && !OriginalOpsConstant &&
1764 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1765 return E;
1767 // Only have to check for instructions
1768 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1769 if (!someEquivalentDominates(AllSameInst, I))
1770 return E;
1772 // Can't simplify to something that comes later in the iteration.
1773 // Otherwise, when and if it changes congruence class, we will never catch
1774 // up. We will always be a class behind it.
1775 if (isa<Instruction>(AllSameValue) &&
1776 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1777 return E;
1778 NumGVNPhisAllSame++;
1779 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1780 << "\n");
1781 deleteExpression(E);
1782 return createVariableOrConstant(AllSameValue);
1784 return E;
1787 const Expression *
1788 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1789 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1790 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1791 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1792 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1793 // a semantically equivalent expression instead of an extract value
1794 // expression.
1795 return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1796 WO->getLHS(), WO->getRHS(), I);
1799 return createAggregateValueExpression(I);
1802 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1803 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1805 auto *CI = cast<CmpInst>(I);
1806 // See if our operands are equal to those of a previous predicate, and if so,
1807 // if it implies true or false.
1808 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1809 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1810 auto OurPredicate = CI->getPredicate();
1811 if (shouldSwapOperands(Op0, Op1)) {
1812 std::swap(Op0, Op1);
1813 OurPredicate = CI->getSwappedPredicate();
1816 // Avoid processing the same info twice.
1817 const PredicateBase *LastPredInfo = nullptr;
1818 // See if we know something about the comparison itself, like it is the target
1819 // of an assume.
1820 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1821 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1822 return ExprResult::some(
1823 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1825 if (Op0 == Op1) {
1826 // This condition does not depend on predicates, no need to add users
1827 if (CI->isTrueWhenEqual())
1828 return ExprResult::some(
1829 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1830 else if (CI->isFalseWhenEqual())
1831 return ExprResult::some(
1832 createConstantExpression(ConstantInt::getFalse(CI->getType())));
1835 // NOTE: Because we are comparing both operands here and below, and using
1836 // previous comparisons, we rely on fact that predicateinfo knows to mark
1837 // comparisons that use renamed operands as users of the earlier comparisons.
1838 // It is *not* enough to just mark predicateinfo renamed operands as users of
1839 // the earlier comparisons, because the *other* operand may have changed in a
1840 // previous iteration.
1841 // Example:
1842 // icmp slt %a, %b
1843 // %b.0 = ssa.copy(%b)
1844 // false branch:
1845 // icmp slt %c, %b.0
1847 // %c and %a may start out equal, and thus, the code below will say the second
1848 // %icmp is false. c may become equal to something else, and in that case the
1849 // %second icmp *must* be reexamined, but would not if only the renamed
1850 // %operands are considered users of the icmp.
1852 // *Currently* we only check one level of comparisons back, and only mark one
1853 // level back as touched when changes happen. If you modify this code to look
1854 // back farther through comparisons, you *must* mark the appropriate
1855 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1856 // we know something just from the operands themselves
1858 // See if our operands have predicate info, so that we may be able to derive
1859 // something from a previous comparison.
1860 for (const auto &Op : CI->operands()) {
1861 auto *PI = PredInfo->getPredicateInfoFor(Op);
1862 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1863 if (PI == LastPredInfo)
1864 continue;
1865 LastPredInfo = PI;
1866 // In phi of ops cases, we may have predicate info that we are evaluating
1867 // in a different context.
1868 if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1869 continue;
1870 // TODO: Along the false edge, we may know more things too, like
1871 // icmp of
1872 // same operands is false.
1873 // TODO: We only handle actual comparison conditions below, not
1874 // and/or.
1875 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1876 if (!BranchCond)
1877 continue;
1878 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1879 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1880 auto BranchPredicate = BranchCond->getPredicate();
1881 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1882 std::swap(BranchOp0, BranchOp1);
1883 BranchPredicate = BranchCond->getSwappedPredicate();
1885 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1886 if (PBranch->TrueEdge) {
1887 // If we know the previous predicate is true and we are in the true
1888 // edge then we may be implied true or false.
1889 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1890 OurPredicate)) {
1891 return ExprResult::some(
1892 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1893 PI);
1896 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1897 OurPredicate)) {
1898 return ExprResult::some(
1899 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1900 PI);
1902 } else {
1903 // Just handle the ne and eq cases, where if we have the same
1904 // operands, we may know something.
1905 if (BranchPredicate == OurPredicate) {
1906 // Same predicate, same ops,we know it was false, so this is false.
1907 return ExprResult::some(
1908 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1909 PI);
1910 } else if (BranchPredicate ==
1911 CmpInst::getInversePredicate(OurPredicate)) {
1912 // Inverse predicate, we know the other was false, so this is true.
1913 return ExprResult::some(
1914 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1915 PI);
1921 // Create expression will take care of simplifyCmpInst
1922 return createExpression(I);
1925 // Substitute and symbolize the value before value numbering.
1926 NewGVN::ExprResult
1927 NewGVN::performSymbolicEvaluation(Value *V,
1928 SmallPtrSetImpl<Value *> &Visited) const {
1930 const Expression *E = nullptr;
1931 if (auto *C = dyn_cast<Constant>(V))
1932 E = createConstantExpression(C);
1933 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1934 E = createVariableExpression(V);
1935 } else {
1936 // TODO: memory intrinsics.
1937 // TODO: Some day, we should do the forward propagation and reassociation
1938 // parts of the algorithm.
1939 auto *I = cast<Instruction>(V);
1940 switch (I->getOpcode()) {
1941 case Instruction::ExtractValue:
1942 case Instruction::InsertValue:
1943 E = performSymbolicAggrValueEvaluation(I);
1944 break;
1945 case Instruction::PHI: {
1946 SmallVector<ValPair, 3> Ops;
1947 auto *PN = cast<PHINode>(I);
1948 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1949 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1950 // Sort to ensure the invariant createPHIExpression requires is met.
1951 sortPHIOps(Ops);
1952 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1953 } break;
1954 case Instruction::Call:
1955 return performSymbolicCallEvaluation(I);
1956 break;
1957 case Instruction::Store:
1958 E = performSymbolicStoreEvaluation(I);
1959 break;
1960 case Instruction::Load:
1961 E = performSymbolicLoadEvaluation(I);
1962 break;
1963 case Instruction::BitCast:
1964 case Instruction::AddrSpaceCast:
1965 return createExpression(I);
1966 break;
1967 case Instruction::ICmp:
1968 case Instruction::FCmp:
1969 return performSymbolicCmpEvaluation(I);
1970 break;
1971 case Instruction::FNeg:
1972 case Instruction::Add:
1973 case Instruction::FAdd:
1974 case Instruction::Sub:
1975 case Instruction::FSub:
1976 case Instruction::Mul:
1977 case Instruction::FMul:
1978 case Instruction::UDiv:
1979 case Instruction::SDiv:
1980 case Instruction::FDiv:
1981 case Instruction::URem:
1982 case Instruction::SRem:
1983 case Instruction::FRem:
1984 case Instruction::Shl:
1985 case Instruction::LShr:
1986 case Instruction::AShr:
1987 case Instruction::And:
1988 case Instruction::Or:
1989 case Instruction::Xor:
1990 case Instruction::Trunc:
1991 case Instruction::ZExt:
1992 case Instruction::SExt:
1993 case Instruction::FPToUI:
1994 case Instruction::FPToSI:
1995 case Instruction::UIToFP:
1996 case Instruction::SIToFP:
1997 case Instruction::FPTrunc:
1998 case Instruction::FPExt:
1999 case Instruction::PtrToInt:
2000 case Instruction::IntToPtr:
2001 case Instruction::Select:
2002 case Instruction::ExtractElement:
2003 case Instruction::InsertElement:
2004 case Instruction::GetElementPtr:
2005 return createExpression(I);
2006 break;
2007 case Instruction::ShuffleVector:
2008 // FIXME: Add support for shufflevector to createExpression.
2009 return ExprResult::none();
2010 default:
2011 return ExprResult::none();
2014 return ExprResult::some(E);
2017 // Look up a container of values/instructions in a map, and touch all the
2018 // instructions in the container. Then erase value from the map.
2019 template <typename Map, typename KeyType>
2020 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2021 const auto Result = M.find_as(Key);
2022 if (Result != M.end()) {
2023 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2024 TouchedInstructions.set(InstrToDFSNum(Mapped));
2025 M.erase(Result);
2029 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2030 assert(User && To != User);
2031 if (isa<Instruction>(To))
2032 AdditionalUsers[To].insert(User);
2035 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2036 if (Res.ExtraDep && Res.ExtraDep != User)
2037 addAdditionalUsers(Res.ExtraDep, User);
2038 Res.ExtraDep = nullptr;
2040 if (Res.PredDep) {
2041 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2042 PredicateToUsers[PBranch->Condition].insert(User);
2043 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2044 PredicateToUsers[PAssume->Condition].insert(User);
2046 Res.PredDep = nullptr;
2049 void NewGVN::markUsersTouched(Value *V) {
2050 // Now mark the users as touched.
2051 for (auto *User : V->users()) {
2052 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2053 TouchedInstructions.set(InstrToDFSNum(User));
2055 touchAndErase(AdditionalUsers, V);
2058 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2059 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2060 MemoryToUsers[To].insert(U);
2063 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2064 TouchedInstructions.set(MemoryToDFSNum(MA));
2067 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2068 if (isa<MemoryUse>(MA))
2069 return;
2070 for (auto U : MA->users())
2071 TouchedInstructions.set(MemoryToDFSNum(U));
2072 touchAndErase(MemoryToUsers, MA);
2075 // Touch all the predicates that depend on this instruction.
2076 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2077 touchAndErase(PredicateToUsers, I);
2080 // Mark users affected by a memory leader change.
2081 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2082 for (auto M : CC->memory())
2083 markMemoryDefTouched(M);
2086 // Touch the instructions that need to be updated after a congruence class has a
2087 // leader change, and mark changed values.
2088 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2089 for (auto M : *CC) {
2090 if (auto *I = dyn_cast<Instruction>(M))
2091 TouchedInstructions.set(InstrToDFSNum(I));
2092 LeaderChanges.insert(M);
2096 // Give a range of things that have instruction DFS numbers, this will return
2097 // the member of the range with the smallest dfs number.
2098 template <class T, class Range>
2099 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2100 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2101 for (const auto X : R) {
2102 auto DFSNum = InstrToDFSNum(X);
2103 if (DFSNum < MinDFS.second)
2104 MinDFS = {X, DFSNum};
2106 return MinDFS.first;
2109 // This function returns the MemoryAccess that should be the next leader of
2110 // congruence class CC, under the assumption that the current leader is going to
2111 // disappear.
2112 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2113 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2114 // do for regular leaders.
2115 // Make sure there will be a leader to find.
2116 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2117 if (CC->getStoreCount() > 0) {
2118 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2119 return getMemoryAccess(NL);
2120 // Find the store with the minimum DFS number.
2121 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2122 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2123 return getMemoryAccess(cast<StoreInst>(V));
2125 assert(CC->getStoreCount() == 0);
2127 // Given our assertion, hitting this part must mean
2128 // !OldClass->memory_empty()
2129 if (CC->memory_size() == 1)
2130 return *CC->memory_begin();
2131 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2134 // This function returns the next value leader of a congruence class, under the
2135 // assumption that the current leader is going away. This should end up being
2136 // the next most dominating member.
2137 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2138 // We don't need to sort members if there is only 1, and we don't care about
2139 // sorting the TOP class because everything either gets out of it or is
2140 // unreachable.
2142 if (CC->size() == 1 || CC == TOPClass) {
2143 return *(CC->begin());
2144 } else if (CC->getNextLeader().first) {
2145 ++NumGVNAvoidedSortedLeaderChanges;
2146 return CC->getNextLeader().first;
2147 } else {
2148 ++NumGVNSortedLeaderChanges;
2149 // NOTE: If this ends up to slow, we can maintain a dual structure for
2150 // member testing/insertion, or keep things mostly sorted, and sort only
2151 // here, or use SparseBitVector or ....
2152 return getMinDFSOfRange<Value>(*CC);
2156 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2157 // the memory members, etc for the move.
2159 // The invariants of this function are:
2161 // - I must be moving to NewClass from OldClass
2162 // - The StoreCount of OldClass and NewClass is expected to have been updated
2163 // for I already if it is a store.
2164 // - The OldClass memory leader has not been updated yet if I was the leader.
2165 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2166 MemoryAccess *InstMA,
2167 CongruenceClass *OldClass,
2168 CongruenceClass *NewClass) {
2169 // If the leader is I, and we had a representative MemoryAccess, it should
2170 // be the MemoryAccess of OldClass.
2171 assert((!InstMA || !OldClass->getMemoryLeader() ||
2172 OldClass->getLeader() != I ||
2173 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2174 MemoryAccessToClass.lookup(InstMA)) &&
2175 "Representative MemoryAccess mismatch");
2176 // First, see what happens to the new class
2177 if (!NewClass->getMemoryLeader()) {
2178 // Should be a new class, or a store becoming a leader of a new class.
2179 assert(NewClass->size() == 1 ||
2180 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2181 NewClass->setMemoryLeader(InstMA);
2182 // Mark it touched if we didn't just create a singleton
2183 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2184 << NewClass->getID()
2185 << " due to new memory instruction becoming leader\n");
2186 markMemoryLeaderChangeTouched(NewClass);
2188 setMemoryClass(InstMA, NewClass);
2189 // Now, fixup the old class if necessary
2190 if (OldClass->getMemoryLeader() == InstMA) {
2191 if (!OldClass->definesNoMemory()) {
2192 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2193 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2194 << OldClass->getID() << " to "
2195 << *OldClass->getMemoryLeader()
2196 << " due to removal of old leader " << *InstMA << "\n");
2197 markMemoryLeaderChangeTouched(OldClass);
2198 } else
2199 OldClass->setMemoryLeader(nullptr);
2203 // Move a value, currently in OldClass, to be part of NewClass
2204 // Update OldClass and NewClass for the move (including changing leaders, etc).
2205 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2206 CongruenceClass *OldClass,
2207 CongruenceClass *NewClass) {
2208 if (I == OldClass->getNextLeader().first)
2209 OldClass->resetNextLeader();
2211 OldClass->erase(I);
2212 NewClass->insert(I);
2214 if (NewClass->getLeader() != I)
2215 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2216 // Handle our special casing of stores.
2217 if (auto *SI = dyn_cast<StoreInst>(I)) {
2218 OldClass->decStoreCount();
2219 // Okay, so when do we want to make a store a leader of a class?
2220 // If we have a store defined by an earlier load, we want the earlier load
2221 // to lead the class.
2222 // If we have a store defined by something else, we want the store to lead
2223 // the class so everything else gets the "something else" as a value.
2224 // If we have a store as the single member of the class, we want the store
2225 // as the leader
2226 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2227 // If it's a store expression we are using, it means we are not equivalent
2228 // to something earlier.
2229 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2230 NewClass->setStoredValue(SE->getStoredValue());
2231 markValueLeaderChangeTouched(NewClass);
2232 // Shift the new class leader to be the store
2233 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2234 << NewClass->getID() << " from "
2235 << *NewClass->getLeader() << " to " << *SI
2236 << " because store joined class\n");
2237 // If we changed the leader, we have to mark it changed because we don't
2238 // know what it will do to symbolic evaluation.
2239 NewClass->setLeader(SI);
2241 // We rely on the code below handling the MemoryAccess change.
2243 NewClass->incStoreCount();
2245 // True if there is no memory instructions left in a class that had memory
2246 // instructions before.
2248 // If it's not a memory use, set the MemoryAccess equivalence
2249 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2250 if (InstMA)
2251 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2252 ValueToClass[I] = NewClass;
2253 // See if we destroyed the class or need to swap leaders.
2254 if (OldClass->empty() && OldClass != TOPClass) {
2255 if (OldClass->getDefiningExpr()) {
2256 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2257 << " from table\n");
2258 // We erase it as an exact expression to make sure we don't just erase an
2259 // equivalent one.
2260 auto Iter = ExpressionToClass.find_as(
2261 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2262 if (Iter != ExpressionToClass.end())
2263 ExpressionToClass.erase(Iter);
2264 #ifdef EXPENSIVE_CHECKS
2265 assert(
2266 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2267 "We erased the expression we just inserted, which should not happen");
2268 #endif
2270 } else if (OldClass->getLeader() == I) {
2271 // When the leader changes, the value numbering of
2272 // everything may change due to symbolization changes, so we need to
2273 // reprocess.
2274 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2275 << OldClass->getID() << "\n");
2276 ++NumGVNLeaderChanges;
2277 // Destroy the stored value if there are no more stores to represent it.
2278 // Note that this is basically clean up for the expression removal that
2279 // happens below. If we remove stores from a class, we may leave it as a
2280 // class of equivalent memory phis.
2281 if (OldClass->getStoreCount() == 0) {
2282 if (OldClass->getStoredValue())
2283 OldClass->setStoredValue(nullptr);
2285 OldClass->setLeader(getNextValueLeader(OldClass));
2286 OldClass->resetNextLeader();
2287 markValueLeaderChangeTouched(OldClass);
2291 // For a given expression, mark the phi of ops instructions that could have
2292 // changed as a result.
2293 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2294 touchAndErase(ExpressionToPhiOfOps, E);
2297 // Perform congruence finding on a given value numbering expression.
2298 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2299 // This is guaranteed to return something, since it will at least find
2300 // TOP.
2302 CongruenceClass *IClass = ValueToClass.lookup(I);
2303 assert(IClass && "Should have found a IClass");
2304 // Dead classes should have been eliminated from the mapping.
2305 assert(!IClass->isDead() && "Found a dead class");
2307 CongruenceClass *EClass = nullptr;
2308 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2309 EClass = ValueToClass.lookup(VE->getVariableValue());
2310 } else if (isa<DeadExpression>(E)) {
2311 EClass = TOPClass;
2313 if (!EClass) {
2314 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2316 // If it's not in the value table, create a new congruence class.
2317 if (lookupResult.second) {
2318 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2319 auto place = lookupResult.first;
2320 place->second = NewClass;
2322 // Constants and variables should always be made the leader.
2323 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2324 NewClass->setLeader(CE->getConstantValue());
2325 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2326 StoreInst *SI = SE->getStoreInst();
2327 NewClass->setLeader(SI);
2328 NewClass->setStoredValue(SE->getStoredValue());
2329 // The RepMemoryAccess field will be filled in properly by the
2330 // moveValueToNewCongruenceClass call.
2331 } else {
2332 NewClass->setLeader(I);
2334 assert(!isa<VariableExpression>(E) &&
2335 "VariableExpression should have been handled already");
2337 EClass = NewClass;
2338 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2339 << " using expression " << *E << " at "
2340 << NewClass->getID() << " and leader "
2341 << *(NewClass->getLeader()));
2342 if (NewClass->getStoredValue())
2343 LLVM_DEBUG(dbgs() << " and stored value "
2344 << *(NewClass->getStoredValue()));
2345 LLVM_DEBUG(dbgs() << "\n");
2346 } else {
2347 EClass = lookupResult.first->second;
2348 if (isa<ConstantExpression>(E))
2349 assert((isa<Constant>(EClass->getLeader()) ||
2350 (EClass->getStoredValue() &&
2351 isa<Constant>(EClass->getStoredValue()))) &&
2352 "Any class with a constant expression should have a "
2353 "constant leader");
2355 assert(EClass && "Somehow don't have an eclass");
2357 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2360 bool ClassChanged = IClass != EClass;
2361 bool LeaderChanged = LeaderChanges.erase(I);
2362 if (ClassChanged || LeaderChanged) {
2363 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2364 << *E << "\n");
2365 if (ClassChanged) {
2366 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2367 markPhiOfOpsChanged(E);
2370 markUsersTouched(I);
2371 if (MemoryAccess *MA = getMemoryAccess(I))
2372 markMemoryUsersTouched(MA);
2373 if (auto *CI = dyn_cast<CmpInst>(I))
2374 markPredicateUsersTouched(CI);
2376 // If we changed the class of the store, we want to ensure nothing finds the
2377 // old store expression. In particular, loads do not compare against stored
2378 // value, so they will find old store expressions (and associated class
2379 // mappings) if we leave them in the table.
2380 if (ClassChanged && isa<StoreInst>(I)) {
2381 auto *OldE = ValueToExpression.lookup(I);
2382 // It could just be that the old class died. We don't want to erase it if we
2383 // just moved classes.
2384 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2385 // Erase this as an exact expression to ensure we don't erase expressions
2386 // equivalent to it.
2387 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2388 if (Iter != ExpressionToClass.end())
2389 ExpressionToClass.erase(Iter);
2392 ValueToExpression[I] = E;
2395 // Process the fact that Edge (from, to) is reachable, including marking
2396 // any newly reachable blocks and instructions for processing.
2397 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2398 // Check if the Edge was reachable before.
2399 if (ReachableEdges.insert({From, To}).second) {
2400 // If this block wasn't reachable before, all instructions are touched.
2401 if (ReachableBlocks.insert(To).second) {
2402 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2403 << " marked reachable\n");
2404 const auto &InstRange = BlockInstRange.lookup(To);
2405 TouchedInstructions.set(InstRange.first, InstRange.second);
2406 } else {
2407 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2408 << " was reachable, but new edge {"
2409 << getBlockName(From) << "," << getBlockName(To)
2410 << "} to it found\n");
2412 // We've made an edge reachable to an existing block, which may
2413 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2414 // they are the only thing that depend on new edges. Anything using their
2415 // values will get propagated to if necessary.
2416 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2417 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2419 // FIXME: We should just add a union op on a Bitvector and
2420 // SparseBitVector. We can do it word by word faster than we are doing it
2421 // here.
2422 for (auto InstNum : RevisitOnReachabilityChange[To])
2423 TouchedInstructions.set(InstNum);
2428 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2429 // see if we know some constant value for it already.
2430 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2431 auto Result = lookupOperandLeader(Cond);
2432 return isa<Constant>(Result) ? Result : nullptr;
2435 // Process the outgoing edges of a block for reachability.
2436 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2437 // Evaluate reachability of terminator instruction.
2438 Value *Cond;
2439 BasicBlock *TrueSucc, *FalseSucc;
2440 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2441 Value *CondEvaluated = findConditionEquivalence(Cond);
2442 if (!CondEvaluated) {
2443 if (auto *I = dyn_cast<Instruction>(Cond)) {
2444 SmallPtrSet<Value *, 4> Visited;
2445 auto Res = performSymbolicEvaluation(I, Visited);
2446 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2447 CondEvaluated = CE->getConstantValue();
2448 addAdditionalUsers(Res, I);
2449 } else {
2450 // Did not use simplification result, no need to add the extra
2451 // dependency.
2452 Res.ExtraDep = nullptr;
2454 } else if (isa<ConstantInt>(Cond)) {
2455 CondEvaluated = Cond;
2458 ConstantInt *CI;
2459 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2460 if (CI->isOne()) {
2461 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2462 << " evaluated to true\n");
2463 updateReachableEdge(B, TrueSucc);
2464 } else if (CI->isZero()) {
2465 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2466 << " evaluated to false\n");
2467 updateReachableEdge(B, FalseSucc);
2469 } else {
2470 updateReachableEdge(B, TrueSucc);
2471 updateReachableEdge(B, FalseSucc);
2473 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2474 // For switches, propagate the case values into the case
2475 // destinations.
2477 Value *SwitchCond = SI->getCondition();
2478 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2479 // See if we were able to turn this switch statement into a constant.
2480 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2481 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2482 // We should be able to get case value for this.
2483 auto Case = *SI->findCaseValue(CondVal);
2484 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2485 // We proved the value is outside of the range of the case.
2486 // We can't do anything other than mark the default dest as reachable,
2487 // and go home.
2488 updateReachableEdge(B, SI->getDefaultDest());
2489 return;
2491 // Now get where it goes and mark it reachable.
2492 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2493 updateReachableEdge(B, TargetBlock);
2494 } else {
2495 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2496 BasicBlock *TargetBlock = SI->getSuccessor(i);
2497 updateReachableEdge(B, TargetBlock);
2500 } else {
2501 // Otherwise this is either unconditional, or a type we have no
2502 // idea about. Just mark successors as reachable.
2503 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2504 BasicBlock *TargetBlock = TI->getSuccessor(i);
2505 updateReachableEdge(B, TargetBlock);
2508 // This also may be a memory defining terminator, in which case, set it
2509 // equivalent only to itself.
2511 auto *MA = getMemoryAccess(TI);
2512 if (MA && !isa<MemoryUse>(MA)) {
2513 auto *CC = ensureLeaderOfMemoryClass(MA);
2514 if (setMemoryClass(MA, CC))
2515 markMemoryUsersTouched(MA);
2520 // Remove the PHI of Ops PHI for I
2521 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2522 InstrDFS.erase(PHITemp);
2523 // It's still a temp instruction. We keep it in the array so it gets erased.
2524 // However, it's no longer used by I, or in the block
2525 TempToBlock.erase(PHITemp);
2526 RealToTemp.erase(I);
2527 // We don't remove the users from the phi node uses. This wastes a little
2528 // time, but such is life. We could use two sets to track which were there
2529 // are the start of NewGVN, and which were added, but right nowt he cost of
2530 // tracking is more than the cost of checking for more phi of ops.
2533 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2534 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2535 Instruction *ExistingValue) {
2536 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2537 AllTempInstructions.insert(Op);
2538 TempToBlock[Op] = BB;
2539 RealToTemp[ExistingValue] = Op;
2540 // Add all users to phi node use, as they are now uses of the phi of ops phis
2541 // and may themselves be phi of ops.
2542 for (auto *U : ExistingValue->users())
2543 if (auto *UI = dyn_cast<Instruction>(U))
2544 PHINodeUses.insert(UI);
2547 static bool okayForPHIOfOps(const Instruction *I) {
2548 if (!EnablePhiOfOps)
2549 return false;
2550 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2551 isa<LoadInst>(I);
2554 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2555 Value *V, const BasicBlock *PHIBlock,
2556 SmallPtrSetImpl<const Value *> &Visited,
2557 SmallVectorImpl<Instruction *> &Worklist) {
2559 if (!isa<Instruction>(V))
2560 return true;
2561 auto OISIt = OpSafeForPHIOfOps.find(V);
2562 if (OISIt != OpSafeForPHIOfOps.end())
2563 return OISIt->second;
2565 // Keep walking until we either dominate the phi block, or hit a phi, or run
2566 // out of things to check.
2567 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2568 OpSafeForPHIOfOps.insert({V, true});
2569 return true;
2571 // PHI in the same block.
2572 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2573 OpSafeForPHIOfOps.insert({V, false});
2574 return false;
2577 auto *OrigI = cast<Instruction>(V);
2578 for (auto *Op : OrigI->operand_values()) {
2579 if (!isa<Instruction>(Op))
2580 continue;
2581 // Stop now if we find an unsafe operand.
2582 auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2583 if (OISIt != OpSafeForPHIOfOps.end()) {
2584 if (!OISIt->second) {
2585 OpSafeForPHIOfOps.insert({V, false});
2586 return false;
2588 continue;
2590 if (!Visited.insert(Op).second)
2591 continue;
2592 Worklist.push_back(cast<Instruction>(Op));
2594 return true;
2597 // Return true if this operand will be safe to use for phi of ops.
2599 // The reason some operands are unsafe is that we are not trying to recursively
2600 // translate everything back through phi nodes. We actually expect some lookups
2601 // of expressions to fail. In particular, a lookup where the expression cannot
2602 // exist in the predecessor. This is true even if the expression, as shown, can
2603 // be determined to be constant.
2604 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2605 SmallPtrSetImpl<const Value *> &Visited) {
2606 SmallVector<Instruction *, 4> Worklist;
2607 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2608 return false;
2609 while (!Worklist.empty()) {
2610 auto *I = Worklist.pop_back_val();
2611 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2612 return false;
2614 OpSafeForPHIOfOps.insert({V, true});
2615 return true;
2618 // Try to find a leader for instruction TransInst, which is a phi translated
2619 // version of something in our original program. Visited is used to ensure we
2620 // don't infinite loop during translations of cycles. OrigInst is the
2621 // instruction in the original program, and PredBB is the predecessor we
2622 // translated it through.
2623 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2624 SmallPtrSetImpl<Value *> &Visited,
2625 MemoryAccess *MemAccess, Instruction *OrigInst,
2626 BasicBlock *PredBB) {
2627 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2628 // Make sure it's marked as a temporary instruction.
2629 AllTempInstructions.insert(TransInst);
2630 // and make sure anything that tries to add it's DFS number is
2631 // redirected to the instruction we are making a phi of ops
2632 // for.
2633 TempToBlock.insert({TransInst, PredBB});
2634 InstrDFS.insert({TransInst, IDFSNum});
2636 auto Res = performSymbolicEvaluation(TransInst, Visited);
2637 const Expression *E = Res.Expr;
2638 addAdditionalUsers(Res, OrigInst);
2639 InstrDFS.erase(TransInst);
2640 AllTempInstructions.erase(TransInst);
2641 TempToBlock.erase(TransInst);
2642 if (MemAccess)
2643 TempToMemory.erase(TransInst);
2644 if (!E)
2645 return nullptr;
2646 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2647 if (!FoundVal) {
2648 ExpressionToPhiOfOps[E].insert(OrigInst);
2649 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2650 << " in block " << getBlockName(PredBB) << "\n");
2651 return nullptr;
2653 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2654 FoundVal = SI->getValueOperand();
2655 return FoundVal;
2658 // When we see an instruction that is an op of phis, generate the equivalent phi
2659 // of ops form.
2660 const Expression *
2661 NewGVN::makePossiblePHIOfOps(Instruction *I,
2662 SmallPtrSetImpl<Value *> &Visited) {
2663 if (!okayForPHIOfOps(I))
2664 return nullptr;
2666 if (!Visited.insert(I).second)
2667 return nullptr;
2668 // For now, we require the instruction be cycle free because we don't
2669 // *always* create a phi of ops for instructions that could be done as phi
2670 // of ops, we only do it if we think it is useful. If we did do it all the
2671 // time, we could remove the cycle free check.
2672 if (!isCycleFree(I))
2673 return nullptr;
2675 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2676 // TODO: We don't do phi translation on memory accesses because it's
2677 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2678 // which we don't have a good way of doing ATM.
2679 auto *MemAccess = getMemoryAccess(I);
2680 // If the memory operation is defined by a memory operation this block that
2681 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2682 // can't help, as it would still be killed by that memory operation.
2683 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2684 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2685 return nullptr;
2687 // Convert op of phis to phi of ops
2688 SmallPtrSet<const Value *, 10> VisitedOps;
2689 SmallVector<Value *, 4> Ops(I->operand_values());
2690 BasicBlock *SamePHIBlock = nullptr;
2691 PHINode *OpPHI = nullptr;
2692 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2693 return nullptr;
2694 for (auto *Op : Ops) {
2695 if (!isa<PHINode>(Op)) {
2696 auto *ValuePHI = RealToTemp.lookup(Op);
2697 if (!ValuePHI)
2698 continue;
2699 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2700 Op = ValuePHI;
2702 OpPHI = cast<PHINode>(Op);
2703 if (!SamePHIBlock) {
2704 SamePHIBlock = getBlockForValue(OpPHI);
2705 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2706 LLVM_DEBUG(
2707 dbgs()
2708 << "PHIs for operands are not all in the same block, aborting\n");
2709 return nullptr;
2711 // No point in doing this for one-operand phis.
2712 if (OpPHI->getNumOperands() == 1) {
2713 OpPHI = nullptr;
2714 continue;
2718 if (!OpPHI)
2719 return nullptr;
2721 SmallVector<ValPair, 4> PHIOps;
2722 SmallPtrSet<Value *, 4> Deps;
2723 auto *PHIBlock = getBlockForValue(OpPHI);
2724 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2725 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2726 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2727 Value *FoundVal = nullptr;
2728 SmallPtrSet<Value *, 4> CurrentDeps;
2729 // We could just skip unreachable edges entirely but it's tricky to do
2730 // with rewriting existing phi nodes.
2731 if (ReachableEdges.count({PredBB, PHIBlock})) {
2732 // Clone the instruction, create an expression from it that is
2733 // translated back into the predecessor, and see if we have a leader.
2734 Instruction *ValueOp = I->clone();
2735 if (MemAccess)
2736 TempToMemory.insert({ValueOp, MemAccess});
2737 bool SafeForPHIOfOps = true;
2738 VisitedOps.clear();
2739 for (auto &Op : ValueOp->operands()) {
2740 auto *OrigOp = &*Op;
2741 // When these operand changes, it could change whether there is a
2742 // leader for us or not, so we have to add additional users.
2743 if (isa<PHINode>(Op)) {
2744 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2745 if (Op != OrigOp && Op != I)
2746 CurrentDeps.insert(Op);
2747 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2748 if (getBlockForValue(ValuePHI) == PHIBlock)
2749 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2751 // If we phi-translated the op, it must be safe.
2752 SafeForPHIOfOps =
2753 SafeForPHIOfOps &&
2754 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2756 // FIXME: For those things that are not safe we could generate
2757 // expressions all the way down, and see if this comes out to a
2758 // constant. For anything where that is true, and unsafe, we should
2759 // have made a phi-of-ops (or value numbered it equivalent to something)
2760 // for the pieces already.
2761 FoundVal = !SafeForPHIOfOps ? nullptr
2762 : findLeaderForInst(ValueOp, Visited,
2763 MemAccess, I, PredBB);
2764 ValueOp->deleteValue();
2765 if (!FoundVal) {
2766 // We failed to find a leader for the current ValueOp, but this might
2767 // change in case of the translated operands change.
2768 if (SafeForPHIOfOps)
2769 for (auto Dep : CurrentDeps)
2770 addAdditionalUsers(Dep, I);
2772 return nullptr;
2774 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2775 } else {
2776 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2777 << getBlockName(PredBB)
2778 << " because the block is unreachable\n");
2779 FoundVal = UndefValue::get(I->getType());
2780 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2783 PHIOps.push_back({FoundVal, PredBB});
2784 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2785 << getBlockName(PredBB) << "\n");
2787 for (auto Dep : Deps)
2788 addAdditionalUsers(Dep, I);
2789 sortPHIOps(PHIOps);
2790 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2791 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2792 LLVM_DEBUG(
2793 dbgs()
2794 << "Not creating real PHI of ops because it simplified to existing "
2795 "value or constant\n");
2796 // We have leaders for all operands, but do not create a real PHI node with
2797 // those leaders as operands, so the link between the operands and the
2798 // PHI-of-ops is not materialized in the IR. If any of those leaders
2799 // changes, the PHI-of-op may change also, so we need to add the operands as
2800 // additional users.
2801 for (auto &O : PHIOps)
2802 addAdditionalUsers(O.first, I);
2804 return E;
2806 auto *ValuePHI = RealToTemp.lookup(I);
2807 bool NewPHI = false;
2808 if (!ValuePHI) {
2809 ValuePHI =
2810 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2811 addPhiOfOps(ValuePHI, PHIBlock, I);
2812 NewPHI = true;
2813 NumGVNPHIOfOpsCreated++;
2815 if (NewPHI) {
2816 for (auto PHIOp : PHIOps)
2817 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2818 } else {
2819 TempToBlock[ValuePHI] = PHIBlock;
2820 unsigned int i = 0;
2821 for (auto PHIOp : PHIOps) {
2822 ValuePHI->setIncomingValue(i, PHIOp.first);
2823 ValuePHI->setIncomingBlock(i, PHIOp.second);
2824 ++i;
2827 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2828 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2829 << "\n");
2831 return E;
2834 // The algorithm initially places the values of the routine in the TOP
2835 // congruence class. The leader of TOP is the undetermined value `undef`.
2836 // When the algorithm has finished, values still in TOP are unreachable.
2837 void NewGVN::initializeCongruenceClasses(Function &F) {
2838 NextCongruenceNum = 0;
2840 // Note that even though we use the live on entry def as a representative
2841 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2842 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2843 // should be checking whether the MemoryAccess is top if we want to know if it
2844 // is equivalent to everything. Otherwise, what this really signifies is that
2845 // the access "it reaches all the way back to the beginning of the function"
2847 // Initialize all other instructions to be in TOP class.
2848 TOPClass = createCongruenceClass(nullptr, nullptr);
2849 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2850 // The live on entry def gets put into it's own class
2851 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2852 createMemoryClass(MSSA->getLiveOnEntryDef());
2854 for (auto DTN : nodes(DT)) {
2855 BasicBlock *BB = DTN->getBlock();
2856 // All MemoryAccesses are equivalent to live on entry to start. They must
2857 // be initialized to something so that initial changes are noticed. For
2858 // the maximal answer, we initialize them all to be the same as
2859 // liveOnEntry.
2860 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2861 if (MemoryBlockDefs)
2862 for (const auto &Def : *MemoryBlockDefs) {
2863 MemoryAccessToClass[&Def] = TOPClass;
2864 auto *MD = dyn_cast<MemoryDef>(&Def);
2865 // Insert the memory phis into the member list.
2866 if (!MD) {
2867 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2868 TOPClass->memory_insert(MP);
2869 MemoryPhiState.insert({MP, MPS_TOP});
2872 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2873 TOPClass->incStoreCount();
2876 // FIXME: This is trying to discover which instructions are uses of phi
2877 // nodes. We should move this into one of the myriad of places that walk
2878 // all the operands already.
2879 for (auto &I : *BB) {
2880 if (isa<PHINode>(&I))
2881 for (auto *U : I.users())
2882 if (auto *UInst = dyn_cast<Instruction>(U))
2883 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2884 PHINodeUses.insert(UInst);
2885 // Don't insert void terminators into the class. We don't value number
2886 // them, and they just end up sitting in TOP.
2887 if (I.isTerminator() && I.getType()->isVoidTy())
2888 continue;
2889 TOPClass->insert(&I);
2890 ValueToClass[&I] = TOPClass;
2894 // Initialize arguments to be in their own unique congruence classes
2895 for (auto &FA : F.args())
2896 createSingletonCongruenceClass(&FA);
2899 void NewGVN::cleanupTables() {
2900 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2901 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2902 << " has " << CongruenceClasses[i]->size()
2903 << " members\n");
2904 // Make sure we delete the congruence class (probably worth switching to
2905 // a unique_ptr at some point.
2906 delete CongruenceClasses[i];
2907 CongruenceClasses[i] = nullptr;
2910 // Destroy the value expressions
2911 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2912 AllTempInstructions.end());
2913 AllTempInstructions.clear();
2915 // We have to drop all references for everything first, so there are no uses
2916 // left as we delete them.
2917 for (auto *I : TempInst) {
2918 I->dropAllReferences();
2921 while (!TempInst.empty()) {
2922 auto *I = TempInst.pop_back_val();
2923 I->deleteValue();
2926 ValueToClass.clear();
2927 ArgRecycler.clear(ExpressionAllocator);
2928 ExpressionAllocator.Reset();
2929 CongruenceClasses.clear();
2930 ExpressionToClass.clear();
2931 ValueToExpression.clear();
2932 RealToTemp.clear();
2933 AdditionalUsers.clear();
2934 ExpressionToPhiOfOps.clear();
2935 TempToBlock.clear();
2936 TempToMemory.clear();
2937 PHINodeUses.clear();
2938 OpSafeForPHIOfOps.clear();
2939 ReachableBlocks.clear();
2940 ReachableEdges.clear();
2941 #ifndef NDEBUG
2942 ProcessedCount.clear();
2943 #endif
2944 InstrDFS.clear();
2945 InstructionsToErase.clear();
2946 DFSToInstr.clear();
2947 BlockInstRange.clear();
2948 TouchedInstructions.clear();
2949 MemoryAccessToClass.clear();
2950 PredicateToUsers.clear();
2951 MemoryToUsers.clear();
2952 RevisitOnReachabilityChange.clear();
2955 // Assign local DFS number mapping to instructions, and leave space for Value
2956 // PHI's.
2957 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2958 unsigned Start) {
2959 unsigned End = Start;
2960 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2961 InstrDFS[MemPhi] = End++;
2962 DFSToInstr.emplace_back(MemPhi);
2965 // Then the real block goes next.
2966 for (auto &I : *B) {
2967 // There's no need to call isInstructionTriviallyDead more than once on
2968 // an instruction. Therefore, once we know that an instruction is dead
2969 // we change its DFS number so that it doesn't get value numbered.
2970 if (isInstructionTriviallyDead(&I, TLI)) {
2971 InstrDFS[&I] = 0;
2972 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2973 markInstructionForDeletion(&I);
2974 continue;
2976 if (isa<PHINode>(&I))
2977 RevisitOnReachabilityChange[B].set(End);
2978 InstrDFS[&I] = End++;
2979 DFSToInstr.emplace_back(&I);
2982 // All of the range functions taken half-open ranges (open on the end side).
2983 // So we do not subtract one from count, because at this point it is one
2984 // greater than the last instruction.
2985 return std::make_pair(Start, End);
2988 void NewGVN::updateProcessedCount(const Value *V) {
2989 #ifndef NDEBUG
2990 if (ProcessedCount.count(V) == 0) {
2991 ProcessedCount.insert({V, 1});
2992 } else {
2993 ++ProcessedCount[V];
2994 assert(ProcessedCount[V] < 100 &&
2995 "Seem to have processed the same Value a lot");
2997 #endif
3000 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3001 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3002 // If all the arguments are the same, the MemoryPhi has the same value as the
3003 // argument. Filter out unreachable blocks and self phis from our operands.
3004 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3005 // self-phi checking.
3006 const BasicBlock *PHIBlock = MP->getBlock();
3007 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3008 return cast<MemoryAccess>(U) != MP &&
3009 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3010 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3012 // If all that is left is nothing, our memoryphi is undef. We keep it as
3013 // InitialClass. Note: The only case this should happen is if we have at
3014 // least one self-argument.
3015 if (Filtered.begin() == Filtered.end()) {
3016 if (setMemoryClass(MP, TOPClass))
3017 markMemoryUsersTouched(MP);
3018 return;
3021 // Transform the remaining operands into operand leaders.
3022 // FIXME: mapped_iterator should have a range version.
3023 auto LookupFunc = [&](const Use &U) {
3024 return lookupMemoryLeader(cast<MemoryAccess>(U));
3026 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3027 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3029 // and now check if all the elements are equal.
3030 // Sadly, we can't use std::equals since these are random access iterators.
3031 const auto *AllSameValue = *MappedBegin;
3032 ++MappedBegin;
3033 bool AllEqual = std::all_of(
3034 MappedBegin, MappedEnd,
3035 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3037 if (AllEqual)
3038 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3039 << "\n");
3040 else
3041 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3042 // If it's equal to something, it's in that class. Otherwise, it has to be in
3043 // a class where it is the leader (other things may be equivalent to it, but
3044 // it needs to start off in its own class, which means it must have been the
3045 // leader, and it can't have stopped being the leader because it was never
3046 // removed).
3047 CongruenceClass *CC =
3048 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3049 auto OldState = MemoryPhiState.lookup(MP);
3050 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3051 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3052 MemoryPhiState[MP] = NewState;
3053 if (setMemoryClass(MP, CC) || OldState != NewState)
3054 markMemoryUsersTouched(MP);
3057 // Value number a single instruction, symbolically evaluating, performing
3058 // congruence finding, and updating mappings.
3059 void NewGVN::valueNumberInstruction(Instruction *I) {
3060 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3061 if (!I->isTerminator()) {
3062 const Expression *Symbolized = nullptr;
3063 SmallPtrSet<Value *, 2> Visited;
3064 if (DebugCounter::shouldExecute(VNCounter)) {
3065 auto Res = performSymbolicEvaluation(I, Visited);
3066 Symbolized = Res.Expr;
3067 addAdditionalUsers(Res, I);
3069 // Make a phi of ops if necessary
3070 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3071 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3072 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3073 // If we created a phi of ops, use it.
3074 // If we couldn't create one, make sure we don't leave one lying around
3075 if (PHIE) {
3076 Symbolized = PHIE;
3077 } else if (auto *Op = RealToTemp.lookup(I)) {
3078 removePhiOfOps(I, Op);
3081 } else {
3082 // Mark the instruction as unused so we don't value number it again.
3083 InstrDFS[I] = 0;
3085 // If we couldn't come up with a symbolic expression, use the unknown
3086 // expression
3087 if (Symbolized == nullptr)
3088 Symbolized = createUnknownExpression(I);
3089 performCongruenceFinding(I, Symbolized);
3090 } else {
3091 // Handle terminators that return values. All of them produce values we
3092 // don't currently understand. We don't place non-value producing
3093 // terminators in a class.
3094 if (!I->getType()->isVoidTy()) {
3095 auto *Symbolized = createUnknownExpression(I);
3096 performCongruenceFinding(I, Symbolized);
3098 processOutgoingEdges(I, I->getParent());
3102 // Check if there is a path, using single or equal argument phi nodes, from
3103 // First to Second.
3104 bool NewGVN::singleReachablePHIPath(
3105 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3106 const MemoryAccess *Second) const {
3107 if (First == Second)
3108 return true;
3109 if (MSSA->isLiveOnEntryDef(First))
3110 return false;
3112 // This is not perfect, but as we're just verifying here, we can live with
3113 // the loss of precision. The real solution would be that of doing strongly
3114 // connected component finding in this routine, and it's probably not worth
3115 // the complexity for the time being. So, we just keep a set of visited
3116 // MemoryAccess and return true when we hit a cycle.
3117 if (Visited.count(First))
3118 return true;
3119 Visited.insert(First);
3121 const auto *EndDef = First;
3122 for (auto *ChainDef : optimized_def_chain(First)) {
3123 if (ChainDef == Second)
3124 return true;
3125 if (MSSA->isLiveOnEntryDef(ChainDef))
3126 return false;
3127 EndDef = ChainDef;
3129 auto *MP = cast<MemoryPhi>(EndDef);
3130 auto ReachableOperandPred = [&](const Use &U) {
3131 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3133 auto FilteredPhiArgs =
3134 make_filter_range(MP->operands(), ReachableOperandPred);
3135 SmallVector<const Value *, 32> OperandList;
3136 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3137 bool Okay = is_splat(OperandList);
3138 if (Okay)
3139 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3140 Second);
3141 return false;
3144 // Verify the that the memory equivalence table makes sense relative to the
3145 // congruence classes. Note that this checking is not perfect, and is currently
3146 // subject to very rare false negatives. It is only useful for
3147 // testing/debugging.
3148 void NewGVN::verifyMemoryCongruency() const {
3149 #ifndef NDEBUG
3150 // Verify that the memory table equivalence and memory member set match
3151 for (const auto *CC : CongruenceClasses) {
3152 if (CC == TOPClass || CC->isDead())
3153 continue;
3154 if (CC->getStoreCount() != 0) {
3155 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3156 "Any class with a store as a leader should have a "
3157 "representative stored value");
3158 assert(CC->getMemoryLeader() &&
3159 "Any congruence class with a store should have a "
3160 "representative access");
3163 if (CC->getMemoryLeader())
3164 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3165 "Representative MemoryAccess does not appear to be reverse "
3166 "mapped properly");
3167 for (auto M : CC->memory())
3168 assert(MemoryAccessToClass.lookup(M) == CC &&
3169 "Memory member does not appear to be reverse mapped properly");
3172 // Anything equivalent in the MemoryAccess table should be in the same
3173 // congruence class.
3175 // Filter out the unreachable and trivially dead entries, because they may
3176 // never have been updated if the instructions were not processed.
3177 auto ReachableAccessPred =
3178 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3179 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3180 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3181 MemoryToDFSNum(Pair.first) == 0)
3182 return false;
3183 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3184 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3186 // We could have phi nodes which operands are all trivially dead,
3187 // so we don't process them.
3188 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3189 for (auto &U : MemPHI->incoming_values()) {
3190 if (auto *I = dyn_cast<Instruction>(&*U)) {
3191 if (!isInstructionTriviallyDead(I))
3192 return true;
3195 return false;
3198 return true;
3201 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3202 for (auto KV : Filtered) {
3203 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3204 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3205 if (FirstMUD && SecondMUD) {
3206 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3207 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3208 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3209 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3210 "The instructions for these memory operations should have "
3211 "been in the same congruence class or reachable through"
3212 "a single argument phi");
3214 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3215 // We can only sanely verify that MemoryDefs in the operand list all have
3216 // the same class.
3217 auto ReachableOperandPred = [&](const Use &U) {
3218 return ReachableEdges.count(
3219 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3220 isa<MemoryDef>(U);
3223 // All arguments should in the same class, ignoring unreachable arguments
3224 auto FilteredPhiArgs =
3225 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3226 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3227 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3228 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3229 const MemoryDef *MD = cast<MemoryDef>(U);
3230 return ValueToClass.lookup(MD->getMemoryInst());
3232 assert(is_splat(PhiOpClasses) &&
3233 "All MemoryPhi arguments should be in the same class");
3236 #endif
3239 // Verify that the sparse propagation we did actually found the maximal fixpoint
3240 // We do this by storing the value to class mapping, touching all instructions,
3241 // and redoing the iteration to see if anything changed.
3242 void NewGVN::verifyIterationSettled(Function &F) {
3243 #ifndef NDEBUG
3244 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3245 if (DebugCounter::isCounterSet(VNCounter))
3246 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3248 // Note that we have to store the actual classes, as we may change existing
3249 // classes during iteration. This is because our memory iteration propagation
3250 // is not perfect, and so may waste a little work. But it should generate
3251 // exactly the same congruence classes we have now, with different IDs.
3252 std::map<const Value *, CongruenceClass> BeforeIteration;
3254 for (auto &KV : ValueToClass) {
3255 if (auto *I = dyn_cast<Instruction>(KV.first))
3256 // Skip unused/dead instructions.
3257 if (InstrToDFSNum(I) == 0)
3258 continue;
3259 BeforeIteration.insert({KV.first, *KV.second});
3262 TouchedInstructions.set();
3263 TouchedInstructions.reset(0);
3264 iterateTouchedInstructions();
3265 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3266 EqualClasses;
3267 for (const auto &KV : ValueToClass) {
3268 if (auto *I = dyn_cast<Instruction>(KV.first))
3269 // Skip unused/dead instructions.
3270 if (InstrToDFSNum(I) == 0)
3271 continue;
3272 // We could sink these uses, but i think this adds a bit of clarity here as
3273 // to what we are comparing.
3274 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3275 auto *AfterCC = KV.second;
3276 // Note that the classes can't change at this point, so we memoize the set
3277 // that are equal.
3278 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3279 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3280 "Value number changed after main loop completed!");
3281 EqualClasses.insert({BeforeCC, AfterCC});
3284 #endif
3287 // Verify that for each store expression in the expression to class mapping,
3288 // only the latest appears, and multiple ones do not appear.
3289 // Because loads do not use the stored value when doing equality with stores,
3290 // if we don't erase the old store expressions from the table, a load can find
3291 // a no-longer valid StoreExpression.
3292 void NewGVN::verifyStoreExpressions() const {
3293 #ifndef NDEBUG
3294 // This is the only use of this, and it's not worth defining a complicated
3295 // densemapinfo hash/equality function for it.
3296 std::set<
3297 std::pair<const Value *,
3298 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3299 StoreExpressionSet;
3300 for (const auto &KV : ExpressionToClass) {
3301 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3302 // Make sure a version that will conflict with loads is not already there
3303 auto Res = StoreExpressionSet.insert(
3304 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3305 SE->getStoredValue())});
3306 bool Okay = Res.second;
3307 // It's okay to have the same expression already in there if it is
3308 // identical in nature.
3309 // This can happen when the leader of the stored value changes over time.
3310 if (!Okay)
3311 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3312 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3313 lookupOperandLeader(SE->getStoredValue()));
3314 assert(Okay && "Stored expression conflict exists in expression table");
3315 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3316 assert(ValueExpr && ValueExpr->equals(*SE) &&
3317 "StoreExpression in ExpressionToClass is not latest "
3318 "StoreExpression for value");
3321 #endif
3324 // This is the main value numbering loop, it iterates over the initial touched
3325 // instruction set, propagating value numbers, marking things touched, etc,
3326 // until the set of touched instructions is completely empty.
3327 void NewGVN::iterateTouchedInstructions() {
3328 unsigned int Iterations = 0;
3329 // Figure out where touchedinstructions starts
3330 int FirstInstr = TouchedInstructions.find_first();
3331 // Nothing set, nothing to iterate, just return.
3332 if (FirstInstr == -1)
3333 return;
3334 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3335 while (TouchedInstructions.any()) {
3336 ++Iterations;
3337 // Walk through all the instructions in all the blocks in RPO.
3338 // TODO: As we hit a new block, we should push and pop equalities into a
3339 // table lookupOperandLeader can use, to catch things PredicateInfo
3340 // might miss, like edge-only equivalences.
3341 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3343 // This instruction was found to be dead. We don't bother looking
3344 // at it again.
3345 if (InstrNum == 0) {
3346 TouchedInstructions.reset(InstrNum);
3347 continue;
3350 Value *V = InstrFromDFSNum(InstrNum);
3351 const BasicBlock *CurrBlock = getBlockForValue(V);
3353 // If we hit a new block, do reachability processing.
3354 if (CurrBlock != LastBlock) {
3355 LastBlock = CurrBlock;
3356 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3357 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3359 // If it's not reachable, erase any touched instructions and move on.
3360 if (!BlockReachable) {
3361 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3362 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3363 << getBlockName(CurrBlock)
3364 << " because it is unreachable\n");
3365 continue;
3367 updateProcessedCount(CurrBlock);
3369 // Reset after processing (because we may mark ourselves as touched when
3370 // we propagate equalities).
3371 TouchedInstructions.reset(InstrNum);
3373 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3374 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3375 valueNumberMemoryPhi(MP);
3376 } else if (auto *I = dyn_cast<Instruction>(V)) {
3377 valueNumberInstruction(I);
3378 } else {
3379 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3381 updateProcessedCount(V);
3384 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3387 // This is the main transformation entry point.
3388 bool NewGVN::runGVN() {
3389 if (DebugCounter::isCounterSet(VNCounter))
3390 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3391 bool Changed = false;
3392 NumFuncArgs = F.arg_size();
3393 MSSAWalker = MSSA->getWalker();
3394 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3396 // Count number of instructions for sizing of hash tables, and come
3397 // up with a global dfs numbering for instructions.
3398 unsigned ICount = 1;
3399 // Add an empty instruction to account for the fact that we start at 1
3400 DFSToInstr.emplace_back(nullptr);
3401 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3402 // same as dominator tree order, particularly with regard whether backedges
3403 // get visited first or second, given a block with multiple successors.
3404 // If we visit in the wrong order, we will end up performing N times as many
3405 // iterations.
3406 // The dominator tree does guarantee that, for a given dom tree node, it's
3407 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3408 // the siblings.
3409 ReversePostOrderTraversal<Function *> RPOT(&F);
3410 unsigned Counter = 0;
3411 for (auto &B : RPOT) {
3412 auto *Node = DT->getNode(B);
3413 assert(Node && "RPO and Dominator tree should have same reachability");
3414 RPOOrdering[Node] = ++Counter;
3416 // Sort dominator tree children arrays into RPO.
3417 for (auto &B : RPOT) {
3418 auto *Node = DT->getNode(B);
3419 if (Node->getNumChildren() > 1)
3420 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3421 return RPOOrdering[A] < RPOOrdering[B];
3425 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3426 for (auto DTN : depth_first(DT->getRootNode())) {
3427 BasicBlock *B = DTN->getBlock();
3428 const auto &BlockRange = assignDFSNumbers(B, ICount);
3429 BlockInstRange.insert({B, BlockRange});
3430 ICount += BlockRange.second - BlockRange.first;
3432 initializeCongruenceClasses(F);
3434 TouchedInstructions.resize(ICount);
3435 // Ensure we don't end up resizing the expressionToClass map, as
3436 // that can be quite expensive. At most, we have one expression per
3437 // instruction.
3438 ExpressionToClass.reserve(ICount);
3440 // Initialize the touched instructions to include the entry block.
3441 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3442 TouchedInstructions.set(InstRange.first, InstRange.second);
3443 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3444 << " marked reachable\n");
3445 ReachableBlocks.insert(&F.getEntryBlock());
3447 iterateTouchedInstructions();
3448 verifyMemoryCongruency();
3449 verifyIterationSettled(F);
3450 verifyStoreExpressions();
3452 Changed |= eliminateInstructions(F);
3454 // Delete all instructions marked for deletion.
3455 for (Instruction *ToErase : InstructionsToErase) {
3456 if (!ToErase->use_empty())
3457 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3459 assert(ToErase->getParent() &&
3460 "BB containing ToErase deleted unexpectedly!");
3461 ToErase->eraseFromParent();
3463 Changed |= !InstructionsToErase.empty();
3465 // Delete all unreachable blocks.
3466 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3467 return !ReachableBlocks.count(&BB);
3470 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3471 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3472 << " is unreachable\n");
3473 deleteInstructionsInBlock(&BB);
3474 Changed = true;
3477 cleanupTables();
3478 return Changed;
3481 struct NewGVN::ValueDFS {
3482 int DFSIn = 0;
3483 int DFSOut = 0;
3484 int LocalNum = 0;
3486 // Only one of Def and U will be set.
3487 // The bool in the Def tells us whether the Def is the stored value of a
3488 // store.
3489 PointerIntPair<Value *, 1, bool> Def;
3490 Use *U = nullptr;
3492 bool operator<(const ValueDFS &Other) const {
3493 // It's not enough that any given field be less than - we have sets
3494 // of fields that need to be evaluated together to give a proper ordering.
3495 // For example, if you have;
3496 // DFS (1, 3)
3497 // Val 0
3498 // DFS (1, 2)
3499 // Val 50
3500 // We want the second to be less than the first, but if we just go field
3501 // by field, we will get to Val 0 < Val 50 and say the first is less than
3502 // the second. We only want it to be less than if the DFS orders are equal.
3504 // Each LLVM instruction only produces one value, and thus the lowest-level
3505 // differentiator that really matters for the stack (and what we use as as a
3506 // replacement) is the local dfs number.
3507 // Everything else in the structure is instruction level, and only affects
3508 // the order in which we will replace operands of a given instruction.
3510 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3511 // the order of replacement of uses does not matter.
3512 // IE given,
3513 // a = 5
3514 // b = a + a
3515 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3516 // localnum.
3517 // The .val will be the same as well.
3518 // The .u's will be different.
3519 // You will replace both, and it does not matter what order you replace them
3520 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3521 // operand 2).
3522 // Similarly for the case of same dfsin, dfsout, localnum, but different
3523 // .val's
3524 // a = 5
3525 // b = 6
3526 // c = a + b
3527 // in c, we will a valuedfs for a, and one for b,with everything the same
3528 // but .val and .u.
3529 // It does not matter what order we replace these operands in.
3530 // You will always end up with the same IR, and this is guaranteed.
3531 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3532 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3533 Other.U);
3537 // This function converts the set of members for a congruence class from values,
3538 // to sets of defs and uses with associated DFS info. The total number of
3539 // reachable uses for each value is stored in UseCount, and instructions that
3540 // seem
3541 // dead (have no non-dead uses) are stored in ProbablyDead.
3542 void NewGVN::convertClassToDFSOrdered(
3543 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3544 DenseMap<const Value *, unsigned int> &UseCounts,
3545 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3546 for (auto D : Dense) {
3547 // First add the value.
3548 BasicBlock *BB = getBlockForValue(D);
3549 // Constants are handled prior to ever calling this function, so
3550 // we should only be left with instructions as members.
3551 assert(BB && "Should have figured out a basic block for value");
3552 ValueDFS VDDef;
3553 DomTreeNode *DomNode = DT->getNode(BB);
3554 VDDef.DFSIn = DomNode->getDFSNumIn();
3555 VDDef.DFSOut = DomNode->getDFSNumOut();
3556 // If it's a store, use the leader of the value operand, if it's always
3557 // available, or the value operand. TODO: We could do dominance checks to
3558 // find a dominating leader, but not worth it ATM.
3559 if (auto *SI = dyn_cast<StoreInst>(D)) {
3560 auto Leader = lookupOperandLeader(SI->getValueOperand());
3561 if (alwaysAvailable(Leader)) {
3562 VDDef.Def.setPointer(Leader);
3563 } else {
3564 VDDef.Def.setPointer(SI->getValueOperand());
3565 VDDef.Def.setInt(true);
3567 } else {
3568 VDDef.Def.setPointer(D);
3570 assert(isa<Instruction>(D) &&
3571 "The dense set member should always be an instruction");
3572 Instruction *Def = cast<Instruction>(D);
3573 VDDef.LocalNum = InstrToDFSNum(D);
3574 DFSOrderedSet.push_back(VDDef);
3575 // If there is a phi node equivalent, add it
3576 if (auto *PN = RealToTemp.lookup(Def)) {
3577 auto *PHIE =
3578 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3579 if (PHIE) {
3580 VDDef.Def.setInt(false);
3581 VDDef.Def.setPointer(PN);
3582 VDDef.LocalNum = 0;
3583 DFSOrderedSet.push_back(VDDef);
3587 unsigned int UseCount = 0;
3588 // Now add the uses.
3589 for (auto &U : Def->uses()) {
3590 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3591 // Don't try to replace into dead uses
3592 if (InstructionsToErase.count(I))
3593 continue;
3594 ValueDFS VDUse;
3595 // Put the phi node uses in the incoming block.
3596 BasicBlock *IBlock;
3597 if (auto *P = dyn_cast<PHINode>(I)) {
3598 IBlock = P->getIncomingBlock(U);
3599 // Make phi node users appear last in the incoming block
3600 // they are from.
3601 VDUse.LocalNum = InstrDFS.size() + 1;
3602 } else {
3603 IBlock = getBlockForValue(I);
3604 VDUse.LocalNum = InstrToDFSNum(I);
3607 // Skip uses in unreachable blocks, as we're going
3608 // to delete them.
3609 if (ReachableBlocks.count(IBlock) == 0)
3610 continue;
3612 DomTreeNode *DomNode = DT->getNode(IBlock);
3613 VDUse.DFSIn = DomNode->getDFSNumIn();
3614 VDUse.DFSOut = DomNode->getDFSNumOut();
3615 VDUse.U = &U;
3616 ++UseCount;
3617 DFSOrderedSet.emplace_back(VDUse);
3621 // If there are no uses, it's probably dead (but it may have side-effects,
3622 // so not definitely dead. Otherwise, store the number of uses so we can
3623 // track if it becomes dead later).
3624 if (UseCount == 0)
3625 ProbablyDead.insert(Def);
3626 else
3627 UseCounts[Def] = UseCount;
3631 // This function converts the set of members for a congruence class from values,
3632 // to the set of defs for loads and stores, with associated DFS info.
3633 void NewGVN::convertClassToLoadsAndStores(
3634 const CongruenceClass &Dense,
3635 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3636 for (auto D : Dense) {
3637 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3638 continue;
3640 BasicBlock *BB = getBlockForValue(D);
3641 ValueDFS VD;
3642 DomTreeNode *DomNode = DT->getNode(BB);
3643 VD.DFSIn = DomNode->getDFSNumIn();
3644 VD.DFSOut = DomNode->getDFSNumOut();
3645 VD.Def.setPointer(D);
3647 // If it's an instruction, use the real local dfs number.
3648 if (auto *I = dyn_cast<Instruction>(D))
3649 VD.LocalNum = InstrToDFSNum(I);
3650 else
3651 llvm_unreachable("Should have been an instruction");
3653 LoadsAndStores.emplace_back(VD);
3657 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3658 patchReplacementInstruction(I, Repl);
3659 I->replaceAllUsesWith(Repl);
3662 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3663 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3664 ++NumGVNBlocksDeleted;
3666 // Delete the instructions backwards, as it has a reduced likelihood of having
3667 // to update as many def-use and use-def chains. Start after the terminator.
3668 auto StartPoint = BB->rbegin();
3669 ++StartPoint;
3670 // Note that we explicitly recalculate BB->rend() on each iteration,
3671 // as it may change when we remove the first instruction.
3672 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3673 Instruction &Inst = *I++;
3674 if (!Inst.use_empty())
3675 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3676 if (isa<LandingPadInst>(Inst))
3677 continue;
3678 salvageKnowledge(&Inst, AC);
3680 Inst.eraseFromParent();
3681 ++NumGVNInstrDeleted;
3683 // Now insert something that simplifycfg will turn into an unreachable.
3684 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3685 new StoreInst(UndefValue::get(Int8Ty),
3686 Constant::getNullValue(Int8Ty->getPointerTo()),
3687 BB->getTerminator());
3690 void NewGVN::markInstructionForDeletion(Instruction *I) {
3691 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3692 InstructionsToErase.insert(I);
3695 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3696 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3697 patchAndReplaceAllUsesWith(I, V);
3698 // We save the actual erasing to avoid invalidating memory
3699 // dependencies until we are done with everything.
3700 markInstructionForDeletion(I);
3703 namespace {
3705 // This is a stack that contains both the value and dfs info of where
3706 // that value is valid.
3707 class ValueDFSStack {
3708 public:
3709 Value *back() const { return ValueStack.back(); }
3710 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3712 void push_back(Value *V, int DFSIn, int DFSOut) {
3713 ValueStack.emplace_back(V);
3714 DFSStack.emplace_back(DFSIn, DFSOut);
3717 bool empty() const { return DFSStack.empty(); }
3719 bool isInScope(int DFSIn, int DFSOut) const {
3720 if (empty())
3721 return false;
3722 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3725 void popUntilDFSScope(int DFSIn, int DFSOut) {
3727 // These two should always be in sync at this point.
3728 assert(ValueStack.size() == DFSStack.size() &&
3729 "Mismatch between ValueStack and DFSStack");
3730 while (
3731 !DFSStack.empty() &&
3732 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3733 DFSStack.pop_back();
3734 ValueStack.pop_back();
3738 private:
3739 SmallVector<Value *, 8> ValueStack;
3740 SmallVector<std::pair<int, int>, 8> DFSStack;
3743 } // end anonymous namespace
3745 // Given an expression, get the congruence class for it.
3746 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3747 if (auto *VE = dyn_cast<VariableExpression>(E))
3748 return ValueToClass.lookup(VE->getVariableValue());
3749 else if (isa<DeadExpression>(E))
3750 return TOPClass;
3751 return ExpressionToClass.lookup(E);
3754 // Given a value and a basic block we are trying to see if it is available in,
3755 // see if the value has a leader available in that block.
3756 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3757 const Instruction *OrigInst,
3758 const BasicBlock *BB) const {
3759 // It would already be constant if we could make it constant
3760 if (auto *CE = dyn_cast<ConstantExpression>(E))
3761 return CE->getConstantValue();
3762 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3763 auto *V = VE->getVariableValue();
3764 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3765 return VE->getVariableValue();
3768 auto *CC = getClassForExpression(E);
3769 if (!CC)
3770 return nullptr;
3771 if (alwaysAvailable(CC->getLeader()))
3772 return CC->getLeader();
3774 for (auto Member : *CC) {
3775 auto *MemberInst = dyn_cast<Instruction>(Member);
3776 if (MemberInst == OrigInst)
3777 continue;
3778 // Anything that isn't an instruction is always available.
3779 if (!MemberInst)
3780 return Member;
3781 if (DT->dominates(getBlockForValue(MemberInst), BB))
3782 return Member;
3784 return nullptr;
3787 bool NewGVN::eliminateInstructions(Function &F) {
3788 // This is a non-standard eliminator. The normal way to eliminate is
3789 // to walk the dominator tree in order, keeping track of available
3790 // values, and eliminating them. However, this is mildly
3791 // pointless. It requires doing lookups on every instruction,
3792 // regardless of whether we will ever eliminate it. For
3793 // instructions part of most singleton congruence classes, we know we
3794 // will never eliminate them.
3796 // Instead, this eliminator looks at the congruence classes directly, sorts
3797 // them into a DFS ordering of the dominator tree, and then we just
3798 // perform elimination straight on the sets by walking the congruence
3799 // class member uses in order, and eliminate the ones dominated by the
3800 // last member. This is worst case O(E log E) where E = number of
3801 // instructions in a single congruence class. In theory, this is all
3802 // instructions. In practice, it is much faster, as most instructions are
3803 // either in singleton congruence classes or can't possibly be eliminated
3804 // anyway (if there are no overlapping DFS ranges in class).
3805 // When we find something not dominated, it becomes the new leader
3806 // for elimination purposes.
3807 // TODO: If we wanted to be faster, We could remove any members with no
3808 // overlapping ranges while sorting, as we will never eliminate anything
3809 // with those members, as they don't dominate anything else in our set.
3811 bool AnythingReplaced = false;
3813 // Since we are going to walk the domtree anyway, and we can't guarantee the
3814 // DFS numbers are updated, we compute some ourselves.
3815 DT->updateDFSNumbers();
3817 // Go through all of our phi nodes, and kill the arguments associated with
3818 // unreachable edges.
3819 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3820 for (auto &Operand : PHI->incoming_values())
3821 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3822 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3823 << " for block "
3824 << getBlockName(PHI->getIncomingBlock(Operand))
3825 << " with undef due to it being unreachable\n");
3826 Operand.set(UndefValue::get(PHI->getType()));
3829 // Replace unreachable phi arguments.
3830 // At this point, RevisitOnReachabilityChange only contains:
3832 // 1. PHIs
3833 // 2. Temporaries that will convert to PHIs
3834 // 3. Operations that are affected by an unreachable edge but do not fit into
3835 // 1 or 2 (rare).
3836 // So it is a slight overshoot of what we want. We could make it exact by
3837 // using two SparseBitVectors per block.
3838 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3839 for (auto &KV : ReachableEdges)
3840 ReachablePredCount[KV.getEnd()]++;
3841 for (auto &BBPair : RevisitOnReachabilityChange) {
3842 for (auto InstNum : BBPair.second) {
3843 auto *Inst = InstrFromDFSNum(InstNum);
3844 auto *PHI = dyn_cast<PHINode>(Inst);
3845 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3846 if (!PHI)
3847 continue;
3848 auto *BB = BBPair.first;
3849 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3850 ReplaceUnreachablePHIArgs(PHI, BB);
3854 // Map to store the use counts
3855 DenseMap<const Value *, unsigned int> UseCounts;
3856 for (auto *CC : reverse(CongruenceClasses)) {
3857 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3858 << "\n");
3859 // Track the equivalent store info so we can decide whether to try
3860 // dead store elimination.
3861 SmallVector<ValueDFS, 8> PossibleDeadStores;
3862 SmallPtrSet<Instruction *, 8> ProbablyDead;
3863 if (CC->isDead() || CC->empty())
3864 continue;
3865 // Everything still in the TOP class is unreachable or dead.
3866 if (CC == TOPClass) {
3867 for (auto M : *CC) {
3868 auto *VTE = ValueToExpression.lookup(M);
3869 if (VTE && isa<DeadExpression>(VTE))
3870 markInstructionForDeletion(cast<Instruction>(M));
3871 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3872 InstructionsToErase.count(cast<Instruction>(M))) &&
3873 "Everything in TOP should be unreachable or dead at this "
3874 "point");
3876 continue;
3879 assert(CC->getLeader() && "We should have had a leader");
3880 // If this is a leader that is always available, and it's a
3881 // constant or has no equivalences, just replace everything with
3882 // it. We then update the congruence class with whatever members
3883 // are left.
3884 Value *Leader =
3885 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3886 if (alwaysAvailable(Leader)) {
3887 CongruenceClass::MemberSet MembersLeft;
3888 for (auto M : *CC) {
3889 Value *Member = M;
3890 // Void things have no uses we can replace.
3891 if (Member == Leader || !isa<Instruction>(Member) ||
3892 Member->getType()->isVoidTy()) {
3893 MembersLeft.insert(Member);
3894 continue;
3896 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3897 << *Member << "\n");
3898 auto *I = cast<Instruction>(Member);
3899 assert(Leader != I && "About to accidentally remove our leader");
3900 replaceInstruction(I, Leader);
3901 AnythingReplaced = true;
3903 CC->swap(MembersLeft);
3904 } else {
3905 // If this is a singleton, we can skip it.
3906 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3907 // This is a stack because equality replacement/etc may place
3908 // constants in the middle of the member list, and we want to use
3909 // those constant values in preference to the current leader, over
3910 // the scope of those constants.
3911 ValueDFSStack EliminationStack;
3913 // Convert the members to DFS ordered sets and then merge them.
3914 SmallVector<ValueDFS, 8> DFSOrderedSet;
3915 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3917 // Sort the whole thing.
3918 llvm::sort(DFSOrderedSet);
3919 for (auto &VD : DFSOrderedSet) {
3920 int MemberDFSIn = VD.DFSIn;
3921 int MemberDFSOut = VD.DFSOut;
3922 Value *Def = VD.Def.getPointer();
3923 bool FromStore = VD.Def.getInt();
3924 Use *U = VD.U;
3925 // We ignore void things because we can't get a value from them.
3926 if (Def && Def->getType()->isVoidTy())
3927 continue;
3928 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3929 if (DefInst && AllTempInstructions.count(DefInst)) {
3930 auto *PN = cast<PHINode>(DefInst);
3932 // If this is a value phi and that's the expression we used, insert
3933 // it into the program
3934 // remove from temp instruction list.
3935 AllTempInstructions.erase(PN);
3936 auto *DefBlock = getBlockForValue(Def);
3937 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3938 << " into block "
3939 << getBlockName(getBlockForValue(Def)) << "\n");
3940 PN->insertBefore(&DefBlock->front());
3941 Def = PN;
3942 NumGVNPHIOfOpsEliminations++;
3945 if (EliminationStack.empty()) {
3946 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3947 } else {
3948 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3949 << EliminationStack.dfs_back().first << ","
3950 << EliminationStack.dfs_back().second << ")\n");
3953 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3954 << MemberDFSOut << ")\n");
3955 // First, we see if we are out of scope or empty. If so,
3956 // and there equivalences, we try to replace the top of
3957 // stack with equivalences (if it's on the stack, it must
3958 // not have been eliminated yet).
3959 // Then we synchronize to our current scope, by
3960 // popping until we are back within a DFS scope that
3961 // dominates the current member.
3962 // Then, what happens depends on a few factors
3963 // If the stack is now empty, we need to push
3964 // If we have a constant or a local equivalence we want to
3965 // start using, we also push.
3966 // Otherwise, we walk along, processing members who are
3967 // dominated by this scope, and eliminate them.
3968 bool ShouldPush = Def && EliminationStack.empty();
3969 bool OutOfScope =
3970 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3972 if (OutOfScope || ShouldPush) {
3973 // Sync to our current scope.
3974 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3975 bool ShouldPush = Def && EliminationStack.empty();
3976 if (ShouldPush) {
3977 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3981 // Skip the Def's, we only want to eliminate on their uses. But mark
3982 // dominated defs as dead.
3983 if (Def) {
3984 // For anything in this case, what and how we value number
3985 // guarantees that any side-effets that would have occurred (ie
3986 // throwing, etc) can be proven to either still occur (because it's
3987 // dominated by something that has the same side-effects), or never
3988 // occur. Otherwise, we would not have been able to prove it value
3989 // equivalent to something else. For these things, we can just mark
3990 // it all dead. Note that this is different from the "ProbablyDead"
3991 // set, which may not be dominated by anything, and thus, are only
3992 // easy to prove dead if they are also side-effect free. Note that
3993 // because stores are put in terms of the stored value, we skip
3994 // stored values here. If the stored value is really dead, it will
3995 // still be marked for deletion when we process it in its own class.
3996 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
3997 isa<Instruction>(Def) && !FromStore)
3998 markInstructionForDeletion(cast<Instruction>(Def));
3999 continue;
4001 // At this point, we know it is a Use we are trying to possibly
4002 // replace.
4004 assert(isa<Instruction>(U->get()) &&
4005 "Current def should have been an instruction");
4006 assert(isa<Instruction>(U->getUser()) &&
4007 "Current user should have been an instruction");
4009 // If the thing we are replacing into is already marked to be dead,
4010 // this use is dead. Note that this is true regardless of whether
4011 // we have anything dominating the use or not. We do this here
4012 // because we are already walking all the uses anyway.
4013 Instruction *InstUse = cast<Instruction>(U->getUser());
4014 if (InstructionsToErase.count(InstUse)) {
4015 auto &UseCount = UseCounts[U->get()];
4016 if (--UseCount == 0) {
4017 ProbablyDead.insert(cast<Instruction>(U->get()));
4021 // If we get to this point, and the stack is empty we must have a use
4022 // with nothing we can use to eliminate this use, so just skip it.
4023 if (EliminationStack.empty())
4024 continue;
4026 Value *DominatingLeader = EliminationStack.back();
4028 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4029 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4030 if (isSSACopy)
4031 DominatingLeader = II->getOperand(0);
4033 // Don't replace our existing users with ourselves.
4034 if (U->get() == DominatingLeader)
4035 continue;
4036 LLVM_DEBUG(dbgs()
4037 << "Found replacement " << *DominatingLeader << " for "
4038 << *U->get() << " in " << *(U->getUser()) << "\n");
4040 // If we replaced something in an instruction, handle the patching of
4041 // metadata. Skip this if we are replacing predicateinfo with its
4042 // original operand, as we already know we can just drop it.
4043 auto *ReplacedInst = cast<Instruction>(U->get());
4044 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4045 if (!PI || DominatingLeader != PI->OriginalOp)
4046 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4047 U->set(DominatingLeader);
4048 // This is now a use of the dominating leader, which means if the
4049 // dominating leader was dead, it's now live!
4050 auto &LeaderUseCount = UseCounts[DominatingLeader];
4051 // It's about to be alive again.
4052 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4053 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4054 // For copy instructions, we use their operand as a leader,
4055 // which means we remove a user of the copy and it may become dead.
4056 if (isSSACopy) {
4057 unsigned &IIUseCount = UseCounts[II];
4058 if (--IIUseCount == 0)
4059 ProbablyDead.insert(II);
4061 ++LeaderUseCount;
4062 AnythingReplaced = true;
4067 // At this point, anything still in the ProbablyDead set is actually dead if
4068 // would be trivially dead.
4069 for (auto *I : ProbablyDead)
4070 if (wouldInstructionBeTriviallyDead(I))
4071 markInstructionForDeletion(I);
4073 // Cleanup the congruence class.
4074 CongruenceClass::MemberSet MembersLeft;
4075 for (auto *Member : *CC)
4076 if (!isa<Instruction>(Member) ||
4077 !InstructionsToErase.count(cast<Instruction>(Member)))
4078 MembersLeft.insert(Member);
4079 CC->swap(MembersLeft);
4081 // If we have possible dead stores to look at, try to eliminate them.
4082 if (CC->getStoreCount() > 0) {
4083 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4084 llvm::sort(PossibleDeadStores);
4085 ValueDFSStack EliminationStack;
4086 for (auto &VD : PossibleDeadStores) {
4087 int MemberDFSIn = VD.DFSIn;
4088 int MemberDFSOut = VD.DFSOut;
4089 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4090 if (EliminationStack.empty() ||
4091 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4092 // Sync to our current scope.
4093 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4094 if (EliminationStack.empty()) {
4095 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4096 continue;
4099 // We already did load elimination, so nothing to do here.
4100 if (isa<LoadInst>(Member))
4101 continue;
4102 assert(!EliminationStack.empty());
4103 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4104 (void)Leader;
4105 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4106 // Member is dominater by Leader, and thus dead
4107 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4108 << " that is dominated by " << *Leader << "\n");
4109 markInstructionForDeletion(Member);
4110 CC->erase(Member);
4111 ++NumGVNDeadStores;
4115 return AnythingReplaced;
4118 // This function provides global ranking of operations so that we can place them
4119 // in a canonical order. Note that rank alone is not necessarily enough for a
4120 // complete ordering, as constants all have the same rank. However, generally,
4121 // we will simplify an operation with all constants so that it doesn't matter
4122 // what order they appear in.
4123 unsigned int NewGVN::getRank(const Value *V) const {
4124 // Prefer constants to undef to anything else
4125 // Undef is a constant, have to check it first.
4126 // Prefer smaller constants to constantexprs
4127 if (isa<ConstantExpr>(V))
4128 return 2;
4129 if (isa<UndefValue>(V))
4130 return 1;
4131 if (isa<Constant>(V))
4132 return 0;
4133 else if (auto *A = dyn_cast<Argument>(V))
4134 return 3 + A->getArgNo();
4136 // Need to shift the instruction DFS by number of arguments + 3 to account for
4137 // the constant and argument ranking above.
4138 unsigned Result = InstrToDFSNum(V);
4139 if (Result > 0)
4140 return 4 + NumFuncArgs + Result;
4141 // Unreachable or something else, just return a really large number.
4142 return ~0;
4145 // This is a function that says whether two commutative operations should
4146 // have their order swapped when canonicalizing.
4147 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4148 // Because we only care about a total ordering, and don't rewrite expressions
4149 // in this order, we order by rank, which will give a strict weak ordering to
4150 // everything but constants, and then we order by pointer address.
4151 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4154 namespace {
4156 class NewGVNLegacyPass : public FunctionPass {
4157 public:
4158 // Pass identification, replacement for typeid.
4159 static char ID;
4161 NewGVNLegacyPass() : FunctionPass(ID) {
4162 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4165 bool runOnFunction(Function &F) override;
4167 private:
4168 void getAnalysisUsage(AnalysisUsage &AU) const override {
4169 AU.addRequired<AssumptionCacheTracker>();
4170 AU.addRequired<DominatorTreeWrapperPass>();
4171 AU.addRequired<TargetLibraryInfoWrapperPass>();
4172 AU.addRequired<MemorySSAWrapperPass>();
4173 AU.addRequired<AAResultsWrapperPass>();
4174 AU.addPreserved<DominatorTreeWrapperPass>();
4175 AU.addPreserved<GlobalsAAWrapperPass>();
4179 } // end anonymous namespace
4181 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4182 if (skipFunction(F))
4183 return false;
4184 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4185 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4186 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4187 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4188 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4189 F.getParent()->getDataLayout())
4190 .runGVN();
4193 char NewGVNLegacyPass::ID = 0;
4195 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4196 false, false)
4197 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4198 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4199 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4200 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4202 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4203 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4204 false)
4206 // createGVNPass - The public interface to this file.
4207 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4209 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4210 // Apparently the order in which we get these results matter for
4211 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4212 // the same order here, just in case.
4213 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4214 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4215 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4216 auto &AA = AM.getResult<AAManager>(F);
4217 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4218 bool Changed =
4219 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4220 .runGVN();
4221 if (!Changed)
4222 return PreservedAnalyses::all();
4223 PreservedAnalyses PA;
4224 PA.preserve<DominatorTreeAnalysis>();
4225 return PA;